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Summary

Many real-world problems involve the simultaneous optimization of several competing objec-
tives and constraints that are difficult, if not impossible, to solve without the aid of powerful
optimization algorithms. What makes multi-objective optimization so challenging is that,
in the presence of conflicting specifications, no one solution is optimal to all objectives and
optimization algorithms must be capable of finding a number of alternative solutions repre-
senting the tradeoffs. However, multi-objectivity is just one facet of real-world applications.
Most optimization problems are also characterized by various forms of uncertainties stem-
ming from factors such as data incompleteness and uncertainties, environmental conditions
uncertainties, and solutions that cannot be implemented exactly.

Evolutionary algorithms are a class of stochastic search methods that have been found
to be very efficient and effective in solving sophisticated multi-objective problems where
conventional optimization tools fail to work well. Evolutionary algorithms’ advantage can
be attributed to it’s capability of sampling multiple candidate solutions simultaneously, a
task that most classical multi-objective optimization techniques are found to be wanting.
Much work has been done to the development of these algorithms in the past decade and
it is finding increasingly application to the fields of bioinformatics, logical circuit design,
control engineering and resource allocation. Interestingly, many researchers in the field
of evolutionary multi-objective optimization assume that the optimization problems are
deterministic, and uncertainties are rarely examined. While multi-objective evolutionary
algorithms draw its inspiration from nature where uncertainty is a common phenomenon,
it cannot be taken for granted that these algorithms will hence be inherently robust to
uncertainties without any further investigation.

The primary motivation of this work is to provide a comprehensive treatment on the
design and application of multi-objective evolutionary algorithms for multi-objective opti-
mization in the presence of uncertainties. This work is divided into three parts, which each
part considering a different form of uncertainties: 1) noisy fitness functions, 2) dynamic
fitness functions, and 3) robust optimization. The first part addresses the issues of noisy
fitness functions. In particular, three noise-handling mechanisms are developed to improve
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algorithmic performance. Subsequently, a basic multi-objective evolutionary algorithm in-
corporating these three mechanisms are validated against existing techniques under different
noise levels. As a specific instance of a noisy MO problem, a hybrid multi-objective evolu-
tionary algorithm is also presented for the evolution of artificial neural network classifiers.
Noise is introduced as a consequence of synaptic weights that are not well trained for a par-
ticular network structure. Therefore, a local search procedure consisting of a micro-hybrid
genetic algorithm and pseudo-inverse operator is applied to adapt the weights to reduce the
influence of noise.

Part II is concerned with dynamic multi-objective optimization and extends the notion
of coevolution to track the Pareto front in a dynamic environment. Since problem charac-
teristics may change with time, it is not possible to determine one best approach to problem
decomposition. Therefore, this chapter introduces a new coevolutionary paradigm that in-
corporates both competitive and cooperative mechanisms observed in nature to facilitate
the adaptation and emergence of the decomposition process with time.

The final part of this work addresses the issues of robust multi-objective optimization
where the optimality of the solutions is sensitive to parameter variations. Analyzing the
existing benchmarks applied in the literature reveals that the current corpus has severe lim-
itations. Therefore, a robust multi-objective test suite with noise-induced solution space,
fitness landscape and decision space variation is presented. In addition, the vehicle rout-
ing problem with stochastic demand (VRPSD) is presented a practical example of robust
combinatorial multi-objective optimization problems.
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Chapter 1

Introduction

Optimization may be considered as a decision-making process to get the most out of avaliable

resources for the best attainable results. Simple examples include everyday decisions, such

as the type of transport to take, which clothes to wear and what groceries to buy. For these

routine tasks, the decision to be made for, say, cheapest transport can be exceedingly clear.

Consider now, the situation where we are running late for a meeting due to some unforseen

circumstances. Since the need for expedition is conflicting to the first consideration of

minimizing cost, the selection of the right form of transportation is no longer as straight-

forward as before and the final solution will represent a compromise between the different

objectives. This type of problems which involves the simultaneous consideration of multiple

objectives are commonly termed as multi-objective (MO) problems.

Many real-world problems naturally involve the simultaneous optimization of several

competing objectives. Unfortunately, these problems are characterized by objectives that

are much more complex as compared to routine tasks and the decision space are often so

large that it is often difficult, if not impossible, to be solved without advanced and efficient

optimization techniques. In addition, as reflected by the element of uncertainty in the

example given above, the magnitude of this task is exacerbated by uncertainties such as the

presence of noise and time-varying components that are inherent to real-world problems.

MO optimization in the presence of uncertainties are of great importance in practice, where

1
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the slight difference in environmental conditions or implementation variations can be crucial

to overall operational success or failure.

1.1 MO optimization

Real-world optimization tasks are typically represented by its mathematical model and the

specification of MO criteria captures more information about the modeled problem as several

problem characteristics are taken into consideration. For instance, consider the design of a

system controller that can be found in process plants, automated vehicles and in household

appliances. Apart from obvious tradeoffs between cost and performance, the performance

criteria required by some applications such as fast response time, small overshoot and good

robustness, are also conflicting in nature [34,62,138,205].

Without any loss of generality, a minimization problem is considered here and the MO

problem can be formally defined as

min
~x∈ ~Xnx

~f(~x) = {f1(~x), f2(~x), ..., fM(~x)} (1.1)

s.t. ~g(~x) > 0,~h(~x) = 0

where ~x is the vector of decision variables bounded by the decision space, ~Xnx and ~f is the

set of objectives to be minimized. The terms “solution space” and “search space” are often

used to denote the decision space and will be used interchangeably throughout this work.

The functions ~g and ~h represents the set of inequality and equality constraints that defines

the feasible region of the nx-dimensional continuous or discrete feasible solution space. The

relationship between the decision variables and the objectives are governed by the objective

function ~f : ~Xnx 7−→ ~FM . Figure. 1.1 illustrates the mapping between the two spaces.

Depending on the actual objective function and constraints of the particular MO problem,

this mapping is not unique and may be one-to-many or many-to-one.
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1f
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2x

fx

Solution space Objective space

Figure 1.1: Illustration of the mapping between the solution space and the objective space.

1.1.1 Totally conflicting, nonconflicting, and partially conflicting MO prob-

lems

One of the key differences between SO and MO optimization is that MO problems con-

stitute a multi-dimensional objective space, ~FM . This leads to three possible instances of

MO problem, depending on whether the objectives are totally conflicting, nonconflicting, or

partially conflicting. For MO problems of the first category, the conflicting nature of the ob-

jectives are such that no improvements can be made without violating any constraints. This

result in an interesting situation where all feasible solutions are also optimal. Therefore,

totally conflicting MO problems are perhaps the simplest of the three since no optimization

is required. On the other extreme, a MO problem is nonconflicting if the various objec-

tives are correlated and the optimization of any arbitrary objective leads to the subsequent

improvement of the other objectives. This class of MO problem can be treated as a SO

problem by optimizing the problem along an arbitrarily selected objective or by aggregating

the different objectives into a scalar function. Intuitively, a single optimal solution exist for

such a MO problem.

More often than not, real-world problems are instantiations of the third type of MO

problems and this is the class of MO problems that we are interested in. One serious impli-
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cation is that a set of solutions representing the tradeoffs between the different objectives

is now sought rather than an unique optimal solution. Consider again the example of cost

vs performance of a controller. Assuming that the two objectives are indeed conflicting,

this present a least two possible extreme solutions, each representing the best achievable

situation for one objective at the expense of the other. The other solutions, if any, making

up this optimal set of solutions represent the varying degree of optimality with respect to

the two different objectives. Certainly, our conventional notion of optimality gets thrown

out of the window and a new definition of optimality is required for MO problems.

1.1.2 Pareto Dominance and Optimality

The concepts of Pareto dominance and Pareto optimality are fundamental in MO optimiza-

tion, with Pareto dominance forming the basis of solution quality. Unlike SO optimization

where there is a complete order exist (i.e, f1 ≤ f2 or f1 ≥ f2), ~Xnx is partially-ordered when

multiple objectives are involved. In fact, there are three possible relationship between the

solutions that is defined by Pareto dominance.

Definition 1.1: Weak Dominance:~f1 ∈ ~FM weakly dominates ~f2 ∈ ~FM , denoted by

~f1 � ~f2 iff f1,i ≤ f2,i ∀i ∈ {1, 2, ...,M} and f1,j < f2,j ∃j ∈ {1, 2, ...,M}

Definition 1.2: Strong Dominance: ~f1 ∈ ~FM strongly dominates ~f2 ∈ ~FM , denoted by

~f1 ≺ ~f2 iff f1,i < f2,i ∀i ∈ {1, 2, ...,M}

Definition 1.3: Incomparable: ~f1 ∈ ~FM is incomparable with ~f2 ∈ ~FM , denoted by

~f1 ∼ ~f2 iff f1,i > f2,i ∃i ∈ {1, 2, ...,M} and f1,j < x2,j ∃j ∈ {1, 2, ...,M}

With solution A as our point of reference, the regions highlighted in different shades of

grey in Figure 1.2(a) illustrates the three different dominance relations. Solutions located

in the dark grey regions are dominated by solution A because A is better in both objectives.

For the same reason, solutions located in the white region dominates solution A. Although

A has a smaller objective value as compared to the solutions located at the boundaries

between the dark and light grey regions, it only weakly dominates these solutions by virtue
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Figure 1.2: Illustration of the (a) Pareto Dominance relationship between candidate solu-
tions relative to solution A and (b) the relationship between the Approximation Set, PFA

and the true Pareto front, PF∗.

of the fact that they share a similar objective value along either one dimension. Solutions

located in the light grey regions are incomparable to solution A because it is not possible

to establish any superiority of one solution over the other: solutions in the left light grey

region are better only in the second objective while solutions in the right grey region are

better only in the first objective. It can be easily noted that there is a natural ordering of

these relations: ~f1 ≺ ~f1 ⇒ ~f1 � ~f1 ⇒ ~f1 ∼ ~f2.

With the definition of Pareto dominance, we are now in the position to consider the set

of solutions desirable for MO optimization.

Definition 1.4: Pareto Optimal Front: The Pareto optimal front, denoted as PF∗, is the set

of nondominated solutions with respect to the objective space such that PF∗ = {~f∗
i |@~fj ≺

~f∗
i , ~fj ∈ ~FM}

Definition 1.5: Pareto Optimal Set: The Pareto optimal set, denoted as PS∗, is the set

of solutions that are nondominated in the objective space such that PS∗ = {~x∗
i |@ ~F (~xj) ≺

~F (~x∗
i ), ~F(~xj) ∈ ~FM }

The set of tradeoff solutions is known as the Pareto optimal set and these solutions are also
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termed “noninferior”, “admissible” or “efficient” solutions. The corresponding objective

vectors of these solutions are termed “non-dominated” and each objective component of

any non-dominated solution in the Pareto optimal set can only be improved by degrading

at least one of its other objective components [188].

1.1.3 MO Optimization Goals

An example of the PF∗ is illustrated in Figure 1.2(b). Most often, information regarding

the PF∗ and its tradeoffs are either limited or not known a priori. It is also not easy to find

a nice closed analytic expression for the tradeoff surface because real-world MO problems

usually have complex objective functions and constraints. Therefore, in the absence of any

clear preference on the part of the decision-maker, the ultimate goal of MOO is to discover

the entire tradeoff. However, by definition, this set of objective vectors is possibly an infinite

set as in the case of numerical optimization and it is simply not achievable.

On a more practical note, the presence of too many alternatives could very well over-

whelm the decision-making capabilities of the decision-maker. In this light, it would be

more practical to settle for the discovery of as many nondominated solutions possible as

our limited computational resources permits. More precisely, we are interested in finding a

good approximation of the PF∗ and this approximate set, PFA should satisfy the following

optimization goals.

• Minimize the distance between the PFA and PF∗.

• Obtain a good distribution of generated solutions along the PFA.

• Maximize the spread of the discovered solutions.

An example of such an approximation is illustrated by the set of nondominated solu-

tions denoted by the filled circles residing along the PF∗ in Figure 1.2(b). While the first
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optimization goal of convergence is the first and foremost consideration of all optimiza-

tion problems, the second and third optimization goal of maximizing diversity are entirely

unique to MO optimization. The rationale of finding a diverse and uniformly distributed

PFA is to provide the decision maker with sufficient information about the tradeoffs between

the different solutions before the final decision is made. It should also be noted that the

optimization goals of convergence and diversity are somewhat conflicting in nature, which

explains why MO optimization is much more difficult than SO optimization.

1.2 MO Optimization in The Presence of Uncertainties

The MO problem formulated in the previous section reflects the conventional methodology

adopted in the vast majority of the optimization literature which assumes that the MO

problem is deterministic and the core optimization concern is the maximization of solution

set quality. However, Pareto optimality of the PFA does not necessarily mean that any

of the solutions along the tradeoff is desirable or even implementable in practice. This is

primarily because such a deterministic approach neglects the fact that real-world problems

are characterized by uncertainty.

Jin and Branke [107] identified four general forms of uncertainty that are encountered

in evolutionary optimization: 1) noisy fitness functions [72], 2) dynamic fitness functions, 3)

uncertainty of design variables or environmental parameters [40,73], and 4) approximation

errors. The first three types of uncertainties are inherent to the environment and are due to

factors such as data incompleteness and uncertainties, environmental conditions uncertain-

ties, and solutions that cannot be implemented exactly. On the other hand, the fourth type

of uncertainty is introduced as a consequence of the use of approximated fitness function to

reduce computational cost.

Uncertainties due to noise in the objective functions may arise from different sources

such as sensor measurement errors, incomplete simulations of computational models and
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stochastic simulations. Apart from these external sources, noise can also be intrinsic to

the problem. A good example is the evolution of neural networks where the same network

structure can give rise to different fitness values due to different weight instantiations [107].

A distinctive feature of noisy fitness function is that each evaluation of the same solution

may result in different fitness values. Mathematically, for noisy MO optimization, (1.1) can

be rewritten as

min
~x∈ ~Xnx

~F (~x) = {f1(~x) + δ1, f2(~x) + δ2, ..., fM(~x) + δM} (1.2)

where δi is a scalar noise parameter added to the original objective function of fi and ~F is

the resultant objective vector.

In contrast to noisy fitness functions, the fitness topology of dynamic MO problems may

change but the objective values is deterministic at any one time. In this context, the term

static is more appropriate than deterministic for denoting MO problems without explicit

consideration of its dynamism. For such problems, the PF∗ and the PS∗ is unlikely to remain

invariant and the optimization algorithm must be capable of tracking the PS∗ over time. In

a certain sense, the dynamic MO problem can considered as the consecutive optimization

of different time-constrained MO problems with varying complexities. However, informa-

tion from the previous environment may be exploited to improve convergence speed. The

dynamic MO problem can be described as

min
~x∈ ~Xnx

~F (~x, t) = {f1(~x, t), f2(~x, t), ..., fM(~x, t)} (1.3)

where t is typically measured in terms of solution evaluations.

The third class of uncertainty arises because small deviations from the design during

the manufacturing process and fluctuations in the operating environment is inevitable in

the real-world. Designs that are optimized without taking robustness into account are

susceptible to large or unacceptable performance variation due to decision or environmental
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parameter variation. Therefore, uncertainties arise in the design space rather than the

objective space in robust optimization. In order to reduce the consequences of uncertainty

on optimality and practicality of the solution set, factors such as decision variable variation

and environmental variation have to be considered explicitly. Therefore, the robust MO

problem can be given as

min
~x∈ ~Xnx

~F (~x, ~σx, ~σe) = {f1(~x, ~σx, ~σe), f2(~x, ~σx, ~σe), ..., fM(~x, ~σx, ~σe)} (1.4)

where σx and σe represent the uncertainty associated with ~x and environmental conditions.

Both forms of uncertainties may be treated equivalently. In this context, the PFA and

PSAthat is evolved based on (1.1) can be denoted as the efficient front and efficient solution

set respectively. A major distinction between noisy and robust optimization is that noise

is introduced deliberately into the robust optimization problem to simulate the effects of

parametric variation.

The fourth class of uncertainty is a consequence of the use of meta-models in place of

the original fitness functions, and often represents a tradeoff between model fidelity and

computational cost. One distinct feature of this form of uncertainty is that it introduces a

bias into the problem. The MO problem with approximated fitness can be given as

min
~x∈ ~Xnx

~F (~x) = ~F (~x) + ~E(~x) (1.5)

where E is the approximation error of the meta-model.

1.3 Evolutionary Multi-objective Optimization

Traditional operational research approaches to MO optimization typically entails the trans-

formation of the original problem into a SO problem and employs point-by-point algorithms

such as branch-and-bound to iteratively obtain a better solution. Such approaches have
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several limitations including the requirement of the MO problem to be well-behaved, i.e.

differentiability or satisfying the Kuhn-Tucker conditions, sensitivity to the shape of the

Pareto-front and the generation of only one solution for each simulation run. On the other

hand, metaheuristical approaches that are inspired by biological or physics phenomena such

as evolutionary algorithms and simulated annealing have been gaining increasing accep-

tance as a much more flexible and effective alternative to complex optimization problems

in the recent years. This is certainly a stark contrast to just two decades ago, as Reeves

remarked in [169] that an eminent person in operational research circles suggested that using

a heuristic was an admission of defeat!

Among these metaheuristics, MOEA is one of the more popular stochastic search method-

ology to solve MO problems. Emulating the DarwinianWallace principle of “survival-of-the-

fittest” in natural selection and adaptation, MOEAs have the distinct advantage of being

able to sample multiple solutions simultaneously. Such a feature provides the MOEA with

a global perspective of the MO problem as well as the capability to find a set of Pareto-

optimal solutions in a single run. Applying genetic operators such as the selection process

and crossover operator allows the MOEA to intelligently sieve through the large amount

of information embedded within each individual representing a candidate solution and ex-

change information between them to increase the overall quality of the individuals in the

population. In this section, state-of-the-arts MOEAs, MO test problems and performance

indicators that are used for algorithmic performance evaluation in this work are discussed.

1.3.1 MOEA Framework

Many different evolutionary techniques for MO optimization have been proposed since the

pioneering effort of Schaffer in [179], with the aim of fulfilling the three optimization goals

described previously. Most of these MOEAs are largely based on the computational models

of genetic algorithms (GAs) [88], evolutionary programming (EP) [59] and evolutionary

strategies (ES) [168]. Interestingly, ES is the only paradigm developed for the purpose of
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optimization; GAs are designed as a general adaptive system while ES are developed as a

learning process to create artificial intelligence.

Recent years have also seen the emergence of other biologically inspired models such as

particle swarm optimization (PSO), differential evolution (DE), cultural algorithms (CA),

and artificial immune systems (AIS) for MO optimization. While all these algorithms are

different in methodology, particularly in the generation of new candidate solutions, the

distinctions between them have become increasingly vague as researchers sought to exploit

the advantages offered by the different algorithms in a common platform. Moreover, MO

optimization requires researchers to address many similar issues that are unique to MO

problems, regardless of the computational model applied. Therefore, no distinction will

be made between the different evolutionary computation models and all these techniques

developed for MO optimization are referred as MOEA.

One distinct feature that characterizes state-of-the-art MOEAs such as nondominated

sorting genetic algorithm II (NSGAII) [43], Pareto archived evolution strategy (PAES) [127],

Pareto envelope based selection algorithm (PESA) [32], incrementing multi-objective evo-

lutionary algorithm (IMOEA) [199] and strength Pareto evolutionary algorithm 2 (SPEA2)

[228] from early research efforts is the incorporation of elitism. Elitism involves two closely

related process, 1) the preservation of good solutions and 2) the reinsertion of these so-

lutions into the evolving population. While the general motivations may be similar, these

algorithms can be distinguished by the way in which the mechanisms of elitism and diversity

preservation are implemented.

The general MOEA framework can be represented in the pseudocode shown in Fig. 1.3

and it can be shown that most MOEAs fit into this framework. There seem to be many

similarities between SO evolutionary algorithms (SOEAs) and MOEAs with both techniques

involving an iterative adaptation of a set of solutions until a pre-specified optimization

goal/stopping criterion is met. What sets these two techniques apart is the manner in

which solution assessment and elitism are performed. This is actually a consequence of the
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P Population Initialization
A Create External population or Archive
While (Stopping criteria not satisfied)

P Eval(P, A)
P Diversity(P, A)
A Update(P, A)
S Selection(P, A)
P  Variation(S)

End While

Figure 1.3: Framework of MOEA

three optimization goals described in Section 1.1.3. In particular, solution assessment must

exert a pressure to drive the solutions toward the global tradeoffs as well as to diversify the

individuals uniformly along the discovered PFA. The archive updating and selection process

must also take diversity into consideration to encourage and maintain a diverse solution set.

The optimization process starts with the initialization of the population. This is fol-

lowed by evaluation (Eval) and density assessment (Diversity) of candidate solutions. After

which, good solutions are updated into an external population or archive (Update). MOEAs

perform the archiving process differently, some of which maintains a fixed sized archive while

others store only nondominated solutions. Nonetheless, in most cases, a truncation process

will be conducted based on some density assessment to restrict the number of archived

solutions. Both NSGAII and SPEA2 maintains a fixed sized archive which includes both

dominated and nondominated solutions while PAES and PESA stores only nondominated

solutions. For the truncation process, PAES and PESA employ a hyper-grid measure while

SPEA, NSGAII and IMOEA employ Euclidean-based measures.

The selection process typically involves the set of nondominated solutions updated in the

previous stage. For NSGAII, SPEA2 and PESA, tournament selection is conducted directly

on the archive. In [196], the archive of nondominated solutions and evolving population is

combined before tournament selection is performed. Bosman and Thierens [15] noted that

diversity usually serves only as a secondary selection criteria to the optimization goal of
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convergence. As a specific instance, NSGAII applies the crowded comparison operator only

to break any tie in rank occurred during the tournament selection. On the other hand, the

selection process in PESA is based on the degree of crowding or the squeeze factor only.

After the selection process, variation operators are applied to explore and exploit the

selected individuals to generate a new population of solutions. Different methods of gen-

erating individuals can be found in the literature. Uniform crossover and bit-flip mutation

have been used for NSGAII and SPEA2. In AIS-inspired MOEAs [29, 141], cloning and

hypermutation are applied while EDA-based MOEAs [16,152] enforce sampling from learnt

probabilistic models. Variation operators associated with the various paradigms have been

applied across the different computational model resulting in very similar implementations,

a point mentioned earlier. Some recent examples include the introduction of recombination

into the AIS-inspired MOEAs in [192, 106] and the hybridization of clonal selection and

hypermutation with PSO-inspired MOEAs [223].

1.3.2 Basic MOEA Components

The framework presented in the previous section serves to highlight the primary components

of the MOEA, elements without which the algorithm is unable to fulfill its basic function

of finding PF∗satisfactorily. More elaborate frameworks with different concerns exist in the

literature. For instance, Bosman and Thierens [15] presented a framework that considers

how MOEAs can be constructed to control the emphasis on the exploration and exploitation

of diversity or proximity. In another work, Laumanns et al [134] focused on the design and

incorporation of elitism into MOEAs.

Fitness Assignment

As illustrated in Figure 1.4, solution assessment in MOEA should be designed in such a

way that a pressure ←−P n is exerted to promote the solutions in a direction normal to the
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Figure 1.4: Illustration of Selection Pressure Required to Drive Evolved Solutions Towards
PF∗

tradeoffs region and at the same time, another pressure ←−P t to promote the solutions in a

direction tangentially to that region. These two orthogonal pressures result in the unified

pressure←−P u to direct the evolutionary search in the MO optimization context. Based on the

literature, it is possible to identify three different classes of fitness assignment: 1) Pareto-

based assignment, 2) aggregation-based assignment and 3) indicator based assignment.

Pareto-based Fitness Assignment: Pareto-based MOEAs have emerged as the most pop-

ular approach [198] since Fonseca and Fleming [63] put into practice the notion of dominance

suggested in [76]. On its own, Pareto dominance is unable to induce ←−P t and the solutions

will converge to arbitrary portions of the PFA, instead of covering the whole surface. Thus

Pareto-based fitness assignments are usually applied in conjuction with density measures,

which can be incorporated in two ways. The first approach, commonly known as fitness shar-

ing, aggregates the Pareto-based fitness and some form of density measure to form a scalar

fitness. In this case, the aggregation function must be carefully constructed to maintain a

balance between←−P t and ←−P n. This approach has been applied by successfully in works such

as [61,140,228]. The second approach adopts a two stage process where comparison between
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solutions is conducted based on Pareto-fitness before density measure is used. Note that

this indirectly assigns higher priority levels to proximity. Another interesting consequence

is that ←−P n will be higher in the initial stages of the evolution. On the other hand, when

the solutions begin to converge to the PF∗, the influence of ←−P t becomes more dominant as

most of the solutions are equally fit. This approach is used in algorithms such as PAES,

NSGAII and IMOEA.

However, Fonseca and Fleming [63] highlighted that Pareto-based assignment may not

be able to produce sufficient selection pressure in high-dimensional problems and it has been

shown empirically that Pareto-based MOEAs do not scale well with respect to the number

of objectives in [92, 116]. To understand this phenomenon, let us consider a M-objective

problem where M>>2. Under the definition of Pareto dominance, as long as a solution has

one objective value that is better than another solution, never mind the degree of superiority,

it is still considered to be nondominated even if it grossly inferior in the other M-1 objectives.

Intuitively, the number of nondominated solutions in the evolving population grows with

the number of objective resulting in the lost of selection pressure.

To this end, some researchers have sought to relax the definition of Pareto-optimality.

Ikeda et al [97] proposed the α-dominance scheme which considers the contribution of all

the weighted difference between the respective objectives of any two solutions under com-

parison to prevent the above situation from occuring. Laumanns et al [132] suggested an

ε-dominance scheme which has the interesting property of ensuring convergence and di-

versity. In this scheme, an individual dominates another individual only if it offers an

improvement in all aspects of the problem by a pre-defined factor of ε. A significant dif-

ference between α-dominance and ε-dominance is that a solution that strongly dominates

another solution also α-dominates that solution while this relationship is not always valid

for the latter scheme. Another interesting alternative in the form of fuzzy Pareto-optimality

is presented by Farina and Amato [53] to take into account the number and size of improved

objective values.
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Aggregation-based Fitness Assignment: Aggregation of the objectives into a single scalar

is perhaps the simplest approach to generate PFA. Interestingly, unlike the Pareto-based

approach, aggregation-based fitness induces ←−P u directly. However, aggregation is usually

associated with several limitations such as its sensitivity to PF∗ shape and the lack of control

on the direction of←−P u. This results in the contrasting lack of interest paid by evolutionary

MO optimization (EMOO) researchers as compared to Pareto-based techniques. Ironically,

the failure of Pareto-based MOEAs in high-dimensional objective space may well turn the

attention towards the use of aggregation-based fitness assignment in MOEAs.

The multi-objective genetic local search (MOGLS) [102–105] is a well-known instance of

aggregation-based MOEA that has been demonstrated to be capable of evolving uniformly

distributed and diverse PFA. Different search trajectories are generated during the evolution

through the use of random weights in [102,103] while Jaszkiewicz [104,105] applied different

instances of predefined utility functions. Jin et al investigated two different approaches

in [110]. In the first method, each individual is assigned its own weights that will be

regenerated every generation while the second method periodically change the weights along

the evolutionary process. The most significant result of this work is that both methods are

able to converge on concave PF∗ empirically, which is against conventional wisdom on the

limitations of aggregation. According to [111], this is because the aggregation-based MOEA

will transverse the entire Pareto front regardless of PF∗ shape and the archive plays a

significant role in retaining the nondominated solutions found.

Instead of performing the aggregation of objective values, Hughes [93, 94] suggested

the aggregation of individual performance with respect to a set of predetermined target

vectors. In this approach, individuals are ranked according to their relative performance

in an ascending order for each target. These ranks are then sorted and stored in a matrix

such that is may be used to rank the population, with the most fit being the solution that

achieves the best scores most often. It has been shown to outperform nondominated sorting

applied in NSGAII for high-dimensional MO problems [93].
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At this point of time, it seems that Pareto-based fitness are more effective in low-

dimensional MO problems while aggregation-based fitness has an edge with increasing num-

ber of objectives. Naturally, some researchers have attempted to marry both methods

together. For example, Turkcan and Akturk [209] proposed an hybrid MO fitness assign-

ment method which assigns a nondominated rank that is normalized by niche count and

an aggregation of weighted objective values. On the other hand, Pareto-based fitness and

aggregation-based fitness are used independently in various stages of the evolutionary pro-

cess in [54,149].

Indicator-based Fitness Assignment: Since the performance of MOEAs are assessed and

compared using performance indicators, it is therefore desirable to maximize algorithmic

performance according to these measures. Fleischer [58] is probably the first to suggest that

MO performance indicators can be used to guide the evolutionary process and recasted the

MO problem as a SO problem that maximizes the hypervolume metric of the discovered

PFA. In [50], hypervolume is used as the selection criteria to remove the worst individuals in

the worst-ranked PF∗ after nondominated sorting to maintain a fixed population size. Zitzler

and Kunzli [226] took a step further and applied binary indicators directly to determine the

relative fitness of the evolving individuals. The utility of indicator-based fitness has also

been investigated in [11]. While no clear guidelines on the choice of metrics exist at this

time, it is clear that the selected measure must be able to provide an indication of solution

quality in the aspects of diversity and convergence in order to exert the ←−P u.

Diversity Preservation

Density Assessment: A basic component of diversity preservation strategies is density as-

sessment. Density assessment evaluates the density at different sub-divisions in a feature

space, which may be in the parameter or objective domain, before any action is taken to

influence the survival rate of the solution points [117]. Depending on the manner in which

solution density is measured, the different density assessment techniques can be broadly
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categorized under 1) Distance-based, 2) Grid-based, and 3) Distribution-based. One of the

basic issues to be examined is whether density assessment should be computed in the deci-

sion space or objective space. Horn and Nafpliotis [90] stated that density assessment should

be conducted in the feature space where the decision-maker is most concerned about its dis-

tribution. Since we are interested in obtaining a well-distributed and diverse PFA, most

works reported in the EMOO literature applied density assessment in the objective space.

There are also researchers who performed density assessment in the decision space [188] as

well as in both objective and decision spaces simultaneously [46,87,171]. In fact, there may

be little correlation between diversity in the two feature spaces. Tan et al [196] pointed out

that it essentially depends on what is desired for the underlying problem.

Distance-based assessments is based on the relative distance between individuals in the

feature space. Examples include niche sharing [63, 72, 90, 188], crowding [43], clustering

[36, 230], lateral interference [118], Pareto potential regions [83] and k-th nearest neighbor

[1, 228]. Niche sharing or niching is by far the most popular distance-based approach.

Niching is originally proposed by Goldberg [77] to promote population distribution to

prevent genetic drift as well as to search for possible multiple peaks in SO optimization.

The main limitation of this method is that its performance is sensitive to the setting of

niche radius. Fonseca and Fleming [63] gave some bounding guidelines of appropriate niche

radius values for MO problems when the number of individuals in the population and the

minimum/maximum values in each objective dimension are given. However, such informa-

tion are often not known a prior in many real-world problems. Tan et al [197] presented

a dynamic sharing scheme where the niche radius is computed online based on the evolved

tradeoffs.

The k-th nearest neighbor is another approach which requires the specification of an

external parameter. Zitzler et al [228] adopted k as the square root of the total population

size based on some rule-of-the-thumb used in statistical density estimation. In [1, 176],

average Euclidean distance between the two nearest solutions is used as the measure of
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density. Like niching, this approach is sensitive to the setting of the external parameter,

which in this case is k. The k-th nearest neighbor can also be misleading in situations where

all the nearest neighbors are located in a similar region of the feature space. In certain

sense, the nearest neighbor is similar to the method of crowding. However, crowding do not

have such bias since it is based on the average distance of the two points on either side of

current point along each dimension of the feature space.

Crowding, clustering and lateral interference are instances of distance-based assessments

that are not influenced any external parameters. Nonetheless, distance-based assessment

schemes are susceptible to scaling issues and their effectiveness are limited by the presence

of noncommensurable objectives.

Grid-based assessment is probably the most popular approach after niching and it can

be found in [29,30,32,127,140]. In this approach, the feature space is divided into a predeter-

mined number of cells along each dimension and distribution density within a particular cell

has direct relation to the number of individuals residing within that cell location. Contrary

to distance-based assessments methods which include methods that are very different, both

conceptually and in implementation, the main difference among the various implementation

of this approach, if any, lies in the way in which the cells and individuals are located and

referenced. For example, the cell location of an individual in PAES and PESA is found

using recursive subdivision. However, in [140], the location of each cell center is stored and

the cell associated with an individual is found by searching for the nearest cell center. The

primary advantage of grid-based assessment is that it is not affected by the presence of

noncommensurable objectives. However, this technique depends heavily on the number of

cells in the feature space containing the population and it works well if knowledge of the ge-

ometry of the PF∗ is known. Furthermore, it’s computational requirements are considerably

more than distance-based assessments.

Distribution-based assessment is rather different from distance-based and grid-based

methods because distribution density is based on the probability density of the individuals.
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The probability density is used directly in [16] to identify least crowded regions of the

PFA. It has also been used to compute the entropy as a means to quantify the information

contributed by each individual to the PFA in [35,120,192]. Like grid-based methods, it is not

affected by noncommensurable objectives. The tradeoff is that it can be computationally

intensive because it involves the estimation of probability density of the individuals. On

the other hand, the computational effort is a linear function of population size which is

advantageous for large population sizes. While some distribution-based methods require

external parameter setting such as the window width in Parzen window estimation [72],

there exist an abundance of guidelines in the literature.

Finally, an empirical investigation is conducted in [117] on the effectiveness of the var-

ious density assessment methods in dealing with convex, nonconvex and line distributions.

In general, the study shows that all techniques under investigation are able to improve dis-

tribution quality in the sense of uniformity. But the findings also suggest that it is not

possible to ascertain which method is better for which type of problem distribution because

of the interactions between density assessment and genetic selection.

Encouraging Density Growth: Apart from inducing appropriate←−P t and ←−P u to generate

new and diverse solutions, other means of encouraging diversity growth can also be found

in the literature. For instance, in [206], Toffolo and Benini applied diversity as an objective

to be optimized. Specifically, the MO problem is transformed into a two-objective problem

with genetic diversity as one of the objectives and the other objective being the ranks with

respect to the objectives of the original MO problem.

Mating restriction is another alternative approach and it is extended from SOEA where

it is originally intended to promote diversity in the population. Mating restriction has been

applied in [63, 82, 101] and it works by preventing similar Parents from participating in

the recombination process together in order to avoid the formation of lethal individuals.

However, contrary results on the effectiveness of mating restriction in promoting diversity

has been reported in [100]. In particular, Ishibuchi and Shibata [100] noted that mating
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restriction improves convergence at the expense of solution set diversity.

Diversity can also be encouraged through the simultaneous evolution of multiple isolation

subpopulations. In [42,149,178], each subpopulation is guided towards a particular region of

PF∗. Okuda et al [153] assigned one subpopulation for each objective and used an additional

subpopulation as a normal MOEA solving for the MO problem. The best individuals from

the SOEA subpopulations are migrated to the MOEA subpopulation.

Elitism

The use of the elitist strategy is conceptualized by De Jong in [44] to preserve the best

individuals found to prevent the lost of good individuals due to the stochastic nature of

the evolutionary process in SOEA. When appropriate individuals are reinserted or retained

in the evolving population, elitism can improve convergence greatly, although it maybe

achieved at the risk of premature convergence. Zitzler [231] is probably the first to introduce

elitism into MOEAs, sparking off the design trend of a new generation of MOEAs [28].

Elitism can be considered as an indispensable component of MOEA, having being shown to

be a theoretical necessity for MOEA convergence [123,173,174].

Archiving: The first issue to be considered in the incorporation of elitism is the storage

or archiving of elitist solutions. Archiving usually involves an external population or archive

as the repository and this process is much more complex than in SOEAs since we are now

contenting with a set of Pareto-optimal solutions instead of a single solution. However,

the PF∗ is an infinite set which raises the natural question of what should be maintained?.

Without any restriction on the archive size, the number of nondominated solutions can

grow exceedingly large. Therefore, in the face of limited computing and memory resources

in implementation, it is sometimes unwise to store all the nondominated or elitist solutions

found.

Most works enforce a bounded set of elitist solutions which requires a truncation process

when the size of the elitist solutions exceeds a predetermined bound. This leads to the
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interesting question of which solution should be kept? Some works [43,193,228] maintains

a fixed sized archive which updates dominated solutions as long as space is available while

others store strictly nondominated solutions only [32,127,195,196]. In either case, it is only

natural to truncate the archive based on some form of density assessment discussed earlier

when the number of elitist solutions exceeds the upper bound. However, other measures

such as hypervolume [122] and relaxed forms of Pareto dominance have been applied as

well [45, 156].

For bounded archiving, two implementations of truncation can be found in the litera-

ture, i.e., batch and recurrence mode. The truncation criteria will be based on the density

assessment process described earlier. In the batch-mode, all solutions in the archive will

undergo density assessment and the worst individuals are removed in a batch. On the other

hand, in the recurrence mode, an iterative process of density assessment and truncation is

repeated to the least promising solution from the archive until the desired size is achieved.

While the recurrence-mode of truncation has higher capability to avoid the extinction of

local individuals, which somehow leads to the discontinuity of the discovered Pareto front,

compared to the batch-mode truncation, the recurrence-mode truncation often requires more

computational effort.

The restriction on the number of archive solutions leads to two phenomena [55] which

have a detrimental effect on the search process. The first is the shrinking PFA phenomenon

which results from the removal of extremal solutions and the subsequent failure to rediscover

them. In the second phenomenon, nondominated solutions in the archive are replaced by

least crowded individuals. In the subsequent generations, new individuals that would have

been dominated by the removed solutions are updated into the archive only to be replaced

solutions dominating them. Repeated cycles of this process is known as the oscillating PFA.

The alternative and simplest approach is, of course, to store all the nondominated solutions

found [51,56,150,159]. One potential problem is the computational cost involved with the

pairwise comparison between a new individual and archived solution. To this end, more
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efficient data-structures have been proposed in [55].

Reinsertion: The next issue to be considered is the introduction of elitist solution into

the evolving population. Empirical investigations are also conducted in [133, 159] and the

results demonstrate the advantages of elitism in improving convergence.

One problem faced is the “exploration-exploitation” dilemma; a higher degree of ex-

ploitation attained through the reintroduction of elitist solutions leads to the lost of diversity

while too much exploration leads to slow convergence rates. The consequences of the lack

of necessary diversity to fuel the evolutionary process is a PF∗ that fails to span the entire

PF∗ uniformly and, in the worst case, premature convergence to local optimal solutions.

Elitist schemes that sought to balance the tradeoffs between exploration and exploitation

have been proposed recently. Bosman and Thierens [15] highlighted the importance of

improving diversity through elitism and presented a general framework for MOEAs which

allows designers to control the balancing diversity and proximity exploration. Designing an

elitist scheme along the same lines, Tan et al [196] proposed an enhanced exploration strategy

in which the ratio of solutions selected based on ranking and diversity is adapted based on

an online performance measure. Solutions selected on the basis on rank are subjected to

normal genetic operators while those selected based on niche count undergo local search to

improve solution distribution. In [41], controlled elitism is explored in NSGAII where the

number of individuals from each nondominated front is fixed by a user-defined parameter.

Furthermore, each front is allowed to have an exponentially reducing number of solutions.

