

Proceedings of the 2018 ASEE Gulf-Southwest Section Annual Conference

The University of Texas at Austin
April 4-6, 2018

Using the Internet of Things to Teach Good Software Engineering
Practice to High School Students

Christine Julien
The Department of Electrical and Computer Engineering

The University of Texas at Austin
Austin, TX USA

E-mail: c.julien@utexas.edu

Abstract
This paper describes a course to introduce high school students
to software engineering in practice using the Internet Of
Things (IoT). IoT devices allow students to get quick, visible
results without watering down technical aspects of
programming and networking. The course has three broad
goals: (1) to make software engineering fun and applicable,
with the aim of recruiting traditionally underrepresented
groups into computing; (2) to make young students begin to
approach problems with a design mindset; and (3) to show
students that computer science, generally, and software
engineering, specifically, is about much more than
programming. The course unfolds in three segments. The first
is a whirlwind introduction to a subset of IoT technologies.
Students complete a specific task (or set of tasks) using each
technology. This segment culminates in a “do-it-yourself”
project, in which the students implement a simple IoT
application using their basic knowledge of the technologies.
The course’s second segment introduces software engineering
practices, again primarily via hands-on practical tutorials. In
the third segment of the course, the students conceive of,
design, and implement a project that uses the technologies
introduced in the first segment, all while being attentive to the
good software engineering practices acquired in the second
segment. In addition to presenting the course curriculum, the
paper also discusses a first offering of the course in a three-
week summer intensive program in 2017, including
assessments done to evaluate the curriculum.

1. Introduction
In recent years, computer science education has been pushed
earlier and earlier; now high schoolers (even middle and
elementary schoolers) are routinely exposed to programming
(e.g., through Google’s Hour of Code or other activities) and
engineering (e.g., through robotics competitions or maker
events). However, the application of good software
engineering principles remains the stuff of undergraduate and
graduate education. Even academic research on software
engineering education remains focused on these much later
stages of a student’s education.

Lack of student interest in computer science education
generally and software engineering specifically has received a

significant amount of attention, with a particular focus on the
paucity of students from traditionally underrepresented groups
(e.g., women and minorities) in the field [15]. This research
has demonstrated that lack of interest from students who
otherwise excel in STEM (science, technology, engineering,
and math) domains is due to a sense that the activities have a
limited relevance [20] and a culturally inculcated “fear” that
programming is inherently (too) difficult to learn [18].
However, research has also shown that exposure to hands-on
computer science in the K-12 years can positively impact
students’ perceptions of computer science in general [11].

In this paper, we report on our experiences in taking these
lessons learned about teaching computer science and applying
them to teaching software engineering principles to high
school students. In particular, we investigate coupling a
rigorous introduction to the fundamentals of software
engineering with hands-on activities utilizing the Internet of
Things (IoT). Software engineering has a reputation among
students as uninteresting, dry, or even “soft”. The IoT, on the
other hand is tactile, hands-on by nature, seen as “hard”
engineering, and engaging to today’s students because they can
immediately relate to the applications they create.

Our concern is that early introduction of computer
programming (i.e., in the K-12 years) without good software
engineering practice (including a focus on requirements,
design, testing, etc.) risks developing a generation of nearly
capable students who are familiar with the general area of
computer science but will easily become frustrated when faced
with the task of building any system of real size and scale. Our
hypothesis is that we can successfully couple the introduction
of good software engineering practice with engaging and
meaningful IoT application development activities that achieve
the best of all worlds: capturing young students’ interest in
computing, teaching fundamental programming and
engineering concepts, and introducing the importance of good
software engineering practice. This paper reports on our early
efforts in developing such a course.

