
A review into the factors affecting declines in undergraduate

Computer Science enrolments and approaches for solving this problem

Paul Albinson BSc (Hons), FdSc, MBCS

Design, Engineering and Computing

Bournemouth University

Poole, England

research@paulalbinson.info

Abstract— There has been a noticeable drop in

enrolments in Computer Science (CS) courses and

interest in CS careers in recent years while demand for

CS skills is increasing dramatically. Not only are such

skills useful for CS jobs but for all forms of business and

to some extent personal lives as Information Technology

(IT) is becoming ubiquitous and essential for most

aspects of modern life. Therefore it is essential to

address this lack of interest and skills to not only fill the

demand for CS employees but to provide students with

the CS skills they need for modern life especially for

improving their employability and skills for further

study.

This report looks at possible reasons for the lack of

interest in CS and different approaches used to enhance

CS education and improve the appeal of CS.

Index Terms - Improving Computer Science

Education; CS; CS0; CS1; ICT to Computer Science;

Decreasing Computer Science Enrolments; Pedagogy;

Motivation; Engagement.

I. INTRODUCTION

There has been a noticeable drop in enrolments in

Computer Science (CS) courses and interest in CS careers in
recent years (approximately since 2000) while demand for

CS skills is increasing dramatically. Not only are such skills
useful for CS jobs but for all forms of business and to some

extent personal lives, as Informat ion Technology (IT) is
becoming ubiquitous and essential for most aspects of

modern life. Learning CS can also assist with learning other

subjects as, for example, programming can teach: design
skills (from ideas to finished products), problem solving and

perseverance (identifying and fixing faulty code) and team
work/collaboration skills. In addition having a solid

understanding of CS will assist with the use of applications
and processes in work and education such as secretarial

skills, accounting skills, operating manufacturing design and

production tools etc. Therefore it is essential to address this
lack of interest and skills to not only fill the demand for CS

employees but to provide students with the CS skills they
need for modern life, especially for improving their

employability and skills for further study both formal and

self-study.
One of the main theories for the unpopularity of CS is

due to the way computing is introduced in schools, leading to
a poor perception and understanding of what CS is.

Computing education in schools typically focuses around

Information Communications Technology (ICT) which is
how to use computers and typically ignores CS, which is

how and why computers work to provide a fuller
understanding of computing and its value and potential.

The need to improve computing education has been
recognised by governments, industry, professional bodies

and education providers and has led to curriculums and
guidelines being improved to provide a higher quality of

computing education.

There are many tools and courses being created or
improved to make CS easier to understand, improve

engagement and motivation and to show the relevance of CS.
There are signs that these approaches are effective and

enrolment numbers are slowly increasing. However more
work will be required to maintain this growth and interest

such as ensuring the content remains relevant.

In addition to improving CS courses there have also been
many init iatives to introduce what CS involves and ideally

motivate students to consider a CS course and/or career. In
the USA college/university 1 students choose a subject to

specialise in, known as a major, and they can also study
elective subjects in other areas which are known as non-

majors. These non-major courses may be studied prior to

major courses as an introduction to a subject as either a
prerequisite to the major course (either as a course or

university requirement) or simply to help students decide if
the subject is of significant interest to study as a major. Most

papers reviewed are from the USA and focus on making CS
more interesting via either a non-major course, with the aim

of encouraging students to consider a CS major , or assist
those progressing onto a CS major, or by improving major

courses to enhance interest in CS and improve retention rates

and students grades.
Other ways of encouraging students to consider a CS

course and career as well as improving their CS skills are

1
 In the United States of America the term college is used to refer to part of

a university (similar to a school in the UK university system) or as a stand-
alone higher education institution. High Schools are the USA equivalent to

the UK college system.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bournemouth University Research Online

https://core.ac.uk/display/20665228?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

summer schools, introductory courses, bridging courses, and

school visits/outreach projects.
The remainder of this report looks at these topics in more

detail to discover the reasons for the lack of interest in CS
and different approaches used to enhance CS education and

improve the appeal of CS.

II. THE ENROLMENT CRISIS

Many papers refer to decreasing enrolments in CS
courses which started around 2000. Most papers refer to the

findings of the current editions of the Computer Research
Association’s Taulbee survey2. Morelli et al. (2010), Cooper

et al. (2010) and Purewal Jr. (2010) consider the results from

the 2007-2008 Taulbee survey (Zweben 2009) which shows
that from 1995 – 2000 there were significant increases in

new CS/CE3 undergraduate majors4. There were significant
decreases from 2000 to 2007 with a slight increase in 2008

(see figure 1). The survey also shows that the amount of
bachelor’s degrees produced follows a similar but slightly

smoother pattern, with increases until a dip in 2003, followed

by decreases from 2004 and a projected increase in 2009 (see
figure 2).

However as mentioned in the survey report and by
Cooper et al. (2010) the slight increase in enrolments in 2008

is probably influenced by a change in the way data was
collected to include a broader range of CS/CE courses.

