211 research outputs found

    Multiobjective Simulation Optimization Using Enhanced Evolutionary Algorithm Approaches

    Get PDF
    In today\u27s competitive business environment, a firm\u27s ability to make the correct, critical decisions can be translated into a great competitive advantage. Most of these critical real-world decisions involve the optimization not only of multiple objectives simultaneously, but also conflicting objectives, where improving one objective may degrade the performance of one or more of the other objectives. Traditional approaches for solving multiobjective optimization problems typically try to scalarize the multiple objectives into a single objective. This transforms the original multiple optimization problem formulation into a single objective optimization problem with a single solution. However, the drawbacks to these traditional approaches have motivated researchers and practitioners to seek alternative techniques that yield a set of Pareto optimal solutions rather than only a single solution. The problem becomes much more complicated in stochastic environments when the objectives take on uncertain (or noisy ) values due to random influences within the system being optimized, which is the case in real-world environments. Moreover, in stochastic environments, a solution approach should be sufficiently robust and/or capable of handling the uncertainty of the objective values. This makes the development of effective solution techniques that generate Pareto optimal solutions within these problem environments even more challenging than in their deterministic counterparts. Furthermore, many real-world problems involve complicated, black-box objective functions making a large number of solution evaluations computationally- and/or financially-prohibitive. This is often the case when complex computer simulation models are used to repeatedly evaluate possible solutions in search of the best solution (or set of solutions). Therefore, multiobjective optimization approaches capable of rapidly finding a diverse set of Pareto optimal solutions would be greatly beneficial. This research proposes two new multiobjective evolutionary algorithms (MOEAs), called fast Pareto genetic algorithm (FPGA) and stochastic Pareto genetic algorithm (SPGA), for optimization problems with multiple deterministic objectives and stochastic objectives, respectively. New search operators are introduced and employed to enhance the algorithms\u27 performance in terms of converging fast to the true Pareto optimal frontier while maintaining a diverse set of nondominated solutions along the Pareto optimal front. New concepts of solution dominance are defined for better discrimination among competing solutions in stochastic environments. SPGA uses a solution ranking strategy based on these new concepts. Computational results for a suite of published test problems indicate that both FPGA and SPGA are promising approaches. The results show that both FPGA and SPGA outperform the improved nondominated sorting genetic algorithm (NSGA-II), widely-considered benchmark in the MOEA research community, in terms of fast convergence to the true Pareto optimal frontier and diversity among the solutions along the front. The results also show that FPGA and SPGA require far fewer solution evaluations than NSGA-II, which is crucial in computationally-expensive simulation modeling applications

    Indicator-based MONEDA: A Comparative Study of Scalability with Respect to Decision Space Dimensions

    Get PDF
    Proceedings of: 2011 IEEE Congress on Evolutionary Computation (CEC), New Orleans, LA, June 5-8 2011The multi-objective neural EDA (MONEDA) was proposed with the aim of overcoming some difficulties of current MOEDAs. MONEDA has been shown to yield relevant results when confronted with complex problems. Furthermore, its performance has been shown to adequately adapt to problems with many objectives. Nevertheless, one key issue remains to be studied: MONEDA scalability with regard to the number of decision variables. In this paper has a two-fold purpose. On one hand we propose a modification of MONEDA that incorporates an indicator-based selection mechanism based on the HypE algorithm, while, on the other, we assess the indicator-based MONEDA when solving some complex two-objective problems, in particular problems UF1 to UF7 of the CEC 2009 MOP competition, configured with a progressively-increasing number of decision variables.This work was supported by projects CICYT TIN2008-06742-C02-02/TSI, CICYT TEC2008-06732-C02-02/TEC, SINPROB, CAM CONTEXTS S2009/TIC-1485 and DPS2008-07029-C02-02.Publicad

    Parallel evolutionary algorithms for scheduling on heterogeneous computing and grid environments

