Semi-probabilistic Routing
for Highly Dynamic Networks

Paolo Costa and Gian Pietro Picco

Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy
{costa,picco}@elet.polimi.it

Abstract. In this paper we describe a semi-probabilistic routing ap-
proach designed to enable content-based publish-subscribe on highly dy-
namic networks, e.g., mobile, peer-to-peer, or wireless sensor networks.
We present the rationale and high level strategy of our approach, and
then show its application in a link-based graph overlay as well as in a
broadcast-based sensor network. Simulation results confirm that, in both
scenarios, our semi-probabilistic approach strikes a balance between en-
tirely deterministic and entirely probabilistic solutions, achieving high
reliability with low overhead.

Keywords: Epidemic Algortihms, Publish/Subscribe, Peer-to-peer, Sen-
sor Networks

1 Introduction

Modern distributed applications exhibit increasing degrees of dynamicity, as ev-
idenced by the emergence of mobile computing, peer-to-peer networks, and wire-
less sensor networks. Programming distributed applications becomes therefore
increasingly complex. In this context, publish-subscribe middleware is advocated
by many as a viable solution thanks to its simple programming interface, and to
its inherently decoupled interaction paradigm.

Publish-subscribe middleware is organized as a collection of client compo-
nents, which interact by publishing messages and by subscribing to the classes
of messages they are interested in. The core component of the middleware, the
dispatcher, is responsible for collecting subscriptions and forwarding messages
from publishers to subscribers. In the content-based incarnation of this publi-
sh-subscribe model, the filtering of relevant events is specified by the subscriber
using predicates on the event content (e.g., using regular expressions and logic
operators), therefore providing additional expressiveness and flexibility.

However, the potential of the publish-subscribe model can be fully unleashed
in dynamic scenarios only if the underlying system is compatible with their
requirements. Unfortunately, mainstream systems are typically geared to large-
scale settings, and therefore focus on a distributed implementation of the event
dispatcher—typically organized as a tree-shaped overlay network for improved
scalability—but provide few or no mechanisms for dealing with topological re-
configuration. Moreover, these systems typically base their routing decisions on

information that is disseminated deterministically—a strategy that, in a highly
dynamic environment, is likely to frequently lead to stale routes.

The alternative approach described in this paper departs from the main-
stream along two dimensions. First of all, we do not rely on the existence of
a tree overlay, but only on the ability of a dispatcher to communicate with its
neighbors. Moreover, our routing strategy exploits deterministic information only
in the immediate vicinity of the subscriber, resorting to probabilistic forward-
ing otherwise. As our simulation results show, this semi-probabilistic approach
strikes a balance between a fully deterministic approach (efficient, but not very
resilient to reconfigurations) and a fully probabilistic one (very resilient to re-
configuration but characterized by a higher overhead).

The paper is structured as follows. Section 2 discusses the motivation and
rationale behind our approach. Section 3 first illustrates the high-level idea un-
derlying our semi-probabilistic approach, and then shows in detail how to exploit
it in two different network scenarios: the first characterized by link-based commu-
nication on a graph-shaped overlay network, and the other by broadcast-based
communication in a wireless sensor network. Section 4 reports on the evaluation
through simulation of the aforementioned protocols, in their respective scenar-
ios. Section 5 places our work in the context of related efforts. Finally, Section 6
ends the paper with brief concluding remarks.

2 Rationale and Motivation

In the application scenarios we target, the connectivity among hosts, and there-
fore dispatchers, can change freely and frequently. This characteristic is typical
of mobile ad hoc networks, peer-to-peer networks, and wireless sensor networks.
Earlier work on topological reconfiguration of publish-subscribe from our re-
search group successfully tackled the problems posed by the topological recon-
figurations occurring in this scenarios [13], e.g., showing that it is possible to rec-
oncile routing information [22] and recover events lost during reconfiguration [9]
efficiently. However, these efforts still assumed the availability of an underly-
ing tree-shaped overlay network, as the vast majority of available content-based
publish-subscribe systems relies on this assumption to provide high scalability.
Nevertheless, this assumption is likely to be challenged when dynamicity is high.
In fact, not only the tree maintenance protocols are likely to cause considerable
overhead, but the very structure of the tree, providing exactly one route among
any two dispatchers, is ill-suited to provide reliability.

In the work described here, instead, we abandon the tree-shaped overlay net-
work and simply assume that the dispatchers are able to communicate with their
neighbors. The notion of neighbor clearly depends on the network characterizing
the application scenario at hand, and in this paper we consider two very com-
mon scenarios, representative of the kind of dynamicity we address. The first one
assumes the existence of a graph-shaped overlay network, like those often char-
acterizing peer-to-peer networks. In this scenario, the neighbors of a dispatcher
are defined by its links on the overlay. Instead, the second scenario relies solely

on the existence of wireless broadcast communication, and therefore defines the
neighbors of a dispatcher in terms of its communication range. While this as-
sumption encompasses several scenarios, in this paper we focus preminently on
wireless sensor networks.

Besides the assumptions about the network, however, the defining feature
of our approach is its peculiar approach to routing. Conventional content-based
publish-subscribe systems adopt a deterministic routing strategy, where events
are routed according to the information disseminated at subscription time. An
example is the widely adopted subscription forwarding strategy [7], where a
subscription is sent to all the dispatchers along the tree, and events follows the
reverse path from the publisher to the subscriber. A direct application of this
strategy on a graph overlay would frequently create loops, and is therefore im-
practical. Moreover, we contend that virtually any fully deterministic strategy
is going to experience severe drawbacks in the highly dynamic scenario we tar-
get, where routing information quickly becomes stale. At the other extreme,
probabilistic approaches like epidemic (or gossip) algorithms [4,14] are known
to satisfy many of the aforementioned requirements in the context of multicast
communication. Inspired by the spreading of diseases, these algorithms forward
information at random towards a small subset of available nodes, and rely on the
availability of multiple routes to ensure that the “infection” carrying the infor-
mation extends to a sufficient percentage of the receivers. Epidemic algorithms
essentially trade the absolute guarantees provided by deterministic approaches
for probabilistic ones, yielding in turn increased scalability and resilience to
change, as well as reduced complexity. Unfortunately, these algorithms are well-
versed for group communication or broadcast, where a message must be sent to
all the members of a predetermined set of intended recipients. Instead, in our
scenario subscribers can be a small fraction of the overall dispatcher network;
moreover, each subscriber may be subscribed to a different set of subscriptions.
In this case, a purely epidemic approach generates unnecessary overhead, since
it proceeds by “blindly” infecting all the network.

