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Abstract

This paper puts forward a comprehensive study of the design of global stopping
criteria for multi-objective optimization. In it we propose a global stopping crite-
rion, which we have named MGBM. MGBM combines a novel progress indicator,
called mutual domination rate (MDR) indicator, with a simplified Kalman filter,
which is used for evidence-gathering purposes. The MDR indicator, which is also
introduced, is a special-purpose solution designed for the purpose of stopping a
multi-objective optimization.

In this paper we describe the criterion from a theoretical perspective and exam-
ine its performance on a number of test problems. We also compare this method
with similar approaches to the issue. The results of these experiments suggest that
MGBM is a good starting point for research in this direction.

Keywords: Stopping criteria, progress indicators, multi-objective evolutionary
algorithms, multi-objective optimization, Kalman filters

1. Introduction

Most soft-computing, heuristic, non-deterministic or numerical methods all
have in common that they need a stopping criterion. The stopping criterion, which
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is usually a heuristic itself, is responsible for minimizing the wastage of computa-
tional resources by detecting scenarios where it makes no sense to continue exe-
cuting the method.

The success or failure of any practical application relies heavily not only on
the techniques applied but also the support methodologies, including the stopping
criterion. Paradoxically, this is a matter that has often been overlooked by the com-
munity, probably because it plays a supporting part. This relegates the issue to an
apparently secondary role. Consequently, the theoretical and practical implications
concerning this topic have not yet been properly explored. Indeed, many real-world
applications of theoretically outstanding methods may have underperformed due to
an incorrect algorithm termination scheme.

Stopping criteria can be grouped into local (iteration-wise) criteria and global
(execution-wise) criteria. Local criteria have access only to data pertaining to each
iteration of the method. They measure the difference between the current solution
and a predefined reference or optimal value and then decide when they are close
enough. This type of criterion has the obvious and paradoxical shortcoming of
requiring a priori knowledge of the desired optimal value of the solution. This po-
tential weakness has no significant impact if the class of problem being addressed
allows the reference value to be replaced by the axis “zero” reference. This ap-
plies, for example, to function approximation and other types of problems that can
be reduced to an error minimization problem.

On the other hand, global criteria keep track of the process progress across
different iterations in order to make decisions relying on the long-term behavior of
the algorithm being monitored. This evidence-gathering process has two positive
impacts: (i) algorithm progress can be assessed in a relative fashion by comparing
the outcome of different iterations and (ii) algorithm progress is more resilient to
local optima and noise as it takes into account different iterations.

Evolutionary algorithms (EAs) [1] are a class of population-based metaheuris-
tic optimization methods. They also require a stopping criterion, but the vast ma-
jority of applications have bypassed this matter by using a termination scheme that
specifies a finite number of iterations. Also, the research [2–5] that has addressed
this issue does not appear to have propagated to the rest of the research community.

This is especially applicable to multi-objective optimization evolutionary al-
gorithms (MOEAs) [6, 7]. MOEAs are a type of evolutionary algorithm specially
conceived for solving multi-objective optimization problems (MOPs) [8, 9]. MOPs
are optimization problems where two or more functions should be jointly opti-
mized. The solution to these problems is a set, known as the Pareto-optimal set,
which contains one or more feasible solutions, including the best trade-off values
(either maximum or minimum) of the functions.

In the multi-objective case, a local criterion must measure the similarity be-
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tween the current and the Pareto-optimal front and decide when they are close
enough [10]. This type of criterion has the obvious paradoxical shortcoming of
requiring an a priori known Pareto-optimal front. On the other hand, global ap-
proaches may apply relative improvement metrics that analyze the partial results
of the algorithm across iterations. Therefore, there is no need to resort to an ab-
solute comparison with an a priori established threshold. In the particular case of
MOEAs, this type of criterion should compare the non-dominated solution fronts
yielded by different iterations in order to determine how the optimization process
is progressing.

The formulation of an effective criterion is particularly complex in the MOP
case, as judging the optimization progress can turn out to be as complex as the
optimization itself. In other types of problems, such as function approximation,
pattern recognition or single-objective optimization, on the other hand, the axis can
be used as a “zero” reference for progress measurement, as previously explained.
This approach is inviable for MOPs since its solution is a set of points. Therefore,
progress must be assessed in a relative manner using progress indicators rather than
the actual solution set. There are a number of quality indicators [11, 12] that can
be repurposed for this task, but their high computational cost is an obstacle to their
application.

There has been little theoretical research dealing with MOEA convergence
[13, 14]. Probably on the above grounds, the formulation of an efficient stopping
criterion for MOEAs and other MOP optimizers has been left aside, although it has
been repeatedly named as one of the key topics in need of proper attention in the
research area [15, 16].

The status of this issue has recently started to change, as interest in these mat-
ters has grown. This can be inferred from the relatively large body of research that
has gradually started to deal with this question (cf. [17–26]). These papers have
led to a substantial improvement in the understanding of the dynamics of evolu-
tionary multi-objective processes. They have put forward different approaches that
effectively deal with the stopping criteria issue and that are usable in real-world
applications.

In this work we put forward a comprehensive study of the design of a global
stopping criteria for multi-objective optimization. We propose a global stopping
criterion, which we have called MGBM (after the surnames of the authors). MGBM
combines a novel progress indicator, named mutual domination rate (MDR) indi-
cator, with a simplified Kalman filter [27], which is used as an evidence-gathering
process. The MDR indicator, which is also introduced here, is a special-purpose
solution designed to deal with stopping. It is capable of gauging the progress of
the optimization at a low computational cost and is therefore suitable for solving
complex or many-objective problems [28].

4



The viability of the proposal is established by comparing it with some other
possible alternatives. In particular, it is compared with the relative versions of the
hypervolume indicator and the additive epsilon indicator [12] as progress indica-
tors, and the application of statistical hypothesis testing to evidence assessment.

The theoretical and computational properties of the each of the components are
discussed and contrasted. We also run a set of experimental tests. These tests are
intended to assess each component combination under different circumstances in
order to confirm that the method is capable of detecting “success” and “failure”
stopping conditions. In these experiments we address some community-accepted
test problems with the elitist non-dominated sorting genetic algorithm (NSGA-II)
[29], the improved strength Pareto evolutionary algorithm (SPEA2) [30] and the
Pareto envelope-based selection algorithm (PESA) [31].

The main contributions of this paper can be summarized as:

• detailed discussion of the stopping criterion issue and its current state, re-
quirements and problem-solving strategies;

• discussion of different approaches for addressing this issue, and;

• the proposal and testing of a novel stopping criterion.

It should be noted that, although the criteria discussed here are meant for MOPs
and MOEAs, they could be easily adapted to other soft computing or numerical
methods by replacing the local improvement metric as appropriate.

The rest of this paper is organized as follows. In Section 2, we discuss the
background. In Section 3, we dissect and analyze the stopping criteria issue in
detail. In Section 4, we present the different components of our method, dealing
with the local improvement determination and the evidence-gathering strategies.
In Section 5, we discuss and present the experimental results in order to review
the properties of the criteria from a practical perspective. Finally, in Section 6 we
outline some concluding comments and remarks.

2. Multi-objective optimization

The concept of multi-objective optimization refers to the process of finding one
or more feasible solutions to a problem by trading off the equally optimal values of
two or more functions subject to a set of constraints.

Stated more formally, a multi-objective optimization problem (MOP) can be
defined as:
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Definition 1 (Multi-objective Optimization Problem).

minimize F(x) = 〈 f1(x), . . . , fM(x)〉 ,
subject to c1(x), . . . , cC(x) ≤ 0 ,

d1(x), . . . , dD(x) = 0 ,
with x ∈ D ,

 (1)

where D is known as the decision space. The functions f1(x), . . . , fM(x) are the
objective functions. The image set, O, product of the projection of D through
f1(x), . . . , fM(x) is called objective space (F : D → O). Finally, c1(x), . . . , cC(x) ≤
0 and d1(x), . . . , dD(x) = 0 express the constraints imposed on the values of x.

In general terms, there is no one optimal solution to this class of problems.
Instead an algorithm solving the problem defined in (1) should output a set con-
taining equally good (trade-off) solutions. The optimality of a set of solutions can
be defined relying on the so-called Pareto dominance relation [32]:

Definition 2 (Pareto Dominance Relation). For the optimization problem speci-
fied in (1) and having x1, x2 ∈ D, x1 is said to dominate x2 (expressed as x1 ≺ x2)
iff ∀ f j, f j(x1) ≤ f j(x2) and ∃ fi such that fi(x1) < fi(x2).