1.3.3 Benchmark Problems

Benchmark problems are used to reveal the capabilities, important characteristics and pos-

sible pitfalls of the algorithm under validation. In the context of MO optimization, these

test functions must pose sufficient difficulty to impede MOEAs search for Pareto optimal

solutions. Deb [37] has identified several characteristics that may challenge MOEAs ability
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Table 1.1: Definition of ZDT Test Functions

Problem Definition

ZDT1 f1(x1) = x1,
g(x2,...xm)=1+9

∑m
i=2(xi

(m−1)) ,

h(f1, g) = 1−
√

f1
g

where m = 30, xi ∈ [0, 1]
ZDT4 f1(x1) = x1,

g(x2, ...xm) = 1 + 10(m− 1) +
∑m

i=2(x
2
i − 10 cos(4πxi)),

h(f1, g) = 1−
√

f1
g

where m = 10, x1 ∈ [0, 1], −1 ≤ xi < 1, ∀i = 2, ..., 10
ZDT6 f1(x1) = 1− exp(−4x1) · sin6(6πx1),

g(x2, ...xm) = 1 + 9 · (
∑m

i=2 xi

m−1 )0.25,
h(f1, g) = 1− (f1

g )2

where m = 10, xi ∈ [0, 1]

to converge and maintain population diversity. Multi-modality is one of the characteris-

tics that hinder convergence. Convexity, discontinuity and non-uniformity of the PF may

prevent the MOEA from finding a diverse set of solution.

The problems of ZDT1, ZDT4, ZDT6, DTLZ3, FON and KUR are selected to validate

the effectiveness of multi-objective optimization techniques in converging and maintaining

a diverse Pareto solution set in this work. This set of test problems are characterized by the

different features mentioned above and should be a good test suite for a fair comparison of

different multi-objective algorithms. Many researchers, such as [32, 43, 199, 215, 229], have

used these problems in the validations of their algorithms.

The test problems of ZDT1 through ZDT6 are constructed by Zitzler et al [229] based

on the guideline described by Deb [37]. Formally, the ZDT test problems have the following
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functional structure.
min f1( ~xd1) = x1

min f2( ~xd2) = g( ~xd2) · h(f1, g)
(1.6)

where ~xd1, ~xd2 ∈ ~x, and the g and h functions control the problem difficulty and the shape

of the Pareto front respectively. By having independent functions relating to convergence

and diversity, this framework facilitates the incorporation of various problem features to

construct different test problems. Table. 1.1 summaries the definition and features of the

various ZDT test functions.

DTLZ3 belongs to the DTLZ test suite proposed by Deb et al in [43] which is different

from most existing MO test problems in the sense these test problems are scalable in the

number of objectives. In the light of recent studies [92,116] reporting on MOEA’s apparent

inability to scale up its performance with high dimensional space, DTLZ3 will undoubtably

be useful in the investigation of MOEA capability to handle high dimensional objective

spaces. DTLZ3 is also characterized by the presence of multiple local fronts. The definitions

of DTLZ3 are given below,

min f1(~x) = (1 + g(~xM)) · cos(0.5πx1) · · · cos(0.5πxM−1)

min f2(~x) = (1 + g(~xM)) · cos(0.5πx1) · · · sin(0.5πxM−1)
...

min fM (~x) = (1 + g(~xM)) · sin(0.5πx1)

min g(~xM) = 100
{
|~xM +

∑
xi∈~xM

(xi − 0.5)2 − cos(20π(xi − 0.5))
}

(1.7)

where M = 5, ~xM = {xM , ..., xM+9}, xi ∈ [0, 1]

FON [61] is a two-objective minimization test problem that has been widely used in the

literature. Besides having a nonconvex Pareto front, there are high interactions between

decision variables and this problem has a large and nonlinear tradeoff curve that is suitable
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for challenging an algorithms ability to find and maintain the entire Pareto front uniformly.

f1(x1, ..., x8) = 1− exp[−
∑8

i=1(xi − 1√
8
)2],

f2(x1, ..., x8) = 1 + exp[−
∑8

i=1(xi − 1√
8
)2],

(1.8)

where −2 ≤ xi < 2, ∀i = 1, 2, ..., 8

KUR [126] is characterized by an optimal Pareto front that is non-convex and discon-

nected, i.e., it contains three distinct disconnected regions on the final tradeoff. The decision

variables correspond to the global tradeoff for KUR are difficult to be discovered, since they

are disconnected in the decision variable space. Like FON, there are high interactions be-

tween the decision variables which will pose problems to the MOEAs.

f1(x1, x2) =
∑2

i=1[−10 exp(−0.2
√

x2
i + x2

i+1)],

f2(x1, x3) =
∑3

i=1[|xi|0.8 + 5 · sin(x3
i )],

(1.9)

where xi ∈ [−5, 5].

1.3.4 Performance Metrics

Performance analysis of different MOEAs essentially boils down to the evaluation of the

approximate Pareto front under the constraints of some computational budget. Then per-

formance metrics or indicators play an important role as functions that return a scalar

quantity, reflecting the quality of the scrutinized solution set with respect to some measure.

In SO optimization, this quality comes in the form of the objective function. For MO opti-

mization, however, quality can be defined in a variety of ways, for example, the uniformity

of solutions, the dominance relationship between two solution sets and the closeness to the

Pareto-optimal front.

There has been increasing concerns on the choice of performance metrics. To this end,

Knowles and Corne [124] and Zitzler et al [227] have discussed at length, the suitability and
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limitations of various performance metrics. Comparative studies performed by researchers

such as Jaszkiewicz [105], Deb et al [43], Tan et al [196], Veldhuizen and Lamont [215],

and etc., made use of a suite of unary performance metrics pertinent to the optimization

goals of proximity, diversity and distribution. The metrics used in this work are described

below. Appropriate performance indicators for measuring uncertainties will be discussed in

the relevant chapters.

Proximity Indicator: The metric of generational distance (GD) gives a good indication

of the gap between the PF∗ and the evolved PFA. Mathematically, the metric is a function

of individual distance given as,

GD =
1

nPF
·
(
nPF

nPF∑

i=1

d2
i

) 1
2 (1.10)

where nPF = |PFA|, di is the Euclidean distance (in objective space) between the i-th

member of PFA and the nearest member of PF∗. Intuitively, a low value of GD is desirable,

which reflects a small deviation between the evolved and the true Pareto front. However,

this metric gives no indication of diversity achieved by the various algorithms. In order

to evaluate the true ability of the algorithm, GD has to be complemented by diversity

indicators

Diversity Indicator: One of the primary concerns regarding the use of unary diversity

indicator is that a good measure of diversity is meaningless if the approximate Pareto front

is far away from the ideal tradeoffs. Taking into account these concerns, we propose a simple

modification of maximum spread (MS) to measure how well the true Pareto front is covered

by the discovered Pareto front

MS’ =
{ 1

M

M∑

i=1

(min[f
A
i , f

∗
i ]−max[fA

i
, f∗

i
]

f
∗
i − f∗

i

)2} 1
2 (1.11)

where f
A
i and fA

i
is the maximum and minimum of the i-th objective in PFA respectively;
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Figure 1.5: Different Characteristics exhibited by MS’ and MS. MS’ takes into account the
proximity to the ideal front as well.

f
∗
i and f∗

i
is the maximum and minimum of the i-th objective in PF ∗ respectively. The

greater the MS’ is, the more area of PF∗ is covered by the PFA. The modified metric is

illustrated in Figure. 1.5.

Distribution Indicator: Further, the uniformity among the distributed points or individ-

uals is also an important issue in order to ensure consistent transition among the solution

points when searching for the most suitable solution from the best possible compromise.

The metric of spacing [181] gives an indication of how evenly the solutions are distributed

along the discovered front. It is defined as,

S =
1
d̄′
·
( 1

nPF
·
nPF∑

i=1

(d′i − d̄′)2
) 1

2 (1.12)
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d̄′ =
1

nPF

nPF∑

i=1

d′i

where d′i is the Euclidean distance (in the objective domain) between the i-th member and

its nearest member in PFA.

General Quality Indicator: By taking into account performance in diversity and proxim-

ity, the metric of hypervolume (HV) provides a general quality measure of the solution set.

In order to calculate a normalized value and eliminate bias, Veldhuizen and Lamont [215]

expressed the metric of HV as a ratio between the HV of PFA and PF∗,

HVR =
HVR(PFA)
HVR(PF∗)

(1.13)

HV = volume
nPF⋃

i=1

vi (1.14)

. Mathematically, for each member ~fA
i in the non-dominated set, a hypercube vi is con-

structed with a reference point and the member ~fA
i as the diagonal corners of the hypercube.

The reference point can be found by constructing a vector of the worst objective function

values.

Pareto Dominance Indicator: In [227], Zitzler et al showed that no combinations of

unary performance metrics can provide a clear indication of whether an evolved set is better

than another in the Pareto dominance sense. Therefore, an n-ary Pareto dominance indica-

tor is proposed in this paper as a complement to the above metrics. Considering the different

PF, A1, A2, ..., An evolved by n algorithms, this metric measures the ratio of nondominated

solutions that is contributed by a particular solution set Ai to the nondominated solution

set provided by all solution sets. Mathematically, the nondominance ratio (NR) is given by,

NR(A1, A2, ..., An) =
|B ∩ A1|
|B|

B = {bi| ∀ bi \∃aj ∈ (A1 ∪ A2...∪ An) ≺ bi} (1.15)
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where A1 is the solution set under evaluation.

1.4 Overview of This Work

MO optimization is a challenging research topic not only because it involves the simultaneous

optimization of several complex objectives in the Pareto optimal sense, it also requires

researchers to address many issues that are unique to MO problems. Advances made in the

field of EMOO is the result of two decades worth of intense research examining topics such

as fitness assignment [53,140], diversity preservation [117], balance between exploration and

exploitation [15], and elitism [134].

The primary motivation of this work is to provide a comprehensive treatment on the

design and application of MOEAs for MO optimization in the presence of uncertainties.

As mentioned right at the start of this chapter, the difficulty of multiple criteria decision

making (MCDM) is exacerbated by the fact that real world problems are not deterministic

in nature. While it has been shown that MOEAs are powerful and efficient optimizers of

static MO problems, their performance are rarely examined in the presence of uncertainties

and it is unlikely that the state-of-the-arts are capable of handling the demands that the

task entails.

This work is organized into three parts, with each part addressing a different form of

uncertainty. The first part comprising of Chapters 2-4 focuses on the optimization of noisy

MO problems. Unlike existing studies of multi-objective evolutionary algorithms (MOEAs)

[198, 229], Chapter 2 examines the performance of MOEAs in noisy environments. Based

on the analysis of empirical results, three noise-handling features are then proposed in

Chapter 3, including an experiential learning directed perturbation operator that adapts

the magnitude and direction of variation according to past experiences for fast convergence,

a gene adaptation selection strategy that helps the evolutionary search in escaping from local

optima or premature convergence, and a possibilistic archiving model based on the concept of
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possibility and necessity measures to deal with problem of uncertainties. Chapter 4 considers

the design of artificial neural networks as a specific instance of noisy problem. For this

problem, the synaptic weights of the neural network must be optimized to reduce the effects

of noise. Therefore, a new hybrid multi-objective evolutionary approach which includes the

features of a variable length representation that allow for easy adaptation of neural networks

structures, an architectural recombination procedure based on singular-value decomposition

that adapts the number of necessary hidden neurons, and a micro-hybrid genetic algorithm

with an adaptive local search intensity scheme is developed.

The second part starts with a survey of existing works for dynamic multi-objective

optimization. A formal categorization of dynamic MO test functions and the requirements

of performance indicators for assessment of dynamic MOEAs are also provided in Chapter

5. Chapter 6 introduces a new coevolutionary paradigm that incorporates both competitive

and cooperative mechanisms observed in nature to solve MO optimization problems and to

track the Pareto front in a dynamic environment. The main idea of competitive-cooperation

coevolution is to allow the decomposition process of the optimization problem to adapt

and emerge rather than being hand designed and fixed at the start of the evolutionary

optimization process. In particular, each species subpopulation will compete to represent a

particular subcomponent of the MO problem while the eventual winners will cooperate to

evolve the better solutions. Through this iterative process of competition and cooperation,

the various subcomponents are optimized by different species subpopulations based on the

optimization requirements of that particular time instant, enabling the algorithm to handle

both the static and dynamic MO problems.

The third and final part concentrates on the issues of robust MO optimization. In

particular, the suitability of existing robust test problems for MO optimization is examined

and a set of guidelines for the construction of robust MO test problems is presented. The

fundamental component of the robust test problems is a Gaussian landscape generator that

facilitates the specification of robust optimization-specific features such as noise-induced
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solution space, fitness landscape and decision space variation. This generator is developed

with the purpose of generating noise-sensitive landscapes in conjuction with existing MO

test problems, and due to its independent nature, it can be used to generate robust single

objective test problems as well. Subsequently, a robust MO test suite is built upon the ZDT

framework. In addition, the vehicle routing problem with stochastic demand (VRPSD) is

presented a practical example of robust combinatorial MO optimization problems.

1.5 Conclusion

In this chapter, we have covered the necessary concepts and definitions of MO optimization

and uncertainties to appreciate this work. This chapter also presented an introduction to

MOEAs, with a general framework which illustrates the basic design issues of the state-of-

the-arts. Subsequently, a survey of the state-of-the-arts based on the basic MOEA compo-

nents of fitness assignment, diversity maintenance and elitism is presented to highlight the

development trends of multi-objective evolutionary techniques. Finally, the overview of this

work is presented.



Chapter 2

Noisy Evolutionary Multi-objective

Optimization

Many real-world applications are characterized by the disruptive presence of noise which

involves the consideration of different issues altogether. Detrimental impact of noise ob-

served by Beyer [13] includes the reduction of the convergence rate and pre-mature conver-

gence to sub-optimal solutions. To address the issue of noisy fitness problems, a number

of studies concerning evolutionary SO optimization in noisy environments have been re-

ported [6, 8, 12, 18, 75, 151, 166, 172, 175, 191]. In contrast, the issue of noise-handling in

EMOO has not been studied in literature until recently [21,94,186]. This chapter examines

the impact of noise on EMOO.

2.1 Noisy Optimization Problems

Noise occur naturally in real-world applications and it stems from several sources, resulting

in different objective values for the same set of design parameters. At a very general level,

noise can be classified into aleatory noise or epistemic noise. Aleatory noise are random

noise such as sensor measurement errors which can be modeled by some random number

with known probability distribution. Detrimental effects of aleatory noise can be limited

by means of averaging. On the other hand, epistemic noise are due to the lack of sufficient

33
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knowledge about the problem and, in many cases, the consequence of the tradeoff between

computational speed and accuracy. Examples of epistemic noise includes the incomplete

simulations of computational models.

Noise changes the way in which the decision-making module, be it the selection mecha-

nism of the MOEA or the human, perceives a solution. A bad solution may be “enhanced”

by noise to appear good and, vice versa, a good solution may be perceived as bad due to the

influence of noise. Noisy MO problems are certainly much more complex than SO problems

due to the fact that MO optimization is partially-ordered. In fact, a strongly dominated so-

lution only needs to be “improved” by noise along one aspect of the MO problem to become

a nondominated solution!

Intuitively, the optimization process of noisy problems is be greatly influenced by the

noise model adopted and the level of noise intensity. Several studies concerning evolution-

ary optimization in noisy environments, the vast majority of them conducted in the domain

of SO optimization, have been reported [6, 8, 12,13,18,75,151,166,172,175]. Most of these

investigations are done on the basis of Gaussian noise. Notable exceptions include the inves-

tigation conducted by Arnold and Beyer [7] which revealed significant differences between

the influence of Gaussian, Cauchy and χ2 distributed noise on the performance of (µ/µ, λ)

ES. In the context of MO optimization, Teich [203] considers a uniform noise model while

Buche et al [21] incorporates the effects of outliers on the optimization process.

The common practice is to incorporate the selected noise model as an additive pertur-

bation to the original test functions. Unlike the study of dynamic optimization problems,

there is no specific test problems or test suites for the analysis of noise impact on evolu-

tionary optimization. However, it should be noted that the different problem features will

determine the extent and effect that noise has on the optimization process. For instance,

we can expect problems with strong parameter dependencies and small isolated PF∗ to be

more susceptible to noise as compared to those without these features. On the other hand,

it has been reported that noise has a smoothing effect on the fitness landscape which allows
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Table 2.1: Summary of MO test problems extended for noise analysis

Literature Test Problems

Basseur and Zitzler [11] ZDT1, ZDT6, DTLZ2, KUR, COMET, and QV
Buche et al [21] BSDK1-BSDK6 [37]
Bui et al [22] ZDT1-ZDT6
Fieldsend and Everson [57] DTLZ2
Goh and Tan [72] ZDT1, ZDT4, ZDT6, FON and KUR
Hughes [94] MOP3 [216]
Singh [186] S1 [37]

the EA to handle multi-modality with greater success [165]. The different test problems

that have been extended for noise analysis are summarized in Table 2.1.

The same guidelines for the selection of test problems or the construction of test suites

in deterministic MO optimization are applicable to noisy MO optimization as well. In fact,

applying a suite of MO test problems with different features will allow us to examine the

influence of noise on these features.

2.2 Performance Metrics for Noisy MO Optimization

Like deterministic MO optimization, the optimization goal of noisy MO optimization is to

find a near-optimal, diverse and uniformly distributed PFA. To be precise, we are concerned

about how good the PFA truly is, and not how it is perceived since it is the true objective

values that matters during implementation.

Therefore, performance metrics proposed for deterministic MO optimization can be used

directly to assess the performance of MOEAs in the presence of noise. The only difference

between deterministic and noisy MO optimization is that the objectives are perturbed by
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noise and its’ true values not be known. In this case, re-evaluation can be employed to

compute the effective objective values before the results are assessed.

Visualization of the evolved PFA is used in [22,57,94] to demonstrate the effectiveness

of the proposed methods. Bui et al [22] employed GD and attainment surface to provide a

quantitative measure of algorithmic performance. Teich [203] used coverage to compare the

quality between different true PFA while Buche et al [21] measure that distance between

PFA and PF∗ with respect to ten predefined points in the decision space.

However, noise-specific performance measures can also be found. Fieldsend and Ever-

son [57] measured the Euclidean distance between true and noisy PFA. Such a measurement

provides an indication of how well the re-sampling technique performs. Basseur and Zit-

zler [11] proposed a probabilistic extension of the attainment function which provides the

visualization of the probabilistic k% approximation set. This probabilistic k% approxima-

tion set is defined as the set of evolved solutions which dominates objective vectors that

have been attained with a probability up to k%.

In cases where the true PFA can be determined, deterministic performance metrics

should be used because it will provide a more accurate assessment of algorithmic perfor-

mance. On a more practical side, it should be highlighted that the selection of final solution

for implementation will be based on the corrupted PFA. Therefore, apart from expend-

ing a certain amount of computational resource to reduce uncertainty, we can also expect

noise-specific metrics such as the probabilistic attainment function to play a dual role in the

evaluation of algorithmic performance as well as the solution selection.

2.3 Noise Handling Techniques

Although the EA is known to be inherently robust to low-level of noise due to its distributed

nature of individuals and its non-reliance on gradient information, such a property may not

extend well into EMOO that requires the evolutionary search to maintain a diverse set of
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non-dominated solutions uniformly distributing along the tradeoff. A few existing noise-

handling techniques in EMOO include the approaches of periodic re-evaluation of archived

solutions [21], probabilistic Pareto ranking [94], and extended averaging scheme [186] etc.

According to Jin and Branke [107], the different approaches for handling noise can be

classified as 1) explicit averaging, 2) implicit averaging, and 3) selection modification. In

explicit averaging, the objective values are averaged over a number of samples, H to compute

the expected values. Increasing the number of samples reduces the degree uncertainty by

a factor of
√

H at the expense of increasing computational cost. In implicit averaging, a

large population is used instead of re-evaluating and averaging the objective values over a

number of samples. When population size is large, there are many similar solutions and

the solutions are implicitly averaged as the MOEA revisit promising regions repeatedly. In

selection modification, the ranking and selection procedures are modified such that a solution

is judged better than another solution only if it satisfies certain conditions. However, the two

noise-handling heuristics, namely the experiential learning directed perturbation operator

and the gene adaptation selection strategy, that will be presented in Chapter 3 do not fall

under any of the three categories. Therefore, it would be appropriate to define an additional

class of “heuristical” techniques for improving MOEA performance in noisy environments.

Explicit averaging: Existing EMOO approaches that applies explicit averaging include

[186] and [22]. Using NSGAII [43] as the baseline algorithm, Singh extended the re-sampling

method and probabilistic selection scheme [94] to solve a noisy groundwater remediation

design problem. In this work, the technique of extended averaging is proposed to reduce

the bias introduced by small sample size used in simple averaging. The extended averaging

approach performs the averaging over all samples of identical individuals, which can be

easily extended over different generations.

Similar to Singh, Bui et al [22] applied NSGAII as the baseline algorithm as three dif-

ferent approaches are investigated: NSGAII with probabilistic Pareto ranking and NSGAII

with two variants of explicit averaging based NSGAII. In order to reduce the number of
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evaluations required, the mechanisms of fitness inheritance is also extended from noisy SO

optimization in this work. In particular, a threshold that is calculated from the offspring’s

objective values and estimated variance is used to determine if the offspring will undergo

multiple re-evaluation or adopt the mean fitness of the parents. The investigation concludes

that the probabilistic approach will yield better results initially but explicit averaging will

provide better results eventually.

In [11], Basseur and Zitzler studied the impact of noise on indicator-based MOEAs. A

significant difference between this work and the previous two approaches is that, instead of

expected objectives values, the expected ε-indicator values are sought. As the computation

of the expected ε-indicator values is very intensive, three different approaches of estimating

the expected indicator values are compared and analyzed.

Implicit averaging: The periodic re-evaluation and reinsertion of archived solutions can

be classified under implicit averaging. Adapting from SPEA [230], Buche et al [21] proposed

the noise tolerant strength Pareto evolutionary algorithm (NTSPEA) with an improved ro-

bust performance against noise. In particular, the elite preservation scheme is modified to

reduce the detrimental effect of outliers, and every solution is assigned a lifetime that is

dependent on the fraction of the archive it dominates. Any archive solutions with expiring

lifetime is re-evaluated and added to the evolving population. In the subsequent archive up-

dating, expired archive solutions will not be considered. However, the re-evaluated solutions

will participate in the archiving process.

Selection modification: Currently, noise-handling schemes of the third category, par-

ticularly the use of probabilistic Pareto ranking scheme, is the most popular approach.

Hughes [94] introduced a probabilistic approach for Pareto ranking scheme to account for

the presence of uncertainties, and demonstrated the possible deficiencies of layered ranking

approach adopted in NSGA [188]. In a similar vein, Hughes [95] extended the probabilistic

ranking to handle constraints in noisy environments. In the proposed multi-objective prob-

abilistic selection evolutionary algorithm (MOPSEA), elitism is implemented by replacing
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Table 2.2: Parameter settings of the simulation study

Parameter Settings

Chromosome Binary coding; 15 bits per decision variable.
Population Population size 100; Archive (or secondary population) size 100.
Selection Binary tournament selection
Crossover operator Uniform crossover
Crossover rate

0.8
Mutation operator Bit-flip mutation
Mutation rate 1

chromosome length for ZDT1, ZDT4 and ZDT6;
1

bit number per variable for FON and KUR;

Ranking scheme Pareto ranking.
Diversity operator Niche count with radius 0.01 in the normalized objective space.
Evaluation number 50,000

part of the evolving population with the best individuals.

While Hughes assumes that noise is normal distributed, Teich [203] considers a uniform

noise distribution. Teich extended the SPEA algorithm in two ways 1) a probabilistic

strength fitness is used and 2) the update of the external set is based on the a percentage

of the best solutions and solutions with a fitness that is above a certain threshold. Building

upon these works, Fieldsend and Everson [57] considered the computation of Probabilistic

ranking under different conditions such as unknown noise properties, independent noise

for each objectives and etc. Based on preliminary theoretical analysis, an online variance

learning scheme is presented and validated empirically.

2.4 Empirical Results of Noise Impact

The evolutionary model adopted in this section is based on the conceptual framework in

Chapter 1. The algorithm employs a fixed-size population and an archive to store non-
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dominated solutions along the evolution. The archive is updated at each cycle, i.e., a

candidate solution will be added to the archive if it is not dominated by any members in the

archive. Likewise, any archive members dominated by this solution will be removed from

the archive. When the predetermined archive size is reached, a recurrent truncation process

based on niche count is used to eliminate the most crowded archive member. Although

MOEAs have been implemented in different ways, most current state-of-the-art MOEAs

include some form of elitism and diversity preservation mechanisms. In this paper, elitism

is implemented by selecting individuals to a mating pool through a binary tournament

selection of the combined archive and evolving population. Taking into account the study

in [94], the selection criterion adopted in this paper is based on Pareto ranking scheme

described in [63], and niche count [78] is used in the event of a tie. Note that the mechanism

of niche sharing is used in the tournament selection and diversity maintenance in the archive.

Five benchmark problems, ZDT1, ZDT4, ZDT6, FON, and KUR are selected to examine

the effectiveness of MOEAs in converging and maintaining a diverse set of non-dominated

solutions under the influence of noise. In this study, noise is implemented as an additive

normal distributed perturbation with zero mean. It is assumed that noise has a disruptive

influence on the value of each individual in the objective space [8, 18,94,95,175], i.e.,

f̄(~x) = f(~x) + Normal(0, σ2) (2.1)

where σ2 represents the level of noise present; Normal denotes the normal distribution

function; f̄ and f denotes the objective function with and without the additive noise, re-

spectively. Investigations of other noise models are left for future work.

Experiments are conducted at noise levels of σ2 = {0.2% , 0.5%, 1%, 5% , 10% , 15%,

20%} in order to study the impact of noise on EMOO. Thirty independent simulation runs

are performed for each of the test problems, and the values of the various parameter settings

in the algorithm are tabulated in Table 2.2. The mutation rates adopted in this chapter

are based on experimental studies that have been successfully applied in [195]. A random
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Figure 2.1: Performance trace of GD for (a) ZDT1, (b) ZDT4, (c) ZDT6, (d) FON, and (e)
KUR under the influence of noise level at 0.0%, 0.2%, 0.5%, 1.0%, 5.0%, 10% and 20%

initial population is created for each of the simulation runs in every test problem. Unless

otherwise specified, BMOEA refers to the baseline evolutionary algorithm.

2.4.1 General MOEA Behavior Under Different Noise Levels

The performance trace representing the mean of true values of GD and MS over 30 simulation

runs for ZDT1, ZDT4, ZDT6, FON and KUR with different noise levels is showed in Figure

2.1 and Figure 2.2, respectively. The trace of GD and MS are sufficient to demonstrate the

impact of noise on convergence and diversity.

According to Nissen and Propach [151], population-based EAs are inherently robust in

SO optimization under low level of noise. It can be seen from Figure 2.1 and Figure 2.2

that BMOEA is also capable of evolving satisfactory solutions in MO optimization under

the influence of low noise level.
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Figure 2.2: Performance trace of MS for (a) ZDT1, (b) ZDT4, (c) ZDT6, (d) FON, and (e)
KUR under the influence of noise level at 0.0%, 0.2%, 0.5%, 1.0%, 5.0%, 10% and 20%
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Figure 2.3: Number of non-dominated solutions found for (a) ZDT1, (b) ZDT4, (c) ZDT6,
(d) FON, and (e) KUR under the influence of different noise levels.
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In addition, the smoothing effect described by Rana et al [165] is also observable from

the simulation results at low noise levels. An interesting finding is that the performance of

BMOEA actually improves with the introduction of low noise levels. For instance, there is

a high tendency to evolve better coverage of for FON that challenges the algorithm’s ability

to find and maintain the entire Pareto front uniformly. In the case of ZDT4 that challenges

the algorithm’s ability to deal with multi-modality, the presence of noise allows BMOEA to

reduce the gap between PF∗ and PFA. As in the study conducted in [165], smoothing is

achieved without resampling, probably an indication of implicit averaging.

In contrast, it can be observed that BMOEA suffers from degenerate convergence prop-

erties and faces the problem of maintaining a diverse solution set under the influence of

sufficiently high noise levels. Figure 2.3 shows that the archiving process deteriorates with

increasing noise levels and fails to maintain a stable archive of non-dominated solutions.

Further investigations revealed that good solutions are actually kept out of the archive by

presence of noise enhanced solutions. The impact of noise is also observed to be more severe

on problems such as FON, ZDT1, and ZDT6. In particular, the BMOEA is unable to im-

prove in performance beyond the initial population for the problem of FON. Although the

BMOEA fails to escape the local optima of ZDT4, its performance for ZDT4 appears to be

insignificantly affected by noise.

2.4.2 MOEA Behavior in the Objective Space

It is important to analyze the behavior of MOEA in the objective space since how it performs

depends on the degree at which noise affects the fitness landscape. A straight-forward

approach to examine algorithmic behavior in the objective space is, of course, to look at

how the MOEA will perceives the perturbed solutions. On a more critical note, if the

significance of point on the erroneous selection of solution for implementation made earlier

not been fully appreciated, a quick inspection on the relationship between the actual and

perceived location of the final tradeoff illustrated in Figure 2.4 should do the trick. Notice
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Figure 2.4: The actual and corrupted location of the evolved tradeoff for (a) ZDT1, (b)
ZDT4, (c) ZDT6, (d) FON, and (e) KUR under the influence of 5% noise. The solid line
represents PF∗ while closed circles and crosses represent the actual and corrupted PFA

respectively.

how the perceived PFA of FON in Figure 2.4(d) seems to imply the presence of a knee

solution. The situation will actually get worse with increasing noise levels. Therefore, it is

defintely worth the extra computational effort required to perform re-evaluation to obtain

the expected objective values for the final PF∗ to get a better indication of solution quality.

For a more in-depth analysis of how this affects the MOEA, we will first consider how

the MOEA makes decisions based on the perturbed fitness values. Figure 2.5 shows the

decision-error ratio against the number of generations for the five benchmark problems.

The decision-error ratio is defined as the ratio between the number of incorrect decisions

made for these operations and the total number of decisions made. From the Figure, we can

observe two trends, the first of which, is the positive correlation between the decision-error
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Figure 2.5: Decision-error ratio for the various benchmark problems (a) ZDT1, (b) ZDT4,
(c) ZDT6, (d) FON, and (e) KUR under the influence of different noise levels.

Generation

Fi
tn

es
s 

E
nt

ro
py



0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

(a)

Generation

Fi
tn

es
s 

E
nt

ro
py



0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

3.5

(b)

Generation

Fi
tn

es
s 

E
nt

ro
py



0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

3.5

(c)

Generation

Fi
tn

es
s 

E
nt

ro
py



0 100 200 300 400 500
0.5

1

1.5

2

2.5

3

3.5

(d)

Generation

Fi
tn

es
s 

E
nt

ro
py



0 100 200 300 400 500
0.5

1

1.5

2

2.5

3

3.5

(e)

Figure 2.6: The entropy value of individual fitness for (a) ZDT1, (b) ZDT4, (c) ZDT6, (d)
FON, and (e) KUR under the influence of different noise levels.
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ratio and noise. There is actually a special significance attached to the ratio at 0.5 because

it provides an indication of the degree in which the evolutionary optimization process has

degenerated into a random search process. Intuitively, the decision-error ratio should not

exceed this 0.5 mark. In the event of such an interesting situation, then all we need to do

is to “hard code” the MOEA to select the percieved inferior solution instead! True enough,

with the exception of FON and ZDT1, the decision-error ratio did not exceed 0.4 even

at σ = 0.2. This seems to imply that the algorithm should converge to PF∗ eventually.

Unfortunately, this may not happen because a phenomenon which we term as the curse of

elitism 1) the noise enhanced solutions in the archive are keeping out the good solutions (a

point mentioned earlier) and 2) the optimization process is biased towards less promising

areas due to the reinsertion of elitist solutions.

With the exception of FON, the second trend observed is that the decision-error ra-

tio generally increases as PFA approaches PF∗, indicating a performance deterioration of

optimization process along the evolution. For problems which demonstrates such character-

istics, it is desirable to devise a mechanism that makes effective use of initial decisions to

improve the convergence of EMOO. Comparing Figure 2.1, Figure 2.2 and Figure 2.5, it is

apparent that the evolutionary optimization process stagnates as the error ratio saturates

in the evolution. Such a degenerate convergence behavior of BMOEA is due to the unrelia-

bility of selection, ranking and archiving in the presence of noise. On the other hand, FON

exhibits exactly the opposite behavior, with decision-error ratio improving with the number

of generations. This is because the solutions of the initial population of BMOEA is always

located around a small region about f1 = f2 = 1 due to the high parameter interaction

between the decision variable, which amplifies the effects of noise.

Another way of analyzing the impact of noise on the objective space is to examine the

distribution of Pareto ranks assigned to the noisy solutions. Shannon’s entropy [184] is

applied to quantify the amount of uncertainty in the ranking process and the entropy of

solution Pareto rank in the evolving population for all noise levels is shown in Figure 2.6. It
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Figure 2.7: Search range of an arbitrary decision variable for ZDT1 at (a) 0%, (b) 20% noise
and FON at (c) 0% and (d) 20% noise. The thick line denotes the trace of the population
mean along an arbitrary decision variable space, while the dashed line represents the bounds
of the decision variable search range along the evolution.

can be seen that only simulation runs with no or low noise levels exhibit behavior of a stable

optimization process with a converged fitness distribution. This is because the ranks of these

individuals should also converged to better rank values as the evolving population converges

to a better set of individuals in a low-noise environment. In contrast, simulation runs at

high noise levels demonstrated high levels of uncertainty in the evolutionary optimization

process.

2.4.3 MOEA Behavior in Decision Space

We have observed that the optimization process tends to converge to sub-optimal PF even

though the decision error ratio is less than 0.4. So the natural question now is what exactly
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is the effects of those right decisions? Since the behavior of MOEA in the objective space

seems to reveals little, we turn toward our attention towards how it behaves in the decision

space. In order to examine algorithmic behavior in the decision space, Figure 2.7(a)-(d)

illustrates trace of the search range for ZDT1 and FON along the evolution for an arbitrary

selected decision variable at 0% and 20% noise levels.

By comparing the search range depicted in Figure 2.7(a)-(b) and Figure 2.7(c)-(d), it

is clear that a disciplined evolutionary search is lacking at high noise level. Specifically,

BMOEA is capable of narrowing down the search range for better evolutionary search opti-

mization in a noise free environment. On the other hand, it can be observed that the mean

location of individuals remains relatively the same despite a more diverse search space. This

implies that the evolutionary process roughly knows where the promising regions are despite

the presence of noise, most probably a consequence of the correct decision-making. More

significant, it also means that the impact of keeping out the true nondominated solutions is

greater than the reinsertion of inferior solutions.

2.5 Conclusion

In this chapter, extensive studies have been performed to examine the impact of noisy en-

vironments on EMOO, particularly for the population dynamics of fitness and diversity. It

has been observed that the impact of noise on MOEA is different for the various bench-

mark problems, i.e., MOEA tends to evolve better solutions for some of the problems in

the presence of low-level noise, while the evolutionary optimization process degenerates into

a random search under increasing level of noise. Furthermore, it seems that the selection

process is more reliable in the early stage of evolution and the statistical analysis of online

optimization behavior in the decision space has revealed that the evolution defines a popu-

lation distribution with a mean value that remains relatively invariant in the decision space

despite the different environmental conditions.
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Noise Handling in Evolutionary

Multi-objective Optimization

From the empirical study conducted in previous chapter, it is clear that the performance of

MOEAs deteriorates sharply at high noise levels. One simple approach to improve algorith-

mic performance is to perform the re-sampling of individuals. However, such re-evaluation

of individuals is often computationally expensive and it may be infeasible to perform a large

number of observations. Based upon the analysis of noise impact on population dynam-

ics, three noise-handling features including experiential learning directed perturbation, gene

adaptation selection strategy, and possibilistic archiving model, are proposed in this chapter

to improve the robustness of EMOO.

3.1 Design of Noise-Handling Techniques

For the ensuing discussing, an individual is represented as a vector, ~X = (~g, ~p, ~f), where the

vector ~g and ~p represents the decision vector in the genotype space ~G ∈ Bchromosome length

and the phenotype space ~Xnx , respectively; ~f is the associated objective vector in the

objective space, ~FM . The binary representation ~g of the decision variables is mapped by

the function f : ~G → ~X from the genotype space to the phenotype space and there is a

corresponding inverse function f−1 : ~X → ~G.

49
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3.1.1 Experiential Learning Directed Perturbation (ELDP)

It has been observed that the decision-error ratio for selection, ranking and archiving is

lower at the early stage of evolution. Therefore, the proposed ELDP makes use of the

better decisions at early generations to improve performance. The ELDP is a deviation

from conventional mutation paradigm in two aspects: 1) the change in chromosome is

ordered instead of being by chance, and 2) variation can be performed either in genotype

or phenotype space. In particular, the actual adaptation in ELDP is based on posterior

knowledge of favorable movements in the search space.

The experiential learning strategy adopted by ELDP for directed perturbation in the

phenotype space is inspired by the role of momentum term in back-propagation for neural

networks; accelerating movement in the direction of improvement while restricting movement

otherwise. The variation for each decision variable xj can be described as follows,

4̄xj(t) = 4xj(t) + α · 4̄xj(t − 1) (3.1)

where α represents the learning rate; 4 refers to changes acquired through prior genetic

operations such as crossover, while 4̄ corresponds to changes including the effect of momen-

tum. According to (3.1), the posterior knowledge comes in the form of past movements made

by the individual in concern. The ELDP defines a two-mode operation to impose the neces-

sary control for directed variation in the phenotype space and to perform bit-flip mutation

in the genotype space for genetic diversity. The ELDP operation is given as follows,

xj(t + 1) =





pj(t) + 4̄xj(t), if 4min < |α · 4̄xj(t− 1)| <4max

f
(
gBF (~g(t) +4~g(t))

)
, otherwise.

(3.2)

where 4̄xj(t) refers to the variation described in (3.1) and gBF () denotes bit-flip mutation

for the j-th decision variable. Note that the corresponding changes will also be updated in

the genotype for any variation in the phenotype space. From (3.2), the magnitude of directed
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Figure 3.1: Operation of ELDP.

perturbation is bounded by 4min and 4max, which can be set by the user. The limiting

bounds on directed perturbation for xj ensure that a new search direction is initiated through

bit-flip mutation to reduce the impact of outliers or whenever the evolutionary search process

has stalled. For simplicity, and 4min and 4max is set as 0.0 and 0.1, respectively, on the

normalized decision space.

The operation of ELDP is illustrated in Figure 3.1. By considering each and every

decision variable, the ELDP provides a simple and efficient way for adaptation of the required

variation associated with each parameter. From (3.1) and (3.2), the variation increases in

magnitude in the direction of change and thus accelerates convergence when 4xj(t) and

4̄xj(t − 1) have the same sign. Likewise, the variation is small if 4xj(t) and 4̄xj(t − 1)

are different in sign, implying that the ELDP performs local fine-tuning in the later stage

of evolution where movements tend to fluctuate. Moreover, such properties are desirable

in the context of noisy objective function optimization where inferior solutions are likely

to participate in the recombination process. In such cases, the ELDP helps to reduce the

stochastic influence of noise and prevents the individuals from changing haphazardly.
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3.1.2 Gene Adaptation Selection Strategy (GASS)

From Figure 2.7 in Section 2.4, we noted that the mean of the population distribution

remains relatively invariant in the decision space despite the different environmental condi-

tions. In addition, the search range of the different variables tends to converge to a smaller

region within the search space in a noise free environment and remains relatively unchanged

or even diverges in a noisy environment. It is thus useful to construct an approximate model

of the ideal population behavior for guiding the evolutionary search process to 1) escape

premature convergence, and 2) prevent it from becoming a random search in the presence

of noise.

