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ABSTACT 

 Brown, Jeremy Benjamin. Ph. D. The University of Memphis. December 2020. An 

Impulse Detection Methodology and System with Emphasis on Weapon Fire Detection. Major 

Professor: Dr. Eddie L. Jacobs. 

 This dissertation proposes a methodology for detecting impulse signatures. An algorithm 

with specific emphasis on weapon fire detection is proposed. Multiple systems in which the 

detection algorithm can operate, are proposed. In order for detection systems to be used in 

practical application, they must have high detection performance, minimizing false alarms, be 

cost effective, and utilize available hardware. Most applications require real time processing and 

increased range performance, and some applications require detection from mobile platforms. 

This dissertation intends to provide a methodology for impulse detection, demonstrated for the 

specific application case of weapon fire detection, that is intended for real world application, 

taking into account acceptable algorithm performance, feasible system design, and practical 

implementation. 

 The proposed detection algorithm is implemented with multiple sensors, allowing 

spectral waveband versatility in system design. The proposed algorithm is also shown to operate 

at a variety of video frame rates, allowing for practical design using available common, 

commercial off the shelf hardware. Detection, false alarm, and classification performance are 

provided, given the use of different sensors and associated wavebands. The false alarms are 

further mitigated through use of an adaptive, multi-layer classification scheme, leading to 

potential on-the-move application. The algorithm is shown to work in real time. The proposed 

system, including algorithm and hardware, is provided. 

Additional systems are proposed which attempt to complement the strengths and alleviate 

the weaknesses of the hardware and algorithm. Systems are proposed to mitigate saturation 
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clutter signals and increase detection of saturated targets through the use of position, navigation, 

and timing sensors, acoustic sensors, and imaging sensors. Furthermore, systems are provided 

which increase target detection and provide increased functionality, improving the cost 

effectiveness of the system.   

The resulting algorithm is shown to enable detection of weapon fire targets, while 

minimizing false alarms, for real-world, fieldable applications. The work presented demonstrates 

the complexity of detection algorithm and system design for practical applications in complex 

environments and also emphasizes the complex interactions and considerations when designing a 

practical system, where system design is the intersection of algorithm performance and design, 

hardware performance and design, and size, weight, power, cost, and processing. 
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I. INTRODUCTION 

Objective 

This work emphasizes methods to detect impulses using signal processing and system 

design, for real-world application and implementation. The impulses under consideration in this 

work relate to the high intensity, transient events associated with weapon fire. In particular, the 

electro-optical and infrared signatures (EO/IR) of muzzle flashes from weapon fire are studied. 

Similarly, weapon fire impacts and acoustic signatures can also exhibit high intensity, short 

duration impulse-like signals. Though weapon fire detection is studied in this work, other 

applications for impulse detection could be heart pulse, lightning strike, or seismogram 

monitoring and characterization. 

The techniques presented in this work provide practical methods for impulse detection 

which can be used for weapon fire detection. The algorithm allows for detection of not only high 

intensity, but also low intensity signals, corresponding to near and far range targets. Techniques 

which rely only on signature intensity levels are often range limited due to background clutter, 

and can be potentially fooled. Background clutter becomes increasingly burdensome for on-the-

move applications such as detection from a moving vehicle. Due to the increased clutter 

environment when operating from a vehicle, current detection methods often limit the scope of 

applicability, such as only detecting particular weapons, and only at limited ranges. The 

algorithm proposed, addresses not only detection, but also clutter rejection for on-the-move 

scenarios. Because clutter sources can change from one environment to another, the algorithm is 

an adaptive clutter rejection methodology. Additionally, the algorithm relies on temporal 

signature profiles rather than simply signal intensity. The temporal profiles allow for detection at 

lower intensity levels, or increased range, and are less susceptible to modification. Furthermore, 

pixel level algorithm performance allows detection localization to within the pixel’s individual, 
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or instantaneous, field of view. The generality of the algorithm enables the capability to detect 

and locate various weapon types, at various ranges, both stationary, and on-the-move. 

An algorithm, however, does not operate in a vacuum, but is designed to work in a 

system. Due to hardware limitations such as available dynamic range in sensors, saturation can 

occur, which increases the clutter environment. A system design is also provided to reduce 

limitations of hardware and algorithms, and exploit strengths of the algorithms. Though the 

algorithms cannot distinguish one saturated signal from another, a system design which provides 

unsaturated signals to be processed is explored. Multiple designs are offered, which either 

provide an unsaturated signal or alternative information which identifies the signal source, in 

order to combat saturation. By the same token, increased information can allow signals to be 

more easily discriminated. By designing a system, such as a multi-band or multi-modal system, 

with increased information, the algorithm has increased performance. In some cases, such as 

incorporating an acoustic sensor, additional information can be provided beyond detection and 

clutter mitigation. In the case of acoustic sensors, range estimation can be provided, allowing for 

the additional hardware to be multi-purposed. 

The techniques used in the algorithm allow for real time processing. A layered feature 

extraction and thresholding approach is used for detection of weapon fire and clutter rejection. 

The same features measured for the detection process, are used by classifiers to provide signature 

classification. Thus, in the case of weapon fire detection, the algorithm provides a weapon class 

as an output. The classification, however, is also used as an additional means of clutter rejection, 

beyond the initial detection stage. Additionally, the classification scheme is periodically updated 

to reflect changes in the local background, enabling practical use in multiple and unpredicted 
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environments. The processing performed has been made to run in real-time, making it a practical 

and useful approach to weapon fire detection. 

The resulting algorithm is shown to enable detection of weapon fire targets, while 

minimizing false alarms, for real-world, field-able applications. The work presented 

demonstrates the complexity of detection algorithm and system design for practical applications 

in complex environments, including signature analysis, algorithm analysis, and system design. 

The work presented also emphasizes the complex interactions and considerations when 

designing a practical system, where system design is the intersection of algorithm performance, 

processing, and design, hardware performance and design, and size, weight, power, and cost 

(SWAP-C) (see Figure I.1). The trade space is illustrated by example in considering design 

components of sensor parameters, algorithm complexity, and hardware. Sensor parameters can 

affect signal-to-noise (detection, range performance), and environmental clutter (false alarms). 

Algorithm complexity is dependent on detection rate, detection range performance, and false 

alarm mitigation. The algorithm must extract enough information to make a reliable decision. 

More sensors or multi-modal sensing can increase the amount of information available. 

Increased algorithm complexity can increase the amount of information extracted. Algorithm 

complexity affects real-time processing requirements (processing speed, power, and heat). 

Practical design is affected by cost, hardware/sensor availability, and size, weight, and power 

(SWAP). The algorithm design presented in this dissertation takes into account system detection 

and false alarm mitigation strategies, using available hardware, in real world applications and 

operational use. 
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Figure I.1. Diagram depicting system design as the intersection of sensor design, algorithm 

design, and SWAP-C 

Hypothesis 

The algorithm and subsequent systems are intended to further improve upon the state of 

the art by providing practical, functional impulse target detection systems and methodologies 

which take into account detection performance, false alarm and saturation clutter mitigation, 

cost, hardware availability, range performance, on-the-move operation, and real-time processing, 

thus ensuring the transition from lab demonstration to real world application. 

Novelty 

The work presented here improves upon the state of the art by providing a generalized 

impulse detection algorithm which can be applied to EO/IR sensors, independent of waveband. 

When applied to weapon fire detection, the algorithm, and subsequent system designs, allow for 

on-the-move detection and classification of various weapon fire types, at various ranges, in real-

time, with minimized clutter.  

The developed algorithm has enabled target detection in multiple spectral bands in the 

EO/IR. These bands exhibit different clutter profiles, especially when the system is in motion. 
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The complexity of the algorithm, to include an adaptable clutter rejection and classification 

scheme, allows for detection of targets in complex environments, while minimizing false alarms. 

The algorithm was also shown to work at various video frame rates of operation. Traditionally, 

image-based detection of weapon fire has operated at higher frame rates and the proposed 

algorithm exceeds the state of the art by allowing low frame rates in a variety of wavebands. The 

versatility of the algorithm to operate in multiple wave bands and frame rates, allows flexibility 

in system design, which takes into account real world aspects of cost, hardware availability, and 

range performance. 

The algorithm, which takes into account, not only intensity, but duration and shape, is 

able to extract more discriminating information, allowing for increased target detection for low 

intensity, far range targets. Short range, high intensity targets can generate saturated signals, a 

limitation of sensor hardware to detect signal from both far and short-range targets. Saturated 

targets can be indistinguishable from saturated clutter. System designs are provided which 

address saturation by providing means of detecting saturated signals and reducing saturation 

clutter, through the use of multiple wavebands and multi-modal sensing. The system design 

improves upon the state of the art by addressing saturation in system designs through the use of 

EO/IR saturation detectors, acoustic saturation detectors, and position, navigation, and timing 

(PNT) sensors to limit saturation clutter. 

Additional system designs are provided which exploit the strengths of the algorithm 

performance. Complex acoustic systems already exist for weapon fire detection. When acoustic 

sensing is combined with the proposed EO/IR algorithm and system, the acoustic sensor can 

simply be used as a confirmation sensor, reducing restrictions of acoustic sensing complexity. A 

system is presented which incorporates PNT data, in order to minimize saturation clutter, 
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ultimately enabling greater detection of near range targets, complementing the algorithm’s far 

target range detection performance. Additional potential functionality is described that can be 

achieved in addition to target detection and clutter rejection, by the addition of both acoustic 

sensing and PNT data. 

Author Contributions 

The following section specifies the contributions of the author contained in this work. 

The contributions span across supporting background technical literature and techniques, 

algorithm process and evaluation, and system design. The contributions will be provided for each 

chapter. 

In Chapter 1, the author speaks to the concept of determining a representative background 

for target to background analysis. The author presents an original custom method for auto 

determining the target background, based on target dimensions, and the location of the target 

within the image. This method is intended for practical, low computational complexity 

applications. Equations are listed which were derived by the author. Additionally, in Chapter I, 

“Introduction – Multi-Frame Image Analysis,” the author provides a discussion of running 

statistics. Because these statistics require a number of samples before the resulting data is 

statistically representative of the background, and also because these statistics can “age-out” due 

to an ever-increasing past history of samples included in the statistics, the author presents an 

original method to continually refresh the generated statistics, labeled alternating staggered 

windows.  

In Chapter 2, the author presents an original process and assesses techniques to indicate, 

extract, and detect weapon fire. Additionally, the author provides an original assessment of false 

alarms and original features for performing classification, with the purpose of classifying targets, 



7 
 

as well as reducing false alarms. Specifically, the weapon fire declaration process is divided into 

a pre-detection stage, a detection stage, and a classification stage. 

The pre-detection process uses techniques such as image pre-processing, statistical 

background and buffer, and target thresholding to indicate pre-detections. The original process, 

presented by the author, includes pre-processing to reduce motion effects, pre-detection signal 

indication, tracking, evaluation of signal after a duration, peak pixel clustering or grouping. 

Though individual components of the process, such as maximum filtering, sliding statistical 

window, and maximum pixel intensity are not unique, the combination of techniques used to 

address reliable weapon fire signal pre-detection with consideration for false alarm reduction, 

data reduction, and on-the-move application is an original contribution. Similarly, frequency 

filtering is not a unique concept, however, frequency filtering weapon fire events to reduce false 

alarms, as well as reduce data storage and processing, is an original contribution in this work. 

The detection process consists of signature extraction and feature extraction. All 

techniques discussed for weapon fire signature extraction are original contributions in this work. 

Though signature analysis is often discussed, the process for extracting weapon fire signatures 

for reliably consistent temporal profiles has not been discussed in other works, to the author’s 

knowledge. The extracted signature is then measured to determine if a weapon fire detection 

occurs. The 50% and 10% width measurement and rise time measurement techniques have been 

presented in other works for a subset of weapon types. The demonstration of the 50% and 10% 

width measurement and rise time measurement to an alternate set of weapon types is an original 

contribution of this work. Other techniques to measure duration were assessed, such calculating 

the area under the curve and measuring standard deviations with the assumption of a Gaussian 

distribution. These two additional duration measurement techniques for the application of 
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weapon fire is an original contribution. Additionally, the fall time measurement as a method for 

discriminating weapon fire is an original contribution. The technique of sampling and 

normalizing weapon fire into 10 samples and all subsequent analysis performed on the 

normalized samples, are original contributions in this work. 

The detection process also investigates the detected pixel’s surrounding neighborhood of 

pixels. The analysis techniques of co-variance, correlation, median filtering, summation, and 

combinations thereof to assess the surrounding pixel neighborhood are original contributions. 

The weapon fire detection process, to include signature extraction and sequential signature 

measurement to not only determine weapon fire, but also reduce false alarms and data processing 

is an original contribution. 

For the classification stage, the analysis of measurements for their suitability to be used 

as features which provide the greatest degree of class separation is an original contribution. Once 

again, the use of the normalized intensity samples, and specifically, their use as features for 

classification, is an original contribution. The spectral analysis of measurements and their ability 

to separate classes in respective spectral bands, is also an original contribution. 

The results presented in Chapter 2 are original contributions. The results include a 

breakdown of sequential detection measurements and their ability to reduce false alarms, per 

spectral band. The results also include a clutter source analysis, per spectral band. The results 

also present a framerate analysis per spectral band. The framerate analysis demonstrates 

detection capability at 120 Hz, and even 100 Hz. This work establishes the ability to detect 

certain types of weapon fire at 120 Hz in the field of weapon fire detection. The work not only 

investigates detection, but also false alarms at varying framerates, per spectral band. 
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In Chapter 2, a series of processes are assessed for the purposes of performing 

classification, and in some cases, reducing false alarms. These processes are original 

contributions. Though common classifiers are used, the analysis of their application to the data 

set, and their sequencing in multi-layer classification schemes is an original contribution. 

Additionally, two classification schemes are provided for the specific purpose of reducing false 

alarms. These two classification schemes are original contributions. The distance metric used to 

evaluate observations with respect to their respective labeled class is an original contribution. 

Chapter 3 extends upon the work of Chapter 2. Chapter 3 adds additional methods for 

data reduction, signature extraction, multi-band detection, cross-band spatial and temporal search 

windows, and a scheme for classification and false alarm reduction. The n-window system is an 

original contribution and is used to limit memory usage and reduce the number of pre-detections 

processed for evaluation, allowing for real time data processing. As in Chapter 2, all signature 

extraction techniques for weapon fire are original contributions. Though multi-band detection is 

a common technique, the presented process for performing multi-band detection, to include 

temporal and spatial cross-band search windows to allow for reduced system design tolerances is 

an original contribution. The classification scheme, presented in Chapter 3, to include class 

cluster distance, feature distance, and distance threshold determination, are all original 

contributions. 

The results contained in Chapter 3 address frame rate analysis, classifier performance, 

and system performance, per spectral band, as well as for dual band application. The results also 

provide an analysis of false alarms per spectral band and dual band, based on weather conditions 

and also scene motion. The results provide a confusion matrix which details classification 

performance given the data set and selected features. These are all original contributions. 
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Chapter 4 generalizes the methods provided in Chapters 1 and 2. Chapter 4 provides 

flowchart representation of the systems and algorithmic process contained therein. The method 

described in this chapter has been published by the United States Patent and Trademark Office 

under patent number US 10,389,928 B2. The US patent is an original contribution, by definition. 

Chapter 4 presents additional system designs and their associated methodologies intended 

to reduce false alarms and address saturation. In one design, a tri-band detection system is 

presented. Multi-band detection is a common approach. The use of a tri-band system, however, 

to not only reduce false alarms, but also to reduce saturation clutter, is an original contribution. 

Another presented design extends upon this tri-band system, to include a dedicated saturation 

sensor. The addition of a specific saturation sensor is an original contribution. A third design and 

original contribution reuses the idea of a specific saturation sensor, where in this case, the 

saturation sensor is an acoustic sensor. Though the addition of an acoustic sensor to allow multi-

modal sensing is not a novel technique, the use of an acoustic sensor to detect events which 

saturate optical imagers is a novel and original technique. A fourth design incorporates a sun 

localization method. The method for determining the sun’s location is a common technique. The 

idea of using the sun’s known location within the image to remove saturation caused by direct 

view of the sun is an original contribution. The systems described in this chapter have been 

published by the United States Patent and Trademark Office under patent number US 10,209,343 

B1. 

Chapter 4 expands upon previously discussed methods to include an acoustic sensor for 

multi-modal detection. Multi-modal sensing for weapon fire detection, as stated previously, is a 

known technique. The method described in Chapter 4 emphasizes clutter mitigation by using the 

acoustic sensor as a confirmation sensor to the EO/IR detection sensor. This is an original 
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contribution in that the well-known multi-modal approach for weapon fire detection uses an 

EO/IR sensor and a confirmation sensor to an acoustic detection sensor. The system and method 

described in this chapter has been filed for application at the United States Patent and Trademark 

Office on August 9, 2018 under application number 15/998,345. 

Background 

Detection Theory 

Detection 

In [1], a history and basic elements of detection theory are described, and the reader is 

directed to this work for a more detailed detection theory description. The basic concept of 

detection is the discrimination between two stimuli, where one stimulus contains the null 

stimulus. An example of this concept is the discrimination of a target from a background. The 

discrimination performance is often measured in terms of sensitivity, such that high sensitivity 

measure indicates a better ability to discriminate the target from the background, and a lower 

sensitivity indicates a poorer ability to discriminate the target from the background. In describing 

discrimination and sensitivity, four measures or probabilities are often used, the hit rate (𝑝𝐻), the 

false alarm rate (𝑝𝐹), the miss rate (𝑝𝑀), and the correct rejection rate (𝑝𝑅). The hit rate is the 

ratio of the number of correctly discriminated targets, given the total number of targets 

presented. The miss rate is the ratio of the number of targets not discriminated, given the total 

number of targets presented, and can be represented as the compliment of the hit rate,  1 − 𝑝𝐻. 

Similarly, the correct rejection rate is ratio of correctly discriminated background presentations 

to total number of background presentations. The false alarm rate is ratio of background targets, 

incorrectly discriminated as targets, to the total number of background presentations. The correct 

rejection ratio, represented as  1 − 𝑝𝐹,  is the complement of the false alarm rate. Because of the 
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complementary nature, the discrimination task is often analyzed in terms of hit rate and false 

alarm rate. Alternately, the miss rate and false alarm rate are referred to as type 1 error and type 

2 error, respectively. The four probabilities, 𝑝𝐻, 𝑝𝑀, 𝑝𝐹, 𝑝𝑅, can be described as 

𝑃[𝐻𝑖𝑡] = 𝑝𝐻 =
𝐻𝑖𝑡

𝐻𝑖𝑡 + 𝑀𝑖𝑠𝑠
 

𝑃[𝑀𝑖𝑠𝑠] = 𝑝𝑀 =
𝑀𝑖𝑠𝑠

𝐻𝑖𝑡 + 𝑀𝑖𝑠𝑠
= 1 − 𝑝𝐻 

𝑃[𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚] = 𝑝𝐹 =
𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚

𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚 + 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑅𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛
 

𝑃[𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑅𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛] = 𝑝𝑅 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑅𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛

𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚 + 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑅𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛

= 1 − 𝑝𝐹 

(1.1)  

It is desirable for a detection system to be perfectly sensitive to the presence of a target, 

such that the system always detects targets, and has zero false alarms. In many practical 

applications, the probability of hitting  (𝑝𝐻)  or detecting a target is greater than the probability 

of false alarm  (𝑝𝐹),  but  𝑝𝐹  is not zero. It is important, however, to describe the performance of 

a systems in terms of both  𝑝𝐻  and  𝑝𝐹.  For example, a system which always says that a target is 

present, will have a perfect hit rate of 1, but will also have a false alarm rate of 1, indicating poor 

performance, even though all of the targets were labeled as targets. Acceptable performance of 

the system with respect to  𝑝𝐻  and  𝑝𝐹  in practical applications is dependent on the reward or 

risk associated with detecting or missing a target, and the reward or risk associated with correctly 

rejecting a target or generating a false alarm. The sensitivity measure, probability of correct 

responses  (𝑝(𝑐)),  takes into account the hit rate and the correct rejection rate, such that  𝑝(𝑐) =

 
1

2
[𝑝𝐻 + (1 − 𝑝𝐹)].  Alternately, a sensitivity measure of  𝑝𝐻 − 𝑝𝐹  could also be used. Note that 

there is an assumption of equal presentation of targets and backgrounds for these sensitivity 

measures [1]. Both measures, however, provide an indication of the discriminability of the target 
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from the background. Often, the performance of a system is presented in terms of  𝑝𝐻, 𝑝𝐹,  and 

sensitivity using receiver operating characteristic (ROC) curves on a plot [1].  

In detection theory, a sensitivity measure known as 𝑑′ (“dee-prime”) converts the ratio or 

probability values of 𝑝𝐻 and 𝑝𝐹 to a distance in terms of standard deviation units using the 

inverse of the normal distribution function or z transformation. In a normal distribution, a given 

distance or value, along the x-axis, corresponds to an associated probability along the y-axis. 

Conversion of 𝑝𝐻 and 𝑝𝐹 into distances is preferable when describing the distribution of stimuli 

or classes, given a parameter or feature, and their ability to be separated or discriminated. A 

distance measure can be used to describe the separation between two classes, and help to 

determine a decision threshold criterion for choosing one stimuli versus another. Assuming 

normal distributions for both stimuli, the distance between the two distributions, along a decision 

axis, is measured in standard deviations. When the distributions have different standard 

deviations, the distance can be scaled for its relative importance, or distance from the mean of 

each class. This is important when trying to determine a decision threshold, for instance, which is 

equally distant from the two classes (i.e., zero bias). When the standard deviation is the same for 

both distributions, an equally distant threshold criterion is the midway point between the means 

of the two distributions. In [1], multiple methods for scaling the decision axis to account for 

differences in standard deviations are presented. Additionally, an example method is presented 

here.  

An indication of discrimination accuracy can be defined by the probability of 

classification, given by  

𝑝𝑐𝑙𝑎𝑠𝑠 =
𝐻𝑖𝑡 + 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑅𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑡𝑖𝑚𝑢𝑙𝑖 𝑃𝑟𝑒𝑠𝑒𝑛𝑡𝑒𝑑
 (1.2)  
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In (1.2), the determination of the probability of correct classification is dependent on the base 

presentation rates. Thus, if more background scenes are presented, a higher classification rate 

might be achieved by biasing the decision threshold to choose class “background” a greater 

percentage of times. If we assume that the distributions of background and target can be 

described as Normal distribution, as depicted in Figure I.2, a threshold criterion can be 

determined independent of base presentation rate. 

 

Figure I.2 Signal detection theory definitions and assumptions. [1] N. A. MacMillan and D. C. 

Creelman, Detection Theory" A User's Guide, Mahwah: Lawrence Erlbaum Associates, 2005. 

In general, if the two distributions have identical standard deviations, but differing 

means, an optimal zero-bias threshold would be the midpoint between the two means. When the 

standard deviations of the two distributions are different, the optimal threshold can still be 

achieved when the threshold lies equidistant between the two means. The measure of distance, 

however, is relative to the shape of the distribution, as depicted in Figure I.3. The distance of the 

threshold, τ, from the distribution S, can then be measured between the mean of S,  𝜇𝑆,  in units 
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of standard deviations,  𝜎𝑆,  corresponding to distribution S. Given a distribution of target signal, 

T, and a distribution of background noise, B, the distance can be measured in units of standard 

deviation, or, alternatively corresponding z-scores generated by the z transformation 

𝑧(𝑝𝐻) =
𝜇𝑇 − 𝜏

𝜎𝑇
 

𝑧(𝑝𝐹) =
𝜇𝐵 − 𝜏

𝜎𝐵
 

(1.3)  

By setting the distance values in (1.3) to be equal, an optimal criterion threshold can be found by 

solving for τ, and is given in (1.4). 

𝜏 =
1

𝜎𝑇 + 𝜎𝐵

(𝜎𝐵𝜇𝑇 + 𝜎𝑇𝜇𝐵) (1.4)  

 

 

Figure I.3. Distributions with unequal standard deviations. [1] N. A. MacMillan and D. C. 