The course is a “flipped” one [8]. Almost all the content is
delivered through online modules that students consume at
their own pace. Class time is devoted entirely to hands-on team
activities that demonstrate software engineering principles as
applied to creating IoT applications. Prior work in software
engineering education has promoted the use of such flipped

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/287648521?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Proceedings of the 2018 ASEE Gulf-Southwest Section Annual Conference

The University of Texas at Austin
April 4-6, 2018

classrooms to deliver the Software Engineering Curriculum
Model [13]. These efforts include the demonstration that a
course on the fundamental elements of the software
engineering process can be delivered using a flipped classroom
approach [10]. However, this prior work promotes instructor-
led discussions of the various phases of the software
engineering process; our course instead focuses on intentional
trial and error on the part of the students, followed by
reflection.

The course has three major explicit goals: (1) to make basic
software engineering fun and applicable, with the aim of
engaging traditionally underrepresented groups in computing
concepts; (2) to make young students approach problems with
a design mindset, i.e., to start thinking about high-level designs
before or as they start tinkering with things like breadboards
and Raspberry Pis; and (3) to show students that computer
science, generally, and software engineering, specifically, is
about much more than programming (though programming is a
substantial component).

The course encourages students to learn by (controlled)
failure; learning from our failures is something of a mantra in
the software engineering world [1]. The use of failure as a
learning mechanism for software engineering was found to be
an important element in game-based learning [22]. In our
course, for instance, students are set up with tasks that are
more prone to failure when good software engineering
practices are not followed. Students will not be discouraged
from just jumping in and trying things out; by allowing the
students to fail (in a controlled way), the class then
intentionally guides students in recovering from the failure in a
way that is woven into the entire learning process.

2. The Course
The course unfolds in three segments. The first segment is a
whirlwind introduction to a variety of IoT technologies. It is
designed to allow the students to just “hack” at the different
technologies. This segment does nothing to introduce any
software engineering principles. Each technology is introduced
as an isolated silo, with students given a specific task (or set of
tasks) to complete using the technology. This segment
culminates in a “do-it-yourself” project, in which, with little
guidance, the students are asked to implement a simple IoT
application using their basic knowledge of the related
technologies. The second segment steps back from the IoT
technologies to introduce principles and tools of software
engineering. Periodically within this segment, these tools are
explicitly related back to the do-it-yourself project or other
tasks already performed. In the final segment of the course, the
students are asked to conceive of, design, and implement a
course project that utilizes at least three of the four technology
components introduced in the first segment, all while being
attentive to the good software engineering practices acquired in
the second segment. In the remainder of this section, we briefly
overview the curriculum from each segment. In the next
section, we present some preliminary assessments used during
the first offering of the course in a three-week summer

intensive program offered in 2017. We also capture some of
our initial insights.

2.1 Segment One: Technology Introduction
Android (Introduction to Java). Starting on the first day of

the course, students are given a crash course in Java
programming and asked to implement and deploy a basic
Android application using a simple tutorial assignment. While
the assignment launches directly into the Android framework
(which is arguably unintuitive even for seasoned Java
programmers [3]), the exercise is sprinkled with sidebars
related to some fundamentals of object oriented programming.
However, instead of coming away with a canonical “Hello
World” application or a simple drawing canvas, the students
have built an actual mobile application from scratch, which
they deploy to an actual Android device. This task is very
accessible to today’s young students, meeting them where they
live while demystifying that little black box in their pockets.

Philips Hue (RESTful Programming in the Web). The
second technology element of the course starts with a mini-
lecture on the nature of RESTful programming for the web [9],
with a brief introduction to web programming more generally
(e.g., HTML and HTTP). The students then perform a two-step
task with a set of smart light bulbs1. First, the students directly
issue RESTful commands to an actual light using a web
interface. Second, the students augment an existing Android
application that connects to and controls the lights to add
random colors to the lights. For extra credit, students also add
slidebars to control hue, saturation, and brightness, or they
write code to sense a shaking of the phone to randomly change
the light.

Introduction to Sensing (Breadboarding and the
Raspberry Pi). The third technology component takes a
significant step away from the traditional high-level
abstractions of software engineering and delves deep into low-
level sensing. Students learn about breadboarding, some simple
circuits, and connecting this all to a Raspberry Pi through
general purpose input/output pins. At this point, the course
delves into some fundamentals of electrical engineering, with
some brief lessons about circuits, resisters, capacitors, etc. The
students start to see what goes into making new “things” that
can be connected to their high-level application. Students
create a temperature sensor, a motion sensor, and a light
sensor. They experience firsthand the intricate debugging
required for these hardware components. On the Raspberry Pi,
students are also introduced to a second programming
language (Python), where the course explicitly delivers the
lesson in choosing an appropriate programming language for a
given task.