In the rest of this paper we describe a semi-probabilistic routing strategy
that borrows from both the aforementioned approaches to provide reliable and
efficient routing in the context of content-based publish-subscribe. On one hand,
we still maintain deterministic information about subscriptions but only in the
vicinity of a dispatcher, therefore reducing the likelihood of loops and yet pro-
viding accurate—albeit limited—information for routing events. On the other
hand, in the portion of the network where this localized information is unavail-
able we complement it with probabilistic routing decisions, by forwarding events
at random towards neighbors. Essentially, we use an epidemic approach com-
plemented by deterministic information. The former addresses reconfiguration,
while the latter reduces indiscriminate propagation by “steering” events towards
the subscribers. As we demonstrate in Section 4, our mix of deterministic and
probabilistic routing enables high reliability and low overhead in both the sce-
narios considered in this paper.

3 Semi-probabilistic Routing

In our semi-probabilistic approach, routing is governed by two parameters. The
subscription horizon ¢ represents the number of hops a subscription is prop-
agated away from the subscriber. Therefore, in the area of radium ¢ around
a subscriber, all dispatchers are aware of its interests. Instead, the parameter
T represents the event propagation threshold, which determines to what extent
events are disseminated in the network. The higher the value of 7, the higher
the number of copies of an event that are forwarded by a dispatcher.

In a nutshell, our approach works as follows. When an event gets routed
through the network, the local subscription table of the dispatcher is examined
at each hop. If it contains some subscription coming from subscribers nearby
and ¢ # 0, the event is forwarded towards them. Otherwise, the decision about
whether to forward the event and to what extent is taken at random, based on
the value of 7. If ¢ = 0 no subscription is ever transmitted by the subscriber
node, and therefore our approach degenerates in an entirely probabilistic one.

Clearly, a real protocol is slightly more complex. In the rest of this section we
describe how the high level strategy we just described is instantiated into real
protocols for the two network scenarios we mentioned in the previous section. The
presentation is kept concise due to space constraints: more details are available
in [10,11].

3.1 Link-based Communication: Graph Overlay

In this section we describe how our approach can be exploited in the context of
link-based communication. In particular, we assume here that communication
takes place along the links of an undirected graph-shaped overlay network. We
further assume that the overlay network layer is able to inform our protocol when
the connectivity changes, i.e., when a new link appears or an old one vanishes.

Base Routing Scheme

Subscription Propagation Propagation occurs similarly to subscription forward-
ing. When a subscription request is issued by a dispatcher, the corresponding
message is forwarded to all of its neighbors, which update their subscription ta-
bles accordingly. If ¢ = 1, no further action is taken. Otherwise, each dispatcher
forwards the subscription message to all of its neighbors, except the one who
sent the message. A subscription is never forwarded twice along the same link,
unless an unsubscription occurs in between the two. Differently from subscrip-
tion forwarding, however, the subscription tables maintain information not only
about which subscription was received on which link, but also about the distance
of the subscriber, ranging between zero (for a local subscription) and ¢. Figure 1
shows the layout of subscriptions for a case where ¢ = 1.

Topological reconfigurations, i.e., the appearance of a new link or the van-
ishing of an existing one, must induce a proper reconfiguration of subscription

information. However, this is easily accomplished by relying on (un)subscription
operations, as discussed in [22]. When a dispatcher detects the presence of a new
link, it simply sends a subscription message along that link. Similarly, when a
link vanishes, the dispatcher behaves as if it received an unsubscription mes-
sage for all patterns associated to that link. These (un)subscriptions are then
propagated based to the extent determined by ¢.

Event Propagation Event propagation is where probabilistic decisions may come
into play. Upon receiving an event, in principle! the following processing occurs.
First, the subscription table is inspected for subscriptions matching the event. If
a match is found, the event is routed along the link associated to the subscription.
Subscriptions selection is prioritized according to ¢: an event is forwarded based
on a subscription at distance d only if there is no matching subscription at
distance d — 1. As we verified through simulation, this strategy reduces the
likelihood of forwarding the event along a stale route.

This step is iterated until the number of
links used for propagation is greater than f.
If the number of matching subscriptions is
not sufficient, the propagation threshold is
met by forwarding the event along as many
links as needed to reach f, randomly selected
among those that have not been used in the
current forwarding step. The only exception
is constituted by links associated to subscrip-
tions at distance d = 1; a matching event is
forwarded along all of these links, regardless

of the propagation threshold. The rationale
is the fact that subscriptions at d = 1 repre-
sent the most accurate routing information,
and the most direct route towards the cor-
responding subscribers. Finally, it is impor-
tant to note that, during the overall process,
an event is never forwarded twice along the
same link.

Figure 1 shows an example. Let us as-
sume that 7 = 0.5 and that an event match-
ing both subscriptions is published by dis-
patcher 0. This dispatcher has only one link
and no subscription information: therefore,
the event gets forwarded to dispatcher 1 as
this is the only alternative. At dispatcher 1,

Fig. 1. Semi-probabilistic rout-
ing with ¢ = 1 and 7 = 0.5.
Numbered circles represent dis-
patchers. A colored circle around
a dispatcher denotes it as a sub-
scriber. The short colored arrows
represent subscription informa-
tion, and indicate the forwarding
path for matching events. Dis-
patcher 0 publishes an event that
gets forwarded either determin-
istically (double-headed thick ar-
rows) or probabilistically (single-
headed thick arrows).

two links are available. Nevertheless, the link towards 3 is associated with sub-
scription information: it is therefore selected for forwarding and no further action
is taken since the threshold is met. At dispatcher 3, the event is delivered lo-
cally. Moreover, the links towards 2, 4 and 6 are all viable routing options, and
the event must be forwarded along f = 2 links. No deterministic information is

! This sequence of steps serves only for illustration purposes: a number of optimizations
are possible in reality.

available, therefore the decision is done entirely at random. The figure shows the
case where the event is forwarded towards 2, where it stops propagating, and
6. There, the same situation occurs, with the links towards 5 and 8 as viable
options. The figure shows the case where 5 is selected. At this dispatcher, the
presence of deterministic information “captures” the events and steers it towards
9, where it gets locally delivered.