The solution of (1) is a subset of D that contains elements that are not domi-
nated by other elements ofD.

Definition 3 (Pareto-optimal Set). The solution of problem (1) is the setD∗ such
thatD∗ ⊆ D and ∀x1 ∈ D

∗@x2 ∈ D that x2 ≺ x1.

D∗ is known as the Pareto-optimal set, and its image in the objective space is called
the Pareto-optimal front, O∗.

It is often impossible to find the explicit formulation of D∗. Generally, an
algorithm solving (1) yields a discrete non-dominated set, P∗, that approximates
D∗. The image of P∗ in objective space, PF ∗, is known as the non-dominated
front.

2.1. Multi-objective evolutionary algorithms
A number of methods have been used to deal with MOPs [8, 9]. Of these,

evolutionary algorithms (EAs) [1] have proved to be a valid and proficient approach
from both the theoretical and practical point of view. This has led to what has
been called multi-objective optimization evolutionary algorithms (MOEAs) [6, 7].
Their success is due to the fact that EAs do not make any assumptions about the
underlying fitness landscape. Another important feature is the parallelism of the
search process. Thanks to parallelism the algorithm can output not just one, as
many other algorithms do, but a set of equally optimal solutions.
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With a view to giving a comprehensive overview of the experimental results to
be presented later, let us now briefly describe the MOEAs used and state how they
were configured in our experiments.

The MOEAs used in the experiments exploit elitism by explicitly maintaining
a subpopulation of non-dominated solutions for comparison by the selection op-
erators. They use density information and Pareto-dominance sorting in order to
guide the search, but take different approaches to implementing elitism and density
estimation.

The strength Pareto evolutionary algorithm (SPEA) [33] implements elitism
by preserving an external population. This population stores a fixed number of
non-dominated individuals discovered since the beginning of the simulation. After
every iteration of the algorithm, any new non-dominated solution that is found is
compared with the solutions present in the external population to preserve the best
solutions. It uses the stored solutions along with the dominated solutions in all
genetic operations with the hope of inducing a better performance of the solution
space search.

Although SPEA has produced a number of significant results, some potential
weaknesses have been pointed out [30]. SPEA2 [30] was proposed as an attempt to
overcome the limitations of SPEA. It retains the overall scheme of its predecessor,
but, in contrast to SPEA, SPEA2 uses a fine-grained fitness assignment strategy that
incorporates density information. Furthermore, the size of the external population
is fixed; therefore, whenever the number of non-dominated solutions is less than the
predefined archive size, the archive is filled up by dominated individuals. Finally,
the clustering technique used to prune the external population has been replaced
by an alternative truncation method that has similar features but does not miss
boundary points.

The NSGA-II algorithm is an improvement on the non-dominated sorting ge-
netic algorithm (NSGA) [34]. There are two key concepts in the NSGA family: fast
non-dominated population sorting and a crowding distance calculation to maintain
diversity in the population. NSGA-II introduces a faster algorithm to sort the pop-
ulation that requires fewer computations. A crowding distance considers the size
of the largest cuboid enclosing each individual without including any other mem-
ber of the population. This feature is used to maintain diversity in the population,
and points belonging to the same front and with a higher crowding distance are as-
signed a better fitness than points with a smaller crowding distance, meaning that
no fitness sharing factor is required.

The Pareto envelope-based selection algorithm (PESA) [31, 35] is a hybrid
algorithm combining the Pareto-archived evolution strategy (PAES) [36, 37] and
SPEA. It uses a small internal population and a larger external population (archive),
where non-dominated solutions found in the main population are stored using a
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hyper-grid based scheme. The objective space is divided into several regions, and
the selection mechanism is based on the degree of crowding in different regions of
the archive.

2.2. Quality of solutions

Determining how good a given P∗ is with regard to D∗, or a PF ∗ with regard
to O∗ is not only a key but also a particularly complex task. It necessarily implies
a reduction from an M-dimensional space to a scalar value. Therefore, as in any
dimensionality reduction, valuable information could be lost, leading to invalid
conclusions. This point has been well documented [10, 11].

Nevertheless, there are some community-accepted indicators of the quality of
a solution P∗ [12]. Such indicators can be grouped into three broad categories:

1. distance from the elements of PF ∗ to their corresponding closest element of
O∗, which measures how close the solution is to the optima;

2. distance from every element of O∗ to its closest element of PF ∗, which
complements the first class of indicators and expresses how wellPF ∗ covers
O∗, and

3. distribution of the elements of P∗ and PF ∗, which gauges how well spread
the elements of these sets are.

Although quality indicators were conceived to evaluate the performance of a
given optimizer, they can be reformulated to form part of a stopping criterion
framework. Binary indicators [10] are best suited for this task as they compare
two sets of solutions. Two of these indicators are particularly appropriate: the
hypervolume indicator and the additive epsilon indicator.

2.2.1. Hypervolume indicator
The hypervolume indicator, Ihyp(A), [12, 38–40] computes the volume of the

region, H, delimited by a given set of points,A, and a set of reference points, N .

Ihyp (A) = volume

 ⋃
∀x∈A;∀y∈N

hypercube(x, y)

 . (2)

Therefore, larger values of the indicator will correspond to better solutions.
To measure the absolute performance of an algorithm the reference points

should ideally be nadir points. These points are those whose coordinates are the
maximum of the individual objective functions over the Pareto set [41]. To contrast
the relative performance of two sets of solutions, though, one can be used as the
reference set. These matters are further detailed in [10, 12].
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Having N , the computation of the indicator is a non-trivial problem. Indeed,
its determination is known to be computationally intensive, thus rendering it un-
suitable for problems with many objectives.

A lot of research has focused on improving the computational complexity of
this indicator [42–46]. According to the most recent results, the indicator is cur-
rently known to be O(nM/2 log n). [46] for more than three objectives (M > 3);
O(n log n) for M = 2, 3 [44].

In order to measure the progress of an algorithm the indicator should be trans-
formed into a relative formulation, as proposed by the binary hypervolume indica-
tor [12]:

Ihyp (A,B) = Ihyp (A) − Ihyp (B) . (3)

Substituting A and B by the non-dominated elements of the current and the
previous iteration, PF ∗t and PF ∗t−1, respectively, the indicator can be expressed as

Ihyp (t) = Ihyp
(
PF ∗t

)
− Ihyp

(
PF ∗t−1

)
. (4)

2.2.2. Epsilon indicator
Epsilon indicators [11, 12] are a set of performance indicators that rely on the

epsilon dominance concept. This indicator was proposed to measure how close the
current non-dominated solution individuals front, PF ∗t , is to the Pareto-optimal
front, O∗.

Epsilon dominance is a relaxed version of the domination relation presented
in Definition 2. It can be defined in multiplicative and additive terms, but our
discussion will be confined to the additive version, as this is the one employed in
this paper.

Additive epsilon dominance is defined as:

Definition 4. Additive Epsilon Dominance Relation. For the optimization problem
specified in (1) and having x1, x2 ∈ D, x1 is said to additively ε-dominate x2
(expressed as x1 4ε+ x2) iff f j(x1) ≤ ε + f j(x2).

The additive epsilon indicator, Iε+, is a relative indicator that expresses the
minimum value of ε that is necessary to make a setA ε-dominate a set B, that is,

Iε+ (A,B) = inf
ε∈R
{∀y ∈ B, ∃x ∈ A such that x 4ε+ y} . (5)

The value of the indicator is to be minimized. If Iε+ < 0, then A strictly
dominates B. It can be computed in time O (M |A| |B|).

Iε+ can be directly applied to progress assessment by substituting A and B by
the Pareto-optimal sets of two consecutive iterations, P∗t and P∗t−1. Nevertheless, it
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has the weakness that, for some cases,

|Iε+ (A,B)| , |Iε+ (B,A)| . (6)

A reformulation aimed at overcoming this asymmetry would imply an increment
in the order of the algorithm complexity.

3. Stopping criteria for MOP optimizers

As already stated in the introduction, the stopping criterion issue has been re-
peatedly named as one of the key topics requiring proper attention in the multi-
objective optimization and MOEAs research areas [15, 16]. Even so, it has been
continually neglected. This is not surprising since this matter plays a secondary
role compared with the main lines of research in the area. In face of complex real-
world problems, though, the lack of a firm theoretical understanding of the problem
stands in the way of finding appropriate solutions.