Creelman, Detection Theory" A User's Guide, Mahwah: Lawrence Erlbaum Associates, 2005. 

Classification 

The process of sorting multiple stimuli into a smaller number of classes, is the task of 

classification [1]. The classification process typically consists of data collection, feature choice, 
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model choice, training, and evaluation [2]. The choice of features is dependent on prior 

knowledge, and in general, the features should be easy to extract, invariant to irrelevant 

transformations, insensitive to noise, and useful for discriminating patterns in different categories 

or classes [2]. In evaluating the classification system for practical use, it is important that the 

system is able to classify the training data correctly. The system should also avoid over-fitting, in 

which case, the classifier is not generalized enough to correctly classify new unseen samples. 

Variety in data collection, and thus training data, can help to avoid over-fitting. Additionally, the 

computational complexity should be taken into account for the application. In many cases, the 

classifier is trained in the lab, while the decision process occurs in the field. Thus, the complexity 

of learning can be high, while the decision complexity is of concern. In other cases, learning and 

decision making can both occur in the field, and the computational complexity of both should be 

taken into account for a fielded system. 

A fundamental statistical approach to classification is Bayesian decision theory [2]. 

Given an observation, features are measured from the observation, and the observation is 

subsequently classified into one of two or more classes. Let  {𝜔1, … , 𝜔𝑐}  denote a set of 𝑐 

classes, where  𝜔𝑗  is the  𝑗𝑡ℎ  class within the set. The decision to classify the observation into 

one of the classes, for example, the 𝑗𝑡ℎclass, is based on prior knowledge about the expectation 

of the frequency of occurrence the class  (𝜔𝑗),  denoted by  𝑃(𝜔𝑗),  and the likelihood, that 

given a class  (𝜔𝑗),  a particular measured feature (𝑥) will be observed, denoted by  𝑝(𝑥|𝜔𝑗). 

This, in turn, is used to determine the posterior probability, denoted by  𝑃(𝜔𝑗|𝑥),  that given an 

observed measured feature, a particular class was observed. The decision to classify an 

observation as a particular class is governed by the posterior probability and the risk or cost 

associated with an incorrect classification. The probabilities, however, are generally not known, 
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as they represent the entire population of data. In a typical scenario, only a sample of the total 

possible population data is available, and the prior probability and likelihood are inferred by the 

sample data set. Thus, sample data or training data, and its representation of the population data 

set, affects the ability to accurately classify. The underlying probability density function is often 

assumed, such that only the parameters are estimated from the training sample data. For 

example, the Normal distribution is completely described by the parameters of mean and 

variance, and the parameters are estimated from the data. 

Other methods exist for determining decision boundaries for classifying observations into 

classes. Linear discriminant functions are weighted linear combinations of measured features, 

where each class has an associated linear discriminant function. The decision to choose a 

particular class is based on the discriminant function providing the highest value. The value of 

the discriminant function is generated by adding the weighted contributions of each feature. In 

this method, the weights are determined from the training data, such that the classification error 

is minimized. For further reading on methods for determining weights, the reader is directed to 

[2]. Quadratic discriminant functions are linear discriminant functions with the addition of 

weighted feature pairs. Thus, a measure of how the features co-vary together, for a particular 

class, is taken into account. Support vector machines (SVM) are a form of linear discriminant 

function. In SVM, the features are transformed to a higher dimensional space, and the 

transformed features are added together as a weighted linear combination. The feature space is 

transformed to a higher dimension for the purpose of separating classes. At lower dimensions, 

the classes may exhibit complex multi-point decision boundary. By increasing the dimensions of 

the feature space, a single hyperplane decision boundary is found, equally distant from either 

class, where the class boundary is indicated by the support vectors. The separation is increased, 
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not only for accurate classification of training data, but also for robustness of correctly 

classifying new unknown observation. It should be noted that SVM provides classification for 

the binary case of two classes, where linear discriminant function analysis (LDA) provides 

classification for two or more classes. 

Though general principals of detection and classification methods were discussed, 

practical methods must be used for determining the presence of stimuli and extracting features 

for analysis. For images, this entails determining significance in observed pixel intensity 

differences and subsequently extracting features which describe and distinguish those observed 

and detected events. The following provides a discussion on methods used to determine 

significance or targets from background imagery. 

Contrast analysis  

Contrast is the difference in luminous values (lightness or brightness) of two objects or 

stimuli that allows the two objects to be distinguishable [3]. The nature of the human visual 

system is such that the perceived contrast is a function of not only luminance difference but also 

spatial frequency. Thus, contrast is perceived differently for different spatial frequencies. This 

property is evident in Figure I.4. Here, contrast increases monotonically from the top of the 

figure to the bottom of the figure, along the vertical axis, while frequency increases from left to 

right, along the horizontal axis. The upper portion of the figure shows that perceived contrast is 

lower for higher spatial frequencies and also for very low frequencies. 
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Figure I.4. Contrast vs spatial frequency. Contrast is varied vertically. Spatial frequency is varied 

horizontally. 

 

Image contrast can be defined as  

𝐶1 =
𝐿𝑢𝑚𝑖𝑛𝑎𝑛𝑐𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐿𝑢𝑚𝑖𝑛𝑎𝑛𝑐𝑒
 (1.5)  

where the luminance difference is measured between features in the image and the average 

luminance is the set which includes the features being measured. For a digital image, the 

luminance difference can be interpreted as the intensity difference between the maximum and 

minimum values in the image, and the average luminance is the average pixel intensity of the 

image. In the same tone, the contrast between a feature and the background would be defined by 

the luminance difference between the feature and the background normalized by the average 

luminance of the background and the feature. If the feature is small in comparison to the 

background, the average luminance can be approximated as the background luminance. This 

approximation of the average luminance in (1.5) leads to the Weber contrast metric which is 

defined as  
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𝐶2 =
𝐿𝑇𝑔𝑡 − 𝐿𝐵𝑔𝑑

𝐿𝐵𝑔𝑑
 (1.6)  

 where LTgt and LBgd are the luminance values describing the feature (target) and the background, 

respectively [4]. The Weber contrast implies that small changes between a target and background 

are more noticeable when the background luminance is small. This metric for evaluating contrast 

holds when there is a single target of uniform luminance against a background of uniform 

luminance [4].  Another interpretation is that the viewer is assumed to be adapted to the 

background and is only viewing changes with respect to the background [5]. The metric may not 

hold if the background is not uniform, such that it consists of multiple targets or excessive noise. 

Additionally, the Weber contrast values lie in the range of -1.0 to +∞, where metrics ranges are 

typically bounded. 

An alternate metric for evaluating contrast is the Michelson contrast which is defined as 

𝐶3 =
𝐿𝑀𝑎𝑥 − 𝐿𝑀𝑖𝑛

𝐿𝑀𝑎𝑥 + 𝐿𝑀𝑖𝑛
 (1.7)  

where LMax and LMin are the maximum and minimum luminance value of an image.  This metric 

assumes that the viewer is presented with equal amounts of foreground stimuli and background. 

Here, the viewer is adapted to both foreground and background and is tasked with denoting 

changes. This can be the case if there are multiple targets or periodic patterns such as a 

sinusoidal grating and thus the background is not uniform [4]. Because of the normalizing factor 

in (1.7), the range of values for the Michelson contrast is bounded between 0 and +1.0.  

The Michelson contrast, however, suffers in that single extreme luminance values in an 

image can dramatically affect the associated contrast. Two images could appear different but 

have the same contrast values because only the minimum and maximum luminance values are 
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used [6]. The root-mean-square (RMS) contrast can be employed to reduce the effect of outliers 

and is defined as   

𝑅𝑀𝑆 = [
1

𝑛 − 1
∑(𝑥𝑖 − 𝑥̅)2

𝑛

𝑖=1

]

1 2⁄

 (1.8)  

where for a digital image with pixel values normalized to [0,1], n is the number of pixels, 𝑥𝑖 is 

the intensity of the ith pixel, and 𝑥̅ is the mean intensity defined by 

𝑥̅ =
1

𝑛
∑𝑥𝑖

𝑛

𝑖=1

 (1.9)  

 

The RMS contrast is essentially the standard deviation of the pixel values in the image. Here, all 

pixel values are accounted for, and not just the minimum and maximum values. The RMS 

contrast, in itself, does not account for the spatial frequency content or spatial distribution of 

contrast in the image [4]. The image can further be described by using (1.8) to measure contrast 

at specific spatial frequencies to be used as a measure of spatial resolution [6]. Metrics which 

inherently address spatial frequency can also be considered and the reader is directed to [4]. 

 The metrics of contrast defined in (1.5-1.9) have often been used or modified to fit 

specific applications. It is common to consider the contrast of specific targets with that of a 

surrounding background. In this case, the contrast of the entire image may not be considered, but 

merely the contrast of a region of the image. Or, it may be the case that the image was produced 

with an imager having a narrow field of view, such that all targets, or sets of targets, at a 

particular range are visible. In considering contrast of thermal IR imagers, such as mid-wave 

infrared (MWIR) and long wave infrared (LWIR) imagers, the Michelson contrast is modified to 
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reflect the path radiance due to particles in the atmosphere contributing to the overall background 

radiation viewed by the detector and thus lowering the contrast [7]. This contrast is given by 

𝐶4 =
𝐿𝑇𝑔𝑡 − 𝐿𝐵𝑔𝑑

𝐿𝑇𝑔𝑡 + 𝐿𝐵𝑔𝑑 + 2𝐿𝑃𝑎𝑡ℎ
 (1.10)  

where LTgt and LBgd are the transmitted target and background radiance and LPath is the 

atmospheric path radiance as seen by the sensor. This metric assumes that LTgt and LBgd, which 

do not contain contributions from path radiance, are known. The contrast defined by (1.7) was 

further extended to reflect that the path radiance may not be static with time, such as when there 

is a turbulent dust cloud in the atmosphere [8]. In this LWIR analysis, the additive portion of the 

degradation caused by the dust is modeled into the contrast function as 

𝐶5 =
𝐿𝑇𝑔𝑡 − 𝐿𝐵𝑔𝑑

𝐿𝑇𝑔𝑡 + 𝐿𝐵𝑔𝑑 + 2𝐿𝑃𝑎𝑡ℎ(𝑟, 𝑡)
 (1.11)  

where (r,t) denotes the dependency on range distance to the target and time. In (1.10), the path 

radiance could be scaled out to enhance the contrast of targets at a given range using the equation 

𝐶6 =
𝐿𝑇𝑔𝑡 − 𝐿𝐵𝑔𝑑

𝐿𝑇𝑔𝑡 + 𝐿𝐵𝑔𝑑 − 𝛽
 (1.12)  

Here, the path radiance is included in the LTgt and LBgd to reflect added path radiance and 

transmission loss. The term, β, is used to counteract the reduction in contrast due to path radiance 

[7]. If the path radiance is a function of time, as proposed in (1.11), a static β term may not be 

useful in consistently removing the effect of the path radiance. 

Background analysis 

In all cases presented here for determining contrast, the target intensity and background 

intensity are needed. Establishing these values can be accomplished in different fashions. Targets 

can be ascertained automatically or manually. Targets chosen automatically typically require 
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knowledge of the background. If the background is yet to be determined, then it is likely the 

target will either need to be defined manually or determined through an alternate feature 

analysis. An example of an alternate feature analysis is detection of all pixels which exceed a 

given threshold intensity value. An image mask with the target region of interest (ROI) can be 

used to identify the target in the image. Given the target is detected, the background 

corresponding to the detected target can be found. The target is distinguished from the 

background due to its contrast with the surrounding background. Thus, the background is defined 

as the area surrounding the target, which is of equal size in pixels as the target [9]. The term 

“area surrounding the target” is not clearly defined, however.  

One method of establishing the surrounding background is to simply expand the target 

area in all directions until the background area is equivalent to the target area. When the target is 

assumed to be rectangular, this amounts to defining a larger rectangle encompassing the target. 

When the target is of irregular shape, the process can still be performed, but the resulting 

background will not be rectangular, but instead will have the irregular shape of the target, scaled. 

This scenario is depicted in Figure I.5 and Figure I.6. Thus, a background perimeter is formed 

around the target, and the thickness of this perimeter satisfies the restraint for the ratio of target 

area to background area being equal to one. This ratio follows the Michelson contrast concept of 

providing equal stimuli with equal amounts of background. Alternative contrast schemes may 

call for ratios other than one. 

 

Figure I.5. Irregular shaped target mask 
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Figure I.6. Background mask corresponding to Figure I.5 using a process of perimeter thickening 

The process of thickening the target perimeter to form the background has both pros and 

cons. An approximate constant thickness surrounding the target implies that local target 

boundaries are compared against approximately equivalent amounts of background, regardless of 

the location of the boundary along the target. A “con,” or more precisely, a consideration of the 

perimeter thickening method is that multiple loops of neighboring pixel evaluations may need to 

be performed before a solution is determined. Additionally, the background area is defined by an 

image mask or a list of background pixels. For remote real time applications, processing power 

and time needed to assess the background ROI, as well as memory storage, should be evaluated.  

An alternative approach is to assume the target can be approximated as a rectangular or 

elliptical shape. In this scenario, the background can then be approximated as a bounding 

rectangular box. Using the bounding box approach to determining background produces a result 

that can be solved for directly, in most cases, and the result can be defined by two sets of 

coordinates. This approach is both faster and simpler than the perimeter thickening method, but 

relies on assumptions about the shape of the target. Additional restrictions can be placed on the 

bounding box background, such that the ℎ𝑒𝑖𝑔ℎ𝑡/𝑤𝑖𝑑𝑡ℎ background ratio is equivalent to the 

ℎ𝑒𝑖𝑔ℎ𝑡/𝑤𝑖𝑑𝑡ℎ target ratio. Solving the size and dimension restriction equations produces a 

value for the dimensions of the background. For a target with a height, ℎ𝑡𝑔𝑡, and width, 𝑤𝑡𝑔𝑡, as 

shown in Figure I.7, the background height, ℎ𝑏𝑔𝑑, and width, 𝑤𝑏𝑔𝑑, are defined as 
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ℎ𝑏𝑔𝑑 = √2 ∗ 𝑇𝑝𝑖𝑥𝑡𝑔𝑡 ∗ (ℎ𝑡𝑔𝑡 𝑤𝑡𝑔𝑡)⁄  (1.13)  

𝑤𝑏𝑔𝑑 = √2 ∗ 𝑇𝑝𝑖𝑥𝑡𝑔𝑡 ∗ (𝑤𝑡𝑔𝑡 ℎ𝑡𝑔𝑡)⁄  (1.14)  

Here, 𝑇𝑝𝑖𝑥𝑡𝑔𝑡 is the total number of pixels in the target. The target and background, along with 

corresponding dimensions, are shown in Figure I.7. 

 

Figure I.7. Target (grey) with bounding box background (blue) of similar proportion and equal 

size 
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Figure I.8. Target (grey) with bounding box background (blue), partially outside of the image 

border (red) 

 The bounding box method, an original contribution of this dissertation, can directly 

produce dimensions for the background ROI from target pixel parameters, without using an 

iterative approach. Even when the assumption of the rectangular target holds, the auto 

determined background may fall out of bounds of the actual image dimensions, however. This is 

the case when the target lies near the image border, shown in Figure I.8. If satisfying the 

restriction of the background area being equal to the target area is a priority, then the out of 

bounds background area can be redistributed within the image boundaries. Thus, if a portion of 

the initial bounding box is found to lie outside the image border, 𝐸𝑥𝑐𝑒𝑠𝑠𝑏𝑔𝑑, the boundaries of 

the generated background that lie within the image borders can be extended to accommodate the 

size restriction. Suppose we let  𝐼𝑛𝐵𝑜𝑢𝑛𝑑 = [𝑙𝑒𝑓𝑡, 𝑟𝑖𝑔ℎ𝑡, 𝑡𝑜𝑝, 𝑏𝑜𝑡𝑡𝑜𝑚]  denote the sides of the 

background bounding box that lie within the image and thus are eligible for extension. Here the 

directions (left, right, top, bottom) are equal to 1 when those sides are in bounds and zero 

elsewhere. For example, Figure I.8 would have  𝐼𝑛𝐵𝑜𝑢𝑛𝑑 = [1,0,1,1].  We can then define 

𝛾 

𝛽 

𝛽 
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terms  𝛼1 = 𝐼𝑛𝐵𝑜𝑢𝑛𝑑(1) + 𝐼𝑛𝐵𝑜𝑢𝑛𝑑(2) and 𝛼2 = 𝐼𝑛𝐵𝑜𝑢𝑛𝑑(3) + 𝐼𝑛𝐵𝑜𝑢𝑛𝑑(4).  If we choose 

restriction of the redistributed area to maintain the same proportions as the target, we can 

determine the distance to extend each valid side, denoted by  𝛾  and  𝛽.  Here 𝛾 is the amount to 

extend horizontal valid sides and  𝛽  is the amount to extend vertical valid sides. The values of  𝛾  

and  𝛽  can be found using the positive solution of 

𝛾, 𝛽 =

−𝐾2𝑖 ± √𝐾2𝑖
2 + 4𝐾1𝑖𝐸𝑥𝑐𝑒𝑠𝑠𝑏𝑔𝑑

2𝐾1𝑖
 

(1.15)  

Where 𝑖 = 1 for 𝛾, and 𝑖 = 2 for 𝛽 and 

𝐾11 = 𝛼1
2(ℎ𝑡𝑔𝑡 𝑤𝑡𝑔𝑡⁄ ) 

𝐾12 = 𝛼1ℎ𝑏𝑔𝑑 + 𝛼1𝑤𝑏𝑔𝑑(ℎ𝑡𝑔𝑡 𝑤𝑡𝑔𝑡⁄ ) 

𝐾21 = 𝛼2
2(𝑤𝑡𝑔𝑡 ℎ𝑡𝑔𝑡⁄ ) 

𝐾22 = 𝛼2𝑤𝑏𝑔𝑑 + 𝛼2ℎ𝑏𝑔𝑑(𝑤𝑡𝑔𝑡 ℎ𝑡𝑔𝑡⁄ ) 

(1.16)  

 

Here  𝑤𝑏𝑔𝑑  and  ℎ𝑏𝑔𝑑  are the horizontal width and vertical height dimensions of the bounding 

box background which lay within the image boundaries. Using this bounding box boundary 

adjustment process could result in extended borders lying outside of the image borders. The 

process can then be repeated until all sides are within the image boundary. In a worst-case 

scenario, the adjustment process will be repeated three times. 

 The process of adjusting the bounding box finds a balance between processing and 

functionality. The perimeter thickening provides increased functionality at the cost of increased 

processing. The bounding box has minimal processing, but also limited functionality. The 

adjusted bounding box adds functionality through repeated adjustments, but does not require 
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element-wise (pixel) evaluations, repeatedly across the image. The adjusted bounding box still 

does not consider target rotation. Elongated rectangular targets at an angle, may not be correctly 

evaluated by a bounding box which only considers the target’s vertical and horizontal extent. 

Adjusting the initial bounding box method is trivial. Once again, if the target is approximated by 

a rectangular or elliptical shape, the major and minor axis dimensions, as well rotation can be 

found. The major and minor axis dimensions can be used in (1.15) and (1.16) replacing ℎ𝑡𝑔𝑡 and 

𝑤𝑡𝑔𝑡. The resulting bounding box can then be rotated to fit the target. The bounding box is then 

described by two sets of coordinates and an angle of rotation. Performing the adjusted bounding 

box procedure using rotation, however, begins to increase processing to the extent that the 

perimeter thickening may be just as effective. A benefit of the rotated adjusted bounding box 

would still be the minimal amount of data necessary to describe the shape of the background. It 

may be useful to check whether a target’s dimensions and orientation are such that the target 

box, defined by the target’s horizontal and vertical extent, does not accurately describe the real 

target. This can be an indication of whether a rotated adjusted bounding box is necessary to 

describe a target. For a rectangular or elliptical target, we can let the major and minor axis 

dimensions be defined as  𝛤  and  𝛾  and rotation as  𝜃.  The un-rotated target bounding box, 

defined by the target’s horizontal and vertical extent, will have an approximate excess area of 

pixels which does not cover the rotated target, defined by 

𝐸𝑥𝑐𝑒𝑠𝑠 𝐴𝑟𝑒𝑎 =  (𝛤2 + 𝛾2)𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃 (1.17)  

Target Background Distance 

The measure of contrast provides a relationship between target and background. This 

relationship defines the difference which distinguishes a given target from a given background. 

Contrast measures such as the RMS contrast (1.8), can be thought of as measuring the distance of 
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a target from its surrounding background. The difference or distance of each target pixel 

intensity is measured against the average of the background pixel intensities. The average of 

these distance measures produces the RMS contrast. This technique, however, may not be 

applicable when the background has large amounts of variation. A pixel value with a large 

distance from the background mean may not be significant when the background varies a large 

distance from the mean itself. This point is illustrated in Figure I.9 and Figure I.10. 

 

 

Figure I.9. Histogram of background with µ= 128 and σ = 5. Target pixel (red) with distance of 

30 from the background µ is distinct from the background. 
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Figure I.10. Histogram of background with µ= 128 and σ = 20. Target pixel (red) with distance 

of 30 from the background µ is not distinct from the background. 

To accommodate for the variation in the background, the distance measure can be 

normalized by the variance of the background. This provides for a scale invariant measure of 

distance, as shown in the following equation 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = [∑
(𝑦𝑖 − 𝑥̅)2

𝜎𝑥
2

𝑛

𝑖=1

]

1 2⁄

 (1.18)  

Where  𝑦𝑖   is the  𝑖𝑡ℎ  target pixel of  𝑛  pixels,  𝑥̅  is the background mean, and  𝜎𝑥
2  is the 

variance of the background. This procedure, which calculates the normalized Euclidean distance 

(NED), can be interpreted as normalizing the data to zero mean and unit standard deviation, and 

determining the distance from the standard normal of the background. 

 The equation in (1.18) is useful when the data has only one dimension or feature. This is 

true when pixel intensity values are used to determine the target distance or contrast from the 

background. Multiple features may be used however in determining contrast, as in the case of 

color imagery. For images defined in the RGB color space, each pixel has three features and is 
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defined by the corresponding intensities in the red, green, blue channels. Thus, each pixel can be 

described as  𝑥𝑖 = {𝑥𝑖𝑅 , 𝑥𝑖𝐺 , 𝑥𝑖𝐵}.  Similarly, the mean and variance can be denoted as  𝑥̅ =

{𝑥𝑅̅̅ ̅, 𝑥𝐺̅̅ ̅, 𝑥𝐵̅̅ ̅}  and  𝜎𝑥
2 = {𝜎𝑥𝑅

2 , 𝜎𝑥𝐺
2 , 𝜎𝑥𝐵

2 },  respectively. And for three channel color images, the 

NED in (1.18) can be described by 

𝐷 − 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

= [∑ ∑
(𝑦𝑖𝑘 − 𝑥𝑘̅̅ ̅)2

𝜎𝑥𝑘
2

𝑑

𝑘=1

𝑛

𝑖=1

]

1 2⁄

 

(1.19)  

where 𝑘 corresponds to the 𝑘𝑡ℎ of 𝑑 total features of each observation or pixel. 

The d-feature normalized Euclidean distance (dNED) assumes that the features are 

independent.  In a natural image, however, the color of neighboring pixels of an object is likely 

to be correlated. If the channels are correlated, they vary together. An example of the 

phenomenon can be seen in Figure I.11 and Figure I.12. In Figure I.11, the two features are 

independent. This in turn can be interpreted as their covariance is zero and the variance lies in 

the direction of the feature axes. Therefore, measuring distance along the axis is still appropriate. 