The proposed GASS attempts to manipulate population distribution so that the evolu-

tionary algorithm exhibits certain desirable search characteristics. Specifically, it builds a

posterior model of the desired population distribution and subsequently adapts part of the

selected individuals chromosome. Mathematically, the adaptation of gene structure is given

as

x′
j(t) =

{
U(aj , bj), U(0, 1) < 1

nx

xj(t), otherwise.
(3.3)

where nx is the number of decision variables to be optimized. Here 1
nx

is the probability

of decision variable j being selected for adaptation. The GASS defines an operation in the

phenotype space which is characterized by a uniformly distributed number U on the interval

[aj , bj] for each decision variable. After which, the corresponding genotypic adaptation will

be updated. It adopts two different models to control the evolution for a better convergence,

i.e., the interval [aj , bj] is dependent on the state of evolution and the archival population

distribution in the decision space.

Convergence Model

The population distribution tends to converge as the evolving population approaches the

final tradeoff. Since it is difficult to determine if ~PF
A

corresponds to ~PF
∗
, the adopted
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Figure 3.2: Search range defined by convergence model.

model needs to define a space that is larger than the current search range along the j-th

dimension to prevent a premature convergence. The corresponding interval is given as

aj = lowbdj − w ·meanbdj (3.4)

bj = uppbdj + w ·meanbdj

where w is a fixed parameter that controls the step change in the search range, lowbdj,

uppbdj and meanbdj corresponds to the minimum, maximum and mean of xj in the archive,

respectively. The aim of the convergence model is to compel EA to look beyond the current

search region as shown in Figure 3.2. In the case where an individual corresponds to the

global optimum, the overall quality of the evolving population is not adversely affected.

This is because similar individuals have similar genetic information, and the model creates

individuals based on the converged search region.



CHAPTER 3. 54

Figure 3.3: Search range defined by divergence model.

Divergence Model

A degenerate evolutionary search process is characterized by a non-convergent population

distribution. In the situation where the evolutionary process degenerates into a random

search, such as due to high level of uncertainty in the system, the interval for j-th decision

variable defines a small search region about its mean given as

aj = meanbdj − w ·meanbdj (3.5)

bj = meanbdj + w ·meanbdj

The aim of the model is to reduce stochastic change in gene structure due to random

selection of individuals by providing a stable search range as shown in Figure 3.3. Note that

the interval specifying the location of new individuals is only a rough deduction of the search

region based on the available information. Intuitively, the utilization of statistical model

can improve robustness of existing selection strategies, where individuals selected based

on fitness are included directly in the evolving population. The selection of appropriate
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model is performed autonomously based on the condition of the evolutionary process. As

shown by the experiments in Section 2.4, the search process degenerated by noise can hardly

fill up more than 30% of the archives capacity. Hence, the behaviors of convergence and

random search can be determined based upon the growth rate of archives population, and the

gene adaptation strategy can be activated when there is sufficient indication of convergence

or random search behavior in the evolution. In this paper, a simple scheme is adopted;

divergence model is activated when 60% of the archive capacity is reached while convergence

model is activated when less than 60% of the archive is filled after 150 generations.

3.1.3 A Possibilistic Archiving Methodology

This section describes two archiving models, i.e., necessity-possible (NP-) archiving model

and necessity (N-) archiving model, based on the concept of possibilistic Pareto dominance

relation. Similar to [94] where probabilities are employed to model uncertainty as part of the

Pareto ranking procedure, fuzzy numbers that are uniquely suitable for representing uncer-

tain information are used here to represent the objective vectors. The proposed approach

is based on the concept of possibility and necessity measures [49], which aims to rectify

certain deficiencies present in the current Pareto-based updating strategy in handling noisy

environments. Besides, a tagging system is proposed to allow both the models to co-exist

in the situation where the uncertainty level is low.

The archive updating schemes adopted in existing MOEAs are largely based on the

concept of Pareto optimality, and some form of truncation process is usually applied to

limit the number of good individuals stored in the archive due to the limitation of memory

resource. Although such an updating scheme is simple and effective, it is not competent in

dealing with individuals containing uncertainty in the objective functions, since the domi-

nance relationship for these individuals in the presence of noise is no longer deterministic.

In the absence of a reliable decision maker, the standard archiving scheme can be easily

deceived into removing non-dominated individuals from the archive or inserting dominated
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Figure 3.4: Distribution of archived individuals marked by closed circles and the newly
evolved individuals marked by crosses in a two-dimensional objective space.

individuals to the archive, which could subsequently affect the performance of EMOO in

noisy environments.

The instance in Figure 3.4 shows the distribution of archived individuals marked by

closed circles and the newly evolved individuals marked by crosses in a two-dimensional

objective space. From the definition of Pareto dominance, it is clear that A, C and D will be

selected to fill the archive in the evolution. However, A provides only marginal improvement

for x1 at a great expense of x2, which gives little contribution to the overall quality of the

solution set. In the face of limited archive storage, non-contributing individuals occupying

valuable space that are usually located in isolated regions in the objective space are less

unlikely to be removed during the truncation process. It is thus desirable if the updating

function is capable of rejecting such non-dominated individuals according to some a-priori

knowledge or user preference. In addition, it is also desirable if the updating mechanism

can minimize removal of non-dominated individuals and provide a chance for individuals

degraded by noise to survive in the evolution.

To understand the proposed archiving models, a number of definitions are given as fol-
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lows:

Definition 3.1 Necessity Condition: Given that f1 and f2 are fuzzy numbers with mem-

bership functions µf1 and µf2 , respectively. The necessity that the largest possible value of

f1 is smaller than the smallest value of f2 is given by

Nec(z1 < z2) = infumax
[
1− µf1(u), infv<u(1− µf2(v))

]
(3.6)

Definition 3.2 Possibility condition: Given that f1 and f2 are fuzzy numbers with mem-

bership functions µf1 and µf2 , respectively. The possibility that the smallest possible value

of f1 is smaller than the largest value of f2 is given by

Pos(z1 < z2) = supumin[1− µf1(u), supu<vµf2(v)] (3.7)

Definition 3.3 NP-dominance: Given that ~f1 and ~f2 are M -dimensional objective vectors

of fuzzy numbers with membership functions ~µf1 and ~µf2 , respectively. Then ~X1 NP -

dominates ~X2, denoted by ~X1 ≺NP
~X2, iff

Pos(z1,j < z2,j) ≥ Pos(z1,i < z2,i)∀1, 2, ...,M

or

Nec(z1,i < z2,i) = 1∃ i ∈ 1, 2, ...,M and Nec(z1,j < z2,j) < 1 ∀j ∈ 1, 2, ...,M

(3.8)

Definition 3.4 N-dominance: Given that ~f1 and ~f2 are M -dimensional objective vectors of

fuzzy numbers with membership functions ~µf1 and ~µf2 , respectively. Then ~f1 N -dominates

~f2, denoted by , iff

Nec(z1,i < z2,i) = 1 ∀i ∈ 1, 2, ...,M (3.9)

Figure 3.5 illustrates the different dominance relation for a minimization problem. The

shaded region represents the area dominated by the individual marked by a circle. The

NP -model behaves similarly to existing archiving models, but allows decision-maker to
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Figure 3.5: Region of dominance based on (a) NP-dominance relation, and (b) N-dominance
relation.

reject certain non-dominated individuals in the evolution if necessary. This archiving model

compares and updates individuals according to the NP -dominance relation. As shown in

Figure 3.5(b), the width of the fuzzy membership function associated with the i-th objective

is denoted by Li, which represents the tolerance level of inferiority for each objective. As Li

tends to zero, the behavior of NP -dominance approaches that of Pareto-dominance relation.

The pruning criterion is based upon some degree of crowding or niche count, which helps to

maintain population diversity in the archive.

The N -archiving model updates individuals according to the N -dominance relation,

which stores a set of possibly non-dominated individuals. The membership function is

a reflection of the uncertainty level present in the system, and the width, Li, represents

the possible values of the i-th objective. In order to minimize deletion of non-dominated

individuals, the N -archiving model removes an archived individual only if it is N -dominated

by an individual in the archive. In this model, an individual is selected if there is no archived

individual that necessarily dominates it. Intuitively, the size of archive will grow exceedingly

large with the increase of noise, and any form of niche count or crowding comparison is of

no practical meaning in the presence of noise. Therefore, the truncation criterion for the
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Figure 3.6: Decision process for tag assignment based on the level of noise present.

Figure 3.7: Possibilistic archiving model.

archive should be based upon the apparent ranking provided by the prior evaluation process.

It is clear that the proposed two archiving models operate at the two ends of the noise

spectrum. A tagging system is thus proposed to provide a graceful integration of both

models, since it is often more desirable to incorporate both the model properties in the

presence of low noise level. Each individual is assigned either a NP -tag or N -tag that defines

the behavior it will experience during the archiving process, e.g., an individual assigned with

the NP -tag is regarded as if only the NP -model is implemented. The assignment of tags

is based on a probability distribution as shown in Figure 3.6. If the noise level is below
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the minimum threshold of Tmin, all individuals will be assigned the NP -tag. When the

noise level is above the maximum threshold of Tmax, all individuals will be assigned the

N -tag with a probability of PNmax. If the noise level is between the two thresholds, the

probability of PN is a linear function of noise as depicted in Figure 3.6. The Possibilistic

archiving model is shown in Figure 3.7.

3.1.4 Implementation

The proposed features are incorporated into BMOEA described in Chapter 2 and named

as MOEA-RF, as shown in the program flowchart in Figure 3.8. The fitness assignment

is based on Pareto ranking scheme [63] and the mechanism of niche sharing is used in

tournament selection as well as diversity maintenance in the archive. The tournament

selection of individuals for the mating pool is followed by gene adaptation if the criterion for

convergence or random search is satisfied. The genetic operations of uniform crossover and

ELDP are then applied to the mating pool. Both the step size, w, for GASS and the learning

rate, α, for ELDP are set as 0.3 in the algorithm. The Possibilistic archiving approach as

shown in Figure 3.6 is applied with triangular membership function for both the N - and

NP -archiving models. Since the width of membership function for the N -archiving model

represents the noise level, it can be estimated by re-sampling one individual at the beginning

of the evolution. The parameters for tag assignment, such as Tmin, Tmax and PNmax, is set

as 0.0, 0.1 and 1.0 respectively.

3.2 Comparative Study

In order to examine the effectiveness of MOEA-RF, a comparative study with NTSPEA,

MOPSEA, SPEA2 [228], NSGAII and PAES [127] is carried out based upon the five bench-

mark problems. Since re-sampling is probably the simplest and most common noise compen-

sation technique, the baseline algorithm with a re-sampling rate of 10 (named as RMOEA)
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Figure 3.8: Program flowchart of MOEA-RF.

Table 3.1: Indices of the different algorithms

Index 1 2 3 4 5 6 7

Algorithm MOEA-RF RMOEA NTSPEA MOSPEA SPEA2 NSGAII PAES

is also included in the study. The indices of the seven algorithms are listed in Table 3.1. In

this study, different experimental setups with noise settings of σ2 = {0%, 5% , 10%, 20%}

are applied to evaluate the performance of the algorithms.

The simulations are implemented in C++ on an Intel Pentium 4 2.8 GHz computer and
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Table 3.2: Parameter setting for different algorithms

Parameter Settings

Populations Population size 100 in NSGAII, SPEA2, NTSPEA,
MOPSEA, RMOEA and MOEA-EF;
Population size 1 in PAES;
Archive (or secondary population) size 100.

Chromosome Binary coding; 15 bits per decision variable.
Selection Binary tournament selection
Crossover operator Uniform crossover
Crossover rate

0.8
Mutation operator Bit-flip mutation in NSGAII, SPEA2, NTSPEA, RMOEA and

ELDP in MOEA-RF
Mutation rate 1

chromosome length for ZDT1, ZDT4 and ZDT6;
1

bit number per variable for FON and KUR;

Hyper-grid size 25 per dimension
Niche Radius Dynamic for MOEA-RF.
Evaluation number 50,000

the results shown are based on the true objective function values. Thirty independent runs

are performed for each of the test functions in order to obtain the statistical information, such

as consistency and robustness of the algorithms. In order to assess statistical difference of

the simulation results, Kolmogorov-Smirnov (KS) test is applied to the different performance

metrics. The various parameter settings for each algorithm are listed in Table 3.2. All the

algorithms are implemented using the same binary coding scheme, tournament selection,

uniform crossover, and bit flip mutation. In accordance to the original paper [21], kmax

is set as 4, while c1 and c2 is set as 10% and 30%, respectively, for NTSPEA. The value

of s is calculated by re-sampling ten individuals immediately after the first evaluation for

MOPSEA.
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Figure 3.9: Performance metric of (a) GD, (b) MS, and (c) HVR for ZDT1 attained by
MOEA-RF (3), RMOEA (�), NTSPEA(|), MOPSEA (∗), SPEA2 (∇), NSGAII (4) and
PAES (•) under the influence of different noise levels.
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Figure 3.10: The PFA from (a) MOEA-RF, (b) RMOEA, (c) NTSPEA, (d) MOPSEA, (e)
SPEA2, (f) NSGAII, and (g) PAES for ZDT1 with 20% noise.
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3.2.1 ZDT1

ZDT1 has a convex Pareto front with a large number of variables to be optimized. The

performance of the different algorithms over noise levels of {0%, 5%, 10%, 20%} is shown

in Figure 3.9. The evolved tradeoff with noise level of 20% from the different algorithms

using the same initial population is illustrated in Figure 3.10(a)-(g). The distribution of the

different performance metrics is represented by box plots in Figure 3.11(a)-(d) and Figure

3.12(a)-(d) for 0% and 20% noise respectively.

Figure 3.9 shows that the performance of the algorithms deteriorates with the increase

of noise level; particularly there is a drastic performance change in PAES when the noise

level is increased to 5%. Figure 3.9(c) shows that the MOEA-RF, NTSPEA and MOPSEA

are capable of evolving better solutions in a noisy environment as compared to algorithms

without any noise compensation techniques. With the exception of RMOEA, Figure 3.11

shows that most algorithms encountered no problem in converging and maintaining a diverse

set of solutions for ZDT1 under noiseless environment. As shown by the evolutionary trace of

GD in Figure 3.12, the poor performance of RMOEA can be attributed to the re-evaluation

of candidate individuals. Although the performance of MOEA-RF for proximity is not the

best, it has the fastest convergence for both GD and MS as can be seen from the evolutionary

trace of GD and MS in Figure 3.13. The metric of HVR in Figure 3.11(d) indicates that

the solutions evolved by MOEA-RF have the best overall quality. It also produces a more

uniformly distributed Pareto front as shown by the low value of S. The KS test also revealed

that MOEA-RF and other algorithms are statistically different in terms of S, MS, and HVR.

Among the conventional MOEAs, i.e., SPEA2, NSGAII and PAES, it is apparent that

the PAES is worst affected by the noise. As can be seen from the distribution of GD

in Figure 3.12(a), MOEA-RF, NTSPEA and MOPSEA produce competitive results since

various features are included in these algorithms to deal with the noise. On the other hand,

the performance of RMOEA is the worst among all algorithms except for PAES. As can

be observed in Figure 3.9 and Figure 3.12(b)-(d), the MOEA-RF is capable of evolving a
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Figure 3.11: Performance metric of (a) GD, (b) S, (c) MS, and (d) HVR for ZDT1 with 0%
noise.
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Figure 3.12: Performance metric of (a) GD, (b) S, (c) MS, and (d) HVR for ZDT1 with
20% noise.

more diverse and uniformly distributed Pareto front for ZDT1 in the presence of noise as

compared to other algorithms.

3.2.2 ZDT4

ZDT4 challenges the algorithms ability to deal with the problem of multi-modality. The

performance of the different algorithms over the noise levels of {0%, 5%, 10%, 20%} is shown

in Figure 3.14. The evolved tradeoff from the different algorithms using the same initial

population is shown in Figure 3.15(a)-(g) and Figure 3.16(a)-(g) for noise level of 0% and

20%, respectively. The distribution of the different performance metrics is represented by

box plots in Figure 3.17(a)-(d) and Figure 3.18(a)-(d) for 0% and 20% noise respectively.

From the trend of GD over the various noise levels in Figure 3.14(a), it is apparent that



CHAPTER 3. 66

0 10000 20000 30000 40000 50000
10

-3

10
-2

10
-1

10
0

10
1

Evaluation

lo
g(

G
D

)

(a)

0 10000 20000 30000 40000 50000
0

0.2

0.4

0.6

0.8

1

Evaluation

M
S



(b)

Figure 3.13: Evolutionary trace of (a) GD and (b) MS for ZDT1 with 0% noise.
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Figure 3.14: Performance metric of (a) GD, (b) MS, and (c) HVR for ZDT4 attained by
MOEA-RF (3), RMOEA (�), NTSPEA(|), MOPSEA (∗), SPEA2 (∇), NSGAII (4) and
PAES (•) under the influence of different noise levels.

the smoothing effect of noise described in Section 2 is also present for the noise levels of 5%

and 10%. In contrast to the algorithmic behaviors observed for ZDT1, this phenomenon

enables some of the algorithms, such as SPEA2, MOPSEA to evolve better solutions as

shown in Figure 3.14(a) and Figure 3.14(c). It can be observed from Figure. 3.15 and Figure

3.17 that the local optima imposed by this benchmark appear to be a formidable barrier

against the global convergence. At the end of 50,000 evaluations, RMOEA, MOPSEA,

SPEA2, NSGAII and PAES only managed to discover one of the local Pareto fronts. On the
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Figure 3.15: The PFA from (a) MOEA-RF, (b) RMOEA, (c) NTSPEA, (d) MOPSEA, (e)
SPEA2, (f) NSGAII, and (g) PAES for ZDT4 with 0% noise.
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Figure 3.16: The PFA from (a) MOEA-RF, (b) RMOEA, (c) NTSPEA, (d) MOPSEA, (e)
SPEA2, (f) NSGAII, and (g) PAES for ZDT4 with 20% noise.
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Figure 3.17: Performance metric of (a) GD, (b) S, (c) MS, and (d) HVR for ZDT4 with 0%
noise.
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Figure 3.18: Performance metric of (a) GD, (b) S, (c) MS, and (d) HVR for ZDT4 with
20% noise.
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Figure 3.19: Evolutionary trace of (a) GD and (b) MS for ZDT4 with 0% noise.
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Figure 3.20: Performance metric of (a) GD, (b) MS, and (c) HVR for ZDT6 attained by
MOEA-RF (3), RMOEA (�), NTSPEA(|), MOPSEA (∗), SPEA2 (∇), NSGAII (4) and
PAES (•) under the influence of different noise levels.

other hand, Fig.3.17(a) shows that MOEA-RF incorporated with ELDP and GASS is able to

evolve individuals near to the global Pareto front consistently. From the convergence trace of

GD in Figure 3.19(a), it is clear that ELDP plays an important role in the algorithm to escape

from the local optima. Moreover GASS is activated whenever the criterion of convergence is

satisfied, which diverts the evolutionary search and avoids the local optima. The dips on the

metric of MS observed in Figure 3.19(b) correspond to the effect of jumping from one local

Pareto front to another during the evolutionary search. In this intermediate state of jumping,

there is a transition from one relatively diverse set of individuals along a local Pareto front

to another, which results in the effect of sudden dips. As can be observed in Figure 3.17(b)-

(d), MOEA-RF is capable of evolving a more diverse and uniformly distributed Pareto front

under noiseless environment as compared to other algorithms.

As can be seen in Figure 3.16 and Figure 3.18, the performance of NTSPEA, MOPSEA,

SPEA2, NSGAII and PAES is poor under the influence of noise. Furthermore, the number of

non-dominated individuals discovered by these algorithms is also greatly reduced as shown

in Table 3.3. By comparing Figure 3.17(b)-(d) and Figure 3.18(b)-(d), it is apparent that

MOEA-RF is able to evolve individuals that are on or close to the global tradeoff for ZDT4,

although its performance is generally affected by the presence of noise.
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Figure 3.21: The PFA from (a) MOEA-RF, (b) RMOEA, (c) NTSPEA, (d) MOPSEA, (e)
SPEA2, (f) NSGAII, and (g) PAES for ZDT6 with 0% noise.
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Figure 3.22: The PFA from (a) MOEA-RF, (b) RMOEA, (c) NTSPEA, (d) MOPSEA, (e)
SPEA2, (f) NSGAII, and (g) PAES for ZDT6 with 20% noise.
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Figure 3.23: Performance metric of (a) GD, (b) S, (c) MS, and (d) HVR for ZDT6 with 0%
noise.
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Figure 3.24: Performance metric of (a) GD, (b) S, (c) MS, and (d) HVR for ZDT6 with
20% noise.
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Figure 3.25: Evolutionary trace of (a) GD and (b) MS for ZDT6 with 0% noise.
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3.2.3 ZDT6

ZDT6 has a biased search space and non-uniformly distributed solutions along the global

tradeoff, which makes it difficult for algorithms to evolve a well-distributed Pareto front.

The performance of the different algorithms over the noise levels of {0%, 5%, 10%, 20%}

is shown in Figure 3.20. The evolved tradeoff from the different algorithms using the same

initial population is shown in Figure 3.21(a)-(g) and Figure 3.22(a)-(g) for noise level of 0.0%

and 20.0% respectively. The distribution of the different performance metrics is represented

by box plots in Figure 3.23(a)-(d) and Figure 3.24(a)-(d) for 0% and 20% noise respectively.

It can be observed from Figure 3.20 that different algorithms behave differently although

the performance is generally deteriorated with increasing noise levels. For instance, Figure

3.20(c) shows that there is a drastic drop in the performance of MOPSEA and PAES as

reflected by the metric of HVR when the noise level is increased to 5%. On the other

hand, the performance of NTSPEA, NSGAII and SPEA2 seems unaffected for MS and GD

over the noise levels of 0%, 5% and 10%, but deteriorates sharply when the noise level is

increased to 20%. It can also be observed that the noise-handling algorithms of RMOEA,

NTSPEA, MOPSEA and MOEA-RF have different degree of success in the presence of

noise. For example, the re-sampling mechanism employed by RMOEA has a slight edge

over only PAES at noise level of 20% for GD and MS, while MOEA-RF outperforms other

algorithms on the various metrics of GD, MS and HVR.

Although RMOEA, MOPSEA and PAES can identify some parts of the tradeoff for

ZDT6, Figure 3.21(b), (d) and (g) shows that these algorithms are unable to evolve a well-

distributed Pareto front. Figure 3.23(c) also shows that RMOEA is unable to find a diverse

solution set consistently. On the other hand, NSGAII, SPEA2 and MOEA-RF provide

competitive results in all aspects, particularly for the metric of GD as shown in Figure 3.23.

In addition, the convergence trace of GD and MS in Figure 3.25 shows that MOEA-RF

offers the fastest convergence among all algorithms due to the incorporation of ELDP.



CHAPTER 3. 73

0.0 5.0 10.0 20.0
0

0.1

0.2

0.3

0.4

0.5

Noise Level

G
D



(a)

0.0 5.0 10.0 20.0
0

0.2

0.4

0.6

0.8

1

Noise Level

M
S



(b)

0.0 5.0 10.0 20.0
0

0.2

0.4

0.6

0.8

1

Noise Level

H
V

R


(c)

Figure 3.26: Performance metric of (a) GD, (b) MS, and (c) HVR for FON attained by the
algorithms under the influence of different noise levels.

Figure 3.22 and Figure 3.24 show that NTSPEA, MOPSEA, NSGAII, SPEA2 and PAES

are unable to find any individuals along the global tradeoff under the influence of noise. The

simple archiving technique employed in NTSPEA allows it to cope with noise better than

MOPSEA, SPEA2, NSGAII and PAES. On the other hand, MOEA-RF is able to find a set of

solutions near the global tradeoff consistently. With the exception of GD at 0% noise, the KS

test indicates that the performance between MOEA-RF and other algorithms is statistically

different in all aspects of the MO optimization goals. The MOEA-RF also maintains a stable

evolving environment through GASS that defines a concentrated search region. This results

in a consistent algorithmic performance as reflected by the small variance of all metrics in

Figure 3.24. Conversely, RMOEA shows a large variance for the metric of S, MS and HVR,

despite the presence of re-sampling technique in the algorithm.

3.2.4 FON

FON challenges the algorithms ability to find and maintain the entire tradeoff curve uni-

formly. Since the tradeoff curve is non-convex and nonlinear in nature, it is difficult for the al-

gorithms to maintain a stable evolving population for FON especially in a noisy environment.

The performance of the different algorithms over the noise levels of {0%, 5%, 10%, 20%} is

shown in figure 3.26. The evolved tradeoff from the different algorithms using the same
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Figure 3.27: The PFA from (a) MOEA-RF, (b) RMOEA, (c) NTSPEA, (d) MOPSEA, (e)
SPEA2, (f) NSGAII, and (g) PAES for FON with 20% noise.
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Figure 3.28: Performance metric of (a) GD, (b) S, (c) MS, and (d) HVR for FON with 0%
noise.

initial population is showed in Figure 3.27(a)-(g) for noise level of 0%. The distribution

of the different performance metrics is represented by box plots in Figure 3.28(a)-(d) and

Figure 3.29(a)-(d) for 0% and 20% noise respectively.

It can be observed from Figure 3.26 that none of the noise-handling MOEAs provides

distinct advantage over NSGAII and SPEA2 for solving FON in noisy environments. In

fact, only MOEA-RF is able to match the performance of NSGAII and SPEA2 in terms
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Figure 3.29: Performance metric of (a) GD, (b) S, (c) MS, and (d) HVR for FON with 20%
noise.
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Figure 3.30: Evolutionary trace of (a) GD and (b) MS for FON with 0% noise.

of convergence and diversity over the different noise levels. Conversely, the performance of

other algorithms deteriorates drastically at noise levels of 10% and 20% as shown in Figure

32. It can be observed from Figure 3.27 and Figure 3.28 that RMOEA are unable to find the

final tradeoff, while other algorithms are capable of finding at least some parts of the optimal

Pareto front. The results also show that MOEA-RF offers the best performance in terms of

spacing and spread, and the KS test reveals that the performance between MOEA-RF and

other algorithms is statistically different in terms of MS, S, and HVR.

From the evolutionary trace in Figure 3.30, it is obvious that RMOEA, NTSPEA,

MOPSEA and PAES are unable to improve beyond the initial candidate solutions at 20%
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Figure 3.31: Performance metric of (a) GD, (b) MS, and (c) HVR for KUR attained by the
algorithms under the influence of different noise levels.
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Figure 3.32: Performance metric of (a) GD, (b) S, (c) MS, and (d) HVR for KUR with 0%
noise.

noise. As a result, NTSPEA, MOPSEA and PAES only manage to find one or two solutions

that are far away from the final tradeoff for most of the 30 simulation runs, leading to the

high values of GD and S as shown in Figure 3.29(a)-(b). On the other hand, MOEA-RF,

SPEA2 and NSGAII are able to discover some individuals that are near to the final tradeoff.

The KS test indicates that the three algorithms are rather similar in performance for the

various MO optimization metrics. Figure 3.29(d) and Figure 3.30 also show that MOEA-RF

has a slight edge in producing better solutions as compared to other algorithms, due to the

proposed GASS that concentrates the evolutionary search to reduce the stochastic influence

of noise as shown in Figure 3.30(a), where the improvement of convergence for MOEA-RF

coincides with the activation of GASS.
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Figure 3.33: Performance metric of (a) GD, (b) S, (c) MS, and (d) HVR for KUR with 20%
noise.

3.2.5 KUR

KUR is characterized by an optimal Pareto front that is non-convex and disconnected, i.e.,

it contains three distinct disconnected regions on the final tradeoff. The decision variables

correspond to the global tradeoff for KUR are difficult to be discovered, since they are

disconnected in the decision variable space. The performance of the different algorithms

over the noise levels of {0%, 5%, 10%, 20%} is shown in Figure 3.31. The distribution of

the different performance metrics is represented by box plots in Figure 3.32(a)-(d) and

Figure 3.33(a)-(d) for 0% and 20% noise respectively. Similar to FON, Figure 3.31 shows

that MOEA-RF, NSGAII and SPEA2 are better for solving KUR in noisy environments as

compared to other algorithms.

Figure 3.32 shows that the global search mechanism of MOEAs generally responds well

to the challenges of discontinuity and non-convexity posted by noiseless KUR. Among these

algorithms, MOEA-RF, NTSPEA, SPEA2, and NSGAII are capable of finding a diverse and

uniformly distributed Pareto front for most of the 30 simulation runs. It can be observed

from Figure 3.33(b)-(d) that RMOEA, NTSPEA, MOPSEA and PAES have difficulty in

distributing individuals uniformly along the discovered Pareto front in noisy environments.

On the other hand, MOEA-RF, SPEA2 and NSGAII give good performance in terms of

distribution and diversity under the influence of noise. Besides having similar results for

GD and MS, Table 3.3 depicts that MOEA-RF, SPEA2 and NSGAII are capable of archiving
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Table 3.3: Number of non-dominated individuals found for the various benchmark problems
at 20% noise level

MOEA-RF RMOEA NTSPEA MOSPEA SPEA2 NSGAII PAES

1st quartile 28 6 5 7 18 17 4
ZDT1 Median 31 7.5 6 9 21.5 19.5 4.5

3rd quartile 32 10 8 10 27 23 5

1st quartile 29 5 6 9 12 20 5
ZDT4 Median 33 7 8 11 26.5 15 6

3rd quartile 41 8 10 13 29 21 9

1st quartile 82 2 4 3 8 8 2
ZDT6 Median 85 3 5 4 9 9 4

3rd quartile 88 5 6 5 11 11 6

1st quartile 9 1 1 1 6 6 1
FON Median 11 2 1.5 2 8.5 8.5 2

3rd quartile 17 2 2 3 12 12 3

1st quartile 25 6 5 8 23 25 7
KUR Median 27 8 5.5 9 25 27 9

3rd quartile 30 9 7 11 28 30 10

more non-dominated individuals as compared to other algorithms.

3.3 Effects of The Proposed Features

It can be observed from the comparative studies that MOEA-RF is capable of evolving a

near-optimal, diverse and uniformly distributed Pareto front for the different benchmark

problems. In this section, the dynamics and parameter settings of ELDP and GASS are

examined in the presence of the possibilistic archiving model. Simulation results show that

the proposed archiving model plays a complementary but crucial role in the preservation of
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Figure 3.34: The first row represents the distribution of one decision variable and the second
row shows the associated non-dominated individuals of baseline MOEA at generation (a) 0,
(b) 10, (c) 60, (d) 200, and (e) 350 for ZDT4.
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Figure 3.35: The first row represents distribution of one decision variable and the second row
shows the associated non-dominated individuals of baseline MOEA with ELDP at generation
(a) 0, (b) 10, (c) 60, (d) 200, and (e) 350 for ZDT4.

good individuals discovered by ELDP and GASS, without which the potential of ELDP and

GASS may not be easily exploited. Note that ZDT4 and FON are used in the study here

since it has been observed in previous section that most algorithms are unable to deal with

these two benchmark problems effectively across the different noise conditions.

The Parzen window density estimation [160] is used to estimate the distribution of in-

dividuals in the decision space. Figure 3.34(a)-(e) shows the distribution of one decision
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Figure 3.36: The first row represents distribution of one decision variable and the second row
shows the associated non-dominated individuals of baseline MOEA with GASS at generation
(a) 0, (b) 10, (c) 60, (d) 200, and (e) 350 for ZDT4.
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Figure 3.37: The first row represents the distribution of one decision variable and the second
row shows the associated non-dominated individuals of baseline MOEA at generation (a) 0,
(b) 50, (c) 150, (d) 350, and (e) 500 for FON.

variable and the associated non-dominated individuals of baseline MOEA at the generation

of 0, 10, 60, 200, and 350 for ZDT4. Similarly, the effects of ELDP and GASS is shown in

Figure 3.35 and Figure 3.36, respectively. To illustrate the working dynamic for the problem

of FON, the distribution of one decision variable and the associated non-dominated indi-

viduals for baseline MOEA without and with the proposed features at the generation of 0,

50, 150, 350, and 500 are shown in Figure 3.37 to Figure 3.39. Note that the possibilistic
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Figure 3.38: The first row represents the distribution of one decision variable and the
second row shows the associated non-dominated individuals of baseline MOEA with ELDP
at generation (a) 0, (b) 50, (c) 150, (d) 350, and (e) 500 for FON.
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Figure 3.39: The first row represents the distribution of one decision variable and the
second row shows the associated non-dominated individuals of baseline MOEA with GASS
at generation (a) 0, (b) 50, (c) 150, (d) 350, and (e) 500 for FON.

archiving model behaves like the standard archive in the absence of any preference or noise.

The distribution and the associated non-dominated individuals demonstrate how the differ-

ent features influence and improve the optimization process. In addition, it shows whether

the proposed features are behaving in accordance to the design specifications.

It can be seen from the figures that ELDP and GASS have a distinct advantage in

overcoming local optimality for ZDT4 as well as in finding a diverse tradeoff for FON. By



CHAPTER 3. 82

comparing the decision variable distribution and the evolved non-dominated solutions across

the different generations, it is evident from Figure 3.35(a)-(c) and Figure 3.38(a)-(c) that the

population distribution converges faster when ELDP is incorporated. The slight divergence

of the decision variable distribution about the main peak in Figure 3.38(d)-(e) illustrates the

local fine-tuning capability of ELDP, which is important in leading the evolution towards

the global tradeoff. By comparing the decision variable distribution between Figure 3.34(c)

and Figure 3.36(c) as well as between Figure 3.37(c)-(e) and Figure 3.39(c)-(e), it can be

seen that the incorporation of GASS results in a diverse distribution of individuals in the

decision space. This shows that GASS is capable of diverting the evolution to other search

regions upon the detection of a convergence, thus allowing the algorithm to discover the

global tradeoff for ZDT4 as well as to achieve a good spread of non-dominated individuals

for FON.

To examine the effect of parameter sensitivity for ELDP and GASS, a number of sim-

ulations are performed with different settings of α={0.0,0.05,0.1,0.3,0.5} for ELDP and

w={0.05,0.1,0.3,0.5} for GASS at noise levels of 0% and 20%. The setting of α=0 for ELDP

is equivalent to the operation of bit-flip mutation. Apart from demonstrating that ELDP

provides better performances over the bit-flip mutation, it is observed that ELDP and GASS

are capable of performing consistently and effectively within a large range of and w settings

for ZDT4 and FON at different noise levels.

3.4 Further Examination

The results in Sections 3.2 and 3.3 reveal that the proposed features can improve the per-

formance of MO optimization in terms of proximity, diversity and distribution under the

influence of noise. In this section, the features of ELDP and GASS are applied to SPEA2 and

NSGAII to examine if their effects can be reproduced in conventional MOEAs. The ELDP

is used in place of the bit-flip mutation operator in SPEA2 and NSGAII, while the GASS
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Figure 3.40: Performance metric of (a) GD, (b) S, (c) MS, and (d) HVR for ZDT4 with 0%
noise.
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Figure 3.41: Performance metric of (a) GD, (b) S, (c) MS, and (d) HVR for ZDT4 with
20% noise.

is implemented in conjunction with existing selection schemes. The possibilistic archiving

model is not implemented here, since the archiving strategy of SPEA2 and NSGAII plays

an important role in defining the behavior of the algorithms.

It has been observed in previous section that SPEA2 and NSGAII can neither discover

the global tradeoff for ZDT4 nor maintain a well-distributed set of individuals for FON. The

performance of these two algorithms is also largely affected by noise in ZDT4 and FON.

Hence, these two benchmark problems are used in the study here. NSGAII-RF and SPEA2-

RF denotes the algorithm incorporated with the proposed features. The metric distribution

of the simulation results for noiseless and noisy ZDT4 is shown in Figure 3.40(a)-(d) and

Figure 3.41(a)-(d), respectively. Similarly, the performance of the algorithms for noiseless

and noisy FON is shown in Figure 3.42(a)-(d) and Figure 3.43(a)-(d), respectively.
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Figure 3.42: Performance metric of (a) GD, (b) S, (c) MS, and (d) HVR for FON with 0%
noise.
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Figure 3.43: Performance metric of (a) GD, (b) S, (c) MS, and (d) HVR for FON with 20%
noise.

It can be observed from Figure 3.40 - Figure 3.43 that ELDP and GASS are capable of

improving the performance of SPEA2 and NSGAII in terms of convergence and diversity of

individuals along the tradeoff for ZDT4 and FON. In the case of ZDT4, the incorporation

of the proposed features allows NSGAII-RF and SPEA2-RF to escape the local optima in

ZDT4. In the case of FON, Figure 3.42 show that the incorporation of ELDP and GASS

improves the performance in terms of GD, MS, and HVR. It can also be observed from

Figure 3.43 that NSGAII-RF and SPEA2-RF have a slight edge over NSGAII and SPEA2

in almost all aspects of the MO optimization goals.

3.5 Conclusion

Based on the empirical results conducted, three noise-handling features have been proposed
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in this chapter, including an experiential learning directed perturbation operator that adapts

the magnitude and direction of variation according to past experiences for fast convergence,

a gene adaptation selection strategy that helps the evolutionary search in escaping from

local optima, and a possibilistic archiving model based on the concept of possibility and

necessity measures to deal with the problem of uncertainties. It has been shown in the

comparative study that basic algorithm incorporating the proposed features exhibit com-

petitive or superior performance in terms of proximity, diversity and distribution for both

the noiseless and noisy benchmark problems. Besides, the working dynamics and parameter

settings of ELDP and GASS with and without the presence of noise have been examined,

which illustrate that the proposed features are robust to different parameter settings and

the individual feature of ELDP and GASS plays an important role in the overall evolution-

ary optimization process. Furthermore, it has been depicted that existing MOEAs such

as SPEA2 and NSGAII incorporated with the proposed features of GASS and ELDP are

capable of giving better convergence and population diversity along the global tradeoff for

the benchmark problems with and without the presence of noise.



Chapter 4

Hybrid Multi-objective

Evolutionary Design for Neural

Networks

In this chapter, we consider the design of artificial neural networks (ANNs) as an instance

of noisy design problem. As mentioned by [107,219], network architecture optimization is a

noisy problem in which the same network structure can give rise to different fitness values

due to different weight instantiations. Given that the intrinsic relationship between the

architecture and the associated synaptic weights can be quite complex, the design method-

ology would be flawed if we were to decouple these two properties during the training phase

of the network. Local search is applied to optimize the synaptic weights with respect to any

new ANN structure introduced to reduce the effects of noise.

4.1 Evolutionary Artificial Neural Networks

EANNs provide a global approach for synaptic weight training, architectural design, rule

extraction, etc., and it has been shown to possess several advantages over conventional

methods of training. Thus, the field of EANNs is at present, receiving increasing attention

from the research community. EANNs provide a platform for the simultaneous optimization

86
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of synaptic weights and network architecture. According to Stanley and Miikkulainen [189],

it is necessary to evolve network architecture and weights simultaneously to achieve a de-

sirable performance. EANNs have been demonstrated to be less sensitive to initial choice

of weights and are also capable of dealing with the issue of premature convergence that is

usually associated with traditional gradient-based approaches [60,137, 220]. However, the

simultaneous evolution of both architecture and network weights will inevitably result in

a large increase in the size of the search space. While EAs are capable of exploring and

identifying promising regions of the search space, they require a relatively longer time to

locate the local optima.