3.1. The problem of knowing when to stop

Typically, the stopping criterion is invoked at the end of an iteration of the
algorithm. At that point, it is decided whether algorithm execution should continue
or can be aborted. We have identified four scenarios when the execution of an
algorithm should terminate:

1. the current solution is satisfactory;
2. the method is able to output a feasible solution, which, although not optimal,

is unlikely to be improved;
3. the method is unable to converge to any solution, or
4. the computation already performed is sufficient to reach a solution or further

computation is unjustified.

Besides detecting the situations in which the algorithm should be stopped, a
stopping criterion should be as lightweight as possible in terms of computational
complexity. Computing resources have to be expended on the algorithm itself, and,
if the criterion is burdensome, it is more likely to be a weakness than a plus point.

The simplest approach to stopping is to compute how well the current the al-
gorithm state satisfies a given quality threshold. These local (or iteration-wise)
criteria only exploit information present in the context of the iteration. Therefore,
their analysis horizon is limited, and it is impossible for them to assess the progress
of the algorithm across consecutive iterations.
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The solution to this is to employ a metaprocess that gathers evidence of progress
measured across iterations. This class of global or execution-wise scheme can ap-
ply a statistical or machine learning approach to combine the different measure-
ments. A rather popular approach in this regard is to apply a statistical hypothesis
test [47, 48].

3.2. Stopping criteria for MOEAs
Stopping criteria are also necessary in the context of single-objective evolu-

tionary algorithms [2]. The theoretical upper and lower bounds for the required
number of iterations have been properly established for some classes of genetic
algorithms [49, 50]. In more general terms, different local-level criteria have been
proposed [4, 5]. They take advantage of the properties of homogeneity of a stag-
nated population.

Nevertheless, the most common practice to stop a MOEA in the multi-objective
case is simply to halt the execution when the algorithm has reached a given number
of iterations (scenario 4 in the above list). A survey of papers that perform different
sorts of comparative or experimental studies readily illustrates this situation.

Although this class of solution is probably viable for simple problems with
two or three objective functions where the required number of iterations can be
determined in a quite straightforward way by trial and error, this procedure is com-
putationally unaffordable for more complex problems.

This issue is particularly applicable when dealing with MOPs with a relatively
large number of objectives. In these problems, it is unfeasible to estimate the num-
ber of iterations required in order to converge to a given solution. Such an estima-
tion would require some knowledge of the nature of the problem or the assumption
of some mathematical properties, which contradicts the central idea of evolutionary
computation.

In a paper published elsewhere [51], for example, we tuned an interactive mul-
tiple model (IMM) filter [52] for use in EUROCONTROL’s air traffic management
surveillance tracker and server (ARTAS) system. This problem was posed as a
36-objective MOP. Furthermore, the evaluation of each objective was very compu-
tationally expensive, they all entailed a Monte Carlo approximation. For this class
of problem it is clearly unfeasible to let the optimizer run for too many iterations.

Computing the population homogeneity is not a suitable solution in MOEAs,
since the population should spread along the Pareto-optimal front. Therefore, we
need to look for novel, purposely designed approaches.

The stopping criterion issue has been previously addressed in the context of
MOEAs in [17]. In that work the authors present a stopping criterion to be used
in conjunction with the NSGA-II algorithm [29]. They compute a mean stability
measure of the spread of the non-dominated individuals. The spread is determined
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using the crowding distance, which is calculated as part of the NSGA-II optimiza-
tion process. These spreads are then averaged over a given number of iterations.
The decision on whether or not to stop is taken by analyzing the variance. The
connection with the NSGA-II algorithm prevents this approach from being easily
extended to other algorithms.

A more comprehensive approach was presented by [19]. They proposed a se-
ries of statistical tests performed on parallel algorithm executions across a limited
number of iterations. These executions are analyzed using three performance indi-
cators, in particular, the generational distance [53], the hypervolume indicator, and
the Pareto-optimal solutions spread [54]. The resulting indicator values are con-
trasted with their corresponding previous values using a statistical hypothesis test.
Using these tests the criterion is able to spot situations when no further progress
is perceivable. This approach, although theoretically sound, has the drawback of
being overparameterized, as it has five free parameters, and having an intensive
computational footprint. Overparameterization implies that the user applying the
approach has to set the criterion parameters, as well as the correct parameters for
the optimization algorithm. The criterion parameters are problem dependent and
hard to determine a priori. Therefore, this relatively large number of parameters
is an obstacle to the success of the procedure. On the other hand, the need for a
large amount of resources to carry out the computation associated with this crite-
rion stands in the way of its application to complex or high-dimensional real-world
problems, where, as we already mentioned, the use of stopping criteria is more
necessary.

A viable alternative to approaches like the above is to use an online criterion
that follows an online analysis scheme. This is the case of the MGBM [18, 22] and
the OCD [20, 26] criteria. Both criteria rely on local measurements of progress that
are gathered across iterations and used for decision making. MGBM uses a mod-
ified Kalman filter and a special-purpose indicator called the mutual domination
rate for this purpose. OCD performs a statistical hypothesis test with a window
containing the indicators yielded by recent iterations.

4. The MGBM stopping criterion

As mentioned in Section 3, a stopping criterion should be composed of two
components. One component measures the improvement in the solutions obtained
after an iteration and the other keeps track of these measurements in order to decide
whether or not the execution of the algorithm should be stopped.

MGBM is a global criterion that combines a local improvement indicator,
called the mutual domination rate (MDR) indicator, and a global evidence-gathering
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criterion that decides when the evolution of values yielded by the local metric in-
dicates that the algorithm should be stopped. The local indicator contrasts the non-
dominated individuals of the current and preceding iterations in order to compute
a measure of the improvement produced by the current iteration. This indicator is
discussed in detail in the next section. The evidence-gathering process tracks the
values of the indicator across iterations using a Kalman filter (described in Section
4.2). The Kalman filter settings are unusual, as it is not designed to predict the
outcome of the indicator across iterations. Instead, it is used to detect situations
where no further progress will be made. Section 4.2.2 presents the fine points of
this matter.

4.1. Mutual domination rate indicator

Intuitively, the performance assessment area, briefly introduced in Section 2,
provides a natural grounding for addressing this issue. Performance indicators,
although designed to determine how similar a solution is to the Pareto-optimal
front, can be reformulated to compare two solutions output by two consecutive
iterations. The main drawback of directly applying this class of solution is the high
computational complexity of the indicators.

The solution to this problem is to create an indicator from scratch designed
specially for the intended purpose. This was the idea that prompted the formulation
of the mutual domination rate (MDR) indicator.

To measure the progress of the evidence-gathering process, we use a metric
based on the set of non-dominated solutions of two consecutive iterations, P∗t and
P∗t−1.

In order to simplify the explanation we introduce the ∆ (A,B) function that
returns the set of elements of A that are dominated by at least one element of B.
Expressed more formally,

C = ∆ (A,B) , (7)

such that
∀x ∈ C, x ∈ A, and ∃y ∈ B with y ≺ x . (8)

The progress indicator Imdr (t) ∈ [−1, 1] contrasts how many non-dominated
individuals of iteration t − 1 are dominated by the non-dominated individuals of
iteration t and vice versa,

Imdr
(
P∗t ,P

∗
t−1

)
=
‖∆

(
P∗t−1,P

∗
t

)
‖

‖P∗t−1‖
−
‖∆

(
P∗t ,P

∗
t−1

)
‖

‖P∗t ‖
. (9)

The Imdr indicator provides different types of information. If Imdr = 1, the
entire population of iteration t is better than its predecessor. If Imdr = 0, there
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has not been any substantial progress. The worst case, Imdr = −1, indicates that
iteration t has not improved any of the solutions of its predecessor.

As we mentioned in the introduction of this paper, a stopping criterion should
be able to discover three situations where the algorithm execution should be stopped.
From the stopping point of view, all these situations can be interpreted as whether
or not the algorithm has made progress. Note that if we focus on the dominance
relation, we disregard the spread of elements along the Pareto-optimal front. This
means that the algorithm will be able to detect when there is no improvement to-
wards this front but not when the spread of solutions along the Pareto-optimal front
is better.

The determination of the non-dominated individuals after each iteration can be
computationally expensive. As most MOEAs extract such individuals for their own
purposes, however, it would be reasonable to embed this part of the criterion into
the actual MOEAs.

Having the current and previous non-dominated sets P∗t and P∗t−1, the order of
complexity of calculating Imdr is O

(
M ·

∣∣∣P∗t ∣∣∣ · ∣∣∣P∗t−1

∣∣∣).
4.2. Gathering evidence

Our approach is based on the recursive estimation prediction and update frame-
work proposed by Kalman filters. For this reason, we will assume that there is no
correlation between the noise present in the measured progress indicator in con-
secutive iterations. Furthermore, the estimated value of the progress indicator and
its associated covariance are governed by a Markov process, and therefore the out-
come of each iteration depends on the previous iteration only.