    Get PDF
    This thesis studies the application of sequential and parallel evolutionary algorithms to the scheduling problem in heterogeneous computing and grid environments, a key problem when executing tasks in distributed computing systems. Since the 1990's, this class of systems has been increasingly employed to provide support for solving complex problems using high-performance computing techniques. The scheduling problem in heterogeneous computing systems is an NP-hard optimization problem, which has been tackled using several optimization methods in the past. Among many new techniques for optimization, evolutionary computing methods have been successfully applied to this class of problems. In this work, several evolutionary algorithms in their sequential and parallel variants are specically designed to provide accurate solutions for the problem, allowing to compute an eficient planning for heterogeneous computing and grid environments. New problem instances, far more complex than those existing in the related literature, are introduced in this thesis in order to study the scalability of the presented parallel evolutionary algorithms. In addition, a new parallel micro-CHC algorithm is developed, inspired by useful ideas from the multiobjective optimization field. Eficient numerical results of this algorithm are reported in the experimental analysis performed on both well-known problem instances and the large instances specially designed in this work. The comparative study including traditional methods and evolutionary algorithms shows that the new parallel micro-CHC is able to achieve a high problem solving eficacy, outperforming previous results already reported for the problem and also having a good scalability behavior when solving high dimension problem instances.In addition, two variants of the scheduling problem in heterogeneous environments are also tackled, showing the versatility of the proposed approach using parallel evolutionary algorithms to deal with both dynamic and multi-objective scenarios.Esta tesis estudia la aplicación de algoritmos evolutivos secuenciales y paralelos para el problema de planicación de tareas en entornos de cómputo heterogéneos y de computación grid. Desde la década de 1990, estos sistemas computacionales han sido utilizados con éxito para resolver problemas complejos utilizando técnicas de computación de alto desempeo. El problema de planificación de tareas en entornos heterogéneos es un problema de optimización NP-difícil que ha sido abordado utilizando diversas técnicas. Entre las técnicas emergentes para optimización combinatoria, los algoritmos evolutivos han sido aplicados con éxito a esta clase de problemas. En este trabajo, varios algoritmos evolutivos en sus versiones secuenciales y paralelas han sido especificamente diseados para alcanzar soluciones precisas para el problema de planicación de tareas en entornos de heterogéneos, permitiendo calcular planificaciones eficientes para entornos que modelan clusters de computadores y plataformas de computación grid. Nuevas instancias del problema, con una complejidad mucho mayor que las previamente existentes en la literatura relacionada, son presentadas en esta tesis con el objetivo de analizar la escalabilidad de los algoritmos evolutivos propuestos. Complementariamente, un nuevo método, el micro-CHC paralelo es desarrollado, inspirado en ideas ítiles provenientes del área de optimización multiobjetivo. Resultados numéricos precisos y eficientes se reportan en el análisis experimental realizado sobre instancias estándar del problema y sobre las nuevas instancias especificamente diseñadas en este trabajo.El estudio comparativo que incluye a métodos tradicionales para planificación de tareas, los nuevos métodos propuestos y algoritmos evolutivos previamente aplicados al problema, demuestra que el nuevo micro-CHC paralelo es capaz de alcanzar altos valores de eficacia, superando a los mejores resultados previamente reportados en la literatura del área y mostrando un buen comportamiento de escalabilidad para resolver las instancias de gran dimensión. Además, dos variantes del problema de planificación de tareas en entornos heterogéneos han sido inicialmente estudiadas, comprobándose la versatilidad del enfoque propuesto para resolver las variantes dinámica y multiobjetivo del problema