With this in mind, many researchers have sought to complement the global exploration

ability of EA by incorporating dedicated learning or local search (LS) heuristics. Support

from experimental studies has shown that EA-LS hybrids or hybrid EAs are capable of more

efficient search capabilities [145,154]. The backpropagation (BP) algorithm using steepest-

gradient is the dominant local search operator in EANN. According to Kinnebrock [119],

the number of epochs for training an ANN can be significantly reduced by subjecting the

weights of the network to mutation. Yao and Liu [220] applied an Evolutionary Program-

ming (EP) based approach for the simultaneous optimization of the architecture of an ANN

and its corresponding synaptic weights. Adaptation of connection weights is based on a

hybrid training that comprises of a modified version of the BP algorithm together with

simulated annealing (SA). In the event that no improvement in performance is made af-

ter this hybrid learning, modifications are made to the ANN structure by means of node

deletion, connection deletion, as well as connection and node addition operators. In order

to encourage the evolution of compact neural architectures, addition-based operators are

employed only if deletion-based operators fail to improve network performance. Verma and

Ghosh [217] utilized QR factorization for optimizing the weights in the least-squares sense.

Specifically, an EA is used to evolve the hidden layer weights while the least-squares method

is applied to optimize the output layer weights. More recently, the authors subsequently
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proposed a modification to the original algorithm in [70] to reduce the required computa-

tional complexity. Furthermore, two different heuristics are used to determine the optimal

number of hidden neurons.

While many researchers have acknowledged the importance in considering both architec-

ture and connection weights concurrently, [143,221,224,225] the MO nature of the problem

is rarely considered until recently [2, 3, 56, 66, 71]. It should be noted that the design of

ANN involves the optimization of two competing objectives, namely the maximization of

network capacity and the minimization of neural architecture complexity. Abbass [2] ap-

plied a MO approach in the optimization of an ANN, where the proposed memetic Pareto

ANN (MPANN) is based on a differential evolution. As is typical with most local search

based approaches to EANN, the BP algorithm is used as the local search operator. Similar

to [220], the network weights and architecture are evolved simultaneously. The author fur-

ther extends his original approach by suggesting an alternative self-adaptive algorithm that

is claimed to be computationally less intensive. While Abbass [2,3] sought to achieve a good

generalization by optimizing the objectives of training accuracy number of hidden neurons

simultaneously, Giustolisi and Simeone [71] considers the additional objective of model input

dimension. Garcia-Pedrajas et al [66] investigated the influence of 10 different objectives

and results indicated the advantages of the MO approach over SO approach. MOEAs have

also been sucessfully applied to the evolution of neural network ensembles recently [25,26].

It can also be observed from the literature that any fine-tuning or adaptation of network

architectures is mainly stochastic or performance-driven (by the classification accuracies, in

our case), which will inevitably result in larger network complexities, as measure by the

architectural size, or otherwise known as structural complexity. The primary difficulty in

this area is the formulation of an appropriate measure to quantify the contribution of the

“information” that emerges during the process of evolution while the learning, or training

mechanism takes place.
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4.2 Singular Value Decomposition for ANN Design

As mentioned in the previous section, it is difficult to quantify the contribution of additional

neurons in the hidden layer without the use of an independent validation set of data. As

such, we used a simple, yet robust information measure based on the SVD operator in the

framework of EANNs, to achieve this purpose, in removing neurons in the hidden layer of

the evolved single hidden layer feedforward neural network.

Computationally, the SVD is very robust and allows the discrimination against noise

contamination. Typically, the SVD is utilized in computing the pseudoinverse (Moore-

Penrose generalized inverse) of a rectangular, possibly singular, matrix. The SVD has

also been extensively applied in problems of least squares, spectral estimation and system

identification. In signal processing, the SVD plays a central role in subspace modeling or

low-rank approximation (similar to our problem of estimating the number of hidden layer

neurons) of signals.

4.2.1 Rank-revealing Decomposition

Consider the output matrix, H, of the hidden layer corresponding to the N training samples

and n hidden neurons. The actual rank (say k) of H may be different from its numerical

rank (say n), where k ≤ n. Such a situation usually arises when the original matrix H is

contaminated by E resulting in a matrix, H̃

H̃ = H + E (4.1)

with rank(H)=k and rank(H̃)=n. This contamination, commonly referred to noise, ob-

structs the characterization of the true properties of the system or problem given the ob-

served training samples. This phenomenon actually corresponds to the marginal role played

by additional hidden layer neurons that tends to fit the features of the training samples

which are not representative of the intrinsic underlying distribution of observations.
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Given a real matrix H ∈ RNxn, applying the SVD results in the orthogonal transforma-

tion,

UT HV = [
∑

; 0]
∑

= diag(σ1, ...σn)
(4.2)

where U ∈ RNxN and V ∈ Rnxn are known as the left and right singular vectors of H .
∑
∈ RNxn is a diagonal matrix with unique, nonnegative entries ordered in decreasing

magnitude. This decoupling technique of the SVD allows the expression of the original

matrix as a sum of the first n columns of u and uT , weighted by the singular values. The

rank of H is determined by observing the n largest singular values that are non-zero.

While SVD do not reveal the actual rank of full-ranked H̃ [121,190], through the struc-

ture of its zero elements, it provides information of the actual rank through the structure of

small elements. Let the singular values of H and H̃ be (σ1, ...σn) and (σ̃1, ...σ̃n) respectively.

From Schmidts Sub-space Theorem, we have

σ̃2
k+1 + ... + σ̃2

n ≤ ||E||2F (4.3)

where || ||F denotes the Frobenius norm, revealing the rank of H̃ such that its n−k smallest

singular values are bounded by the Frobenius norm of E.

4.2.2 Actual Rank of Hidden Neuron Matrix

Every neuron in the hidden layer constructs a hyperplane in the input feature space [91] and

the contribution of each hidden neuron to the separating capability of the ANN depends

on its uniqueness. In a geometrical sense, the rank of H denotes the space in which the

columns of H occupy, representing the number of separating hyperplanes in the system. In

the case where n = H − 1 hidden neurons are used with a suitable nonlinear activation

function such that H is full-ranked, the rank requirement [91, 177] is satisfied, giving rise

to N − 1 separating hyperplanes for N training samples. This follows that, using simple
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matrix inverse, we are guaranteed perfect reconstruction for the training set. Intuitively, if

H is of higher rank, H better fits the training data, at the expense of generalization when

limn→N rank(H). This full-rank condition also ensures that the patterns projected onto the

hidden layer space are linearly independent; accordingly this is also known as φ-general

position [33].

However, it should be noted that even if the transformed patterns produced in the hidden

layer space are in general position, some of these patterns may be degenerate in the sense

that certain patterns can be represented as a linear combination of other patterns. This leads

to issue of whether this additional hidden neuron is contributing to the actual separability

of the samples or merely compensating for the presence of noise in the observations. Clearly,

there is a limit, for which introducing additional hidden neurons will tend to over-fit the

training data. Therefore, the actual rank of the matrix H is more useful in estimating

the appropriate number of hidden neurons in the Single-hidden Layer Feedforward Network

(SLFN) for a given problem. In the context of representing the input patterns in hidden

layer space, we can think of additional hidden layer neurons as causing degeneracy in this

hidden layer space, for increasing the number of hidden layer neurons is akin to introducing

noise into the system thus perturbing the hidden layer space such that the hidden layer

space is now being represented by n hidden neurons which are of marginal benefit.

In Figure 4.1 shown below, using a 2-dimensional toy problem that is easily visualizable,

we illustrate the problem of hyperplane construction in hidden layer space and its corre-

sponding relationship with the singular values of the hidden layer output matrix H . From

observation, we know that three appropriately placed hyperplanes should provide us with

a good balance of network capacity and complexity without sacrificing the generalization

capability of the resulting classifier. The placement of these hyperplanes is achieved through

the use of learning algorithms (e.g. EA, or backpropagation using gradient descent) on the

set of training data. These learning algorithms will usually attempt, to the best of their

abilities, to position these hyperplanes such that their construction is as linearly indepen-
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dent as possible for the given set of training data. This usually requires that the learning

algorithm has converged prior to using the SVD to decompose the matrix H and obtain the

set of singular values. From the diagrams below, shown in input space, the singular values

confirm that the use of three hidden layer neurons should be sufficient for the network ca-

pacity given the complexity of the problem. We arrive at this conclusion from the presence

of a noticeable gap in the decay of singular values, indicating that most of the spectral

energy of H can be attributed to the first three hidden layer neurons note that while we

may not know the identity of these three most linearly independent hyperplanes (unless

we carry out a recalculation of the SVD using a permutation of possible combinations of

hidden neurons), we find that it is more efficient to retrain the whole network using the

found number of hidden neurons, which in this case is three.

Theorem 4.1: Define the numerical ε-rank kε of the matrix H with respect to some

tolerance ε [84] by

kε = kε(H, ε) ≡ min
|| E||2≤ε

{rank(H+E)} (4.4)

which states that if there is a gap between the kε-th and the kε+1-th singular values of size

ε, then H has actual rank (ε-rank) kε. The larger this gap ε is, the more robust the matrix

is to perturbation. To avoid possible problems when is itself perturbed, the definition of

actual rank is refined by introducing δ as an upper bound for εfor which the numerical rank

remains at least equal to k.

Theorem 4.2: The matrix H has a numerical rank of (δ, ε, r) with respect to the norm

|| · || if δ, ε, and r satisfies the following:

k = inf{rank(B) : || A−B|| ≤ ε

ε < δ ≤ sup{η : || A−B|| ≤ η ⇒ rank(B) ≥ k}
(4.5)

σk provides an upper bound for δ while σk+1 provides a lower bound for ε.

The above definitions are equivalent to saying that the matrix H is linearly-independent

when perturbed by E up to a threshold determined by ||E||2 ≤ ε. This result also means that
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(a) (b)

(c) (d)

Figure 4.1: (a), (b), (c): Diagram shows constructed hyperplanes in hidden layer space (1-
12 hidden neurons); (d): corresponding decay of singular values as number of hidden layer
neurons is increased.

the singular values of H satisfies σkε > ε > σkε+1. As described in [84], a well-determined

gap between the singular values of σkε and σkε+1 , represented by ε should exist in order

for the above definition to make much sense; kε should be, in other words, well-defined for

small perturbations of the threshold ε and the singular values. Alternatively, the numerical

ε-rank is the smallest integer k for which (Schmidts Subspace Theorem),

n∑

j=k+1

σ2
j ≤ ε2 (4.6)
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This result suggests that as more neurons are added to the hidden layer, the contribution

of each additional hidden neuron decreases after a certain threshold. From a geometric point

of view, additional hyperplanes constructed by these newly introduced hidden neurons are

not unique, or different as compared to existing hyperplanes (these new hyperplanes may be

almost parallel to existing ones). The significance of these new hyperplanes can be quantified

by examining the singular values of the matrix H , as more hidden layer neurons are added.

For detailed proofs of these theorems, the interested reader is directed to [121,190].

In our context, this suggests that we should use a SLFN with a fewer number of hidden

neurons since a higher number of neurons in the hidden layer may unnecessarily fit the noise

that is inherently present in the samples. As noted in [84], E is typically unknown, but what

we do have knowledge of is the source of E, which in turn can be used to estimate the norm

of E.

These singular values indicate the degree of mutual correlation between features in the

hidden layer space with column degeneracy resulting when these hidden space features are

highly correlated, which in turn leads to the conclusion that these additional neurons are

redundant. While the singular values do not provide information on which of these features

are correlated (the identity of the neurons are not explicitly known), the presence of small

singular values would indicate that these additional hidden neurons can be removed without

affecting the performance of the SLFN significantly.

4.2.3 Estimating the Threshold

A long-standing problem in the use of the SVD as a tool in determining the actual, or

effective rank of a perturbed matrix is in the distinguishing of significantly small and in-

significantly large singular values [125].

Suppose Hn ∈ RNxn represents the hidden layer output activation matrix of a SLFN

with n neurons in the hidden layer. As n increases, the input-output space mapping that

is discovered by the MLP better approximates the training data. Increasing n can be seen
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as increasing the complexity (and hence capacity) of the network, but since all problems

would have an inherent degree of complexity, which is essentially unknown estimating this

complexity, characterized by k that is in some sense close to the inherent complexity of the

problem, is our objective. However, as n is increased, the better fitting of the training data

by the MLP gives rise to a lesser ability to generalize on unseen examples (i.e. the training

set). Let σi(Hn) denote the i-th singular value of the SLFN with n hidden neurons. A way

to measure the contribution of the i-th singular value to say, the separability of classes, is

to relate its value to other singular values in
∑

.

If ε is large, we can assume that the matrix H is relatively robust to perturbations;

conversely, if ε is selected to be small (but not too small such that the numerical ε-rank

does not make sense, external noise that is introduced to the system may cause the matrix

Hto be rank-degenerate. Often, there is no clear value for k where σk − σk+1 is obvious.

If the SLFN has been well-trained, and has converged (there is little change in its weight

values), the decay of the singular values is gradual and not very distinct, and hence we

cannot conclude confidently that the numerical rank of matrix H is less than its actual

rank. This has been explored in further detail in [202].

4.2.4 Moore-Penrose Generalized Pseudoinverse

To resolve a linear system of the general form Hβ = T is straightforward if the matrix H

is square and non-singular. However, under many practical circumstances, the matrix H is

usually singular and likely to be rectangular. The Moore-Penrose generalized inverse sim-

plifies the treatment by providing the solution to the linear system in a least-squares sense.

The pseudoinverse of H is defined differently depending on the rank and dimensionality of

H .

In most practical problem, the system is over-determined and hence would want find

the least-square error of ||Hβ − T ||2 in the presence of the inconsistencies introduced by

the additional equations. Thus, β is obtained from ||Hβ − T ||2. The pseudoinverse can be
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shown to be the minimum norm least-squares solution of the system, i.e. the pseudoinverse

of β, which is β†, minimizes ||Hβ − T ||2. For further details on the pseudoinverse, readers

are directed to [183].

4.3 Hybrid MO Evolutionary Neural Networks

4.3.1 Algorithmic flow of HMOEN

To design an EANN that is capable of evolving the architecture and weights of the ANN

simultaneously, a few features such as variable-length chromosome representation, special-

ized genetic operator in the form of the SVD-based Architectural Recombination (SVAR),

and micro-hybrid genetic algorithm (µHGA) for effective local search are incorporated in

HMOEN. The flow of the HMOEN is shown in Figure 4.2. The design process begins with

the initialization of population. All individuals will be evaluated according to the objective

functions and ranked according to their dominance relationship in the population. The

objective functions and ranking scheme will be described in Section 4.3.2.

After the ranking process, non-dominated solutions will be updated into the archive.

This paper applies the fixed-sized archive applied in Chapter 2. The selected ANNs will

then undergo the process of SVAR, which adapts the network architecture, and the mutation

process. In order to reduce the noise presented by the change in network architecture as

well as to improve convergence, the offspring are allocated to the for local exploitation. The

evolution process repeats until the stopping criterion is satisfied. The mechanisms of SVAR

and µHGA are described in Section 4.3.4 and 4.3.5 respectively.

4.3.2 MO Fitness Evaluation

ANN design is cast as a MO optimization problem where a number of objectives such as

training accuracy and degree of complexity can be specified. The conflicting objectives
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Figure 4.2: Algorithmic Flow of HMOEN.

of maximizing network capacity and minimizing network complexity is manifested in the

tradeoffs between training and test accuracy. As before, the Pareto ranking scheme which

assigns the same smallest cost for all non-dominated individuals is applied.

One of the primary reasons why a weighted objective is not favored is due to the fact that

it is difficult to properly apportion the weights that should be associated with each objective,

in converting a MO problem into a SO problem. Most objectives that are considered, such

as training accuracy and size of neural network weights are not commensurable (not of the

same dimensional quantity) which makes it rather difficult to place these two objectives on

a similar platform for comparison.

In this chapter, we consider the simultaneous evolution of both the neural architecture

as well as the synaptic weights. Further, this problem is distinguished from previous work
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by formulating the problem as a MO problem where the twin objectives of classification

accuracy and network complexity are conflicting in nature. Therefore, the optimization

problem for the ANNs generalization on unseen data can be written as

f1 = min
{∑N

θ=1

∑C
k=1(yk(θ)− dk(θ))

2
}

f2 = min{NHk}

f3 = min{||Wk||2}

(4.7)

where f1 refers to the sum-of-squared (SSE) errors of the classification errors. In our problem

formulation, we use only one hidden layer of neurons (k=1), as dictated by the Universal

Approximation Capability (UAC) theorem for neural networks. N is the number of samples,

C is the number of class and dk is the desired output.

The two other objectives that we consider in our MO approach are firstly, the minimiza-

tion of the number of neurons in the hidden layer (f2), and secondly, the minimization of the

L2-norm of the hidden layer weights (f3). We consider each in turn, as will be demonstrated

later in our experimental results typically, the use of f2 and f3 in addition to f1 leads to

improved generalization performance (as compared to the use of f1 as the sole objective to

me maximized) as the size, or complexity of the network is now controlled, although there

is little distinction, empirically, of which of the two additional objectives to be minimized

(f2 or f3) leads to better testing accuracies. We will address this issue in a later section of

this chapter.

4.3.3 Variable Length Representation for ANN Structure

EAs process a set of encoded parameters, providing EA designers with the flexibility to

design an appropriate representation of the potential solutions. Appropriate representation

implies that it fulfills some criteria such as ease of implementation or exploitation of the

problem structure. For simplicity, the chromosome is often represented as a fixed-structure

and the embedded variables are usually assumed to be independent and context insensitive.
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In EANNs, a hybrid structure between binary and real-number representation is commonly

used for the simultaneous optimization of weights and architecture. However, such a rep-

resentation is not suitable for ANN design problem where flexibility is essential for the

simultaneous evolution of architecture and connection weights.

In this chapter, a variable-length chromosome representation is adopted to represent

the ANN topology including the number of neurons in the hidden layers and the connection

weights linking the input, hidden and output layer as illustrated in Figure 4.3(a). Figure

4.3(b) is the instantiation of the representation in Figure 4.3(a). Each neuron is coupled with

its associated weights, thus allowing easy manipulated by search operators for the addition

or deletion of neurons. The chromosome may consist of different number of neurons which

reflects the complexity of the ANN but the number of connections is fixed by the number

of input attributes. Such a representation is efficient and facilitates the design of problem-

specific genetic operators.

4.3.4 SVD-based Architectural Recombination

In EANNs, the recombination process between two ANNs is unlikely to produce a good

offspring due to the lack of a clear definition of a building block in the framework of ANN

[219]. However, the lack of recombination to facilitate the exchange of information between

candidate solutions implies that each individual is expected to adapt independently by

making best use of all available local information. This motivates the development of the

SVAR approach which is based on the fact that each neuron constructs a hyperplane in the

input feature space and hence contributes to the resulting separating capability of the ANN.

It follows that each neuron and its associated connections defines a building block which

contributes to the capacity of the ANN.

The issues considered in the design of the SVAR operator include the selection of the

appropriate neuron and its associated weights for recombination as well as the decision to

remove or add an appropriate neuron to the candidate ANN design. SVAR is performed
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Figure 4.3: An instance of the variable chromosome representation of ANN and (b) the
associate ANN.

between two parent ANNs and the procedure is outlined in the pseudocode shown in Figure

4.4.

For our proposed approach, the building blocks of each network are the set of neurons

(together with its incoming weights from the previous layer). These, we call the building

blocks, as they are the smallest units for which we operate on (such as performing crossover).

The SVD is used as the tool to determine the presence of redundant neurons while the

calculation of inter- and intra- subspace angles is used for the selection of neurons to be
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SVD Determine presence of redundant neurons for both parents – the SVD 
operator is applied, together with a corresponding threshold,   to determine 
the number of (redundant) hidden layer neurons to ‘prune’, or remove.
SELECTION Calculate intra- and inter- subspace angle between neurons. 
Mark neurons with smallest intra-subspace angle and largest inter-subspace 
angle for removal and exchange respectively.
FOR both parents DO

IF U(0,1) < 1/3 
EXCHANGE neurons marked for exchange

ELSEIF redundant neuron is TRUE
REMOVE neurons marked for removal 

ELSE
ADD neurons marked for exchange

END
END

Figure 4.4: Pseudocode of SVAR.

removed or exchanged the SVD operator (together with the corresponding threshold) will

decide the number of hidden layer neurons to be removed.

The number of neurons in the hidden layers that are deemed redundant by the SVD

operator is in effect, a function of the threshold that is used, with ε assuming the role of

the SVD threshold. In deciding which hidden layer neuron to remove or prune, we use

a geometrical approach, where the algorithm examines the subspace spanned between the

hidden layer neurons such that the neuron(s) which is (are) most linearly correlated with

the other hidden layer neurons are consequently removed. This is to prevent unnecessary

removal of a neuron at the initial stages where the weights are not yet adapted to the

problem.

The rationale for utilizing subspace angles as the selection criterion for pruning and

exchange is to encourage the linear independency between the neurons. In [202], the authors

use the SVD operator to first determine the appropriate, or necessary number of hidden

layer neurons on an initially large structured feedforward neural network, after which, the

network is retrained using the same learning algorithm, but using the reduced set of hidden

layer neurons. In our approach, however, we adopt an online method, in that during the
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evolutionary process, the identity of the hidden layer neuron(s) to be removed are determined

geometrically, by the subspace approach as described above. From the flowchart, it is

observed that it is possible for a candidate ANN with redundant neurons to retain the same

structure via the exchange of neurons from the other parent.

4.3.5 Micro-Hybrid Genetic Algorithm

As mentioned in the introduction, the optimization of neural network structure is an in-

herently noisy problem, i.e., the immediate neural network fitness after the recombination

process may not be a good indicator of the new network structure due to an inappropriate

set of weights. Thus, it is necessary to optimize the synaptic weights with respect to the new

ANN structure after any structural changes. The mutation operator offers a simple option

for local fine-tuning [103]. However, domain information cannot be easily incorporated and

its stochastic nature tends to render the search operation inefficient. Intuitively, the change

in genetic structure should be ordered instead of being left to chance in order for the local

search to be robust. While the well-known back-propagation (BP) algorithm is a directed

by means of gradient descent, it is prone to being trapped in local optima. In view of these

concerns, the EANN is hybridized with the µHGA .

µHGA

The µHGA exploits the synergy between a µGA [113] and the pseudoinverse operator to

decompose the large and complex search space. Specifically, the µGA performs local fine-

tuning of the hidden layer weights while the pseudoinverse optimizes output weights in the

least squares sense based on the weights found by the µGA. The pseudocode of the µHGA

is shown in Figure 4.5 where POP SIZELS is the population size of the µHGA. In this

paper, simulated binary crossover (SBX) and uniform mutation (UM) is applied to evolve
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INITIALIZE POPby create LSPOP_SIZE variants of selected ANN

EVALUATE LS ANNs

STORE best ANN
REPEAT UNTIL _gen_req reachedDO

SELECTION: Insert best ANN into mating pool. Binary tournament

LS ANN from POP

CROSSOVER: Perform SBX on selected  neurons
MUTATION: Perform UM on selected  neurons
PSEUDOINVERSE
EVALUATE ANNs
STORE best ANN

END

POP_SIZE

POP_SIZE

Figure 4.5: Pseudocode of µHGA.

the desired set of connection weights. The mutation strength of UM is adapted as,

s = 0.1 · (uppbdw − lowbdw) (4.8)

where uppbdw and lowbdw corresponds to the minimum, maximum of the associated weights

in the population.

Balance between Evolution and Learning

While the incorporation of local search can accelerate convergence of the evolutionary op-

timization process, hybrid EAs also give rise to issues pertinent to the tradeoffs between

evolution and learning. Apart from the obvious the challenge posed by limited compu-

tational resources, balance between exploration and exploitation is necessary to maintain

diversity in the evolving population for the approximation of the Pareto optimal front. Con-

sequently, these concerns have lead to the recent development of resource utilization schemes

such as local search probability [103] and simulated heating [9].

While local search probability can reduce the computational time utilized for local fine-

tuning, the exploration-exploitation dilemma is not explicitly considered. The fundamental
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idea behind simulated heating is based on simulated annealing, where the intensity of local

search increases with time. Although, it is intuitive that more computational time for

local search should be allocated in the later stages, online search requirements are not

considered in simulated heating. In contrast to existing methods which allocate resources

based on a predetermined schedule, this paper adapts the allocation of resources based on

the feedback of an online performance measure, the evolutionary progress rate [196]. The

evolutionary progress rate (epr(n)) can be defined as the ratio of the number of new non-

dominated solutions discovered in generation n, newnondomsol(n), to the total number of

non-dominated solutions, totalnondomsol(n),

epr(n) = new nondomsol(n)
total nondomsol(n)

(4.9)

The set of new non-dominated individuals discovered at each generation is basically com-

posed of individuals that dominate the non-dominated individuals of the previous generation

and individuals that contribute to the diversity of the solution set.

In this adaptive scheme, the number of individuals allocated for LS is adapted based on

the epr(n) in every generation. Mathematically, the adaptation of computational resource

allocation can be written as,

gen req(n) = (1− epr(n)) · (upp bdcom − low bdcom) + low bdcom (4.10)

where gen req is the number of generations performed by µHGA while upp bdcom and

low bdcom denote the upper and lower limits of available computational resource. The ratio-

nale is that a high value of epr(n) means that the algorithm is still in the exploratory stage

and the need for local fine-tuning is low. Likewise, a low value of epr(n) is an indication of

convergence and more resources are required to meet the requirements of local fine-tuning.

In this chapter, upp bdcom and low bdcom are set as 20 and 10 of the total population size

respectively.
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Table 4.1: Parameter settings of HMOEN for the simulation study

Parameter Settings

Population Main Population size: 20; Archive size: 20
µHGA: 4.

Chromosome HMOEN: Variable Length real number representation;
µHGA: Real number representation;

Selection Binary tournament selection
Crossover operator HMOEN: SVAR

µHGA: SBX
Crossover rate 0.9
Distribution index 10
Mutation operator Normally distributed mutation
Mutation rate 0.01
Mutation strength Adaptive
Diversity operator Niche count with radius 0.01 in the normalized objective space.

4.4 Experimental Study

4.4.1 Experimental Setup

In order to evaluate the effectiveness of the proposed methods, a detailed empirical study

is carried out on seven different datasets. HMOEN is implemented using the MATLAB

technical computing platform, and corresponding simulations are performed on an Intel

Pentium 4 2.8 GHz computer. Thirty independent runs are performed for each of the dataset

to obtain statistical information such as consistency and robustness of the algorithms. The

various parameter settings of HMOEN are tabulated in Table 4.1.

In the training phase for the classifiers, we use 30-fold cross-validation, partitioning

the data into two independent training and testing sets. 60% of the available samples

are randomly selected as training data, with the remaining 40% as testing data. Prior

to training, pre-processing is carried on the samples of each dataset. All input features
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are scaled and transformed such that the resulting input features have a mean of 0 and a

variance of 1, as it has been shown that convergence is usually faster if the average of each

input variable over the training set is close to zero [135]. For the outputs, since we consider

classification problems, we use binary target values with a 1-out-of-C encoding where for

a C-class problem, the largest output i is assigned to class i, with i={1,2,,C}. For the

th training sample, the desired class output c where dk(θ) = {0, 1} is 1 for k = c and 0

otherwise. This is essentially a winner-take-all approach for the output layer neurons, and is

a common approach used for classification purposes. Hidden layer neurons use a hyperbolic

tangent nonlinearity, while the output nodes use a linear output activation function.

The real-world datasets used in this paper, represent some of the most challenging

problems in machine learning, were obtained from the UCI machine learning database

(http://www.ics.uci.edu/ mlearn/MLRepository.html). Many researchers have used these

datasets in validating the performances of their algorithms, and thus these datasets provide

a good test suite of problem for evaluation of the proposed approach. The key characteristics

of these problems and their associated learning tasks are summarized in Table 4.2.

4.4.2 Experimental Results

The objective of this section is to establish the effectiveness of the proposed features of both

SVAR and µHGA in the design of ANNs. By “design”, we mean both the training of the

network connection weights as well as the evolved structure of the network. In order to

demonstrate their effectiveness of the individual features, the ANNs are evolved with the

same MOEA with SVAR and µHGA incorporated incrementally in different setups. The

different setups optimizing f1 and f2 for MOEA (without both SVAR and µHGA), MOEA

(with only SVAR) and HMOEN are denoted as MOEA HN, SVAR HN, and HMOEN HN

respectively. Likewise, the different setups optimizing f1 and f3 for MOEA (without both

SVAR and µHGA), MOEA (with only SVAR) and HMOEN are denoted as MOEA L2,

SVAR L2, and HMOEN L2 respectively. For all setups, evolution of the ANNs is terminated
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Table 4.2: Characteristics of Data Set

Dataset Samples Attributes Classes Remarks

Cancer 699 9 2 Determine the patients for whom the tumour is
benign or malignant

Pima 768 8 2 Determine whether a patient shows sign of di-
abetes according to World Health Organization
Criteria

Heart 297 13 2 The learning task is to predict the presence or ab-
sence of heart disease given the results of various
medical tests carried out on a patient.

Hepatitis 155 19 2 The hepatitis problem is a complex and noisy
dataset as it contains a large number of missing
data (there are 167 missing values in total in this
dataset). The learning task is to predict whether
a patient with hepatitis will live or die.

Horse 368 27 2 The objective here is to determine, based on the
physical ailments and attributes of a particular
horse, if it should have surgery performed on it.

Iris 150 4 3 This dataset is perhaps the best-known database
to be found in pattern recognition literature. One
class is linearly separable from the other two; the
latter are NOT linearly separable from each other.

Liver 345 7 2 The learning task for this dataset is to determine,
if the adult male that is tested using blood tests
suffer from liver disorders that might arise from
excessive alcohol consumption
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Training Testing Neurons
Method

Mean Median Stdev Min Max Mean Median Stdev Min Max Mean Stdev

Cancer
MOEA_L2 0.9367 0.9425 0.0184 0.8851 0.9609 0.9481 0.9562 0.0213 0.8869 0.9745 3.7245 1.4502

SVAR_L2 0.9557 0.956 0.0147 0.8949 0.9731 0.9494 0.9507 0.0136 0.8978 0.9672 3.6611 1.4892

HMOEN_L2 0.9862 0.9853 0.0015 0.9829 0.9878 0.9618 0.9635 0.0054 0.9453 0.9708 3.385 0.7697

MOEA_HN 0.9385 0.9438 0.0195 0.8851 0.956 0.9501 0.9507 0.0172 0.9015 0.9781 3.7006 1.3292

SVAR_HN 0.9446 0.9462 0.0135 0.8973 0.9633 0.9577 0.9635 0.0196 0.8942 0.9818 3.5111 1.1623

HMOEN_HN 0.981 0.9804 0.0024 0.9756 0.9853 0.9715 0.9726 0.0061 0.9562 0.9818 3.675 0.8749

Pima

MOEA_L2 0.7131 0.7126 0.0219 0.6703 0.7614 0.6758 0.6792 0.0289 0.6254 0.7362 3.316 1.4308

SVAR_L2 0.7051 0.7061 0.0209 0.6594 0.7549 0.7116 0.7134 0.0267 0.6417 0.7524 3.5597 1.2969

HMOEN_L2 0.7933 0.7928 0.0074 0.7787 0.8178 0.7742 0.7769 0.0163 0.7427 0.8046 4.4899 0.8068

MOEA_HN 0.6901 0.6898 0.0221 0.6443 0.7375 0.6987 0.7003 0.0270 0.6515 0.7427 3.3444 1.2783

SVAR_HN 0.7161 0.7137 0.0249 0.6768 0.7679 0.7028 0.6987 0.0346 0.6352 0.7752 3.2711 1.1618

HMOEN_HN 0.8016 0.8004 0.0057 0.7896 0.8113 0.7492 0.7492 0.014 0.7264 0.7818 5.0156 0.8592

Heart

MOEA_L2 0.7397 0.736 0.0389 0.6742 0.8483 0.7176 0.7269 0.0476 0.6134 0.8235 3.3961 1.6608

SVAR_L2 0.7559 0.7584 0.0402 0.6629 0.8315 0.7277 0.7352 0.0477 0.6387 0.8319 3.4054 1.3231

HMOEN_L2 0.8848 0.8820 0.0103 0.8652 0.9101 0.7949 0.7941 0.0287 0.7059 0.8487 4.0893 0.9693

MOEA_HN 0.73 0.7303 0.0432 0.6404 0.8146 0.7244 0.7311 0.054 0.5966 0.8403 3.7778 1.5557

SVAR_HN 0.7423 0.7388 0.0362 0.6573 0.8427 0.7328 0.7353 0.052 0.5798 0.8067 4.2722 1.6203

HMOEN_HN 0.8824 0.882 0.0088 0.8596 0.9045 0.814 0.8235 0.0304 0.7563 0.874 4.7478 1.0322

Hepatitis

MOEA_L2 0.7269 0.7312 0.0465 0.6129 0.8172 0.6672 0.6774 0.0668 0.4516 0.8065 2.9336 1.0939

SVAR_L2 0.7502 0.7473 0.0514 0.5914 0.8387 0.6866 0.6935 0.0668 0.5645 0.8226 3.0667 1.0262

HMOEN_L2 0.9265 0.9301 0.0189 0.8817 0.957 0.8113 0.823 0.0464 0.6935 0.8710 4.3438 0.9083

MOEA_HN 0.7222 0.7204 0.0456 0.6237 0.828 0.6645 0.6613 0.0848 0.5323 0.8548 3.2306 1.1546

SVAR_HN 0.7201 0.7204 0.0399 0.6344 0.7957 0.7301 0.7419 0.0611 0.5806 0.8226 3.2056 1.2906

HMOEN_HN 0.9552 0.957 0.013 0.9355 0.9785 0.7452 0.7419 0.0416 0.629 0.8065 4.7061 1.1578

Figure 4.6: Performance Comparison between the Different Experimental Setups. The
Figure Shows the Classification Accuracy and Mean Number of Hidden Neurons in the
Archive for Cancer, Pima, Heart and Hepatitis Datasets.
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Horse

MOEA_L2 0.7044 0.6968 0.0482 0.6335 0.8326 0.7075 0.7075 0.063 0.6122 0.8435 3.6074 1.5312

SVAR_L2 0.7246 0.7330 0.0370 0.6516 0.7919 0.7118 0.7177 0.0505 0.6054 0.7959 3.3342 1.3207

HMOEN_L2 0.9787 0.9774 0.0149 0.9502 1 0.9458 0.9524 0.0313 0.8503 0.9864 3.6274 0.9159

MOEA_HN 0.7195 0.7217 0.0444 0.638 0.8009 0.6828 0.6837 0.0566 0.5918 0.7755 3.4944 1.2817

SVAR_HN 0.7166 0.7149 0.0405 0.638 0.8009 0.7122 0.7041 0.0558 0.619 0.8435 3.3267 1.1478

HMOEN_HN 0.9781 0.9774 0.0118 0.9502 1 0.9401 0.9388 0.0286 0.8776 0.9932 4.5811 1.4829

Iris

MOEA_L2 0.6926 0.6667 0.0724 0.6 0.8667 0.6733 0.6667 0.067 0.55 0.8333 3.9861 1.815

SVAR_L2 0.7456 0.7389 0.0670 0.6444 0.8778 0.7494 0.7583 0.0852 0.6000 0.8833 3.4878 1.2475

HMOEN_L2 0.9985 1 0.0038 0.9889 1 0.9506 0.9500 0.0167 0.9167 0.9833 3.5838 0.6543

MOEA_HN 0.6726 0.6667 0.0569 0.5778 0.8111 0.6744 0.65 0.0936 0.5333 0.8833 3.9222 1.8056

SVAR_HN 0.7319 0.7167 0.0671 0.6222 0.8556 0.7106 0.7 0.0917 0.55 0.8667 3.3722 1.1701

HMOEN_HN 0.9981 1 0.0042 0.9889 1 0.9578 0.9667 0.0184 0.9167 0.9833 3.6111 0.7364

Liver

MOEA_L2 0.5945 0.5942 0.0274 0.5362 0.6618 0.5923 0.5978 0.0491 0.5072 0.6957 3.5922 1.5374

SVAR_L2 0.6315 0.6304 0.0303 0.5797 0.7101 0.5693 0.5725 0.0582 0.4638 0.6594 3.0423 1.2231

HMOEN_L2 0.7729 0.7729 0.0162 0.7343 0.8212 0.6884 0.6920 0.0351 0.6159 0.7536 4.6878 0.8503

MOEA_HN 0.6151 0.6111 0.0318 0.5556 0.6957 0.5548 0.5543 0.0436 0.471 0.6449 3.6494 1.4749

SVAR_HN 0.6089 0.6087 0.022 0.5604 0.657 0.5973 0.6087 0.0531 0.5072 0.6812 3.225 1.3263

HMOEN_HN 0.7559 0.7585 0.0101 0.7295 0.7729 0.7205 0.7246 0.0354 0.6449 0.7826 4.9941 0.813

Training Testing Neurons
Method

Mean Median Stdev Min Max Mean Median Stdev Min Max Mean Stdev

Figure 4.7: Performance Comparison between the Different Experimental Setups. The
Figure Shows the Classification Accuracy and Mean Number of Hidden Neurons in the
Archive for Horse, Iris and Liver datasets.

once the average f1 value of the archived solutions stops improving. The results are shown

in Figure 4.6 and Figure 4.7.

From the classification results, we see that the HMOEN HN and HMOEN L2, combin-

ing µHGA and SVAR clearly perform much better than that of MOEA HN and MOEA L2.

Obviously, without the use of the SVD as a form of capacity control in SVAR, the per-

formance of MOEA HN and MOEA L2 is inferior to SVAR L2 and SVAR HN for most of

the problem. These results substantiate our earlier hypothesis that each (hidden) neuron,

together with its corresponding hidden layer weights (leading from the input layer to the

hidden layer), functions as a building block for an EANN. The specialized recombination
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operator acts specifically on these neuronal building blocks. This notion is intuitively ap-

pealing because when viewed from the perspective of hidden layer space, each hidden neuron

and its input set of weights (for the single hidden layer) constructs a separating hyperplane

in hidden layer space; thus, each hidden neuron together with its corresponding set of input

weights, which are treated as a set of building blocks, are accountable for determining the

separation of the training samples in hidden layer space.

The introduction of µHGA provides substantial improvements to the classification per-

formance on the testing sets of all the datasets. By comparing the performances of between

SVAR HN and HMOEN HN and between SVAR L2 and HMOEN L2 from Figures 4.6 and

4.7, it can be noted that the local search ensures that the final network is sufficiently well-

trained such that the SVD is able to operate on the hidden layer activation matrix effectively.

Recall that the use of the SVD, as described earlier requires the network to be “well-trained”.

In other words, without µHGA, the SVAR tend to remove neurons excessively as reflected

in the low number of hidden neurons (large number of neurons are pruned). Therefore, it

is also evident that SVAR and µHGA are complementary mechanisms in HMOEN.

Having validated the effectiveness of µHGA and SVAR, the performance of HMOEN L2

and HMOEN HN are compared against other works in the literature using these datasets.

