20,248 research outputs found

    A review into the factors affecting declines in undergraduate Computer Science enrolments and approaches for solving this problem

    Get PDF
    There has been a noticeable drop in enrolments in Computer Science (CS) courses and interest in CS careers in recent years while demand for CS skills is increasing dramatically. Not only are such skills useful for CS jobs but for all forms of business and to some extent personal lives as Information Technology (IT) is becoming ubiquitous and essential for most aspects of modern life. Therefore it is essential to address this lack of interest and skills to not only fill the demand for CS employees but to provide students with the CS skills they need for modern life especially for improving their employability and skills for further study. This report looks at possible reasons for the lack of interest in CS and different approaches used to enhance CS education and improve the appeal of CS

    Computational Thinking in Education: Where does it fit? A systematic literary review

    Get PDF
    Computational Thinking (CT) has been described as an essential skill which everyone should learn and can therefore include in their skill set. Seymour Papert is credited as concretising Computational Thinking in 1980 but since Wing popularised the term in 2006 and brought it to the international community's attention, more and more research has been conducted on CT in education. The aim of this systematic literary review is to give educators and education researchers an overview of what work has been carried out in the domain, as well as potential gaps and opportunities that still exist. Overall it was found in this review that, although there is a lot of work currently being done around the world in many different educational contexts, the work relating to CT is still in its infancy. Along with the need to create an agreed-upon definition of CT lots of countries are still in the process of, or have not yet started, introducing CT into curriculums in all levels of education. It was also found that Computer Science/Computing, which could be the most obvious place to teach CT, has yet to become a mainstream subject in some countries, although this is improving. Of encouragement to educators is the wealth of tools and resources being developed to help teach CT as well as more and more work relating to curriculum development. For those teachers looking to incorporate CT into their schools or classes then there are bountiful options which include programming, hands-on exercises and more. The need for more detailed lesson plans and curriculum structure however, is something that could be of benefit to teachers

    The Blended Learning Unit, University of Hertfordshire: A Centre for Excellence in Teaching and Learning, Evaluation Report for HEFCE

    Get PDF
    The University of Hertfordshire’s Blended Learning Unit (BLU) was one of the 74 Centres for Excellence in Teaching and Learning (CETLs) funded by the Higher Education Funding Council for England (HEFCE) between 2005 and 2010. This evaluation report follows HEFCE’s template. The first section provides statistical information about the BLU’s activity. The second section is an evaluative reflection responding to 13 questions. As well as articulating some of our achievements and the challenges we have faced, it also sets out how the BLU’s activity will continue and make a significant contribution to delivery of the University of Hertfordshire’s 2010-2015 strategic plan and its aspirations for a more sustainable future. At the University of Hertfordshire, we view Blended Learning as the use of Information and Communication Technology (ICT) to enhance the learning and learning experience of campus-based students. The University has an excellent learning technology infrastructure that includes its VLE, StudyNet. StudyNet gives students access to a range of tools, resources and support 24/7 from anywhere in the world and its robustness, flexibility and ease of use have been fundamental to the success of the Blended Learning agenda at Hertfordshire. The BLU has comprised a management team, expert teachers seconded from around the University, professional support and a Student Consultant. The secondment staffing model was essential to the success of the BLU. As well as enabling the BLU to become fully staffed within the first five months of the CETL initiative, it has facilitated access to an invaluable spectrum of Blended Learning, research and Change Management expertise to inform pedagogically sound developments and enable change to be embedded across the institution. The BLU used much of its capital funding to reduce barriers to the use of technology by, for example, providing laptop computers for all academic staff in the institution, enhancing classroom technology provision and wirelessly enabling all teaching accommodation. Its recurrent funding has supported development opportunities for its own staff and staff around the institution; supported evaluation activities relating to individual projects and of the BLU’s own impact; and supported a wide range of communication and dissemination activities internally and externally. The BLU has led the embedding a cultural change in relation to Blended Learning at the University of Hertfordshire and its impact will be sustained. The BLU has produced a rich legacy of resources for our own staff and for others in the sector. The University’s increased capacity in Blended Learning benefits all our students and provides a learning experience that is expected by the new generation of learners in the 21st century. The BLU’s staffing model and partnership ways of working have directly informed the structure and modus operandi of the University’s Learning and Teaching Institute (LTI). Indeed a BLU team will continue to operate within the LTI and help drive and support the implementation of the University’s 2010-2015 Strategic plan. The plan includes ambitions in relation to Distance Learning and Flexible learning and BLU will be working to enable greater engagement with students with less or no need to travel to the university. As well as opening new markets within the UK and overseas, even greater flexibility for students will also enable the University to reduce its carbon footprint and provide a multifaceted contribution to our sustainability agenda. We conclude this executive summary with a short paragraph, written by Eeva Leinonen, our former Deputy Vice-Chancellor, which reflects our aspiration to transform Learning and Teaching at the University of Hertfordshire and more widely in the sector. ‘As Deputy Vice Chancellor at Hertfordshire I had the privilege to experience closely the excellent work of the Blended Learning Unit, and was very proud of the enormous impact the CETL had not only across the University but also nationally and internationally. However, perhaps true impact is hard to judge at such close range, but now as Vice Principal (Education) at King's College London, I can unequivocally say that Hertfordshire is indeed considered as the leading Blended Learning university in the sector. My new colleagues at King's and other Russell Group Universities frequently seek my views on the 'Hertfordshire Blended Learning' experience and are keen to emulate the successes achieved at an institutional wide scale. The Hertfordshire CETL undoubtedly achieved not only what it set out to achieve, but much more in terms of scale and impact. All those involved in this success can be justifiably proud of their achievements.’ Professor Eeva Leinonen, Vice Principal (Education), King's College, Londo