    Evolutionary Algorithms for Static and Dynamic Multiobjective Optimization

    Get PDF
    Many real-world optimization problems consist of a number of conflicting objectives that have to be optimized simultaneously. Due to the presence of multiple conflicting ob- jectives, there is no single solution that can optimize all the objectives. Therefore, the resulting multiobjective optimization problems (MOPs) resort to a set of trade-off op- timal solutions, called the Pareto set in the decision space and the Pareto front in the objective space. Traditional optimization methods can at best find one solution in a sin- gle run, thereby making them inefficient to solve MOPs. In contrast, evolutionary algo- rithms (EAs) are able to approximate multiple optimal solutions in a single run. This strength makes EAs good candidates for solving MOPs. Over the past several decades, there have been increasing research interests in developing EAs or improving their perfor- mance, resulting in a large number of contributions towards the applicability of EAs for MOPs. However, the performance of EAs depends largely on the properties of the MOPs in question, e.g., static/dynamic optimization environments, simple/complex Pareto front characteristics, and low/high dimensionality. Different problem properties may pose dis- tinct optimization difficulties to EAs. For example, dynamic (time-varying) MOPs are generally more challenging than static ones to EAs. Therefore, it is not trivial to further study EAs in order to make them widely applicable to MOPs with various optimization scenarios or problem properties. This thesis is devoted to exploring EAs’ ability to solve a variety of MOPs with dif- ferent problem characteristics, attempting to widen EAs’ applicability and enhance their general performance. To start with, decomposition-based EAs are enhanced by incorpo- rating two-phase search and niche-guided solution selection strategies so as to make them suitable for solving MOPs with complex Pareto fronts. Second, new scalarizing functions are proposed and their impacts on evolutionary multiobjective optimization are exten- sively studied. On the basis of the new scalarizing functions, an efficient decomposition- based EA is introduced to deal with a class of hard MOPs. Third, a diversity-first- and-convergence-second sorting method is suggested to handle possible drawbacks of convergence-first based sorting methods. The new sorting method is then combined with strength based fitness assignment, with the aid of reference directions, to optimize MOPs with an increase of objective dimensionality. After that, we study the field of dynamic multiobjective optimization where objective functions and constraints can change over time. A new set of test problems consisting of a wide range of dynamic characteristics is introduced at an attempt to standardize test environments in dynamic multiobjective optimization, thereby aiding fair algorithm comparison and deep performance analysis. Finally, a dynamic EA is developed to tackle dynamic MOPs by exploiting the advan- tages of both generational and steady-state algorithms. All the proposed approaches have been extensively examined against existing state-of-the-art methods, showing fairly good performance in a variety of test scenarios. The research work presented in the thesis is the output of initiative and novel attempts to tackle some challenging issues in evolutionary multiobjective optimization. This re- search has not only extended the applicability of some of the existing approaches, such as decomposition-based or Pareto-based algorithms, for complex or hard MOPs, but also contributed to moving forward research in the field of dynamic multiobjective optimiza- tion with novel ideas including new test suites and novel algorithm design

    Energy-aware scheduling in distributed computing systems

    Get PDF
    Distributed computing systems, such as data centers, are key for supporting modern computing demands. However, the energy consumption of data centers has become a major concern over the last decade. Worldwide energy consumption in 2012 was estimated to be around 270 TWh, and grim forecasts predict it will quadruple by 2030. Maximizing energy efficiency while also maximizing computing efficiency is a major challenge for modern data centers. This work addresses this challenge by scheduling the operation of modern data centers, considering a multi-objective approach for simultaneously optimizing both efficiency objectives. Multiple data center scenarios are studied, such as scheduling a single data center and scheduling a federation of several geographically-distributed data centers. Mathematical models are formulated for each scenario, considering the modeling of their most relevant components such as computing resources, computing workload, cooling system, networking, and green energy generators, among others. A set of accurate heuristic and metaheuristic algorithms are designed for addressing the scheduling problem. These scheduling algorithms are comprehensively studied, and compared with each other, using statistical tools to evaluate their efficacy when addressing realistic workloads and scenarios. Experimental results show the designed scheduling algorithms are able to significantly increase the energy efficiency of data centers when compared to traditional scheduling methods, while providing a diverse set of trade-off solutions regarding the computing efficiency of the data center. These results confirm the effectiveness of the proposed algorithmic approaches for data center infrastructures.Los sistemas informáticos distribuidos, como los centros de datos, son clave para satisfacer la demanda informática moderna. Sin embargo, su consumo de energético se ha convertido en una gran preocupación. Se estima que mundialmente su consumo energético rondó los 270 TWh en el año 2012, y algunos prevén que este consumo se cuadruplicará para el año 2030. Maximizar simultáneamente la eficiencia energética y computacional de los centros de datos es un desafío crítico. Esta tesis aborda dicho desafío mediante la planificación de la operativa del centro de datos considerando un enfoque multiobjetivo para optimizar simultáneamente ambos objetivos de eficiencia. En esta tesis se estudian múltiples variantes del problema, desde la planificación de un único centro de datos hasta la de una federación de múltiples centros de datos geográficmentea distribuidos. Para esto, se formulan modelos matemáticos para cada variante del problema, modelado sus componentes más relevantes, como: recursos computacionales, carga de trabajo, refrigeración, redes, energía verde, etc. Para resolver el problema de planificación planteado, se diseñan un conjunto de algoritmos heurísticos y metaheurísticos. Estos son estudiados exhaustivamente y su eficiencia es evaluada utilizando una batería de herramientas estadísticas. Los resultados experimentales muestran que los algoritmos de planificación diseñados son capaces de aumentar significativamente la eficiencia energética de un centros de datos en comparación con métodos tradicionales planificación. A su vez, los métodos propuestos proporcionan un conjunto diverso de soluciones con diferente nivel de compromiso respecto a la eficiencia computacional del centro de datos. Estos resultados confirman la eficacia del enfoque algorítmico propuesto