In Figure I.12, the two features are dependent and vary together. Variance along the feature axes 

does not completely describe the nature of the distribution. The variance along the diagonals 

between each pair of feature space axes must also be taken into consideration. By evaluating the 

covariance of the distribution, a more complete estimate of the shape of the distribution can be 

used to measure distances from said distribution. 
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Figure I.11. Distribution of sample observations with two independent features 

 

Figure I.12. Distribution of sample observations with two dependent features 

Estimating the shape of the distribution completely and accurately is necessary when the 

multiple dependent features are considered. This, in essence, is the principle behind the distance 

measure, Mahalanobis Distance, denoted by 

Mahalanobis Distance D(y) = [(𝑦 − 𝑥̅)𝑆−1(𝑦 − 𝑥̅)𝑇]1 2⁄  (1.20)  

where 𝑦 is the three-dimensional (feature) target data, and 𝑥̅ is the three-dimensional feature 

mean of the background (as defined previously), and  𝑆  is the covariance matrix of the 

background features. Each entry in the covariance matrix can be computed using 
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Cov(k𝛼,𝑘𝛽) =
1

𝑛 − 1
∑(𝑘𝛼𝑖 − 𝑥𝛼̅̅ ̅) ∙ (𝑘𝛽𝑖 − 𝑥𝛽̅̅ ̅)

𝑛

𝑖=1

 (1.21)  

where  𝑘𝛼  and  𝑘𝛽  are features and  𝑘𝛼𝑖  and  𝑘𝛽𝑖  are the  𝑖𝑡ℎ  values of 𝑛 observations of the 

feature. And 𝑥𝛼̅̅ ̅ and 𝑥𝛽̅̅ ̅ are the feature means. For the Mahalanobis distance, when 𝑦 represents a 

single, three feature, background population mean removed pixel given by  𝑦𝑖 = {𝑦𝑖𝑅 , 𝑦𝑖𝐺 , 𝑦𝑖𝐵},  

a 1 x 3 matrix, and  𝑆−1  is a 3 x 3 background feature inverse-covariance matrix, the resulting 

distance is a single value.  

Mahalanobis Distance Squared D(y𝑖)

= [𝑦𝑖𝑅 𝑦𝑖𝐺 𝑦𝑖𝐵] [

𝜎𝑥𝑅
2 𝑐𝑜𝑣(𝑅, 𝐺) 𝑐𝑜𝑣(𝑅, 𝐵)

𝑐𝑜𝑣(𝐺, 𝑅) 𝜎𝑥𝐺
2 𝑐𝑜𝑣(𝐺, 𝐵)

𝑐𝑜𝑣(𝐵, 𝑅) 𝑐𝑜𝑣(𝐵, 𝐺) 𝜎𝑥𝐵
2

] [

𝑦𝑖𝑅

𝑦𝑖𝐺

𝑦𝑖𝐵

] 
(1.22)  

Mahalanobis Distance Squared D(y𝑖)

= (𝑦𝑖𝑅
2𝜎𝑥𝑅

2 + 𝑦𝑖𝐺𝑦𝑖𝑅𝑐𝑜𝑣(𝐺, 𝑅) + 𝑦𝑖𝐵𝑦𝑖𝑅𝑐𝑜𝑣(𝐵, 𝑅))

+ (𝑦𝑖𝑅𝑦𝑖𝐺𝑐𝑜𝑣(𝑅, 𝐺) + 𝑦𝑖𝐺
2𝜎𝑥𝐺

2 + 𝑦𝑖𝐵𝑦𝑖𝐺𝑐𝑜𝑣(𝐵, 𝐺))

+ (𝑦𝑖𝑅𝑦𝑖𝐵𝑐𝑜𝑣(𝑅, 𝐵) + 𝑦𝑖𝐺𝑦𝑖𝐵𝑐𝑜𝑣(𝐺, 𝐵) + 𝑦𝑖𝐵
2𝜎𝑥𝐵

2 ) 

(1.23)  

The resulting Mahalanobis distance relates the target pixel intensity to the background. 

This measure takes into account not only the average background feature values, but also their 

(co-) variation. Physically, for images, this corresponds to the color pattern of the background or 

the relationship between pixels in the background. If, however, 𝑦 represents the n x 3 matrix  

𝑦 = {𝑦1, ⋯ , 𝑦𝑛}𝑇  (see (1.24)), where there are n three feature target pixels or observations, the 

resulting Mahalanobis distance is represented by an n x n matrix. 
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Mahalanobis Distance Squared D(y)

=

[
 
 
 
 
𝑦1𝑅 𝑦1𝐺 𝑦1𝐵

⋮
𝑦𝑖𝑅 𝑦𝑖𝐺 𝑦𝑖𝐵

⋮
𝑦𝑛𝑅 𝑦𝑛𝐺 𝑦𝑛𝐵]

 
 
 
 

[

𝜎𝑥𝑅
2 𝑐𝑜𝑣(𝑅, 𝐺) 𝑐𝑜𝑣(𝑅, 𝐵)

𝑐𝑜𝑣(𝐺, 𝑅) 𝜎𝑥𝐺
2 𝑐𝑜𝑣(𝐺, 𝐵)

𝑐𝑜𝑣(𝐵, 𝑅) 𝑐𝑜𝑣(𝐵, 𝐺) 𝜎𝑥𝐵
2

] [

𝑦1𝑅

𝑦1𝐺

𝑦1𝐵

…

𝑦𝑖𝑅

𝑦𝑖𝐺

𝑦𝑖𝐵

…

𝑦𝑛𝑅

𝑦𝑛𝐺

𝑦𝑛𝐵

] 
(1.24)  

Mahalanobis Distance Squared D(y) = [
𝑑11 ⋯ 𝑑1𝑛

⋮ ⋱ ⋮
𝑑𝑛1 ⋯ 𝑑𝑛𝑛

] (1.25)  

In this n x n distance matrix, shown in (1.25), the diagonal produces the squared Mahalanobis 

distance  𝐷(𝑦𝑖) = 𝑑𝑖𝑖,  for  𝑖 = 1…𝑛.  The off-diagonal values are a measure of the target pixel 

pairwise relationships normalized by the background covariance matrix. Thus, an increased 

amount of information can be measured when using multiple observations from the target as it 

takes into account the physical variation or color pattern of the target with relation to the color 

pattern of the background. In relationship to the equation presented above in (1.23), each term  

𝑦𝑖𝛼𝑦𝑖𝛽𝑐𝑜𝑣(𝛼, 𝛽)  is replaced by  𝑦𝑖𝛼𝑦𝑗𝛽𝑐𝑜𝑣(𝛼, 𝛽)  to produce  𝑑𝑖𝑗,  where  𝑗 = 𝑖  only on the 

diagonal.  

To produce a single distance value from multiple observations or target pixels, an RMS 

distance can be used as described in (1.24). A root-sum-squared (RSS) evaluation, used in [9], 

would imply a target size dependence in pixels on contrast. Thus, larger targets would be given 

higher distance or contrast values than smaller targets. Though the size dependency rationale 

may actually be appropriate, an initial size-invariant measure should be established, which can 

later be scaled in accordance with target size. 
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RMS Mahalanobis Distance D(y)

= [
1

𝑛 − 1
∑{(𝑦𝑖 − 𝑥̅)𝑆−1(𝑦𝑖 − 𝑥̅)𝑇}

𝑛

𝑖=1

]

1 2⁄

 

(1.26)  

Here, once again,  𝑦𝑖  is the  ith  m feature element of n observations, such that  𝑦𝑖 = [𝑦1, … , 𝑦𝑚]. 

And  𝑥̅  represents the mean values of the m features, so that  𝑥̅ = [𝑥1̅̅̅, … , 𝑥𝑚̅̅ ̅̅ ].  The equation in 

[9] can be interpreted as calculating the RMS of the Mahalanobis distance. The RMS metric 

gives greater weight to larger valued elements or distances for consideration. To give an equal or 

linear weight to each distance measure requires the mean estimation to be moved outside of the 

square root. The RMS may be appropriate, however, because extremes or larger valued elements 

can often dominate detection and recognition. This is certainly the case for the task of detection 

and identification of vehicles in IR imagery. 

And thus, a distance measure between a target and background can be determined. The 

distance or difference between target and background is only a portion of the original notion of 

contrast expressed in [1]. In [1], small differences in luminous intensity are perceived more when 

the average luminance of the scene is less. The distance measure in [9] addresses spatial 

variation and co-variation of pixels from targets and backgrounds, which are not of uniform 

intensity. To incorporate the distance concepts of [9] and [1], a contrast metric could be defined 

here as  

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡7 =
𝑀𝑎ℎ𝑎𝑙𝑎𝑛𝑜𝑏𝑖𝑠 𝐷𝑠𝑡𝑎𝑛𝑐𝑒 𝐷(𝑦)

𝑦̅ + 𝑥̅
 (1.27)  

where 𝑦̅ and 𝑥̅ are the target and background mean, respectively. The denominator assumes 

equal presentation of the target and background, but can be weighted to reflect the relative 

presentation amounts. Here, the average or mean can be defined as 
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𝑀𝑒𝑎𝑛 (𝑦) = 𝑦̅ =
1

𝑛𝑚
∑ ∑ 𝑦𝑖,𝑘

𝑚

𝑘=1

𝑛

𝑖=1

 (1.28)  

Multi-Frame Image Analysis 

The prior analysis of targets and background discusses techniques which can be applied 

to target detection within a single image. In many applications, a single image may not be 

sufficient to describe or detect a target of interest. In some cases, the target of interest is not fully 

visualized in a single image, and a sequence of images, or video, must be analyzed to generate a 

suitable signature for both detection and classification. In [10], a linear pyroelectric sensor array 

tilted at a 45° angle, and later, a sparse pyroelectric array of sensors [11], generates images of 

target using multiple samples over time. As the target traverses the field of view of the sensor, a 

portion of the target is captured at each sensor sample and an image is reconstructed of the target 

using samples from multiple single element pyroelectric detectors. The images were normalized 

by calculated target velocity estimates, before classification, to allow different target classes to 

be compared on the same scale for assessing target width. 

In another application, presented in [12], image analysis is performed on video imagery 

affected by turbulence. In this work, spatial degradations in the image vary in time due to 

turbulence. Occasional glimpses of non-degraded portions of the image are observed over time. 

These “lucky” glimpses are detected by comparing the edges in the current image to the average 

of edge measurements observed in previous frames. Multiple lucky image regions can be used to 

reconstruct a complete image of the scene, where other targets of interest can be detected. 

Alternately, in [13], regions of strong edges in the current frame are compared to those same 

regions in the prior frame, to determine image degradation for degraded visual environment 

scene conditions. 
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Another more common technique is the use of frame-to-frame differencing. This 

technique is often used to detect portions of an image that have changed from one image frame 

to the next, with the assumption that the majority of the scene is stationary. This is often the case 

for a moving target. The prior frame is treated as a background frame and is subtracted from the 

current frame to create a difference image. In thermal imagery, targets of interest often have 

higher intensity than background surroundings. As a result, the current location of the moving 

target is highlighted in the difference image. The location where the target appeared in the prior 

image can also create a negative residual in the difference image, known as ghosting. Ghosting 

can occur both for image subtraction and also image addition, when targets are moving in the 

scene. And in more general terms, ghosting can occur when the current frame is processed or 

filtered based on contributions or data from prior frames where motion occurs. 

In frame-to-frame differencing, the target is detected in the current image by applying a 

threshold to the difference image generated from prior image frame data. Another approach, but 

similar in concept, is to generate statistics from 𝑁 prior background frames, and use the 

generated statistics to determine a threshold for determining the target in the current frame. A 

common approach is to determine a detection if the target intensity is a number of standard 

deviations from the background mean intensity.  This approach can allow adaptable threshold 

generation for a constantly changing background, such as is observed when the sensor is moving. 

To generate the desired background statistics, a history of prior frames is often stored and 

updated in memory via a sliding window, and accessed for each frame update.  

In some practical real-time and/or remote systems, storing and processing large amounts 

of data for background statistics may not be ideal. In this case, it may be beneficial to use a 

running statistic, such that at each frame, a mean and standard deviation are calculated from the 



38 
 

current frame, and the previously calculated mean and standard deviation from the prior frame 

[14]. The mean of a pixel of the current frame can be found by 

𝑀𝑒𝑎𝑛𝑅𝑢𝑛𝑛𝑖𝑛𝑔 =
𝑁 − 1

𝑁
𝑚𝑒𝑎𝑛𝑝𝑟𝑒𝑣 +

1

𝑁
𝑣𝑎𝑙𝑢𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (1.29)  

where  meanprev  is the mean calculated for the previous frame,  valuecurrent  is the current value of 

the pixel, and N-1 is the number of frames in the window. To determine the standard deviation of 

a pixel in the current frame, the following equation can be used: 

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑅𝑢𝑛𝑛𝑖𝑛𝑔

= [
𝑁 − 1

𝑁
𝑠𝑡𝑑𝑝𝑟𝑒𝑣

2 +
1

𝑁 − 1
(𝑣𝑎𝑙𝑢𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑚𝑒𝑎𝑛)2]

1 2⁄

 

(1.30)  

Here,  stdprev  is the standard deviation calculated at the previous frame. It should be noted, once 

again, that this method does not use a sliding window. The sliding temporal window allows the 

algorithm to handle dynamic backgrounds. The running statistics window is ever increasing from 

the starting location, which causes the statistics to be less susceptible to change as time passes. 

To make the running statistics method more accommodating for changing backgrounds, two 

staggered running statistics can simultaneously be generated for a limited maximum window and 

repeated. Repeating a single running statistic for a given maximum window can cause noticeable 

and abrupt changes to the background statistics as the transition occurs, when the window 

repeats. This is due to the fact that the running statistics needs to evaluate a number of frames 

before the statistics are representative of the background distribution. By staggering and 

alternating, one running statistic, rs1, can be used for evaluation, while the other running 

statistic, rs2, builds a history. When the maximum window length for rs1 is reached, rs1 starts a 

new window. At the same time, rs2 is then used for evaluation, while rs1 is now building history. 

This method of staggering and alternating windows improves upon the smoothness of the 
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transition between one set of background statistics and another. This method can be extended to 

more than two running statistics. The improved dual staggered and alternating running statistic 

method would then require 4 frames of memory, the current frame, and the values N1 and N2 for 

the respective windows. In using a running statistic or a sliding window, care must be taken to 

limit the effects of target signal being added and included in the background statistics, as this can 

reduce the effectiveness of detecting future targets. In [14], a discussion is provided to address 

this concern. Once again, the goal of the staggered and alternating running statistics is to 

continually use relevant statistics, such that resetting the statistics does not introduce significant 

artifacts within the image or processing. Methods to apply a larger weight to current frame 

measurements when calculating the mean and standard deviation can be more susceptible to 

outlier or spike signals. 

In many applications, signatures which are detected through the use of multiple frames, 

are affected by motion. The motion can be due to a moving target, scene motion caused by a 

moving camera, or both. The presence of scene motion presents an even more complex scenario. 

One potential technique to reduce observed scene motion is to register image frames. In [15], a 

survey of image registration methods is provided. For image registration, when scene motion is 

present, only a portion of the image may contain overlap for all registered images, and may 

impact detection and processing performance across the full field of view of the sensor. 

General Detection Systems 

Detection systems, designed for low-cost practical applications, such as remote 

monitoring have been previously designed. Streetman et al. propose a method and system for 

detecting events to alert a user [16]. The method is designed to take advantage of input from 

multiple sensors, which may include more than one domain. The response from multiple sensor 
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inputs are associated. Data that has been associated from multiple sensors is used to identify 

events and an event notification is provided to the operator. In theory, this type of sensor data 

association is used to not only reduce false alarms, but also reduce the cognitive load of the 

operator. Here, the operator is not required to monitor the outputs of all sensors, but only the 

determined event notifications. For example, security monitoring of multiple cameras may not be 

feasible or cost effective, especially in remote sensing applications. A multimodal solution can 

potentially improve performance of detection and false rejections, while minimizing equipment 

costs. Streetman, however, provides a general methodology, without identifying a particular 

system to address a particular problem or application. Although a detailed detection 

methodology is not provided, a conceptual method of association is outlined, based on 

identification, location, and temporal pattern. The performance with respect to practical 

implementation is not assessed in Streetman’s work.  

Muzzle Flash and Blast Phenomenology 

In describing muzzle flash and muzzle blast generation, the following description 

describes the firing process of small arms, such as the firing of a 7.62 mm NATO rifle. The 

process, however, can be scaled to describe large arms weapons, such as the firing of 55 caliber 

artillery. The reader is directed to [17] for a thorough description of muzzle flash and blast 

phenomenology.  

Upon the ignition of the propellant charge in the gun chamber during the gun firing 

process, pressure and heat build-up, propelling the projectile forward through the gun barrel or 

tube. The barrel contains air, as well as residual combustion products from previous firings. The 

air, combustion products, if any, and leaked propellant gases are compressed and forced ahead of 

the projectile, at high pressure, out of the muzzle of the gun. This expelled air and gas at high 
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pressure with respect to ambient air pressure, or precursor flow, prior to the departure of the 

projectile, generates a shock wave, or precursor shock. This muzzle blast or precursor shock 

radiates, spherically, in all directions, but has the greatest strength along the axial length of the 

gun barrel.  

As the compressed and heated precursor flow is expelled, a bright radiating cone, or 

Mach cone, is visualized, with the base at the opening of the muzzle in Figure I.13. The expelled 

gas also interacts with the expanding outer precursor shock wave, such that the gas is contained 

or restricted by this outer precursor shock wave from expanding. As a result, the gas forms 

turbulent vortices downrange from the Mach cone, but is constrained by the outer shock 

precursor wave. As the outer precursor shock wave expends, a cylindrical jet flow region, or 

shock bottle, is formed, bounded by lateral barrel shock due to the reflecting and coalescing of 

expansion waves. The jet flow region is terminated by a vertical curved pressure boundary or 

shock front, called the Mach disk, downstream from the muzzle and Mach cone. The jet flow is 

comprised of the expelled compressed gases at the Mach cone established at the muzzle, forced 

into ambient air pressure, creating low pressure, cooled, and supersonic, under-expanded gases. 

As the gases are propelled downstream, pass the Mach disk and escape the jet flow region, the 

gas flow is decelerated to subsonic velocity, pressure is increased, and shock heating at the Mach 

disk causes the temperature to increase by hundreds of Kelvin or more [17]. The increased 

temperature generates thermal radiation, and in some special cases, a “pre-flash” may occur 

when turbulent gases containing leaked propellant and combustion products, interact with 

oxygen in the air, further downstream. 
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Figure I.13. Shadowgraph of precursor flow. (1: blast wave; 2: Mach cone; 3: barrel shock; 4: 

spherical flow discontinuity; 5: gas-air interface) [17] G. Klingenberg and J. M. Heimerl, Gun 

Muzzle Blast and Flash, vol. 139, A. R. Seebass, Ed., Washington DC: American Institute of 

Aeronautics and Astronautics, 1992, p. 113. 

After the precursor flow has been fully formed, the projectile exits the muzzle or tube, 

followed by the propellant flow gases. A similar process as described for the precursor flow 

repeats as the propellant flow is ejected. The high heat and even higher pressure of the propellant 

flow, impeded by the departing projectile, entering into the low-pressure jet flow of the 

precursor, generates jets or streamers at the muzzle. A blast wave is formed by the propellant 

outflow, as depicted in Figure I.14. This propellant flow blast wave approaches and overtakes the 

precursor blast wave as the projectile traverses downrange, exiting the outer blast wave. A 

similar, yet larger jet flow region and downrange turbulent gas plume are generated. The prior, 

smaller precursor turbulent gas plume is, in effect, pushed further downrange, such that two gas 

plumes or gas balls are generated. The precursor jet flow is replaced by the propellant jet flow, as 

the propellant gases exit the muzzle. For lower velocity projectiles and/or longer barrel weapons, 
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a second precursor flow and blast wave are allowed to form during the increased time taken for 

the projectile to exit the muzzle. The effect is an even greater forward the downrange bulge of 

the gas plume, extending at a greater distance from the muzzle. The gas plume contains the 

decelerated and heated gases, which are constrained by the blast waves. As the blast wave 

expands, the heated gas plumes are allowed to mix with ambient air or oxygen. 

n  

Figure I.14. Shadowgraph of propellant gas plume. (1: blast wave of first precursor flow; 2: blast 

wave of propellant flow; 3: Mach disk; 4: barrel shock; 5: turbulent gas-air interface; 6: turbulent 

vortex ring; 7: increased gas density at downstream propellant gas plume) [17] G. Klingenberg 

and J. M. Heimerl, Gun Muzzle Blast and Flash, vol. 139, A. R. Seebass, Ed., Washington DC: 

American Institute of Aeronautics and Astronautics, 1992, p. 120. 
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There are three main flashes observed during a gun firing, known as the primary, 

intermediate, and secondary or afterburn [17] and are depicted in Figure I.15. The primary flash 

occurs for a short duration with low intensity and spatial extent, located at the muzzle, once the 

Mach cone fully develops. The intermediate flash occurs later and further downrange, as 

propellant gases, rich with fuel, are heated as the gases decelerate beyond the jet flow region and 

Mach disk. The secondary flash occurs after the intermediate flash and is located both upstream 

and downstream, having a large spatial extent. The secondary flash is produced as a result of 

oxygen mixing with the fuel rich propellant gases, and residual combustion products. Ignition 

can be caused due to shock heating, or even the increased temperatures due to the intermediate 

flash. The secondary flash has significantly greater intensity and duration than the intermediate 

flash, and generates a secondary blast wave of greater pressure than the primary blast wave. 

Similar processes can be found in rocket flames at the exhaust. 
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Figure I.15. Development of primary, intermediate, and secondary flashes. [17] G. Klingenberg 

and J. M. Heimerl, Gun Muzzle Blast and Flash, vol. 139, A. R. Seebass, Ed., Washington DC: 

American Institute of Aeronautics and Astronautics, 1992, p. 214. 

The muzzle flash, consisting of primary, intermediate, and secondary flashes, emits 

radiation across the ultraviolet, visible, and infrared bands. Additionally, the muzzle flow 

produces a strong continuum of radiation in the visible and near infrared bands due to 

incandescent flow-borne particles [17]. In general, for blackbody radiation, emitted flux is 

increased with increasing temperature, and the spectral distribution or peak emittance is shifted 

towards shorter wavelengths with increasing temperature [18]. Radiation is also emitted along 

spectral lines due to the chemical composition of the propellant gases and additives. Propellants 

are composed of carbon (C), hydrogen (H), nitrogen (N), and oxygen (O), such that the ignition 
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and burning process for both guns and rockets converts the propellants into gases containing 

oxides of carbon ( CO, CO2) and nitrogen (NO), water (H2O), and nitrogen (N2) [17]. Band 

centers for CO2 (carbon dioxide), CO (carbon monoxide), and H2O are 2.349 µm, 2.143 µm, and 

3.756 µm, respectively, with CO2 having the greatest band strength or emitted radiation [19]. 

These molecules radiate at multiple discrete frequencies. Furthermore, spectral line growth 

occurs at states of high temperature and high pressure, such that the spectral line increases in 

emissivity and also in spectral width [19]. The increase in optical path length through the gas, 

and subsequently the increase in optical depth, can also cause spectral line growth. The emission 

is attenuated by variations in temperature within the gas, and is also attenuated by lower 

temperature atmosphere, when observed at a distance away [19]. In [18], graphs of atmospheric 

transmission for CO2 and H2O are provided, showing attenuation notches in the mid-wave 

infrared and short-wave infrared. The temperature and pressure of the muzzle flash event affects 

emission and atmospheric transmission of the event signature, and, as a result, the choice in 

sensing waveband. 

The secondary muzzle flash produces a flash of greater extent, duration, and temperature 

than the intermediate or primary flashes. The chemical nature of propellants is a 

stoichiometrically imbalance such that there is a lack of oxygen to adequately burn the other 

propellant chemicals within the chamber. Additionally, a stoichiometrically balanced propellant 

load may cause damage to the chamber due to pressure. The oxygen deficiency allows optimum 

energy for propelling the projectile, but as a result, unburned propellant is released in the jet 

flow. As the propellant jet flow is decelerated, upon exiting the shock bottle at the Mach disk, the 

propellant gases are increased in temperature. Reduction in pressure boundaries, as the outer 

shock front expands, allows trapped oxygen in the air to mix with propellant, allowing for the 
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potential ignition of the secondary flash. Additives are often added to reduce the secondary flash. 

Common additives shown to be effective, include Potassium (K) and Sodium (Na) [17]. 