It is interesting to note that, at each hop, an event may be routed according
to different criteria. As we already mentioned, “holes” in the dissemination of
subscription information are bypassed by relying on random selection of links.
However, the very nature of content-based systems is an asset for our routing
approach, because an event matching multiple subscriptions may leverage of a
bigger set of subscription information during its travel. Again, this is exemplified
in Figure 1, where the event not only is routed by a mixture of deterministic
and non-deterministic decisions, but deterministic ones (i.e., the hops from 1 to
3, and from 5 to 9) are generated by different subscriptions.

Additional Protocol Details

Dealing with loops With reference to Figure 1, a choice of ¢ = 2 would have
created a routing loop among the nodes 4, 5, 7, and 9. Loops can be detected
easily by relying on a unique identifier for every event, trivially implemented
using the identifier of the event publisher and the value of a counter incremented
at the publisher each time it publishes an event. Therefore, an event received is
actually propagated by a dispatcher only if it has never been received before.

More sophisticated loop avoidance and detection algorithms are available
in the literature. However, on one hand they are likely to be impractical in the
highly dynamic scenario we target, while on the other hand they would introduce
a lot of complexity in our algorithm, which instead we want to keep as lightweight
as possible.

Awvoiding unnecessary propagation In Figure 1, we note how event forwarding
does not really stop at dispatcher 9, since there is no way to know that no other
subscriber exists in the system. Without a way to stop forwarding, events would
be forwarded indefinitely—more precisely, until a loop is detected. Indefinite
propagation is dealt with by attaching a time-to-live (TTL) field to each event
message, and by decrementing its value at every hop. When an event is dupli-
cated at a dispatcher along multiple routes, all the copies retain the same TTL.
Therefore, an event is propagated only if its TTL is greater than zero.

A more refined mechanism consists of associating different TTLs to the two
form of routing we exploit, therefore defining a deterministic TTL (TTLg4) and a
probabilistic TTL (TTL,), each limiting only the corresponding routing compo-
nent. With this scheme, propagation ceases when both TTL values reach zero.
The advantage of this scheme is that it provides a direct way to control both
aspects of propagation, therefore enabling a more accurate tuning of the perfor-
mance of our approach.

3.2 Broadcast-based Communication: Wireless Sensor Networks

In this section we show how to adapt our approach for a wireless sensor network
scenario. In the following we assume wireless broadcast is the only communica-
tion media used, and also assume that each (active) sensor takes part in routing,
regardless of whether it is currently interested in publishing or subscribing.

Base Routing Scheme

Subscription Propagation When the application running on a node issues a sub-
scription, our protocol broadcasts the corresponding filter. This information is
rebroadcast by the subscriber neighbors to an extent defined by the subscrip-
tion horizon ¢. In the link-based approach, ¢ was measured as the number of
hops travelled by a subscription message along the links of the graph overlay.
Here, instead, ¢ represents the number of times the subscription message is
(re)broadcast. Moreover, in Section 3.1, we exploited the standard technique of
dealing with (un)subscriptions explicitly, by using control messages propagated
whenever a node decides to (un)subscribe. The same technique is used to deal
with appearing or vanishing links, by treating the disappearing endpoint as if it
were, respectively, subscribing or unsubscribing. Here, we use a different strat-
egy that associates leases to subscriptions, and requires the subscriber to refresh
subscriptions by re-propagating the corresponding message?. If no message is
received before a lease expires, the corresponding subscription is deleted.

Clearly, there are tradeoffs involved. Without a leased approach the (un)sub-
scription traffic is likely to be significant, due to the need to reconcile routing
information whenever a link appears or disappears. The leased approach remark-
ably reduces the communication overhead, by removing this need. On the other
hand, if subscriptions are stable, bandwidth is unnecessarily wasted for refresh-
ing leases. However, in sensor networks the former case is much more likely to
happen than the latter, since nodes typically alternate work and sleep periods
to save energy. Moreover, the combination of leased subscriptions and broadcast
communication remarkably simplifies the management of the subscription table,
and drastically reduces the associated computational and memory overhead. In
the previous section, to properly reconcile subscription information upon con-
nectivity changes, we kept a different table for each value of ¢, where each row
contained the subscription filter and the link the subscription referred to. Here,
instead, all we need is to store the subscription filter together with a timestamp
used for managing leases. Differentiating according to ¢ is no longer needed,
since subscriptions simply expire, and broadcast removes the need for maintain-
ing information about links.

Event Propagation In the link-based approach, the event propagation threshold
7 controls the effectiveness of event routing by specifying a fraction of the links

2 Optimizations are possible, e.g., to broadcast the subscription hash, and transmit
the entire one only if missing on the receiving node.

available at a given dispatcher. Nevertheless, here we assume broadcast commu-
nication, therefore this parameter assumes a different meaning. When an event
is received? for which a matching filter exists in the subscription table, the event
is simply rebroadcast. On the other hand, if no matching subscription is found,
the event is rebroadcast with a probability 7. The parameter 7, therefore, still
limits the extent of propagation, but more indirectly than in Section 3.1, as it
comes into play only when no deterministic information is available.

The effectiveness of our approach is clearly proportional to the number of
forwarders F', i.e., the neighbors receiving and retransmitting an event. In ab-
sence of deterministic information, in our approach F' = 7 -7 holds, being n
the number of neighbors. As a consequence, a small value of 7 (e.g., in sparse
networks) must be compensated by increased values of 7.

Moreover, using a link abstraction the event always got routed along the
fraction of links mandated by 7, here instead we have a non-zero probability that
none of the neighbors will rebroadcast the event. More precisely, in absence of
deterministic information, if 7 is the average number of neighbors, the probability
of stopping the propagation of the event is (1 — 7)". If no subscriber is in the
immediate vicinity of the event publisher and 7 is small, there is a significant
possibility that event propagation immediately stops. To ensure that a reasonable
amount of event messages are injected into the network, we mark event messages
with a flag stating whether they have been just published or instead they already
travelled through the network. In the first case, the receiver behaves as if 7 =1
and rebroadcasts the event in any case. This mechanism guarantees that at
least 1 copies of the event message are injected in the network and propagate
independently.