    Parallel Multi-Objective Evolutionary Algorithms: A Comprehensive Survey

    Get PDF
    Multi-Objective Evolutionary Algorithms (MOEAs) are powerful search techniques that have been extensively used to solve difficult problems in a wide variety of disciplines. However, they can be very demanding in terms of computational resources. Parallel implementations of MOEAs (pMOEAs) provide considerable gains regarding performance and scalability and, therefore, their relevance in tackling computationally expensive applications. This paper presents a survey of pMOEAs, describing a refined taxonomy, an up-to-date review of methods and the key contributions to the field. Furthermore, some of the open questions that require further research are also briefly discussed

    A stopping criterion for multi-objective optimization evolutionary algorithms

    Get PDF
    This Paper Puts Forward A Comprehensive Study Of The Design Of Global Stopping Criteria For Multi-Objective Optimization. In This Study We Propose A Global Stopping Criterion, Which Is Terms As Mgbm After The Authors Surnames. Mgbm Combines A Novel Progress Indicator, Called Mutual Domination Rate (Mdr) Indicator, With A Simplified Kalman Filter, Which Is Used For Evidence-Gathering Purposes. The Mdr Indicator, Which Is Also Introduced, Is A Special-Purpose Progress Indicator Designed For The Purpose Of Stopping A Multi-Objective Optimization. As Part Of The Paper We Describe The Criterion From A Theoretical Perspective And Examine Its Performance On A Number Of Test Problems. We Also Compare This Method With Similar Approaches To The Issue. The Results Of These Experiments Suggest That Mgbm Is A Valid And Accurate Approach. (C) 2016 Elsevier Inc. All Rights Reserved.This work was funded in part by CNPq BJT Project 407851/2012-7 and CNPq PVE Project 314017/2013-