Communication (Bluetooth Sockets). The final technology
component introduces the students to communication via low-
level sockets, specifically utilizing the Bluetooth technology
available on both the Raspberry Pi and the Android device to
enable information to flow between the two in both directions

1 https://www2.meethue.com/en-us

Proceedings of the 2018 ASEE Gulf-Southwest Section Annual Conference

The University of Texas at Austin
April 4-6, 2018

(i.e., both from the Raspberry Pi to the Android device and
from the Android device to the Raspberry Pi). In addition to
introducing Bluetooth as a technology, students also see, for
the first time, Threads and Exceptions in the Java
programming language. Both are key high-level programming
features. Threads are widely employed computing abstractions
that allow one to enable multiple executing entities to co-exist.
In this segment of the course, the students use a separate thread
within an Android application to handle each communication
request. Exceptions allow programs to reactively respond to
abnormal conditions. In this course component, the students
must specify their program’s behavior in response to a
communication channel breaking (e.g., because of a Bluetooth
error). Again, the course tutorial for this component uses
sidebars to introduce the fundamentals before the concepts are
employed directly for an Android app to request and receive
sensor data to be displayed on the screen. Interestingly, this
technology element is by far the most daunting from an
expert’s perspective, but the students had no preconceptions
about how hard it should be and had no more trouble with it
than with the others.

Do-It-Yourself Project. Finally, to demonstrate to the
students how these technologies connect, the final task in the
first segment asks the students to create a circuit with an LED
that is controlled by the Raspberry Pi. However, the Raspberry
Pi should toggle the LED only when a user presses a button on
the Android device. While all the previous segments were
delivered in tutorial format (where specific code and tasks
were mostly given to the students), in this mini project, the
students are expected to figure out how to put the entire thing
together end-to-end on their own. In addition to demonstrating
that the final product “works”, the students must submit a
“Design document” in response to the following prompt:

We haven't learned (yet) about design documents and
how they communicate the details of a design. However,
let's give it our best shot anyway. Create a single page
document) describing the design underlying your
assignment. Think carefully about the following points:

Audience: assume one of your classmates is your
audience. You can assume a basic working knowledge
of Android programming, Python programming, and
connecting to the RPi through the GPIO pins.

Functional blocks: what are the major functional
blocks and how are they connected to each other? I
want you to start trying to think in abstractions instead
of in individual lines of code.

Testing: what tests did you perform and how do they
ensure correctness of your project?

Stumbling points: if someone were to replicate your
design, what things would you recommend they watch
out for?

Resources: were there any key resources that were
really helpful to completing the assignment?

This assignment serves as a sort of pre-test for the second
segment, which, among other things, introduces good design
practices. This assignment has multiple goals. First, the idea is
to encourage students to think of design documentation as
natural and intuitive. By asking the students to communicate
their design without introducing particular techniques or
diagram styles, this assignment makes the point that the goal of
documenting design is to communicate on a natural level.
Second, in the course of completing this design document after
having implemented the project, the students become keenly
aware of how a good, clear design can better guide the
implementation phase. For instance, by thinking about the
functional components of their project, students often quickly
visualize alternative designs that would improve their project.
By having to write down the tests they performed, students
inevitably identify other tests they should have included. In
summary, this assignment is an intentional segue into the
second segment of the course.

2.2 Segment Two: Software Engineering Tools
The course’s first segment takes a “get it done” kind of

mentality. Students engage in practices that are deemed to be
abhorrent in the software engineering community (e.g., sharing
code with a collaborator via email or chat). The course’s
second segment highlights three of these practices and
provides easy-entry tools and techniques to change them.