Figure 1 – Taulbee Survey: Newly Declared CS/CE

Undergraduate Majors (Zweben 2009)

Figure 2 – Taulbee Survey: CS & CE Bachelor’s degree

production (Zweben 2009)

2
 http://www.cra.org/resources/taulbee/

3
 Computing Engineering

4
 There was however a slight decrease in 1998.

Uludag et al. (2011) and Wolber (2011) consider the

2008-2009 Taulbee survey results (Zweben 2010) which
shows a small continued increase in CS majors (see figure 3)

yet it is still nearly 50% lower than in 2000. However as
Uludag et al. (2011) reports in the 2009 survey, the degree

production figures continue to decrease; perhaps the
increased enrolments aren’t affecting this as the new students

aren’t ready to graduate. In addition the survey shows that

the prediction of increased degree production in 2009 was
incorrect as the figure decreased, they however predict an

increase in 2010 (see figure 4).
These results along with other data prompted many

institutions to work on improving the appeal of CS. When
we look at the latest Taulbee survey (Zweben 2013) we see a

small decrease and stagnation in undergraduate enrolments
between 2009 and 2011 and a massive increase in 2012 (see

figure 5); in addition since 2009 there has been a steady

increase in bachelor degree production (see figure 6)
suggesting these initiatives are effective.

Figure 3 – Taulbee Survey: Newly Declared CS/CE

Undergraduate Majors (Zweben 2010)

Figure 4 – Taulbee Survey: CS & CE Bachelor’s degree

production (Zweben 2010)

Figure 5 – Taulbee Survey: Newly Declared CS/CE

Undergraduate Majors (Zweben 2013)

Figure 6 – Taulbee Survey: CS & CE Bachelor’s degree

production (Zweben 2013)

Other papers also discuss other data around enrolments
which show similar results. Malan (2010) explains the

enrolments for Harvard’s CS50 CS course which has similar
levels to the national figures shown in the Taulbee survey

with enrolments rising from 1993, peaking in 1996 before

reducing in subsequent years with sudden massive drops in
2001 and 2002; these rises and falls correspond to the start

and end of the dot-com boom/bubble when a lot of money
was made and subsequently lost with internet start-ups,

hence interest in CS was sparked and lost accordingly. Their
enrolment rates slowly increased until 2006 when they

improved the course content to being more relevant and

appealing resulting in subsequent sharp enrolment increases
(see figure 7). Sahami et al. (2010) also reports similar drops

in enrolments at Stanford between 2001 and 2006.

Figure 7 – Enrolments in Harvard’s CS50 course (Malan

2010)

The lack of interest in CS is a potential crisis as there is

an ever increasing demand for CS skills not only for CS jobs
but for use in most jobs , due to IT being essential for the

running of modern businesses. Egan (2010) discusses the
problem and how U.S. Department of Labor (2007) surveys

suggest that jobs in the computing industry will increase

dramatically by 489,000 jobs between 2006 and 2016 while
CS graduate rates remain low.

III. POSSIBLE REASONS FOR LACK OF INTEREST IN CS

A. Outsourcing

Sahami (2007) and Sahami et al. (2010) speculate that

the health of the technology economy and increases in
outsourcing jobs may discourage students from considering a

CS career. However they note that a more detailed analysis
of such factors by Aspray et al. (2006) shows how

outsourcing hasn’t resulted in a net loss due to an overall
increase in IT jobs. Therefore any reduced enrolments would

be due to a perception of reduced jobs rather than actual job
reductions.

B. CS isn’t cool

Various papers discuss how CS is often poorly perceived

and understood and how courses should be modernised and
portray the value, relevance and appeal of CS, ideally with

real-world examples. Malan (2010) hypothesised that the

problem with enrolment decreases in Harvard’s CS50
introductory CS course for both majors and non-majors was

due to the courses design and the students’ percept ion of it.
The design of the course was seen as a problem as the

content may be seen as dated, especially with students being
more aware of technology and having modern technology

such as smartphones, laptops etc. They also assumed that the

workload and perceived difficulty of the course is a reason
for its unpopularity. They concluded that the course needs to

be redesigned to include more modern content and make it
more accessible, motivating and appealing to students. They

ideally wanted to recreate the large increase in CS
enrolments that external factors like the dot-com

boom/bubble created, but with internal factors such as

improved course content which will hopefully maintain

interest longer. They reorganised the course structure,
modernised the content and where possible linked it to real-

world problems/scenarios. For example starting with a
simple “hello world” programming example5 is not a very

exciting/motivating first lesson for a modern course; when
computing power was limited and less graphical this was

fine but in the modern world it seems very dull. The new

course has the same level of complexity and workload but is
more accessible and friendly to make it less daunting/scary

to encourage more students to realise that the course is
suitable for them. This approach is vital when teaching non-

majors as well as majors , as students will have varying pre-
existing CS skills and experience, so content needs to be

approachable yet significantly complex to accommodate
varied skill levels. They found the improvements increased

interest in CS and made the course more appealing and

increased enrolments as well as enrolments of subsequent
courses.

Kurkovsky (2007) also refers to there being many
misconceptions about CS as their study showed students do

not understand what CS is, feel it is more difficult than other
subjects and often consider it as “nerdy” and “not cool”. It is

particularly difficu lt to change these opinions of non-CS

majors (students studying CS as a non-major course and are
probably only studying an introduction to CS course as a

requirement of their major course) as they probably have
little interest in the subject. They explain how CS courses for

non-majors are typically either computer literacy (how to use
computers such as using office applications) which doesn’t

include programming or a “CS 0” course (how computers

work) which includes a comprehensive overview of CS and
usually introduces programming. They also discuss the value

of teaching programming to non-CS majors including
research for and against the point. One approach mentioned

is to highly tailor programming content around specific
industries as proposed by Forte and Guzdial (2005) who also

evaluate the value of programming for non-CS majors.