These works includes some well-known algorithms (C4.5 [5,164,194], CART [146,194], PART

[64,194], NB [112,194], MSDD, SONG [98]) as well as recent EANN approaches (SNG 1 [66],

MPANN [2,3], GABE 2 [24] and MGNN [158]). The summary of results is shown in Figure

4.8. We note that comparisons between the results obtained from different approaches have

to be made cautiously, as there are numerous ways in which the experimental and simulation

setups are done, for example, the training/testing ratio, the pre/post-processing, the cross-

validation runs, etc. The results that are presented here are not fine-tuned in any manner,

i.e., the same parameter and experimental settings are used for all the datasets. With the

1Results recorded are based on the performance of a SiNGle ANN (SNG) as opposed to an ensemble
2Results recorded are based on the performance of the ANNs using Genetic Algorithm with Baldwinian

Evolution (GABE)
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Method /Reference
Data Set

C4.5 CART PART NB MLP/ RBF MSDD SONG SNG1 MPANN GABE2 MGNN HMOEN_L2HMOEN_HN

Cancer
0.947

(0.020)
0.745 0.7278

0.975
(0.018)

0.9639
(0.959)

0.9515 0.974
0.9722

(0.0118)
0.981

(0.005)
0.9883 0.9695

0.9618
(0.0054)

0.9715
(0.0061)

Pima 0.7313 0.745 0.7278 0.7509
0.7330
(0.757)

0.7133 0.764
0.7378

(0.0517)
0.749

(0.062)
0.7383 -

0.7742
(0.0163)

0.7492
(0.014)

Heart 0.7661 0.808 0.7797 - 0.7817 - -
0.8103

(0.1897)
- 0.8858 -

0.7949
(0.0287)

0.814 (0.052)

Hepatitis 0.7925 0.827 - - - 0.8077 - - - - -
0.8113

(0.0464)
0.7452

(0.0416)

Horse 0.8504 - - - - - -
0.6538

(0.0413)
- - -

0.9458
(0.0313)

0.9401
(0.0286)

Iris 0.9400 0.96 - - 0.9453 - 0.973 - - 0.9133 0.9383
0.9506

(0.0167)
0.9578

(0.0184)

Liver - - - - - - 0.685 - - - -
0.6884

(0.0351)
0.7205

(0.0354)

Figure 4.8: Summary of Results Comparing the Performances of HMOEN L2 and
HMOEN HN against Existing Works. The Figure shows the Reported Mean Classification
Accuracy of the Various Works (Standard Deviations are shown in the Brackets Whenever
Available).

exception of Hepatitis, HMOEN L2 and HMOEN HN have similar performances. It can be

observed that the proposed approach is better or at least competitive for Pima, Hepatitis,

Horse, Iris and Liver. Cancer results are outperformed by MPANN and GABE while Heart

result is outperformed by GABE. On the other hand, GABE and MPANN perform poorly

for Pima with respect to HMOEN L2 and HMOEN HN.

Abbass [2] reported that the average network sizes of the ANN with the lowest classifi-

cation error for MPANN for the Cancer and Pima datasets were 4.125 and 6.6 respectively.

In the case of single network in [66], the mean network sizes for the datasets of Cancer,

Pima, Heart, and Horse are 5.89, 7.9, 7.28, and 20.3 respectively. GABE [24] fixes the

number of neurons in the hidden layer to be 5. Using our proposed approach, the size of the

networks that were evolved are correspondingly, for the datasets of Cancer, Pima, Heart,

and Horse: (1) 3.385, 4.490, 4.089, and 3.627 respectively when the L2-norm is used as the

second objective, and (2) 3.675, 5.016, 4.748, and 4.581 respectively when the number of

hidden layer neurons is used as the second objective. Generally, the use of the L2-norm as

the second objective to be minimized leads to smaller network sizes as compared to the use

of the number of hidden layer neurons as the capacity control objective. In terms of classifi-
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cation accuracies, both perform similarly well, although we have to note that theoretically,

for networks which possess similar training accuracies, networks which are smaller in size

will tend to perform better in generalization.

4.4.3 Effects of Multiobjectivity on ANN Design and Accuracy

This section investigates the effects of modeling ANN design as a MO problem. In order to

demonstrate the merits are the multi-objectivity, the following two single fitness functions

are employed.

fSO,1 = 0.5 · f1 + 0.5 · f2 (4.11)

fSO,1 = 0.5 · f1 + 0.5 · f3 (4.12)

where f1, f2 and f3 have been defined previously. However, as mentioned earlier, f2 and f3

are not of similar scale with f1 which necessitates scaling considerations. In both cases,

the second objective component is normalized adaptively according to the largest and

smallest networks found in each generation. The algorithm optimizing fSO,1 is denoted

as HSOEN HN while the algorithm optimizing fSO,1 is denoted as HSOEN L2. Both SO

are incorporated with the features of SVAR and µHGA.

The simulation results are summarized in Figure 4.9. The aggregation of classification

and error and network complexity is very effective in limiting the number of hidden neurons

at the expense of classification accuracy. This is what we have come to expect, as in the

SO method, it is very difficult to assign appropriate weights, in this case, even after online

normalization is performed. Generally, it is noted that the explicit use of a second objective

in a Pareto sense to control the size of the feedforward neural network tends to perform

better than the use of the aggregation of weighted objective values.
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MethodData Set
HSOEN_L2 HSOEN_HN HMOEN_L2 HMOEN_HN

Testing Neurons Testing Neurons Testing Neurons Testing Neurons

Cancer 0.9529
(0.0305)

2.2667
(0.4498)

0.9539
(0.0197)

2.1
(0.2537)

0.9618
(0.0054)

3.385
(0.7697)

0.9715
(0.0061)

3.675
(0.8749)

Pima
0.7182

(0.0408)
2.2

(0.4842)
0.7014

(0.0342)
2.0333

(0.1826)
0.7742

(0.0163)
4.4899

(0.8068)
0.7492
(0.014)

5.0156
(0.8592)

Heart
0.7779

(0.0723)
2.2667

(0.4498)
0.7661

(0.0639)
2.1

(0.3051)
0.7949

(0.0287)
4.0893

(0.9693)
0.814

(0.052)
4.7478

(1.0322)

Hepatitis
0.6806

(0.0757)
2.2667

(0.4498)
0.6968

(0.0951)
2.0667

(0.2537)
0.8113

(0.0464)
4.3438

(0.9083)
0.7452

(0.0416)
4.7061

(1.1578)

Horse
0.78

(0.0978)
2.3333

(0.4795)
0.7932

(0.0805)
2.1

(0.3051)
0.9458

(0.0313)
3.6274

(0.9159)
0.9401

(0.0286)
4.5811

(1.4829)

Iris
0.9122

(0.0435)
2.4333

(0.7279)
0.8467

(0.0864)
2.0667

(0.2537)
0.9506

(0.0167)
3.5838

(0.6543)
0.9578

(0.0184)
3.6111

(0.7364)

Liver
0.6215

(0.4661)
2.3

(0.4661)
0.6068

(0.0584)
2.0333

(0.1826)
0.6884

(0.0351)
4.6878

(0.8503)
0.7205

(0.0354)
4.9941
(0.813)

Figure 4.9: Performance Comparison between SO and MO Approach for all Datasets. The
Table Shows the Mean Classification Accuracy and Number of Hidden Neurons in the
Archive. (Standard Deviations are shown in Brackets).

Cancer Generations
SVD 5 10 15 20
HN Train Test Neurons Train Test Neurons Train Test Neurons Train Test Neurons
0.95 0.9822 0.9779 3.0833 0.9832 0.9687 2.7056 0.9829 0.9567 2.6167 0.986 0.9672 2.45
0.98 0.9813 0.968 3.2461 0.9859 0.9667 2.7778 0.9832 0.9706 2.8944 0.9902 0.9612 2.3167
0.99 0.9856 0.9668 3.3806 0.9857 0.9628 3.5056 0.9872 0.9575 3.2194 0.9868 0.9669 3.2206
0.995 0.9821 0.9675 3.7333 0.9876 0.9639 3.5028 0.9826 0.9681 3.2861 0.9855 0.964 3.1111

L2 Train Test Neurons Train Test Neurons Train Test Neurons Train Test Neurons
0.95 0.9802 0.9712 2.8991 0.9879 0.9563 2.6433 0.9901 0.9535 2.5265 0.9867 0.9596 2.6133
0.98 0.9759 0.9718 2.9967 0.985 0.9591 2.8506 0.9791 0.9805 2.5321 0.9898 0.9536 2.5275
0.99 0.9848 0.9681 3.1679 0.9824 0.9709 3.3056 0.9844 0.9601 2.7793 0.986 0.9693 2.9425
0.995 0.9857 0.9625 3.4175 0.9861 0.9645 2.798 0.9856 0.9718 3.0531 0.9831 0.9752 3.2375

Figure 4.10: Performance Trend for Cancer over Different threshold and Number of Gener-
ation Settings. The Figure Shows the Mean Classification Accuracy and Number of Hidden
Neurons in the Archive.
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Pima Generations
SVD 5 10 15 20
HN Train Test Neurons Train Test Neurons Train Test Neurons Train Test Neurons
0.95 0.8094 0.757 3.7978 0.8182 0.7457 3.6433 0.8127 0.7516 3.625 0.83 0.737 3.6261
0.98 0.8043 0.7583 4.2944 0.8061 0.7675 4.5277 0.8115 0.7582 4.5791 0.8179 0.7548 4.5948
0.99 0.8168 0.7469 4.5728 0.8194 0.744 5.4345 0.8432 0.7273 4.8865 0.8395 0.7376 5.3168

0.995 0.8215 0.744 4.8994 0.8158 0.7558 5.5355 0.8275 0.7529 5.935 0.8289 0.7381 5.7222
L2 Train Test Neurons Train Test Neurons Train Test Neurons Train Test Neurons

0.95 0.7994 0.7593 3.8179 0.8158 0.746 3.2814 0.8051 0.777 3.643 0.8236 0.7448 3.639
0.98 0.809 0.7565 3.8835 0.8232 0.7464 4.2444 0.8294 0.7433 4.2347 0.8252 0.7511 4.0487
0.99 0.7944 0.7776 4.3484 0.8131 0.7592 4.7391 0.824 0.7468 4.4826 0.8276 0.7522 4.7235

0.995 0.8054 0.7604 4.5858 0.8235 0.7442 4.8314 0.8208 0.754 4.9425 0.8245 0.763 5.4326

Figure 4.11: Performance Trend for Pima over Different threshold and Number of Genera-
tion Settings. The Figure Shows the Mean Classification Accuracy and Number of Hidden
Neurons in the Archive.

Heart Generations
SVD 5 10 15 20
HN Train Test Neurons Train Test Neurons Train Test Neurons Train Test Neurons
0.95 0.8936 0.7784 3.7239 0.9182 0.7938 3.7239 0.9356 0.7801 3.8128 0.9333 0.7664 3.6417
0.98 0.9024 0.7756 4.3778 0.9197 0.8045 4.8392 0.9193 0.7972 4.6022 0.9294 0.7739 4.9734
0.99 0.9079 0.7882 4.7757 0.9086 0.8123 5.4517 0.9193 0.8154 6.1092 0.9249 0.8129 5.482

0.995 0.8994 0.8081 4.7172 0.9215 0.7919 5.5707 0.9266 0.8053 5.7294 0.9275 0.8081 5.7012
L2 Train Test Neurons Train Test Neurons Train Test Neurons Train Test Neurons

0.95 0.9107 0.7569 3.4646 0.9107 0.7966 3.512 0.8903 0.8286 3.5252 0.9017 0.8345 3.5521
0.98 0.8919 0.8106 4.42 0.9155 0.7952 4.4963 0.926 0.7896 4.3088 0.9178 0.7992 3.9969
0.99 0.8865 0.8174 4.6427 0.921 0.8179 5.1208 0.9251 0.7902 4.7084 0.9249 0.7804 4.4354

0.995 0.8891 0.8022 4.2703 0.9144 0.8059 4.7067 0.9208 0.7975 5.2387 0.9154 0.8221 4.7392

Figure 4.12: Performance Trend for Heart over Different threshold and Number of Genera-
tion Settings. The Figure Shows the Mean Classification Accuracy and Number of Hidden
Neurons in the Archive.

Hepatitis Generations
SVD 5 10 15 20
HN Train Test Neurons Train Test Neurons Train Test Neurons Train Test Neurons
0.95 0.9366 0.7849 3.5122 0.9566 0.7677 3.3581 0.9717 0.778 3.254 0.9728 0.786 3.5765
0.98 0.9308 0.8339 4.3231 0.9785 0.7618 3.7654 0.9771 0.7839 3.8615 0.9688 0.8086 4.0939
0.99 0.9588 0.8016 4.4517 0.9728 0.7608 3.8045 0.9781 0.7785 4.4983 0.9688 0.8177 4.9282
0.995 0.9502 0.8091 4.371 0.9627 0.8108 4.3234 0.9731 0.8349 4.7434 0.9814 0.764 4.3615

L2 Train Test Neurons Train Test Neurons Train Test Neurons Train Test Neurons
0.95 0.9369 0.7984 3.7106 0.9563 0.8199 4.1544 0.9685 0.8097 3.9239 0.9699 0.7989 4.0228
0.98 0.9584 0.779 4.8894 0.9634 0.8102 4.7688 0.9756 0.807 5.1255 0.9849 0.7753 4.9046
0.99 0.9523 0.8188 5.086 0.9903 0.7769 5.3261 0.9735 0.8016 5.7014 0.9875 0.7978 5.5822
0.995 0.9484 0.7871 5.2004 0.9677 0.8167 5.4458 0.9756 0.8419 5.8424 0.9846 0.8183 5.9497

Figure 4.13: Performance Trend for Hepatitis over Different threshold and Number of Gener-
ation Settings. The Figure Shows the Mean Classification Accuracy and Number of Hidden
Neurons in the Archive.
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Horse Generations
SVD 5 10 15 20
HN Train Test Neurons Train Test Neurons Train Test Neurons Train Test Neurons
0.95 0.9964 0.9726 3.6992 1 0.9773 2.55 1 0.988 2.3833 1 0.985 2.1167
0.98 0.9946 0.9714 3.8511 1 0.9862 2.6861 1 0.9741 2.2667 1 0.9812 2.2
0.99 0.9962 0.9823 4.0234 1 0.9819 2.6583 1 0.9875 2.25 1 0.9844 2.2667
0.995 0.9958 0.9828 3.8922 1 0.9794 2.5833 1 0.9785 2.3 1 0.9873 2.3167

L2 Train Test Neurons Train Test Neurons Train Test Neurons Train Test Neurons
0.95 0.9983 0.9816 3.1759 1 0.9834 2.6097 1 0.9805 2.5159 1 0.9839 2.447
0.98 0.9995 0.9707 3.3878 1 0.9787 2.722 1 0.9828 2.5851 1 0.9746 2.3221
0.99 0.9968 0.981 3.0783 1 0.9848 2.5809 1 0.9803 2.6751 1 0.9884 2.4301
0.995 0.9988 0.9785 3.3502 1 0.9912 2.7977 1 0.9841 2.6179 1 0.9882 2.3566

Figure 4.14: Performance Trend for Horse over Different threshold and Number of Genera-
tion Settings. The Figure Shows the Mean Classification Accuracy and Number of Hidden
Neurons in the Archive.

Iris Generations
SVD 5 10 15 20
HN Train Test Neurons Train Test Neurons Train Test Neurons Train Test Neurons
0.95 0.9996 0.9344 2.9778 1 0.9533 2.4667 1 0.9372 2.3167 0.9956 0.9344 2.55
0.98 1 0.8933 2.5 0.9993 0.935 2.6778 1 0.9406 2.45 1 0.9533 2.4333
0.99 0.9911 0.9711 3.275 1 0.9672 2.6667 1 0.9478 2.4 1 0.9217 2.1667
0.995 1 0.9406 2.8778 0.9893 0.9778 2.6833 1 0.9611 2.4667 1 0.9189 2.3667

L2 Train Test Neurons Train Test Neurons Train Test Neurons Train Test Neurons
0.95 1 0.9594 2.6758 1 0.9394 2.4767 1 0.9344 2.3695 1 0.9433 2.5034
0.98 1 0.9483 2.6625 0.9907 0.9317 2.4583 0.9889 0.9511 2.4012 0.9985 0.9678 2.7817
0.99 0.9889 0.9678 2.8954 0.9889 0.9583 2.5179 0.9896 0.9644 2.5342 0.9933 0.9356 2.6111
0.995 0.9911 0.9567 2.7022 1 0.9378 2.5792 1 0.9317 2.3928 0.9889 0.9594 2.5392

Figure 4.15: Performance Trend for Iris over Different threshold and Number of Genera-
tion Settings. The Figure Shows the Mean Classification Accuracy and Number of Hidden
Neurons in the Archive.

Liver Generations
SVD 5 10 15 20
HN Train Test Neurons Train Test Neurons Train Test Neurons Train Test Neurons
0.95 0.8064 0.6268 3.7917 0.815 0.6659 3.6139 0.8153 0.672 3.6217 0.8138 0.6874 3.5806
0.98 0.7958 0.6686 4.1636 0.7918 0.7077 4.2517 0.8095 0.6884 4.1406 0.8253 0.6836 4.5156
0.99 0.7905 0.6937 4.675 0.8248 0.6505 4.7337 0.8312 0.6553 5.0193 0.8449 0.6604 4.9187
0.995 0.8158 0.6519 4.8764 0.8211 0.6986 5.5666 0.8245 0.6739 5.2749 0.8383 0.6758 5.8228

L2 Train Test Neurons Train Test Neurons Train Test Neurons Train Test Neurons
0.95 0.7762 0.7063 3.8236 0.8063 0.6973 3.6302 0.8082 0.6522 3.7129 0.8126 0.6734 3.7312
0.98 0.7783 0.6739 3.9092 0.7992 0.679 4.0244 0.7948 0.7263 4.1326 0.806 0.6886 4.0647
0.99 0.8042 0.6775 4.3208 0.8024 0.6857 4.0606 0.8071 0.699 4.4564 0.8171 0.6988 4.517
0.995 0.804 0.6664 4.7501 0.8187 0.6713 5.2066 0.8325 0.6826 4.9814 0.8514 0.6614 5.1372

Figure 4.16: Performance Trend for Liver over Different threshold and Number of Genera-
tion Settings. The Figure Shows the Mean Classification Accuracy and Number of Hidden
Neurons in the Archive.
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4.4.4 Analyzing Effects of Threshold and Generation settings

In Section 4.2, we have discussed about the issues of threshold settings and dangers of

over-training. In order to investigate the relationship between the threshold settings and

the degree of training, experiments are conducted for the different datasets over threshold

settings of 0.95, 0.98, 0.99, 0.995 and the number of generations that HMOEN is permitted

to run. Simulation results are summarized in Figure 4.10-Figure 4.16.

From the results shown in the corresponding tables, we observe two trends, firstly, that

increasing the training, through the number of generations in which the network is allowed to

evolve, the training accuracy will increase, as will the testing accuracy, up to a certain point,

after which the testing accuracy will decrease due to overtraining. Overtraining arises from

two main factors the use of an overly complex network coupled and/or excessive training

times for a particular problem set that can be solved using simpler network architectures.

The use of the SVD in this respect is aimed to “control” the size of the evolved network

by removing extraneous neurons in the hidden layer during the evolutionary process. For

increasing SVD threshold, the trend is such that the training accuracy would increase (all

else being constant) as a higher SVD threshold tends to retain more hidden layer neurons.

In training the population of networks for a longer period (as measured by the number

of generations for which the population of networks is allowed to evolve), allows the SVD

to perform better in that a larger threshold would give better classification accuracies.

Examining the Cancer and Pima results, as the SVD threshold is increased progressively

from 0.95 to 0.995, we observe that the size of the evolved network increases, as we expect,

since a larger amount of the spectral energy of the singular values are retained. Structurally,

the networks become more complex, as can be seen from examining the average size of the

hidden layer neurons in the evolving population.

Secondly, by examining “simpler” datasets (by “simpler” we mean datasets whose sam-

ples are more easily classifiable in that an obvious hyperplane can be constructed between

the classes in feature space) for example, Cancer and Pima, we observe that as the training
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time increases (as measured by the number of generations for which the learning process

is allowed to take place), the classification accuracies remain steady, and over-training is

prevented, or at least mitigated by including the structural complexity (network size) as a

second objective to be minimized.

4.5 Conclusion

In this chapter, a hybrid MO evolutionary approach to ANN design is proposed. To address

the issue of network architectural development, we consider the use of an simple, but robust

information measure based on the SVD to estimate the necessary number of neurons to be

used in training a single hidden layer feedforward network,. Subsequently, the SVD-based

architectural recombination is presented for the purpose of facilitating the exchange of neu-

ronal information between candidate neural network designs and adaptation of the number

of neurons for each individual, based on a geometrical approach in identifying hidden layer

neurons to prune. In addition, two other problem specific operators comprising a variable

length representation and a µHGA with adaptive local search intensity are also proposed to

handle the fundamental issues of structural adaptation and local fine-tuning. It has been

shown that neural network classifiers evolved by the proposed approach provides competi-

tive, if not better, performances over the set of datasets employed in the comparative study

as compared to existing approaches. Experimental studies are also performed to examine

the effectiveness of the proposed methods with respect to real-life datasets to illustrate that

the both SVAR and µHGA models assume different, but nonetheless significant roles in the

evolution of effective ANN designs. While we have demonstrated the effectiveness of our

proposed approach for classification problems, we believe that the methods that we have

employed in this article are sufficiently flexible and robust to be extended to handle a variety

of problem domains, such as regression, prediction as well as system identification problems,

all of which we hope to investigate in future works.



Chapter 5

Dynamic Multi-Objective

Optimization

Apart from noise, many real-world problems involve time-dependent components. Instances

of such problems can be found in the areas of control, scheduling, vehicle routing, au-

tonomous path planning, and economics, just to name a few. For such problems, it is

unlikely that the optimal Pareto set and the Pareto front will remain invariant and the

previous solution must be adapted to reflect the current requirements. Therefore, the opti-

mization goal is not only to evolve a near optimal and diverse PFA but also to track it as

it changes with time.

In a certain sense, the dynamic MO problem can be considered simply as the consecutive

optimization of different time-constrained MO problems with varying complexities. On the

other hand, one of the challenges of evolutionary dynamic optimization is to exploit past

information to improve tracking performance. It is simply too inefficient to restart the

optimization process every time a change in landscape is detected, especially when the new

PS∗ is somewhat similar to the previous solutions. It is also imperative that the MOEA

must be capable of high convergence speeds in order to find the optimal solution set before

it changes. However, when MOEA converges to the PS∗, the problem is that there will be

a lack of search space diversity necessary to explore the search space for the new PF∗ and

PS∗ when landscape changes.

118



CHAPTER 5. 119

5.1 Dynamic Multi-Objective Optimization Problems

Dynamism in real-world problems may be due to a variety of factors, some of which are due

to human intervention while the rest are inherent to the problem: a change in preference

by the decision-maker, a new job in the production line, an obstacle in the path of a robot,

and breakdown of vehicle in vehicle routing. In certain cases, the number of objectives or

decision variable to be optimized may be changed requiring a drastic change in the ranking

or representation on the part of the MOEA. In this work, we will be focused on dynamic

MO problem with fixed objective and design space dimensionality and which requires the

MOEA to track the changing fitness landscape.

For subsequent discussions, we will affix the time variable to the MO optimization

notations described in Chapter 1 to distinguish dynamic MO optimization from static MO

optimization. The terms PF∗
t and PS∗

t refer to the desired Pareto front and solution set at

time t while the set of tradeoffs and nondominated solutions evolved by the dynamic MOEA

at time t will be termed as PFA
t and PSA

t respectively.

5.1.1 Dynamic MO Problem Categorization

In dynamic SO problem, a solution can either deteriorate due to a shift in the fitness

landscape or become obsolete due to the emergence of a new optimum. Likewise such traits

can be found in dynamic MO problems, except that we are now dealing with a set of solutions

which makes the tracking process a lot trickier. Another distinct characteristic of dynamic

MO problems is that the shape and distribution of PF∗ are susceptible to change as well.

This makes it necessary to consider the dynamics of both feature spaces in the investigation

of dynamic MOEAs.

Accordingly, Farina et al [52] identified four different types of dynamic MO problem

according to the changes affecting the optimal Pareto front and the optimal Pareto set,

• Type I where PS∗
t changes while PF∗

t remains invariant,
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• Type II where both PS∗
t and PF∗

t changes,

• Type III where PF∗
t changes while PS∗

t remains invariant and

• Type IV where both PS∗
t and PF∗

t remain invariant.

Farina et al further noted that, even though both PS∗
t and PF∗

t are time-invariant in Type

IV problems, it is possible that the fitness topology is changing with time. This alone may

pose sufficient challenge to the dynamic MOEA in finding the desired solutions.

The above classification scheme is only applicable to dynamic MO optimization prob-

lems. There also exist other appropriate but more general categorization of dynamic prob-

lems. Deb et al [38] pointed out that the changes in a dynamic MO problem can take place

in the objective functions, the constraint functions, and the variable boundaries. In [108],

dynamic problems are classified according to how the optimal solutions move after a land-

scape change. Jin and Sendoff stated that the location of the optimum can 1) move linearly,

2) move nonlinearly, 3) oscillate among a few points, and 4) move randomly in the decision

space. Another different but important perspective of dynamic problems can be found in

the SO domain. Branke [17] proposed the categorization of dynamic problems based on 1)

frequency of change, 2) severity of change, 3) predictability of change and 4) periodicity of

change.

These classification are complementary schemes. The first and second schemes categorize

the dynamic MO problem based on the physical aspects of change, the third considers how

the optimum behaves with time while the fourth considers how the changes are effected. A

more general approach would be to decompose the dynamic problem into its spatial and

temporal components. Table 5.1 shows the list of spatial features and their attributes while

Table 5.2 summarizes the different temporal features. Note that the spatial component is

further decomposed into physical and non-physical attributes of change. Physical attributes

refer to physical aspects of problem change such as PS∗
t and PF∗

t . Non-physical attributes

refer to the manner in which these spatial physical attributes are changed. Further note
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Table 5.1: Spatial Features of Dynamic MO problem

Type Attributes

P
hy

si
ca

l

PS∗t The whole or part of PS∗t moves to a new location
PF∗

t The shape of PF∗
t changes or a part of PF∗

t disappears
Fitness landscape Fitness landscape changes without affecting PS∗ and PF∗

Random Random PS∗t , PF∗
t and fitness landscape changes. Aspect of

change may occur at the same time or may not happen at
all.

N
on

-
P

hy
si

ca
l Random Changes to physical attributes are random

Trend Changes to physical attributes follow a fixed pattern. Past
physical topology may or may not be revisited again

Periodic Changes to physical attributes are periodic. Changes within
each period may or may not follow a fixed pattern

Table 5.2: Temporal Features of Dynamic MO problem

Type Attributes

None No change is triggered at all
Random Change is triggered randomly
Fixed Change is triggered at a fixed interval
Scheduled Change is triggered based on a predetermined schedule such that it

may follow a trend or even appear random.
Conditional Change is triggered after some predefined condition is satisfied
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that these physical spatial attributes are unique to dynamic MO problems since we are

dealing with a set of solution in contrast to a single solution in SO optimization.

A dynamic MO problem may be characterized by more than one specific instance of

spatial and temporal attributes. For example, a dynamic MO test problem can exhibit PF∗
t

and PS∗
t changes simultaneously as in the case of Type II problem described earlier. At the

same time, PF∗ changes may followed a fixed trend that is triggered randomly while PS∗

changes may be periodic that is triggered based on a fixed schedule. In the event of random

physical changes, it is still possible that, whenever a particular aspect such as PF∗
t changes,

the change may be following a certain trend.

5.1.2 Dynamic MO Test Problems

Since dynamic MO problems are essentially MO problems, guidelines and desirable prop-

erties of deterministic benchmarks and test suites suggested in the EMOO literature are

applicable and should be taken into account. Some specific features pertinent to the dy-

namic domain that should be considered in a dynamic MO test suite include

• Cyclic spatial changes;

• Predictable spatial changes;

• Landscape changes such as emergent landscapes that are difficult to detect;

• Landscape properties that allow very fast convergence or no exploitable spatial changes

at all, i.e. memory has no significant advantage at all;

In general, any dynamic test suite should include features that challenge the dynamic MOEA

capability to 1) detect a change in the environment, 2) maintain or generate the necessary

diversity to explore the search space upon any changes, 3) exploit past information and 4)

converge on the new PS∗t quickly.
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The spatial and temporal features described in Table 5.1 and Table 5.2 provide different

challenges in the design of dynamic MOEAs. For example, the storage of past PS∗
t in the

form of memory will improve algorithmic performance for problems exhibiting periodic non-

physical attributes. In cases where spatial and temporal features follow some trend, the

presence of predictive elements can prepare the evolutionary process in anticipation of the

problem’s future behavior. On the other hand, we can expect that these mechanisms will

have little or no significant advantage for problems which do not revisit previous PS∗
t or

exhibit any trend. Furthermore, it is always possible that the reintroduction of previous

solutions or prediction strategy may mislead the optimization process instead.

TLK2 is one of the earliest dynamic MO test problems to be applied in the literature.

It is based on moving peaks function [17], which provides an artificial multidimensional

landscape consisting of several peaks, where the height, width, and position of each peak

are varied as the environment changes. The problem of TLK2 is given as

min f1(~x) = x1 (5.1)

min f2(~x) =
1

x1 · g(t)
(5.2)

g(t) = max
i=1,...,5

[ Hi(t)

1 + Wi(t)
∑5

j=1(xj+1 −Xij(t))
2

]
(5.3)

At a predefined frequency, τT , the height and width of each peak are changed by adding a

random Gaussian variable. The location of each peak is moved by a vector v of fixed length

s in a random direction, i.e., the parameter s controls the severity of change. A change in

the peak is governed by the following equations

σ ∈ N(0, 1) (5.4)

Hi(t) = Hi(t− 1) + 7 · σ (5.5)

Wi(t) = Wi(t− 1) + 0.01 · σ (5.6)

Xi(t) = Xi(t− 1) + v · σ (5.7)



CHAPTER 5. 124

The change in multimodal function g may result in a shift of the optimum to a different

location. In this case, the evolutionary search needs to jump or cross a valley in order to

find the new optimum.

The FDA test suite proposed by Farina et al [52] is built upon the ZDT and DTLZ

framework described in Chapter 1. This test suite has been used in [38, 85, 144,222]. For-

mally, the two-objective FDA test problems have the following functional structure.

min f1( ~xI , t) =
∑

xi∈ ~xI

x
F (t)
i , F (t) > 0 (5.8)

min f2( ~xII , ~xII , t) = g( ~xII , t) · h( ~xIII , f1, g) (5.9)

g( ~xII , t) = 1 + G(t) +
∑

xi∈ ~xII

(xi −G(t))2 (5.10)

h( ~xIII , t) = 1− (
f1

g
)H(t) (5.11)

where F , H and G are time-dependent functions which controls how the density of Pareto

solutions, shape of the PF∗
t and PS∗

t changes with time.

The M -objective FDA test problems have the following functional structure.

min f1(~x, t) = (1 + g(~xII)) · cos(0.5πy1) · · · cos(0.5πyM−1) (5.12)

min f2(~x, t) = (1 + g(~xII)) · cos(0.5πy1) · · · sin(0.5πyM−1) (5.13)

...

min fM (~x, t) = (1 + g( ~xII)) · sin(0.5πy1) (5.14)

g(~xII , t) = G(t) +
∑

xi∈~xII

(xi −G(t))2 (5.15)

yi = x
F (t)
i (5.16)

where F controls how the density of Pareto solutions while G controls the changes in the

PF∗
t and PS∗

t over time.
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The dynamics of the FDA test functions is governed by the equation,

t =
1

nT
b τ

τT
c (5.17)

where nT and τT specifies the severity and frequency of landscape change respectively.

Interestingly, due to the sinusoidal behavior of G(t) and H(t), nT also determines the

periodicity of similar solution sets emerging. In particular, a smaller nT implies that the

number of different PS∗
t is small. Both nT and τT has a lower bound of 1.0. Setting a value

of nt < 1.0 will result in a magnitude change that is out of range, while increasing values of

nT produces decreasing magnitudes of change. Likewise, increasing values of τT will result

in increasingly static environments.

This work applies four different dynamic MO test functions to validate the capability

of dynamic MOEA in tracking the changing MO fitness landscape. The first problem is

FDA1 [52], a Type I problem where only the PS∗
t is dynamic. The other three test functions

are based on the construction guidelines provided by Farina et al [52]. The second test

function, dMOP1, is a Type III problem where only the PF∗
t is dynamic while dMOP2 is a

Type II problem where both PS∗
t and the PF∗

t change with time. Like FDA1, dMOP3 is a

Type I problem. However, the variable that controls the spread of the PF∗
t changes as well.

The definitions of these dynamic MO test functions are summarized in Table 5.3.

Mehnen et al [144] proposed the DSW test suite to facilitate theoretical analysis in

dynamic MO optimization.

min f1(~x) =
(
a11x1 + a12x1 − b1 ·G(t)

)2
+

∑

i=2,...,|~x|

x2
i (5.18)

min f2(~x) =
(
a21x1 + a22x1 − b2 ·G(t)− 2

)2
+

∑

i=2,...,|~x|

x2
i (5.19)

where the type of spatial changes is determined by setting of appropriate a11, a12, a21, a22, b1

and b2 values. The main limitation of the DSW test problems is that it is not as intuitive as
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Table 5.3: Definition of Dynamic Test Functions

Test Definition

1 FDA1 f1(x1) = x1,
f2(x2, ...xm) = g · h,
g(x2, ...xm) = 1 +

∑m
i=2(xi − G(t))2,

h(f1, g) = 1−
√

f1

g

G(t) = sin(0.5π · t)
where m = 10, x1 ∈ [0, 1], −1 ≤ xi < 1, ∀i = 2, ..., 10

2 dMOP1 f1(x1) = x1,
f2(x2, ...xm) = g · h,
g(x2, ...xm) = 1 + 9 ·

∑m
i=2 xi

2,
h(f1, g) = 1− (f1

g )H(t)

H(t) = 0.75 · sin(0.5π · t) + 1.25
where m = 10, xi ∈ [0, 1]

3 dMOP2 f1(x1) = x1,
f2(x2, ...xm) = g · h,
g(x2, ...xm) = 1 +

∑m
i=2(xi − G(t))2,

h(f1, g) = 1− (f1
g )H(t)

H(t) = 0.75 · sin(0.5π · t) + 1.25
G(t) = sin(0.5π · t)
where m = 10, xi ∈ [0, 1]

4 dMOP3 f1(xr) = xr,
f2(~x\xr) = g · h,

g(~x\xr) = 1 +
∑~x\xr

i=1 (xi − G(t))2,

h(f1, g) = 1−
√

f1
g

H(t) = 0.75 · sin(0.5π · t) + 1.25
G(t) = sin(0.5π · t)
where m = 10, r=U(1,2,...,m), xi ∈ [0, 1]
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compared to TLK2 and the FDA test functions when it comes to the configuring of dynamic

spatial features.

An interesting approach of aggregating objective functions of existing test problems

through dynamically changing weights to form a lower dimensional dynamic problem is

proposed in [108]. For example, a three-objective problem can be reformulated to form a

two-objective dynamic problem in the following way,

min f ′
1(~x, t) = w(t) · f1 + (1− w(t)) · f2 (5.20)

min f ′
2(~x, t) = w(t) · f1 + (1− w(t)) · f3 (5.21)

where 0 ≤ w ≤ 1 is a function of time that give rise to the dynamic properties of the

reformulated problem, f1, f2 and f3 are the original objective functions. w can be defined

as either a linear or nonlinear function to produce different test properties. Simplicity and

ease of construction are the main advantages of this approach.

5.2 Performance Metrics for dynamic MO Optimization

As mentioned earlier, the objective of dynamic MO optimization is not only to evolve a

near optimal and diverse PFA
t but also to track the dynamic PF∗

t . Performance metrics of

dynamic MOEAs must be able to indicate:

• how effective the dynamic MOEA is in attaining the MO optimization goals (men-

tioned in Chapter 1) in the face of changing physical spatial attributes and

• how fast the dynamic MOEA is capable of converging on the new solution set since

there may be a restriction on time.

Static performance metrics described in Chapter 1 will not make any sense because PF∗

and PS∗ change with time. However, they can be easily adapted to provide an accurate

assessment of the performance of MOEAs in a dynamic environment.
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The simplest way is to illustrate the performance trend over time [38,52,222] by assessing

the evolved solutions with respect to static metrics at different time instances. For example,

Zeng et al [222] calculated and tabulated the GD and spread [43] of PFA
t at time instances

just before the next landscape change is triggered. Farina et al applied and plotted the

convergence traces of the following measures in the decision and objective space,

ex(t) =
1
np

np∑

j=1

min
i=1:nh

||
pf∗i (t)− pfAj (t)
R(t)− U(t)

|| (5.22)

ef (t) =
1
np

np∑

j=1

min
i=1:nh

||ps∗i (t)− psA
j (t)|| (5.23)

where np is |PFA
t |, R(t) is the time-dependent nadir point and U(t) is the time-dependent

utopia point. pf∗i (t) and pfAj (t) are the i-th member of PF∗
t and PFA

t respectively while

ps∗i (t) and psA
j (t) are the i-th member of PS∗

t and PSA
t respectively.

However, as pointed out by Branke [17], it is desirable to have a more compact form

to describe algorithmic performances. One way of achieving this is to extend the idea of

offline error applied in dynamic SO optimization and calculate the time averages of static

metrics such as ex and ef in the case of [85]. The sampling of performance metrics should

be done at instances just before the next landscape change to eliminate unnecessary penalty

on dynamic MOEAs employing diversity introduction schemes such as random restart or

hypermutation in situations where change is small.

In [74], we extended variable space GD (VD) and MS in the following form,

VDoffline =
1
τ

τ∑

t=1

VD · I(t) (5.24)

MSoffline =
1
τ

τ∑

t=1

MS · I(t) (5.25)

I(t) =

{
1, if t%τt = 0

0, otherwise.
(5.26)
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where % is the modulus operator. Similar to the metric of GD in static environment, a

low value of VDoffline is desirable and reflects good tracking capability. Likewise, a higher

value of MSoffline reflects that the MOEA is capable of evolving a diverse PFA
t in a dynamic

environment. VD measures the degree of convergence between PS∗t and PSA.

VD =
1

nPS
·
(
nPS

nPS∑

i=1

d2
i

) 1
2 (5.27)

where nPS = |PSA
t |, di is the Euclidean distance (in decision space) between the i-th member

of PSA
t and the nearest member of PS∗t .

5.3 Evolutionary Dynamic Optimization Techniques

Although there is a number of studies on evolutionary optimization in dynamic environ-

ments, most of them are restricted to the domain of SO problems and comprehensive dis-

cussions on dynamic SO evolutionary algorithms (SOEAs) can be found in [19,148]. On the

contrary, the application of MOEAs to dynamic MO problems is explored only recently.

Nonetheless, from the available literature, it is clear that EAs for dynamic optimization

in any problem domain must be capable of detecting the change in fitness landscape and

maintaining diversity within the evolving population. Different techniques proposed to

handle the issue of diversity are based the following three classes.

• Diversity Introduction: This approach introduces diversity upon the detection of land-

scape change [27, 80, 213]. Random restart or reinitialization is one of the simplest

techniques for generating diversity. Other common techniques include hypermutation

where mutation is increased dramatically and the variable local search where mutation

is increased gradually if no improvement is achieved. These approaches can be easily

extended to MOEAs. The main drawback is that information gained is lost after the

introduction of diversity.
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• Diversity Maintenance: This approach sought to maintain diversity throughout the

run [69,79,147]. One of the techniques that can be easily incorporated in MOEAs is

the random immigrant which is conceptually similar to the idea of random restart.

However, in random immigrant, random individuals are introduced into the evolving

population at fixed intervals and only a part of the population is replaced. Diversity

preservation techniques described in Chapter 1 can also be used, except that diversity

assessment should be performed in the decision space.

• Multiple Population: The basic idea of applying multiple populations is to conduct

simultaneous exploration in different regions to track any change or emergence of new

optimal solutions [23, 210, 218]. Typically, this approach involves a population which

exploits the current optimal solution while the other populations are encouraged to

explore the search space.

In order to improve performance, many dynamic EAs also incorporate some form of

memory to store past solutions in anticipation of eventual reuse. Moreover, it should be

noted that adaptation to the MOEA design must be made to account for:

• Outdated elitist solutions: One potential problem of MOEAs in dynamic environment

is their exploitation of nondominated solutions. When the landscape changes, the

current solution set may not be indicative of the optimal Pareto front and will misguide

the optimization process.

