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Abstract—The multi-objective neural EDA (MONEDA) was
proposed with the aim of overcoming some difficulties of cur-
rent MOEDAs. MONEDA has been shown to yield relevant
results when confronted with complex problems. Furthermore, its
performance has been shown to adequately adapt to problems
with many objectives. Nevertheless, one key issue remains to
be studied: MONEDA scalability with regard to the number of
decision variables.

In this paper has a two-fold purpose. On one hand we propose
a modification of MONEDA that incorporates an indicator-based
selection mechanism based on the HypE algorithm, while, on
the other, we assess the indicator-based MONEDA when solving
some complex two-objective problems, in particular problems
UF1 to UF7 of the CEC 2009 MOP competition, configured with
a progressively-increasing number of decision variables.

I. INTRODUCTION

The incorporation of learning as part of the search pro-
cesses has been nominated as a viable way of improving
optimization processes [1]. There are some approaches that
perform this task by providing hybrid evolutionary/machine
learning method, like, for example, the learnable evolution
model (LEM) [2]. However, these efforts seem to have been
concentrated on single-objective optimization (c. f. [3], [4]).

Another form of carrying out this task to resort to estimation
of distribution algorithms (EDAs) [5]. This is because of EDAs
capacity of learning the problem structure. EDAs replace the
application of evolutionary operators with the creation of a
statistical model of the fittest elements of the population in a
process known as model-building. This model is then sampled
to produce new elements.

Nevertheless, the so called multi-objective EDAs
(MOEDAs) [6] have not live up to their a priori expectations.
This can be attributed to the fact that most MOEDAs have
limited themselves to transforming single-objective EDAs
into a multi-objective formulation by including an existing
multi-objective fitness assignment function.

It has been pointed out that the current model-building
algorithms of MOEDAs have a set of drawbacks that would
prevent those algorithms from yielding substantially better
results [7], [8].

In particular, these characteristics are:
• the incorrect treatment of data outliers;
• the loss of population diversity, and;
• the excess of computational effort devoted to finding an

optimal model of the fittest elements of the population.
The multi-objective neural EDA (MONEDA) [9], [10] was

proposed with the aim of overcoming these difficulties. MON-
EDA has been shown to yield relevant results when confronted
with complex problems. Furthermore, its performance has
been shown to adequately adapt to problems with many
objectives.

Nevertheless, one key issue remains to be studied: MON-
EDA scalability with regard to the number of decision
variables. This is a rather important issue, as it implies
to study MONEDA’s ability of exploring high-dimensional
search spaces.

One of the consequences of the class of problems previously
dealt by MONEDA was the unsuitability of indicator-based
selection approaches. As those problems intended to assess
MONEDA in the the context of problems with many objec-
tives, the use of performance indicators as part of the selection
mechanism was not advised because their high computational
requirements.

In this paper has a two-fold purpose. On one hand we
propose a modification of MONEDA that incorporates an
indicator-based selection mechanism based on the HypE al-
gorithm [11], while, on the other, we assess the indicator-
based MONEDA when solving some complex two-objective
problems, in particular problems UF1 to UF7 of the CEC
2009 MOP competition [12], configured with a progressively-
increasing number of decision variables.

II. FOUNDATIONS

Many real-world optimization problems involve more than
one goal to be optimized. This type of problems is known as
multi-objective optimization problems (MOPs). A MOP can be
expressed as the problem in which a set of objective functions
f1(x), . . . , fM (x) should be jointly optimized;

min F (x) = 〈f1(x), . . . , fM (x)〉 ; x ∈ S ; (1)
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where S ⊆ Rn is known as the feasible set and could be
expressed as a set of restrictions over the decision set, Rn. The
image set of S produced by function vector F (·), O ⊆ RM ,
is called feasible objective set or criterion set.

The solution to this type of problem is a set of trade-off
points. The optimality of a solution can be expressed in terms
of the Pareto dominance relation.