C. Other reasons

Carter (2006) considers the reasons for why enrolments
for CS majors are reducing across the USA and why students

with an apparent aptitude for CS, such as high-school

calculus and pre-calculus students, avoid CS as a major and
whether reasons vary by gender. As with other studies they

observed massive drops in CS major enrolments and
considered similar hypotheses to explain this (outsourcing,

the dot-com bust, negative perceptions of CS, lack of or
incorrect information on what CS is, gender differences etc.).

They also assume that high schools are not introducing CS to
their students and they have little understanding of what CS

is; from examin ing course catalogues they found there was

little or no CS content. They surveyed high school calculus
and pre-calculus students as maths success is typically a

predictor of CS success, to establish possible reasons for why
these ideal students aren’t enrolling and whether the reasons

5
 T raditionally programming tutorials begin with how to create a program

to write “Hello World” to the screen.

vary by gender. The results confirmed that high-school

students lack computing experience and do not fully
understand what CS involves. The main reasons for avoiding

a CS major were the same for both genders and were the
misconception that CS involves working with a computer all

day, or they had already chosen to study a different course.
The main reasons for studying CS varied by gender; men

state computer games as their main influence/interest

whereas women saw CS skills as being useful for other
fields. Potential earnings were not a consideration.

IV. CS RATHER THAN ICT

One of the theories for why CS is misunderstood and

unpopular is the way computing is introduced in schools.
Traditionally Information and Communicat ion Technology

(ICT) is taught, which is how to use computers 6, rather than
CS which is “the study of the foundational principles and

practices of computation and computational thinking, and
their application in the design and development of computer

systems” (Naace, ITTE, and the Co mputing at School

Working Group 2012, p.1) 7 . This neglect of CS in
computing introductions fails to explain the fundamental

principles of computing and show the relevance of CS. It
creates a poor impression of CS and can fail to motivate

students to pursue further CS study and careers. This
problem has been recognised by the UK government who

are scrapping the ICT GCSE and are proposing a new
computing curriculum and GCSE (Department for

Education 2013). The curriculum is for key stages 1 – 48

and provides a more complete computing education and
aims to provide a solid understanding of CS and ICT

required for industry and further study. It includes
fundamentals of CS, computational thinking and evaluating

and using ICT.
A similar approach is being taken in the USA where a

National Research Council review into IT literacy as

requested by the National Science Foundation (Lin 2000)
concluded that computer literacy (a.k.a. ICT) should be

replaced by IT fluency (a.k.a. CS). They explain how as
modern computing changes regularly, computer literacy

skills (how to use current applications) soon become
obsolete. However as IT fluency teaches computing

fundamentals and principles it provides more flexib le skills

to expand knowledge and adapt to changes; for example a
user may not completely understand a program but has the

skills to learn it themselves.
Scott Hilberg and Meiselwitz (2008) explain how, due to

the importance and prevalence of IT in modern life, it is
essential for students to have IT/ICT fluency skills.

However, despite growing up with modern IT there are
concerns that students lack these skills; they reference

previous research supporting this. They also say how

students’ consider their ICT fluency skills as good (faculty

6
 Students are typically only taught how to use the Microsoft Office suite of

office applications and similar basic computer uses such as web browsing.
7
 Naace, ITTE, and the Computing at School Working Group (2012)

provide a more in-depth comparison of ICT and Computer Science.
8
 This is the entire UK school system from ages 5-16.

and administrators commonly make similar assumptions) yet

actual ICT results are typically lower. They investigated
perceived knowledge via a survey and actual knowledge

using an Educational Testing Service’s ICT Literacy
Assessment. Results show the mean score was 158.20 which

is just over half the possible marks (53.79%) and shows that
most students have poor ICT fluency skills. The majority of

the students (73%) were overly confident of their ICT skills

and achieved lower scores than their perceptions. Also those
who overestimated their skills were more than double those

who underestimated their skills (26%). The low ICT fluency
skills observed are despite more than three quarters (79.8%)

of undergraduates having had past ICT training which
indicates current ICT training is not sufficient for teaching

the required ICT fluency skills. They conclude that the ICT
curriculum needs evaluating to ensure students have the

required ICT fluency skills.

Dougherty (2003) also explains the need for students to
be fluent with IT due to its importance and prominence in the

modern world and because it is always changing. There have
been previous attempts to teach the required IT skills for the

workforce which initially started by concentrating on IT
literacy. However literacy is not scalable enough to take into

account the constantly changing nature of IT and training

changed to focus on IT fluency. They then discuss and define
IT fluency and reference related reports. They also explain

how many colleges and universities have been creating
computing courses for non-majors (with references to

examples) and how the ACM/IEEE Computing Curricula
2001 (ACM/IEEE CS Joint Task Force on Computing

Curricula 2001) identifies the need for IT fluency in CS

courses. They then discuss the IT Fluency (ITF) Framework
(Dougherty et al. 2002) which is “a case study template that

can be used to design and implement a set of laboratory
exercises in a field outside of computing with non-trivial

usage of IT” along with how they used it within their “The
World of Computing” course at Haverford College 9 . This

was implemented as 1 day of IT fluency lessons based
around an economics case study. They explain the day’s

assessments and a survey conducted to assess its

effectiveness. They conclude that the day’s lessons went well
but they felt it would be more effective if they could expand

it to at least 2 days to allow the addition of some brief
examples and more time to absorb the content and clarify

queries. Unfortunately only 10% of students managed to
repeat the demonstration on their own and many of these

needed significant help to achieve this. Student feedback was

positive but students were confused by some of the survey
questions so they couldn’t draw solid conclusions from it.