• Diversity loss: Although various diversity preservation techniques are adopted in

MOEAs, diversity are maintained in the objective space to obtain a well-distributed

and well-spread solution set. Unless the new optimal solution set is within the vicinity

of the previous optimal solution set, it is unlikely that MOEA is able to track any

landscape changes.

Deb et al [38] extended the NSGAII for the optimization of the dynamic hydro-thermal

power scheduling problem. In order to detect problem changes, 10% of the population are
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selected randomly and re-evaluated in every generation. When a change is detected, all

outdated solutions are re-evaluated and diversity is introduced either through random ini-

tialization or mutation. Contrary to the norm in SO optimization, only a portion of the

evolving population undergo the diversity enhancement process. The effects of the popula-

tion ratio to be mutated or replaced by random individuals through random initialization

are also investigated. The key finding is that random initialization is more susceptible to

the setting of population ratio.

In [222], Zeng et al proposed a dynamic orthogonal MOEA (DOMOEA) as the baseline

MOEA for dynamic MO optimization. The DOMOEA treats the dynamic MO problem as

a new problem instance after every landscape change. However, it exploits past information

by using the PSA
t prior to change as the new initial population. Diversity is maintained in

the evolving population through a linear crossover operator, which generates an offspring

different from its parents.

Instead of reintroducing past optimal solutions into the evolving population, informa-

tion is exploited to predict the future behavior of the dynamic MO problem in [85]. An

autoregressive model is employed to estimate the location of PS∗
t+1 and PF∗

t+1 and the gen-

erated individuals are used to seed the population when a change in the problem landscape

is detected.



Chapter 6

A Competitive-Cooperation

Coevolutionary Paradigm for

Dynamic MO Optimization

As pointed out in the previous chapter, it is imperative that the MOEA must be capable

of attaining high convergence speeds in order to find the optimal solution set before it

changes and becomes obsolete. However, high convergence speed often implies a rapid loss

of diversity during the optimization process, which inevitably leads to the inability to track

the dynamic Pareto front. Therefore, it is necessary to maintain or generate sufficient

diversity to explore the search space when the MO problem changes.

In these two regards, the notion of coevolution is very attractive. The coevolutionary

paradigm, inspired by the reciprocal evolutionary change driven by the cooperative [162]

or competitive interaction [170] between different species, has been extended successfully to

MO optimization recently [31,99,114,139,142,195].

• On the former issue of high convergence speed, several studies [161, 212] have shown

that the introduction of ecological models and coevolutionary architectures are ef-

fective methods to improve the efficacy of canonical evolutionary algorithms. As a

specific instance, Tan et al [195] demonstrated that high convergence speeds can be

132
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achieved while maintaining a good diversity of solutions. MO coevolutionary algo-

rithms (MOCAs) seem particularly suitable for dynamic MO optimization, where the

high speed of convergence can potentially be exploited for adapting quickly to the

changing environment.

• On the latter issue of diversity, the works in [10,162] demonstrated that both com-

petitive and cooperative coevolution have its own unique mechanisms for maintaining

diversity in the species subpopulation.

On the other hand, before these two attractive features can be exploited for dynamic

MO optimization, it is necessary to consider the issue of appropriate problem decomposi-

tion which is crucial to successful implementation of coevolution. In this chapter, we are

concerned with the decomposition of the search space. The best way of handling prob-

lem decomposition may not be known a priori and may change with time in dynamic MO

problem. This paper proposes a new coevolutionary paradigm that incorporates both com-

petitive and cooperative mechanisms observed in nature to solve MO optimization problems

and to track the Pareto front in a dynamic environment. The main idea of competitive-

cooperation coevolution is to allow the decomposition process of the optimization problem to

adapt and emerge rather than being hand designed and fixed at the start of the evolutionary

optimization process. In particular, each species subpopulation will compete to represent a

particular subcomponent of the MO problem while the eventual winners will cooperate to

evolve the better solutions. Through this iterative process of competition and cooperation,

the various subcomponents are optimized by different species subpopulations based on the

optimization requirements of that particular time instant, enabling the MOCA to handle

both the static and dynamic MO problems. A competitive-cooperation coevolutionary al-

gorithm (COEA) for static environment is designed based on the proposed coevolutionary

paradigm and subsequently extended as dynamic COEA (dCOEA) to handle dynamic MO

optimization problems.
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6.1 Competition, Cooperation and Competitive-cooperation

in Coevolution

Existing evolutionary techniques based on this paradigm can be classified into two main

classes: competitive coevolution and cooperative coevolution. Regardless of the approach

adopted, the design of coevolutionary algorithms for MO optimization requires researchers

to address many issues that are unique to MO problems. In this respect, insights such as

the incorporation of the various elitist and diversity mechanisms gained from the design of

MOEAs can be similarly exploited in the design of MOCA. On the other hand, successful

implementation of coevolution requires the explicit consideration of design issues [161] such

as problem decomposition, the handling of parameter interactions and credit assignment. It

should be noted that the first two issues are problem dependent and the best way of handling

them may not be known a priori, motivating this work on an alternative coevolutionary

model.

This section begins with a review of competitive and cooperative evolutionary algorithms

for MO optimization, highlighting the key features and the limitations of these existing

approaches. The proposed competitive-cooperation model is then described along with

detailed discussions of how the different design issues are addressed.

6.1.1 Competitive Coevolution

The model of competitive coevolution is often compared to predator-prey or host-parasite

interactions, where preys (or hosts) implement the potential solutions to the optimization

problem, while the predators (or parasites) implement individual “fitness-cases”. When

applying this idea into optimization [4, 170], there are usually two subpopulations and an

inverse fitness interaction exists between the two subpopulations. To survive, the losing

subpopulation adapts to counter the winning subpopulation in order to become the new

winner.
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Although the competitive coevolution has been applied in many SOEA studies [86,163],

this model is rarely investigated in the domain of EMOO. Lohn et al [139] embodied the

model of competitive coevolution in MO optimization through a competitive coevolution-

ary model which contains population of candidate solutions and target population with the

target objective vectors. A distinct characteristic of this algorithm is the lack of any ex-

plicit diversity preservation mechanism to guide the coevolutionary optimization process.

Empirical studies are conducted with well-known MOEAs such as SPEA and NSGA, and

performance of this competitive MOCA is found to be better than these test algorithms.

There are several limitations to this coevolutionary model which probably explains the

lack of work in this area, at least in the case of MO numerical optimization. While compet-

itive coevolution is a natural model for evolving objects such as game playing programs for

which it is difficult to write an external fitness function, the need to hand-decompose the

problem into antagonistic subcomponents places severe limitation on its range of applica-

bility. Adding to its complexity is the need to adapt the predator population, which is the

population of target vectors in the case of [139], such that it exerts appropriate convergence

pressure. In the context of MO optimization, this pressure must be exerted to promote

individuals in a direction that is normal as well as tangential to the tradeoff region at the

same time. Intuitively, competitive coevolutionary approaches may be sensitive to the shape

of PF∗.

6.1.2 Cooperative Coevolution

Cooperative coevolution is inspired by the ecological relationship of symbiosis where differ-

ent species live together in a mutually beneficial relationship. The basic idea of cooperative

coevolution is to divide and conquer [162]: divide a large system into many modules, evolve

the modules separately and then combine them together to form the whole system. The

cooperative coevolutionary algorithm involves a number of independently evolving species

that together form complex structures for solving difficult problem. The fitness of an indi-
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vidual depends on its ability to collaborate with individuals from other species and favors

the development of cooperative strategies and individuals. In addition, these techniques

can be implemented at two basic levels depending on the type of modules that are evolved

simultaneously [115]. In the case of single-level coevolution [31, 99, 114, 142], each evolving

subpopulation represents a subcomponent of the problem to be solved. On the other hand,

a two-level coevolutionary process involves simultaneous optimization of the system and

modules in separate subpopulations [10,66].

An explicit way of implementing cooperative coevolution behavior in optimization tech-

niques is to split a solution vector into different subcomponents and assign multiple evolving

subpopulations to optimize the individual subcomponents [162]. Contrary to SO optimiza-

tion, MO optimization is associated with a set of nondominated solutions which inevitably

leads to the issue of fitness assignment and representative selection. Therefore, appropriate

representatives are crucial for the search of a diverse and uniformly distributed solution

set while suitable cooperative schemes must be incorporated to drive the subpopulations in

tandem towards the PF∗.

An early attempt to integrate the cooperative model for MO optimization is based on

this method of decomposing the problem along the decision space and each subpopulation is

optimized by MO genetic algorithm (MOGA) [63]. In this MO cooperative coevolutionary

genetic algorithm (MOCCGA) [114], each individual is evaluated twice in collaboration

with either a random or the best representative from the other subpopulations and the best

Pareto rank is assigned as fitness. However, MOCCGA is limited by the lack of elitism and

the localized perception of Pareto optimality.

These limitations are partially rectified by Maneeratana et al in [142] which incorporates

elitism in the form of a fixed sized archive to store the set of nondominated solutions. In

addition, the same cooperative model is successfully extended to other MOEAs such as

Niched Pareto GA [90] and NSGA [188] with significant improvements over their canonical

counterparts. Like MOCCGA, these MOCAs also suffers from the problem that fitness
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assignment conducted within a species may not be a good indicator of optimality.

In [99], Iorio and Li presented the nondominated sorting cooperative coevolutionary al-

gorithm (NSCCGA) which is essentially the coevolutionary extention of NSGAII. NSCCGA

is different from the previous two works in the sense that elitist solutions are reinserted

into the subpopulations and fitness assignment takes into account the set of nondominated

solutions found via the nondominated sorting. Instead of selecting nondominated individ-

uals with the best degree of crowding, representatives are selected randomly from the best

nondominated front.

Contrary to the trend of integrating the cooperative model with well-known MOEAs,

Tan et al [195] implemented a cooperative-coevolution evolutionary algorithm (CCEA) that

is based on a basic MOEA. Although the same ranking scheme [63] implemented in MOC-

CGA is adopted here, each individual is ranked against the nondominated solutions stored

in the archive instead of within the subpopulation. In addition, an extending operator which

reinserts nondominated solutions with the best niche count into the evolving subpopulation

is implemented in CCEA to improve diversity and distribution of the PF. The authors also

investigated the effects of various representative selection and observed that robust perfor-

mances can be better achieved by conducting cooperation with two representative from each

subpopulations and retaining the better collaboration.

Iorio and Li [99] also highlighted that coevolutionary algorithms are susceptible to pa-

rameter interactions, although higher mutation rates can improve algorithmic performance

when handling rotated problems. Apparently, there is an inherent tradeoff between the

fine-grain search capability and lack of diversity in the relatively smaller sized subpopula-

tions of coevolutionary algorithms. In this regard, the game-theoretic approach of mod-

eling cooperation in [185] alleviates the problem of parameter dependencies somewhat by

decomposing the problem into only two subpopulations. Without restricting to a single

computational paradigm, an interesting approach of switching iteratively between canonical

particle swarm optimization (PSO) and cooperative PSO is proposed by Van den Bergh and
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Engelbrecht [211] for SO optimization.

Employing a variant of the cooperative model discussed so far, Coello Coello and

Sierra [31] proposed the coevolutionary MOEA (CO-MOEA) where the different subpop-

ulations cooperates to form the PF instead of a valid solution. CO-MOEA starts with a

single evolving population and adaptively assigns different regions of the decision variable

space to new subpopulations. This assignment process is based on the analysis of the con-

tribution of each decision variable to the PF stored in the adaptive grid [127]. Furthermore,

subpopulation size is also changed in proportion to the contribution to the discovery of

new nondominated solutions and subpopulations without any significant contribution are

eliminated. While such an approach effectively removed design considerations such as rep-

resentative selection and parameter interactions, it can be easily noted that CO-MOEA

do not have fine-grain search capability of the MOCAs adopting Potter and Jong’s model

especially for high-dimensional problems.

6.1.3 Competitive-Cooperation Coevolution

One major issue present in the previous works is that problem decomposition places severe

restrictions on algorithmic design and performance of both competitive and cooperative

models. In retrospect, this problem should not arise in the context of coevolutionary al-

gorithms since the role at which each species play is an emergent property in nature. On

the other hand, it should be noted that collaboration and competition among the different

species are modeled independently in coevolutionary algorithms, but the two different types

of interaction are rarely exclusive within an ecological system. For example, there is com-

petition even in the veneer of seemingly perfect plant-pollinator coevolution in nature [180],

where different species of bees will compete for nectar and different species of flowers will

compete to attract more bees. By incorporating both elements of cooperation and compe-

tition, the proposed model represents a more holistic view of the coevolutionary forces in

nature.
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Figure 6.1: Framework of the competitive-cooperation model

The proposed model involves two tightly-coupled coevolutionary processes and the rela-

tionship between them is illustrated in Figure. 6.1. As in the case of conventional coopera-

tive coevolutionary algorithms, individuals from the different species collaborate to solve the

problem at hand during the cooperative process. Each subpopulation evolves in isolation

and there is no restriction on the form of representation or the underlying EA. On the other

hand, the cooperative species will enter into competition with other subpopulations for the

right to represent the various subcomponents of the problem.

Although Figure. 6.1 shows that the interaction between the cooperative and competi-

tive processes take place iteratively after each generation, this frequency can be determined

by the designer accordingly. For the ensuing discussions, we consider the situation where

the problem at hand is decomposed along the decision variables. Also, each decision variable

may be assigned to a number of subpopulations and a subpopulation may be optimizing

more than one decision variable.
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Credit Assignment

Credit assignment for the competitive and cooperative process is performed at the subpop-

ulation and individual level respectively. Following the situation given above, the different

objectives of the MO problem at the cooperative process is evaluated by assembling each

individual along with the representatives of the other species to form a valid solution. Ac-

cordingly, appropriate fitness assignment such as Pareto ranking can be computed for the

particular individual. In the competitive process, the fitness of a particular species is com-

puted by estimating how well it performs in a particular role relative to its competitors

in the cooperation with other species to produce good solutions. For example, the species

selected out of N competing subpopulations to represent a particular variable is given a

higher probability of representing it in the later generations, while the losing species of the

competition is penalized and given a lower probability.

Problem Decomposition and subcomponent interdependency

As mentioned earlier in the section, problem decomposition is one of the primary issues to

be addressed in coevolutionary optimization. The difficulties lies in the fact that informa-

tion pertinent to the number or role of subcomponents are usually not known a priori and

many problems can only be decomposed into subcomponents exhibiting complex interde-

pendencies. To this end, the competitive-cooperation coevolutionary model will addresses

this issue through emergent problem decomposition.

As illustrated by the example given above, the competitive process leads to a potential

“arms race”among the cooperative species to improve their contribution to the associated

subcomponents. Notice that the collaboration between the two coevolutionary models has

led to the natural formations of competitive subpopulations rather than subcomponents. In

addition, it facilitates the interactions between different species, in possibly various roles,

right at the onset of the optimization process and the benefits of this interactions include
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the discovery of interdependencies between the species. Therefore, the interplay of competi-

tion and cooperation can provide an environment in which interdependent subcomponents

end up within the similar species and reasonable problem decompositions emerge due to

evolutionary pressure rather than being specified by the user.

By comparison, the emergent attribute of competitive-cooperation coevolutionary model

is distinctively different from that present in the cooperative model proposed by Potter and

Jong [162], at least at the conceptual level. While the participation of any subpopulation is

dependent on the contribution made to the collaboration between species in both approaches,

this property is the result of the emergence of better fit species for a particular problem

subcomponent in the proposed model. One limitation of the approach adopted in [162] is

that stagnant subpopulations are simply replaced by randomly initialized subpopulations,

implying that any possible information gained previously is discarded.

Diversity

The competitive-cooperation coevolutionary model provides a means of exploiting the com-

plementary diversity preservation mechanisms of both competitive and cooperative models.

In the case of the cooperative model, the evolution of isolated species tends to produce

more diversed individuals across the different subpopulations, although this property does

not necessarily extend to within each subpopulation. On the other hand, a diverse sub-

population is driven by the necessity to deal with the different situations posed by the

other subpopulations in the competitive model. Furthermore, the competitive process in

competitive-cooperation coevolutionary model allows a more diversified search as the opti-

mization of each subcomponent is no longer restricted to one species. The competing species

provides another round of optimization for each subcomponent, which increases the extent

of the search while maintaining low computational requirements.
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6.2 Applying Competitive-Cooperation Coevolution for MO

optimization (COEA)

Based on the competitive-cooperation coevolutionary paradigm described in Section 6.1,

this section presents the competitive-cooperation coevolutionary algorithm (COEA) for MO

optimization. The mechanism for cooperative coevolution is described in 6.2.1 while the

competitive element of the proposed paradigm is presented in Section 6.2.2. Finally, the

implementation details of COEA is given in 6.2.3.

6.2.1 Cooperative Mechanism

The cooperative mechanism of the proposed COEA is extended from the model introduced

in Tan et al [195]. By adopting this strategy, the algorithm can exploit the fine-grained

search capability desirable in many applications while maintaining diversity across the sub-

populations.

The pseudocode of the cooperative mechanism is shown in Figure. 6.2. At the start of

the optimization process, the i-th subpopulation is initialized to represent the i-th variable.

Concatenation between individuals in Si and representatives from the other subpopulation

is necessary to form a valid solution for evaluation. As an example, consider a 3-decision

variable problem where subpopulations, S1, S2 and S3, represent the variables x1, x2 and

x3 respectively. When assessing the fitness of s1,j , it will combine with the representatives

of S2 and S3 to form a valid solution.

Archive update is conducted after each individual evaluation and the archiving process

has been described in Chapter 2. After which, Pareto ranking and niche count computation

of individual, si,j are conducted with respect to the archive. Note that only the fitness of

individuals from Si is updated at the i-th cycle. Similar to the ranking process, the niche

count (nc) of each individual is calculated with respect to the archive of nondominated

solutions. The dynamic sharing proposed in [197] is employed in this paper.
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Figure 6.2: Pseudocode for the adopted Cooperative Coevolutionary mechanism.

The cooperative process is carried out in turn for all nx subpopulations where nx is the

number of decision variables. Before proceeding to the evaluation of the next subpopulation,

the representative of Si denoted as si, rep is updated in order to improve convergence speed.

This updating process is based on a partial order such that ranks will be considered first

followed by niche count in order to break the tie of ranks. For any two individuals, si,j and

si,k, si,j is selected over si,k if rank(si,j) < rank(si,k) or {rank(si,j) = rank(si,k) and nc(si,j)

< nc(si,k)}. The rationale of selecting a nondominated representative with the lowest niche

count is to promote the diversity of the solutions using the approach of cooperation among

multiple subpopulations.

6.2.2 Competitive Mechanism

Given the cooperative scheme of optimizing a single variable in each subpopulation, one

simple approach is to allow the different subpopulations to take up the role of a particular

problem subcomponent in a round-robin fashion. The most competitive subpopulation is

then determined and the subcomponent will be optimized by the winning species in the
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Figure 6.3: Pseudocode for the adopted Competitive Coevolutionary mechanism.

next cooperative process. Ideally, the competition depth is such that all individuals from a

particular subpopulation compete with all other individuals from the other subpopulations

in order to determine the extent of its suitability. However, such an exhaustive approach

requires extensive computational effort and it is practically infeasible. A more practical

approach is to conduct competition with only selected individuals among a certain numbers

of competitor subpopulations to estimate the species fitness and suitability.

The pseudocode of the competitive mechanism is shown in Figure. 6.3. The competitive

process to discover the most suitable subpopulation is carried for each variable in an iterative

manner. For the i-th variable, the representative of the associated subpopulation, i.e. si, rep,

is selected along with competitors from the other subpopulations to form a competition pool.

With regard to the issue of competitor selection, COEA adopts a simple scheme of selecting

a random individual from each competing subpopulation. Intuitively, the selection of a

random competitor will enable the COEA to explore the relationships between the different

variables. Other competition schemes will be presented and analyzed in Section 6.4.2. In

the case where nx>|Si|, i.e. the number of subpopulations is larger than subpopulation size,

the participating subpopulations are selected randomly before the start of the competition

process. This provides the other subpopulations left out in this instance the opportunity to
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participate in future competitions.

These competitors will then compete via the cooperative mechanism described before

to determine to extent of cooperation achieved with the representative of the other sub-

populations. The winning species can be determined by simply checking the originating

subpopulation of the representative after the representative update. At the end of the

competitive process, Si will remain unchanged if its competition representative wins the

competition. In the case where a winner emerges from other subpopulations, Si will be

replaced by the individuals from the winning subpopulation. The rationale of replacing the

losing subpopulation instead of associating the winning subpopulation directly with the vari-

able is that different variables may have similar but not identical properties. Therefore, it

would be more appropriate to seed the losing subpopulation with the desirable information

and allow it to evolve independently.

By embedding the competitive mechanism within the cooperative process, the adapta-

tion of problem decomposition and the optimization process are conducted simultaneously.

Hence, no additional computation cost is incurred by the competition. It has the further

advantage of providing the chance for the different subpopulations to solve for a single

component as a collective unit, with the competitors as a source of diversity.

6.2.3 Implementation

As illustrated by the algorithmic flow of the proposed COEA in Figure. 6.4, the competitive

mechanism is activated at a fixed frequency of Cfreq = 10. In the proceeding recombination

process, the subpopulation individuals are shuffled randomly before undergoing uniform

crossover and bit-flip mutation. The reason for not performing selection based on some

fitness measure is that the replacement individuals have not been assessed and may not

perform in an identical manner in their new role optimizing another subcomponent. On the

other hand, binary tournament selection of individuals for the mating pool will be conducted

on the subpopulations after the cooperative process. Note that the subpopulations are
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Figure 6.4: Flowchart of COEA.

evolved in isolation for both competitive and cooperative processes. The algorithm employs

an fixed-size archive to store non-dominated solutions along the evolution. As mentioned in

the prior sections, the archive is updated at each cycle within the cooperative or competitive

mechanism. A complete solution formed by the subpopulations will be added to the archive

if it is not dominated by any archived solutions. Likewise, any archive members dominated

by this solution will be removed. When the predetermined archive size is reached, a recurrent

truncation process [117] based on niche count is used to eliminate the most crowded archive

member.
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6.3 Adapting COEA for Dynamic MO optimization

Although the proposed COEA is capable of adapting to the different requirements of the

MO problems, it has to be adapted for dynamic optimization. In particular, the issues of

diversity and outdated archived solutions have to be addressed before the dynamic COEA

is capable of dealing with the environmental variations. Section 6.3.1 describes a diversity

scheme which allow diversity to be introduced while exploiting useful past information.

Section 6.3.2 describes a simple temporal memory which stores outdated nondominated

solution and introduces these solutions back into the archive at the appropriate moment.

6.3.1 Introducing Diversity Via Stochastic Competitors

The diversity necessary for the tracking of the dynamic PS∗
t by COEA can be either be

introduced explicitly through mechanisms such as random restart and hypermutation or

maintained by means of niching methods and other elaborate diversity preservation schemes.

Note that the third approach of using multiple populations to explore the different regions

of the search space is not applicable because the application of subpopulations in COEA

serves in another purpose of optimizing a specific subcomponent of the problem. Explicit

generation of diversity will enable the algorithm to react faster to severe environmental

changes but it is limited by failure to utilize any past information. On the other hand,

the potential for information exploitation in diversity preservation schemes is attained at

the expense of slower convergence rates. This is also known as the exploration-exploitation

dilemma for dynamic optimization [19].

In order to solve this problem, a diversity scheme which exploits the competitive mech-

anism of COEA is implemented. In every generation, a fixed number of archived solutions

are re-evaluated and the current objective values are checked against previous values for

discrepancies. Any environmental variation will result in the subsequent activation of the

competitive mechanism, in addition to its fixed schedule. The rationale of this strategy
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is to allow the algorithm to assess the potential of existing information within the various

subpopulations for exploitation in the new problem landscape.

Furthermore, the competitive process provides a natural conduit in which the intro-

duction of diversity into the subpopulations can be regulated. Instead of reinitialization

or subjecting the entire subpopulation to hypermutation, a set of stochastic competitors is

introduced together with the competitors from the other subpopulations where the ratio

between the two types of competitors is given by the parameter, SCratio. The idea is to

compare the potential of new regions in the search space and past information to decide

whether the subpopulation should be initialized. Latin hypercube sampling is applied to

generate individuals uniformly along each dimension. In the case where the stochastic com-

petitor emerges as the winner, the particular subpopulation is reinitialized in the region

that the winner is sampled from. Therefore, diversity is introduced into the subpopulations

only if it presents an advantage over the current information at hand.

6.3.2 Handling Outdated Archived Solutions

After an environmental change, it is unlikely that the archived solutions will remain non-

dominated. If left unchecked, these solutions will keep out the true nondominated solutions

at that particular time instance. Therefore appropriate measures must be taken to minimize

the detrimental effects of outdated archived solutions. One simple approach is to re-evaluate

all the outdated solutions and remove only the dominated solutions from the archive. Since

most MOEAs are elitist in nature, this approach may have the disadvantage of misleading

the optimization process with these nondominated but outdated archived solutions. Further-

more, re-evaluation results in additional computation cost. Another approach is to simply

discard all archived solutions. While this approach will not incur any extra computation

cost and there is no risk of misguiding the evolutionary process, the information about past

PFt cannot be exploited in the case where the PS∗
t is cyclic in nature.
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In order to store these potentially useful information in dCOEA, an additional external

population which is denoted as the temporal memory is used in conjunction with the archive.

In the ideal situation, the temporal memory will be a repository of all the nondominated so-

lutions prior to any environmental variation. However, in the light of limited computational

resources, decision must be made on what solutions and how solutions are to be stored. On

the latter issue of how outdated solutions are stored, a fixed number Rsize of the archive is

added to the temporal memory upon a landscape change. When the upper bound of the

temporal memory is reached, the oldest set of Rsize outdated solutions is removed to make

room for newer solutions. As for the former issue of selecting Rsize outdated solutions, the

dCOEA stores the extreme solutions along each dimension in the objective space. In the

case where Rsize is greater than the number of extreme solutions, the rest of the solutions

to be stored are randomly selected from the archive. On the other hand, if Rsize is smaller

than the number of extreme solutions, Rsize extreme solutions will be randomly selected into

the temporal memory. Note that Rsize actually controls the tradeoff between the storage

of information across the different environmental changes and information for a particular

instance of landscape change. In particular, a smaller Rsize allows for a more diverse range

of past solutions.

After the Rsize outdated archived individuals have been added to the temporal memory,

all archived solutions will be discarded. Subsequently, the temporal memory will be re-

evaluated and archive updating is conducted on this external population. The computational

cost incurred by this re-evaluation process is necessary to exploit any possible information

regarding the current PS∗
t . However, to address the possibility that solutions updated

into the archive through this scheme may misguide the optimization process, no archived

solutions will be reinserted back to the subpopulations in the generation immediately after

the environmental change.
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Table 6.1: Parameter setting for different algorithms

Parameter Settings

Populations Population size 100 in NSGAII, SPEA2, PAES, and IMOEA;
Subpopulation size 10 in COEA and CCEA;
Archive (or secondary population) size 100.

Chromosome Binary coding; 30 bits per decision variable.
Selection Binary tournament selection
Crossover operator Uniform crossover
Crossover rate 0.8
Mutation operator Bit-flip mutation
Mutation rate 1

L for DTLZ3 where L is the chromosome
length;
1
B for FON and KUR where B is the bit size per decision variable;

Niche Radius Dynamic sharing.

6.4 Static Environment Empirical Study

This section starts with a comparative study between COEA and MOEAs that are repre-

sentative of the state-of-the-arts will be conducted in Section 6.4.1. This section concludes

with further investigations to gain better insights to the dynamics of competitive-cooperation

evolution in Section 6.4.2 and Section 6.4.3.

6.4.1 Comparative Study of COEA

In order to examine the effectiveness of COEA, a comparative study with CCEA [195],

SPEA2 [228], NSGAII [43], and IMOEA [199] is carried out based on FON, KUR and

DTLZ3. The simulations are implemented in C++ on an Intel Pentium 4 2.8 GHz com-

puter and thirty independent runs are performed for each of the test functions in order to

obtain the statistical information, such as consistency and robustness of the algorithms. In

order to assess statistical difference of the simulation results, Kolmogorov-Smirnov (KS)
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Figure 6.5: The evolved Pareto front from (a) COEA, (b) CCEA, (c) PAES, (d) NSGAII,
(e) SPEA2, and (f) IMOEA for FON.
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Figure 6.6: Performance metrics of (a) GD, (b) MS, (c) S, and (d) NR for FON.

test is applied to the different performance metrics. The various parameter settings for each

algorithm are listed in Table 6.1. All the algorithms are implemented using the same binary

coding scheme, tournament selection, uniform crossover, and bit flip mutation.

FON

FON challenges the algorithms ability to find and maintain the entire tradeoff curve uni-

formly. Since the tradeoff curve is non-convex and nonlinear in nature, it is difficult for

the algorithms to maintain a stable evolving population for FON. A stopping criterion of
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Figure 6.7: Performance metrics of (a) GD, (b) MS, (c) S, and (d) NR for KUR.

20,000 evaluations is used for this problem. The PF from the different algorithms using

the same random seed is showed in Figure. 6.5(a)-(f) while the distribution of the different

performance metrics is represented by box plots in Figure. 6.6(a)-(d). The advantages of the

proposed competitive-cooperation model over traditional cooperative model in handling pa-

rameter interactions is evident from Figure. 6.6 and by comparing the evolved PF in Figure.

6.5(a) and Figure. 6.5(b). It can be noted that CCEA and IMOEA performed relatively

worse as compared to the other algorithms in the aspects of GD and MS. Although MOCAs

are known to be susceptible to parameter interactions, CCEA has competitive performance

with NSGAII and SPEA2 in the metric of NR. The KS test revealed that COEA and other

algorithms are statistically different in terms of GD and HR. On the other hand, the per-

formance of COEA in terms of MS is statistically indifferent from NSGAII and SPEA2. In

general, IMOEA has the worst performance.

KUR

KUR is characterized by an PF∗ that is non-convex and disconnected, i.e., it contains three

distinct disconnected regions on the final tradeoff. The decision variables correspond to the

global tradeoff for KUR are difficult to be discovered, since they are disconnected in the

decision variable space. Like FON, there are high interactions between the decision variables

which will pose problems to MOCAs. A stopping criterion of 30,000 evaluations is used for

this problem. The distribution of the different performance metrics is represented by box
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Figure 6.8: Performance metrics of (a) GD, (b) MS, (c) S, and (d) NR for DTLZ2.
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Figure 6.9: Performance metrics of (a) GD, (b) MS, (c) S, and (d) NR for DTLZ3.

plots in Figure. 6.7(a)-(d). The main difficulty stemming from high parameter interactions

in this problem is the discovery of all four disconnected regions of PF. Although CCEA

is able of evolving a PF that is close to PF∗, it can be observed that it faced difficulty in

finding a diverse PF from Figure. 6.7(b) and Figure. 6.7(c). In this sense, the competitive-

cooperation paradigm allows COEA to find a more diverse solution set as compared to

CCEA, PAES and IMOEA as reflected from the metric of MS. The KS test also reveals that

the performances of COEA, NSGAII and SPEA2 are similar in performance for the various

MO optimization metrics.

High Dimensional Problems

DTLZ3 is used to challenge the various MOEA capability to produce adequate pressure

in driving the individuals towards the high-dimensional PF∗. In addition, DTLZ3 is also

characterized by multi-modality. A stopping criterion of 28,000 evaluations is used for
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both problems. The distribution of the different performance metrics for DTLZ3 is showed

in Figure. 6.9(a)-(d). It can be noted that SPEA2, NSGAII and IMOEA are unable

to find any solutions near the PF∗. While SPEA2 and NSGAII are able to find a good

spread of solutions, IMOEA is unable to evolved a diverse and well-distributed solution set.

On the other hand, COEA scales well with increasing objectives, producing competitive

performances in the aspects of GD, S and MS with CCEA. Furthermore, the metric of NR

clearly shows that COEA outperforms CCEA.

6.4.2 Effects of the Competition Mechanism

It can be observed from the comparative studies that COEA is capable of evolving a near-

optimal, diverse and uniformly distributed Pareto front for the different benchmark prob-

lems. In this section, experiments are conducted at Cfreq={1, 5, 10, 30, 50, inf} in order

to study the effects and dynamics of the incorporating both competitive and cooperative

process in a common framework upon the benchmark problems of FON, KUR and DTLZ3.

As mentioned earlier, FON and KUR have severe parameter interactions and it important

to consider the effects of competition in improving the performance of COEA. DTLZ3 is

used in the study here since it has been observed in previous section that most algorithms

are unable to deal with this benchmark problem effectively.

The performance of COEA with Cfreq={1, 5, 10, 30, 50, inf} for FON, KUR and DTLZ3

are summarized in Table 6.2, Table 6.3 and Table 6.4 respectively. Note that no competition

takes place when Cfreq=inf, effectively reducing the competitive-cooperation paradigm to a

conventional cooperative model. From the tables, it can be observed that COEA performs

the best for the three benchmark problems at lower settings of Cfreq while it performs

the worst in the absence of the competitive mechanism. By comparing the results over

the different Cfreq , it is clear that increasing Cfreq allows COEA to adapt faster to the

problem requirements and evolve a near optimal and more diverse PF. On the other hand,

improvements in the aspects of MS is attained at the expense of GD suffers for FON and
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Table 6.2: Performance of COEA for FON with different Cfreq. The best results are high-
lighted in bold.

1 5 10 30 50 Inf

1st quartile 0.0080 0.0050 0.0086 0.0107 0.0119 0.0235
GD Median 0.0116 0.0075 0.0133 0.0157 0.0207 0.0276

3rd quartile 0.0171 0.0090 0.0198 0.0217 0.0243 0.0347

1st quartile 0.9492 0.5394 0.5991 0.6313 0.6121 0.4857
MS Median 0.9741 0.8916 0.8036 0.7510 0.6882 0.5159

3rd quartile 0.9975 0.9466 0.8891 0.8547 0.7280 0.5732

Table 6.3: Performance of COEA for KUR with different Cfreq. The best results are high-
lighted in bold.

1 5 10 30 50 Inf

1st quartile 0.0349 0.0256 0.0329 0.0370 0.0521 0.1414
GD Median 0.0425 0.0365 0.0376 0.0864 0.2946 0.2941

3rd quartile 0.0499 0.0549 0.0807 0.3078 0.4924 0.5592

1st quartile 0.9995 0.9822 0.9608 0.9458 0.9214 0.8841
MS Median 0.9998 0.9939 0.9902 0.9678 0.9610 0.9461

3rd quartile 1.0000 0.9988 0.9987 0.9906 0.9730 0.9752

KUR while performance deteriorates sharply at Cfreq = 1 in the case of DTLZ3. This is

probably because constant competition restricts the time necessary for the subpopulations

to adapt to the decision variables. Nonetheless, it can be noted that the mere inclusion

of competition with reasonable Cfreq brings about significant improvement to both the

convergence and diversity in FON, KUR and DTLZ3.

Figure. 6.10 shows the dynamics of the best solution for each variable at Cfreq = 10 and

Cfreq = 50 in DTLZ3. In order to evolve a near-optimal, diverse and uniformly distributed
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Table 6.4: Performance of COEA for DTLZ3 with different Cfreq. The best results are
highlighted in bold.

1 5 10 30 50 Inf

1st quartile 28.6021 0.0000 0.0000 0.0000 0.0000 15.0409
GD Median 58.4115 0.0039 0.0009 0.0000 0.0000 18.4015

3rd quartile 100.8232 0.0252 0.0248 0.0271 0.1414 23.4576

1st quartile 0.6744 0.9990 0.9972 0.9950 0.9958 0.9860
MS Median 0.7575 0.9998 0.9990 0.9987 0.9979 0.9933

3rd quartile 0.8702 1.0000 0.9998 0.9996 0.9995 0.9986
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Figure 6.10: Dynamics of variables x1-x4 (top) and x5-x14 (bottom) along the evolutionary
process for DTLZ3 at (a) Cfreq = 10 and (b) Cfreq = 50.
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Figure 6.11: Dynamics of subpopulations emerging as the winner during the competitive
process for variables (a) x1-x4, (b) x5-x9, and (c) x10-x14.

PF, the algorithm must be able maintain a wide range of values for x1-x4 while finding the

optimal value of 0.5 for x5-x14. For both settings, x1-x4 oscillates continuously along the

evolutionary process in order to span the entire range of feasible values. Likewise, x5-x14

eventually converges to the optimal value of 0.5. However, by comparing Figure. 6.10(a)

and Figure. 6.10(b), it can be seen that COEA at Cfreq = 10 converges to the optimal

value of 0.5 at the tenth generation while COEA at Cfreq = 50 only converges at the fiftieth

generation. It should be noted that the convergence of the algorithm coincides with each

competition process.

In order to analyze the influence of the competitive process on the emergent decompo-

sition process, the winning subpopulation for each round of competition is shown in Figure.

6.11. To facilitate the introduction of diversity for variables x1-x14, it is observed that

S1-S3 have emerged as the most suitable subpopulations for that purpose and each takes

over the role of optimizing a variable within x1-x4 in an almost iterative manner. In the

case of variables x5-x14, it is observed that S8 took over the rest of the subpopulation at

the first competition. Although subsequent winners include S4, S7, S8, S9 and S10, S9 is

the dominant subpopulation for these variables. Taking a closer look at the subpopulation

distribution also reveals that the individuals of S1-S3 are distributed throughout the search

space while the individuals of S4-S14 are concentrated about the point 0.5.
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6.4.3 Effects of Different Competition Schemes

Just as the choice of representative is an important design issue in any cooperative coevo-

lutionary algorithms, it can be further expected that the different schemes of competition

will have an significant impact on competitive-cooperation coevolution algorithms. In this

section, three different competition models are incorporated in COEA and their effectiveness

for MO optimization are investigated.

• Random: Before the start of each competition process, an individual will be selected

randomly from each competing subpopulation as the participant. These set of com-

petitors will remain fixed during the whole course of competition for the particular

subcomponent. This is also the scheme that is implemented in COEA for the com-

parative study.

• Elitist: Before the start of each competition process, each competing subpopulation

will select the best individual for their associated subcomponents as the participant.

These set of competitors will remain fixed during the whole course of competition for

the particular subcomponent. This scheme can be expected to wok well in situations

where the different subcomponents have very similar properties.

• Hybrid: Before the start of each competition process, each competing subpopulation

will randomly select either the best individual or random individual as the participant.

These set of competitors will remain fixed during the whole course of competition for

the particular subcomponent. The Hybrid scheme represents the tradeoff between

random and elitist scheme.

Experiments are conducted for COEA with different competition schemes at Cfreq = 10

and the results of thirty independent runs for FON, KUR and DTLZ3 are summarized in

Table 6.5, Table 6.6 and Table 6.7 respectively. It can be seen that the elitist scheme is

capable of evolving PF with very good convergence for all three problems, performing the
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Table 6.5: Performance of COEA for FON with different competitors types. The best results
are highlighted in bold.

Random Elitist Hybrid

1st quartile 0.0086 0.0069 0.0071
GD Median 0.0133 0.0083 0.0102

3rd quartile 0.0198 0.0190 0.0158

1st quartile 0.5991 0.671203 0.6646
MS Median 0.8036 0.7565 0.8288

3rd quartile 0.8891 0.8796 0.9125

Table 6.6: Performance of COEA for KUR with different competitors types. The best
results are highlighted in bold.