4.2.1. Kalman filters
The Kalman filter [27, 55] provides an efficient computational means to esti-

mate the state of a dynamic system from a series of incomplete and noisy mea-
surements. This filter is the linear estimator with minimum squared error that can
be applied to any dynamic system with errors following any distribution where
the two first moments of the distribution are known. Furthermore, if we know
that probability distributions are Gaussian and the system dynamics are linear, the
Kalman filter is the globally optimal state estimator. It is very powerful since it
supports estimations of past, current, and future states, even when some aspects of
the modelled system are unknown.

The Kalman filter addresses the general problem of estimating the state of a
discrete-time controlled process that is ruled by a linear stochastic difference equa-
tion.

The state of the filter is represented by two variables:
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A

+ Kt x̂t; Pt

ztvt

−

x̂t−1

Figure 1: Schematic representation of a Kalman filter iteration. x̂−t−1, ut and process noise are use to
compute a priori estimation x̂−t , and its error covariance, P−t . A prediction is made and subtracted
from measurement zt to calculate an error vector. This error is multiplied by the Kalman gain Kt, that
generates a correction added to the prediction to yield the final estimate x̂t.

• x̂t, the estimate of the state at time t, and

• Pt, the error covariance matrix, which is a measure of the estimated accuracy
of the current state estimate.

The Kalman filter estimates a process state by a recursive feedback control
that can be separated in the prediction and update phases. The prediction phase
is responsible for making an a priori estimation of the future state of the system
relying on the current state and error covariance estimates. The update phase is
responsible for feeding back the (noisy) measurement of the state of the system to
output an improved a posteriori estimate. Figure 1 summarizes these processes in
an schematic form.

The Kalman filter assumes a dynamic model given by

xt = Axt−1 + But + wt , (10)

where ut is an optional control input and the random variables wt ∼ N(0,Q) repre-
sent the process noise.

Additionally, the measurement process is modeled by

zt = Hxt + vt , (11)

where H relates the real state of the process xt to the measurement zt and vt ∼

N(0,R) is the measurement noise.
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First, the a priori estimation, x̂−t , and its error covariance, P−t , are calculated as

x̂−t = Ax̂t−1 + But , (12)

P−t = APt−1AT + Q . (13)

Then the update phase proceeds by computing the Kalman gain,

Kt =
P−t HT

HP−t HT + R
. (14)

The a posteriori estimation is calculated as the feedback is entered in the filter
as

x̂t = x̂−t + Kt
(
zt − Hx̂−t

)
. (15)

Finally, an a posteriori error covariance estimate is output by

Pt = (I − KtH)P−t , (16)

where I is the identity matrix.

4.2.2. Using Kalman filters to gather evidence
The application of Kalman filters is an unconventional approach to evidence

gathering. Instead of trying to predict the outcome of a given variable across time,
we are interested in detecting when a variable (in this case the MDR indicator) has
stabilized around zero. Due to its recursive formulation, the estimated variable at
time t summarizes all the evidence gathered until then, plus the associated covari-
ance error, Pt, which would be the minimum possible error under linear conditions.

For this reason, in our case, we keep track of the algorithm progress indicator
at iteration t, Imbr(P∗t ,P

∗
t−1).

After each iteration, we compute the a priori estimated indicator Î−t using a
simple version of the dynamic model (10) with A = 1 and B = 0. This implies
that we are taking a positivist stance and predicting that the indicator will remain
constant across iterations and, therefore, be equal to the a posteriori estimation,
Ît−1,

Î−t = Ît−1 , (17)

disregarding the control input, u, as there is no direct information on changes of I.
In this simplified prediction model, assuming stable conditions between t − 1

and t, we have decided to disregard the prediction error in our dynamic model
(Q = 0). The neglect of the plant noise covariance matrix Q is assumable, provided
that the deviation from the linear approximation is much less than the measurement
noise (R). This is valid if the dynamics of the convergence process is smooth,
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which will be true in the last phase of convergence of any search algorithm under
normal conditions. On the other hand, under these assumptions, we would not be
rigorously modeling the behavior during the initial transient period. However, as
the estimation is not intended to be used to track the values of I, but to detect when
it has reached a stable state that represents algorithm stagnation, we are interested
in having a precise model for the latter part of the convergence process.

Correspondingly, the a priori error covariance becomes

P−t = Pt−1 . (18)

We then rewrite (11) as

zt = Imdr
(
P∗t ,P

∗
t−1

)
(19)

= It + vt , vt ∼ N(0,R), (20)

where Imdr(P∗t ,P
∗
t−1) is calculated following (9). Here we assume that Imdr() is

affected by a Gaussian process attributable to the search process taking place as
part of the evolutionary algorithm.

The correction step of the process becomes

Kt =
P−t

P−t + R
. (21)

Here R can be interpreted as the rate at which the criterion will take into account a
single measurement and therefore provide a faster reaction to changes or if, on the
contrary, the criterion is biased toward a more global (or more inertial) approach.

Therefore, the a posteriori estimation of the indicator can be expressed as the
current result of the indicator

Ît = Î−t + Kt(zt − Î−t ) . (22)

The above assumptions merit further discussion, as they imply an alternative
use of Kalman filters and are, therefore, likely to lead to a misunderstanding of the
inner workings of the criterion. As already discussed, Kalman filters are generally
used for estimating the time-sequence values of a definite variable from a set of
(noisy) measurements. This is not the case here. In this case, we have configured
the filter to capture a “no-progress state” where the evolutionary search process has
stagnated. Therefore, the criterion recognizes when the dynamics of the evolution-
ary process matches the no-progress state represented by the filter.

One main concern is to assure that the algorithm will not stop too early. It can
be assumed that there will be temporary stagnation scenarios in the early stages
of the evolutionary process that should not be taken into account. The value of R
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Figure 2: Evolution of the MDR indicator, Imdr

(
P∗t ,P

∗
t−1

)
, and the a priori and a posteriori estimations

Î−t and Ît across iterations. Here the NSGA-II algorithm is supervised as it successfully solves the
DTLZ3 problem (see Section 5 for more details).

plays a key role for this purpose. By assuming Q = 0, P−t and Kt will converge to
zero at a rate that depends on the values of P0 and R, as detailed in the following
section. This implies that R controls how sensitive the criterion will be in the initial
part of the execution. This assumption has been validated in [24], where we ana-
lyzed different alternatives for Q and some adaptive configurations. A noteworthy
conclusion drawn from the above research is that the selection of different values
of Q had little impact on the stopping decision.

Figure 2 contains plots of the values of the MDR indicator, Imdr
(
P∗t ,P

∗
t−1

)
,

and the a priori and a posteriori estimations, Î−t and Ît, used in an NSGA-II run to
solve the DTLZ3 problem (see Section 5 for details). These plots illustrate how
the three values interact with each other across the algorithm iterations and how
the a posteriori indicator smooths out the readings yielded by the indicator with a
definite shift in time.

There are different situations where the values of the indicator and the esti-
mators suggest that algorithm execution can be safely stopped. For the MGBM
criterion we chose a scheme that will activate if the a posteriori estimation Ît and
associated confidence interval falls below a definite threshold

Ît + 2
√

Pt < Îmin . (23)

In particular, as we are interested in stopping when no further progress is predicted,
it should stop in a situation that is represented by Îmin = ε, with ε→ 0.
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4.2.3. Convergence of Kalman estimator
The assumed model basically exploits the fact that the process noise is much

lower than the indicator noise (Q � R). This is valid if dynamic evolution of
indicator is slow and the observation noise clearly dominates the uncertainty in the
estimator.

