1,798 research outputs found

    Nonlinear and Quantum Optics with Whispering Gallery Resonators

    Full text link
    Optical Whispering Gallery Modes (WGMs) derive their name from a famous acoustic phenomenon of guiding a wave by a curved boundary observed nearly a century ago. This phenomenon has a rather general nature, equally applicable to sound and all other waves. It enables resonators of unique properties attractive both in science and engineering. Very high quality factors of optical WGM resonators persisting in a wide wavelength range spanning from radio frequencies to ultraviolet light, their small mode volume, and tunable in- and out- coupling make them exceptionally efficient for nonlinear optical applications. Nonlinear optics facilitates interaction of photons with each other and with other physical systems, and is of prime importance in quantum optics. In this paper we review numerous applications of WGM resonators in nonlinear and quantum optics. We outline the current areas of interest, summarize progress, highlight difficulties, and discuss possible future development trends in these areas.Comment: This is a review paper with 615 references, submitted to J. Op

    Symbol Emergence in Robotics: A Survey

    Full text link
    Humans can learn the use of language through physical interaction with their environment and semiotic communication with other people. It is very important to obtain a computational understanding of how humans can form a symbol system and obtain semiotic skills through their autonomous mental development. Recently, many studies have been conducted on the construction of robotic systems and machine-learning methods that can learn the use of language through embodied multimodal interaction with their environment and other systems. Understanding human social interactions and developing a robot that can smoothly communicate with human users in the long term, requires an understanding of the dynamics of symbol systems and is crucially important. The embodied cognition and social interaction of participants gradually change a symbol system in a constructive manner. In this paper, we introduce a field of research called symbol emergence in robotics (SER). SER is a constructive approach towards an emergent symbol system. The emergent symbol system is socially self-organized through both semiotic communications and physical interactions with autonomous cognitive developmental agents, i.e., humans and developmental robots. Specifically, we describe some state-of-art research topics concerning SER, e.g., multimodal categorization, word discovery, and a double articulation analysis, that enable a robot to obtain words and their embodied meanings from raw sensory--motor information, including visual information, haptic information, auditory information, and acoustic speech signals, in a totally unsupervised manner. Finally, we suggest future directions of research in SER.Comment: submitted to Advanced Robotic

    Oorwonde, at the junction of sound art and performance

    Get PDF

    The mechanical testing of single nanofiber

    Get PDF
    Polymer nanofibers exhibit properties that make them a favorable material for the development of tissue engineering scaffolds, filtration devices, sensors, and high strength lightweight materials. Perfectly aligned PLLA Nanofibers were fabricated by an electrospinning technique under optimum conditions and the diameter of the electrospun fibers can easily be tailored by adjusting the concentration of the polymer solution. To align the nanofibers, special arrangement was made in terms of two aluminum plates. Good alignment of polymer nanofibers on specimen was confirmed by SEM observation. The effect of different electro-spinning parameters on maximum fiber length, average fiber diameter, diameter uniformity, and fiber quality was explored in this study. The force applied on the nanofiber was measured with the help of AFM by satisfying Hooke\u27s Law. The elastic properties of PLLA nanofiber were investigated with the atomic force microscope (AFM). The elasticity was calculated by analyzing the recorded force curves with the help of the Hertz model. Mechanical testing confirmed that the single aligned nanofiber can be an advancement in the commercial applications of nanofibers

    An Impulse Detection Methodology and System with Emphasis on Weapon Fire Detection

    Get PDF
    This dissertation proposes a methodology for detecting impulse signatures. An algorithm with specific emphasis on weapon fire detection is proposed. Multiple systems in which the detection algorithm can operate, are proposed. In order for detection systems to be used in practical application, they must have high detection performance, minimizing false alarms, be cost effective, and utilize available hardware. Most applications require real time processing and increased range performance, and some applications require detection from mobile platforms. This dissertation intends to provide a methodology for impulse detection, demonstrated for the specific application case of weapon fire detection, that is intended for real world application, taking into account acceptable algorithm performance, feasible system design, and practical implementation. The proposed detection algorithm is implemented with multiple sensors, allowing spectral waveband versatility in system design. The proposed algorithm is also shown to operate at a variety of video frame rates, allowing for practical design using available common, commercial off the shelf hardware. Detection, false alarm, and classification performance are provided, given the use of different sensors and associated wavebands. The false alarms are further mitigated through use of an adaptive, multi-layer classification scheme, leading to potential on-the-move application. The algorithm is shown to work in real time. The proposed system, including algorithm and hardware, is provided. Additional systems are proposed which attempt to complement the strengths and alleviate the weaknesses of the hardware and algorithm. Systems are proposed to mitigate saturation clutter signals and increase detection of saturated targets through the use of position, navigation, and timing sensors, acoustic sensors, and imaging sensors. Furthermore, systems are provided which increase target detection and provide increased functionality, improving the cost effectiveness of the system. The resulting algorithm is shown to enable detection of weapon fire targets, while minimizing false alarms, for real-world, fieldable applications. The work presented demonstrates the complexity of detection algorithm and system design for practical applications in complex environments and also emphasizes the complex interactions and considerations when designing a practical system, where system design is the intersection of algorithm performance and design, hardware performance and design, and size, weight, power, cost, and processing

    NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 28)

    Get PDF
    Abstracts are provided for 109 patents and patent applications entered into the NASA Scientific and Technical Information System during the period July 1985 through December 1985. Each entry consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or patent application
    corecore