Random Elitist Hybrid

1st quartile 0.0329 0.0264 0.0306
GD Median 0.0376 0.0400 0.0537

3rd quartile 0.0807 0.1056 0.0918

1st quartile 0.9608 0.8244 0.9491
MS Median 0.9902 0.9691 0.9868

3rd quartile 0.9986 0.9948 0.9955

best in the metric of GD for DTLZ3. This is expected since the optimal values for variables

x5-x14 are identical and the elitist scheme is able to exploit this relationship very quickly.

On the other hand, it is observed that the random scheme and hybrid scheme demonstrates

better performances when parameter interactions are present. The limitation of high se-

lection pressure introduced by the elitist scheme is also evident from the relatively poor

performance in the metric of MS for all problems. While the random scheme demonstrates

the best for KUR where the PS∗ is discontinuous in the decision space, it produces rela-
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Table 6.7: Performance of COEA for DTLZ3 with different competitors types. The best
results are highlighted in bold.

Random Elitist Hybrid

1st quartile 0.0000 0.0000 0.0000
GD Median 0.0009 0.0010 0.0033

3rd quartile 0.0248 0.0125 0.0172

1st quartile 0.9972 0.9956 0.9956
MS Median 0.9990 0.9979 0.9995

3rd quartile 0.9998 0.9992 0.9999

tively poor results for in terms of convergence for FON and DTLZ3. In contrast, the hybrid

scheme is capable of producing competitive results in all cases. Furthermore, the hybrid

scheme has the best performance in terms of MS for the problems of FON and DTLZ3.

The elitist scheme is the greediest method which may restrict the exploration of possible

relationships between the variables. This explains why it performs well for problems with

low variable interactions but provides relatively poor results for problems with high variable

interactions. In contrast, the random scheme is the least greedy approach that is likely to

consider the different variable relationships and maintain diverse solutions in the evolution.

Hence it performs well for problems with high variable interactions but the random nature

of competitor selection is unable to exploit fully the fact that the optimal solutions for FON

and DTLZ3 lies in the same region. Nonetheless, it is also such a property that allows

the random scheme to evolve a more diverse PF as compared to the elitist scheme. On

the other hand, the hybrid scheme demonstrates characteristics of both random and elitist

scheme allowing it to attain competitive results that are at least comparable to the other

two schemes. Although the three competition schemes behaves differently for the different

problems, it is clear that the proposed coevolutionary model is capable of producing better

performances as compared to the conventional coevolutionary models. Note that these three
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Table 6.8: Parameter setting for different algorithms

Parameter Settings

Populations Population size 100 in dMOEA;
Subpopulation size 10 in dCOEA and dCCEA;
Archive (or secondary population) size 100.

Chromosome Binary coding; 30 bits per decision variable.
Selection Binary tournament selection
Crossover operator Uniform crossover
Crossover rate 0.8
Mutation operator Bit-flip mutation
Mutation rate 1

L for FDA1, dMOP1, dMOP2 and dMOP3;
Niche Radius Dynamic sharing.
Evaluation number 20,000

schemes are only examples of how different competition models can be applied and other

variants can be considered.

6.5 Dynamic Environment Empirical Study

6.5.1 Comparative Study

In order to compare the relative ability of the proposed dCOEA, two different dynamic

MOEAs based on a basic MOEA and CCEA are used as test algorithms. In both dynamic

MOEA (dMOEA) and dynamic CCEA (dCCEA), a fixed number of archived solutions are

re-evaluated in every generation. In the case where a change in landscape is detected, the

temporal memory described previously will be applied and random restart is incorporated

to generate diversity within the evolving population.

Thirty independent simulation runs are performed for each of the test problems, and

the values of the various parameter settings in the algorithm are tabulated in Table 6.8.
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Experiments are conducted at different severity levels of nT = {1, 10, 20} and different

frequencies of τT = {5, 10, 25} in order to study the impact of dynamism on EMOO. Since

each generation involves 100 evaluations, the setting of τT = 5 means that the landscape

will change in very 500 evaluations. As before, a random initial population is created for

each of the simulation runs in every test problem. In this section, SCratio and Rsize is set

as 0.5 and 5 respectively.

FDA1

FDA1 is convex and as a static problem, should not pose any difficulty to the state-of-the-

arts MOEA. On the other hand, as a dynamic problem, it challenges the dynamic MOEA

ability to track and converge upon PF∗
t with every landscape change. One interesting aspect

of this problem is that the distribution and diversity of the solutions along PFt is not affected

by the landscape change. The simulation results of the algorithms with respect to V Doffline

and MSoffline with various settings of τT and nT are summarized in Table 6.9. In general,

the coevolutionary paradigm seemed more appropriate than canonical MOEA in handling

dynamic landscapes. In addition, it is evident that dCOEA outperforms dCCEA in both

aspects of tracking and finding a diverse solution set. From Table 6.9, it can be observed

that the performances of dMOEA, dCCEA and dCOEA in the aspects of convergence and

diversity improves with increasing τT , i.e. less frequent landscape changes. This is expected

as a larger value of τT allows the algorithms more time to evolve a better PF . While

dMOEA demonstrated better convergence properties with larger values of nT , i.e less severe

landscape changes, the performance of dCCEA and dCOEA actually improves with the

severity of change.

dMOP1

Unlike FDA1, the convexity of dMOP1 changes with time while the location of PS∗ remains

fixed and it challenges the dynamic MOEA ability to maintain a diverse PF∗
t with every
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Table 6.9: Performance of MOEA, dCCEA and dCOEA for FDA1 at different settings of
τT and nT . The best results are highlighted in bold only if it is statistically different based
on the KS test.

VDoffline MSoffline

(τt, nT ) MOEA dCCEA dCOEA MOEA dCCEA dCOEA

1st quartile 0.666 0.243 0.107 0.789 0.829 0.939
(5,10) Median 0.683 0.255 0.110 0.801 0.834 0.944

3rd quartile 0.695 0.264 0.113 0.801 0.841 0.953

1st quartile 0.489 0.154 0.034 0.870 0.863 0.963
(10,10) Median 0.508 0.163 0.038 0.878 0.873 0.970

3rd quartile 0.521 0.167 0.039 0.890 0.882 0.977

1st quartile 0.485 0.080 0.001 0.876 0.926 0.979
(25,10) Median 0.528 0.091 0.002 0.894 0.939 0.985

3rd quartile 0.583 0.102 0.003 0.914 0.947 0.989

1st quartile 1.008 0.135 0.020 0.535 0.857 0.973
(10,1) Median 1.031 0.149 0.022 0.585 0.866 0.981

3rd quartile 1.064 0.156 0.025 0.599 0.883 0.984

1st quartile 0.542 0.152 0.039 0.847 0.858 0.970
(10,20) Median 0.584 0.162 0.042 0.868 0.875 0.975

3rd quartile 0.606 0.171 0.044 0.881 0.888 0.979

landscape change. The simulation results of the algorithms with respect to VDoffline and

MSoffline with various settings of τT and nT are summarized in Table 6.10. As in the

problem of FDA1, dCOEA outperforms dMOEA and dCCEA in both aspects of tracking

and finding a diverse solution set. However, it should be noted that dMOEA outperforms

dCCEA in both performance metrics when τT = 5 and τT = 10. The evolutionary trace of

VDoffline and MSoffline at these settings are plotted in Figure. 6.12. While dCOEA and

dCCEA behaves similarly in the initial generations before the first landscape change, it is

observed that dCCEA is greatly affected by the change in PF shape. On the other hand,

dMOEA is capable of finding PS∗
t as well as a diverse PFt despite the slower convergence
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Table 6.10: Performance of MOEA, dCCEA and dCOEA for dMOP1 different settings of
τT and nT . The best results are highlighted in bold only if it is statistically different based
on the KS test.

VDoffline MSoffline

(τt, nT ) MOEA dCCEA dCOEA MOEA dCCEA dCOEA

1st quartile 0.114 0.230 0.005 0.891 0.825 0.977
(5,10) Median 0.128 0.242 0.007 0.911 0.838 0.983

3rd quartile 0.137 0.252 0.008 0.933 0.846 0.989

1st quartile 0.103 0.111 0.002 0.916 0.880 0.988
(10,10) Median 0.114 0.121 0.003 0.916 0.880 0.988

3rd quartile 0.131 0.132 0.004 0.935 0.888 0.994

1st quartile 0.065 0.023 0.001 0.916 0.931 0.989
(25,10) Median 0.077 0.026 0.00 0.940 0.948 0.991

3rd quartile 0.093 0.030 0.001 0.962 0.962 0.996

1st quartile 0.106 0.120 0.002 0.891 0.870 0.986
(10,1) Median 0.116 0.126 0.003 0.914 0.877 0.990

3rd quartile 0.128 0.137 0.004 0.934 0.893 0.992

1st quartile 0.101 0.115 0.002 0.904 0.871 0.982
(10,20) Median 0.117 0.123 0.003 0.921 0.881 0.988

3rd quartile 0.130 0.133 0.003 0.939 0.890 0.993

speed. Based on previous studies in dynamic SO optimization, diversity schemes such as

random restart tend to perform poorly in situations where change is minimal. Nonetheless,

comparing to the problem of FDA1, increasing the severity of change has relatively less

impact on the metric of VDoffline for the three algorithms. This is probably due to the

incorporation of temporal memory which allows the algorithm to rediscover PS∗ quickly,

even though random restart is utilized in dMOEA and dCCEA.

dMOP2

The convexity and PS∗
t of dMOP2 changes with time and it challenges the dynamic MOEA

ability to track the PS∗
t and maintain a diverse PF∗

t simultaneously with every landscape
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Figure 6.12: Evolutionary trace of dMOEA (-), dCCEA (–) and dCOEA (o) for (a) τT = 5
and nT = 10 and (b) τT = 10 and nT = 10.

change. The simulation results of the algorithms with respect to VDoffline and MSoffline

with various settings of τT and nT are summarized in Table 6.11. In contrast to the previous

two problems, dCOEA is outperformed by dCCEA in the aspect of VDoffline when (τT , nT )

is set as (5,10) and (10,10). Since random restart is applied by dCOEA, it will be interesting

to note that further investigations in the next section demonstrates that a lower SCratio

will actually allow dCOEA to attain better performances. On the other hand, dCOEA

outperforms both dMOEA and dCCEA in tracking and attaining better diversity at the

other settings. In addition, by comparing the metric of MSoffline in Table 6.9, Table 6.10

and Table 6.10, it can be observed that dCCEA is unable to find a diverse PFt when the

shape of PF∗
t is dynamic.
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Table 6.11: Performance of MOEA, dCCEA and dCOEAS for dMOP2 at different settings
of τT and nT . The best results are highlighted in bold only if it is statistically different
based on the KS test.

VDoffline MSoffline

(τt, nT ) MOEA dCCEA dCOEA MOEA dCCEA dCOEA

1st quartile 0.642 0.285 0.352 0.973 0.852 0.988
(5,10) Median 0.666 0.291 0.372 0.981 0.861 0.991

3rd quartile 0.680 0.300 0.384 0.986 0.871 0.994

1st quartile 0.495 0.159 0.173 0.976 0.886 0.991
(10,10) Median 0.517 0.169xx 0.180 0.980 0.902 0.993

3rd quartile 0.535 0.187 0.192 0.987 0.915 0.996

1st quartile 0.462 0.069 0.059 0.9817 0.949 0.991
(25,10) Median 0.514 0.075 0.063 0.989 0.958 0.994

3rd quartile 0.557 0.093 0.071 0.993 0.964 0.997

1st quartile 1.137 0.176 0.140 0.965 0.881 0.991
(10,1) Median 1.166 0.186 0.152 0.978 0.899 0.996

3rd quartile 1.188 0.202 0.176 0.985 0.912 0.998

1st quartile 0.466 0.166 0.162 0.966 0.889 0.991
(10,20) Median 0.487 0.177 0.170 0.979 0.899 0.992

3rd quartile 0.519 0.185 0.184 0.986 0.916 0.996

dMOP3

dMOP3 have similar characteristics to FDA1. However, because the variable that determines

the spread of the solution set is not fixed and changes with time, the dynamic MOEA faces

the additional challenge in tracking a diverse PF∗
t as well. The simulation results of the

algorithms with respect to VDoffline and MSoffline with various settings of τT and nT are

summarized in Table 6.12. Indeed, by comparing Table 6.9 and Table 6.10, it can be observed

that the three algorithms attain lower performances in MSoffline at τT = 5 and τT = 10.

Nonetheless, as in the cases of FDA1 and dMOP2, it is clear that dCOEA outperforms both

dMOEA and dCCEA in both aspects of tracking and finding a diverse solution set for all
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Table 6.12: Performance of MOEA, dCCEA and dCOEAS for dMOP3 at different settings
of τT and nT . The best results are highlighted in bold only if it is statistically different
based on the KS test.

VDoffline MSoffline

(τt, nT ) MOEA dCCEA dCOEA MOEA dCCEA dCOEA

1st quartile 0.679 0.226 0.083 0.619 0.824 0.906
(5,10) Median 0.701 0.2398 0.087 0.637 0.835 0.913

3rd quartile 0.727 0.249 0.09 0.658 0.841 0.927

1st quartile 0.460 0.140 0.013 0.802 0.856 0.943
(10,10) Median 0.482 0.149 0.017 0.822 0.867 0.957

3rd quartile 0.507 0.162 0.021 0.843 0.880 0.965

1st quartile 0.424 0.068 0.001 0.903 0.927 0.976
(25,10) Median 0.467 0.078 0.002 0.914 0.9338 0.983

3rd quartile 0.515 0.096 0.003 0.927 0.949 0.987

1st quartile 1.055 0.129 0.011 0.505 0.861 0.977
(10,1) Median 1.087 0.138 0.014 0.539 0.873 0.981

3rd quartile 1.108 0.15 0.018 0.565 0.886 0.987

1st quartile 0.477 0.138 0.019 0.837 0.855 0.946
(10,20) Median 0.505 0.147 0.022 0.857 0.865 0.954

3rd quartile 0.538 0.155 0.025 0.866 0.883 0.966

settings of τT and nT .

6.5.2 Effects of Stochastic Competitors

The SCratio determines the degree of diversity introduced into the proposed dCOEA after

every landscape change, and hence plays a crucial role in the tracking capability of the

algorithm. The relationship between SCratio = {0.3, 0.5, 0.7, 1.0} with various settings of

nT and τT for FDA1 are shown in Figure. 6.13. These relationships are similarly investigated

for dMOP1, dMOP2 and dMOP3 as illustrated in Figure. 6.14-6.16 respectively. Note that

no stochastic competitors are introduced at SCratio = 1.0.
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Figure 6.13: Performance metrics of (a) VDoffline and (b) MSoffline at nt=1.0 (4), nt=10.0
(◦), and nt=20.0 (2) and (c) VDoffline and (d) MSoffline at τT=5.0 (4), τT =10.0 (◦), and
τT=25.0 (2) for FDA1 over different settings of SCratio
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Figure 6.14: Performance metrics of (a) VDoffline and (b) MSoffline at nt=1.0 (4), nt=10.0
(◦), and nt=20.0 (2) and (c) VDoffline and (d) MSoffline at τT=5.0 (4), τT =10.0 (◦), and
τT=25.0 (2) for dMOP1 over different settings of SCratio
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Figure 6.15: Performance metrics of (a) VDoffline and (b) MSoffline at nt=1.0 (4), nt=10.0
(◦), and nt=20.0 (2) and (c) VDoffline and (d) MSoffline at τT=5.0 (4), τT =10.0 (◦), and
τT=25.0 (2) for dMOP2 over different settings of SCratio
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Figure 6.16: Performance metrics of (a) VDoffline and (b) MSoffline at nt=1.0 (4), nt=10.0
(◦), and nt=20.0 (2) and (c) VDoffline and (d) MSoffline at τT=5.0 (4), τT =10.0 (◦), and
τT=25.0 (2) for dMOP3 over different settings of SCratio

As evident from the metric of MSoffline, the diversity of the evolved PFt generally

improves with the introduction of stochastic competitors. However, the diversity introduced

by this mechanism seem to have a detrimental impact on the tracking ability for dMOP1.

Remember that the location of PS∗
t remains unchanged for this benchmark and the only task

is for the dynamic MOEA to redistribute the solutions along the dimension of x1. Intuitively,

dCOEA is more able to find higher quality solutions to refill the archive since information

within each subpopulation is retained when SCratio = 1. On the other hand, it is unlikely

that the set of nondominated solutions brought about by stochastic competitors is better or

even comparable to the archived solutions before the change in PF∗
t shape. Nonetheless, it

is clear that stochastic competitors play an important role in the tracking of dynamic PS∗
t

for the problems of FDA1, dMOP2 and dMOP3.

In a similar way, dCOEA demonstrates the best performance at high level of severity

when nT = 1 for FDA1, dMOP2 and dMOP3 while performing worst for dMOP1 at the

same setting. This observation is in agreement with past investigations conducted in the

realm of dynamic SO optimization that indicate higher degree of change is required with

severe environmental changes. On the other hand, the introduction of large number of

stochastic competitors at SCratio = 0.3 does not provide any significant improvements at

nT = 1.
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Figure 6.17: Performance metrics of (a) VDoffline and (b) MSoffline at nt=1.0 (4), nt=10.0
(◦), and nt=20.0 (2) and (c) VDoffline and (d) MSoffline at τT=5.0 (4), τT =10.0 (◦), and
τT=25.0 (2) for FDA1 over different settings of Rsize
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Figure 6.18: Performance metrics of (a) VDoffline and (b) MSoffline at nt=1.0 (4), nt=10.0
(◦), and nt=20.0 (2) and (c) VDoffline and (d) MSoffline at τT=5.0 (4), τT =10.0 (◦), and
τT=25.0 (2) for dMOP1 over different settings of Rsize

6.5.3 Effects of Temporal Memory

The Rsize determines the extent in which information about past PS∗
t is stored. A large

Rsize allows a higher degree of information exploitation at the expense of a more diverse

repertoire of past PS∗
t . On the other hand, very limited information regarding each past

PS∗
t is avaliable when Rsize is small. The relationship between Rsize = {0, 5, 10, 20} with

various settings of nT and τT for FDA1 are shown in Figure. 6.16. Note that no memory

is retained at Rsize = 0. These relationships are similarly investigated for dMOP1, dMOP2

and dMOP3 and illustrated in Figure. 6.18-6.20.

Similar observations made previously in Section 6.5.2 such as better tracking perfor-
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Figure 6.19: Performance metrics of (a) VDoffline and (b) MSoffline at nt=1.0 (4), nt=10.0
(◦), and nt=20.0 (2) and (c) VDoffline and (d) MSoffline at τT=5.0 (4), τT =10.0 (◦), and
τT=25.0 (2) for dMOP2 over different settings of Rsize
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Figure 6.20: Performance metrics of (a) VDoffline and (b) MSoffline at nt=1.0 (4), nt=10.0
(◦), and nt=20.0 (2) and (c) VDoffline and (d) MSoffline at τT=5.0 (4), τT =10.0 (◦), and
τT=25.0 (2) for dMOP3 over different settings of Rsize

mances at higher τT and at nT = 1.0 for FDA1, dMOP2 and dMOP3 can also be observed

over the different Rsize settings. Considering the contribution of temporal memory to the

tracking capability of dCOEA, Figure. 6.18-6.20 show that the incorporation of appropri-

ately sized memory tends to improve convergence as indicated by the metric of VDoffline.

The only exception occurs for the case of dMOP1 at the setting of nT = 1.0 and τT = 5.0.

The tradeoff between exploration and exploitation of information is also evident from the

performance trend with increasing Rsize. For instance, when repetition of similar PS∗
t is

very frequent as in the case of nT = 1.0, a large Rsize can be used to mine information from

past PS∗
t since the number of different PS∗

t that needs to be represented in the memory is
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small. Vice versa, only a small Rsize should be applied when number of different PS∗
t over

time is higher.

6.6 Conclusion

This chapter presented a new coevolutionary paradigm that incorporates both competitive

and cooperative mechanisms observed in nature to solve MO optimization problems and to

track the Pareto front in a dynamic environment. The proposed competitive-cooperation

coevolution is capable of overcoming the limitations of conventional coevolutionary mod-

els by allowing the decomposition process of the optimization problem to emerge based on

problem requirements as well as exploiting the high speed of convergence to allow the algo-

rithm to adapt quickly to the changing environment. Based on this coevolutionary model, a

competitive-cooperation coevolutionary algorithm (COEA) is proposed for multi-objective

optimization. Subsequently, this algorithm is extended as a dynamic COEA (dCOEA) and

incorporated the features of stochastic competitors that allows the algorithm to track the

changing solution set and temporal memory that allows the algorithm to exploit past in-

formation. Extensive studies upon three benchmark problems demonstrates that COEA is

capable of evolving near-optimal, diverse and uniformly distribution Pareto fronts even for

problems with severe parameter interactions. The parameter settings and working dynamics

of the competitive mechanism as well as different competitive schemes are also examined,

illustrating the robustness and importance of both competitive and cooperative elements in

a common framework. Likewise, extensive studies are performed to investigate the perfor-

mances of dCOEA over different settings of change severity and change frequency. Simula-

tion results shows that dCOEA is capable of tracking the different environmental changes

in the test functions employed effectively and efficiently. In addition, the contribution and

parameter settings of the diversity scheme and the temporal memory are also analyzed over

various problem settings.



Chapter 7

An Investigation on Noise-Induced

Features in Robust Evolutionary

Multi-Objective Optimization

Branke [19] considered robust optimization as a special case of dynamic optimization where

solutions cannot be adapted fast enough to keep pace with environmental changes. In such

cases, it would be desirable to find solutions that perform reasonably well within some

range of change. Many real-world applications are susceptible to decision or environmental

parameter variation which results in large or unacceptable performance variation. Robust

optimization of MO problems is the third and final type of uncertainty considered in this

work and it involves the optimization of a set of Pareto optimal solutions that remain

satisfactory in the face of parametric variations. This chapter addresses the issue of robust

MO optimization by presenting a robust continuous MO test suite with features of noise-

induced solution space, fitness landscape and decision space variation. In addition, the

vehicle routing problem with stochastic demand (VRPSD) is presented a practical example

of robust combinatorial MO optimization problems.

173
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7.1 Robust measures

In order to avoid any confusion in the subsequent discussions, it will be instructive to make

a distinction between the notations used for deterministic MO and robust MO optimization.

The terms PF∗ and PS∗ refer to the desired Pareto front and solution set in the general sense,

without representing any specific case. The optimal Pareto front and the corresponding

Pareto solution set of a particular deterministic MO problem will be denoted as PF∗
det and

PS∗
det respectively. Note that PF∗

det may not be known a priori and it is fixed for any

particular MO problem. The final set of nondominated solutions evolved by MOEA will be

termed as PFA
det.

In the case of robust MO optimization, the optimal robust Pareto front and solution set

are also dependent on the noise model and the robust measure. This implies that, contrary

to PF∗ and PS∗, the optimal robust Pareto set is not fixed. Furthermore, the structure of the

Pareto front, i.e. its dimensionality may change as well due to the additional optimization

criteria of robustness. Therefore, the notation should reflect the noise model and the robust

measure used. In this paper, the optimal robust Pareto front and optimal solution set

are denoted as PF∗
rm,σ and PS∗

rm,σ respectively. The terms rm and σ refers to the robust

measure and noise model in consideration. Accordingly, PFA
rm,σ refers to the final set of

nondominated solutions evolved by robust MOEA based on the robust measure, rm and

noise model, σ.

There are several possible notions of robustness and many different robust measures

have been applied in the literature. The most popular and straight-forward measure is

the optimization of the expected performance over the possible disturbances, i.e. E(fi) =

1
N ·

∑N
i=1 fi(~x + ~σi). Solutions that are optimized based on expected fitness are known as

effective solutions. Hence, for MO optimization, the resulting Pareto front is known as the

effective Pareto front (PFA
eff,σ). Other measures includes the optimization of the worst case

scenario [155], as a constraint to be satisfied [40], and various forms of variances.
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Figure 7.1: Illustration of the different robust measures, constrained (– –), standard devia-
tion (- - -), effective (-·-·) and worst case (· · ·), with respect to the deterministic landscape
(—)

Each of these robust measures reflects the different aspects of robustness and Figure 7.1

illustrates the behavior of the different robust measures for an arbitrary function of varying

sensitivities in the search space. The various plots are generated by sampling the values of x

with uniform distribution of [−0.025, 0.025]. If the model is known with absolute certainty

and the solution can be implemented exactly, then the global optimal represented by the

deterministic solution at x = 0.5 is the ideal solution. However, if variable x is stochastic,

then the solutions presented by the other approaches will be more viable and the location

of the optimal is also different. In particular, it can be noted the expected mean approach

will favor the solution at x = 0.11 while the approaches based on variance and worst case

will favor the solution at x = 0.75. On the other hand, the constrained approach indicates

the feasible solutions which satisfies the pre-defined criteria.
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7.2 Evolutionary Robust Optimization Techniques

While MOEAs have been demonstrated to be capable of discovering good tradeoff solutions

for various MO problems, it is necessary to ensure that these solutions are implementable

in practice. However, conventional MOEAs are unable to identify robust solutions and lack

the necessary mechanisms to find PS∗
rm,n unless it coincides with the PS∗

det.

The role of a robust MOEA is to find a set of PFA
rm,n that is more robust than that

evolved by MOEA while maintaining relatively good solution quality. It can be noted

that studies on evolutionary robust optimization are mainly conducted in the domain of

robust SO optimization and it is unlikely that these techniques are suitable for robust MO

problems, as in the case of SOEAs for MO optimization. Nevertheless, the robust measures

and uncertainty handling mechanisms adopted in these works are generally applicable for

robust MO optimization; subsequent discussions are largely based on these studies and on

its suitability in the context of robust MOEA. It should also be noted that only three studies

addressing robust MO optimization [40,73,81] are known to exist in the literature. Specific

issues such as diversity preservation and fitness assignment must be considered in robust

MOEA design.

Based on the state-of-the-arts, EAs for robust optimization can be classified into SO

and MO approaches depending on how the various measures are incorporated into the EA.

1. The SO approach optimizes the selected robust measures in place of the original

objectives.

2. The MO approach considers the various MO objective functions and selected robust

measures as separate entities during optimization.

As noted by Jin and Branke [107], the former is the more popular approach. This is perhaps

because of its ease of implementation whereas there is a need to consider the implications

brought about by the increase in problem dimensionality for the latter.
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7.2.1 SO approach

Since it is usually difficult to compute the various robust measures analytically, this approach

is also characterized by the stochastic evaluation of the adopted robust measure to account

for uncertainties, i.e. these measures are usually estimated over a number of randomly

sampled perturbations. The optimization of the expected objective values estimated from

the mean of the sampled points is also known as explicit averaging and has been applied

successfully for robust MO optimization [40]. In the same work, the effects of sample size

and noise level on PFA
eff,n are investigated.

Although simple to implement, stochastic evaluation is computationally intensive since

additional solution evaluations are required. It can be expected that this situation will

be exacerbated by the presence of multiple objectives in MO problems. Therefore, suitable

methods for reducing the number of evaluations will be required to lower total computational

cost. To this end, the Latin hypercube sampling is applied by [19, 40] to get a better

estimate fitness estimate. Other methods in the robust SO optimization literature that are

appropriate for reducing computational cost of robust MOEAs include:

• Allocation of more computational resource for the evaluation of Pareto-optimal solu-

tions,

• Sampling of neighborhood solutions,

• Adaptation of computational resource allocation for evaluation through the evolution-

ary process, and

• Use of approximate models in place of the original objective functions.

A viable option for the efficient optimization of expected objective values is the method

of implicit averaging [207,208] where individual solution is perturbed once before evalua-

tion. This approach is based on concept that solutions are implicitly averaged over a set



CHAPTER 7. 178

of perturbed samples as the MOEA tends to revisit promising regions of the search space.

Tsutsui and Ghosh also showed, by means of the Schema theorem, that an EA with infinite

population size working on perturbed evaluations has the same effects as working on the

effective fitness.

7.2.2 MO approach

The MO approach involves both deterministic and stochastic evaluation of the various objec-

tives and robust measures respectively. Therefore, computational cost is also an important

issue as in the case of the SO approach.

At present, there are two variants of the MO approach for robust MOEA. The first ap-

proach optimizes the selected robust measures on top of the existing deterministic objective

functions and sought to discover the inherent tradeoff between optimality and robustness.

This is also known as the MO approach [109] and various combinations of different measures

such as expected fitness and variance-based measures have been applied in the evolutionary

robust SO optimization literature. In [167], Ray utilized three objectives, the deterministic

objective value, the effective objective value and the standard deviation, to evolve designs

that remains feasible under decision variable variations. In [136], Lim et al also presented

a SO/MO inverse evolutionary optimization methodology for robust design. In contrast to

conventional forward robust optimization, the inverse approach avoid making assumptions

about the uncertainty when insufficient field data exists for estimating its structure. Apart

from the objectives of nominal fitness and robustness, Lim et al consider the possible bene-

fits as the uncertainty prevails by introducing an opportunity criterion in the inverse search

scheme as the third objective. The second variant is proposed by Deb and Gupta [40] as

a more practical approach to the SO method and treats the selected robust measures as

hard constraints. The goal is to evolve the best PFA
det that satisfies the tolerable bounds on

performance deviation.
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7.3 Robust Optimization Problems

This section presents a set of guidelines for the construction of robust MO test problems.

Based on the existing literature on robust optimization, Section 7.3.1 reviews the different

categorization of robust problems and presents a classification schemes applicable to MO

optimization. Desirable properties of robust MO problems are highlighted and some existing

test problems are analyzed empirically in Section 7.3.2. Subsequently, the robust landscape

generator and detailed construction guidelines are presented in Section 7.3.4. Finally, a ve-

hicle routing problem with stochastic demand (VRPSD) test suit is proposed as an example

of a real-world representation of combinatorial robust MO problem in Section 7.3.5.

7.3.1 Robust MO Problem Categorization

Robust optimization is very similar to noisy optimization and often considered in the same

context. However, there are significant differences between these two forms of uncertainties.

For noisy optimization, uncertainty is inherent to the objective functions and it tends to

mislead the optimization process, resulting in convergence to sub-optimal solutions. In the

case of robust optimization, noise is incorporated into the objective functions to guide the

optimization process to regions that are less sensitive to parametric variations.

Different categorization of robust problems have been considered in the literature. Based

on the source of uncertainty, Jin and Branke [107] states that robust optimization can be

considered from the perspective of solution sensitivity to decision variable variation or en-

vironmental variation. Decision variable variation stems from the fact that deviations from

design specifications are inevitable in manufacturing. On the other hand, environmental

variable variation arises from variations in operational or environmental conditions. In-

stances of environmental variations include temperature changes in circuit design [204],

speed changes in aerodynamic shape and turbine blade design, and machine breakdowns in

manufacturing scheduling.
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An alternative classification of SO problems based on the relationship between the effi-

cient and effective fitness landscapes is presented recently in [157]. Paenke et al proposed

four categories: 1) identical optimum where efficient and robust optimum are identical, 2)

neighborhood optimum where efficient and robust optimum are located on the same peak or

trough, 3) local-global flip where one of the local optimum corresponds to the robust opti-

mum, and 4) max-min flip where the global maximum corresponds to the robust optimum.

Deb and Gupta [40] considered a similar classification that is specific to the context of MO

optimization: 1) the global efficient front is robust, 2) a part of the global efficient front is

not robust, 3) the robust front is represented by a local efficient front, and 4) the robust

front is represented by both the global and local efficient fronts.

Robust MO problems are certainly much more complex than SO problems as both

decision space and objective space are susceptible to change due to uncertainties. Recent

studies [14,182] have shown that some problems have the interesting property of demonstrat-

ing fitness topological changes in the presence of noise. To be precise, topological variation

strictly refers to the introduction of new problem features to the deterministic problem un-

der the influence of noise. For the two classification schemes described above, problems of

the first category are typically considered to be less interesting as compared to problems of

the other classes. On the other hand, it is possible that noise-induced landscape variation

can actually result in a more challenging optimization problem even if the location of the

optimum remains the same. Moreover, a landscape transformation may result from the

addition of different robust criteria as objectives to be solved. Therefore, it will certainly be

more interesting to classify robust MO problems according to the aspects of change under

the influence of noise, i.e, how the decision space and objective space behaves in the face of

uncertainties.

Most benchmark problems in the literature are commonly characterized by the emer-

gence of a local optimum as the most robust solution in the presence of noise, signifying

a change in the location of the optimum, and in the context of MO problem, a change in
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PS∗. Moreover, as mentioned above, it is distinctly possible that the whole fitness topol-

ogy changes leading to two distinct types of search space variation. As noted by Deb and

Gupta [40], the PF∗ is also susceptible to changes. For the classification of robust MO

problems, this paper defines a three-bit binary number where the bits, in decreasing sig-

nificance, represents the presence of PF∗, PS∗, and landscape changes respectively. As a

specific instance, a MO problem that demonstrates landscape and PS∗ changes is a class 5

problem under this classification.

The above classification will be useful in the investigation of the various problem charac-

teristics impact on evolutionary MO optimization as well as identifying the suitability of the

different robust handling techniques. Other aspects of robust MO problem that are worth

considering includes the effect of the different robust measures on the landscape transfor-

mation and the degree of change with increasing noise levels. As shown in Figure 7.1, the

various robust measures results will result in different transformation. For the latter case,

the change in landscape properties such as the height of each peak may change gradually

with noise or it may be a sudden change of landscape feature once a certain noise threshold

is reached.

7.3.2 Empirical Analysis of Existing Benchmark Features

Several desirable properties of deterministic benchmarks and test suites have been suggested

in the EA literature. In addition to these guidelines, the following issues should be considered

in the development of robust benchmark problems in the context of MO optimization:

• Robust MO problems are essentially MO problems and guidelines for the construction

of MO benchmark problems established in previous research should be taken into

account;

• The PF∗ of the test functions should not be any more difficult to find compared to

PF∗
rm,n when conventional MOEAs are applied;
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• Some test problems should contain existing or emergent features that pose more dif-

ficulty when robust MO optimization techniques are employed;

• The “sensitive ” component of the benchmark problems should be scalable;

• Some test problems contains possible tradeoffs in robustness between different objec-

tives;

In general, any test function should be simple enough to allow for analysis of algorithmic

behavior but, at the same time, complex enough to allow conjectures to the real-world [17].

However, a quick survey of past works will reveal the lack of problem characteristics beyond

the basic landscape featuring contrastive sharp and broad peaks or troughs in the evaluation

of uncertainty-handling techniques. In particular, some robust SO test functions may be

too simplistic for proper algorithmic evaluation with the apparent lack of difficulties that

may hinder the selection of robust MO solutions. Furthermore, some robust benchmarks

are distinctly multi-modal in nature and it may be difficult to ascertain whether the ro-

bust solution found is the consequence of premature convergence or the effectiveness of the

particular robust optimization technique.

Therefore, empirical investigations are conducted in this section to analyze the behavior

of four existing benchmark problems found in the literature. Three of the problems studied

are extended from SO benchmark problems in [17,20,157] using the ZDT framework [229],

which allows the easy incorporation of problem characteristics that hinder MOEA progress

to the Pareto front. The fourth is a robust MO problem proposed in [40]. All four bench-

mark problems are class 2 test functions, i.e only the PF∗ changes. The definitions of

these extended benchmarks are summarized in Table 7.1. To examine the scalability of the

“sensitive” components of these problems, experiments are conducted at nx,r = {2,5,10}.

In the simulation studies, two state-of-the-arts MOEA, NSGAII and SPEA2, are applied

to determine the difficulty of finding PF∗
det. Both algorithms are implemented using the same

binary coding scheme of 15 bits, binary tournament selection, uniform crossover, and bit
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Table 7.1: Definition of robust Test Problems

Problem Definition

rMOP1 [20] f1(x1) = x1,
f2(x2, ...xnx,r) = g · h,

g(x2, ...x|nx,r|) = 1 +
∑nx,r

i=2 (2− sin
√
|40xi|+ 20−|xi|

20 ),
h(f1) = 1−

√
f1

where x1 ∈ [0, 1], −20 ≤ xi < 20, ∀i = 2, ..., nx,r

rMOP2 [17] f1(x1) = x1,
f2(x2, ...xnx,r) = g · h,
g(x2, ...xnx,r) = 1 +

∑nx,r

i=2 G(xi),

G(xi) =
{

0.2− (xi + 1)2 − 0.8 · | sin(6.283xi)|, if − 2 ≤ xi < 0
0.6411 + 0.6 · 2−8·|xi−1| − 0.8 · | sin(6.283xi)|, if 0 ≤ xi < 2

h(f1) = 1−
√

f1

where x1 ∈ [0, 1], −2 ≤ xi < 2, ∀i = 2, ..., nx,r

rMOP3 [157] f1(x1) = x1,
f2(x2, ...xnx,r) = g · h,
g(x2, ...xnx,r) = 1 +

∑nx,r

i=2 G(xi),

G(xi) =





0.6− 0.5 exp(−0.5 · (xi−0.4)2

0.052 ), if xi < 0.4693

0.6− 0.6 exp(−0.5 · (xi−0.5)2

0.022 ), if 0.4693 ≥ xi ≤ 0.5304

0.6− 0.5 exp(−0.5 · (xi−0.6)2

0.052 ), if otherwise
h(f1) = 1−

√
f1

where xi ∈ [0, 1], ∀i = 2, ..., nx,r

rMOP4 [40] f1(x1) = x1,
f2(x2, ...xm) = h · (g + S),
g(x|nx,r |+2, ...xm) =

∑m
i=|nx,r |+2 50x2

i ,

S(f1) = 1−
√

f1

h(x2, ..., x|nx,r|+1) = 2− 0.8 exp(
∑|nx,r |+1

i=2 (xi−0.35
0.25 )2)

− exp(
∑|nx,r |+1

i=2 (xi−0.85
0.03 )2)

where x1 ∈ [0, 1], −20 ≤ xi < 20, ∀i = 2, ..., m
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Table 7.2: Empirical Results of NSGAII and SPEA2 for the different robust MO test func-
tions

NSGAII SPEA2
Ratio Space Maximum Ratio Space Maximum

Spread Spread

2-D 0.8867 0.5411 1.0 0.7280 0.6582 1.0
rMOP1 5-D 0.0 0.5431 1.0 0.0 0.6783 1.0

10-D 0.0 0.5626 0.9999 0.0 0.6773 0.9999

2-D 0.9947 0.5314 1.0 0.9890 0.6362 1.0
rMOP2 5-D 0.9883 0.5369 1.0 0.9840 0.6278 1.0

10-D 0.9850 0.5781 0.9999 0.9807 0.6849 0.9999

2-D 0.9853 0.5332 1.0 0.9833 0.6354 1.0
rMOP3 5-D 0.7193 0.4965 1.0 0.6203 0.6484 1.0

10-D 0.0 0.5039 0.9999 0.0 0.6268 1.0

2-D 0.5250 0.5066 0.9999 0.4243 0.6500 0.9999
rMOP4 5-D 0.0920 0.5012 0.9997 0.0 0.6442 0.9999

10-D 0.0 04900 0.9997 0.0 0.6174 0.9998

flip mutation. The simulations are implemented in C++ on an Intel Pentium 4 2.8 GHz

computer and thirty independent runs are performed for each of the test functions in order to

obtain the statistical information, such as consistency and robustness of the algorithms. The

simulation results with respect to the metrics of ratio of convergence, S and MS are shown

in Table 7.2. The ratio of convergence is based on the average number of nondominated

solutions in each run that are located in the vicinity of PS∗
det. A solution is considered to

be in the vicinity of the PS∗
det if it has a Euclidean distance of less than 0.05 difference from

the nearest point in the PS∗
det.