They feel it is worth repeating the use of the ITF framework
but will make some minor changes such as adding a second

case study on psychology.

V. GOVERNMENT AND INDUST RY SUPPORT

The value of CS has been recognised by governments
and industry; in addition to the aforementioned new

computing curriculum and focus on CS rather than purely

9
 It was seen as impractical to base an entire course on the ITF framework.

ICT there are many in itiatives to improve CS teaching

(including ICT content). These initiatives are supported by
many schools, universities, governments and industry

including BCS, Google, Microsoft, Facebook and many
more. The Computing at School working group/initiat ive

(CAS) brings together educators and industry to work on
improving CS and share knowledge. CAS has worked with

the BCS Academy to create the Network of Teaching

Excellence in Computer Science. The network helps educate
teachers to increase the level of CS teaching. It includes

such initiatives as universities training school teachers so
they can provide their students with the skills required for

college and university CS courses. There are similar
initiat ives around the world such as the focus on IT fluency

in the USA. Other examples are computer clubs and
programs/applications to introduce children to CS (this is

typically v ia programming) such as Code Club 10 ,

Code.org 11 , Google Computer Science fo r High School12
and Google Summer o f Code13. In addition there are p lenty

of other resources such as online courses like Coursera14 and
Khan Academy 15 designed to make learning accessible to

all.

VI. POSSIBLE SOLUTIONS

With a clear need to enhance students’ perception of CS
and create appealing CS courses, many different

approaches/solutions have been investigated.

A. Tailored courses

Forte and Guzdial (2005) exp lain how like many
institutions Georgia Institute of Technology (Georgia Tech)

requires majors and non-majors to study an introductory CS
course and such courses have difficulty engaging non-CS

students. As a possible solution they introduced two tailo red

introductory CS courses for non-majors (students interested
in or majoring in certain non-CS areas) as an alternative to

their tradit ional course “Introduction to Computing”. The
tailored courses are “Introduction to Computing for

Engineers” (tailored for engineers) and “Introduction to
Media Computation” (tailored for non-CS and non-

engineering students). They hope by showing students how

CS is relevant for their chosen industry they will see the
value of CS and find it more understandable and interesting.

Also the tailored approach creates a more balanced class of
peers with similar skills, backgrounds and interests which

helps with students’ comfort and confidence. They ensured
the content and especially the chosen programming

language was relevant to the audience and is useful in their

chosen careers; for example Java is typically used by
engineers. Also learning objectives and assessments need to

be considered to take into account the new content and the
audience. They found these new courses were much more

effective than the tradit ional course with more students

10

 http://www.codeclub.org.uk/
11

 http://www.code.org/
12

 http://www.cs4hs.com/
13

 https://developers.google.com/open-source/soc/
14

 https://www.coursera.org/
15

 https://www.khanacademy.org/

complet ing and passing the courses and they received more

positive (and less negative) feedback with many students
wishing to study another tailored course.

B. Improving and modernizing courses

Sahami et al. (2010) explain how despite significant

evolution of computing in the last 30 years the CS curricula
hasn’t adapted accordingly. With this in mind and a noticed

reduction in CS enrolments , Stanford University redesigned
its CS curriculu m to modernise it. Their goals were: to add

flexibility to adapt content to keep it relevant, include
modern content and highlight future developments,

emphasise the breadth of potential CS areas, provide options

for exp loring areas in depth, and show the diversity and
multi-disciplinary nature of CS. The restructured curriculum

contains:

 Core units provide a solid foundation for the course

and cover CS fundamentals and principles along
with topics to explain modern concepts which could

form the basis for future computing developments.

 Depth concentration in a track area – Students can

choose units in the area they wish to concentrate

on/specialise in as well as related mult i-disciplinary
content.

 Elective units provide students with a choice of units
designed to provide more depth and breadth and take

advantage of multi-disciplinary ties.

 Senior project – The students finish the course with a

development or research project.
This format provides flexibility and offers students

multiple options/tracks and makes it easier to adapt the

course content to remain relevant as IT changes. The
flexibility also allows for links with other disciplines to be

created, and in some cases working/linking with other
departments to achieve this, to show the impact CS has in

other areas/disciplines; coverage of the mult i-disciplinary
nature of CS is rare in other courses. They hope this broader

scope will enable students to see more relevance to CS and

how it can be used in many areas of industry. The new
curriculum had already proved popular after just one year of

availability and helped with the noticed 40% increase in
major applications. Student feedback was generally positive

but they felt that there was a lack of programming which will
be addressed in future. The course has also had positive

feedback from industry and other universities.
As previously mentioned, hypothesised problems with

perception and design of the CS50 course at Harvard (Malan

2010) led to the conclusion that the course needed improving
and modernising. The improved course has seen significant

increases in enrolments and the majority of the increase has
been female students. The course previously contained a lot

less female students than male students , so this increase is
very encouraging for a more balanced class. It has even

increased enrolments in subsequent CS courses, one

increased 33% and another increased 122%!

C. Focusing courses around a current trend

Some institutions have tried to increase course

popularity by focusing them around a current trend. Purewal

Jr. (2010) exp lains how there are signs of CS enrolments

increasing but this could be short-lived if it is because of a
current trend (e.g. social networking). They exp lain how CS

courses could be based around trends and as new computing
trends emerge and others lose appeal (for example social

networks are replaced by a new trend) they should be
refocused accordingly. They believe this approach can

maintain and increase CS enrolments and student diversity.