With this simplification, and also making use of the quite simple relations in-
dicated above (one dimensional estimation with A = 1 and B = 0), the Kalman
filter equations particularize to friendly analytical expressions. After substitution
of Kalman gain (21) in estimated covariance (16) the recursion of estimated co-
variance becomes

Pt+1 =
R

R + Pt
Pt . (24)

This can be more conveniently expressed as

P−1
t+1 = P−1

t + R−1 . (25)

In this form the covariance dependence with time can be explicitly computed. After
t iterations, assuming it was initialized in t = 0 with value P0, it is given by

P−1
t = P−1

0 + tR−1 , (26)

which is equivalent to

Pt =
RP0

tP0 + R
, (27)

and the Kalman gain at iteration t particularizes to

Kt =
P0

tP0 + R
. (28)

Finally, in order to remove the dependence of criterion with the initialization
covariance, we have used the typical initialization with the observation noise for
the first estimate (P0 = R). In that case, previous expressions are further simplified
to

Pt =
R

t + 1
; (29)

Kt =
1

t + 1
. (30)

As we can see, this particular Kalman filter converges to zero gain (as any
Kalman filter with process noise Q = 0), but the convergence rate is quite slow.
The confidence interval associated to the estimated progress indicator is given by

I95% = Ît ± 2

√
R

t + 1
. (31)
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Therefore, although the gain could become zero and theoretically make the filter
not to follow the indicator trajectory, the number of generations needed would
be higher than conventional number (several hundreds), which never happened in
practice. In all the forthcoming experimental analysis, the estimator converged
much earlier with the three values employed for parameter R (0.05, 0.1 and 0.15).
An additional protection could avoid the use of this estimator after a reasonable
minimum number of generations, tmin, for instance tmin = 500 would be out of
the unstable region. However, using this approach would not ultimately solve the
problem as the values of tmin would be problem-dependant.

4.3. Algorithmics of the criterion

Relying on the equations introduced above we can formulate the algorithmic
scheme of our stopping criterion. This algorithm is outlined in Figure 3.

Apart from the positivist stance expressed above in the formulation of (17), we
will use an initial a posteriori progress estimation, Î0, equal to 1 and the associated
initial covariance, P0, equal to R. This means that we will be assuming full progress
from the start and will let this indicator decay as the process advances.

On the other hand, we have not yet demonstrated that our criterion converges
and, therefore, there is no theoretical guarantee of the optimization process stop-
ping. This implies that we have to set a maximum limit on the number of iterations,
tmax, as a safety measure.

The remaining issue is the choice of the process noise variance R, which, in
our case, represents the degree of system inertia. As this is the only free parameter
of the criterion, an incorrect choice could lead to undesired behavior. In the next
section we show how criterion performance and robustness vary for different values
of R.

Due to the particular assumptions enforced in the dynamic model, the values of
Kalman gain Kt can be directly computed with the equations presented in previous
section in order to speed up computation during the execution of the evolutionary
algorithm.

5. Experiments

We now experimentally illustrate the accuracy of the MGBM criterion by an-
alyzing the performance of the estimations in a set of experiments. In order to
establish the validity of MGBM we proposed two experiments. One is designed to
gain a proper understanding of the properties of MBGM and its controlling param-
eter. The other compares MBGM with similar approaches with the aim of testing
its validity and viability.

20



Initialize t = 0 and the a posteriori progress estimation Î0 = 1.
Set R.
Set tmax, the maximum number of iterations.
Set Îmin, the minimum accepted value of the a posteriori estimation.
while Ît ≥ Îmin and t < tmax do

Execute one iteration of the MOEA.
t = t + 1.
Compute the a priori progress estimation, Î−t , following (17).
Calculate measured rate of improvement, zt, as specified in (9) and
(19).
Determine the a posteriori estimation Ît from equations (18)-(22).

end while

Figure 3: Algorithmic description of the MGBM stopping criterion.

In particular we will present the results of applying three well-established
MOEAs —-the elitist non-dominated sorting genetic algorithm II (NSGA-II) [29],
the improved strength Pareto evolutionary algorithm (SPEA2) [30] and the Pareto
envelope-based selection algorithm (PESA) [31]–— to solve three scalable multi-
objective test problems —–DTLZ3, DTLZ6 and DTLZ7 [56]—– under different
initial conditions. The choice of initial conditions is intended to bias the algorithm
a priori so that we can test whether our criterion can resolve all possible target
situations, i.e. either success or failure.

5.1. Shared experimental setup
As both experiments address the same test problems using the same MOEAs

under the same biasing conditions, we will now describe the shared characteristics
of both experiments.

5.1.1. Test problems
The DTLZ3, DTLZ6 and DTLZ7 problems are part of a family of scalable

multi-objective test problems originally introduced to study and compare the per-
formance of different MOEAs on high-dimensional problems.

These problems were selected for the experiments because of the relative sim-
plicity of their specification and the existence of an a priori known Pareto-optimal
front.

The DTLZ3 problem is an M-objective problem with an n-dimensional deci-
sion vector. Its Pareto-optimal front lies on the first orthant of a unit hypersphere
This problem was introduced to test the ability of a MOEA to converge to the
global Pareto-optimal front, since there are 3n−M+1 − 1 parallel suboptimal fronts.
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The DTLZ6 problem is actually based on a simpler problem, in this case the
DTLZ5 problem. As in the previous case, suboptimal fronts are also present with
the intention of deceiving the optimizer.

On the other hand, the DTLZ7 problem has a Pareto-optimal front that consists
of a heavily disconnected set of 2M−1 Pareto-optimal regions that test an algo-
rithm’s ability to maintain a robust coverage of all optimal regions.

The first results have to do with the WFG4 problem. WFG4 is a separable and
strongly multi-modal problem that, like the other problems, has a concave Pareto-
optimal front. This front lies on the first orthant of a hypersphere of radius one
located at the origin.

WFG5 is also a separable problem but it has a set of deceptive locally optimal
fronts. This feature is meant to evaluate the capacity of the optimizers to avoid
getting trapped in local optima. The next problem, WFG6, is a separable problem
without the strong multi-modality of WFG4.

The remaining three problems have the added difficulty of having a parameter-
based bias. WFG7 is uni-modal and separable, like WFG4 and WFG6. WFG8
is a non-separable problem while WFG9 is non-separable, multi-modal and has
deceptive local-optima.

5.1.2. Biasing the optimization outcome
As mentioned in Section 3, a stopping criterion should spot the conditions in

which the execution of its associated algorithm should be terminated because it
was either successful or failed to reach any solutions. To explore how good the
stopping criteria is at doing this, the experiment parameters should be configured
in such a way that the outcome of the optimization process is a priori biased towards
a success or a failure.

For the success-biased experiments, we used three-dimensional problems (M =

3). The population size was set to 100 elements and the algorithms were left to
run for 500 iterations. For the sake of reproducibility and to compare results, the
internal parameters that we used in this study were the same as the values described
in [57] (see Table 1). In that paper and in the preliminary exploratory experiments
that we ran, this configuration was shown to correctly solve the three problems
under study.

For failure biasing, the problems were configured with ten objectives (M = 10)
and the other experimental conditions were unchanged. A series of experimental
studies, including [58–60] and [6, pp.414–419], showed that there is an exponential
dependence between the dimension of the objective space and the population size
required to solve the problem correctly. When this ratio is not met because the
population is smaller than it should be, then most of the population becomes non-
dominated, and dominance-based ranking becomes useless, as it is unable to guide
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Ît; R = 0:05
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Ît; R = 0:1
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Ît; R = 0:05
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Figure 4: Mean values after each algorithm’ iterations of the MDR progress indicator and the a
posteriori estimation of progress, Ît, for different values of R in a biased success experimental setup.

the search. The selected population size/number of objectives ratio has been shown
to exhibit this behavior [61]. Furthermore, some preliminary experiments were
carried out in order to corroborate this point.

Experiments were carried out within the PISA [62] framework. An Intel Quad
Core 3.4 GHz personal computer with 4 GB of RAM memory running the Linux
operating system was used. The results reported here were output after 30 inde-
pendent runs of the algorithms solving each of the problems.

5.2. Understanding MGBM

The purpose of this experiment was to explore the processes that take place
under the hood of MGBM. We were particularly interested in observing how the
Kalman filter keeps track of the evidence of progress provided by the indicator.
Similarly, we wanted to study the impact of R, the free parameter of the criterion.
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Figure 5: Evolution as iterations advance of the MDR progress indicator and the a posteriori esti-
mation of progress, Ît, for different values of R in a biased failure experimental setup. The plots
represent the mean values of the quantities involved.

For this purpose, we applied MGBM with different values of R, in particular, R =

0.05, R = 0.1 and R = 0.15. The stopping threshold was set to ε = 0.0001.
Figure 4 summarizes the evolution of the a posteriori estimators, Ît, output

when analyzing the execution of the three MOEAs solving the three test problems
under study. In all cases the stopping condition was met when the algorithms
became stable and their solutions were as close to the Pareto-optimal front as they
would be at later generations. The criterion response was quicker or more inertial
depending on the value of R. In the following experiment the performance indicator
values of the solutions were measured at the iterations marked by the criterion. We
found that the indicator values derived from the criterion are similar to the values
output at the later algorithm execution stages.