Additional Protocol Details

Dealing with Collisions Wireless broadcast is subject to packet collisions, which
occur when two or more nodes in the same area send data at the same time.
Since in our approach the propagation of subscriptions and events both rely
on wireless broadcast, it becomes crucial to reduce the impact of collisions and
avoid wasting precious energy on useless retransmissions.

TinyOS [16] adopts a very simple scheme to recover from collisions where,
after a broadcast message has been sent, the sender waits for an acknowledg-
ment from at least one of its neighbors. If none is received before the associated
timeout expires, the message is resent. The evident weakness of this solution is
that it does not take into account the actual number of neighbors. If only one
neighbor received and acknowledged successfully the message, the transmission
is assumed successful, regardless of the possibly many nodes that did not receive
the message. Moreover, it does not try to limit in any way the number of colli-
sions. More sophisticated MAC protocols has been proposed in literature [21] but
none is currently supported by the Crossbow MICA2 [1], our target platform.

3 Clearly, events that have already been processed and that are received again because
of routing loops are easily discarded based on their identifier.

Therefore, we conceived a simple yet effective solution that decreases signif-
icantly the number of collisions, without requiring any synchronization among
nodes. The idea can be regarded as a sort of simplified TDMA protocol where
each node, upon startup, sets a timer whose value is a global configuration pa-
rameter. Sending messages (i.e., subscriptions and events) takes place only upon
timer expiration, while receiving is in principle always enabled. Since each node
in the network bootstraps at a different time, it is highly unlikely that two nodes
in range of each other end up with synchronized timers. The simulations in Sec-
tion 4 show that this trivial idea goes a long way in drastically reducing the
amount of collisions.

Avwoiding Unnecessary Propagation In Section 3.1 we limited the propagation of
events using a TTL. However, our simulations showed that this solution is much
less effective with broadcast propagation. In fact, even when an event travels for
a small number of hops, the number of nodes it reaches is great, and therefore
the impact of TTL is limited.

To address this issue, we modified slightly the retransmission strategy we
just described. Let us assume a node A waiting to broadcast an event e hears
one of its neighbors, say B, transmitting e before A’s timer expires. If the set
of A’s neighbors partially overlaps with B’s neighbors, it is likely that most
of A’s neighbors receive the event from B’s transmission, therefore making A’s
broadcast largely useless. Some of A’s neighbors may not hear about e from
B but, given the epidemic nature of our algorithm, they are very likely to get
it through other routes. Based on this observation, in our approach (which we
called delay-drop) we would simply let A safely remove e from its transmission
queue. In doing this, not only we limit propagation—our initial rationale for this
modification—but also reduce communication and therefore save battery power.
A downside of this approach is a potentially higher latency, as the event may
go through longer routes before reaching its recipients. Nevertheless, in principle
this delay-drop mechanism could be only one of many alternatives specified at
the application or middleware layer, therefore enabling to tradeoff latency for
overhead as needed.

4 Evaluation

In this section we report about the evaluation through simulation of our ap-
proaches in a wired, link-based scenario as well as a wireless, broadcast-based
one. The original and complete evaluations can be found in [10,11].

The metrics we analyze are event delivery rate and overhead. The former
is defined as the ratio between the number of subscribers that should receive
a given event and those who actually get it. The overhead is constituted by
subscription messages and by event messages that are either duplicated, never
received by a subscriber, or routed along unnecessarily long routes. These con-
tributions are difficult to separate, and in any case do not provide significant
insights. Therefore, we analyze overhead by simply plotting the overall number
of messages flying in the system.

In our simulations, an event is represented as a randomly-generated sequence
of integers, determined using a uniform distribution. An event pattern associ-
ated to a subscription is represented by a single number. An event matches a
subscription if it contains the number specified by the event pattern in the sub-
scription. Each dispatcher is subscribed to two event patterns, drawn randomly
from the overall number of patterns available in the system. For each event, the
percentage of receivers is about 10% of the overall number N of dispatchers in
the system as this is a commonly accepted “rule of thumb” for content-based
systems (see e.g., [8]). Finally, simulations are run with dispatchers continuously
publishing events on a network with stable subscription information, i.e., where
no (un)subscriptions are being issued.

4.1 Graph Overlay

In this section we evaluate the protocol described in Section 3.1 over a graph
overlay network. The graph is built with a constant degree [= 5, to eliminate
as much as possible the bias induced by a random shape. To accommodate
dynamicity, however, the actual number of links of a dispatcher is allowed to
vary between | — 1 and [+ 1. A topological reconfiguration consists of a link
breakage, followed by the appearance of a new link. Graph repair is performed
after a time interval (that we set to 0.1s) modeling the delay necessary to the
underlying layers to find the replacement link. When a link breakage occurs,
our simulator looks for two nodes with a degree lesser than or equal to [, to
maintain the average degree as steady as possible. Likewise, a link is selected
for removal only if its endpoints’ degree is greater than or equal to [. The time
between two reconfigurations is p = 0.03s and since a link is always replaced after
0.1s the system is undergoing continuous and frequent reconfiguration*. Also, we
initially set TTL=o00 to first analyze the behavior of the system without limiting
event propagation. Each simulation was run 10 times with different seeds and
the values averaged. Simulations were run with the OMNeT++ discrete event
simulator [26].

Network Size We first analyze the performance of our approach when the size of
the system grows in a setting where the network topology undergoes reconfigura-
tion. The left chart in Figure 2 shows the event delivery rate for a configuration
with an event propagation threshold 7 = 0.25 and a subscription horizon varying
between ¢ = 0 (purely probabilistic) and ¢ = 3. The chart evidences that indeed
deterministic information boosts delivery, which almost doubles when moving
from a purely probabilistic routing to one with a 1-hop subscription informa-
tion, while there is no appreciable difference against ¢ > 1. The reason for the
overlapping of these latter curves is that, unlike ¢ = 1, they are subject to the
limitation on propagation set by 7.