The paper focuses around improving the “ Communicat ions
Technologies and the Internet” introductory CS (CS0)

course at the College of Charleston with a focus on social
networks due to their current popularity and use of the latest

technologies and concepts . They exp lain the common
objectives of CS0 courses and how they believe an

additional objective should be added covering “the current
ethical, social and legal implications of the growing ubiquity

of and increased reliance on technology”. They then exp lain

their course and how it meets these objectives. They reflect
on the success of the course and conclude that overall it has

been successful. A particular h ighlight that proves the
course’s relevance was, as the course was being taught,

many articles were being published in related areas. This
allowed the course to have up to date content to discuss and

as technology frequently changes this was very valuable for

making the course relevant and current. Student feedback
showed there was significant enthusiasm for the course and

its contents.
Similarly Kurkovsky (2007) exp lains the “Introduction

to Internet Programming and Applications” course at
Central Connecticut State University which introduces the

fundamentals of computer programming focussing around

the internet and its impact on society. They hope by basing
it around a well-known area (the Internet) it will be relevant

and motivating for all and make CS more understandable for
non-CS majors. Many CS concepts such as network

architecture, algorithms, programming etc. can be made
more understandable by relat ing them to the Internet. They

found the course was useful for helping increase
understanding of CS and motivation to study it.

D. Make programming more accessible

Programming can be difficu lt for undergraduates to

understand especially for non-CS majors and/or those with

limited prior experience. Trad itional text -based
programming languages like Java and C++ can be very

confusing as the syntax used isn’t easy to interpret and
almost looks like a foreign language. This means students

not only have to understand programming concepts but they
need to interpret programming syntax. To make introducing

programming easier, many visual programming
tools/environments were created such as Scratch 16 , App

Inventor17 and Alice18. These allow programs to be created

by dragging components into the tool instead of writ ing
specific syntax. These components are programming

elements such as loops, variab les etc. and only fit together

16

 http://scratch.mit.edu
17

 http://appinventor.mit.edu
18

 http://www.alice.org

in a semantically correct way. Th is enables students to see

how programming concepts such as loops work, without
needing to worry about specific syntax and can easily see

their mistakes; for example if a component doesn’t fit in the
chosen location it will alert the user. These tools are

intuitive, make programming fun/motivating and are used in
CS courses to increase interest in programming, CS courses

and careers and to improve course retention and success

rates.
Wolber (2011) discusses some initial tutorial examples

for Java, Scratch and App Inventor. As Java is text-based and
object-oriented it means even the most basic example

(displaying “Hello World!” on the screen) involves
introducing many complex terms/concepts which are hard to

explain to new programming students; they probably won’t
understand it fully until much later in the course. The initial

tutorial examples for Scratch and App Inventor are a lot

easier to understand due to the drag-and-drop system.
Scratch and App Inventor are very similar and both use

blocks (components) that fit together to create the required
functionality (e.g. looping through code) and have puzzle

style connections that only allow blocks to fit together in a
semantically correct way. The main difference between

Scratch and App Inventor is that Scratch is contained within

the programming tool/environment (although applications
can be shared on the Scratch website) whereas App Inventor

creates Android applications and can be run on Android
mobile devices as well as within its emulator. Due to these

reasons as well as for its ability to perform mobile tasks like
sending text messages to give applications a real-world

purpose, Wolber chose App Inventor for their introductory

CS course. It helped the students easily understand
programming concepts, quickly create applications with real-

world uses and motivated them to tackle more complex
programming problems.

Morelli et al. (2010) exp lains a project to investigate
whether App Inventor could be used to teach K-12 students

Computational Thinking. It focussed on ideas and lesson
plans around App Inventor and created applications that

should appeal to the K-12 demographic. The project started

with students using App Inventor and then teaching it to
some teachers. They conclude that while it is too early to

make strong conclusions, it has been a success and App
Inventor has proved to be accessible and powerful, can

provide an Object-Oriented Programming model, can be
used for problem-driven learning, has motivational potential,

is relevant and can support learning.

Uludag et al. (2011) explains a CS0 course that uses
Scratch, App Inventor and Lego Mindstorms. They explain

the value to App Inventor such as its ease of use, the
popularity of Android smartphones and its support for the

Lego Mindstorm robotics interface. The course includes
interesting practical laboratory style lessons which aim to

relate to real-world experiences, be inspirational,

motivational and “cool”. Due to Scratch being slightly more
basic than App Inventor while very similar , they use it to

introduce programming prior to the use of App Inventor.
They use App Inventor to control Lego Mindstorm robots to

make the course more engaging and provide more

satisfactory feedback as a result of using programming. They

hadn’t assessed the courses effectiveness at the time.
Alice is another popular visual programming

tool/environment for teaching Object-Oriented Programming
(OOP). It is based around 3D animat ions that demonstrate

programming concepts using a simple drag-and-drop system.
Many institutions (Mullins et al. 2009; Cooper et al. 2010;)

use it is a first programming tool to introduce programming

before moving onto other more complex text-based
programming languages such as Java and find it is ideal due

to its use of OOP. However Adams (2010) considers Alice to
be quite complex for in itial programming lessons and

recommends Scratch is used to introduce programming
basics before using Alice. Whereas Malan and Leitner

(2007) consider Scratch alone as a suitable basis prior to
learning Java. In a similar way to the work by Uludag et al.