Note that, in similar tests performed in [57], the algorithms were left to run for
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more iterations than suggested by the criterion. A set of analogous experiments
were performed in [56] with the same population size as ours but with unspecified
internal parameters. For DTLZ3 and DTLZ6, our criterion also suggested halting
the optimization with fewer iterations than they used. However, in the case of
DTLZ7, the criterion suggested keeping the processes running for a longer than
used in the above research, indicating that further processing was needed to reach
the optimum. These results are summarized in Table 2.

Although the criterion appears to signal the algorithm to stop iterating earlier
than in previous tests, these results raise a logical question. Are the solutions output
at the iterations where the algorithm was stopped as good as the solutions output
at the end of the simulation? Figure 6 summarizes the mean hypervolume and
additive epsilon indicator values measured at the iterations where the criterion fired
and at the end of each execution of the algorithm. It indicates that there is no
substantial difference between the quality of the solutions in the iterations selected
by the criterion and the final iterations of the algorithms. One interesting feature
is that the additive epsilon indicator values appear to be more homogeneous than
the hypervolume values. This can be attributed to the fact that in later stages of
the execution the solutions are improved in terms of diversity. This improvement
is better captured by the hypervolume indicator.

The failure-biased experiments (see Figure 5) complement the above results.
The behaviour of MGBM configured with the different values of R has similar
characteristics as the success-biased case, only that in these experiments fewer
iterations were required. This is an important conclusion, as in these experiments
the criterion was supposed to stop an optimization process that would not yield a
valid solution and, as consequence any leaving the process to proceed would imply
a waste of resources.

5.3. MGBM and its possible alternatives
In order to establish the validity and viability of MGBM, we proposed an ex-

periment that contrasts MBGM with possible alternative approaches. The set of
binary quality indicators formulated for MOP solvers includes possible alternatives
to the MDR indicator. We have chosen two popular indicators that were described
in Section 2: the binary forms of the hypervolume and additive epsilon indicators
[12].

Similarly, we chose a statistical hypothesis test scheme for comparison with
the Kalman-based approach. In our case we have taken an approach based on the
online convergence detection (OCD) method [20, 26]. This method applies a one-
sided χ2 test [63] to determine if the variance of the measured indicator is below a
set threshold, and a two-sided t-test [64] to establish the linear trend of the indicator
values. In our experiments we conformed to the parameter setup suggested by the
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Figure 6: Box plots of the values of quality indicators comparing the Pareto–optimal front, O∗, and
the non–dominated solutions front, PF ∗, of the problems output when the MGBM criterion was met
and in the final iteration reported by Deb et al. [56] and Khare [57].

OCD authors, that is, an iteration window of size 10, a variance threshold of −103

and a significance level of 0.05 for the statistical tests.
To make the study as comprehensive as possible, the components of MGBM

and its alternatives were shuffled in all possible combinations. In other words,
every progress indicator was tested with both evidence-gathering approaches. The
results reported here were obtained after 30 independent runs of the algorithms
solving each of the problems. The value of the MGBM parameter R was set to
0.1 and ε was 0.0001, as in the previous experiment. The hypothesis test was
conducted from a sample consisting of 25 consecutive iterations with a confidence
of 95%.

Figures ?? and ?? show the performance of the different criteria in the success-
biased and failure-biased experiments, respectively. The points in time where each
criterion suggested stopping are marked. These figures offer an quick glance of
the outcome of each criterion, however, in order to gain a better understanding of
the results a more detailed information regarding the stop iterations is presented in
Figures ?? and ?? for the success- and failure-biased experiments respectively.

The first, success-biased, case prompts one key conclusion: evidence gather-
ing via Kalman filters is able to detect the optimizer stagnation at earlier stages
than the statistical hypothesis test. This is because Kalman filters only require
measurement-wise decisions, although they do take into account previous measure-
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Figure 7: Success
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Figure 8: Success
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Figure 8: (Continued).
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Figure 9: Failure
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Figure 9: (Continued).