4 Bach reconfiguration involves two dispatchers, the link endpoints. At 300 reconfig-
urations per second, with a network size of N = 300 each dispatcher changes two
neighbors per second. Since our simulations are run for over two seconds, at least 4
neighbors out of 5 get replaced.

1 T T T T T 1.8e+06

%»ﬁ?i’*":’ﬂ,im - 1.6e+06
Wl R S .

oD
»

e 1.4e+06 -
08 - 1.2e406 -

1e+06 -
0.7

event delivery
overhead

800000 -

4.
0.6 - A 9 600000 -

T 400000 - L
05 | A 1 B
) B

R S zoooooﬂi,,»»"

04

L L L L L 0 L L L L L
100 150 200 250 300 350 400 100 150 200 250 300 350
network size network size

e 120.25,050 e 120,265,022 e 120.25,50 e 120.25,52
@ 1202551 Q- 1=0.25,¢=3 @ 12025051 --O-- 1=0.25,0=3

Fig. 2. Event delivery and overhead in a network with reconfigurations every p = 0.03s.

It is worth noting that, as discussed in [11], the performance of our semi-
probabilistic routing on a static topology is similar to the one we just described.
Indeed, the perturbation induced by dynamicity is easily absorbed by the proba-
bilistic component of routing and by the redundancy of the graph. Moreover, as
known from probabilistic algorithms, the continuous restructuring of connectiv-
ity among dispatchers effectively helps spreading information, by allowing nodes
to suddenly become in contact with a different set of neighbors, and spread
messages from another point.

The overhead is shown in the right chart of Figure 2. The upper bound
is provided by flooding (7 = 1), which is not plotted because it generates an
extremely high number of messages (e.g., 11,882,777 at N = 400). Therefore,
Figure 2 shows that our overhead is extremely far from the upper bound. Indeed,
more deterministic information (¢ > 1) enables savings up to 35% w.r.t. pure
probabilistic and ¢ = 1. We also verified that higher values of 7 quickly bring
the system to 100% delivery. This is clearly true for flooding. Also, 7 = 0.5
already brings all the curves to full delivery except for ¢ = 0, which remains
at about 96%. Nevertheless, in this latter case the overhead is five times higher
w.r.t. to the case with 7 = 0.25 and ¢ = 1 (around 5.5 million messages instead
of 1.6 at N = 400). The relative performance among the curves with 7 = 0.5 is
unchanged, with ¢ > 1 providing the smaller overhead.

Looking at Figure 2, one could notice how delivery drops as the scale in-
creases. Nevertheless, it is worth noting that in the charts above we assume
that each dispatcher added to the system is also a publisher emitting 5 events
per second, and that the fraction of receivers for each event is always 10% of
the dispatchers in the system. Instead, both the dispatcher’s degree [and the
event propagation threshold 7 remain constant: the fanout f (i.e., the number
of links along which events are forwarded) therefore remains constant as well.
As a consequence, while the number of dispatchers and receivers increases the
ability of the system to spread messages decreases. In a real deployment setting,

400

1 = 1600
- T 1400 |-
0s e
5 e
R 8 8 1200 |
o . 3 .
. I 5 L =
& L - -
z 2 1000 .
H 2 s -
3 8 o]
07 1
3 os 2 A
H £ -
H A % .
06 AL °
kil
s]
A S S
05 e E. e & ¢ 4
A e A
a.) A
\ e g oo
04 | . . .
50 100 150 200 250 300 350 400 200 250 300 350
network size network size
- 120.5,050 Ao 120.25,050 -3 120.5,0 A 1202550
3 12051 @ 1=0.25,¢=1 % 1205071 @ 12025051
£ 1=05,¢=2 el 120.25,072 £ 1=05,¢-2 B 120252
-l 120503 Q-+ 1=0.25,¢=3 -l 105,03 --O-- 120253

Fig. 3. Event delivery and overhead in a network with reconfigurations every p = 0.03s
and a fixed number of receivers.

the increase in scale should be compensated by increasing f, i.e., by intervening
either on 7 or [. In [11] we showed how increasing the degree to [= 9 boosts de-
livery which becomes close to (and for ¢ = 1 exactly) 100%, due to the ability to
spread messages over more links. On the other hand, the overhead is also largely
increased and reaches the same order of magnitude of the configuration with
[=5 and 7 = 0.5. This is not surprising, since the product 7 -, which defines
the number f of links available for routing and therefore ultimately constrains
the effectiveness of routing, is roughly the same in both scenarios.

Density of Receivers vs. System Scale To evaluate how the density of receivers
in the network affects our strategy we studied a scenario where the number of
dispatchers (still all publishing at 5 event/s) is increased while the number of
receivers per event (10 in our case) remains constant. The density of receivers
therefore decreases linearly, from 20% for N = 50 down to 2.5% for N = 400.
This scenario elicits new issues w.r.t. the one we examined previously. With
a constant density of receivers and a growing scale, we need to increment the
number of forwarded events to reach a larger set of receivers, and therefore
increasing the fanout is a viable solution. Instead, here the number of receivers
does not change: therefore, what we are assessing is how “selective” is our routing
towards the receivers.

Results are in Figure 3, with the same simulation parameters as in Figure 2.
The chart shows both the event delivery and the number of forwarded events
divided by the number of published events, where the latter characterizes the
effort, in terms of forwarded events, required to deliver a single event to a fixed
set of receivers in a growing network®.

5 We do not consider the traffic generated by (un)subscriptions since in our heavy
publishing scenario it is negligible w.r.t. the number of events.

Figure 3 shows that a high fanout (7 = 0.5) always achieves high delivery
but basically saturates the network by reaching almost every dispatcher, thus
increasing the traffic linearly with scale. However, even in this case deterministic
information (¢ = 3) achieves some savings, as it enables a more selective routing.
Instead, a lower fanout (7 = 0.25) yields a very different behavior. Event delivery
is a lower than with 7 = 0.5, since the probability to reach a receiver depends
on the product of the probabilities to select the right neighbor at each hop—
which in turn depends on fanout, f = 1 in this case—and therefore decreases
as the routes connecting publishers to receivers become longer. However, while
this negative effect is evident for pure probabilistic routing, it is almost entirely
compensated in terms of delivery by the deterministic information available when
¢ > 0, which reduces the reliance on random forwarding by “steering” forwarded
events more efficiently through the network. This increased efficiency is mirrored
in the overhead chart, where the number of forwarded events per published event
still increases, due to the longer routes towards receivers, but this time remains
well below a linear trend.