Definition 1 (Pareto dominance relation): In the optimiza-
tion problem (1) and having x,y ∈ S, x is said to dominate
y (expressed as x ≺ y) iff ∀fj , fj(x) ≤ fj(y) and ∃fi such
that fi(x) < fi(y).

Definition 2 (non-dominated subset): In problem (1) and
having the set A ⊆ S . A∗, the non-dominated subset of A, is
defined as

A∗ = {x ∈ A |6 ∃x′ ∈ A : x′ ≺ x} .

The solution of (1) is S∗, the non-dominated subset of S .
S∗ is known as the efficient set or Pareto-optimal set [13]. Its
image in objective set is known as the Pareto-optimal front,
O∗.

If problem (1) has certain characteristics, e. g., linearity or
convexity of the objective functions or convexity of S , the
efficient set can be determined by mathematical programming
approaches [13]. However, in the general case, finding the
solution of (1) is an NP–complete problem [?]. In this case,
heuristic or metaheuristic methods can be applied in order to
have solutions of practical value at an admissible computa-
tional cost.

A broad range of heuristic and metaheuristic approaches
has been used to address MOPs [13]. Of these, multi-objective
evolutionary algorithms (MOEAs) [14], [15] have been found
to be a competent approach in a wide variety of application
domains.

As finding the explicit formulation of S∗ is often impossi-
ble, generally, an algorithm solving (1) yields a discrete non-
dominated set, P∗, that approximates S∗. The image of P∗ in
objective set, PF∗, is known as the non-dominated front.

Determining how good a given P∗, or PF∗, is not only
a key but also a particularly complex task. It necessarily
implies a reduction from an M–dimensional set to a scalar
value. Therefore, as in any dimensionality reduction, valuable
information could be lost, leading to invalid conclusions. This
point has been well documented [16].

Nevertheless, there are some community-accepted indicators
of the quality of a solution P∗ [17]. Such indicators can be
grouped into three broad categories:

1) distance from the elements of PF∗ to their correspond-
ing closest element of O∗, which measures how close
the solution is to the optima;

2) distance from every element of O∗ to its closest element
of PF∗, which complements the first class of indicators
and expresses how well PF∗ covers O∗, and

3) distribution of the elements of P∗ and PF∗, which
gauges how well spread the elements of these sets are.

One of the interesting side-effects of the appearance of per-
formance indicators is that their use has been extended to the

population ranking and selection mechanisms of MOEAs. For
this purpose the hypervolume indicator has been particularly
studied.

The hypervolume indicator, Ihyp(A), [17] computes the
volume of the region, H , delimited by a given set of points,
A, and a set of reference points, N .

Ihyp (A) = volume

 ⋃
∀a∈A;∀n∈N

hypercube(a,n)

 . (2)

Therefore, larger values of the indicator will correspond to
better solutions.

To measure the absolute performance of an algorithm the
reference points should ideally be nadir points. These points
are the worst elements of O, or, in other words, the elements
of O that do not dominate any other element. To contrast the
relative performance of two sets of solutions, though, one can
be used as the reference set. These matters are further detailed
in [16], [17].

Having N , the computation of the indicator is a non-
trivial problem. Indeed, its determination is known to be
computationally intensive, thus rendering it is unsuitable for
problems with many objectives.

A lot of research have focused on improving the compu-
tational complexity of this indicator (c. f. [18]). According
to the most recent results, the indicator is currently known
to be O(n log n + nM/2) [18] for more than three objectives
(M > 3); O(n log n) for M = 2, 3 [19].

As the main drawback of this indicator is its computational
requirements and poor scalability some approaches has been
proposed to estimate its value instead of explicitly computing
it. Among these approaches we find the Monte Carlo estima-
tion put forward as part of the HypE algorithm [11].

III. ESTIMATION OF DISTRIBUTION ALGORITHMS

An evolutionary algorithm can be characterized by how it
implements a set of processes, in particular,
• Mating selection: that determines the degree at which in-

dividuals in the population will take part in the generation
of new (offspring) individuals.