From the simulation results, it is observed that NSGAII and SPEA2 generally performs

similarly for the set of benchmark problems. It is evident from the metrics of S and MS

in Table 7.2 that both algorithms are capable of consistent performance in the aspects of
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solution distribution and diversity. This is due to the manner in which the test problems

are constructed where the distribution and diversity of the solution set is optimized only

through the h() function. With the exception of rMOP2, NSGAII and SPEA2 are unable

to locate the PF∗
det consistently and this situation worsens with increasing solution space

dimensionality. Since the algorithms converges to regions that are less sensitive to parametric

variation readily even without the incorporation of any robust handling mechanisms, it is

clear that the characteristics exhibited by rMOP1, rMOP3 and rMOP4 are not suitable for

the evaluation of robust MOEA techniques and the sensitive component of these problems

are clearly not scalable. On the other hand, the problem of rMOP2 has been specially

designed by Branke such that the basin of attraction and areas under the curve of the peaks

are the same. Consequently, it is the only problem that allows NSGAII and SPEA2 to

converge to the PF∗
det.

7.3.3 Robust MO Test Problems Design

The fundamental component of the robust MO test functions proposed in this paper is a

Gaussian landscape generator that introduces various parametric sensitivities to the deter-

ministic fitness landscape. It generates a set of nx,r-dimensional minima throughout the

fitness landscape and it is given by:

b( ~xr) = 1− 1
|xr|

∑

i∈xr

max
j∈J

{
hij · exp[(

xi − µij ·Eij(σ, sij)
w

)2]
}

(7.1)

Eij(σ, sij) = 1 + sij ·U(−σ, σ) (7.2)

where J is the number of basis functions, dj , µij , and w denote the amplitude, location

and the width of the basis functions. Eij is function that controls how the environmental

variable behaves with noise, σ and the degree of sensitivity, sij . Intuitively, the robustness

of a particular basin will depend on the associated Eij function while the amplitude will

determine the optimality of the solution. From (7.1) and (7.2), it can be noted that test
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functions designed using this landscape generator is different from most previous works in

two aspects:

• Any solution space or objective space transformation is a consequent of environmental

variation. Although environmental parameter variation is rarely considered in the

literature, it is definitely more flexible compared to decision parameter variation when

it comes to the design of different possible scenarios.

• As observed from the simulation studies conducted in the previous section, it is impor-

tant for the basin of attraction of the various troughs to be very similar. This ensures

that there is no initialization bias towards any particular region of the search space.

The max function has been used successfully in previous work [65, 73] to combine the

different Gaussian components, and it ensures that the landscape feature at any one point is

determined and influenced only by the dominant basin. Without the overlapping influences

from the other basis functions, this allows each basis function to be considered indepen-

dently and facilitates the design and analysis of the robust test function. In particular, it is

possible to define explicitly the location and depth of the different basins to create different

test functions with specific characteristics. For the purpose of evaluating algorithmic perfor-

mance, it is necessary to know the relative degree of robustness for each minima. Assuming

σ is uniformly distributed that is independent for each Rij(), the theoretical values for each

basis function can be easily worked to be:

Bj = dj ·
(w
√

π

2sijσ
· erf(

sijσij

w
)
)

(7.3)

One desirable property of this test generator is that it provides a means to extend exist-

ing MO test problems to robust MO test functions without changing the original problem

characteristics. The rationale is to allow researchers to investigate the impact of robust op-

timization on test functions with different characteristics such as deception, multi-modality
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and discontinuities. As a specific instance, consider the i-th objective function of an arbi-

trary MO benchmark problem. The corresponding objective function of the extended robust

MO test function can be written as:

f ′
i(~x) = fi( ~xd) + b(~xr) (7.4)

where ~xd represents the subset of decision variables associated with original problem while

~xr represents the subset of decision variables of the robust component of the problem.

In this paper, the robust MO test problems are built upon the ZDT framework, which

has been applied earlier in Section 7.3.2 to extend the robust SO problems. The flexibility

of this framework has also been demonstrated by the development of a suite of dynamic MO

problems by Farina et al in [52]. The guidelines for the construction of the deterministic

ZDT test functions are formally described by the following

min f1( ~xd1) = x1

min f2( ~xd2) = g( ~xd2) · h(f1, g)
(7.5)

where ~xd1, ~xd2 ∈ ~x, and the g and h functions control the problem difficulty and the shape

of the Pareto front respectively. For the ensuring discussions, we assume that the particular

ZDT problem to be extended have the following functional form,

g( ~xd2) = 1 +
∑

x∈xd2
xi

h(f1, g) = 1− (f1
g )α.

(7.6)

7.3.4 Robust MO Test Problems Design

Basic landscape generation

Noise-induced changes to the PF∗, PS∗, and fitness landscape can be introduced by incor-

porating b into either the h and/or g functions to construct different classes of robust test
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Figure 7.2: An example of a 2-D landscape with two basins with s = 1 at (a) σ = 0.0 and
(b) σ = 0.15. The minima at (0.75,0.75) is optimal under a deterministic setting while the
minima at (0.25,0.25) emerges as the global robust minima at σ = 0.15. The corresponding
Pareto fronts of the resulting problem in (c) shows the relationship between the two minima.

problems. A straight forward approach of introducing robust features into the problem is

to change g in the form of g(~x) = 1 + b( ~xr), with h and f1 unchanged. ~xr is also a subset

of ~x. Let us consider a two-dimensional landscape generated by

b(~xr) = 1− 1
|xr |

∑
i∈ ~xr

max
{

0.8 exp[(xi−0.25Ei1(σ,s)
0.1 )2]

, exp[(xi−0.75Ei2(σ,s)
0.1 )2]

}
.

(7.7)

The problem landscape presented by b at σ = {0, 0.15}, and the resulting Pareto fronts

are shown in Figure 7.2. The minima located at (0.75,0.75) is the global minima in a
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Figure 7.3: An example of a arbitrary 2-D landscape with J = 40 at (a) σ = 0.0 and (b)
σ = 0.15. The minima at (0.75,0.75) is optimal under a deterministic setting while the
minima at (0.25,0.25) emerges as the global robust minima at σ = 0.15.

deterministic setting and failure to converge to this point will result in a dominated solution.

With s = 1, notice that the effects of noise on the basin at (0.75,0.75) is actually three time

more than that of the basin at (0.25,0.25). Thus, when noise is incorporated into the

problem, the local minima at (0.25,0.25) constitutes to the PF∗
rm,n as it is more robust and

its performance is less affected by noise. Since the only change induced by noise is the

location of PS∗, this is a simple instance of a class 2 robust problem.

On the other hand, if the g and b function are combined such that

g(~x) = (1 +
∑

x∈xd2

xi) + b(~xr), (7.8)

the resulting problem is also a class 2 problem. However, such a formulation allows the

analysis of the effects of robust optimization on the original problem. Thus the robust

MOEA must be capable of finding the global robust minima associated with b as well

dealing with the difficulties posed by the deterministic problem in order to find PF∗
rm,n. It

is also possible to redefine f1 as f1(~x) = x1 + b( ~xr) to construct a class 2 problem with

similar properties.
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Instead of hand designing b, the landscape generator can be parameterized to generate

arbitrary landscapes by specifying key geometric properties such as the number of basins,

the noise level at which investigations are conducted and the locations of the optimal de-

terministic and robust minima. The geometric properties of the other J − 2 basins must be

selected such that their effective minima computed by (7.3) are worse than the predefined

global robust optima by some predefined ratio. A basin j is considered to be more robust

than a basin k if the following criteria is met: sij ·µij < sij ·µik . In addition, the sensitivity

of each basin to noise should adhere to the condition of s1j · µ1j = s2j · µ2j = ... =ij ·µij for

the landscape to behave properly.

Accordingly, the general form of the landscape generator can be written as

〈RLS : [~µr, hr], [~µg, hg], σ, J, w, β〉 (7.9)

where ~µr and hr, ~µg and hg specifies the location and depth of the global robust and

deterministic minima respectively while β is the factor at which the next best robust optima

is worse compared to the global robust optima. An example of a 2-D landscape generated

using the specification of

〈[(0.25, 0.25), 0.8], [(0.75, 0.75), 1.0], 0.1, 40, 0.1, 0.1〉 (7.10)

is shown in Figure 7.3. Note that the landscape illustrated in Figure 7.2 can be generated

by specifying J = 2.

Changing the decision space

When combined with g in the ways described above, the b function give rise to the element

of noise-induced changes to the PS∗ and results in class 2 test problems. Features of noise-

induced search space variation can be easily incorporated into the problem by changing g
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in the following form,

g(~x) = 1 + (
∑

x∈xd2

xi)β−b( ~xr), (7.11)

which forces the distribution of the solutions to change. Notice that g is now a function of

b. In this particular instance, it is possible to apply (7.7) as the b function but finding its

optimal minima will has no direct contribution to solution optimality. Interestingly, finding

the optimal for b will improve the distribution of the solutions near PS∗ and hence simplifies

the problem somewhat. Thus the resulting problem will be considered as a class 1 test

problem.

More complex fitness topology variation can be induced by making h a function of g

instead. In particular, consider the scenario where we define b such that the width, i.e. size

of the basin of attraction, of the selected minima is a function of g and replace the g function

by

g′(~x) = g( ~xd2) + b( ~xr, g). (7.12)

The corresponding problem depends on the characteristics of the b function; it is a class 1

test problem if J = 1 and class 3 test problem if J ≥ 1 and deterministic and robust optimal

is different. In any event, the robust MOEA must be able to deal with the features that

arises due to noise in order to find PF∗
rm,n.

Changing the solution space

Since the shape of the PF∗
det is determined by the h function in the ZDT framework, PF∗

rm,n

can be easily controlled by combining the b and h in some appropriate way. The simplest

way to introduce PF∗ change is to control its convexity:

h(f1, g, ~xr) = 1− (
f1

g
)α+b( ~xr). (7.13)

If the g function is unchanged and b defines a single basin, only the convexity of the PF∗ is

affected by noise while PS∗ remains the same. Thus, the resulting problem is a class 4 test
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problem and the robust MOEA must be capable of distributing the solutions along PF∗ with

varying noise-induced convexity. However, if b is characterized by multiple basins as illus-

trated in Figure 7.2 or Figure 7.3, both the PF∗ and PS∗ will change and the corresponding

problem becomes a class 6 test problem instead.

It is also possible to redefine the h function as,

h(f1, g, b) = b( ~xr, f1)−

√
(
f1

g
). (7.14)

where b is now a function of f1 as well. One interesting implication of such a formulation,

particularly if sensitivity of the relevant basins increases with f1, is the resulting tradeoffs

between the robustness and optimality of f2. Therefore, a part of the PF∗ will become dom-

inated in the presence of noise and hence only part of x1 makes up the PF∗
rm,n. Intuitively,

the corresponding problem is class 6 test problem.

Example of a robust MO test suite

Having described the possible modifications to extend the ZDT test problems, we are now in

the position to suggest a suite of five robust MO test problems summarized in Table 7.3 and

Table 7.4 that satisfies the requirements described in Section 7.3.2. Although not all seven

classes of problems are represented, these problems embody the most challenging aspects

of robust MO optimization that have been described previously. Nonetheless, interested

readers are encouraged to construct more interesting problems based on the guidelines made

in the previous sections. At this point, it is worth mentioning that the proposed b function

can also be employed as a non-optimizable component of the problem and as a noise-sensitive

environment variable instead, i.e. b(R).

GTCO1 utilizes the effects of (7.12) to bring about a change from unimodal at σ = 0.0

to multimodal fitness landscape at σ = 0.2 as shown in Figure 7.4. The PS∗
det and PS∗

rm,n

is the same at all noise levels and corresponds to xi ∈ ~xd1 = 0 and xi ∈ ~xr = 0. The
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Table 7.3: Definitions of the GTCO test suite

Problem Definition

GTCO1

f1( ~xd1) = x1

g( ~xd2) = 1 +
∑| ~xd2|

i=2 (xi − 0.5)2 + b(~xr, xi)

h(f1, g) = 1−
√

f1

g

b(~xr, xi) = 1− 1
| ~xr |

∑
j∈ ~xr

exp[(xj−Ei(σ,s)
W (xi)

)2]
W (xi) = 0.1 + 0.1 cos(20(xi − 0.5)π) · (1− |xi − 0.5|)5

Ei(σ, s) = U(−σ, σ), ~xd1, ~xd2, ~xr ∈ [0, 1]

GTCO2

f1( ~xd1) = x1

g(~x) = 1 + b( ~xr)

h(f1, g) = 1−
√

f1
g

b(~xr) = 1− 1
| ~xr |

∑
i∈ ~xr

max
{

0.8 exp[(xi−0.25Ei1(σ,s)
0.1 )2]

, exp[(xi−0.75Ei2(σ,s)
0.1 )2]

}

Eij(σ, s) = 1 + U(−σ, σ), ~xd1, ~xd2, ~xr ∈ [0, 1]

GTCO3

f1( ~xd1) = x1

g(~x) = 1 + 10(
∑| ~xd2|

i=2
xi

| ~xd2|−1
)1.25−b1( ~xr1) + b2( ~xr2)

h(f1, g) = 1−
√

f1
g

b1( ~xr1) = 1− 1
| ~xr1 |

∑
i∈ ~xr1

exp[(x5
i−E1,i(σ,s)

0.05 )2]

b2( ~xr2) = 1− 1
| ~xr2 |

∑
i∈ ~xr2

max
{

0.8 exp[(xi−0.25E2,i1(σ,s)
0.1 )2]

, exp[(xi−0.75E2,i2(σ,s)
0.1 )2]

}

E1,i(σ, s) = U(−σ, σ),
E2,ij(σ, s) = 1 + U(−σ, σ), ~xd1, ~xd2, ~xr1, ~xr2 ∈ [0, 1]
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Table 7.4: Definitions of the GTCO test suite

Problem Definition

GTCO4

f1( ~xd1) = x1

g( ~xd2) = 1 + 10
∑| ~xd2|

i=2 xi

h(f1, g, ~xr) = 1− (f1
g )α, α = 0.5 + b( ~xr)

b( ~xr) = 1− 1
| ~xr |

∑
i∈ ~xr

max
{

0.8 exp[(xi−0.25Ei(σ,s)
0.05 )2]

, exp[(xi−0.75Eij(σ,s)
0.05 )2]

}

Eij(σ, s) = 1 + U(−σ, σ), ~xd1, ~xd2, ~xr ∈ [0, 1]

GTCO5

f1( ~xd1) = x1

g(~x) = 1 +
∑| ~xd2|

i=2 xi + 5b1( ~xr1)

h(f1, g) = 1 + 2b2( ~xr2, f1)−
√

f1
g

b1(xr1, xi) = 1− 1
| ~xr1 |

∑
i∈ ~xr1

exp[(xi−Ei(σ,s)
W1(xi)

)2]

b2( ~xr2, f1) = 1− 1
| ~xr2 |

∑
i∈ ~xr2

exp[(xi−Ei(σ,s)
W2(f1)

)2]

W1(xi) =
{

0.2, if xi < 0.05
0.1xi + 0.05, otherwise

W2(f1) = 0.2 · (1.1−
√

f1)
Ei(σ, s) = U(−σ, σ), ~xd1, ~xd2, ~xr1, ~xr2 ∈ [0, 1]

problem becomes increasingly multimodal with increasing σ and this is an instance where

the problem becomes more challenging and the robust MOEA will face difficulties finding

PF∗ due to the landscape change. The settings of | ~xd2| = 10, | ~xr| = 5 and σ = 0.2 are

recommended for GTCO1.

GTCO2 is an instantiation of the two-minima scenario considered in Section 7.3.4. This

problem is similar to the problem of rMOP4 in the sense that the deterministic global and

local minima switches when noise is increased beyond threshold as shown in Figure 7.5.

However, as mentioned before, the basins of attraction for both minima are the same which

eliminates initialization bias. The PS∗
det corresponds to ~xr = 0.75 while PS∗

rm,n corresponds

to ~xr = 0.25. The settings of | ~xr| = 10 and σ = 0.2 are recommended for GTCO2.
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Figure 7.4: Fitness landscape of GTCO1 with |xr| = 2 at (a) σ = 0.0 and (b) σ = 0.2.
GTCO1 is unimodal under a deterministic setting and becomes increasingly multimodal as
noise is increased.
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Figure 7.6: 10000 random solutions for GTCO3 at (a) σ = 0.0 and (b) σ = 0.2. The density
of the solutions near the Pareto front is adversely affected in the presence of noise and
deteriorates with increasing uncertainties.
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Figure 7.7: The resulting Pareto front of GTCO4 at (a) ~xr = 0.75 and (b) ~xr = 0.75 for
σ = [0.01, 0.1].

GTCO3 represents a combination of GTCO2 and the effects of (7.11) to induce both

fitness landscape and PS∗ changes in the presence of noise. Noise-induced changes to the

decision space is similar to GTCO2 except that the density of the Pareto optimal solutions

is now adversely affected by noise. The behavior of the solution space at σ = 0.0 and

σ = 0.2 is shown in Figure 7.6, where it can be noted that the bias away from the PS∗

will be attenuated with increasing σ values. The density of Pareto optimal solutions is
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Figure 7.8: Effects of (a) decision space variation and (b) solution space variation across
different σ values for GTCO5.

at its highest and, hence easiest to find, when ~xr2 = 0.0. The settings of | ~xd2| = 10,

| ~xr1| = | ~xr2| = 5 and σ = 0.2 are recommended for this problem.

Noise-induced PS∗ and PF∗ change in GTCO4 is achieved through the implementation of

(7.13). Once again, the b function governed by (7.7) is applied to generate PS∗ changes and

the corresponding Pareto fronts at different σ levels are shown in Figure 7.8. At low levels

of σ, PS∗ corresponds to ~xr = 0.75 and the PF∗ becomes increasingly nonconvex with noise.

At sufficiently high σ levels, the PS∗ corresponds to ~xr = 0.25. Note that nonconvexity is

one of the problems that posed considerable difficulty to early MO algorithms. Therefore,

the robust MOEA have be capable of distributing the discovered solutions uniformly along

the Pareto front for the various degrees of convexity. The settings of | ~xd2| = | ~xr| = 10 and

σ = 0.2 are recommended for this problem.

GTCO5 is based on (7.14) which introduces noise-induced PS∗ and PF∗ changes. Ro-

bustness of the solutions are correlated to f1 and this presents a conflict with the optimality

of f2. Considering the effects of this tradeoff alone, the region of PF∗ that remains becomes

increasingly smaller with noise as illustrated in Figure 7.8(a). Fitness topological changes

are based on the principle adopted in GTCO1. However, the associated b function give

rise to a deceptive landscape in this instance as shown in Figure 7.8(b). The only decision
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variable associated with PS∗ that varies with σ is x1 while the other remains at ~xr = 0.0

and ~xd2 = 0.0. The settings of | ~xd2| = | ~xr| = 10 and σ = 0.08 are recommended for this

problem.

7.3.5 Vehicle Routing Problem with Stochastic Demand

This section presents the vehicle routing problem with stochastic demand (VRPSD) as a

practical example of robust MO optimization problems. The VRPSD is a variant of the

classical vehicle routing problem, where customers’ demands are stochastic and all other

parameters are known a priori. The demands are treated as random variables whose distri-

butions are known and the actual demand of each customer is revealed only when a vehicle

arrives at the customer’s location. This combinatorial optimization problem appears in the

delivery of home heating oil [48], trash collection, sludge disposal [131], beer and soft drinks

distribution, the provision of bank automates with cash, and the collection of cash from

bank branches [128]. The VRPSD has been shown to be naturally MO [193] and involves

not only generating minimal cost solutions but also robust solutions whose expected costs

are good approximation of the actual costs of implementation. Due to the stochastic nature

of the customers demands, the cost of a particular solution cannot be known with certainty

and various robust measures such as the expected cost, have to be employed.

One common assumption made in this problem model is the homogeneity of all vehicles

in the fleet and each one has a capacity limit which acts as a hard constraint. In the

case of a route failure, i.e. a vehicle finds that a customer’s demand cannot be satisfied

upon reaching the customer, a recourse policy is employed to maintain the feasibility of

solutions [67, 68,129, 130, 200,201]. The recourse policy requires the vehicle to unload all

remaining goods at the particular customer, return to the depot to restock before going back

to complete the service and/or continue with the scheduled route. These recourse actions

will of course incur additional transportation cost, in terms of the travel distance and time

for the to and fro trips to the depot. Additional service times will also be incurred when a
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vehicle visits a customer more than once or returns to the depot for restocking. As a matter

of practicality, note that each customer can only be serviced by one vehicle.

The VRPSD is characterized by many factors, which can influence the behavior of MO

routing and scheduling algorithms. As a robust MO test function, we suggest the following

parameterization of the problem landscape, 〈VRPSD : ~F , N, ~Lc, Ld, ~D,~s〉

• Topology of customers, ~Lc If it is possible to obtain real-world information about the

problem, then the actual geographical distribution of the customers can be easily used

to construct the problem. Otherwise, the locations of the customers can be generated

randomly based on some reasonable probability distributions. The spatial distribution

of customers can be categorized into three main classes [187]: 1) Type-R where all the

customers are remotely located, 2) Type-C problems where the customers are grouped

into clusters and 3) Type-RC which is a mixture of remote and clustered customers.

• Customer demand distribution, ~D The demand distribution determines the extent to

which the robust problem deviates from the deterministic one. A uniform distribution

assumes a fixed range of demands and the problem can be solved conservatively by

optimizing on worst case demands. On the other hand, there is an outside chance for

the occurrence of outlier demands if a normal distribution is adopted, which results in

a more challenging problem. One common approach of generating the normal demand

distribution model is to use the original demand quantity from some existing VRP

datasets as the mean demand and generating the standard deviation of the demand

distribution of each customer randomly such that it falls between zero and one-third

of the mean demand of the customer [47,193].

• Location of depot, Ld The location of the depot has a significant impact on the opti-

mization process. For instance, a depot that is located at the centre of a map would

give the depot better proximity from all the customers and allow shorter trips back to

the depot for restocking in the event of route failures. The other extreme case would
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be to locate the depot at a corner of the map. This would make recourse actions more

expensive and emphasize the importance of robust solutions to the stochastic problem.

• Service duration, ~s A convenient way of specifying the service duration is to set the

service times of all customers to be the same [193]. However, it is quite unlikely that

this would be the case in reality. It would be more appropriate if service times were

given physical meanings such as the time required for loading and unloading of cargo

or the time required for clearing the customs. In either case, the service time could

be proportional to the amount of cargo to be loaded at the depot and unloaded at the

customer. Problems with longer service times would also amplify the need for robust

solutions that minimize the occurrences of route failures since multiple trips to the

depot for restocking would be more costly.

• Number of customers,|V | V is the set of all customers. It is clear that the problem

gets more difficult as the number of customers increases. Typical problem sizes that

have been adopted in conventional vehicle routing problem with time withdrawals

(VRPTW) test problems range from 100 [187] to 1000 [89] customers and serves as a

good guide for VRPSD.

• Optimization criteria, ~F As in all real-world optimization problems, it is desirable to

minimize overall operational cost which includes factors such as travel distance (Cd),

the number of vehicles involved (Cv) and monetary cost such as driver remuneration

(Cm). Thus, the MO VRPSD is to find the routing schedule S such that it:

min ~F (S) = {Cd(S), Cv(S), Cm(S)}. (7.15)

A simple example of the routing plan with |V | = 6 is illustrated in Fig. 7.9. The routing

schedule S is given as S={R1, R2} where R1 is represented by R1= 〈v1, v6, v2, v3〉 and R2 is

represented by R2= 〈v5, v4〉. The depot is omitted since all vehicles must depart and return
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Figure 7.9: Graphical representation of a simple vehicle routing problem.

to the depot. It can be seen that the number of routes |S| is equal to the number of vehicles

(Cv) used in the plan. The condition of
⋃|S|

i Ri = V , i.e. all customers are routed, must be

satisfied.

Figure 7.10 shows the PFA
det PFA

eff,n for three different instances of the VRPSD problem.

The Pareto front obtained for Figure 7.10(a) is based on

〈VRPSD1 : [Cd, Cm, Cv], 100, Type-R, (50, 50)

, N(µ, U(0, 1
3µ), 10〉,

(7.16)

the Pareto front obtained for Figure 7.10(b) is based on

〈VRPSD2 : [Cd, Cm, Cv], 100, Type-C, (50, 50)

, N(µ, U(0, 1
3µ), 10〉,

(7.17)
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Figure 7.10: Pareto fronts for (a) VRPSD1, (b) VRPSD2, (c) VRPSD3 test problems. The
first row shows the 3-dimensional Pareto fronts, the second row shows the same fronts along
Cd and Cm, the third row shows the same fronts along Cd and Cv and the fourth row
shows the same front along Cm and Cv . ◦ denote solutions evolved using averaging while
M denote solution evolved deterministically. • and N represent the corresponding solutions
after averaging over 5000 samples.
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while the Pareto front obtained for Figure 7.10(c) is based on

〈VRPSD3 : [Cd, Cm, Cv], 100, Type-RC, (50, 50)

, N(µ, U(0, 1
3µ), 10〉,

(7.18)

Evidence of landscape changes and solution sensitivity to demand variation is indicated

by the different degrees of robustness between the PFA
det and PFA

eff,n. Different problem

behavior can also be observed as VRPSD2 seemed to be most susceptible to noise. The

Pareto fronts observed in the second and third rows of the figure also implies that PF∗
det

PF∗
eff,n have very different shapes. In particular, the PFA

eff shows that the Cd decreases

with increasing Cm but the PFA
det shows the exact opposite relationship, i.e. the Cd increases

with increasing Cm. Additionally, the PFA
eff show that the Cd increases with the Cv , while

the PFA
det shows that the reverse relationship. This finding demonstrates that an algorithm

designed to find the PF∗
det may result in routing schedules with unacceptable performance

variation.

7.4 Empirical Analysis

In this section, simulation studies are conducted to analyze the performances of NSGAII

and SPEA2 on the proposed GTCO test suite. In particular, we investigate the performance

of NSGAII and SPEA2 over the number of samples, H={1, 5, 10, 20} and σ={0.0, 0.05, 0.1,

0.2} for the different problems. Thirty independent runs of 500 generations are performed

for each of the test problems. Monte Carlo integration with number of samples H is applied.

Apart from the additional goal of solution robustness, the MO optimization goals of

convergence, distribution and diversity must be considered. As before, the metrics of MS

and S will be applied to assess algorithmic performance with respect to solution set diversity

and distribution respectively. Since we are interested in robust designs, the metric of VD

described in Chapter 5 is used in this section.
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GTCO1 is a class 1 problem where multimodality is introduced into the fitness landscape

with noise while PS∗
det=PS∗

eff,σ. From the metric of VD in Figure. 7.11(a) as well as

the distribution of the solutions in Figure 7.12(a)-(d), NSGAII and SPEA2 encounters no

difficulty finding the PS∗
det but both algorithms face increasing difficulties with increasing σ.

The diversity of PFA
eff,σ is also affected. This clearly demonstrates how robust optimization

can be more difficult in the face of noise-induced landscape features.

Figure 7.13 shows the performance trend of SPEA2 and NSGAII for GTCO2. GTCO2

is a class 2 problem which exhibits a change in PS∗ once σ exceeds a certain threshold. The

variation of PSA
eff,σ for both algorithms can be seen in Figure 7.14. Interesting, the effects

of implicit averaging can be observed in Figure 7.14(a) and both algorithms are capable of

finding PS∗
eff,σ as well as a diverse PFA

eff,σ given sufficient number of samples. While both

algorithms exhibit similar performances, it can be noted from Figure 7.13(b) and Figure

7.14(d) (along the x1 axis), that the diversity maintenance mechanism of SPEA2 are more

susceptible to noise.

GTCO3 is a class 3 problem which exhibits noise-induced landscape and PS∗ changes

and the performance trends of NSGAII and SPEA2 are shown in Figure 7.15. As in the

problem of GTCO2, NSGAII and SPEA2 are capable of finding PS∗
eff,σ as well as a diverse

PFA
eff,σ given sufficient number of samples. Nonetheless, even though GTCO2 and GTCO3

undergo the same PS∗ transformation, it is obvious that the change in solution density

results in different sampling requirements. This is evident by comparing Figure. 7.14(b)-(c)

and Figure 7.16(b)-(c).

Similar to GTCO2 and GTCO3, GTCO4 shows similar performance trends over different

σ and H values in Figure 7.17. However, since the change in PS∗ is closely linked to the

change in PF∗, the number of samples necessary to find PS∗ is also higher. The PF∗ changes

with σ as shown in Figure 7.18. Once again, it can be observed from Figure 7.17(b) and

Figure 7.18(d) (along the x1 axis) that noise poses considerable challenge to the diversity

maintenance mechanism of SPEA2 as it is unable to distribute the solutions uniformly along
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PFA
eff,σ.

As in the case of GTCO1, NSGAII and SPEA2 have problems finding PS∗ as evident

from the metric of VD in Figure. 7.19(a). From Figure. 7.19(b), it appears that algorithmic

performances in terms of MS seem to have improved beyond σ = 0.1. However, it is due to

the fact that the span of PFA
eff,σ has reduced considerably. Moreover, further investigation

reveals that the number of solutions found is very small, even at H=40.

From the simulation results, it is clear that the problems of the GTCO test suite pose

different difficulties to NSGAII and SPEA2. Generally speaking, both algorithms exhibit

similar performances for the five problems over different H and σ settings. Nonetheless,

it is also noted the SPEA2 did not fare as well in terms of the discovery of a uniformly

distributed and diverse PFA
eff,σ. Together with the observations that NSGAII and SPEA2

are unable to handle noise-induced features of multi-modality and deception, this suggests

that the state-of-the-arts MOEAs may not be able to evolve robust solutions effectively

through simplistic extensions.

7.5 Conclusion

Apart from the need to satisfy several competing objectives, many real-world applications

are also sensitive to decision or environmental parameter variation which results in large

or unacceptable performance variation. Although the application of evolutionary multi-

objective optimization to real-world problems are gaining popularity from researchers in

different fields, there is a distinct lack in studies investigating the issues of robust optimiza-

tion in the literature. This chapter examines the suitability of existing robust test problems

for MO optimization and presents a set of guidelines for the construction of robust MO test

problems. The fundamental component of the robust test problems is a Gaussian landscape

generator that facilitates the specification of robust optimization-specific features such as

noise-induced solution space, fitness landscape and decision space variation. This generator
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Figure 7.11: GTCO1 Performance trend of NSGAII (first row) and SPEA2 (second row)
over H={1, 5, 10, 20} and σ={0.0, 0.05, 0.1, 0.2} for (a) VD and (b) MS.
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Figure 7.12: The evolved solutions of NSGAII (first row) and SPEA2 (second row) with
number of samples H=1 for GTCO1 along ~xd2 with number of samples (a) σ = 0, (b)
σ = 0.05, (c) σ = 0.1, and (d) σ = 0.2. The PS∗ is represented by (x) while the evolved
solutions are represented by (◦).
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Figure 7.13: GTCO2 Performance trend of NSGAII (first row) and SPEA2 (second row)
over H={1, 5, 10, 20} and σ={0.0, 0.05, 0.1, 0.2} for (a) VD and (b) MS.
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Figure 7.14: The evolved solutions of NSGAII (first row) and SPEA2 (second row) at σ = 0.2
for GTCO2 as seen in the decision space with number of samples (a) H0, (b) H=5, (c) H=10
, and (d) H=20. The PS∗ is represented by (-) while the evolved solutions are represented
by (◦).
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Figure 7.15: GTCO3 Performance trend of NSGAII (first row) and SPEA2 (second row)
over H={1, 5, 10, 20} and σ={0.0, 0.05, 0.1, 0.2} for (a) VD and (b) MS.
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Figure 7.16: The evolved solutions of NSGAII (first row) and SPEA2 (second row) at σ = 0.2
for GTCO3 as seen in the decision space with number of samples (a) H0, (b) H=5, (c) H=10
, and (d) H=20. The PS∗ is represented by (-) while the evolved solutions are represented
by (◦).
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Figure 7.17: GTCO4 Performance trend of NSGAII (first row) and SPEA2 (second row)
over H={1, 5, 10, 20} and σ={0.0, 0.05, 0.1, 0.2} for (a) VD and (b) MS.
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Figure 7.18: The PFA of NSGAII (first row) and SPEA2 (second row) at various σ = 0.2
values for GTCO4 as seen in the decision space with number of samples (a) H0, (b) H=5,
(c) H=10 , and (d) H=20. The PF∗ is represented by (-) while the evolved solutions are
represented by (◦).
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Figure 7.19: GTCO5 Performance trend of NSGAII (first row) and SPEA2 (second row)
over H={1, 5, 10, 20} and σ={0.0, 0.05, 0.1, 0.2} for (a) VD and (b) MS.

is developed with the purpose of generating noise-sensitive landscapes in conjuction with

existing MO test problems, and due to its independent nature, it can be used to generate

robust single objective test problems as well. Subsequently, a robust MO test suite is built

upon the ZDT framework. Additionally, the vehicle routing problem with stochastic de-

mand (VRPSD) is presented a practical example of robust combinatorial MO optimization

problems. In order to demonstrate the difficulties posed by the proposed test problems, NS-

GAII and SPEA2 are applied on all five continuous test problems. The study suggests that

robust MO problems can offer greater challenges to the optimization algorithms when noise

is introduced. Furthermore, it highlights the necessity to design more effective MOEAs as

well as more rigorous simulation studies.
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Conclusions

MOEAs are a class of stochastic search methods that have been found to be very efficient and

effective in solving sophisticated MO problems where conventional optimization tools fail

to work well. MOEAs’ advantage can be attributed to it’s capability of sampling multiple

candidate solutions simultaneously, a task that most classical MO optimization techniques

are found to be wanting. Since MOEA draw its inspiration from nature where uncertainty

is a common phenomenon, these algorithms are also expected to be inherently robust to

uncertainties. Much work has been done to the development of these algorithms in the

past decade and it is finding increasingly application to the fields of bio informatics, logical

circuit design, control engineering and resource allocation. Interestingly, many researchers

in the field of EMOO assume that the optimization problem can be modeled and determined

exactly. Consequently, the issues of uncertainties are rarely examined.

8.1 Contributions

This work contributes towards the design of effective MOEAs in the presence of uncer-

tainties. We have investigated the impact of noisy fitness functions on the performance

of MOEAs. An in-depth empirical analysis is first carried out to understand how MOEA
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perform in the presence of different noise levels. In addition, three noise-handling features,

including an experiential learning directed perturbation operator, a gene adaptation se-

lection strategy, and a possibilistic archiving model are proposed to handle noisy fitness

functions. Simulation studies showed the effectiveness of the proposed mechanisms on the

test functions employed in handling both static and noisy environments. The extendibility

of the experiential learning directed perturbation operator and gene adaptation selection

strategy is validated in SPEA2 and NSGAII. In particular, the incorporation of the two

mechanisms allow SPEA2 and NSGAII to perform better for both static and noisy environ-

ments. Analysis of population distribution reveals why the operator works.

Chapter 4 considers the noisy problem of neural network classifiers adaptation. Noise

is introduced as a consequence of synaptic weights that are not well trained for a particular

network structure. Therefore, it is necessary to optimize the synaptic weights after any

structural changes. This chapter starts with the proposal of a geometrical measure based on

the singular value decomposition (SVD) to estimate the necessary number of neurons to be

used in training a single hidden layer feedforward neural network is presented. Subsequently,

an architectural recombination procedure based on the geometrical measure that adapts the

number of necessary hidden neurons and facilitates the exchange of neuronal information

between candidate designs is presented. In order to reduce the effects of noise due to

inappropriate instances of synaptic weights, a µHGA with an adaptive local search intensity

scheme for local fine-tuning is developed. The importance of µHGA to reduce the noise of

the synaptic weights with respect to each network structure is demonstrated in the empirical

studies.

Chapter 6 examines the effects of fitness landscape dynamism. The coevolutionary

paradigm can be exploited to achieve high convergence speeds to track the changing Pareto

front. However, the conventional model is limited by the need to hand-design the decompo-

sition process which is dependent on the problem characteristic. Therefore, a new coevolu-

tionary paradigm which incorporates both competitive and cooperative elements is proposed
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to allow the decomposition process of the optimization problem to adapt and emerge. In

particular, each species subpopulation will compete to represent a particular subcomponent

of the MO problem while the eventual winners will cooperate to evolve the better solutions.

Simulation results demonstrates the ability of the competitive-Cooperation coevolutionary

paradigm to handle high parameter interactions of KUR and FON as well as the changing

requirements of applied dynamic MO test problems. Further investigations are conducted

to reveal how and why the proposed coevolutionary model works.

Chapter 7 investigates the suitability of existing robust test problems for MO optimiza-

tion and demonstrates that most of these test functions have a bias towards the robust

optimal. Thus if MOEA are evaluated on the extensions of these problems, it will not be a

good indicator the robust-handling mechanisms. This chapter presents a Gaussian landscape

generator to generate different landscapes that are sensitive to environmental variation. In

addition, a set of guidelines for the specification of robust optimization-specific features such

as noise-induced solution space, fitness landscape and decision space variation is presented.

Based on this framework, a robust MO test suite is built upon the ZDT framework and

empirical studies demonstrated the difficulties that is posed by the noise-induced features

for SPEA2 and NSGAII. In addition, the vehicle routing problem with stochastic demand

(VRPSD) is presented a practical example of robust combinatorial MO optimization prob-

lems.

8.2 Future Works

Although we have studied different means of handling the various forms of uncertainties,

these works barely scratched the surface of what is left to be addressed. Although detailed

analysis of issues related to the application of MOEAs in uncertain environments have

been provided in this work, most discussions are based exclusively on empirical results

on benchmark test problems with 2-5 objectives. In addition, computational efficiency is
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considered only in terms of the number of function evaluation calls. Since the number

of evaluation is not the best indicator of efficiency especially when evaluation cost is low,

one immediate extension would be to consider the computational time complexity of the

proposed mechanisms. Certainly, it would also be desirable to apply the proposed techniques

to benchmark functions with larger number of objectives and real-world problems in the near

future.

Like most existing work, this research has concentrated on the effects of Gaussian noise.

On the other hand, it has been shown that other noise models such as Cauchy and χ2 have

different and significant impacts on the optimization process. Therefore, this is definitely one

area that should be dealt with in the near future. Another possible implication of different

noise impact is that the heuristical approaches proposed in this work may not be extended

to handle the various noise models. On the other hand, the use of the alternative method of

averaging is computationally expensive. While surrogate models have been applied in the

domain of SO optimization to find robust solutions, it has yet been studied for MO problems.

For that matter, it will be interesting to note that it has not been utilized for other forms of

uncertainties as well. One possible application of surrogate models is in the optimization of

noisy fitness functions where noise may be filtered out through the approximation process-

an advantage that may have been overlooked thus far.

In the aspects of dynamic MO optimization, the categorization of dynamic MO problems

actually reveals that there are many possible types of test functions that have yet been

explored. In addition, one common assumption in evolutionary dynamic optimization is

that changes in the landscape can be detected easily by checking for discrepancies between

the old and re-evaluated objective values. This may not be the case in the event where new

peaks are introduced without affecting the fitness values of existing nondominated solutions.

In addition, the re-evaluation of past solutions are computationally expensive. Therefore,

more effective and efficient detection mechanisms must be designed. Another issue is the

exploitation and storage of past solutions. In this work, we adopted a very simple first-in-
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first-out approach of storing past nondominated solutions prior to each change. However,

more intelligent storage methodology that, perhaps take into account the utility of past

information, should be explored.

In the case of robust MO optimization, we have only started the ball rolling with the

presentation of a new robust MO test suite. Note that, unlike most existing research,

sensitivities are introduced to the environmental variables instead of the decision variables.

This necessitates the design of robust MOEAs that are capable of handling such parametric

sensitivities.
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