Limiting Propagation As we discussed in Section 3.1, introducing a TTL en-
ables considerable savings in overhead. Clearly, low TTL values may constrain
propagation too much, and negatively impact event delivery. In our simulation
scenario we found out that with TTL=14 the event delivery with ¢ > 0 remains
about the same, while the purely probabilistic routing gets about 20% worse.
This is not surprising, given that the deterministic component leads to signif-
icantly shorter routes, and therefore is not affected significantly by the TTL.
Moreover, the overhead drops considerably, as we expected. For ¢ > 1, overhead
is reduced of about 8%, while for the others reduction is around 30%.

The use of two different values TTL, and TTL,, we mentioned in Section 3.1
enables further optimizations, as shown in Figure 4 for TTL; =10 and TTL, =8.
Differently from the chart we showed thus far, this one represents a single run
plotted against (simulated) time, and N = 300. The values for TTLq and TTL,
enable only minor—albeit positive—variations over the single TTL=14. Instead,
the tradeoff in terms of overhead is profoundly different. The overhead of ¢ > 1
is slightly increased, but justified by the small increase in the delivery rate. On
the other hand, the overhead of ¢ = 1 is greatly improved, dropping from about
820,000 messages to about 640,000 (more than 20% less), while ¢ = 2 and ¢ = 3
are at about 680,000 and 730,000, respectively. This configuration makes routing
with ¢ = 1 more appealing than in earlier scenarios, making it a valid alternative
to ¢ = 2. A different choice for TTL,; and TTL,, e.g., further increasing the gap
between the two, would favor routing with ¢ > 1.

Stability of Fvent Delivery Figure 4 enables us to evidence also another inter-
esting phenomenon whose generality goes beyond the use of TTL, that is, the
event delivery is quite stable over time. This is particularly relevant especially if
compared against similar results obtained by approaches that rely on a tree as
in Figure 5. Although the comparison is entirely qualitative, since the simulators
and scenarios differ, it is worth observing how event delivery has wide and very

09| A

W
¢
>
o>
QD

o
o

08 e

07

0.6 -

event delivery

05

04t

L . Y S
03 IV A

0.2

L L L L L L L
11 12 13 14 15 16 17 18

1=0.25,¢=0 -
1=0.25,¢=1 -

120.25,¢=2 -
1=0.25,¢=3 --O--

o»

Fig. 4. Event delivery with TTLy =10 and TTL, =8.

110

100

90

80 [

70

% of events delivered

60 [

50 [

20 L L L L L
3 4 5 6 7
time

Fig. 5. Event delivery on a dynamic tree topology (from [22]).

frequent changes, ranging from 100% down to 40%. The reason for the remark-
able improvement of our approach can be attributed to the use of a graph and
the ability to exploit alternative routes thanks to its probabilistic component.

4.2 Wireless Sensor Networks

In this Section, we report about the performance of the approach described in
Section 3.2 using T0ssIM [18], the simulation tool provided with TINYOS [16].
TossIiM emulates all the operating systems layers and therefore works by reusing
directly the code deployed on the sensor nodes—Crossbow’s MICA2 motes [1]
in our case. Here, we report only results for 7 = 0.5, as it yields the best tradeoff
in our simulations. Each simulation run lasted 60 simulated seconds, with an
extra second devoted to “booting” the network, as performed automatically
by TossiM. Transmission occurs by using our simple delay technique to avoid
collisions. The impact of this technique, as well as of its delay-drop variant, is
analyzed later in this section. Simulations are performed on a stable network,
except for the analysis of the behavior of the sensors duty cycle. Finally, we
assume each node has n = 5 neighbors.

tau=0.50 tau=0.50
1 T 90000

TR R phi=2 —--- S phi=2 e
i =% flooding 80000 flooding -

70000

60000

50000

40000

event delivery
overhead

30000

20000

10000

B

50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450
Network Size Network Size

Fig. 6. Event delivery and overhead using 7 = 0.5.

Network Size The first parameter we analyze is the size of the network, which
we ranged from 100 to 400. To maintain a steady publishing load and receiver
density, we increased them proportionally by ranging the former from 1 to 4 pub-
lished events per second, and keeping the latter at 10% (yielding from 10 to 40
receivers).

The results in Figure 6(a) show® that event delivery depends only marginally
on network size. This is not surprising, since the probabilistic component of our
approach tends to distribute the load equally on each node and, therefore, the
more the network grows (and the more receivers need to be reached), the more
nodes participate in delivering the events. Notably, in some cases event delivery
is even increased as more routes become available. On the other hand, as shown
in Figure 6(b) the overhead increases too, since the number of receivers and the
publishing load augments linearly, i.e., there are more events to deliver to more
recipients. Nevertheless, the two increments share the same trends, that is, no
additional overhead is introduced by the size. This, again, stems from the fact
the the effort imposed on each node by our algorithm is constant.

It is interesting to see that ¢ = 1 and ¢ = 2 exhibit a different behavior.
When N = 100, ¢ = 2 performs worse than ¢ = 1, most likely due to the fact
that the smaller size increases the likelihood of creating loops. As N increases,
however, the additional deterministic information provided by ¢ = 2 becomes
precious in steering events towards the receivers in a sparser network. Finally,
event delivery with ¢ = 1 and ¢ = 2 is about the 90% of the delivery obtained
through flooding, but the overhead is only 25% of the one introduced by flooding.

Collisions and Rebroadcast In Section 3.2 we described two simple techniques
for, respectively, reducing collisions and avoiding useless rebroadcasts.

The effect of these techniques on the system is shown in Figure 7 for 7 = 0.5
and n = 10. Figure 7(a) shows that the delivery is largely unaffected, with a

6 We use Bezier interpolation to better evidence the trends.

tau=0.50 tau=0.50
30000

ph

phi i
flooding swe—_:
25000

20000

15000

event delivery
overhead

10000

5000

normal with delay with delay and drop normal with delay with delay and drop
Propagation Propagation

(a) Event delivery. (b) Overhead.

tau=0.50

percentage of packet collisions

normal with delay with delay and drop
Propagation

(¢) Number of collisions.