Version Control. The first software engineering tool the
course introduces is version control. Version control systems
allow software engineers to maintain a repository of artifacts
related to the project, including the source code,
documentation, tests, etc. The repository can be shared among
collaborating developers, and it also serves as a backup of the
project. Further, the history of the repository can be examined,
and the current working version of the project can be “rolled
back” to a previous version (e.g., to a previous version in
which a major error did not occur). The course’s version
control module starts with a mini lecture on the importance of
version control generally (both from a “backup” and history
perspective and in support of collaborative projects) then uses
a simple tutorial to introduce the students to both git2 and
github3. The course uses git because it is the most widely used
version control system today and because it has a low barrier to
entry. To ensure that the lesson sinks in, the students are asked
to commit all their prior work (their Android projects and their
sensor projects) to a git repository. To commit work on
Android, the students use the version control tools built into
the Android Studio Integrated Development Environment
(IDE); to commit the sensor projects from the Raspberry Pi,
the students instead use the command line from Linux. From
this point forward in the class, all exchange of code between
students and the instructors requires using version control
(specifically, git), including submission of the remaining
assignments.

2 https://git-scm.com/
3 https://github.com/

Proceedings of the 2018 ASEE Gulf-Southwest Section Annual Conference

The University of Texas at Austin
April 4-6, 2018

Software Design. This is the only course component that
does not require interacting with any software or hardware
introduced in the segment on software design. Instead, students
are introduced to good design conceptually. The module then
introduces canonical design elements from the software
engineering domain (e.g., abstraction, encapsulation, coupling,
cohesion, etc.) [17]. We also introduce elements of common
software engineering methodologies like Agile Software
Development [14] and eXtreme Programming [5] that
emphasize simplicity and flexibility in design specifications.
We introduce particularly use and expressive elements of the
Unified Modeling Language (UML) [19], which is widely used
in practice as the means to represent and communicate about
software designs. As an exercise here, students are asked to
revisit how they think about their do-it-yourself exercise and
document how it should have been designed, where modules
with distinct functionality are isolated one from another and
interact only through well-defined interfaces. The prompt for
this assignment is:

Let's revisit the Do-It-Yourself assignment where we
took a crack at documenting a design without really
knowing what we were doing. Briefly redo this
assignment. Restructure your document (and your
code!) to do (at least) the following:

Explicitly provide the requirements, architecture,
technical, and user documentation.

Refactor your code to adhere to the Google Java style
guide4 (for the Android code) and Python PEP 8 style
guide5 (for the Python code).

Provide either (1) a UML-style sequence diagram
showing the sequence of behaviors upon the user
clicking one of the app's buttons or (2) a UML-style
activity diagram showing the overall user interaction
with the entire system.

Here, the students put into practice the skills they have
learned conceptually, in the context of a project they
implemented themselves. This post-hoc design documentation
is better than none at all, but the goal is to prepare for the
course’s third segment, in which the students must start with
the design documentation.

Testing. The last module in the second segment of the
course introduces software testing. We start by motivating the
need for rigorous testing of software through the discussion of
several colossal software failures [12], and then discuss the
fundamentals of testing (from black box testing [7] to white
box testing [16] and why both are important; unit testing to
regression testing) and discuss important concepts related to
testing (e.g., test suites and coverage). To make these concepts
more concrete, we then walk through specific tools for testing

4 https://google.github.io/styleguide/javaguide.html
5 https://www.python.org/dev/peps/pep-0008/

Android applications (the Android Testing Support Library6, a
wrapper around Junit [21] and Mockito [2]), tied to the
Android applications the students have written, and integrated
with the Android Studio IDE. Finally, the module introduces
the notion of test-driven development [6], in which a
programmer writes the tests before the actual implementation.

2.3 Segment Three: Course Project
Given all this preparation and directly following the

segment on good software engineering practices the students
are asked to conceive of, design, and execute a project of their
own making in teams of two or three. At the outset of the
course, we preview this project to get the students thinking
about what their projects might end up being. The project
should make use of the technology blocks covered in the class
and encourages the students to use as many as possible.