    Scalable multi-objective optimization

    Get PDF
    This thesis is concerned with the three open in multi-objective optimization: (i) the development of strategies for dealing with problems with many objective functions; (ii) the comprehension and solution of the model-building issues of current MOEDAs, and; (iii) the formulation of stopping criteria for multi-objective optimizers. We argue about what elements of MOEDAs should be modified in order to achieve a substantial improvement on their performance and scalability. However, in order to supply a solid ground for that discussion, some other elements are to be discussed as well. In particular, this thesis: sketches the supporting theoretical corpus and the fundamentals of MOEA and MOEDA algorithms; analyzes the scalability issue of MOEAs from both theoretical and experimental points of view; discusses the possible directions of improvement for MOEAs’ scalability, presenting the current trends of research; gives reasons of why EDAs can be used as a foundation for achieving a sizable improvement with regard to the scalability issue; examines the model-building issue in depth, hypothesizing on how it affects MOEDAs performance; proposes a novel model-building algorithm, the model-building growing neural gas (MBGNG), which fulfill the requirements for a new approach derived from the previous debate, and; introduces a novel MOEDA, the multi-objective neural EDA, that is constructed using MB-GNG as foundation. The formulation of an strategy for stopping multi-objective optimizers became obvious and necessary as this thesis was developed. The lack of an adequate stopping criterion made the rendered any experimentation that had to do with many objectives a rather cumbersome task. That is why it was compulsory to deal with this issue in order to proceed with further studies. In this regard, the thesis: provides an updated and exhaustive state-of-the-art of this matter; examines the properties and characteristics that a given stopping criterion should exhibit; puts forward a new stopping criterion, denominated MGBM, after the authors last names, that has a small computational footprint, and; experimentally validates MGBM in a set of experiments. Theoretical discussions and algorithm proposals are experimentally contrasted with current state-of-the-art approaches when required. --------------------------------------------------------------------------------------------------------------------------------------------------------------------------Muchas actividades humanas están relacionadas con la elaboración de artefactos cuyas características, organización y/o costes de producción, etc., se deben ajustar en la manera más eficiente posible. Este hecho ha creado la necesidad de tener herramientas matemáticas y computacionales capaces de tratar estos problemas, lo cual ha impulsado el desarrollo de distintas áreas de investigación interrelacionadas, como, por ejemplo, la optimización, programación matemática, investigación de operaciones, etc. El concepto de optimización se puede formular en términos matemáticos como el proceso de buscar una o más soluciones factibles que se correspondan con los valores extremos de una o varias funciones. La mayor parte de los problemas de optimización reales implican la optimización de más de una función a la vez. Esta clase de problemas se conoce como problemas de optimización multi-objetivo (POM). Existe una clase de POM que es particularmente atractivo debido a su complejidad inherente: los denominados problemas de muchos objetivos. Estos son problemas con un número relativamente elevado de funciones objetivo. Numerosos experimentos han mostrado que los métodos “tradicionales” no logran un desempeño adecuado debido a la relación intensamente exponencial entre la dimensión del conjunto objetivo y la cantidad de recursos requeridos para resolver el problema correctamente. Estos problemas tienen una naturaleza poco intuitiva y, en particular, sus soluciones son difíciles de visualizar por un tomador de decisiones humano. Sin embargo, son bastante comunes en la práctica (Stewart et al., 2008). La optimización multi-objetivo ha recibido una importante atención por parte de la comunidad dedicada a los algoritmos evolutivos (Coello Coello et al., 2007). Sin embargo, se ha hecho patente la necesidad de buscar alternativas para poder tratar con los problemas de muchos objetivos. Los algoritmos de estimación de distribución (EDAs, por sus siglas en inglés) (Lozano et al., 2006) son buenos candidatos para esa tarea. Estos algoritmos se han presentado como una revolución en el campo de la computación evolutiva. Ellos sustituyen la aplicación de operadores inspirados en la selección natural por la síntesis de un modelo estadístico. Este modelo es muestreado para generar nuevos elementos y así proseguir con la búsqueda de soluciones. Sin embargo, los EDAs multi-objetivo (MOEDAs) no han logrado cumplir las expectativas creadas a priori. El leit motif de esta tesis se puede resumir en que la causa principal del bajo rendimiento MOEDAs se debe a los algoritmos de aprendizaje automático que se aplican en la construcción de modelos estadísticos. Los trabajos existentes hasta el momento han tomado una aproximación de “caja negra” al problema de la construcción de modelos. Por esa razón, se aplican métodos de aprendizaje automático ya existentes sin modificación alguna, sin percatarse que el problema de la construcción de modelos para EDAs tiene unos requisitos propios que en varios casos son contradictorios con el contexto original de aplicación de los mencionados algoritmos. En particular, hay propiedades compartidas por la mayoría de los enfoques de aprendizaje automático que podrían evitar la obtención de una mejora sustancial en el resultado de los MOEDAs. Ellas son: el tratamiento incorrecto de los valores atípicos (outliers) en el conjunto de datos; tendencia a la pérdida de la diversidad de la población, y; exceso de esfuerzo computacional dedicado a la búsqueda de un modelo óptimo. Estos problemas, aunque ya están presentes en los EDAs de un solo objetivo, se hacen patentes al escalar a problemas de varios objetivos y, en particular, a muchos objetivos. Además, con el aumento de la cantidad de objetivos con frecuencia esta situación se ve agravada por las consecuencias de la “maldición de la dimensionalidad”. La cuestión de los valores atípicos en los datos es un buen ejemplo de como la comunidad no ha notado esta diferencia. En el contexto tradicional del aprendizaje automático los valores extremos son considerados como datos ruidosos o irrelevantes y, por tanto, deben ser evitados. Sin embargo, los valores atípicos en los datos de la construcción de modelos representan las regiones recién descubiertas o soluciones candidatas del conjunto de decisión y por lo tanto deben ser explorados. En este caso, los casos aislados debe ser al menos igualmente representados por el modelo con respecto a los que están formando grupos. Sobre la base de estos razonamientos se estructuran los principales resultados obtenidos en el desarrollo de la tesis. A continuación se enumeran brevemente los mismos mencionando las referencias principales de los mismos. Comprensión del problema de la construcción de modelos en MOEDAs (Martí et al., 2010a, 2008b, 2009c). Se analiza que los EDAs han asumido incorrectamente que la construcción de modelos es un problema tradicional de aprendizaje automático. En el trabajo se muestra experimentalmente la hipótesis. Growing Neural Gas: una alternativa viable para construcción de modelos (Martí et al., 2008c). Se propone el Model-Building Growing Neural Gas network (MB-GNG), una modificación de las redes neuronales tipo Growing Neural Gas. MB-GNG tiene las propiedades requeridas para tratar correctamente la construcción de modelos. MONEDA: mejorando el desempeño de los MOEDAs (Martí et al., 2008a, 2009b, 2010c). El Multi-objective Optimization Neural EDA (MONEDA) fue ideado con el fin de hacer frente a los problemas arriba descritos de los MOEDAs y, por lo tanto, mejorar la escalabilidad de los MOEDAs. MONEDA utiliza MB-GNG para la construcción de modelos. Gracias a su algoritmo específico de construcción de modelos, la preservación de las élites de individuos de la población y su mecanismo de sustitución de individuos MONEDA es escalable capaz de resolver POMs continuos de muchos objetivos con un mejor desepeño que algoritmos similares a un coste computacional menor. Esta propuesta fue nominada a mejor trabajo en GECCO’2008. MONEDA en problemas de alta complejidad (Martí et al., 2009d). En este caso se lleva a cabo una amplia experimentación para comprender como las características de MONEDA provocan una mejora en el desempeño del algoritmo, y si sus resultados mejoran los obtenidos de otros enfoques. Se tratan problemas de alta complejidad. Estos experimentos demostraron que MONEDA produce resultados sustancialmente mejores que los algoritmos similares a una menor coste computacional. Nuevos paradigmas de aprendizaje: MARTEDA (Martí et al., 2010d). Si bien MB-GNG y MONEDA mostraron que la vía del tratamiento correcto de la construcción de modelos era una de las formas de obtener mejores resultados, ellos no evadían por completo el punto esencial: el paradigma de aprendizaje empleado. Al combinar un paradigma de aprendizaje automático alternativo, en particular, la Teoría de Resonancia Adaptativa, se trata a este asunto desde su raíz. En este respecto se han obtenido algunos resultados preliminares alentadores. Criterios de parada y convergencia (Martí et al., 2007, 2009a, 2010e). Con la realización de los experimentos anteriores nos percatamos de la falta de de un criterio de parada adecuado y que esta es un área inexplorada en el ámbito de la investigación en algoritmos evolutivos multi-objectivo. Abordamos esta cuestión proponiendo una serie de criterios de parada que se han demostrado efectivos en problemas sintéticos y del mundo real