Examples of additive compounds reported to suppress muzzle flash are potassium sulfate 

(K2SO4), potassium nitrate (KNO3), and sodium bicarbonate (NaHCO3). The addition of flash 

reducing additives can generate excessive smoke or alter ballistic performance, which is 

undesirable, and limits the amount of flash reducing additives. Though the additives reduce the 

secondary flash, radiation is emitted along spectral lines as a result of the added Potassium or 

Sodium. 

Optical Detection Methods and Systems 

A weapon fire detection system is proposed by Tidhar, which utilizes uncooled infrared 

sensors [20] [21]. Observing the increased cost and power consumption of cooled systems, 

Tidhar presents an optical flash detector system which operates in the near infrared (NIR) and 

short-wave infrared (SWIR) spectrum. The system is aimed at detecting firearms gunshots, and 

in particular, sniper and small arms detection.  It is argued that the choice of spectral band can be 

determined to align with atmospheric absorption peaks. Though signal from the muzzle flash will 

be reduced due to atmospheric absorption, so also will sunlight clutter and shot noise. The 

purpose is to improve the signal to clutter ratio, assuming the target signal is above the 

sensitivity threshold. This proposal may, however, limit overall system range performance, 

which may be less impactful for short range targets. Here, a choice in hardware specifications is 

used to supplement false alarm rejection processing, by limiting the amount of signal entering 

the system from false alarm sources. 

Tidhar presents options for detection processing in which a layered approach is utilized 

[20] [21]. In Tidhar’s approach, processed pixels found to have signal indicating a possible 
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detection, can be re-analyzed in a subsequent processing layer, in which the neighborhood of the 

pixel is also processed. Additional pixel detections found within a neighborhood of a previous 

detected pixel, can be suppressed, to remove additional pixel processing. This is a form of data 

management, by limiting the bandwidth at subsequent layers. Tidhar also states that data may be 

stored in memory using compression or reduced sampling rates. Furthermore, Tidhar suggests a 

Constant False Alarm Rate (CFAR) module. The CFAR confirms/suppresses a constant 

predictable number of possible detections at each interval or frame. The CFAR thus bounds the 

maximum amount of processing, and processing time that will occur at each frame. Thus, each 

frame is ensured to be processed before the next frame is ready for processing, removing 

processing delays impacting real time processing. Redundant processing, bandwidth, and real 

time implementation aspects are addressed by Tidhar. 

Multi-Sensor Methodology and Systems 

A multi-sensor approach is also discussed by Tidhar. A multi-band approach which 

employs a sensor operating in the ultra-violet, visible, and NIR spectra is coupled with a sensor 

operating in the SWIR spectra [22]. It is proposed that a ratio of the shorter and longer 

wavelength spectrums can be indicative of a muzzle flash. The ratio of direct light from the sun 

has a significantly different ratio than that of muzzle flashes. Thus, a two-color detection system 

is employed to reduce false alarms due to solar clutter. Using a simple ratio as a detection 

method can provide fast and efficient processing for real time applications. For indirect, reflected 

light, the ratio detection methodology may not maintain effectiveness. For example, when the 

surface of the reflecting object is rough, with respect to the reflected wavelength, the light is 

diffused, reducing the amount of light reaching the sensor. When both bands receive light 

reflected from a surface which is smooth in both bands, or rough in both bands, the relative ratio 
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between the bands is maintained. In the event that one band experience reflected light from a 

rough surface, while the other band experience light from a smooth reflected surface, the ratio 

can be altered enough to generate false alarms. For this reason, the author incorporates a 

polarizer in the system design to filter out the specular reflection. Here, the author provides a 

simplified processing methodology, which is found to achieve efficient detection and false alarm 

rejection under certain conditions. For the conditions in which the simplified ratio method is 

known to fail, a hardware modification is provided to address and complement the shortcomings 

of the proposed methodology. Furthermore, Tidhar proposes that an acoustic sensor can be used 

in conjunction with the proposed optical sensor to provide reduced false alarms, range to flash, 

weapon identification, and knowledge of environmental conditions [20]. 

Acoustic Detection Phenomenology 

Weapon fire, due to the explosive charge required to propel the projectile from the barrel 

or tube, exhibit both a visual muzzle flash, but also an acoustic muzzle blast. The formulation of 

the muzzle blast, propagates a sound energy wave, often referred to as the “bang,” due to the 

initial explosion of the weapon fire event. Pressure waves, produced by the expelled precursor 

and later jet flow contribute to form the outer blast wave, depicted in Figure I.16. At longer 

ranges, the steep, high pressure blast shock wave loses energy and increasingly resembles an 

acoustic sound wave. The acoustic wave travels in all directions, however, the majority of the 

energy travels in the pointing direction of the barrel or tube. The wave travels at the speed of 

sound. The wave reflects against surfaces and interacts with the environment. Examples of 

environmental factors are temperature and wind gradients, as well as atmospheric absorption 

[23]. For a microphone located within sensing range, some distance away from the weapon fire 

event, a response will be generated due to the direct path travelled by the muzzle blast wave. 
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Later responses may also be generated by reflected waves, due to ground reflection for example, 

which are delayed due to the longer, indirect travel path of the wave.  

 

Figure I.16. Dark-schlieren photograph of muzzle flowfield before projectile ejection (1: blast 

wave of first precursor flow; 2: turbulent vortex ring) [17] G. Klingenberg and J. M. Heimerl, 

Gun Muzzle Blast and Flash, vol. 139, A. R. Seebass, Ed., Washington DC: American Institute 

of Aeronautics and Astronautics, 1992, p. 112. 

For projectiles travelling at supersonic speed, an acoustic shock wave, often referred to as 

the “crack,” is generated from the projectile as it travels. The shockwave forms a cone, trailing 

the projectile. The shockwave propagates outward from the trajectory path of the projectile [24] 

and travels at the speed of sound. The angle of shockwave propagation is dependent on the speed 

of the projectile, as depicted in Figure I.17. For a project traveling at supersonic speed, the angle 

of the formed cone is given by  𝜃𝑀 = arcsin(1 𝑀⁄ ), where 𝑀, is the Mach number defined by 

𝑀 = 𝑉/𝑐𝑆. Here, 𝑉 is the velocity of the projectile and 𝑐𝑆 is the speed of sound. The speed of 

sound, in air, increases with temperature, such that 
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𝑐𝑠 = 𝑐0√1 +
𝑇

273
 (1.31)  

where 𝑇 is temperature in degrees Celsius (C) and 𝑐0 is the speed of sound at 0° C (331 𝑚 𝑠⁄ ) 

[25]. 

 

Figure I.17. Shock wave geometry [25] R. C. Maher, "Modeling and Signal Processing of 

Acoustic Gunshot Recordings," in IEEE 12th Digital Signal Processing Workshop, Jackson 

Lake, 2006. 

The shockwave propagation is perpendicular to the sides of the formed cone. Thus, for a 

higher Mach number, a smaller cone angle is formed, and the shockwave’s travel path is nearly 

perpendicular to the trajectory of the projectile. As the projectile slows, the cone angle increases. 

At the limit, as the bullet becomes subsonic, the cone angle approaches 90 degrees, with a 

resulting shockwave travelling parallel to the path of the projectile. The shockwave is 

characterized by an “N” shape due to a fast rise to an overpressure, and subsequent quick decline 

to an under-pressure. Visually, this shape can be described as a sharp positive impulse followed 
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by a sharp negative impulse. As the shockwave travels, it loses the sharp “N” shape 

characteristics and begins to resemble an “S” shape [24] due to spatial spreading. The changing 

angle of the shockwave, as the speed decreases, causes the energy within the received, “once 

sharp” impulses, to spread over time. Similar to the acoustic blast, the shockwave will be 

reflected by surfaces, such as ground reflections (see Figure I.18), and the reflections will be 

attenuated due to absorption. 

 

Figure I.18. Shock wave reflections [25] R. C. Maher, "Modeling and Signal Processing of 

Acoustic Gunshot Recordings," in IEEE 12th Digital Signal Processing Workshop, Jackson 

Lake, 2006. 

In Figure I.18 two microphones are shown to detect the initial shock wave and the later 

arriving ground reflections. At a known location, a single microphone can be used to determine 

the arrival time of the projectile shock wave, the acoustic muzzle blast, and associated 

reflections. When using two or more microphones at known locations, time difference of arrival 

techniques can be used to estimate the elevation and the distance of projectile trajectory from the 

microphones. In Figure I.19, an example acoustic recording, from two microphones, depicts the 

time difference of arrivals of the shock wave, muzzle blast, and associated reflections. Four or 
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more microphones can additionally determine the orientation of the trajectory and the projectile 

speed. The curvature of the shock wave, related to the Mach number, is used to estimate the 

projectile ballistics at longer ranges, as the projectile velocity decreases due to drag forces. 

Spatial separation of the detecting microphones is needed to determine the curvature of the shock 

wave [24]. As an example, a model of a supersonic projectile and associated shock wave and 

muzzle blast are shown in Figure I.20. 

 

Figure I.19 Gunshot acoustic recording from two microphones emphasizing time difference of 

arrival of signals (1: shock wave and reflected shockwave; 2: shock wave at near and far 

microphone; 3: shock wave and muzzle blast; 4: muzzle blast and reflected muzzle blast; 5: 

reflected muzzle blast at near and far microphones) [24] R. C. Maher, "Modeling and Signal 

Processing of Acoustic Gunshot Recordings," in IEEE 12th Digital Signal Processing Workshop, 

Jackson Lake, 2006. 
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Figure I.20. An example model of supersonic weapon fire geometry [25] R. C. Maher, 

"Modeling and Signal Processing of Acoustic Gunshot Recordings," in IEEE 12th Digital Signal 

Processing Workshop, Jackson Lake, 2006. 

Acoustic Detection Methods & Systems 

One technique for gunshot detection is to use multilateration (MLAT) [26]. MLAT is a 

technique used for airport surface surveillance, and has been extended to gunshot detection or 

surveillance. The technique relies on a distributed sensor network, where the locations of the 

sensors are known. The emitted signal of the target is received by the sensors. The measured 

time difference of arrival (TDOA) of these received signals at each sensor location are related to 

the sensor system location geometry and the unknown target position. The difference in range, 

from target to sensor locations, is related to time difference of arrival, with the speed of sound, 
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for acoustic applications. The resulting equation for each pair of sensors defines a hyperboloid 

representing points of possible solutions to the target location. Theoretically, the target location 

is determined by the intersection of hyperbolas resulting from detections from sensor pairs [26]. 

The position accuracy in an MLAT system is affected by three factors: 1) the accuracy of 

measurements, 2) the spatial locations of the sensors, and 3) the algorithm used to solve for the 

unknown target location [27]. A non-uniform speed of sound can increase measurement error, 

along with time measurement sampling. The dispersal of sensor locations can affect the dilution 

of precision, such that the possible solution space is increased, rather than decreased. 

Presumably, the sensors are widely spread, and encompass the target. The number of sensor pairs 

which are able to detect the target can also affect whether a solution exists [26]. 

For MLAT systems, the measurement error and spatial distribution of the system, 

determine the limit of achievable performance. The system is further degraded by the efficiency 

of the localization algorithm [27]. The localization algorithm can be decomposed into two 

components: 1) a data model which relates known and unknown parameters via a system of 

equations and 2) a numerical model which solves the system of equations. Thus, different data 

models can be applied to different numerical models, and the combination of both should be 

taken into consideration, when determining algorithm efficiency or performance. In this work 

[27], the efficiency of the chosen localization algorithm was measured by the numerical 

efficiency, or the possibility to provide convergence to a solution, and statistical efficiency, the 

statistical distribution of position error. Here physical system limitations provide boundaries for 

maximum performance. Additionally, the algorithm allows further degradation to system 

performance. The algorithm is decomposed into components which can be chosen such that one 

component complements the other component. The efficiency of the algorithm is determined by 
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the ability to not “miss” the target, and also the accuracy of the resulting processing of the 

detected target. 

The MLAT methodology relies on known positions of multiple, well distributed sensors 

and also relies on accurate timing. This can be more easily achieved for stationary systems, such 

as those embedded into a city network. For mobile, remote, and transient systems, sensor 

locations may not be well positioned with respect to the target. Thus, it may not be feasible for 

multiple sensors to encompass the target. Sensors which report the direction of arrival can reduce 

the multilateration problem to one of a triangulation problem [26]. Furthermore, relative sensor 

positions may not be known and GPS may not be available in all scenarios and locations.  

In [28], acoustical sensors, in the context of intelligence, surveillance, target acquisition, 

and reconnaissance (ISTAR) are technology instruments capable of performing surveillance and 

target acquisition, where surveillance is the observation of acoustical components of 

environmental noise in a systematic and continuous way, while target detection characterizes 

acoustical signals that contain environmental noise by performing detection, spatial localization, 

reconnaissance and identification of previously specified targets. Gunshot location systems 

perform target acquisition through gunshot detection, gunshot origin estimation, and projectile 

caliber and trajectory estimation. The gunshot detection process is described in [28], as when 

sensor signals exceed an amplitude threshold, where the threshold can be fixed or variable. 

Impulse duration, impulse “sharpness” or slope, and directional signal patterns (in the case of 

multiple sensors), are used to further discriminate a gunshot blast wave from background noise. 

Frequency content is used to distinguish muzzle blasts against ballistic shockwaves. Gunshot 

direction of arrival is determined by analyzing the time delay of arrival of the muzzle blast and 

shockwave, between pairs of sensors to determine direction of arrival. The curvature of the 
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muzzle blast wave front is analyzed to determine the range to shooter or launch. Projectile 

caliber can be determined by analyzing the “N” shaped shockwave (N-wave), using empirical 

relationships between the N-wave peak amplitude, duration, and distance travelled from the 

projectile. The ballistic trajectory is estimated for supersonic projectiles by analyzing the 

shockwave arrival time, and the “N” shaped shockwave, across multiple microphones. 

In [29], gunshot detection algorithms are evaluated. The evaluation takes into 

consideration detection performance and realizable hardware solutions, emphasizing power and 

space. Detection performance is defined by a receiver operating characteristic (ROC) plot which 

relates true positive rates (TPR) to false positive rates (FPR). The TPR is a ratio of the number of 

detected true positives to the total number of true positives. The FPR is the number of false 

positives detected to the total number of false positives. Each point on the ROC plot provides a 

TPR (y-axis coordinate) and its corresponding FPR (x-axis coordinate), for a given detection 

threshold value. The Euclidean distance from the measured points on the ROC curve to the 

perfect detector  (TPR = 1, FPR = 0)  is used to determine detection performance. In [29], short-

time Fourier transform, wavelet transforms, hidden Markov models, Gaussian Mixtures, and 

maximum likelihood models are algorithms noted as having been effective at detecting, 

classifying, and localizing gunshots, but discusses that these algorithms can require significant 

power and processing, making them non-viable solutions in remote applications. Instead, 

algorithms consisting of absolute value, median filter, correlation against template, discrete 

wavelet transform (DWT), and continuous wavelet transform (CWT) are assessed. Hardware 

implementations of each algorithm are designed, and the static power requirements are 

approximated. For comparison, the lower performing absolute value estimator had a Euclidian 

distance of 0.205, resulting from a TPR of 0.844 and a FPR of 0.133. In contrast, the higher 
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performing DWT had a Euclidian distance of 0.111 resulting from a TPR of 0.889 and a FPR of 

0.0. Though the DWT shows an increased detection performance over the absolute value 

estimator, the DWT requires 14 single-ended operational transconductance amplifiers (OTA) and 

3 rectifiers, resulting in a 3.375 µA bias current. The absolute value estimator, on the other hand, 

requires a dual OTA, a single-ended OTA, and a comparator, generating a 405 nA bias current. 

For a given application or set of requirements, such as remote sensing, the choice of algorithm 

can be a compromise between detection performance, and realizable hardware capable of 

performing the task under constraints. 

Gunshot detection systems have been maturing since the early 1990s after global 

conflicts led to the development of the Joint Counter Sniper Program by the U.S. Army in 1993 

[28]. A Defense Advanced Research Projects Agency (DARPA) initiative, starting in 1995, 

advanced sniper technologies and led to the development of a number of sniper detection 

systems. These systems include the Fast InfraRed Sniper Tracker, developed by Thermo Trex 

Corporation, which detects the muzzle flash in the infrared. Uncooled infrared and acoustic 

sensors were combined in the Integrated Sniper Location System developed by SenTech, Inc. 

and Lockheed Martin. Another system, the Sentinel, developed by Science Applications 

International Corporation, incorporates 16 acoustic sensors. Bullet Ears counter sniper system 

was developed by BBN Technologies of Massachusetts which incorporated advanced 

algorithms. The System for the Effective Control of Urban Environment Security (SECURES), 

developed by Alliant Techsystems Inc. was deployed at the Atlanta Olympics in 1996 and was 

used in urban cities for gunshot detection. During the same period, another gunshot detection 

system, ShotSpotter, developed by Trilon Technologies, was also deployed in urban 

environments. 
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Position, Navigation, and Timing 

The most widely used and the most accurate source of position, navigation, and timing 

(PNT) data is provided through the Global Positioning Systems (GPS). GPS is provided by the 

United States, maintained by the U.S. Airforce, and is one of many Global Navigation Satellite 

System (GNSS). GPS Standard Positioning Service (SPS) delivers continuous PNT information 

to the worldwide community, free of direct user fees, for peaceful civil, commercial, and 

scientific uses [30]. GPS, as other GNSS, consists of a ground control station system, a satellite 

system, and user GPS receiver equipment. GPS receivers accept radio signals transmitted from 

the GPS satellites and triangulate the receiver’s position to within several meters or better, 

depending on the receiver and environmental factors. As an example, smartphones with GPS 

capability are typically accurate to within 4.9m under open sky [31]. Additionally, a Master 

Clock system, through the use of an ensemble of more than 100 atomic clocks, delivers 

Coordinated Universal Time (UTC) as an underlying timing reference to GPS. The provided 

timing reference enables users to synchronize to UTC time to less than 40 nanoseconds [31] or 

within 100 billionths of a second with an accurate frequency reference, without the need for 

direct access to an atomic clock [30][32].  

In addition to GPS, inertial navigation systems (INS), also referred to as inertial 

measurement units (IMU), are used to compute position and navigation data. The INS is able to 

provide 15 degrees-of-freedom measurements, which include three each of position, velocity, 

acceleration, attitude and rotation rate measurements. Performance characteristics of INS are 

well characterized and consistent, making them reliable. Additionally, the INS is a self-contained 

system, given initial conditions, and is not subject to external influences. Typical measurement 

output rates are greater than 100 Hz, providing high frequency navigation updates. Without 
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periodic updates, however, the INS will drift over time as increased error or uncertainty is 

included in the measurement process. 

The INS contains a computer processor and sensors, to include accelerometers and 

gyroscopes, to determine position, orientation, and velocity through dead reckoning. 

Accelerometers are used to measure linear acceleration, while gyroscopes are used to measure 

angular velocity with respect to an inertial reference frame. Dead reckoning refers to estimating 

the current position using knowledge of a previous position, and estimates in changes in 

orientation and changes in velocity, over time. Thus, dead reckoning does not measure an 

absolute position or velocity, but estimates the position and velocity, based on current sensor 

data inputs and initial conditions. The accelerometer measures acceleration due to both non-

gravitational forces and also gravitational force. The acceleration due to gravitational force must 

therefore be subtracted from the accelerometer measurement, requiring a gravitational model and 

knowledge of the reference frame. The gyroscope, measuring rotation about an inertial reference 

frame, is used to map the measured acceleration to a reference axes. Errors in the gravity model, 

initial conditions, and numerical computations, as well as sensor errors, are perpetuated to the 

resulting solution. In this method of dead reckoning, errors such as gyro drift rate and initial 

heading error cause an increasing INS error over time and greater uncertainty of future position 

estimates.  

When combined with GPS, the INS error can be periodically corrected by providing 

initial position and periodic position corrections. GPS navigation measurements are combined 

with INS navigation measurements through a Kalman filter. The Kalman filter estimates the 

current navigation state measurements based on a weighted contribution of sensor measurements 

and the prior navigation state measurements. The weights are determined based on estimated 
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error, including measurement sensor error, such that a measurement with less error is given 

greater weight.  The integrated navigation solution is intended to be more accurate than a 

solution derived from any individual input sensor. GPS alone does not provide roll, pitch, or 

yaw, nor does an INS provide an absolute attitude. These navigation updates can be provided 

through an integrated INS/GPS system. Commercial automotive navigation systems use a 

combination of GPS and dead reckoning through multiple sensors for increased reliability when 

GPS signal is not available. The INS is able to generate position and navigation data, in between 

GPS updates, when GPS updates are not available, and can be used without external reference or 

sensors, once initialized.  

Alternate Applications 

Impulse detection can be used for a variety of applications. Though weapon fire detection 

is a very relevant application in today’s society, other applications, such as brain spike detection 

exist and follow similar methodologies. In [33], spike detection algorithms are evaluated for use 

in a brain-machine interface (BMI). The brain-machine interface consists of an application-

specific integrated circuit (ASIC), which is implanted into the brain. The ASIC detects action 

potential (AP) waveforms, or spikes. The detected signals and corresponding detection times are 

transmitted wirelessly to a receiver, which processes the signals to control a prosthesis. In this 

application, real-time data processing and transmitted data bandwitdth are of concern, in addition 

to detection rates and false alarm rates. In this application, missed detections are more costly 

than false alarms. Though processing at the ASIC allows for only needing to transmit the 

detected waveform and detection time, increased false alarms can consume bandwidth as well as 

processing time. Additionally, the BMI has limited processing capability. In this study, it was 

found that although matched filters using convolutions performed well, they also required a high 
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computation time. A combination of simpler techniques, which thresholded both the rising and 

falling peaks of the signals of interest, proved most effective when evaluating detection rates in 

conjunction with bandwidth and processing time. Here, a filter was applied such that a refractory 

period occurred, so that signals which occurred too close in time were rejected. The combination 

of these simple techniques allows for a remote detection system with limited processing and 

bandwidth, to relay detected events to a supplemental system for further processing and 

automation. 

In other literature, algorithms and architectures for automatic brain spike detection and 

alignment, which have been designed for low power, are evaluated [34]. Similarly, to reduce the 

need for a large number of wires, which can constrain the subject, it is preferable to process the 

data and transmit the results wirelessly. In this paper by Zviagintsev [34], multiple detection and 

alignment methodologies are evaluated with respect to their impact on the subsequent sorting 

operation. Thus, the detection and alignment methodologies are not evaluated in isolation but are 

evaluated based on their impact to the system. In general, due to unstable recording conditions, 

spike processing must be adaptable. Raw data is therefore periodically transmitted to the 

processing computer for re-training and re-calculation of parameters. Thus, the system is able to 

adapt to a changing processing environment. The spike detection and alignment process, prior to 

sorting, consists of detecting the spikes in the input and determining their starting point. In one 

evaluated algorithm, Maximum Projection Alignment (MPA) determines the spike’s temporal 

location by finding the highest correlation between the sample segment and the first principal 

component, determined from prior data. Upon estimating the spike location, correlation with the 

second principal component is only then calculated and both results are sent to later processing 

stages. In another evaluated algorithm, Maximum Integral Transform Alignment (MITA), the 
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energy under the curve is measured across different segments of the curve and compared to prior 

data. In this case, two segments are used which distinctly define the characteristics of the 

signature in question. In a third evaluated algorithm, Segmented PC, the principal components 

are downsampled, and the sample is integrated into k segments to reduce the amount of total 

multiplications needed for processing. The algorithms were evaluated by both system 

classification error and computational complexity. 