(2011) Alice can also be used to control robots to make a CS

course more engaging (Wellman et al. 2009). A lice has also
proven to be useful for transitioning into programming with

C++ (Johnsgard and McDonald 2008).
Lewis (2010) evaluates the opinions and learning

outcomes of students learning programming using a text-
based language (Logo), versus a visual programming

tool/language (Scratch). They predicted that because Scratch

is visual that students would have a more positive attitude
towards it, and consequently programming in general, and

have a greater understanding of loops and conditional
statements. However they found that Scratch only provided a

greater understanding of conditional statements. Also Logo
provided students with greater confidence in programming

versus Scratch which is opposite to their hypothesis.

Students gave both Logo and Scratch a similar difficulty
rating and they are similarly motivated to continue

programming after using either of them.

E. Different teaching approaches and learning techniques

Many different approaches and learning styles have been
tried to improve student engagement, success rates and

interest in CS courses. Many courses have found success by
relating their content to real-world examples to help provide

context and understanding of the value of IT. Uludag et al.
(2011) discuss how they believe by basing their course

around the constructionist learning theory (learning by

doing/making) and active learning with the use of creating
Lego Mindstorms robots makes programming more

engaging as students can see the effects of it over a physical
object. Wolber (2011) however, replaced the Mindstorms

element of their course with App Inventor, as mobile
applications can provide more relevance to students lives

than robots do. Harvard’s CS50 course (Malan 2010) uses
many learning techniques (lectures, seminars, v ideos,

anonymous bulletin boards etc.) to allow for different

learning styles and improve self-learning, problem solving,
student engagement, confidence etc. McFarland (2004)

identifies three main approaches for teaching CS; breadth-
first (covers a wide range of topics to provide a broad

introduction to CS), depth-first (focuses on topics in more
depth such as a programming focused course) and a

blended/balanced approach. Their research led Western New

Mexico University to use a balanced approach by starting

with breadth-first topics to properly introduce CS and then
take a depth-first approach to teach programming concepts.

Goldman (2004) introduces a concepts -first approach where
their introductory CS course uses JPie (a visual

programming tool/environment for creating Java
applications) to introduce key CS concepts and software

development. Anewalt (2008) uses a non-traditional

approach for a CS0 course by using kinaesthetic learning
activities including the use of physical props, hands -on labs,

competitions and games. The activities (including unusual
activities like using playdough to teach classes and objects)

are used to help students understand key CS concepts.

F. Outreach projects

Colleges and Universities promote CS and consequently
their courses via various outreach projects; these are

typically via introduction/taster courses for high
school/secondary school students or by helping their teachers

introduce or improve CS teaching.

Adams (2010) explains a summer school outreach
program for introducing programming concepts to middle

school students. This has been run over multiple years and
has proved to be popular and increases awareness of CS, and

many students wish to continue learning programming and
consider further CS courses and careers.

Cooper et al. (2010) exp lains a partnership between
colleges/universities and middle and high schools as

professional development to improve the quality of CS

teaching. The pilot project resulted in an improved CS
curriculum which was seen as a success and has improved

CS lessons and increased CS enrolments.
Egan (2010) exp lains a one day event/program described

as a non-programmer’s programming contest designed to
show the value of CS to high school students (targeting those

with good mathematics and problem solving skills) and their

teachers. It focused around group tasks/challenges based
around programming skills to provide a fun introduction to

programming. It received very positive feedback from
students and teachers and it showed the event had improved

perceptions of CS.
Morreale et al. (2010) describes a one day workshop run

by a university to help high school teachers teach CS. It was

aimed at enhancing CS teaching and improving
college/university CS success rates as well as making CS

more appealing to students. They also hope that teachers will
recommend CS as a further study option and career and

ideally recommend study at their university. The workshop
was a success as it met these goals.

VII. CONCLUSION

Although CS enrolments and interest remains low we can

see signs of a more positive future with CS enrolments and
degree production beginning to rise. There is a lot of work

being done on improving perception and understanding of

CS v ia enhanced education, outreach projects, new visual
tools for learning programming, online learning etc. Students

are more engaged and motivated by these new approaches
and there has been improved retention and grades as students

see the value and relevance of CS. However it is vital to keep

the content modern and relevant to reflect changes in the
computing field, including following the latest trends. If a

course is based on a popular trend to engage interest and that
trend loses popularity in favour of something new, then the

course should refocus to cover the new area of interest. The
computing environment is constantly changing with regular

new innovations which can be a huge attraction for students

pursuing CS education. Therefore, course content should
adapt to cover the latest computing concepts, technology,

trends etc. to remain relevant and retain students’ interest.
As governments, industry, professional bodies and

educational institutions are realising the need to refocus
computing education to being CS focused as well as

incorporating ICT, then educators will need to adjust course
content accordingly. This is currently very relevant in the

UK school system as the new computing curriculum is being

introduced replacing the existing ICT curriculum. As
previous computing teaching was ICT focused (this typically

covered usage of applications like the Microsoft Office suite)
teachers may only have learned ICT skills and have no or

little CS skills. Teachers will probably need support as they
design lessons based on the new computing curricu lum and

therefore there is a lot of current research around looking at

ways to support this process. This could be for example
designing course content, finding appropriate tools for

teaching specific subjects like programming, assessment
methods and so forth.

ACKNOWLEDGMENT

The author would like to thank Dr Philip Davies for his

guidance on writ ing literature review papers and Dr Sheridan
Jeary for her advice on finding a suitable research topic.