• Variation: which applies a range of evolutionary opera-
tors to synthesize offspring individuals from the current
(parent) population. This process is supposed to prime
the most fit individuals so they play a bigger role in the
generation of the offspring.

• Environmental selection: that merges the parent and off-
spring individuals to produce the population that will be
used in the next iteration. This process often involves the
deletion of some individuals using a given criterion in
order to keep the number of individuals bellow a certain
threshold.

Estimation of distribution algorithms (EDAs) [5] have been
hailed as a landmark in the progress of evolutionary algo-
rithms. They replace the application of evolutionary operators
in the variation process with the creation of a statistical model
of the fittest elements of the population using a machine
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learning algorithm. This model–building algorithm is the key
feature that differentiates EDAs from other evolutionary ap-
proaches. The constructed model is then sampled to produce
new elements.

The extension of EDAs to the multi-objective domain has
lead to multi-objective optimization EDAs (MOEDAs) [6].
Most MOEDAs have limited themselves to port single ob-
jective EDAs to the multi-objective domain by incorporating
some features taken from MOEAs, mainly the selection strate-
gies.

IV. INDICATOR-BASED MULTI-OBJECTIVE NEURAL EDA

The indicator-based multi-objective neural EDA (MON-
EDA/I) is a MOEDA that uses a modified growing neural
gas (MB–GNG) network as its model–building algorithm
and the selection processes proposed by the Hypervolume
Estimation Algorithm for Multiobjective Optimization (HypE)
algorithm. The MB–GNG network is a custom–made model–
building algorithm devised to cope with the specifications of
the task and that will be described later on. Similarly, the
HypE algorithm is one of the most effective approaches to
MOPs. Therefore, it could be hypothesised that the resulting
hybrid algorithm would exhibit the outstanding properties of
its constituents.

A. HypE Selection

For population ranking and mating selection HypE deter-
mines the hypervolume for each population element. Depend-
ing on the number of objective HypE calculates or estimates
via a Monte Carlo sampling the hypervolume. As to mating
selection, binary tournament selection is used.

Environmental selection primes the most promising so-
lutions from the union of parent (current) population and
offspring; more precisely, it creates a new population by
carrying out the following two steps
• The union of parents and offspring is divided into disjoint

non-dominated partitions. Starting with the lowest dom-
inance depth level, the partitions are moved one by one
to the new population until the first partition is reached
that cannot be transferred completely.

• The partition that only fits partially is then processed
by calculating the fitness values of the individuals and
the individual with the worst fitness is removed. This
procedure is repeated until the partition has been reduced
to the desired size.

Further details of HypE can be obtained from it correspond-
ing paper.

B. Model–Building with Growing Neural Gas

Clustering algorithms have been used as part of the model–
building algorithms of EDAs and MOEDAs. As a founda-
tion for our proposal we have chosen the growing neural
gas (GNG) network [20]. GNG networks are intrinsic self–
organizing neural networks based on the neural gas [21]
model. This model relies in a competitive Hebbian learning
rule [22]. It creates an ordered topology of inputs classes and

associates a cumulative error to each. The topology and the
cumulative errors are conjointly used to determine how new
classes should be inserted.

The model–building GNG (MB–GNG) [8] is an extension
of the original (unsupervised) GNG. MB–GNG creates a
quantization of the input space using a modified version of the
GNG algorithm and then computes the deviations associated
to each node.

We have added a cluster repulsion mechanism [23] to the
original GNG formulation. This enhancement fosters explo-
ration of the input space as it makes each cluster to represent
a distinctive zone of the space.

MB–GNG is a one layer network that defines each class as a
local Gaussian density and adapts them using a local learning
rule. The layer contains a set of nodes C = {c1, . . . , cN∗},
with N0 ≤ N∗ ≤ Nmax. Here N0 and Nmax represent the
initial and maximal amount of nodes in the network.