Brainstorming. As the first step, students are encouraged to
identify a real problem whose solution would make a
difference to them or someone they know. The prompt for this
phase of the project is:

Work with your partner to come up with some ideas.
What kinds of things would you like to to be able to do
with sensors, smart things, etc. If you have an idea that
might use some devices that we don't have or haven't
used yet, ask. We might have them, or we might be able
to find a work-around. Come up with a few ideas. Start
to draw some diagrams about the components the
projects would have, and how they would fit together.
Will you use Bluetooth connectivity, or would
interaction through the web work? Make lists of the
things that you KNOW how to do already and the
unknowns.

While the students are strongly encouraged to come up with
their own project ideas, we provide a small set of examples
(e.g., a remote grilling meat thermometer that gradually
changes the color of an interior light as the meat is more
“done”; an ingress/egress sensor that counts the number of
people that enter/exit a room, controlling the lights based on
assumed occupancy; and a light control system that
automatically adjusts a smart light based on the amount of
detected ambient light. In the first iteration of the course,
student projects included:
• An Android application, coupled with an LED connected

to a Raspberry Pi that converted text entered in the
Android application into Morse code pulses on the LED.

• A smart light application (controlled via Android) where
the hue of the light reflects the sensed temperature; and
another project where the hue of the light changes in
response to detected motion.

• An Android application that pulled data from a weather
website and adjusted the hue of a smart light based on
keywords like “sunny”, “cloudy”, or “rainy”.

6 https://developer.android.com/topic/libraries/testing-support-
library/index.html

Proceedings of the 2018 ASEE Gulf-Southwest Section Annual Conference

The University of Texas at Austin
April 4-6, 2018

• An Android application that used a speech recognition
library to allow the user to set the smart light hue by
simply saying the desired color.

• An extension of our Bluetooth socket program to use the
Android device as a game controller for a Simon video
game that runs on the Raspberry Pi.

Design. With their problem definition in hand, the students
are asked to create a design for their project. They sketch a
component diagram containing the major project components
and indicating how these components are connected. The
design also requires determining which technologies to employ
and how, based on the specific project and its requirements
(e.g., should a Raspberry Pi connect directly to an Android
device via Bluetooth as in the communication tutorial, or
should it use a RESTful web programming API as in the web
programming tutorial?). As part of the design, the students also
provide at least one “user story” [17] that details how a user
will interact with the completed system and at least one
behavior diagram (e.g., an activity diagram or a sequence
diagram). As part of this step, we also encourage the students
to take a test-driven development mindset and begin
conceiving of, documenting, and implementing the test cases
for the project.

Implementation. The next (and most fun!) step is for the
students to take this design and build the system. The team is
required to use github for source control and collaboration.
This forces the students to think about how to structure the
source code to make it easy to maintain. While they build and
code their system, students must also appropriately document
what they do to ensure that they avoid entering the same
pitfalls more than once. Building on the testing design in the
previous phase, the students also write a testing plan, build a
test suite, and ensure that their project passes the tests.

Finalizing. Finally, with the project completed, the students
write their own tutorial, in the format of the tutorials used
throughout the course. The goal of this tutorial is, on one hand,
to document what the students did for their project. On the
other hand, it should be written in such a way that everything
entailed in their project can be replicated, another essential
element of good software engineering practice.

3. Assessments
From the perspective of assessing student performance in

the course, the tutorial-based modules are graded primarily
based on completion. The mini-project (the LED control), the
design tutorial submission, and the final project make up each
student’s course grade. More importantly however, are the
assessments done within the class to evaluate the effectiveness
of the approach to instilling software engineering principles
and practices. In this section, we describe the assessments
currently in place; in Section 5, we discuss our plans for future
assessments.
3.1 Pre-Course Survey

Before the course begins, students complete a survey to
gather details about their demographics (e.g., gender, age, etc.),
preparation (e.g., type of high school, classes taken,

programming experience, etc.), other factors relevant to
computing as a career trajectory (e.g., interest in the course
material, encouragement by others), and their preconceptions
about computer science and programming (e.g., their
perspective on their own abilities, their understanding of what
a software engineer does, etc.). The survey is based heavily
upon the Engineering and Computer Science STEM
assessment tools made available by the Assessing Women and
Men in Engineering Project (AWE)7. This survey is used in
preparing the course materials to be pitched to the ability level
of the class participants but also as a baseline to compare later
surveys against.