Fig. 7. Collisions and delay-drop (7 = 0.5, = 10).

small decrease in the case of delay-drop. On the other hand, Figure 7(c) shows
that our simple mechanism for avoiding collisions is very effective, since it more
than halves the number of collisions. The delay-drop mechanism does not im-
prove much in terms of collisions. Instead, by avoiding useless rebroadcasts, this
latter technique drastically reduces overhead, as shown in Figure 7(b). Although
we do not have simulations linking directly these results to the power consump-
tion, it is evident how the combination of these two simple techniques not only
improves the performance of our approach, but also yields remarkable savings
in communication, therefore enabling a longer life of the overall sensor network.

Duty Cycle A prominent feature of our approach is the resilience to changes
in the underlying topology and connectivity. Most approaches for content dis-
semination and group communication for sensor networks rely on exact routes
that must be recalculated each time the topology is modified. This is an im-
portant limitation, since sensors are often supposed to regularly switch from
active to sleeping, to preserve battery and extend the system lifetime. There-
fore, unless some kind of synchronization is in place, routes become invalid and
must be recomputed, with consequent overhead. Conversely, our approach does

tau=0.50 tau=0.50

1 20000
[—

phi=2 - phi=2 -
» , flooding -} flooding {1
08 oot i}

o — 15000) -

10000

event delivery
overhead

5000

0 1 2 3 a 5 [1 2 3 4
Sleep/Wakeup with 10 neighbors (1:1, 1:2, 1:3, 1:4) Sleep/Wakeup with 10 neighbors (1:1, 1:2, 1:3, 1:4)

(a) Delivery. (b) Overhead.

Fig. 8. Performance with sleeping nodes.

not make any assumption on the underlying topology, as it “explores” it semi-
probabilistically. Therefore, it can tolerate sleeping (or even crashed, or moving)
nodes, without any particular measure.

In the simulations in Figure 8, we used a simple model where each node is
active for a period Ty, followed by a sleeping period Ts. All nodes are initially
active: after a random time (which temporally scatters them) they are regularly
switched off and reactivated after Ts;. To obtain meaningful results, sleeping
nodes are not considered in the event delivery, which is then computed by tak-
ing into account only the active subscribers. Also, since the temporal scattering
among nodes is completely random, it may happen that under certain combi-
nation of T,, Ts and 7, the network becomes not connected. Then, a delivery of
100% is not meaningful because, if no path exists among two nodes, there is no
way to correctly deliver the event. Consequently, our upper bound is represented
by the delivery of the flooding approach.

In most scenarios found in literature, sensor nodes sleep for most time and
switch on only for a short amount of time. However, in our scenario, sensor
nodes are essential not only to acquire data from the environment but also to
participate in their propagation. Hence it seems reasonable that the ratio % is
greater than (or at least equal to) 1. Clearly, if too many nodes are sleepiné at
the same time, delivery falls abruptly since the number of forwarders is too low.
However, the delivery of flooding also falls abruptly, and some of our solutions
remain comparable to it.

These results are not surprising, since what we stated earlier about density
holds here as well. Indeed, the effect of sleeping nodes is to reduce the density,
expressed in terms of the number 7 of neighbors. Therefore, since our algorithm
tolerates low densities up to a given extent, it is resilient to sleeping nodes as
well.

5 Related Work

The majority of content-based publish-subscribe systems are built upon a tree-
shaped overlay, with some of them addressing the easier problem of supporting
client mobility. Recent work by the authors’ research group [9,12,22] deals in-
stead with reconfigurations affecting the dispatchers in the tree. Other recent
approaches [8,23] exploit a graph-based topology upon which a set of dispatch-
ing trees are superimposed. However, these papers do not provide any detail
about if and how dynamicity is taken into account, and at which cost.

In the related area of MANET routing, none of the approaches is directly
reusable because of the peculiar challenges posed by content-based routing, but
some rely on similar ideas. In the Zone Routing Protocol (ZRP) [15] for unicast,
a node proactively maintains routing information about its neighborhood, and
reactively requests information about destinations outside of it. In our approach,
long distance propagation is instead achieved in a probabilistic way. On the other
hand, route driven gossip [19] exploits epidemic algorithms to maintain and
disseminate a localized view of the system, enhanced with routing information.

In the context of sensor networks, researchers mostly focused on efficiently
delivering the sensed data from the sensors to a fixed base station or, alterna-
tively, on enabling communication from the base station towards all the sensors
(e.g to perform a query or force a network re-programming). Our work, instead,
is directly applicable to more general scenarios where multiple data sinks (e.g.,
multiple base stations, but also actuators as in wireless sensor and actor net-
works [2]) are present.

Traditional approaches (e.g., [20,24]) rely on a tree-based structure to deliver
messages. This approach minimizes data traffic, but tree maintenance and up-
dates require many control messages and, more importantly, a stable network.
Alternative approaches (e.g., [5,17]) spread the nodes’ interests across the whole
network to create a reverse path from a publisher to receivers. However, again,
no details are provided about how to deal with a dynamic network, as in the
case of mobile or sleeping sensors, and failures.

A recent work [3] exploits probabilistic forwarding combined with knowledge
of the network topology to route messages from sensors to a special node act-
ing as collector. The forwarding probability depends on various parameters, in
particular the current distance from the collector. The probabilistic component
allows to tolerate stale information on the global topology. Despite the different
aim of the work, targetting at single sink application, this approach differs from
ours in that we require a much smaller knowledge of the network, namely, only
the subscribers ¢ hops away.

The possibility of temporarily switching off nodes is particularly amenable
in sensor networks as the battery is not easily replaceable. At the same time,
however, the network must maintain its functionality through a connected sub-
network, i.e., it should be able to correctly deliver events despite the lack of
some nodes. Some works (e.g., [6,25]) address this issue by introducing synchro-
nization of the sleeping patterns to minimize the energy spent without affecting
network connectivity. The weakness of this solution, however, is that other kinds

of topological reconfiguration (e.g., mobility or failures) are not tolerated. In
these cases, the (expensive) synchronization procedure must be restarted, with
added overhead. Conversely, our approach does not require any synchronization
protocol and yet tolerates arbitrary reconfigurations.