REFERENCES

ACM/IEEE CS Joint Task Force on Computing Curricula, 2001.
ACM/IEEE Computing Curricula 2001, Computer Science (CC2001). New
York: ACM. Available from:
http://www.acm.org/education/curric_vols/cc2001.pdf [Accessed 09 May
2013].

Adams, J.C., 2010. Scratching Middle Schoolersʼ Creative Itch. In:
Proceedings of the 41st ACM technical symposium on Computer science
education, SIGCSE ‘10, 10-13 March 2010 Milwaukee. New York: ACM,
356-360. Available from: http://dl.acm.org/citation.cfm?id=1734385
[Accessed 17 May 2013].

Aspray, W., Mayadas, F., and Vardi, M. Y., 2006. Globalization and
Offshoring of Software: A Report of the ACM Job Migration Task Force.
New York: ACM. Available from: http://www.acm.org/globalizationreport/
[Accessed 03 May 2013].

Anewalt, K., 2008. Making CS0 fun: an active learning approach using
toys, games and Alice. Journal of Computing Sciences in Colleges, 23 (3),
98-105.Available from: http://dl.acm.org/citation.cfm?id=1295133
[Accessed 17 May 2013].

Carter, L. 2006. Why Students with an Apparent Aptitude for Computer
Science Don’t Choose to Major in Computer Science. In: Proceedings of
the 37th SIGCSE technical symposium on Computer science education,
SIGCSE '06, 1-5 March 2006, Houston, Texas, New York: ACM, 27-31.
Available from: http://dl.acm.org/citation.cfm?id=1121352 [Accessed 17
May 2013].

Cooper, S., Dann, W. and Harrison, J., 2010. A K-12 College Partnership.
In: Proceedings of the 41st ACM technical symposium on Computer
science education, SIGCSE ‘10, 10-13 March 2010 Milwaukee. New York:

ACM, 320 – 324. Available from:
http://dl.acm.org/citation.cfm?id=1734371 [Accessed 17 May 2013].

Department for Education, 2013. Computing: Programmes of study for Key
Stages 1-4. Department for Education. Available from:
http://computingatschool.org.uk/data/uploads/computing-04-02-13_001.pdf
[Accessed 21 February 2013].

Dougherty, J.P., Kock, N.F., Sandas, C., and Aiken, R.M. (2002) Teaching
the Use of Complex IT in Specific Domains: Developing, Assessing and
Refining a Curriculum Development Framework. Education and
Information Technologies, 7 (2), 137-154. Available from:
http://link.springer.com/article/10.1023%2FA%3A1020305827078
[Accessed 17 May 2013].

Dougherty, J.P., 2003. Information technology fluency at a liberal arts
college: experience with implementation and assessment. Journal of
Computing Sciences in Colleges, 18 (3), 166-174. Available from:
http://dl.acm.org/citation.cfm?id=771734 [Accessed 17 May 2013].

Egan, M.A.L., 2010. Recruitment of CS majors through a non-
programmer's programming contest. Journal of Computing Sciences in
Colleges, 25 (6), 198-204. Available from:
http://dl.acm.org/citation.cfm?id=1791165 [Accessed 17 May 2013].

Forte, A. and Guzdial, M., 2005. Motivation and Nonmajors in Computer
Science: Identifying Discrete Audiences for Introductory Courses. IEEE
Transactions on Education, 48 (2), 248 – 253. Available from:
http://ieeexplore.ieee.org//xpl/articleDetails.jsp?tp=&arnumber=1427874
[Accessed 17 May 2013].

Goldman, K.J., 2004. A Concepts-First Introduction to Computer Science.
In: Proceedings of the 35th SIGCSE technical symposium on Computer
science education, SIGCSE ’04, 3-7 March 2004 Norfolk, Virginia. New
York: ACM, 432-436. Available from:
http://dl.acm.org/citation.cfm?id=971446 [Accessed 17 May 2013].

Johnsgard, K. and McDonald, J., 2008. Using Alice in Overview Courses
to Improve Success Rates in Programming I. In: IEEE 21st Conference on
Software Engineering Education and Training , CSEET ’08, 14-17 April
2008 Charleston, SC, New York: IEEE, 129-136. Available from:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=455
6958 [Accessed 17 May 2013]

Kurkovsky, S., 2007. Making computing attractive for non-majors: a
course design. Journal of Computing Sciences in Colleges, 22 (3), 90-97.
Available from: http://dl.acm.org/citation.cfm?id=1181873 [Accessed 17
May 2013].

Lewis, C.M., 2010. How Programming Environment Shapes Perception,
Learning and Goals: Logo vs. Scratch. In: Proceedings of the 41st ACM
technical symposium on Computer science education , SIGCSE ‘10, 10-13
March 2010 Milwaukee. New York: ACM, 346 – 350. Available from:
http://dl.acm.org/citation.cfm?id=1734383 [Accessed 17 May 2013].

Lin, H., 2000. Fluency with information technology. Government
Information Quarterly, 17 (1), 69-76. Available from:
http://www.sciencedirect.com/science/article/pii/S0740624X99000246
[Accessed 17 May 2013].

Malan, D.J. and Leitner, H. H., 2007. Scratch for budding computer
scientists. In: Proceedings of the 38th SIGCSE technical symposium on
Computer science education, SIGCSE ’07, 7-10 March 2007 Covington,
Kentucky. New York: ACM, 223-227. Available from:
http://dl.acm.org/citation.cfm?id=1227388 [Accessed 17 May 2013].