Organization of this Dissertation 

The dissertation is organized in the following way: 

Chapter 2 discusses preliminary investigations, motivation, and results in the algorithm 

development process, focused on weapon fire detection. Detection is demonstrated at various 

wavebands and video frame rates, and sources of clutter are analyzed. Chapter 3 continues the 

algorithm development process with increased focus on false alarm mitigation strategies. Chapter 

4 consolidates the algorithm, described in Chapter 1 and chapter 2, and presents a system in 

which the algorithm operates. Chapter 4 also presents alternative systems and methods for 

mitigating the effects of saturations. The content in Chapters 4 has been submitted and accepted 

as patents to the United States Patent and Trademark Office (USPTO) [36][37] and is written in 

the style of a patent submission. Additionally, Chapter 4 provides a multi-modal system design 

and methodology, incorporating an acoustic sensor to reduce false alarms. The multi-modal 

design, in Chapter 4, has been submitted as a patent to the USPTO and is also written in the style 

of a patent. The work defined in Chapters 2, 3, and 4 contributed to the creation of two journal 

papers submitted to JDRE [38][39]. Furthermore, Chapter 4 provides a methodology, 

incorporating PNT data to mitigate saturation clutter through sun detection and tracking, and 

additionally, is written in the style of a patent. 
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II. DETECTION AND CLASSIFICATION METHODOLOGIES 

Introduction 

This chapter follows the initial investigation into the feasibility of using temporal profiles 

for weapon fire detection by using an EO/IR sensor. The work discusses the metrics identified 

for the detection process and acknowledges the significant issue of clutter for an imaging sensor, 

for on-the-move application. In addition, results of weapon fire classification are shown, 

providing the potential for additional capability. 

 Problem Description 

An investigation into feasibility of an EO/IR impulse detection algorithm for weapon fire 

detection. Provides a baseline methodology for detection, and demonstrates the possibility of 

weapon classification. 

Methods 

The Hostile Fire Detection (HFD) algorithm presented here is decomposed into three 

stages: pre-detection (see  Figure II.1), detection (see Figure II.2), and classification. The pre-

detection stage distinguishes pixels with signals, which vary from the background. These pixels 

are then tracked over multiple frames for consistent signal. Pixels which persist for a given 

number of frames are noted for pre-detection. Given knowledge of actual shot duration times, 

pre-detects are tracked for a period of time in which an actual shot would have occurred. After 

this elapsed time, the pre-detections are evaluated to find the pre-detections with a local 

maximum value in space and time. The local maximum pre-detection is then passed on to the 

detection stage for further analysis.  

The isolated pixel is then assessed over a history of frames to ascertain when the shot 

occurred. The shot signature is thus extracted for temporal shape profile measurements. The 
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duration of the shot signature is measured. Additionally, the shot signature is normalized in both 

intensity and time such that the shot is integrated into 10 discrete samples in time, which add up 

to unity in intensity. The relative location of the peak intensity, energy distribution under the 

curve, rise slope, and fall slope are measured from the normalized shot signature. Shot signatures 

which fall within given thresholds for these measured parameters are considered as valid 

detections of hostile fire signatures and passed on for classification.  

Measured parameters previously calculated in the detection stage are reused as features 

for classification. In particular, signal duration and shape, provided by the normalized shot 

signature, are used for classification. Signatures are classified into three broad categories of 

threat type: CLASS 1, CLASS 2, and CLASS 3. Though not named in this work, CLASS 1, 

CLASS 2, and CLASS 3 represent three distinct categories or types of threat weapons.  

 Figure II.1.  Quick reference guide for the pre-detection scheme used. 

Pre-Detection 
• Maximum filter pre-process image 

• Detect deviations from statistical background 
using sliding window and buffer 

• Track pixels for consistent deviation 

• Evaluate neighborhood maximum of pixels 
with consistent signal above background 

• Report local maximum to detection stage 
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Figure II.2. Quick reference guide for the detection scheme used. 

Pre-Detections 

As stated above, the pre-detection stage is the first of three stages in which a pixel is 

identified as having consistent signal. In determining signal, a background model is developed, 

and a signal-to-background ratio (SNRB) is computed. For each pixel, a temporally sliding 

window is used to establish mean (𝜇𝑏𝑘𝑔) and standard deviation (𝜎𝑏𝑘𝑔) statistics of the 

background. The sliding statistical background window (in history) is separated from the present, 

current frame’s pixel, by a temporal buffer. The separation provided by the buffer allows for 

both fast and slow changing signals to be sensed for elevated SNRB, where SNRB is defined as 

SNR𝐵 = (𝑝𝑖𝑥𝑒𝑙𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝜇𝑏𝑘𝑔) 𝜎𝑏𝑘𝑔⁄  (2.1)  

Clearly, pixels can exhibit high SNRB when the value of the current pixel is drastically dissimilar 

from the history of background. This, however, can occur quite often when there is movement in 

the scene or apparent motion due to the movement of a camera system which is sensitive enough 

to detect changes in the background.  

Detection 
• Extract shot signature (start / stop time) 

• Deviation from background, change in slope at rise, signal return to 
percentage of peak 

• Measure signature duration 

• Width at 10% of peak 

• Measure shape 

• Temporally / intensity normalize signature into 10 samples 
• Peak location, decreasing tail, energy distribution, rise slope, 

decreasing Δ slope 

• Measure amplitude 

• Change in digital numbers (DN) from background 

• Measure neighboring pixels 
• Neighborhood summation 
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Scene motion can be addressed through multiple approaches. One solution to minimize 

scene motion is to use image registration techniques, but this method can potentially be 

computationally expensive. Alternatively, a smoothing filter can be used to diminish the effects 

of sharp edge transitions from moving objects due to real motion or parallax. A smoothing filter 

could potentially reduce actual hostile fire signals. Instead, to reduce the number of false pre-

detections evaluated, the frames used to produce background statistics are first spatially filtered 

for local maximums. The maximum filtering can be accomplished by a sliding 2-D window, 

which returns a local neighborhood maximum at each pixel. The result of the filtering process is 

a reduction in scene variability, even during motion. The filter can potentially be applied to the 

current frame without loss of peak signal from hostile fire events. By applying the filter on the 

current frame, hostile fire events can more easily be tracked for consistency across multiple 

pixels. In addition, more hostile fire target pixels will be sensed, but clusters of false alarms may 

be generated as well. Clusters of pre-tracks, whether signals from hostile fire or false alarms, are 

addressed later in the pre-detection stage. A moving sensor platform, range of targets, 

instantaneous field of view (IFOV), frame rate, and duration of hostile fire event are factors to 

consider for applying the maximum filter on the current frame. When hostile fire motion is not 

significant within the period of regard, simply sensing the peak pixel is adequate for detection 

and improves efficiency. 

At each frame, each pixel’s SNR𝐵 is assessed as to whether it exceeds a given threshold. 

Pixels which exceed the given SNR𝐵 threshold for a consecutive number of frames are noted as 

pre-tracks. If indeed, the pixel corresponds to a hostile fire event, then a finite amount of time is 

needed for the hostile fire signature to develop and decay. Given prior knowledge of hostile fire 

duration times from field collected data, pre-track pixels are investigated at a set m-number of 
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frames in the future, as shown in Figure II.3. This of course introduces a set amount of latency 

into the process. An alternate method would be to dynamically evaluate the hostile fire signature 

as it develops. The dynamic evaluation was not pursued in this investigatory study. 

After the hostile fire signature has been allowed to mature, only pre-track pixels are 

reviewed. All pre-track pixels within a spatial neighborhood of an arbitrary pre-track pixel are 

evaluated in the m-number of frames in history which were required for the hostile fire signature 

to develop. The pixel with maximum value is returned and the rest are discarded. The intent here 

is to extract the pixel with the peak signal value for further processing to determine shot 

detection, and limit processing on redundant information. Once a detection is made, neighboring 

pixels can be considered for further discrimination or performing classification. The pixel found 

to contain the peak signal, deemed a pre-detection, is then supplied to the detection stage. 

Depending on system parameters, such as spectral bandwidth and sensitivity, and also 

scene content and motion, a large number of pre-detections can possibly occur. These pre-

detections are then evaluated in the detection phase. To minimize the number of required 

evaluations, one observation can be made concerning the frequency in which pre-detections 

occur for a single pixel. For a real hostile fire event, as the pixel is tracked, the sliding statistical 

background window shifts across the shot signature. During this time, it is unlikely a new event 

will be detected due to the significant background statistics generated by the hostile fire event. 

Given expectations of minimal durations of hostile fire events, a minimal duration can be set 

between pre-tracks on the same pixel. Therefore, if a second pre-track occurs under the minimal 

duration between pre-tracks, the first pre-track can be immediately discarded without further 

analysis. This will both remove unnecessary evaluations and also minimize the number of pre-

tracks maintained for each pixel.  
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Figure II.3. An illustrative example depiction of the pre-detection evaluation process, which 

assesses pixels that deviate from the statistical background after a period of time. 

Detection 

At the detection stage, the potential hostile fire signature is extracted from the pre-

detection. Recall that a pre-detection is a pixel which varies from the background and has the 

peak intensity within a local (spatial/temporal) region. For a real, physical, hostile fire event with 

known peak, there exists a limited time in which energy is injected into the system, forming the 

rise time, and a duration in which a significant amount of the energy escapes the system, or fall 

time. Based on measurements from real data, a reasonable temporal window can be defined, 

surrounding the pre-detection at the location of peak intensity, in which there can be expectations 
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for the full hostile fire signature as having occurred. Thus, the hostile fire signature is extracted 

from the single pre-detection pixel within these temporal bounds. 

The extracted hostile fire signature is the basis for performing additional measurements 

used in discrimination and classification. For a single pixel, a start and stop time establish the 

hostile fire signature. Variations in the start and stop times, however, can potentially yield 

variations in additional measurements. It was found that using the statistical background window 

and buffer system, as described previously, to determine variation from the background, was 

adequate in most cases for determining a start time. The fast rise in signature, when a true hostile 

fire event occurs, will be detected immediately as varying from the background. In some cases, 

though, noise will produce a premature start time measurement. Observing that the signal 

intensity of hostile fire events suppress signal noise, hostile fire signatures typically exhibit a 

positive slope until the peak is reached. Investigating the slope of the signal at the start time for 

negative values can potentially delineate between background noise and hostile fire signature, 

and give greater confidence in start time measurements. The stop time can also be evaluated with 

a statistical background window and buffer system. In this case, the background is established 

post-shot, and the signal is retraced to find variations, which returns the stop time. Once again, 

greater confidence can be placed in this measurement by analyzing the tail of the signature. The 

exponential decay of the signature can allow for noise to be captured in the tail of the signature 

as it approaches the background. A simple slope check may not be suitable. Another method is to 

determine when the signal intensity returns to a percentage of the peak intensity. Additionally, 

the standard deviation of the signature can be investigated to disclose when the signature 

standard deviation returns to a value similar to the pre-shot background. These additional 
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measures can give greater confidence that only the hostile fire signature is extracted completely, 

and consistently, for every shot. 

For an extracted signature, temporal duration and shape features are measured to verify 

the detection of an actual hostile fire event. Initial analysis showed temporal duration to be 

drastically different between noise spikes, small arms hostile fire, and large arms hostile fire, and 

so, became subject to inquiry. Multiple techniques for measuring signature duration were 

explored. Clearly, the start and stop times provide a measure of signature duration. An alternate 

method is to measure the width of the signature at a percentage of the peak. Analysis was 

performed measuring widths at 10% and 50% of the signature peak (see Figure II.4). Another 

method is to measure the duration needed to reach 95.45% of the area under the curve. 

Additionally, treating the signature as a Gaussian distribution, and defining four standard 

deviations as the signal duration was considered. For a Gaussian distribution, 95.45% of the 

energy is contained under the curve within ± two standard deviations from the mean. Similarly, 

treating the signature as an uneven distribution also led to a measure of signature duration. 

Moreover, the related measures of rise time and fall time were analyzed. 
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Figure II.4. An illustrative example of a hostile fire signature depicting the width measured at 

10% and 50%. 

The signature duration can be used as a primary discriminator for detection, but to 

minimize false detections, further signature analysis is required. Signature features which 

characterized shape qualities were assessed. Signature intensity and duration can vary 

dramatically across and within threat classes, yet still maintain a distinct shape or distribution 

typical of hostile fire signatures. In order to expand false alarm rejections, as well as compare 

shape features from different classes on the same scale, the signature was integrated temporally 

into a standard number of samples and then normalized in intensity (see Figure II.5). The number 

of samples was arbitrarily chosen at 10. It is recommended that the chosen number of samples be 

small enough to eliminate the effects of noise and irregularities in the signature, while still 

maintaining observed trends in shape features. The data reduction can also allow for the samples 
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themselves to be used as features for discrimination and classification. In analyzing the 

normalized signatures, it was found that actual hostile fire event signatures exhibit a peak at 

consistent locations, contain more than 70% of their energy within the first half of the signature, 

experience the greatest change in energy at reliable intervals, and decrease monotonically after 

the peak has occurred. In addition, signature tails have an exponential decay, such that the 

change in signal monotonically decreases. It should be noted that these measures demonstrate 

consistency when initial signature start and stop times are consistent. Thus, recorded signatures 

which extend beyond the actual hostile fire event, or perhaps, exclude a portion of the hostile fire 

event, may not display the same regularities. 

 

 

Figure II.5. (Above) A hostile fire signature.  (Below) An illustrative example depicting the 

concept of temporally and intensity normalized signatures (above). 
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The methodology for detection presented thus far requires only a single pixel on target 

and is system independent. The hostile fire event need only be observed in a single pixel for a 

detection to occur. In real data, however, strong intensity of hostile fire events and optical blur 

can lead to a hostile fire signal being observed in multiple pixels, even when the event is sub-

pixel. This phenomenon can be capitalized upon by using multiple pixels in the detection process 

to give greater confidence that a true hostile fire event has occurred. One approach to reject noise 

is to investigate the covariance and correlation of neighboring pixels using a sliding temporal 

window. This method can be computationally expensive, however. Another approach is to 

median filter pixels within a local spatial neighborhood. Neighboring pixels which detect the 

hostile fire event will exhibit temporal signatures similar in shape and duration. Median filtering 

will extract a local signature if more than 50% of the pixels within the neighborhood contain 

signatures. A summation can also be used, but in this case, a single extreme pixel can dominate 

the results. For a real hostile fire event, the result of the median filter and the result of the 

summing filter will also generate a comparable signature. In the former, because each frame is 

median filtered spatially, noise can be introduced in the resultant signal. A more robust approach 

is to use a combination of the two methods and compute an average of values near the median 

value. This has the effect of eliminating outliers and noise, while retaining the general shape of 

the hostile fire signature. Shape features can then be extracted, however, these features may not 

coincide exactly with values measured from the maximum pixel and an alternate set of 

constraints may be more appropriate. The strong intensity of hostile fire events can also be 

potentially exploited by modeling the sensor system and predicting the expected digital number 

counts produced. These predictions can be used to exclude noise and clutter which exhibit 

similar shape as hostile fire, but not the anticipated signal amplitude. It should be remarked that 
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the intensity rejection approach can possibly limit the system’s ability to detect non-ideal threats. 

Threats which are out-of-focus, attenuated due to atmosphere and range, or are possibly 

obscured, may exhibit significantly reduced signal. These are possibilities which should also be 

accounted for. 

 Classification 

In an early analysis of the data, certain features were found to have greater reliability and 

less variation. Initially, multiple methods of measuring signal duration were investigated. The 

width at 10% peak height, the width at 50% peak height, the width at 95.45% of the area under 

the curve, the width as measured by four standard deviations, and also the width measured as 

four standard deviations treating the signature as an uneven distribution. Though all measured a 

real phenomenon and yielded similar values, the 10% width and 50% width provided the least 

variation and greatest separation between threat classes. The separation between any two threat 

classes was measured in units of RMS standard deviations defined as  

RMS standard deviation = √0.5 ∗ (𝑠𝑡𝑑1
2 + 𝑠𝑡𝑑2

2) (2.2)  

where stdi is the standard deviation of class i. The classes also showed the greatest degree of 

separation in the LWIR data. Additionally, temporally/intensity normalized signatures and 

signature fall time duration also demonstrated less variability in the LWIR. With the exception of 

the 50% width, these features are calculated in the detection phase. In a preliminary analysis, the 

10% width, the 50% width, fall time, and the 10 temporally/intensity normalized samples were 

used as features for classification. 
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Results 

Detection 

The hostile fire detection algorithm was tested against real data of threats consisting of 

CLASS 1, CLASS 2, and CLASS 3 hostile fire. Data was collected for these threats over the 

course of four data collections. The environments consisted of freezing temperature and snow, 

warm desert, and moderate green fields with tree lines. Each threat class appeared across at least 

two of the three environments.  Within each threat class, there existed at least two variations of 

each threat type. In total, approximately 116 hostile fire events were used in this analysis. The 

probability of detecting hostile fire events using data collected from MWIR-1, MWIR-2, and 

LWIR 600 Hz imagers is depicted in Table II.1. 

Table II.1. Probability of detection for hostile fire events using data collected from MWIR-1, 

MWIR-2, and LWIR imagers. 

 

Original Data 600 Hz 

Node Total Detects Prob Det 

MWIR-1 115 115 100.00 

MWIR-2 116 116 100.00 

LWIR  116 116 100.00 

 

The performance of the hostile fire detection algorithm is not only measured in its ability 

to detect hostile fire events, but also in its ability to reject false alarms due to noise and clutter. 

For this reason, data was collected of potential false alarm clutter sources. The data was collected 

on-the-move from scenes containing sun glints on cars in parking lots, sun glints on the Potomac 

River, direct sunlight through tress, sodium lights, moving car headlights, 60 Hz welding, and a 

burning barrel and flares. The data was collected at speeds ranging from 5-15 mph. In total, 107 
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videos were collected, each of which was 101 seconds in duration. The false alarm data was 

collected over three days, one of which was cloudy, while two were sunny.  

Table II.2 shows a breakdown of the number of false alarms generated on the cloudy day as a 

result of each layer of discrimination in the detection scheme, and also as a result of clutter 

environment type. For the detection scheme, the number of pre-detections is shown, as well as 

the number of pre-detections after the max window is applied. Each column thereafter refers to a 

successive layer of discrimination based on 10% peak-width, the peak location, monotonically 

decreasing tail, energy distribution of signature, and slope of signature rise, respectively. It is 

clear that application of the maximum filter window significantly reduces the number of pre-

detections evaluated. Also, LWIR imagery generates significantly more false alarms. This is due 

to terrestrial objects at approximately 300 K having a peak emittance in the long wave spectrum, 

but having significantly lower emittance in the mid-wave spectrum. For a sub-band filtered 

MWIR imager, with a high noise equivalent temperature difference (NETD), these objects are 

not observed, but in the LWIR, moving terrestrial objects can be a source of false alarms. Recall 

that pre-detections are essentially locations which deviate from the statistical background. In a 

moving scene, with moving objects and parallax causing occlusion, there can be considerable 

deviation from the current scene and established statistical backgrounds. In Table II.3, false 

alarms are generated as a result of processing all of the cloudy and sunny days. It can be 

observed that MWIR images have a significant increase in false alarms due to solar reflection. 
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Table II.2. On-the-move false alarm results for a cloudy day. (Top) False alarms after each layer 

of filtering. (Bottom) False alarms per clutter environment. 

Node 
Pre- 

Detections 

Max  

Window 

10% Peak  

Width 

Peak  

Location 
Decreasing 

 Tail 
Energy  

Distribution 
Rise 

 Slope 

MWIR-1 7,145,484 384,452 18,869 6,593 299 150 97 

MWIR-2 7,600,653 522,733 75,898 25,273 445 132 19 

LWIR 76,295,818 29,953,062 3,034,770 932,226 242,949 122,552 50,831 

 

 

Node 
Water 

Car 

Glint 

Sodium 

 Lights 

Sun 

Through 

 Trees 

MWIR-1 0 0 0 97 

MWIR-2 2 1 0 16 

LWIR 14,149 29,297 6,405 980 

Table II.3. On-the-move false alarms across cloudy and sunny days per clutter environment. 

General trends in false alarm rates per spectral band and across environments can be observed. 

Node 
Water 

Car 

Glint 

Sodium 

 Lights 

Sun Through 

 Trees 

Head  

Lights 

Burning  

Barrel 
Welding Total 

MWIR-1 464 3403 0 225 50 105 0 4247 

MWIR-2 29 506 0 535 1 14 1 1086 

LWIR 35996 67050 6405 2452 8980 746 3 121632 

 

 

Initial results of probability of detection and associated false alarm rates provide a 

baseline measure of algorithm performance. With 100% probability of detection, a favored 

approach is to restrict the detection process to reduce false alarms, while maintaining acceptable 

probability of detection levels. There is a tradeoff, however, with restricting the detection process 

and testing on an incomplete data set. The detection scheme should be able to accept new data, 

as additional data is collected for testing. Beyond algorithmic tradeoffs, there are system level 
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tradeoffs that can affect the performance of the algorithm, such as frame rate, IFOV, and noise 

equivalent irradiance. 

The effects of frame rate reduction on algorithm performance were analyzed. The frame 

rate was reduced by temporally downsampling the original 600 Hz data. The data collection 

imager samples pixels at a significantly higher rate than the readout rate of 600 Hz. For example, 

removing every other frame, yielding 300 Hz data, is an accurate representation of the camera 

output operating at 300 Hz. In this case, integration prior to downsampling would not accurately 

reflect the operation of the particular sensor used in this experiment. Using this methodology, 

original 600 Hz data can easily be processed at 300, 200, 150, 120, 100, 75, and 60 Hz. Results 

of reducing the frame rate and computing the probability of detection are shown in Figure II.6. 

Here, the frame rates were reduced by removing frames. In each case, the starting frame was 

shifted in phase to represent all possibilities. Thus, if every other frame was used, generating 300 

Hz data, the experiment was run 2 times with starting frames at 1, and 2. It is clear that high 

performance is maintained in the MWIR-1 and LWIR using frame rates as low as 100 Hz. The 

MWIR-2 reduces probability of detection more dramatically. One possible explanation for these 

reductions is that the algorithm is based upon assumptions of shape and relative positions of 

those shape features. Due to the fast rise times of hostile fire events, and depending on the phase 

shift of the starting frame, a removal of 6 frames could cause a notable change in the signature. 

The frame and time at which the peak occurs in the original sampled data may not be represented 

in the downsampled data. Depending on the phase, the peak may appear earlier or later, with 

respect to the full signature. Lower frame rate data also received fewer samples in the 

background population statistical window. Data with low SNR and exhibiting a noisy 

background, such as the MWIR-2 data, could have reduced accuracy in determining start and 
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stop times, affecting measured rise times and relative peak signal locations. Furthermore, frame 

rates at 75 Hz or lower, may not generate enough samples across the signature. The algorithm 

normalizes the signature to 10 intervals. Thus, signals with fewer than 10 samples are upsampled 

and as a result, shorter duration signals are more easily rejected. The algorithm was not 

optimized for performance at each frame rate. Performance can be improved by relaxing 

restrictions to accommodate the increased variability, but the increased probability of detection 

will also yield an increase in false alarms. 

 

Figure II.6. Probability of detection plotted against frame rates for MWIR-1, MWIR-2, and 

LWIR broadband hostile fire data. 

To better understand the effect of reducing the frame rate, false alarm data was 

recalculated using the same frame rate reduction process. Two false alarm videos, which were 

known to have a high number of false alarms in all bands were selected. Figure II.7 actually 

displays a reduction in false alarms at 300 Hz, which then begins to increase as frame rates are 

reduced further. These results were unexpected, but were helpful in identifying limitations on the 

implemented algorithm. As stated earlier, lower signal data near the noise floor may be 
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temporally clipped, yielding temporal shapes that do not resemble hostile fire signatures. 

Moreover, as frame rates are continued to be reduced, the number of frames required for a pixel 

value to be consistently above the background are reduced. Thus, the number of pre-detections 

drastically increases at lower frame rates. 

To remove the effect of low signal noise and clutter, hostile fire data was empirically 

analyzed to determine average digital number (DN) counts above background. Outliers in the 

hostile fire data with reduced DN counts, such as out-of-focus data, were removed. Pre-

detections which did not achieve one-third of the average hostile fire signature, were rejected. As 

a result, the unexpected decline in false alarms at 300 Hz is removed, as shown in Figure II.8. 

Though only the MWIR-1 data is shown, the MWIR-2 and LWIR data experience similar trends. 

At 75 Hz, it is theorized that the system does not receive enough samples to accurately detect 

targets, based on the detection parameter settings used. Note that the detection rate and false 

alarm rate are significantly reduced at this frame rate. 