6 Conclusions

Modern distributed applications exhibit increasing degrees of dynamicity, due to
topological reconfigurations occurring at the physical or logical level. Supporting
application development through middleware in dynamic scenarios in many cases
demands new approaches to routing the applicative information managed by the
middleware. Current approaches exploit either a deterministic approach, relying
on the dissemination of routing information, or a probabilistic one, inspired by
the diffusion of epidemics. However, both have drawbacks.

In this paper we described a semi-probabilistic routing approach targeted to
publish-subscribe middleware for highly dynamic networks. Our routing strat-
egy strikes a balance between the two aforementioned approaches, by combining
the scalability and resilience to change of probabilistic approaches with the abil-
ity to quickly steer events towards the intended receivers typical of determin-
istic approaches. Our current experience with simulating this routing strategy
in both link-based and broadcast-based network scenarios confirms that semi-
probabilistic routing indeed achieves high delivery rates with low overhead in
presence of frequent topological reconfigurations.

References

1. Crossbow Technology Inc. http://www.xbow.com.

2. 1. F. Akyildiz and I. H. Kasimoglu. Wireless sensor and actor networks: Research
challenges. Ad Hoc Networks Journal (Elsevier), 2(4):351-367, October 2004.

3. Christopher L. Barrett, Stephan J. Eidenbenz, Lukas Kroc, Madhav Marathe, and
James P. Smith. Parametric probabilistic sensor network routing. In Proceed-
ings of the 2nd ACM international conference on Wireless sensor networks and
applications (WSNA), 2003.

4. K. P. Birman et al. Bimodal multicast. ACM Trans. on Computer Systems,
17(2):41-88, 1999.

5. D. Braginsky and D. Estrin. Rumor routing algorithm for sensor networks. In
Proc. of the 1°t Int. Wkshp. on Wireless Sensor Networks and Applications, pages
22-31, 2002.

6. J. Carle and D. Simplot. Energy-efficient area monitoring for sensor networks.
IEEE Computer, 37(2):40-46, 2004.

7. A. Carzaniga, D.S. Rosenblum, and A.L. Wolf. Design and Evaluation of a Wide-
Area Event Notification Service. ACM Trans. on Computer Systems, 19(3):332—
383, August 2001.

8. A. Carzaniga, M.J. Rutherford, and A.L. Wolf. A routing scheme for content-based
networking. In Proc. of INFOCOM, March 2004.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26

P. Costa, M. Migliavacca, G.P. Picco, and G. Cugola. Epidemic Algorithms for
Reliable Content-Based Publish-Subscribe: An Evaluation. In Proc. of the 24"
Int. Conf. on Distributed Computing Systems (ICDCS04), pages 552-561, 2004.
P. Costa, G. P. Picco, and S. Rossetto. Publish-subscribe on sensor networks: A
semi-probabilistic approach. In Proc. of the 2"¢ IEEE Int. Conf. on Mobile Ad-Hoc
and Sensor Systems (MASS05), 2005. To appear.

P. Costa and G.P. Picco. Semi-probabilistic content-based publish-subscribe. In
Proc. of the 25" IEEE Int. Conf. on Distributed Computing Systems (ICDCS05),
Columbus (Ohio, USA), June 2005.

G. Cugola, D. Frey, A.L. Murphy, and G.P. Picco. Minimizing the Reconfiguration
Overhead in Content-Based Publish-Subscribe. In Proc. of the 19" ACM Symp.
on Applied Computing (SAC04), pages 1134-1140, March 2004.

G. Cugola, A.L. Murphy, and G.P. Picco. Content-Based Publish-Subscribe in a
Mobile Environment. In P. Bellavista and A. Corradi, editors, Mobile Middleware.
CRC Press, 2005. To appear.

A. Demers et al. Epidemic algorithms for replicated database maintenance. Oper-
ating Systems Review, 22(1):8-32, 1988.

Z. Haas and M. Pearlman. The Zone Routing Protocol (ZRP) for Ad Hoc Networks.
IETF draft, June 1999.

J. Hill et al. System architecture directions for networked sensors. In Proc. of the
9" Int. Conf. on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-IX), pages 93-104. ACM Press, 2000.

C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: a scalable and
robust communication paradigm for sensor networks. In Proc. of MobiCom, 2000.
P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: accurate and scalable simu-
lation of entire TinyOS applications. In Proc. of the 15 Int. Conf. on Embedded
Networked Sensor Systems (SenSys’03), pages 126-137. ACM Press, 2003.

J. Luo, Patrick Eugster, and J.P. Hubaux. Route Driven Gossip: Probabilistic
Reliable Multicast in Ad Hoc Networks. In Proc. of INFOCOM’08, April 2003.
S.R. Madden, M.J. Franklin, and W. Hong. The design of an acquisitional query
processor for sensor networks. In Proc. of SIGMOD 2003, 2003.

P. Naik and K.M. Sivalingam. A survey of MAC protocols for sensor networks. In
Wireless Sensor Networks. Kluwer Academic Publishers, 2004.

G. P. Picco, G. Cugola, and A. L. Murphy. Efficient Content-Based Event Dis-
patching in the Presence of Topological Reconfigurations. In Proc. of the 28"¢ Int.
Conf. on Distributed Computing Systems (ICDCS03), pages 234-243, 2003.

P. Pietzuch and J. Bacon. Hermes: A Distributed Event-Based Middleware Archi-
tecture. In Proc. of the 1°* Wkshp on Distributed Event-Based Systems, 2002.

C. Srisathapornphat, C. Jaikaeo, and C.-C. Shen. Sensor information networking
architecture. In Proc. of the Int. Workshop on Parallel Processing, 2000.

D. Tian and N.D. Georganas. A coverage-preserving node scheduling scheme for
large wireless sensor networks. In Proc. of the First ACM Int. Workshop on Wire-
less Sensor Networks and Applications, pages 32-41, 2002.

A. Varga. OMNeT++ Web page. www.omnetpp.org.