Malan, D. J., 2010. Reinventing CS50. In: Proceedings of the 41st ACM
technical symposium on Computer science education, SIGCSE ‘10, 10-13
March 2010 Milwaukee. New York: ACM, 152–156. Available from:
http://dl.acm.org/citation.cfm?id=1734316 [Accessed 17 May 2013].

McFarland, R.D, 2004. Development of a CS0 course at Western New
Mexico University. Journal of Computing Sciences in Colleges, 20 (1),
308-313. Available from: http://dl.acm.org/citation.cfm?id=1040271
[Accessed 17 May 2013].

Morreale, P., Joiner, D. and Chang, G., 2010. Connecting undergraduate
programs to high school students: teacher workshops on computational
thinking and computer science. Journal of Computing Sciences in Colleges,
25 (6), 191-197. Available from:
http://dl.acm.org/citation.cfm?id=1791164 [Accessed 17 May 2013].

Morelli, R., de Lanerolle, T., Lake, P., Limardo, N. Tamotsu, E., and Uche,
C., 2010. Can Android App Inventor Bring Computational Thinking to K-
12? The Humanitarian FOSS Project. Available from:
http://hfoss.org/uploads/docs/appinventor_manuscript.pdf [Accessed 21
February 2013].

Mullins, P., Whitfield, D. and Conlon, M., 2009. Using Alice 2.0 as a first
language. Journal of Computing Sciences in Colleges, 24 (3), 136-143.
Available from: http://dl.acm.org/citation.cfm?id=1409900 [Accessed 17
May 2013].

Naace, ITTE, and the Computing at School Working Group, 2012. ICT and
Computer Science in UK schools. Computing at school. Available from:
http://www.computingatschool.org.uk/data/uploads/ICT%20and%20CS%2
0joint%20statement.pdf [Accessed 21 February 2013].

Purewal Jr., T .S., 2010. Social Networking: The New Computer Fluency?
In: Proceedings of the 41st ACM technical symposium on Computer science
education, SIGCSE ‘10, 10-13 March 2010 Milwaukee. New York: ACM,
112-116. Available from: http://dl.acm.org/citation.cfm?id=1734301
[Accessed 17 May 2013].

Sahami, M., 2007. Welcome to the Google Education Summit. Mountain
View: Google. Available from:
http://research.google.com/university/relations/eduSummit2007/MehranSah
ami.pdf [Accessed 03 May 2013].

Sahami, M., Aiken, A. and Zelenski, J., 2010. Expanding the Frontiers of
Computer Science: Designing a Curriculum to Reflect a Diverse Field. In:
Proceedings of the 41st ACM technical symposium on Computer science
education, SIGCSE ‘10, 10-13 March 2010 Milwaukee. New York: ACM,
47-51. Available from: http://dl.acm.org/citation.cfm?id=1734279 [Accessed
17 May 2013].

Scott Hilberg, J. and Meiselwitz, G., 2008. Undergraduate Fluency with
Information and Communication Technology: Perceptions and Reality. In:
Proceedings of the 9th ACM SIGITE conference on Information technology
education, SIGITE '08, 16-18 October 2009 Cincinnati, Ohio, New York:
ACM, 5-10. Available from: http://dl.acm.org/citation.cfm?id=1414562
[Accessed 17 May 2013].

Uludag, S., Karakus, M. and Turner, S.W., 2011. Implementing IT0/CS0
with scratch, app inventor for android, and lego mindstorms. In:
Proceedings of the 2011 conference on Information technology education,
Sigite 11, 20 - 22 October 2011 New York. New York: ACM, 183-190.
Available from: http://dl.acm.org/citation.cfm?id=2047645 [Accessed 17
May 2013].

United States Department of Labor, Bureau of Labor Statistics, 2007.
Employment Projections: 2006-16. Washington: United States Department
of Labor, Bureau of Labor Statistics. Available from:
http://www.bls.gov/news.release/archives/ecopro_12042007.pdf [Accessed
03 May 2013].

Wellman, B. L., Davies, J. and Anderson M, 2009. Alice and Robotics in
Introductory CS Course. In: Proceedings of The Fifth Richard Tapia
Celebration of Diversity in Computing Conference: Intellect, Initiatives,
Insight, and Innovations, Tapia ‘09, 1–4 April 2009, Portland, Oregon. New
York: ACM, 98-102. Available from:
http://dl.acm.org/citation.cfm?id=1565822 [Accessed 17 May 2013].

Wolber, D., 2011. App inventor and real-world motivation. In: Proceedings
of the 42nd ACM technical symposium on Computer science education,
SIGCSE '11, 9-12 March 2011 Dallas. New York: ACM, 601 - 606.
Available from: http://dl.acm.org/citation.cfm?id=1953329 [Accessed 17
May 2013].

Zweben, S., 2009. 2007-2008 Taulbee Survey. Computing Research News,
21 (3), 8-23. Available from:
http://cra.org/uploads/documents/resources/crndocs/issues/0905.pdf
[Accessed 17 May 2013].

Zweben, S., 2010. 2008-2009 Taulbee Survey. Computing Research News,
22 (3), 7-24. Available from:
http://cra.org/uploads/documents/resources/crndocs/issues/0510.pdf
[Accessed 17 May 2013].

Zweben, S., 2013. 2012 Taulbee Survey. Computing Research News, 25 (5),
11-60. Available from:
http://cra.org/uploads/documents/resources/crndocs/issues/0513.pdf
[Accessed 17 May 2013].