A node ci consists of a center, µi, deviations, σi, an
accumulated error, ξi, and a set of edges that define the set of
topological neighbors of ci, Vi. Each edge has an associated
age, νi,j .

The dynamics of a GNG network consists of three concur-
rent processes: network adaptation, node insertion and node
deletion. The combined use of these three processes renders
GNG training Hebbian in spirit [22].

The network is initialized with N0 nodes with their centers
set to randomly chosen inputs. A training iteration starts after
an input x is randomly selected from the training data set, Ψ.
Then two nodes are selected for being the closest ones to x.
The best–matching node, cb,

b = arg min
i=1,...,N∗

d (µi,x) , (3)

is the closest node to x. Consequently, the second best–
matching node, cb′ , is determined as

b′ = arg min
i=1,...,N∗;i6=b

d (µi,x) . (4)

Here d (a, b) is a distance metric. For this work we have used
d(·) defined as

d (a, b) = ‖a− b‖ . (5)

If cb′ is not a neighbor of cb then a new edge is established
between them Vb = Vb ∪ {cb′} with zero age, νb,b′ = 0. If,
on the other case, cb′ ∈ Vb the age of the corresponding edge
is reset νb,b′ = 0.

At this point, the age of all edges is incremented in one. If
an edge is older than the maximum age, νi,j > νmax, then the
edge is removed. If a node becomes isolated from the rest it
is also deleted.

Clustering error is then added to the best–matching node
error accumulator,

∆ξb = d (µi,x)
2
. (6)

After that, learning takes place in the best–matching node and
its neighbors with rates εbest and εvic, respectively. For cb
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adaptation follows the rule originally used by GNG

∆µb = εbest (x− µb) . (7)

However for cb’s neighbors a cluster repulsion term [23] is
added to the original formulation, that is, ∀cv ∈ Vb,

∆µv = εvic (x− µv)

+βe

(
− d(µv,µb)ζ

)∑
cu∈Vb

d(µu,µb)

|Vb|
(µv−µb)
d(µv,µb)

.
(8)

Here β is an integral multiplier that defines the amplitude
of the repulsive force while ζ controls the weakening rate
of the repulsive force with respect to the distance between
the nodes’ centers. This approach was already used as part
of the robust GNG [24] and it has proved itself useful for
obtaining a good spread of the clusters in the inputs’ space.
In the aforementioned work its stated that the adaptation rule
is not sensitive with respect to its parameters. We have set
them to β = 2 and ζ = 0.1 as suggested in [24].

If the current iteration is an integer multiple of T+ and N∗

is smaller than Nmax then a new neuron is inserted to the
network. First, the node with largest error, ce, is selected the
node. Then the worst node among its neighbors, ce′ , is located.
Then N∗ is incremented and the new node, cN∗ , is inserted
between the two nodes,

µN∗ = 0.5 (µe + µe′) . (9)

The edge between ce and ce′ is removed and two new edges
connecting cN∗ with ce and ce′ are created. The accumulated
errors are reduced in a rate 0 ≤ δI ≤ 1 by letting

ξe = δIξe , ξe′ = δIξe′ . (10)

The error of the newly created node is computed as

ξN∗ = 0.5(ξe + ξe′) . (11)

Finally, the errors of all nodes are decreased by a factor δG,

ξi = δGξi, i = 1, . . . , N∗ . (12)

Stopping the learning of GNG is a non–trivial issue shared
by the rest of clustering algorithms and all reiterative heuristic
algorithms. As we are interested to cover the inputs space as
much as possible we will stop if, after a learning epoch, the
standard deviation of the accumulated errors is smaller than a
certain threshold, ρ,√√√√ 1

N∗

N∗∑
i=1

(ξi − ξ)2 < ρ . (13)

This means that we will stop when the outliers are as better
represented as possible.