    Evolutionary multi-objective optimization in uncertain environments

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    MONEDA: scalable multi-objective optimization with a neural network-based estimation of distribution algorithm

    Get PDF
    The Extension Of Estimation Of Distribution Algorithms (Edas) To The Multiobjective Domain Has Led To Multi-Objective Optimization Edas (Moedas). Most Moedas Have Limited Themselves To Porting Single-Objective Edas To The Multi-Objective Domain. Although Moedas Have Proved To Be A Valid Approach, The Last Point Is An Obstacle To The Achievement Of A Significant Improvement Regarding "Standard" Multi-Objective Optimization Evolutionary Algorithms. Adapting The Model-Building Algorithm Is One Way To Achieve A Substantial Advance. Most Model-Building Schemes Used So Far By Edas Employ Off-The-Shelf Machine Learning Methods. However, The Model-Building Problem Has Particular Requirements That Those Methods Do Not Meet And Even Evade. The Focus Of This Paper Is On The Model- Building Issue And How It Has Not Been Properly Understood And Addressed By Most Moedas. We Delve Down Into The Roots Of This Matter And Hypothesize About Its Causes. To Gain A Deeper Understanding Of The Subject We Propose A Novel Algorithm Intended To Overcome The Draw-Backs Of Current Moedas. This New Algorithm Is The Multi-Objective Neural Estimation Of Distribution Algorithm (Moneda). Moneda Uses A Modified Growing Neural Gas Network For Model-Building (Mb-Gng). Mb-Gng Is A Custom-Made Clustering Algorithm That Meets The Above Demands. Thanks To Its Custom-Made Model-Building Algorithm, The Preservation Of Elite Individuals And Its Individual Replacement Scheme, Moneda Is Capable Of Scalably Solving Continuous Multi-Objective Optimization Problems. It Performs Better Than Similar Algorithms In Terms Of A Set Of Quality Indicators And Computational Resource Requirements.This work has been funded in part by projects CNPq BJT 407851/2012-7, FAPERJ APQ1 211.451/2015, MINECO TEC2014-57022-C2-2-R and TEC2012-37832-C02-01
    corecore