3.2 Module Surveys
Upon completing each module of the course, the students

are asked to complete a survey specific to that model. Each
survey begins with a question to gauge the student’s prior
familiarity with the topic. Then each survey asks, in some
form, how successful the student was at completing the
assigned task(s) and how well he or she believes he or she has
mastered the material. Each survey then asks (1) what was the
single most difficult thing about the module; (2) what was the
student’s single favorite aspect of the module; and (3) what
was the student’s least favorite aspect of the module.

These frequent mid-course surveys achieve multiple goals.
In the simplest sense, they serve as checkpoints for completion
grades for the course. However, they also serve as an important
mechanism for continuous improvement of the course. Finally,
and perhaps essentially, they force the students to reflect about
their performance and interest in the module in question. This
ties directly into the course’s goal of ensuring that students
learn from their challenges and failures.

3.3 Post-Course Survey
For the first offering of the course, the students did a post-

course survey using a generic course feedback form, which
asks questions about the students’ satisfaction with the course
(and instructor), the amount that they learned, how interested
they were in the material, and whether they would recommend
the course to a friend. The students are also asked for generic
free-form feedback on the course. As described in Section 5,
this survey will be replaced with a more in-depth assessment
that matches the pre-course survey.

4. Insights from a First Offering
The course requires a certain type of student, those with a

good deal of initiative and curiosity. Further, students should
expect the answers to be non-obvious and in fact a bit messy.
In the first offering of the course, a subset of the students
expected a lecture-based course instead of this challenging and
entirely hands-on course. In the future, more clearly setting
expectations early for the students may help alleviate some of
these challenges. However, the students must be ready to fail
and to channel that failure in a positive way; not all high
school students are prepared for that.

7 https://www.engr.psu.edu/awe/

Proceedings of the 2018 ASEE Gulf-Southwest Section Annual Conference

The University of Texas at Austin
April 4-6, 2018

Students moved through the course material at drastically
different rates. Not all students completed the entire course,
though almost all students (88% of the students in Summer
2017) completed the course project to its full specification.
Because of the different rates of progress, the mechanism of
self-paced tutorials was, in hindsight, essential. However,
check-pointing these self-paced modules with more
synchronous lectures could pull the students in the course
together as a cohort better.

Finally, by the final week of the course, the students were
acting as teaching assistants and tutors for one another. Some
of this was instructor driven (e.g., having just shown one team
how to solve a problem that another team has encountered, we
would ask the first team to assist the second) and some was
instead student driven (e.g., students would overhear similar
problems and ask/offer help directly). In this way, the student
growth in the course was significant and noticeable.

5. Looking Forward
The first offering of the course was, by many measures, very

successful. The students grew tremendously not only in their
capabilities related to programming and software engineering,
but, more importantly, in their engagement and excitement
about the field. Even so, as is always true, experience and
reflection suggest several potential improvements.

During this first offering, the class met for three weeks, for
two hours per week. We did not assign homework for the
students to complete outside of class. Therefore, there was
simply too much to learn and do during the course time. We
are restructuring the course so that portions of the self-paced
modules (that do not require access to the hardware in the lab)
can be done outside of class, in a more truly “flipped” nature.

The relatively generic post-course survey is insufficiently
matched against the tailored pre-course survey to draw end-to-
end conclusions about the progression of students through this
(short) course. In the future, the course will use a tailored post-
course survey also based on the post-program surveys from the
AWE project to see if the needle had moved on any of the
survey items. getting at the real goals of the course. (Has the
course changed students’ perceptions of computer science and
software engineering? Do students better understand design
and the importance of design? Etc.)