After training has ended the deviations, σi, of the nodes
must be computed. For this task we employ the unbiased
estimator of the deviations detail in the following algo-
rithm

Set s1, . . . , sN∗ = 0 and n1, . . . , nN∗ = 0.
for all x ∈ Ψ do

MB–GNG parameters: N0, νmax, εb, εv, δI, δG and
ρ.
MONEDA parameters: npop, α, γ and ω.
Let t = 0.
Randomly generate the initial population P0 with z
individuals.
repeat

Determine P̂t using HypE mating selection.
Train MB–GNG network with P̂t training data set
and Nmax =

⌊
γ
∣∣∣P̂t

∣∣∣⌋.
Sample bω |Pt|c from the MB–GNG.
Produce Pt+1 by applying HypE environmental
selection procedure.
t = t+ 1.

until end condition is met
Determine the set of non-dominated individuals of Pt,
P∗t .
return P∗t as the algorithm’s solution.

Fig. 1. Algorithmic representation of MONEDA/I.

Determine the closest node, cc to x.
sc = sc + (x− µc)

2.
nc = nc + 1.

Compute the deviations as δi =
√
si
ni

.

C. MONEDA/I Algorithm

MONEDA maintains a population of individuals, Pt, with
t as the current iteration. The algorithm’s workflow is similar
to other EDAs. It starts from a random initial population P0

of npop individuals. It then proceeds to sort the individuals
using the HypE mating selection process.

A set P̂t containing bα |Pt|c selected elements is extracted
from the sorted version of Pt,∣∣∣P̂t

∣∣∣ = bα |Pt|c . (14)

A MB–GNG network is then trained using P̂t as training
data set. In order to have a controlled relation between size of
P̂t and the maximum size of the network, Nmax, these two
sizes are bound by the rate γ ∈ (0, 1],

Nmax =
⌈
γ
∣∣∣P̂t

∣∣∣⌉ . (15)

The resulting Gaussian kernels are sampled to produce an
amount bω |Pt|c of new individuals. This offspring is com-
bined with the parent population as previously described for
the HypE environmental selection. The set obtained is then
united with best elements, P̂t, to form the population of the
next iteration Pt.

Iterations are repeated until a given stopping criterion is
met. The output of the algorithm is the set of non–dominated
solutions of Pt, P∗t . The outline of MONEDA is presented in
algorithmic form on Fig. 1.
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V. EXPERIMENTS

Experiments are required in order to understand the ef-
fectiveness or our proposal. As already commented, we will
be focusing of a set of problems previously proposed in the
CEC 2009 MOP competition [12]. From the set of problems
proposed there we selected the unconstrained optimization
problems UF1 to UF7. These are two-objective problems that
can be configured to have any desired number of variables.
These problems are well-known for the complexity of their
Pareto-optimal sets and fronts. They were selected in order to
be able to plot the results and to visually compare results.

The problems were configured with an escalating complex-
ity by configure them with 20, 30, 40, 50 and 60 variables.
Experiments were carried out under the PISA framework [25].
Each experiment configuration was repeated 30 times in order
to have statistically valid judgements. Algorithms runs were
controlled by MGBM criterion [26].

The best results of MONEDA/I for each problem and
dimension can be examined in Figs. 2 and 3. It is noticeable
that in some cases MONEDA/I yielded better results when
facing to lower dimensional problems, like in the case of UF1,
UF2, UF3 and UF7. In some other cases, like, in particular
UF4, larger numbers of variables prompted better results. This
result is worth of notice when compared with those obtained
by the participants of the aforementioned competition. By
simple visual inspection we can assert that our approach yield
better results. It must be pointed out, however, that thanks to
our different stopping condition MONEDA/I, and the other
algorithms involved in the experiments later on, were left to
run for a longer period of time.

Although many interesting reflections can emerge from ex-
amining these plots it is clear than a more sound interpretation
of results is required. In particular, it is needed to compare
MONEDA/I with similar approaches. That is why we included
in the experiments the original Pareto-based MONEDA, two
well-known MOEDAs, in particular, naı̈ve MIDEA [27] and
MrBOA [28], two state-of-the-art MOEAs, that is, HypE [11]
and MOEA/D [29] and the “classical” NSGA-II [30] MOEA.