    A Systematic Review of Studies on Educational Robotics

    Get PDF
    There has been a steady increase in the number of studies investigating educational robotics and its impact on academic and social skills of young learners. Educational robots are used both in and out of school environments to enhance K–12 students’ interest, engagement, and academic achievement in various fields of STEM education. Some prior studies show evidence for the general benefits of educational robotics as being effective in providing impactful learning experiences. However, there appears to be a need to determine the specific benefits which have been achieved through robotics implementation in K–12 formal and informal learning settings. In this study, we present a systematic review of the literature on K–12 educational robotics. Based on our review process with specific inclusion and exclusion criteria, and a repeatable method of systematic review, we found 147 studies published from the years 2000 to 2018. We classified these studies under five themes: (1) general effectiveness of educational robotics; (2) students’ learning and transfer skills; (3) creativity and motivation; (4) diversity and broadening participation; and (5) teachers’ professional development. The study outlines the research questions, presents the synthesis of literature, and discusses findings across themes. It also provides guidelines for educators, practitioners, and researchers in areas of educational robotics and STEM education, and presents dimensions of future research

    IDR : a participatory methodology for interdisciplinary design in technology enhanced learning

    Get PDF
    One of the important themes that emerged from the CAL’07 conference was the failure of technology to bring about the expected disruptive effect to learning and teaching. We identify one of the causes as an inherent weakness in prevalent development methodologies. While the problem of designing technology for learning is irreducibly multi-dimensional, design processes often lack true interdisciplinarity. To address this problem we present IDR, a participatory methodology for interdisciplinary techno-pedagogical design, drawing on the design patterns tradition (Alexander, Silverstein & Ishikawa, 1977) and the design research paradigm (DiSessa & Cobb, 2004). We discuss the iterative development and use of our methodology by a pan-European project team of educational researchers, software developers and teachers. We reflect on our experiences of the participatory nature of pattern design and discuss how, as a distributed team, we developed a set of over 120 design patterns, created using our freely available open source web toolkit. Furthermore, we detail how our methodology is applicable to the wider community through a workshop model, which has been run and iteratively refined at five major international conferences, involving over 200 participants
    corecore