36



Mutual domination Hypervolume Additive epsilon
D

T
L

Z
3

M
u
tu

a
l
d
o
m

in
a
ti
o
n

ra
te

40

60

80

100

120

140

160

180
S2

/K
F

S2
/O

C
D

N
S/

KF

N
S/

O
C

D

PS
/K

F

PS
/O

C
D

SM
/K

F

SM
/O

C
D

M
D

/K
F

M
D

/O
C

D

M
T/

KF

M
T/

O
C

D

M
N

/K
F

M
N

/O
C

D

H
y
p
er

v
o
lu

m
e

in
d
ic

a
to

r

60

80

100

120

140

160

S2
/K

F

S2
/O

C
D

N
S/

KF

N
S/

O
C

D

PS
/K

F

PS
/O

C
D

SM
/K

F

SM
/O

C
D

M
D

/K
F

M
D

/O
C

D

M
T/

KF

M
T/

O
C

D

M
N

/K
F

M
N

/O
C

D

A
d
d
it
iv

e
ep

si
lo

n
in

d
ic

a
to

r

40

60

80

100

120

140

160

S2
/K

F

S2
/O

C
D

N
S/

KF

N
S/

O
C

D

PS
/K

F

PS
/O

C
D

SM
/K

F

SM
/O

C
D

M
D

/K
F

M
D

/O
C

D

M
T/

KF

M
T/

O
C

D

M
N

/K
F

M
N

/O
C

D

D
T

L
Z

6
M

u
tu

a
l
d
o
m

in
a
ti
o
n

ra
te

40

60

80

100

120

140

160

S2
/K

F

S2
/O

C
D

N
S/

KF

N
S/

O
C

D

PS
/K

F

PS
/O

C
D

SM
/K

F

SM
/O

C
D

M
D

/K
F

M
D

/O
C

D

M
T/

KF

M
T/

O
C

D

M
N

/K
F

M
N

/O
C

D

H
y
p
er

v
o
lu

m
e

in
d
ic

a
to

r

60

70

80

90

100

110

120

130

140

150

S2
/K

F

S2
/O

C
D

N
S/

KF

N
S/

O
C

D

PS
/K

F

PS
/O

C
D

SM
/K

F

SM
/O

C
D

M
D

/K
F

M
D

/O
C

D

M
T/

KF

M
T/

O
C

D

M
N

/K
F

M
N

/O
C

D

A
d
d
it
iv

e
ep

si
lo

n
in

d
ic

a
to

r

40

60

80

100

120

140

160

S2
/K

F

S2
/O

C
D

N
S/

KF

N
S/

O
C

D

PS
/K

F

PS
/O

C
D

SM
/K

F

SM
/O

C
D

M
D

/K
F

M
D

/O
C

D

M
T/

KF

M
T/

O
C

D

M
N

/K
F

M
N

/O
C

D

D
T

L
Z

7
M

u
tu

a
l
d
o
m

in
a
ti
o
n

ra
te

60

80

100

120

140

160

180

S2
/K

F

S2
/O

C
D

N
S/

KF

N
S/

O
C

D

PS
/K

F

PS
/O

C
D

SM
/K

F

SM
/O

C
D

M
D

/K
F

M
D

/O
C

D

M
T/

KF

M
T/

O
C

D

M
N

/K
F

M
N

/O
C

D

H
y
p
er

v
o
lu

m
e

in
d
ic

a
to

r

40

60

80

100

120

140

160

S2
/K

F

S2
/O

C
D

N
S/

KF

N
S/

O
C

D

PS
/K

F

PS
/O

C
D

SM
/K

F

SM
/O

C
D

M
D

/K
F

M
D

/O
C

D

M
T/

KF

M
T/

O
C

D

M
N

/K
F

M
N

/O
C

D

A
d
d
it
iv

e
ep

si
lo

n
in

d
ic

a
to

r
40

60

80

100

120

140

S2
/K

F

S2
/O

C
D

N
S/

KF

N
S/

O
C

D

PS
/K

F

PS
/O

C
D

SM
/K

F

SM
/O

C
D

M
D

/K
F

M
D

/O
C

D

M
T/

KF

M
T/

O
C

D

M
N

/K
F

M
N

/O
C

D

W
FG

1
M

u
tu

a
l
d
o
m

in
a
ti
o
n

ra
te

40

60

80

100

120

140

160

180

S2
/K

F

S2
/O

C
D

N
S/

KF

N
S/

O
C

D

PS
/K

F

PS
/O

C
D

SM
/K

F

SM
/O

C
D

M
D

/K
F

M
D

/O
C

D

M
T/

KF

M
T/

O
C

D

M
N

/K
F

M
N

/O
C

D

H
y
p
er

v
o
lu

m
e

in
d
ic

a
to

r

40

60

80

100

120

140

160

S2
/K

F

S2
/O

C
D

N
S/

KF

N
S/

O
C

D

PS
/K

F

PS
/O

C
D

SM
/K

F

SM
/O

C
D

M
D

/K
F

M
D

/O
C

D

M
T/

KF

M
T/

O
C

D

M
N

/K
F

M
N

/O
C

D

A
d
d
it
iv

e
ep

si
lo

n
in

d
ic

a
to

r

20

40

60

80

100

120

140

160

180

S2
/K

F

S2
/O

C
D

N
S/

KF

N
S/

O
C

D

PS
/K

F

PS
/O

C
D

SM
/K

F

SM
/O

C
D

M
D

/K
F

M
D

/O
C

D

M
T/

KF

M
T/

O
C

D

M
N

/K
F

M
N

/O
C

D

W
FG

2
M

u
tu

a
l
d
o
m

in
a
ti
o
n

ra
te

40

60

80

100

120

140

160

180

200

S2
/K

F

S2
/O

C
D

N
S/

KF

N
S/

O
C

D

PS
/K

F

PS
/O

C
D

SM
/K

F

SM
/O

C
D

M
D

/K
F

M
D

/O
C

D

M
T/

KF

M
T/

O
C

D

M
N

/K
F

M
N

/O
C

D

H
y
p
er

v
o
lu

m
e

in
d
ic

a
to

r

40

60

80

100

120

140

160

S2
/K

F

S2
/O

C
D

N
S/

KF

N
S/

O
C

D

PS
/K

F

PS
/O

C
D

SM
/K

F

SM
/O

C
D

M
D

/K
F

M
D

/O
C

D

M
T/

KF

M
T/

O
C

D

M
N

/K
F

M
N

/O
C

D

A
d
d
it
iv

e
ep

si
lo

n
in

d
ic

a
to

r

20

40

60

80

100

120

140

160

S2
/K

F

S2
/O

C
D

N
S/

KF

N
S/

O
C

D

PS
/K

F

PS
/O

C
D

SM
/K

F

SM
/O

C
D

M
D

/K
F

M
D

/O
C

D

M
T/

KF

M
T/

O
C

D

M
N

/K
F

M
N

/O
C

D

W
FG

3
M

u
tu

a
l
d
o
m

in
a
ti
o
n

ra
te

60

80

100

120

140

160

180

S2
/K

F

S2
/O

C
D

N
S/

KF

N
S/

O
C

D

PS
/K

F

PS
/O

C
D

SM
/K

F

SM
/O

C
D

M
D

/K
F

M
D

/O
C

D

M
T/

KF

M
T/

O
C

D

M
N

/K
F

M
N

/O
C

D

H
y
p
er

v
o
lu

m
e

in
d
ic

a
to

r

40

60

80

100

120

140

S2
/K

F

S2
/O

C
D

N
S/

KF

N
S/

O
C

D

PS
/K

F

PS
/O

C
D

SM
/K

F

SM
/O

C
D

M
D

/K
F

M
D

/O
C

D

M
T/

KF

M
T/

O
C

D

M
N

/K
F

M
N

/O
C

D

A
d
d
it
iv

e
ep

si
lo

n
in

d
ic

a
to

r

40

60

80

100

120

140

S2
/K

F

S2
/O

C
D

N
S/

KF

N
S/

O
C

D

PS
/K

F

PS
/O

C
D

SM
/K

F

SM
/O

C
D

M
D

/K
F

M
D

/O
C

D

M
T/

KF

M
T/

O
C

D

M
N

/K
F

M
N

/O
C

D

Figure 10: Failure
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Figure 10: (Continued).
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ments, while hypothesis tests must analyze a relatively large sample of measure-
ments. This difference also implies that Kalman filters require less computation to
produce their results. This difference could perhaps be narrowed by reformulating
the hypothesis test in a recursive form.

On the other hand, regardless of the evidence tracker used, the application of
the MDR indicator is able to signal the algorithm to stop executing before the other
alternatives. This raises the question of whether MDR makes the criterion activate
before the optimization process has actually stopped. In order to clarify this issue
we measured the hypervolume and additive epsilon indicator values comparing
the problem Pareto-optimal set F ∗ and the non-dominated set output when the
corresponding criterion was met, P∗. These results are summarized in Figure ??.
We can safely say here that the indicator values yielded by the criteria are similar
and adequate.

Clearly if the MGBM criterion were able to signal a stop condition earlier
than the other variants but the solutions output at that iteration were of a lesser
quality, the criterion would be useless. Figure ?? shows that there is no substantial
difference between the mean values of the quality indicators yielded by the different
criteria. It can be inferred that, even though MGBM did fire earlier, it did not fire
when the optimization was still in progress.

The early stopping indicated by MDR can be attributed to the fact that the
other indicators, especially the hypervolume indicator, take into account the poten-
tial diversification in the non-dominated front of the algorithms. This is relatively
less important when dealing with many-objective problems like the ones discussed
above. The main concern in this class of application is to get as close as possible
to the Pareto-optimal front, as the spread of solutions would place an even greater
demand on computational resources.

The failure-biased experiments (Figure ??) complement the results described
above. The above rationale cannot be extrapolated as-is to the failure-biased ex-
periments. Note that this class of experiment has not been previously proposed
elsewhere, although we think it is indispensable to gain a complete experimental
understanding of the matter. It is probably conceptually impossible to determine if
the criteria actually managed to detect this situation. What we did find is that all
the criteria did signal the algorithm to stop, and none left the algorithm running for
an indefinite (and possibly infinite) number of iterations.

Still, there are some noteworthy points. It is again noticeable that the Kalman
filter is able to detect the non-progress condition earlier. However, this difference
is not as big as in the success-biased experiments. Similarly, the fact that all the
evidence gathered performed more or less the same, regardless of the indicator
used, is very illustrative. This is particularly noticeable in the case of the DTLZ7
problem.
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The above results raise another question. What is the resource consumption of
each of the combinations? This property is usually reported as the time taken by the
process to terminate. However, this approach is hard to reproduce. For this reason,
we will measure the number of CPU operations carried out to process the stopping
criterion in each iteration instead. We found this approach to be sounder and more
easily reproducible than just measuring the duration. To do this, we employed the
OProfile software profiling tool [65]. The profiling tool was configured in such
way that it only reported the CPU operations run by the processes of interest.

The mean number of CPU operations run by each evidence gatherer and progress
indicator combination are summarized in Figures 11 and 12. We find that MGBM
(the combination of MDR and Kalman filter) runs the fewest operations of all in
most cases. In all cases, the application of the statistical hypothesis test is far
more computationally expensive than its Kalman counterpart. This is due to the
simplicity of the operations carried out by the Kalman filter compared to the repet-
itive assessment of indicator values of previous iterations used by the statistical
hypothesis test. Also notable is the increment in the amount of computation of
the hypervolume indicator, particularly evident in the failure-biased experiments.
This can be attributed to its exponential relation to the number of objectives. Last
but not least, let us look at the homogeneity of the results, a point that lends sup-
port to the possibility of outputting similar performances when dealing with other
problems of the same magnitude.

Another interesting and important analysis regarding the computational impact
of the criteria is to determine how much effort is dedicated to stopping with regard
to the optimization process itself. Figure 13 shows this comparison. It is visually
clear that when the hypervolume is involved the computational requirements of the
criterion are increased. Any how, these results should not be taken literally. In
this study the stopping criteria are an independent module. However, in practical
applications the computation of the progress indicators, MDR in particular, can be
easily embedded inside of the MOEA processes, thus reducing the computational
costs.

6. Final remarks

In this paper we have presented a novel stopping criterion to be used in multi-
objective optimization problems. In particular, we proposed a global stopping crite-
rion, named MGBM criterion, which combines the mutual domination rate (MDR)
improvement indicator with a simplified Kalman filter that is used in the evidence-
gathering process. The MDR indicator is a special-purpose solution designed for
the stopping task. It is capable of gauging the progress of the optimization with
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a low computational cost and is therefore suitable for solving complex or many-
objective problems. Although the stopping criterion issue apparently plays a sec-
ondary role, real-world practical experiences underscore its importance.

As part of this paper we have described the criterion theoretically and have ex-
amined its performance on some test problems. It was also compared with similar
approaches to the issue. From these experiments we have found that MGBM is
a good starting point for research in this direction. Obviously, more experimen-
tation is required, and other types of filters must be tested. Research on creating
the necessary assessment tools to be able to gauge the performance of the criteria
would perhaps not go amiss either. It should be noted, however, that the criterion
has been successfully applied by the authors in a series of studies that deal with
high-dimensionality multi-objective problems [66–69].