The quality of the solutions is determined by the use of
the hypervolume indicator [31]. The statistical validity of the
judgment of the results calls for the application of statistical
hypothesis tests. It has been previously remarked by different
authors that the Mann-Whitney-Wilcoxon U test [32] is partic-
ularly suited for experiments in the context of multi-objective
evolutionary optimization [31]. This test is commonly used as
a non-parametric method for testing equality of population
medians. In our case we performed pair-wise tests on the
significance of the difference of the indicator values yielded
by the executions of the algorithms. A significance level, α,
of 0.05 was used for all tests.

The visual analysis of the results is rather difficult as it
implies cross-examining and comparing the results presented
separately. That is why we decided to adopt a more integrative
representation such as the one proposed in [33]. That is, for a
given set of algorithms A1,. . . , AK , a set of P test problem

instances Φ1,m,. . . ,ΦP,m, configured with m objectives, the
function δ(·) is defined as

δ (Ai, Aj ,Φp,m) =

{
1 if Ai � Aj solving Φp,m

0 in other case
,

(16)
where the relation Ai � Aj defines if Ai is significantly better
than Aj when solving the problem instance Φp,m, as computed
by the statistical tests previously described.

Relying on δ(·), the performance index Pp,m(Ai) of a given
algorithm Ai when solving Φp,m is then computed as

Pp,m (Ai) =

K∑
j=1;j 6=i

δ (Ai, Aj ,Φp,m) . (17)

This index intends to summarize the performance of each
algorithm with regard to its peers.

Figs. 4 and 5 exhibits the results computing the performance
indexes grouped by problems and dimensions.

Fig. 4 represents the mean performance indexes yielded
by each algorithm when solving each problem in all of its
configured objective dimensions,

P̄p (Ai) =
1

|M|
∑

m∈M
Pp,m (Ai) . (18)

It is worth noticing that MONEDA/I has better overall
results with respect to the other algorithms in all problems.
As it could be expected, the use of indicator-based selection
in MONEDA has yielded better results than the original
MONEDA. Indicator-based MONEDA and the indicator-based
MOEAs have a similar performance. It can be hypothesized
that these results can be biased by the three objective problems,
having dramatic differences in their results with respect to the
rest of the dimensions considered.

This situation is clarified in Fig. 5, which presents the mean
values of the index computed for each dimension

P̄m (Ai) =
1

P

P∑
p=1

Pp,m (Ai) . (19)

These experiments prompt some interesting reflections.
First, it is noticeable that the results of MONEDA/I are sub-
stantially better in many cases. Furthermore, the combination
of MONEDA with HypE is capable of reaching better results
than MONEDA and HypE separately. Similarly, the results
obtained are comparable and in many cases better than those
of MOEA/D, which is one of the current best performing
MOEAS. It is also noticeable that those algorithms that employ
an indicator-based selection produce better results than those
that are Pareto-based, a result that should be taken into account
in subsequent studies.

VI. CONCLUSION

In this paper we have proposed a new version of the MON-
EDA algorithm that incorporates an indicator-based selection
taken from the HypE algorithm. Thanks to this modification
the new algorithm is capable of outperforming it constituents.
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(b) UF2
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(d) UF4

Fig. 2. Non-dominated fronts obtained by the best run of MONEDA/I when solving problems UF1, UF2, UF3 and UF4. The results shown correspond to
different numbers of decision variables. In particular, 20 (◦), 30 (�), 40 (�), 50 (×) and 60 (+) variables.

Therefore, a new line of MOEDA development comes to light:
indicator-based MOEDAs. Perhaps, the use of this relatively
novel form of carrying out the selection processes would ease
the diversity loss issue that is undermining current MOEDAs.

Although the experiments clearly show the advantage of
employing MONEDA/I, further experimentation is obviously
required.
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