 

Figure II.7. Detected false alarms for varying frame rates. Low signal noise and clutter, and also 

reduced samples for background statistics and detection affect the false alarm rates. 
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Figure II.8. Detected false alarms for varying frame rates. Low signal noise and clutter are 

removed. 

To further reduce false alarms, multiple pixels in the neighborhood of the pre-detection 

pixel are analyzed. Pixels from a 3x3 neighborhood were summed at each frame to produce a 

neighborhood signature summation profile. In the same fashion, neighborhood pixels were 

ordered, and the median was extracted. Initial results of median profiles were poor and an 

average of pixels near the median was used to generate a temporal profile, instead. In terms of 

false alarm reduction, the neighborhood summation and median-average filters performed nearly 

identically. The neighborhood summation filter maintained 100% probability of detection in all 

bands, while the median-average filter had slightly reduced probability of detection rates of 99%, 

98%, and 96% for the MWIR-1, MWIR-2, and LWIR, respectively. In considering the reduced 

probability of detection rate, increased processing, and negligible advantage in false alarm 

reduction, the median-average filter was not further pursued in this analysis. 

Classification 

Classification was performed using linear discriminant analysis (LDA), quadratic 

discriminant analysis (QDA), support vector machine (SVM), and classification tree (Tree) 

classifiers. The models were evaluated using leave-one-out cross-validation. The classifiers 
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LDA, QDA, and Tree were trained using the 13 features, denoted as the 10% width, the 50% 

width, fall time, and the 10 temporally/intensity normalized samples, to discriminate between 

CLASS 1, CLASS 2, and CLASS 3. The results are shown in Table II.4. A layered approach was 

used for the SVM classifier, which first classified targets as either CLASS 1 or CLASS 

2/CLASS 3. For this first layer, it was found that the duration features of 10% width, 50% width, 

and fall time were sufficient to discriminate CLASS 1 threats from other threats in the data set. A 

second SVM classifier was used to then differentiate the remaining threats of CLASS 2 and 

CLASS 3, using all 13 features. For comparison, the classifiers LDA, QDA, and Tree were also 

used in a binary layered approach, mimicking the features used for the SVM layering. These 

results are also provided in Table II.4. For the total probability of classification, prior class 

distributions were taken into account as weighting factors for each layer. The total probability of 

classification can then be compared to the single layer probability of classification, but the 

results of each layer can help to identify potential difficulties in individual discriminations. For 

this data set, QDA and SVM showed the greatest level of performance amongst the classifiers 

evaluated. From the results, it can be observed that CLASS 1s are more easily classified for this 

data set, while CLASS 2 and CLASS 3s are less separable. 

Table II.4. Classification results of LDA, QDA, Tree, and SVM using leave-one-out cross 

validation. 

 

Classification Results 
 Threat Classes Features LDA QDA Tree SVM 

Single Layer 
Class1,Class2, 

Class3 

Duration and 

Shape 
93.97% 95.69% 92.24% N/A 

Double Layer 

(1) 

Class1, 

Class2&3 
Duration 92.24% 99.14% 100.00% 100.00% 

Double Layer 

(2) 
Class2,Class3 

Duration and 

Shape 
96.97% 98.48% 86.36% 93.94% 

Total (1 & 2)   93.96% 98.90% 95.05% 97.80% 
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The results of the preliminary classification analysis are promising, but assume that all 

inputs are one of the three hostile fire classes. In order to further reject false alarms from the 

detection stage, an additional false alarm class can be established for classification. The space of 

potential false alarms is unknown and can be difficult to define. False alarms in one environment 

may display different characteristics than false alarms in another environment. Two approaches 

to classifying the unknown false alarm class are presented here. One approach, defined here as 

“dynamic distance,” attempts to adapt the false alarm class to the changing environment, while 

the second approach, defined here as “layered distance,” relies on the hostile fire class being 

accurately represented. 

Providing a representation of possible sources of false alarms in varying prospective 

environments can be a challenge due to incomplete knowledge of all possible false alarm 

sources. The concept of the first approach is to provide a representation of the false alarms in the 

current environment and adapt to changing environments. In this first approach, it is assumed 

that the system is provided with a set of initial false alarms from the current environment. This 

false alarm seed could be determined during an initialization period. The initial false alarm seed 

is stored in a buffer. As new inputs are classified as false alarms, they are stored in the buffer, 

replacing older false alarm observations. The buffer, therefore, stores the most current 

representation of the false alarm class. The classifier is then reconstructed periodically to reflect 

the current false alarm class and the static hostile fire classes (see Figure II.9). This dynamic 

false alarm adaption assumes that the current scene false alarms can be represented by a single 

class. A possible improvement, such as using a k-means clustering, could entail dynamically 

adapting the number of false alarm classes to provide the greatest clustering of false alarm 
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classes, while minimizing the number of false alarm classes. There is also the assumption that 

the false alarm class will not accept and incorporate real hostile fire into the false alarm class. 

 

Figure II.9. Classification scheme “dynamic rejection” incorporating dynamic false alarm class 

updating. 

The second approach does not rely on knowledge of the false alarm class, but rather relies 

on knowledge of the hostile fire class. For the results in Table II.4, the solution space is 

partitioned into three regions, reflecting the hostile fire classes. Thus inputs, which may not be 

similar to any of the three hostile fire classes are forced into one of those three known classes. 

The second approach applies a distance metric to the input in conjunction with the layered 

classification scheme shown in Table II.4. The goal is to reject inputs that are not similar to any 

hostile fire class, while still discriminating between real hostile fire events. A binary layered 

decision tree, similar to the layered approach discussed previously, is used for classification. The 

approach is modified so that at each classification of threat, a distance value is measured from 

the threat class. Inputs classified as a particular threat, but which are dissimilar from the threat, 

are rejected and labeled as false alarms. The decision scheme is illustrated in Figure II.10. The 
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distance metric, the normalized Euclidian distance, uses all 13 features previously discussed, and 

is defined as 

Normalized Euclidian Distance =
√

∑ (
𝑥𝑖 − 𝜇𝑖

𝜎𝑖
)
2

𝑛
𝑖=1

𝑛
 

(2.3)  

where 𝑥𝑖 is the 𝑖 th of 𝑛 observation features. Additionally, 𝜇𝑖 and 𝜎𝑖 are the mean and standard 

deviation of the corresponding population feature. The classification approaches were tested 

against the events A and B, used in the frame rate reduction analysis. The QDA classifier was 

chosen due to high performance results in the three class problem, but is not inherent in either 

approach. In Table II.5, the results of the classification approaches are provided. The initial false 

alarms generated from the detection stage, using the summation filter, are also listed for 

comparison. An improvement in false alarm reduction is evident by the results. In testing against 

the actual hostile fire data, a correct classification rate of 99.08% was achieved by the dynamic 

rejection approach, and a correct classification rate of 98.28% was attained by the layered 

distance approach. 

 

Figure II.10. Classification scheme “layered distance” to include false alarms as an additional 

class by measuring the distance from the respective class. 
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Table II.5. False alarm reduction from the detection stage, using an adaptive false alarm class 

approach, and a distance from hostile fire approach. 

LWIR 600 Hz False Alarms 

 Detection 

Stage 

Dynamic 

Rejection 

Layered 

Distance 

Event A 217 3 13 

Event B 3623 356 220 

Discussion 

Ground, on-the-move, hostile fire detection, with near and far field scenery is a complex 

problem. Real hostile fire data was collected in multiple environments, which included various 

scenery, temperatures, and humidity. For each threat class, at least two types are represented in 

the data set and each threat class appears in at least two environments. On-the-move false alarm 

data was also collected. An algorithm using low computational complexity temporal and shape 

features, such as duration, rise time, and integrated samples, was shown to have high probability 

of detection, but also high false alarm rates. MWIR bands yielded significantly fewer false 

alarms, but showed a dramatic increase due to sun glints. The LWIR band provided better 

imaging of terrestrial scenery, but also suffered false alarms due to motion. Features measured 

from LWIR hostile fire demonstrated consistency and were suitable for performing 

classification. Threat classification for the three-class problem of distinguishing hostile fire, was 

extended to include a false alarms class. Two methods were provided for potentially removing 

false alarms at the classification stage. 

An analysis was conducted to determine the suitability of reducing frame rates. Without 

optimization the algorithm was tested at lower frame rates. Due to the longer time constant of the 

cameras used, hostile fire signatures are observed for longer durations. Even at reduced frame 

rates as low as 100 Hz, hostile fire signatures could be detected at rates greater than 94% for 
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MWIR-1 and LWIR. An effect of the time constant is also reduced signature amplitudes. MWIR-

1 and LWIR yielded higher signature amplitudes than the MWIR-2. The algorithm was found to 

be sensitive to the reduced signatures of the MWIR-2 band and, as a result, performed poorly in 

this band at reduced frame rates. False alarms were reduced after filtering low signal noise and 

clutter, but this filtering process makes an assumption about the system’s anticipated DN counts 

for hostile fire. Additionally, neighboring pixels were considered for evaluation. At longer 

ranges, hostile fire will become sub-pixel, and detection of signatures in neighboring pixels is a 

result of optical blur and signal intensity. These filtering processes were successful in removing 

false alarms, but could impact maximum range performance, as they rely on signal strength. 

Though the false alarm problem is not completely solved using these techniques alone, 

there are a few observations which can be made. Lower frame rate cameras are more 

commercially available. The high frame rate data for this work was collected at the cost of 

windowing the field of view. A larger field of view can provide greater situational awareness. 

The LWIR band, used for imaging terrestrial scenes and providing situational awareness, also 

displayed an ability for capturing high intensity, consistent signatures suitable for detection and 

classification. The LWIR severely suffered from false alarms when used for on-the-move hostile 

fire detection. The MWIR-1 band generated far fewer false alarms, presenting itself as a better 

candidate for detection. A two-channel system, using MWIR-1 for detection and LWIR for 

classification and situational awareness could be feasible. LWIR data could be used in further 

discriminating false alarms, while MWIR data features could help to improve classification. 

Additionally, registration could potentially be performed on LWIR data improving false alarm 

reduction. These are areas that will be under further study in the future. 
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III. CLUTTER MITIGATION METHODOLGIES 

Introduction 

In this chapter, clutter rejection techniques are addressed. The detection process, 

identified in Chapter 1 is adopted. Beyond the detection stage, a classifier scheme is presented, 

which not only classifies weapon fire by weapon type, but also mitigates clutter in a dynamic 

environment. Methods are also provided to minimize processing and memory requirements, 

making the methodology practical in application. 

 Problem description 

An improved methodology for practical implementation of weapon fire detection. 

Demonstrates an improved methodology for increased clutter rejection, making said approach 

feasible. Also provides methods to allow for real time implementation, using practical sensor 

parameters (frame rate, sensitivity, processing computations). 

Methods 

Signatures 

In this paper, a hostile fire detection and location algorithm is described in which 

temporal duration and shape are exploited. Hostile fire temporal signatures analyzed exhibit a 

fast, sharp, rise in intensity, followed by a slower, exponential decay. The exponential decay is 

partially due to the time constant of the sensors used to collect the signatures for this study. 

These signatures were collected using a LWIR, MWIR-1, and MWIR-2 sensor operating at 600 

Hz. An example of temporal signatures is shown in Figure III.1.The signatures were collected at 

600 Hz frame rate, and downsampled to 120 Hz. Hostile fire signatures can demonstrate 

significant variability for different threats, which can increase the complexity of target 

discrimination. Examples of this variability include saturation, signal from booster motors, 
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elongated tails, and noisy signals. At 120 Hz, the high frequency effects of noise and saturation 

are reduced, however, information and signal fidelity are also reduced. A successful hostile fire 

algorithm must handle these variabilities.   

 

Figure III.1. An example of hostile fire signatures. 

Algorithm 

Introduction 

The hostile fire detection and location algorithm presented in this paper builds upon the 

work of Chapter 2, in which an initial detection scheme using single band imagery is provided 

along with potential clutter mitigation techniques using classification schemes. This chapter will 

focus on work which extends the detection and classification process, and the reader is referred 

to the prior chapter for a detailed explanation of these previously described methodologies. The 

algorithm presented in this chapter is composed of three stages, pre-detection, detection, and 

classification. 
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Pre-Detection 

The pre-detection stage identifies pixels which have consistent signal above the 

background. In determining signal, a background model is developed, and a signal-to-

background ratio (SNRB) is computed. For each pixel, a temporally sliding window is used to 

establish mean (𝜇𝑏𝑘𝑔) and standard deviation (𝜎𝑏𝑘𝑔) statistics of the background. The sliding 

statistical background window is separated from the current frame by a temporal buffer. The 

separation provided by the buffer allows for both fast and slow changing signals to be sensed for 

elevated SNRB, where SNRB is defined as 

SNR𝐵 = (𝑝𝑖𝑥𝑒𝑙𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝜇𝑏𝑘𝑔) 𝜎𝑏𝑘𝑔⁄  (3.1)  

To more easily identify hostile fire across multiple pixels, when apparent scene motion is 

present, each incoming frame is first preprocessed using a local maximum filter. Pixels which 

vary from the background are tracked to determine whether a consistent signal persists over a 

duration of time. Pixels which exhibit persistent signal above the background are recorded as 

pre-tracks. These recorded pre-tracks are evaluated after a set period of time (𝑚 -frames), in 

which any potential hostile fire signature would complete. Thus, at each frame, pre-tracks can be 

recorded and each pixel has the potential to be a pre-track during these 𝑚-frames. To minimize 

the number of recorded pre-tracks, the pre-tracks of each frame can be associated or grouped 

with neighboring pre-tracks. This grouping can be performed both spatially and temporally, 

reducing the number of recorded pre-tracks to be evaluated.  

An alternate option to grouping, is to use an 𝑛 -window memory system, where each 

window is the size of the image frame. Each window is able to record the pixel location of pre-

tracks and when they occurred. For an 𝑛-window system, 𝑛 pre-tracks can be recorded at each 

pixel location. For 𝑛 < 𝑚, there is the possibility that not all pre-tracks will be recorded. The aim 
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is to reduce the recorded pre- tracks to a limited, fixed number, yet maintain pre-tracks from 

actual hostile fire events. Given that the occurrence of real hostile fire signatures dominate the 

statistical background and suppress new pre-detections from occurring on a pixel during the 

event, and using knowledge of hostile fire event durations, a minimum duration threshold 

between pre-tracks can be determined. Thus, if two pre-tracks occur on the same pixel within the 

threshold period, the first occurrence of the two pre-detections can be discarded immediately. 

This process, in effect, filters out high frequency noise and clutter. The 𝑛-window system is 

similar to an ordered list. The most recent recorded entry can be overwritten if it is deemed 

noise, and the 𝑛𝑡ℎ entry is repeatedly overwritten while the ordered list is at capacity (see Figure 

III.2). Entries are normally removed when they are analyzed m-frames after being added. To 

ensure that hostile fire events are not overwritten, the number of required windows, 𝑛, can be 

estimated by  

𝑛 ≥ 𝑚 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑖𝑛 𝑓𝑟𝑎𝑚𝑒𝑠⁄  (3.2)  

The minimum duration threshold takes into account the (minimum) expected duration of hostile 

fire events, as well as the statistical background window, buffer window, and the pre-track 

persistence threshold. If expected durations of hostile fire signatures vary significantly, the 

process should accommodate longer duration events in the 𝑚-frame evaluation period, and the 

potential of multiple smaller duration events occurring in the same 𝑚-frame evaluation duration. 

Alternately, the evaluation can occur in parallel, such that an 𝑛 -window memory system is used 

to evaluate longer duration events within an 𝑚-frame evaluation period, and an alternate 𝑛 -

window memory system is used to evaluate shorter duration events within an 𝑚′-frame 

evaluation period. This can allow shorter duration events to be processed with less latency. The 

window system sets the maximum memory storage which is used to store pre-detections. In 
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Chapter 2, it was observed that a significant number of pre-tracks can occur. A non-prioritized 

and unbounded memory assignment of pre-tracks can lead to reduced processing time, and also 

lead to missed detections. 

 

Figure III.2. Diagram depicting pre-detection memory storage process using an 𝑛 -window 

memory system, where 𝑛 = 2, (1: primary and 2: backup). Here, the second detection is greater 

than the minimum duration threshold. Subsequent detections are overwritten in the backup 

window. 

Pre-tracks are evaluated after a set period of time, in which the hostile fire signature is 

allowed to complete (see Figure III.3). The evaluation is as described in Chapter 2. It should be 

noted that concept of selecting a maximum pre-track within a neighborhood is analogous to 

grouping multiple pixels, with the intent of returning a single representative pixel. This serves 

the dual purpose of accurately representing targets and reducing false alarms, as well as reducing 

the amount of data for further processing. The condensed data reduces memory usage and 

processing times. 
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Figure III.3. A depiction of the pre-detection evaluation process, which assesses the pixels that 

deviate from the statistical background after a period of time. 

Detection 

At the detection stage, potential hostile fire signatures are extracted from pre-detections. 

Pre-detection pixels are investigated within a temporal window surrounding the peak signal 

intensity value. The temporal window is determined using knowledge of hostile fire signature 

durations. The signal within the temporal window is extracted. The extracted signal is measured 

to determine the actual start and stop times of any hostile fire signature within the window. 

Accurate measurements of the start and stop times ensure that the signature is extracted 

completely without additional unwanted background clutter. The statistical background and 

buffer system is applied to determine start time. Stop time can also be found using the same 

method, where background is established post-shot and the signal is retraced in reverse. The start 

time is verified by investigating changes in slope near the initial rise of the hostile fire signature. 
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Additionally, measuring when the signal rises and returns to a percentage of the peak value, is 

used to verify the consistency of start and stop times. Though noise can often be found in the tail 

of hostile fire signatures as the signal exponentially decays toward the background, an averaging 

filter can be employed to investigate slope and intensity changes to verify the stop time. 

Accurate, complete, and consistent hostile fire signature extraction forms the basis for signature 

metrics and features.  

An extracted temporal signature, within measured start and stop times, is analyzed for 

duration and shape features. The signature rise time to the peak and the fall time of the 

exponentially decaying tail are measured. The widths at 10% and 50% of the signature peak 

value also yield measures of duration. To measure shape, the signature is temporally resampled 

into a standard number of samples and then normalized in intensity, as shown in Figure III.4. It 

was determined that a 10 sample total was sufficient to mitigate noise yet maintain general 

characteristics of shape. The temporally resampled and normalized signatures provide reliable 

measures, such as the greatest change in consecutive samples, the distribution of energy, 

presence of a monotonically decreasing tail, and an exponential decay within a portion of the tail. 

The change in intensity between the background and signature peak is also measured, to ensure 

that low intensity noise and clutter are discarded. Thus duration, temporal shape, and intensity 

scale are captured. The methods described in this dissertation primarily address temporal aspects 

of hostile fire signatures. A measure of the spatial characteristics of hostile fire can be found by 

summing spatially neighboring pixels of the extracted signature. The summation is performed at 

each frame, generating a temporal summation profile. The summation profiles of real hostile fire 

events exhibit similar duration and shape characteristics to single pixel profiles. To reduce 

processing of unwanted noise, the signature’s background is removed, peak intensity value is 
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measured and low intensity signals are removed. Signatures which meet threshold criteria for the 

detection measurements described are considered detections. 

 

Figure III.4. An illustrative example of a temporally and intensity normalized signature. 

For practical usage, a single hostile fire event, should generate a single hostile fire 

declaration. For closer hostile fire events spanning multiple pixels, multiple detections can occur. 

Recall that pre-detections were spatially grouped within a local neighborhood at each frame. 

Employing the method as described previously allows for pre-detections to be generated at each 

frame. A method analogous to temporal grouping is described here, which reduces redundant 

information and processing by analyzing detections temporally to determine the best 

representative candidate. In real hostile fire data, though, multiple pixels may exhibit 

characteristics of hostile fire signatures. These characteristics are often less reliable towards the 

outer spatial extent of the signature. The best candidate detection is chosen by maximum peak 

intensity value. Alternate measures can be used, such as the change in intensity, or even voting 

schemes using combinations of intensity and duration measurements. Processing performance, 

reliability, and hostile fire phenomenology led to the choice of maximum peak intensity as the 
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criterion, however, alternative measures require further research to determine their effectiveness 

and suitability. This method is not suitable for significantly saturated signatures, where saturation 

occurs spatially and temporally. 

The method described thus far defines a detection scheme for a single band. Thus, for 

each band in a multi-band system, pre-tracks, pre-detections, and detections are made. Amongst 

these detections, the best representative detection candidate is chosen. For dual band or multi-

band application, a single detection should be returned, given a single hostile fire event. Hostile 

fire detections across bands or sensors can be associated using time of occurrence of the hostile 

fire detection, such that a detection generated in one sensor will prompt a search for detections in 

other sensors for the same period. One approach is to use a guard band. Only after detections 

have occurred in guard band sensors are other sensor streams searched and evaluated. This 

procedure can significantly reduce processing. For example, the LWIR imaging sensor can 

generate a significant number of pre-detections and detections, due to scene motion when on the 

move. Because the MWIR-1 sensor produces low intensity features of targets with temperatures 

around 300° K, such as typical terrestrial scenes, fewer pre-detections and detections are 

generated as a result of scene motion, making the MWIR-1 favorable for use as a guard band. 

Consequently, a detection in the MWIR-1 band can be used as an indicator to search the LWIR 

band for potential detections at the corresponding time and location. 

In the data collected for algorithm development, the sensors were not frame 

synchronized, and therefore a temporal search window was utilized. Though frame 

synchronization will allow for narrower search windows in practice, the process may still 

account for variations in signatures between bands. Additionally, for sensors with overlapping 

fields of view, a spatial search window can also be implemented. The sensors which captured the 
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data used for algorithm development were not optically registered to tight tolerances. Due to the 

low intensity terrestrial scene images generated by the MWIR-1 band, spatial registration is not 

feasible. Therefore, a spatial search window was applied. Here, improved optical registration will 

yield a narrower search window. A spatial search window is still recommended to accommodate 

for imperfections in optical alignment, aberrations, and variations in muzzle flash signatures of 

hostile fire events between sensors. Detections determined in the MWIR-1 guard band and the 

LWIR verification band, which have been associated in time and space, are considered to be dual 

band detections, and passed to the classification stage for further analysis. Quick reference 

guides for pre-detection and detection are provided in Figure III.5 and Figure III.6, respectively. 

 

Figure III.5. Quick reference guide for the pre-detection scheme used. 
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Figure III.6. Quick reference guide for the detection scheme used. 

Classification 

The classification stage serves a dual purpose by classifying hostile fire events into 

classes of threats and rejecting potential false detections. Chapter 2 demonstrated that hostile fire 

events could be classified at 600 Hz and provided two potential schemes for using classification 

to remove false detections. One scheme, labeled dynamic rejection, used a classifier which 

included a false alarm class as well as hostile fire classes. This scheme included a feedback 

system in which detections, declared as false alarms by the classifier, were fed back into a 

dynamically updating false alarm class. The classifier periodically updated to reflect changes in 

the false alarm class, which implied an adaptation to changes in the environment generating the 

false alarms. The other scheme, termed layered distance, relied on binary classification using a 

binary tree. Thus CLASS 1s were classified against all other threats. The other threats were then 

classified as either CLASS 2 or CLASS 3. To remove potential false detections, a distance 
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measure was applied to the results to determine whether the detection, classified as hostile fire, 

was similar to the respective hostile fire class. Both schemes, showing promise in their ability to 

reduce false alarms, have been combined here in a two-stage classification scheme approach, 

which shall be referred to as dynamic distance. 