Finally, we will also explore additional assessment
techniques. For instance, to see if the course is successfully
engaging students by making the material relatable, we will
add Application Card [4] activities to some of the end-of-
module surveys that ask the students to relate what they have
just accomplished to some aspect of their everyday lives.

References
1. Tarek K. Abdel-Hamid and Stuart E. Madnick. 1990. The

elusive silver lining: how we fail to learn from failure in
software development.

2. Sujoy Acharya. 2014. Mastering Unit Testing Using
Mockito and JUnit. Packt Publishing Ltd.

3. Z. Ali, J. Bolinger, M. Herold, T. Lynch, J. Ramanathan,
and R. Ramnath. 2011. Teaching object-oriented software

design within the context of software frameworks. 2011
Frontiers in Education Conference (FIE), S3G–1–S3G–5.

4. Thomas A. Angelo and K. Patricia Cross. 1993. Classroom
Assessment Techniques: A Handbook for College
Teachers. Jossey-Bass, San Francisco.

5. Kent Beck. 2000. Extreme programming explained:
embrace change. addison-wesley professional.

6. Kent Beck. 2003. Test-driven development: by example.
Addison-Wesley Professional.

7. Boris Beizer. 1995. Black-box testing: techniques for
functional testing of software and systems. John Wiley &
Sons, Inc.

8. Jacob Lowell Bishop and Matthew A. Verleger. 2013. The
flipped classroom: A survey of the research. ASEE
National Conference Proceedings, Atlanta, GA, 1–18.

9. Roy T. Fielding. 2000. Architectural styles and the design
of network-based software architectures. University of
California, Irvine Doctoral dissertation.

10. Gerald C. Gannod, Janet E. Burge, and M. T. Helmick.
2008. Using the Inverted Classroom to Teach Software
Engineering. Proceedings of the 30th International
Conference on Software Engineering, ACM, 777–786.

11. Jung Won Hur, Carey E. Andrzejewski, and Daniela
Marghitu. 2017. Girls and computer science: experiences,
perceptions, and career aspirations. Computer Science
Education 27, 2: 100–120.

12. Matt Lake. 2010. Epic failures: 11 infamous software bugs.
Computerworld. Retrieved January 12, 2018 from
https://www.computerworld.com/article/2515483/enterpris
e-applications/epic-failures--11-infamous-software-
bugs.html.

13. Richard J. LeBlanc, Ann Sobel, Jorge L. Diaz-Herrera, and
Thomas B. Hilburn. 2006. Software Engineering 2004:
Curriculum Guidelines for Undergraduate Degree
Programs in Software Engineering. IEEE Computer
Society.

14. Robert C. Martin. 2002. Agile software development:
principles, patterns, and practices. Prentice Hall.

15. Phoenix Moorman and Elizabeth Johnson. 2003. Still a
Stranger Here: Attitudes Among Secondary School
Students Towards Computer Science. Proceedings of the
8th Annual Conference on Innovation and Technology in
Computer Science Education, ACM, 193–197.

16. Thomas Ostrand. 2002. White-Box Testing. Encyclopedia
of Software Engineering.

17. Roger S. Pressman. 2005. Software engineering: a
practitioner’s approach. Palgrave Macmillan.

18. Christine Rogerson and Elsje Scott. 2010. The fear factor:
How it affects students learning to program in a tertiary
environment. Journal of Information Technology
Education 9.

19. James Rumbaugh, Ivar Jacobson, and Grady Booch. 2004.
Unified modeling language reference manual, the. Pearson
Higher Education.

20. Carsten Schulte and Maria Knobelsdorf. 2007. Attitudes
Towards Computer Science-computing Experiences As a
Starting Point and Barrier to Computer Science.
Proceedings of the Third International Workshop on
Computing Education Research, ACM, 27–38.

21. Petar Tahchiev, Felipe Leme, Vincent Massol, and Gary
Gregory. 2010. JUnit in Action, Second Edition. Manning
Publications Co., Greenwich, CT, USA.

22. C. G. von Wangenheim and F. Shull. 2009. To Game or
Not to Game? IEEE Software 26, 2: 92–94.