A salient issue is the interpretation of the final algorithm state in order to es-
tablish the reason for the process being stopped. Evidence gathered during this
research indicates that some conclusions can be drawn on this point by analyzing
the number of dominated and non-dominated individuals in the population. These
results are consistent with outcomes previously presented by Khare et al. [58], Pur-
shouse and Fleming [59], Knowles and Corne [60], Ishibuchi et al. [61], Pradit-
wong and Yao [70] and Deb [6, pp.414–419].

Another key issue is to capture the diversification process that takes place as
part of the optimization process. It has been documented that after the population
hits a local Pareto front it starts exploring along that front. An indicator capable of
measuring the degree to which the optimization algorithm is actively exploring the
search space could perhaps improve the results presented here.
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algorithm for the hypervolume indicator, in: 2006 IEEE Congress on Evolu-
tionary Computation (CEC’2006), pp. 1157–1163.

[45] N. Beume, G. Rudolph, Faster S–metric calculation by considering domi-
nated hypervolume as Klee’s measure problem, in: B. Kovalerchuk (Ed.),
Proceedings of the Second IASTED International Conference on Computa-
tional Intelligence, IASTED/ACTA Press, 2006, pp. 233–238.

[46] N. Beume, S–metric calculation by considering dominated hypervolume as
Klee’s measure problem, Evolutionary Computation 17 (2009) 477–492.
PMID: 19916778.

[47] K. Srinagesh, The Principles of Experimental Research, Butterworth–
Heinemann (Elsevier), Oxford, UK, 2006.

[48] K. S. Trivedi, Probability and Statistics with Reliability, Queuing and Com-
puter Science Applications, John Wiley and Sons, Chichester, UK, second
edition, 2002.

[49] H. Aytug, G. J. Koehler, Stopping criteria for finite length genetic algorithms,
INFORMS: Journal on Computing 8 (1996) 183–191.

[50] H. Aytug, G. J. Koehler, New stopping criterion for genetic algorithms, Eu-
ropean Journal of Operational Research 126 (2000) 662–674.

[51] J. A. Besada, J. Garcia, G. de Miguel, A. Berlanga, J. M. Molina, J. R. Casar,
Design of IMM filter for radar tracking using evolution strategies, IEEE
Transactions on Aerospace and Electronic Systems 41 (2005) 1109–1122.

46



[52] H. A. P. Blom, Y. Bar-Shalom, The interacting multiple model algorithm
for systems with Markovian switching coefficients, IEEE Transactions on
Automatic Control 33 (1988) 780–783.

[53] D. A. V. Veldhuizen, G. B. Lamont, Evolutionary Computation and Con-
vergence to a Pareto Front, in: J. R. Koza (Ed.), Late Breaking Papers at
the Genetic Programming 1998 Conference, Stanford University Bookstore,
Stanford University, California, 1998, pp. 221–228.

[54] K. Deb, S. Jain, Running Performance Metrics for Evolutionary Multi-
Objective Optimization, in: L. Wang, K. C. Tan, T. Furuhashi, J.-H. Kim,
X. Yao (Eds.), Proceedings of the 4th Asia-Pacific Conference on Simulated
Evolution and Learning (SEAL’02), volume 1, Nanyang Technical Univer-
sity, Orchid Country Club, Singapore, 2002, pp. 13–20.

[55] P. S. Maybeck, Stochastic models, estimation, and control, volume 141 of
Mathematics in Science and Engineering, Academic Press, 1979.

[56] K. Deb, L. Thiele, M. Laumanns, E. Zitzler, Scalable test problems for evo-
lutionary multiobjective optimization, in: A. Abraham, L. Jain, R. Goldberg
(Eds.), Evolutionary Multiobjective Optimization: Theoretical Advances and
Applications, Advanced Information and Knowledge Processing, Springer
Verlag, 2004, pp. 105–145.

[57] V. Khare, Performance Scaling of Multi-Objective Evolutionary Algorithms,
Master’s thesis, School of Computer Science, The University of Birmingham,
Edgbaston, Birmingan, UK, 2002.

[58] V. Khare, X. Yao, K. Deb, Performance Scaling of Multi-objective Evolu-
tionary Algorithms, in: C. M. Fonseca, P. J. Fleming, E. Zitzler, K. Deb,
L. Thiele (Eds.), Evolutionary Multi-Criterion Optimization. Second Interna-
tional Conference, EMO 2003, Springer. Lecture Notes in Computer Science.
Volume 2632, Faro, Portugal, 2003, pp. 376–390.

[59] R. C. Purshouse, P. J. Fleming, On the evolutionary optimization of many
conflicting objectives, IEEE Transactions on Evolutionary Computation 11
(2007) 770–784.

[60] J. Knowles, D. Corne, Quantifying the effects of objective space dimen-
sion in evolutionary multiobjective optimization, in: S. Obayashi, K. Deb,
C. Poloni, T. Hiroyasu, T. Murata (Eds.), Proceedings 4th International Con-
ference Evolutionary Multi–Criterion Optimization (EMO 2007), Springer,
Berlin/Heidelberg, 2007, pp. 757–771.

47



[61] H. Ishibuchi, N. Tsukamoto, Y. Nojima, Evolutionary many–objective opti-
mization: A short review, in: IEEE Congress on Evolutionary Computation,
2008 (CEC 2008) part of IEEE World Congress on Computational Intelli-
gence, IEEE Press, Piscataway, New Jersey, 2008, pp. 2419–2426.

[62] S. Bleuler, M. Laumanns, L. Thiele, E. Zitzler, PISA—A Platform and Pro-
gramming Language Independent Interface for Search Algorithms, in: C. M.
Fonseca, P. J. Fleming, E. Zitzler, K. Deb, L. Thiele (Eds.), Evolutionary
Multi-Criterion Optimization. Second International Conference, EMO 2003,
Springer. Lecture Notes in Computer Science. Volume 2632, Faro, Portugal,
2003, pp. 494–508.

[63] H. Chernoff, L. E. L., The use of maximum likelihood estimates in χ2 tests for
goodness-of-fit, The Annals of Mathematical Statistics 25 (1954) 579–586.

[64] W. S. Gosset a.k.a. Student, The probable error of a mean, Biometrika 6
(1908) 1–25.

[65] J. Levon, OProfile manual, Victoria University of Manchester, 2004.

[66] L. Martı́, J. Garcı́a, A. Berlanga, J. M. Molina, Scalable continuous mul-
tiobjective optimization with a neural network–based estimation of distribu-
tion algorithm, in: M. Giacobini, A. Brabazon, S. Cagnoni, G. A. Di Caro,
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Table 1: Parameters of the algorithms used in the experiments.

Common parameters (where applicable)

Population size 100
Crossover probability 0.7
Dist. index for simul. binary crossover 15
Mutation probability 0.05
Dist. index for polynomial mutation 20

SPEA2 and PESA

Ratio of sizes of population and archive 4:1

MARTEDA

F2 vigilance threshold 0.05
Initial standard deviations 0.01
Selection percentile 0.3
P̂t to N∗ ratio 0.5
Substitution percentile 0.25

MONEDA

Number of initial GNG nodes 2
Maximum edge age 40
Best node learning rate 0.1
Neighboring nodes learning rate 0.05
Insertion error decrement rate 0.1
General error decrement rate 0.1
Accumulated error threshold 0.2
Selection percentile 0.3
P̂t to Nmax ratio 0.5
Substitution percentile 0.25
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Table 2: Stop iterations suggested by the MGBM criterion with different values of R and the number
of iterations used in [56] and [57] when solving DTLZ3, DTLZ6 and DTLZ7 with similar configu-
rations of NSGA-II, SPEA2 and PESA.

MOEA MGBM Deb et al. [56] Khare [57]
R = 0.05 R = 0.1 R = 0.15

DTLZ3

NSGA-II 91 104 115 500 500
SPEA2 121 132 149 500 500
PESA 125 129 138 500 500

DTLZ6

NSGA-II 104 106 140 500 500
SPEA2 71 78 123 500 500
PESA 95 103 151 500 500

DTLZ7

NSGA-II 237 259 275 200 N/A
SPEA2 269 305 330 200 N/A
PESA 279 298 326 200 N/A
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Figure 11: Mean CPU operations per iteration performed by each stopping criterion for success-
biased experiments.
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Figure 12: Mean CPU operations per iteration performed by each stopping criterion for failure-biased
experiments.
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(b) Kalman filter with hyper-
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(c) Kalman filter with additive
epsilon (K+E)
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Figure 13: Relationship between the amount of CPU resources dedicated to stopping criterion and
the MOEA algorithms that hosts it.
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