The two stage dynamic distance classification scheme segments false alarms from hostile 

fire in the primary stage, and then classifies the resulting hostile fire into specific classes, after 

which a distance metric is applied to verify membership in the specific hostile fire class, 

visualized in Figure III.7. The first stage employs a multi-class classifier, which segments false 

alarms from hostile fire. False alarm detections update the false alarm class and the classifier 

itself is periodically updated. To ensure stability, the false alarm class can be partitioned so that a 

percentage of the population is updated dynamically, while the remainder is static and remains 

unchanged. Additionally, multiple false alarm classes can be used to represent all false alarms. In 

a preliminary investigation of false alarm data, false detections were groundtruthed according to 

the apparent scene false alarm source. The results indicated false alarm classes, such as a “sun 

glint” class, that would apply across various days, environmental conditions, and scene content, 

could not be made based on the data. Additional research is required on false alarm signatures 

and the complex processes by which they are generated. Unlike the false alarm class, the hostile 

fire classes are static, and generated from known hostile fire data. Though detected events can be 

classified as various types of hostile fire, the primary goal of the first stage is simply to remove 

the majority of false alarms. While false alarms are fed back into the false alarm class, detections 

classified as hostile fire in the primary stage are passed to the secondary classification stage. 

The secondary classification stage accepts hostile fire detections from the first stage, and 

classifies these detections into their respective types of hostile fire. Here, only hostile fire classes 
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are used for classification. This process can be implemented in different ways, such as using a 

single classifier incorporating all hostile fire classes, or using a binary tree with multiple binary 

classifiers. Because the false alarm class of the first stage can potentially overlap with hostile fire 

classes in decision space, a more accurate decision boundary tends to occur between hostile fire 

classes when only hostile fire classes are used to generate the classifier.  
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Figure III.7. Dynamic Distance classification scheme. 
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In practice, however, false alarm detections can propagate to the second stage of 

classification. In this second stage, classifiers are not used to reject false alarm detections, but 

instead classify all remaining detections as one of the hostile fire classes. In order to reject false 

alarms, a distance measure is applied to determine whether the current detection is similar 

enough to its newly classified hostile fire class. The class cluster distance, which can be 

interpreted as a normalized Euclidian distance, measures features of the detection, and generates 

a single value representing the distance from the center of its hostile fire class. The class cluster 

distance is given by 

𝐶𝑙𝑎𝑠𝑠 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
√

∑ (
𝑥𝑖 − 𝜇𝑖

𝜎𝑖
)
2

𝑛
𝑖=1

𝑛
 

(3.3)  

where 𝑥𝑖 is the 𝑖𝑡ℎ feature of the observation, 𝑛 are the number of features, and 𝜇𝑖 and 𝜎𝑖 are the 

class mean and standard deviation of the 𝑖𝑡ℎ feature, respectively.  

The concept is that observations which belong in the class will have a smaller distance 

from the class centroid than observation which do not belong to the class. The class cluster 

distance reduces 𝑛 features or dimensions of data to a single dimension or distance. Because all 

𝑛 features contribute to the distance measure, the features should be chosen which reduce the 

distance of hostile fire from their respective hostile fire class, yet extend the distance of false 

alarm detections from the hostile fire class. Therefore, features are chosen which provide the 

greatest separation between the hostile fire and false alarm classes, so that an incoming false 

alarm detection will be separated from the hostile fire classes. Here, there is an assumption that a 

false alarm detection is similar to the false alarm class. The separation distance between two 

classes along a given feature is provided by 
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𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
𝑎𝑏𝑠(𝜇1 − 𝜇2)

√1
2⁄ (𝜎1

2 + 𝜎2
2)

  (3.4)  

where 𝜇1 and 𝜎𝑖 are the mean and standard deviation of the feature in question for class 𝑖, and 

𝑖 = 1,2. Here, the two intended classes are the hostile fire and the false alarm classes. Because 

the features are chosen by their ability to separate the hostile fire and the false alarm classes, and 

because the false alarm class is dynamically changing, the chosen features are periodically 

updated as well. In detection theory, the sensitivity index or d’, provides a similar measure of 

separation. 

The distance measured by the class cluster distance is used to determine whether 

observations are considered hostile fire or rejected as false alarms. A threshold value is used to 

provide this discrimination and can be chosen using various methods. In theory, well-chosen 

features will yield a tightly clustered population. In practice, outliers may exist in the population. 

Extending the threshold to include these outliers may reduce the capability of discriminating 

false alarm detections. One potential method of choosing a distance threshold is by selecting a 

threshold which accepts a percentile of the known population. For hostile fire detection, it is 

undesirable to miss actual hostile fire events, and a minimum threshold can be chosen which 

accepts 100% of known hostile fire events in the population. This threshold can be further scaled 

by 𝛼 > 1, which implies that the known population is not robust or representative of all hostile 

fire of a particular class. Scaling the threshold by a value greater than 1 allows for variations in 

signatures which are not represented in the data set. For the distance measure to be effective, it is 

assumed that actual hostile fire detections are classified into the correct class. For example, a 

CLASS 1 observation classified as a CLASS 3 observation will be compared in distance to the 

CLASS 3 class and not the CLASS 1 class. For this example, if significant difference exists 
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between the CLASS 1 observation and the CLASS 3 class, a well-suited classifier will not 

classify the CLASS 1 observation as a CLASS 3. Figure III.8 displays the distance threshold and 

feature determination process. 

 

Figure III.8. The distance threshold is determined dynamically using the static hostile fire classes 

and the dynamic false alarm class. 

Results 

Detection 

The hostile fire detection algorithm was tested against real imagery of threats consisting 

of CLASS1, CLASS 2, and CLASS 3 hostile fire. Data was collected for these threats over the 

course of six data collections. The environments consisted of freezing temperature and snow, 

warm desert, and moderate green fields and tree lines with varying humidity which extended 

from dry desert to daily thunderstorms. Each threat class appeared across at least two of the three 

environments.  Within each threat class, there existed at least two variants of each threat type. In 

total, 122 hostile fire events were used in this analysis. Additionally, data was collected of 

various scenes without threat targets, both stationary and on-the-move, which was used to 

perform false alarm analysis. The false alarm data collection was conducted over the course of 

(U) 



106 
 

three days, the first two of which were cloudy and the last day was sunny. The scenarios 

captured on the first cloudy day, were repeated on the sunny day for comparison. The false alarm 

scenarios included sun glints from water, sun glints from cars, headlights from passing cars, 

sodium lamps, the sun passing behind tress, welding, and a burning barrel with flares. 

The data was collected using imagers consisting of two sub-band MWIR imagers, 

MWIR-1 and MWIR-2, and an LWIR. These 17 µm, 640 x 480 pixel imagers were run at 600 

Hz, with a 40° FOV lens. To attain the desired high speed frame rate, the imagers were 

windowed to 640 x 44 pixels. Though the original data was recorded at 600 Hz, the data was 

analyzed at various frame rates from 600 Hz to 100 Hz. To achieve lower frame rates, the data 

was downsampled, such that 120 Hz data was generated by removing 4 out of every 5 frames. In 

this case, however, the choice of starting offset can yield 5 unique representations of the data. 

Figure III.9 provides a graphic depicting this example. To ensure that an artificial bias was not 

created, each potential offset was analyzed for data containing hostile fire events. 

 

Figure III.9. An example of down-sampling and the choice of offset. 

An analysis was performed on detection rates as a function of frame rate. The analysis 

was conducted using the LWIR, MWIR-1, and MWIR-2 bands, as well as a LWIR/MWIR-1 

dual band combination. The detection rates reflect the detection stage only, and do not 

incorporate classification results here. In Figure III.10, it can be observed that overall detections 

rates decline as frame rates are reduced. The LWIR and MWIR-1 bands perform well for frame 
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rates as low as 100 Hz. The dual band LWIR/MWIR-1 requires a detection in both individual 

bands, thus the performance can never be higher than either of the individual bands. The 

requirement of dual band detection does not significantly reduce detections rates for LWIR and 

MWIR-1, and yields a detection rate of 97.7% at 120 Hz, and a 100% at 600 Hz. The MWIR-2 

performs satisfactorily, but the impact of lower SNR is observed in the reduced detection rates. 

At frame rates lower than 100 Hz, the number of temporal samples across hostile fire signatures 

do not meet algorithm parameter requirements. In particular, the choice of the number of 

temporally integrated and normalized samples significantly affects these results. Detection rates, 

however, do not provide a complete view of performance, and must be considered alongside 

classification rates and false alarm rates.  

 

Figure III.10. The probability of detection as a function of frame rate for LWIR, MWIR-1, 

MWIR-2, and LWIR/MWIR-1. 

A similar analysis was performed on the false alarm data set. A subset of the false alarm 

data set was processed for detections using the LWIR, MWIR-1, and MWIR-2 band, and also the 

LWIR/MWIR-1 dual band. This subset of data uses the sunny day of data which was shown to 
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be the worst-case scenario and generated more false detections for analysis. In Figure III.11 the 

LWIR and MWIR-1 false detections are displayed as a function of frame rate. The results have 

not been scaled to reflect false detections per frame, but rather show the raw number of false 

detections generated in approximately 54 minutes of data. Because each pixel of each frame has 

the potential to produce a false detection, in general, as frame rates are reduced, the number of 

possible false detections are reduced as a result. This property is reflected in the MWIR-1 band. 

The MWIR-2, not shown, exhibited a similar trend. For the LWIR, however, the opposite trend 

occurs and false detections increase as frame rates decreases. This phenomenon is likely due to 

the higher scene contrast of the LWIR sensor and the effect of scene motion. Scene motion at 

lower frame rates is more apparent from frame to frame. To test this theory, the LWIR and 

MWIR-1 data were re-analyzed using only files containing stationary scenes. For the stationary 

data set, the LWIR false detections decrease as the frame rate decreases, and is shown in Figure 

III.12. Though not shown in Figure III.12, false detections for dual LWIR/MWIR-1 were 

analyzed. The dual band false detections did not vary with frame rate and showed only minor 

random fluctuations. 

 

Figure III.11. False detections as a function of frame rate for LWIR and MWIR-1. 
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Figure III.12. False detections as a function of frame rate for LWIR and MWIR-1 for stationary 

data. 

Classification  

For classification, the results are presented as the output of the complete algorithm. 

Hostile fire events are first detected and then classified. In this way, the results of the 

classification scheme, dynamic distance, is limited by the detection rate and provides a 

representation of the system performance. The classifiers used in the analysis are linear 

discriminant analysis (LDA) and support vector machine (SVM). The classifiers were generated 

using temporal profiles at the ground truthed pixel locations of hostile fire events. The classifiers 

were evaluated using leave-one-out cross-validation. The classifiers were trained using as many 

as 13 features, denoted as the 10% width, the 50% width, fall time, and the 10 

temporally/intensity normalized samples, to discriminate between CLASS 1, CLASS 2, and 

CLASS 3. For the case of dual band classification, up to 13 features were extracted from each 

band, providing for a total of 26 possible features. It is noted that these features are also used in 

the detection filtering process, and thus do not require additional processing to generate. The 

performance of the classifiers, with respect to differentiating hostile fire classes, using ground 
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truthed data, is shown in Table III.1. Here it can be observed that the hostile fire signatures are 

more distinguishable in the LWIR band, given the chosen features and the hostile fire data set. 

The CLASS 1 class is more easily classified, whereas the CLASS 2 and CLASS 3 class have 

more overlap in the LWIR band. Though reduced in performance, the MWIR follows a similar 

trend. The lowest performing band for classification, the MWIR-2, interestingly enough, has the 

alternate characteristic of differentiating the CLASS 2 and CLASS 3 classes well, with reduced 

performance between the CLASS 1 and CLASS 2 classes. The dual band LWIR/MWIR-1 

classifier has increased performance over the individual bands. Unlike the dual band detection 

process, classification is not limited to the worst performing individual band. Table III.2 provides 

similar classifier performance results for 600 Hz data. The actual number of events of ground 

truth data for each band varied slightly, introducing some variation in the classification results. 

The trends in performance, however, are representative of the data set as a whole. 

Table III.1. Classifier performance at 120 Hz per band, using groundtruth data. 

Classifier Performance, 120 Hz 

Threat / Band MWIR-2 MWIR-1 LWIR 
Dual 

LWIR/MWIR-1 

CLASS 

1/Other 
83.69% 95.29% 97.39% 

98.84% 

CLASS 

2/CLASS 3 
96.44% 87.64% 94.44% 

94.91% 

 

Table III.2. Classifier performance at 600 Hz, using groundtruth data. 

Classifier Performance, 600 Hz 

Threat / Band MWIR-2 MWIR-1 LWIR 
Dual 

LWIR/MWIR-1 

CLASS 

1/Other 94.26% 97.69% 99.24% 99.19% 

CLASS 

2/CLASS 3 98.55% 93.15% 94.81% 98.55% 
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Figure III.13. 120 Hz data. Probability of hostile fire declaration (black percentage) and false 

alarms (red numbers) for various architecture configurations, including dual band detection and 

classification. Classification is performed using the dynamic distance classification scheme. 

 

Figure III.14. 600 Hz data. Probability of hostile fire declaration (black percentage) and false 

alarms (red numbers) for various architecture configurations including dual band detection and 

classification. Classification is performed using the dynamic distance classification scheme. 

System performance is shown in Figure III.13 for 120 Hz data. In this diagram each stage 

of the architecture displays the probability of hostile fire declaration and number false alarms 

generated at the stage. Here, hostile fire declaration is the result of correctly detecting a hostile 
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fire event and classifying the detection as any of the hostile fire classes. This is a fair 

representation of system performance given that threat class classification is a secondary 

objective to the threshold requirement of declaring hostile fire. False alarms are non-hostile fire 

detections, which have been classified as hostile fire. The diagram in Figure III.13 shows the 

results of various architecture configurations. For example, the dual band system requiring both 

LWIR and MWIR-1 detections, employing the dynamic distance classification scheme using 

features from both bands, has 96.07% probability of declaring hostile fire. Alternately, a dual 

band system which does not employ a classification scheme, has a higher probability of hostile 

fire declaration at 97.7%, but also has 91 false alarms. Single band systems for LWIR and 

MWIR-1 are also visualized. Figure III.14 provides an equivalent system performance analysis 

for 600 Hz operation using LWIR and MWIR-1. For comparison, single band MWIR-2 

performance at 600 Hz and 120 Hz is presented in Figure III.15.  

 

Figure III.15. 600 Hz and 120 Hz MWIR-2 data. Probability of hostile fire declaration and false 

alarms for various architecture configurations for single band detection and classification. 

Classification is performed using the dynamic distance classification scheme. 
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Figure III.13 and Figure III.14 provide valuable insight into system performance. First, 

the choice of applying an in-band association filter which selects the best detection candidate 

within a spatial-temporal volume, reduces potential false alarms without degradation in detection 

rate. Additionally, the false alarm rate is significantly reduced when the best candidate detections 

in the individual bands are associated across bands within a spatial-temporal volume. Thus, the 

exceptional number of false alarms generated in the LWIR due to scene motion are removed 

when compared against the relatively featureless imagery of the MWIR-1. The false alarms 

displayed in Figure III.13, Figure III.14, and Figure III.15 are from a subset of the false alarm 

data set which included data collected on a sunny day. It was found that this data was the most 

challenging for the system, and therefore, is the most relevant. The false alarm data is influenced 

by two variables, weather conditions and scene motion, which affect system performance. The 

false alarm results are shown as a function of these two variables in Table III.3 and 

Table III.4, where the values have been scaled to represent false alarms per hour. The sunny data 

more dramatically affects the MWIR bands. The LWIR band false alarms are greatly increased 

when motion occurs. The dual band system minimizes the effects of scene motion and weather 

condition, but more work is needed to reduce false alarms to a practical number.  

Table III.3. False detections and false alarms per band as a function of weather condition for 120 

Hz operation. 

False Alarms per Hour by Weather Condition 

Band MWIR-2 MWIR-1 LWIR 
Dual 

LWIR/MWIR-1 

Day Cloudy Sunny Cloudy Sunny Cloudy Sunny Cloudy Sunny 

False 

Detection 
36.1 825.6 54.8 716.7 15076 25393 5.2 101.1 

False Alarm 0.0 103.3 23.2 210.0 813.5 1691.1 1.3 22.2 

Note: Day Cloudy 93 min, Day Sunny 54 min 

 



114 
 

Table III.4. False detections and false alarms per band as a function of scene motion for 120 Hz 

operation. 

False Alarms per Hour by Scene Motion Type 

Band MWIR-2 MWIR-1 LWIR 
Dual 

LWIR/MWIR-1 

Scene Motion Static Moving Static Moving Static Moving Static Moving 

False 

Detection 
185.0 706.2 32.8 1032.3 877.2 68681 2.2 146.2 

False Alarm 14.4 103.1 14.4 306.2 50.6 4141.5 0.0 33.8 

Note: Static Scene 108 min, Moving Scene 39 min 

 

The resulting hostile fire declaration in Figure III.13 can be further decomposed to 

provide a more complete view of system performance in Table III.5. In Figure III.13, the dual 

band detection shows 2.3% of hostile fire events were not detected. Table III.5 indicates that a 

greater percentage of CLASS 3 targets were undetected, when compared to the other classes. 

Similarly, the hostile fire events mistakenly classified as false alarms predominantly affected the 

CLASS 3 class. Here, it is observed that the majority of hostile fire events are detected and 

declared as hostile fire, yet there is strong overlap with the CLASS 2 and CLASS 3 classes. This 

result is expected, given the classifier results using ground truthed data in Table III.1. The 

reduced performance for CLASS 3s can be attributed to the increased variability in CLASS 3 

signatures, and factors relating to increased range. Increased ranges can make CLASS 3 

signatures more susceptible to atmospheric degradation and more vulnerable to the effects of 

poor focus. As signals are increasingly attenuated, the signatures gradually lose their 

characteristic shape. The effects of attenuation and blurring require further evaluation to 

determine the limits of reliable classification and detection. 
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Table III.5. Confusion matrix for dual band LWIR/MWIR-1 at 120 Hz. Undetected hostile fire 

events are also included. 

Confusion Matrix 

Dual Band Classifier 120 Hz 

Stim\Resp  Class 1 Class 2 Class 3 FA 
Not 

Detected 

Class 1 95% 2% 0% 0% 2% 

Class 2 3% 96% 0% 1% 0% 

Class 3 0% 15% 74% 5% 5% 

 

Real-Time Operation 

Processing time, or real-time performance, is an additional metric which should be 

considered when evaluating algorithm performance. An initial analyses showed that the number 

of pre-detections which are recorded when processing on-the-move data can become 

exceptionally large. It was found that the temporal frequency filtering 𝑛 –window system for 

storing pre-detections, along with the local spatial max pre-track selection and elimination 

process, tremendously reduce the number of pre-detections which are actually analyzed. There is 

a reduction between 92% and 97% in pre-tracks initialized versus pre-tracks analyzed, depending 

on band. These reductions still allow a large number of pre-detections to be analyzed, as shown 

in Figure III.13. Another potential mechanism for reducing the number of analyzed pre-

detections is to increase the SNRB threshold scaling value. An increase in SNRB from 4 to 8 was 

shown to provide a 55% to 63% reduction in analyzed pre-detections. Though actual hostile fire 

events collected have SNRB values above 8, it should be noted that these values are generated 

from stationary data. For on-the-move hostile fire data, it is expected that background clutter will 

increase, and reduce effective SNRB for hostile fire. From Figure III.13, it can also be observed 

that the MWIR-1 pre-detections are significantly fewer than the LWIR pre-detections. Given a 

strategy which requires detection in both LWIR and MWIR-1, one potential option is to use the 
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MWIR-1 as a guard band. Therefore, the LWIR band is only evaluated after the MWIR-1 band 

reports a detection. In a worst-case analysis, where each detection in the MWIR-1 band, yielded 

a respective detection in the LWIR band, there was a 93% reduction in processed detections. The 

algorithm, developed using MATLAB, is currently being ported to C++ and OpenCV. The data 

was processed using a Xeon E5-2620 v3 12 core processor. The video data was 120 Hz with a 

frame size of 640x240. Real data was replicated to provide the extended rows. The average time 

to process a frame containing detections was found to be 5.34 ms. For 120 Hz operation, there 

are approximately 8.33 ms between frames. Thus, the algorithm presented in this paper can be 

operated using dual band LWIR/MWIR-1 at 120 Hz in real time. Using the MWIR-1 band as 

guard band could increase processing efficiency, progressing towards real time operation for 

large format camera frame sizes. 

Discussion 

Hostile fire detection and location for ground vehicles requires a solution which is 

practically implementable given vehicle motion. For on-the-move operation using ground 

vehicles, however, an increased number of false alarms are generated due to scene motion. This 

source of false alarms affects all bands, but more deeply impacts the LWIR band. Sun glints are 

also a source of false alarms, affecting MWIR bands more severely, but also affecting the LWIR 

band. A practical hostile fire system for ground vehicles will need to detect hostile fire, address 

false alarms due to scene motion and solar glints, and process this data in real time to be 

applicable. 

The algorithm presented in this paper provides an architecture that can be used for hostile 

fire detection systems. The algorithm provides false alarm mitigation strategies when using 

single band systems. A significant improvement is demonstrated when these strategies are 
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extended to a multi-band system. Though the multi-band system can consist of any number of 

guard band sensors and verification sensors, results of a dual band LWIR/MWIR-1 system are 

presented. These results show acceptable hostile fire declaration rates, where declaration is 

classification as a hostile fire event. The false alarms, reduced to a manageable rate, leave room 

for further improvement. A possible avenue for improvement is to extend the number of features 

used in classification. Additional features could also be used to improve hostile fire classification 

rates, especially with respect to the CLASS 3 class. 

The algorithm uses multiple methods to improve efficiency for real time operation. The 

features used for classification are reused from the detection process. Additional classification 

features must be balanced against performance improvement and processing degradation. Other 

improvements to processing time can be made from using the 𝑛 –window system, increasing the 

SNRB threshold, and using the MWIR-1 as a guard band. The algorithm was implemented, 

without the use of a guard band, as a dual band LWIR/MWIR-1 system for 640x240 sensors at 

120 Hz in real time. 

The algorithm is shown to be a potentially viable solution to on-the-move hostile fire 

detection. Improvements can still be made, especially for classification and false alarm 

mitigation. Though the detection and classification processes are separable, improvements to the 

detection process, such as additional detection filters, can potentially improve results as well. 

Future work will investigate additional detection filters and classification features. Additionally, 

an investigation into saturated signature profiles will be made. Though the algorithm can handle 

partial saturation of signatures, it is not intended to detect and classify heavily saturated signals. 

Moreover, techniques will be investigated to yield real time processing for large format sensors 

operating at 120 Hz. 
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IV. DETECTION, CLASSIFICATION, AND LOCALIZATION SYSTEM AND 

METHODOLOGY 

Introduction 

This chapter provides a generalized description of the algorithm developed in Chapters 2 

and 3, and also provides multiple system designs with accompanying algorithmic approaches to 

overcome limitations of the impulse or weapon fire detection algorithm and emphasize its 

strengths. System designs include methods for minimization of saturation clutter and 

minimization of clutter using additional acoustic sensors. In one design, the methodology is 

layered to account for various levels of hardware availability. 

The generalized method presented here is referenced in subsequent system designs and 

methodologies, when referring to the weapon fire algorithm, and in particular, when referring to 

weapon fire detection, and also weapon fire classification. The generalized method described in 

this chapter has been published by the United States Patent and Trademark Office under patent 

number US 10,389,928 B2 on August 20, 2019. 

The chapter also provides a generalized EO/IR and acoustic weapon fire detection system 

design. The design does not emphasize saturation mitigation, but emphasizes clutter mitigation 

by using the acoustic sensor as a confirmation sensor to the EO/IR detection sensor. This system 

design provides for increased performance with minimal additional hardware and associated 

processing. The acoustic clutter mitigation system and method described in this chapter has been 

filed for application at the United States Patent and Trademark Office on August 9, 2018. 

In addition, this chapter provides a description of multiple system designs which offer 

approaches to reduce the effects of saturation, and also further minimize clutter. Though the 

system designs address similar problems, differences among designs lay in required hardware, 

affecting size, weight, power, and cost. Additionally, there are performance differences. For 
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example, a system using an acoustic detection sensor and integrated on a ground vehicle, can 

exhibit lower range performance when compared to optical detection sensors. The acoustic 

sensor also has a latency associated with the rate of travel for sound waves. A system design 

using GPS assumes that GPS information is available. The saturation mitigation systems 

described in this chapter have been published by the United States Patent and Trademark Office 

under patent number US 10,209,343 B1 on February 19, 2019. 

And finally, this chapter provides an in-depth procedure for utilizing EO/IR imager, real 

time clock, compass, gyroscope (gyro), and Global Positioning System (GPS) data to detect the 

sun. Sun detection is used as means of minimizing saturation clutter. Methods for detecting the 

sun are provided for various levels of hardware availability. For example, in some environments 

GPS data may not be available, or some systems may not be equipped with a gyro. In these 

cases, information can still be extracted to allow for sun detection and saturation mitigation. 

The position of the sun can be referenced as a pixel location, or an azimuth and elevation, 

depending on the availability of input information. Beyond determining the position of the sun, 

the orientation heading can be updated to provide more precise measurement. Additionally, the 

sun can be tracked when it is no longer detected in the current frame, such as due to obstruction. 

The sun detection method presented here is intended to be used on a moving platform or vehicle. 

The same method can be employed at night, during which the moon is detected, rather than the 

sun 

 

Background 

Weapon fire detection and localization can be accomplished using a variety of sensing 

modalities. Typical modalities include radar, acoustic, electro-optic, or some combination of 
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these. Electro-optical solutions typically exploit projectile launch blast, thermal radiation of in-

flight round, and the thermal radiation of rocket motors of missiles and rockets. Electro-optical 

solutions are often employed for close range small arms and unguided projectile detection. 

Additionally, air-systems have employed electro-optical sensors for long range weapon fire 

detection systems such as missile warning systems. For systems detecting weapon fired air-to-air 

or air-to-ground, atmospheric signal degradation is less impactful than for systems which detect 

ground-to-ground weapon fire. Long range electro-optical weapon fire detection systems for 

ground application must be able to handle complications due to atmospheric signal degradation 

and near field clutter sources. 

Electro-optical weapon fire detection systems for ground application, capable of 

detecting short and long range threats, require complex detection methodologies to accurately 

detect weapon fire over a broad dynamic range of signal intensity. When a high intensity weapon 

signature is available, as when the launch is near the sensor, simple thresholds can be used to 

detect weapon fire while minimizing clutter sources. Long range electro-optical weapon fire 

detections often involve severely reduced signature intensities due to atmospheric degradation. 

Additionally, near field motion can generate clutter sources of similar intensities to far field 

weapon fire. A complex detection algorithm is required to differentiate actual weapon fire 

signatures of various intensities from cluttered backgrounds while providing acceptable detection 

rates. 

Acoustic weapon fire detection systems are typically used for small arms detection. 

Acoustic systems rely on the supersonic speed of the passing weapon fire projectile to produce a 

sonic boom (or “crack”). Additionally the acoustic sensor detects the sound wave (“bang”) 

generated by the weapon fire muzzle blast. The delay between the “crack and bang” is used to 
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estimate the range to the weapon fire. Multiple acoustic sensors are used to determine the bearing 

of the weapon fire projectile. 

Sun positioning algorithms and sun detection and tracking systems are commonly used in 

not only space craft applications for navigation, but also for solar power systems and unmanned 

vehicle systems. As solar power systems have progressed to be a feasible solution for renewable 

energy, the need to track the trajectory of the sun accurately has amplified in order to provide 

increased yield. The sun tracking systems are typically considered as either closed-loop or open 

loop. For closed loop systems, sensors provide feedback to a controller, which adjusts an output 

such as the pointing angle of collection sensor. An open-loop system does not use feedback, and 

its output is determined by an algorithm and the current state of the system. An example of an 

open-loop system uses date, time, longitude, latitude, and solar positioning algorithm to compute 

the direction of the solar vector. Open-loop systems are often simpler and less expensive than 

closed-loop systems, but cannot correct for errors or anomalies. Closed-loop sun detection and 

tracking systems use dedicated sun detection sensors to determine the location of the sun. In this 

chapter, sun detection and tracking is performed using multipurpose focal plane arrays in 

combination with detection algorithms. The detections can be confirmed and credited to a solar 

direction vector using solar positioning algorithms and current date and time, reducing the 

occurrence of false sun detections. The work presented here is applicable to mobile platforms as 

well as stationary platforms. EO/IR imagers are currently used in many applications for 

surveillance and navigation. This concept provides increased capability for those application 

without the need for increased, dedicated hardware. For these applications, the sun can be 

determined within the field of view of the EO/IR imager. 



122 
 

Problem Description 

A methodology for practical implementation of weapon fire detection. This method 

provides a framework for designing a hostile fire detection system. The method or algorithm is 

independent of sensor waveband and is also independent of the number of sensors. The 

algorithm emphasizes techniques for not only detection of weapon fire events, but also 

techniques for rejection of clutter as well. For on-the-move applications such as for a vehicle, 

clutter sources may not be consistent or predictable, and therefore an adaptive algorithm is 

provided to adjust to a changing scene environment. 

System/algorithm modifications incorporating acoustic sensors to improve capability and 

increase feasibility are presented. Current EO/IR algorithms provide high detection capability 

performance but require some improvement to clutter rejection. This system provides a method 

to increase clutter rejection, as well as providing the additional functionality of range estimation. 

Other systems have used an Acoustic - EO/IR method. Here we argue that the particular EO/IR 

method benefits from the addition of limited, minimal acoustic hardware and processing. 

System/algorithm designs to overcome limitations of the impulse or weapon fire 

detection algorithm and emphasize its strengths are presented here. The additional system 

components and algorithms address increased clutter rejection and saturation. Excessive false 

alarms from clutter can make the system unusable for practical implementation. The effects of 

saturation can limit detection capability and reduce the ability to distinguish between real 

saturated targets and saturated clutter targets. 

For EO/IR sensors, the sun can often cause saturation, removing distinguishing scene 

information used in image processing. By being able to detect the sun, the resulting saturated 

pixels, as well as the source of saturation, are determined. These pixels, being known to have 
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been saturated by the sun, can be masked, ignored, or potentially be adaptively processed, 

thereby limiting confusion between other sources of saturation. 

Sun detection systems often require dedicated sensor hardware to perform the detection 

and tracking of the sun. Sun positioning algorithms can also be employed which determine the 

direction of the sun based on inputs, such as current date, time, and location. The orientation of 

the system platform is still required to determine the relationship of the sun with respect to the 

sensing system platform. However, for applications which attempt to reduce hardware and 

minimize size, weight, power, and cost, adding additional sensors may not be a preferred 

solution. EO/IR sensors are currently used in many applications for surveillance and navigation. 

The in-depth methodology provides sun detection and tracking capability, using EO/IR sensors 

only. The detected sun is used to identify sources of saturation within the sensor’s field of view. 

In some scenarios, GPS may not be accessible and a compass may not be available. Additional 

information, such as orientation heading can be provided by incorporating sun positioning 

algorithms, current date and time. With the addition of a gyro, the sun location can be estimated 

or tracked from frame to frame. This step can also be performed using image processing of scene 

motion. Sun tracking is critical, as the vehicle motion can often cause the sun to be fully or 

partially obscured by near range objects, resulting in inconsistent detections. By enabling sun 

tracking, predetermined detections can be maintained even during instances of obstruction. Thus 

“flickers” of sun, partially obscured, can still be tracked and identified. Additionally, the 

inclusion of orientation data from a compass, can provide an estimate of the current time. 

Methods 

A generalized weapon fire detection method is presented here. The method generalizes 

the techniques described in chapters 2 and 3. The method described in Figure IV.1 is shown for a 
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single sensor, but can be extended to multiple sensor. Figure IV.2 and Figure IV.3 provide a 

more detailed description of the detection and classification process, respectively. The 

generalized detection method will be used in subsequent system designs presented in this 

chapter. 

As an example of a multiple sensor system, a detection system utilizing three imaging 

sensors is proposed. The three imaging detection sensors, one imaging in the long-wavelength 

infrared (LWIR) band, and the other two, imaging in the mid-wavelength infrared (MWIR) band, 

operate at a frame rate of 120 Hz and have a focal plane array (FPA) size of 640 by 480. Here, 

the two MWIR bands are spectrally non-overlapping. The three detection sensors, contained in 

the weapon fire detection imaging sensor system, provide spectrally distinct signatures of 

weapon fire events. The extracted weapon fire signatures provide intensity, duration, and shape 

information used for determining detections. Similar to the two-band system, detections from 

each band are compared in both space and time to determine if they are a result of the same 

event. Additionally, by analyzing the spectral signature in three bands from temporally and 

spatially synchronized weapon fire event signatures, a significant amount of clutter can be 

rejected. This clutter rejection is critical for on-the-move ground vehicle application against 

ground weapon fire targets that can occur at both near and far tactical ranges. The use of 

intensity, shape, and duration measurements from multiple temporally and spatially aligned 

spectral signatures improves upon prior art, and allows for on-the-move application of weapon 

fire detection at relevant tactical ranges. 
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Figure IV.1. Detection Software Diagram 
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Figure IV.2 Detection decision diagram 
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Figure IV.3. Classification decision diagram 
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The three-band weapon fire detection system improves upon the weapon fire detection 

system presented in the Chapters 2 and 3. The additional detection band increases the 

information available to be used for clutter discrimination. The reduced number of false alarms 

allows for the weapon fire detection systems to be used in challenging scenarios, such as strong 

sun and on-the-move operation (see Table III.3 and Table III.4). The increased number of 

spectral bands also reduces the opportunity for saturation clutter to occur across all three spectral 

bands. Saturation clutter occurs when a pixel location in each band, all being mapped to the same 

location in object space, is saturated for a given duration. Thus, the observation of an event 

generated a saturated signal across all spectral channels. A saturated signal, having an 

appropriately short duration, can be indistinguishable from the saturated signal observed from a 

weapon fire event, due to loss of information. The sun, and reflections thereof, can generate 

significant saturation clutter. This phenomenon often occurs during apparent scene motion, as the 

sun “flickers” behind partial obscurations. Initial empirical observations support the widening of 

the detection spectral bandwidth by adding independent detector spectral bands to reduce the 

chance of all bands being saturated during a given window of time, at a specified location. 

Though saturation clutter is not completely eliminated, the idea of adding additional sensors for 

the specific case of reducing saturation clutter is explored in subsequent designs.  

There are disadvantages to adding additional imaging sensors, and in particular, relate to 

size, weight, power, and cost (SWAP-C). The addition of an imaging sensor increases system 

SWAP-C, due to the addition of the EO/IR detector and the accompanying optical system. For 

thermal imagers, the detector cost will increase, when compared to a visible camera. Even when 

low-cost thermal detectors are used, the required optical system can often become a cost driver. 
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Optical apertures for longer wavelengths (thermal) have increased diameter, when compared to 

shorter wavelengths (visible), to improve resolution. And thus, each independent aperture and 

optical system for each added spectral band can substantially increase system size. Though space 

can be saved using a single aperture and spectral beam splitters, cost is considerably increased 

due to the more complex optical system. 

Similarly, to providing an additional optical sensor to improve clutter mitigation, an 

acoustic sensor can be added to the system design for clutter mitigation. Here the acoustic sensor 

is used as a weapon fire detection confirmation sensor to the imaging detection sensors. The 

acoustic sensor’s region of interest must encompass the detection sensor system’s region of 

interest. Given a detection within the imaging bands, the acoustic signal is scanned for an 

accompanying signature in the acoustic channel. Accurate time stamping of detection sensor 

system output and acoustic saturation sensor output will allow for detected signals from the same 

event to be correlated. Acoustic signals, travelling at the speed of sound, will arrive at the 

detector later than optical signals, traveling at the speed of light, such that the arrival time of the 

acoustic signal is impacted due to target range and atmospheric conditions. Ambient temperature 

data can be used to provide a better estimate the speed of sound. Multipath delayed detections 

must also be taken into consideration for accurate processing. In practice, close range threats 

need to be detected as soon as possible, for potential action to be taken, and therefore the 

detection delay attributed to an acoustic sensor may not be acceptable. The acoustic sensor, in 

combination with the optical sensor, can be used to reduce clutter, estimate an approximate range 

to target, and can potentially offer lower SWAP-C, lower bandwidth, and reduced processing 

requirements. 
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Similar to traditional clutter mitigation techniques, saturation mitigation solutions can be 

achieved through multiple approaches. One potential hardware mitigating solution to the 

saturation problem is to increase the dynamic range of the thermal sensor, which effectively 

reduces the maximum range of sensor to target which yields a saturated signal. For many 

applications, the constraints of size, weight, power, and cost (SWaP-C) restrict the availability of 

sensors with higher dynamic range. Saturation mitigation can also be achieved through system 

design, which incorporates hardware and software approaches. 

For many applications, high SWaP-C sensors may not be feasible, however, additional 

low SWaP-C sensors may be an approach for consideration. For instance, a saturation sensor can 

be added to a detection system for the verification of weapon fire events which saturate the 

detection system. The saturation sensor can be an optical sensor with a limited effective aperture, 

to reduce the amount energy which reaches the FPA during saturation events. Alternatively, a 

saturation sensor with reduced sensitivity, can increase the fluence at the aperture required to 

saturate. For detection of distant events, the detection system requires high sensitivity, and 

narrow instantaneous field of view (iFOV), to increase signal to noise for events which may 

subtend a small angle. For persistent observation of a large field of view, this is typically 

achieved with larger format sensors, thus increasing the size of the FPA, associated optics, and 

SWaP-C. The optical saturation sensor, however, is specifically addressing close range weapon 

fire which exhibits signals with high intensity and a larger spatial extent. The saturation sensor is 

also functioning as a verification sensor with event detection occurring from the detection sensor. 

For these reasons, a saturation sensor could be configured using a smaller FPA format and, 

smaller optics. The optical saturation sensor and detection system should be aligned and 

registered, such that the saturation sensor’s region of interest encompasses the detection sensor’s 
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region of interest. Additionally, signals generated from the saturation sensor must be temporally 

registered to signals generated from the detection sensor. There are many viable options within 

the trade space of optical and temporal alignment and resolution tolerances. For example, a high 

fidelity temporal alignment or frame time stamping may allow for lower tolerances in optical 

alignment. Thus, a saturation sensor with a low FPA size can be used such that each pixel in the 

saturation sensor, is registered to a region within the detection system sensor(s). The saturation 

sensor can be extended to a system of saturation sensors. 

The use of imaging sensors for weapon fire detection have some advantages in 

comparison to traditional acoustic weapon fire systems. The signal travels at the speed of light, 

and thus the time of launch can be determined, and the detection can be made with minimal 

latency. Additionally, the spatial location, or azimuth and elevation, can be determined from the 

detection pixel location. The subsequent system design incorporates an acoustic sensor for the 

special case of saturation clutter.  

The acoustic saturation sensor, similar to the optical saturation sensor, allows for signal 

extraction when the imaging detection sensors are saturated. This signal extraction provides for 

improved detection of close-range threats that would otherwise saturate the detection sensors, 

and also allows for removal of saturation clutter. 

The acoustic saturation sensor and weapon fire detection sensor operate on the 

assumption that weapon fire within close enough proximity, and having enough energy, to 

saturate the imaging detection sensors, will generate an audible and detectable sound. In contrast, 

solar clutter, capable of saturating the imaging detection sensors, will not generate an audible 

sound. In this case, the imaged signature is saturated and not recovered. The saturation is a cue, 

however, to the potential occurrence of an event. The event is confirmed as a weapon fire event, 
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when the saturated signal is followed by an audible signature having an intensity, duration and 

shape profile matching that of known weapon fire events. Here, acoustic signatures are used as a 

confirmation, rather than being a means of informing a detection. With knowledge of tactical 

weapon ranges, ranges at which these weapons saturate the imaging detection sensors, and an 

approximation of the speed of sound, a narrow search window can be used, reducing potential 

acoustic clutter. 

Traditional acoustic weapon fire detection systems perform detection and localization 

(azimuth, elevation, and range) via acoustic sensors only. This requires multiple microphones 

needed to estimate direction of travel, weapon type, and velocity estimation using signals 

generated from both the shock wave front and the sound wave front, also known as the “crack 

and bang.” The crack and bang detection method is used for supersonic threats, which generate a 

shock wave that is detectable when the projectile passes within range of the acoustic detection 

sensor. The design concept presented here is capable of detecting both subsonic and supersonic 

threats, and also does not require the projectile to pass within range of the detection sensor. 

Because the imaging detection sensor systems is able to perform initial detection, azimuth 

localization, elevation localization, and time of launch, a reduction in complexity for the acoustic 

system is able to be achieved. Range estimation to weapon fire launch is also readily achieved 

using a combination of imaging and acoustic sensors. An acoustic saturation sensor has reduced 

SWAP-C when compared to an imaging saturation sensor. A disadvantage of acoustic systems is 

the inherent latency caused by the delayed arrival of sound waves, when compared to optical 

systems. 

An additional weapon fire system design is presented in Figure IV.4. The design includes 

a detection system which incorporates position, orientation, and timing data. Here, the depicted 
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detection system is a three-band detection system, but could utilize any number of detection 

sensors. Position, orientation, and timing data can be provided from an inertial measurement unit 

and GPS receiver. A local clock and additional sensors could potentially provide position, 

orientation, and timing data if GPS data were not available. Given position, orientation, date, and 

time, the position of the sun, relative to the detection system, can be calculated using ephemeris 

data. 

The premise for the weapon fire system design using position, orientation, and timing 

data, is that the additional information allows for increased saturation clutter rejection due to the 

known position of the sun, and provides for improved detection of close range weapon fire 

events. The sun, being a strong source of saturation clutter, is able to be masked, if its position 

within the sensors field of view is known. The assumption here is that other sources of saturation 

will be from actual weapon fire events. An advantage of sun detection, is that it is able to remove 

a large clutter source without the inherent latency, as seen by an acoustic system. This method 

attempts to increase performance by increasing detection of true negatives, and thus reducing 

type II error (false alarm rate), rather than increasing detection of true positives, which would 

reduce type I error (miss rate). A disadvantage is that this method assumes that position, 

orientation, and time data are available, or can be approximated, which may not be the case in all  
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Figure IV.4. Weapon fire detection system processing using GPS for sun detection 
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environments. However, if the position, orientation, and time data are available, significant 

additional hardware is not needed, but only the ability to process the additional information, 

allowing for improved performance with only minimal increase in SWAP-C, without sacrificing 

latency. 

 The method of sun detection can be further improved using additional algorithmic 

approaches. The sun detection method presented is a deterministic approach based on provided 

inputs of position, orientation, date, time, and ephemeris data. These inputs may include errors 

due to the sensors providing data to the system. Position estimation error may not significantly 

contribute to errors in the sun’s relative position, but orientation error can potentially provide 

noticeable error in the sun’s relative position. Date and time accuracy to within minutes will not 

generate noticeable error for this application. Sun position estimates can be improved, however, 

through image processing techniques. Given an estimate of the sun’s position, a search window 

can be applied within the image frame, encompassing the position estimate. The actual position 

of the sun can be determined by searching within the window. One detection method that can be 

applied is the detection of persistent saturation. Once the position is determined in the current 

frame, the position can be estimated in the next frame based on inertial measurement data or 

global scene motion analysis. Estimation of the sun’s position in future frames can be employed 

during scenarios when the sun becomes obscured. The incorporation of image processing 

techniques adds additional processing but may allow robustness for various levels of data 

availability and accuracy. 

The system depicted in Figure IV.5 allows for sun detection using various levels of 

hardware availability and image processing techniques. The sun detection process is described in 

Figure IV.6 and provides methods for detecting, locating, and tracking the sun. The method 
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allows for determination of the sun’s location using image processing techniques and further 

confirmation of the sun’s location if real time clock and orientation data are available. In Figure 

IV.7, an image processing based method to determine the sun’s location within the image is 

presented. The sun can then be tracked using either image processing techniques or angular 

velocity data from a gyro, as shown in Figure IV.8. The sun orientation can be determined using 

various levels of hardware availability. In Figure IV.9, the sun’s orientation can be provided, 

given access to a real time clock or a compass. Accuracy can further be improved with access to 

position data, such as from a GPS receiver. Given the detected sun within the image and 

predicted sun location using ephemeris data, the orientation of the imaging system, and 

subsequently, the platform which it is mounted on, can be determined or improved upon. 

Additionally, persistent tracking of the sun can provide an estimate of time, given a known orbit 

determined by ephemeris data. 

 

Figure IV.5. Sun Detection System 
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Figure IV.6. Sun Detection 
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Figure IV.7. Sun Locating 
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Figure IV.8. Sun Tracking 
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Figure IV.9. Sun Orientation 
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Discussion 

 The designs and associated methods presented in chapter provide techniques for 

mitigating saturation and clutter which are not fully addressed in chapters 2 and 3. The designs 

presented in this chapter attempt to eliminate saturation and clutter by use of additional hardware 

and accompanying algorithmic processes. As a baseline, an additional detection sensor band is 

added to reduce false alarms. Three additional options are provided to lessen the extent of 

saturation clutter. A dedicated imaging sensor for saturation events adds a greater amount of 

SWAP-C, but also provides increased performance without latency. An acoustic saturation 

sensor option delivers increased performance with lower increase in SWAP-C, at the expense of 

latency added to the declaration time. The fourth option using orientation, position, and time 

offers increased performance, with minimal impact to SWAP-C, but may only be applicable in 

environments where this data is available. Design options are provided for varying levels of 

performance associated with clutter mitigation, saturation mitigation, SWAP-C, processing 

capability, and available data. 
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V. CONCLUSIONS, CONTRIBUTIONS, AND FUTURE WORK 

Conclusion 

This work presents novel methods for implementing a practical impulse detection system, 

which has been applied to weapon fire detection. The methodology incorporates multiple layers 

of techniques to determine detection and provides a custom classification scheme, which 

improves classification of target classes and false alarms. Real time processing and data 

management techniques are included in the methodology. The work also emphasizes the pairing 

between an algorithm and system in which it resides. Multiple systems designs are presented 

which address limitations in the algorithms. Similar to algorithm techniques, a single solution 

does not address every issue, and pros and cons of each system are provided, along with 

suggestions for additional capability. 

Contributions 

The algorithm and system designs take into account real-world implementation 

requirements. These requirements include detection performance, target classification, false 

alarm and clutter mitigation, cost, range performance, hardware availability, real-time 

processing, on-the-move operation, and multi-use applications. The work in this dissertation 

established and verified weapon fire detection at low frame rates, and practical implementation 

in various wavebands, due to clutter mitigation techniques. The novelty of the proposed 

dissertation has been recognized by the United States Patent and Trademark Office, by the 

acceptance and publishing of two patents resulting from this work. The patents emphasized 
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adaptive clutter mitigation strategies, and also emphasized saturation clutter mitigation strategies 

and systems. 

Future Work 

Potential future work can include phenomenology and signature analysis, incorporation 

of novel sensors, implementation across multiple processing architectures, and full 

demonstration of on-the move applications. Phenomenology and signature analysis can exploit 

the intensity of radiated energy in various wavebands, taking into account, atmospheric 

attenuation, to improve signal to noise, affecting detection and range performance. Novel sensors 

may improve upon available sensor formats and performance, for increased number of pixels and 

increased sensitivity, at varying frame rates. The availability of these sensors in different 

wavebands, can ultimately affect system design. Additionally, the cost of new, and even older 

sensors can also affect system design. For example, inexpensive sensors may allow the problem 

space to be decomposed, such that each sensor(s) is addressing a different aspect of the problem, 

possibly reducing algorithm complexity and sensor performance requirements. Implementation, 

using various processing architectures, should be investigated to determine the trade space of 

performance, real-time processing, and reduced size and power. This research is critical for 

enabling low cost, efficient mobile and remote processing, and could increase commercial 

applicability. Additionally, demonstration of acceptable on-the-move performance could also 

increase the number of commercial applications. Commercial applications could include gun fire 

and explosive detonation detection. Commercial, automated remote sensing can be used in high 

crime areas, schools, or at large public events. Additionally, police vehicles can be equipped with 

sensors enabling autonomous gun fire detection, imaging, and reporting. Further research is 

needed to investigate modifications to the algorithm for mobile application, investigate 
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incorporation of image stabilization and registration techniques and possible associated 

hardware, and how these modifications affect detection performance, processing, size, power and 

cost. 
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