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Abstract

Many real-world optimization problems consist of a number of conflicting objectives that

have to be optimized simultaneously. Due to the presence of multiple conflicting ob-

jectives, there is no single solution that can optimize all the objectives. Therefore, the

resulting multiobjective optimization problems (MOPs) resort to a set of trade-off op-

timal solutions, called the Pareto set in the decision space and the Pareto front in the

objective space. Traditional optimization methods can at best find one solution in a sin-

gle run, thereby making them inefficient to solve MOPs. In contrast, evolutionary algo-

rithms (EAs) are able to approximate multiple optimal solutions in a single run. This

strength makes EAs good candidates for solving MOPs. Over the past several decades,

there have been increasing research interests in developing EAs or improving their perfor-

mance, resulting in a large number of contributions towards the applicability of EAs for

MOPs. However, the performance of EAs depends largely on the properties of the MOPs

in question, e.g., static/dynamic optimization environments, simple/complex Pareto front

characteristics, and low/high dimensionality. Different problem properties may pose dis-

tinct optimization difficulties to EAs. For example, dynamic (time-varying) MOPs are

generally more challenging than static ones to EAs. Therefore, it is not trivial to further

study EAs in order to make them widely applicable to MOPs with various optimization

scenarios or problem properties.

This thesis is devoted to exploring EAs’ ability to solve a variety of MOPs with dif-

ferent problem characteristics, attempting to widen EAs’ applicability and enhance their

general performance. To start with, decomposition-based EAs are enhanced by incorpo-

rating two-phase search and niche-guided solution selection strategies so as to make them

suitable for solving MOPs with complex Pareto fronts. Second, new scalarizing functions

are proposed and their impacts on evolutionary multiobjective optimization are exten-

sively studied. On the basis of the new scalarizing functions, an efficient decomposition-

based EA is introduced to deal with a class of hard MOPs. Third, a diversity-first-

and-convergence-second sorting method is suggested to handle possible drawbacks of

convergence-first based sorting methods. The new sorting method is then combined with

strength based fitness assignment, with the aid of reference directions, to optimize MOPs

with an increase of objective dimensionality. After that, we study the field of dynamic

multiobjective optimization where objective functions and constraints can change over



vi

time. A new set of test problems consisting of a wide range of dynamic characteristics

is introduced at an attempt to standardize test environments in dynamic multiobjective

optimization, thereby aiding fair algorithm comparison and deep performance analysis.

Finally, a dynamic EA is developed to tackle dynamic MOPs by exploiting the advan-

tages of both generational and steady-state algorithms. All the proposed approaches have

been extensively examined against existing state-of-the-art methods, showing fairly good

performance in a variety of test scenarios.

The research work presented in the thesis is the output of initiative and novel attempts

to tackle some challenging issues in evolutionary multiobjective optimization. This re-

search has not only extended the applicability of some of the existing approaches, such

as decomposition-based or Pareto-based algorithms, for complex or hard MOPs, but also

contributed to moving forward research in the field of dynamic multiobjective optimiza-

tion with novel ideas including new test suites and novel algorithm design.
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Chapter 1

Introduction

Many real-life problems ranging from engineering to economics involve multiple objec-

tives to be optimized [46]. For example, the decision on the purchase of a flight ticket

depends on departure/arrival places and time, flight duration, safety, airline service, and

the cost. The objectives are often in conflict with each other, and problems having this con-

flicting nature are referred to multiobjective optimization problems (MOPs). As a result,

there is no single solution that could minimize or maximize all the objectives simultane-

ously. Instead, the optima of an MOP are a set of trade-off solutions that compromise

objectives, known as the Pareto set (PS) in the decision space and Pareto front (PF) in the

objective space. Solutions in the PS are incomparable as each of them represents a certain

compromise between the objectives.

Mimicking the process of nature evolution, i.e., the survival of the fittest [38], evo-

lutionary algorithms (EAs) are an important method applied to solve MOPs [34]. The

popularity of using EAs for multiobjective optimization is due to the following advan-

tages. First, EAs do not require much knowledge about problem properties, e.g., continu-

ity and differentiability, compared with traditional mathematical programming methods

[158]. Second, EAs can provide a set of solutions by employing a population of candi-

dates and evolving them simultaneously in a single run. Third, EAs have the ability to

handle complex search environments, e.g., the search space is very large or has discon-

nected regions.

MOPs are a general term to refer to problems with at least two objectives. However,

different MOPs may have different problem properties, resulting in distinct optimization

difficulties for EAs. Thus, it is not trivial to classify MOPs into different categories ac-

cording to their problem properties. In the community of evolutionary computation, there

are three popular subcategories of MOPs: (static) MOPs, (static) many-objective opti-

mization problems (MaOPs), and dynamic MOPs (DMOPs).

MOPs or static MOPs are often related to problems with two or three objectives. After

decades of development, the research on MOPs has achieved fruitful results. Theoretical
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foundation and algorithm design have been deeply studied. Despite that, some work re-

lated to multiobjective optimization has not been fully understood. Wider problem types

should be investigated and more improvements are expected to be made toward existing

EAs.

Many-objective problems differentiates from MOPs in the number of objectives. Many-

objective problems involve more than three objectives. Due to the increase in the number

of objectives, existing EAs that are originally designed for MOPs suffer from significant

loss of selection pressure and their performance deteriorates dramatically [43]. In order to

make EAs applicable to many-objective problems, effective selection methods are needed

to increase selection pressure during the search.

Dynamic MOPs are a kind of MOPs in which objective functions and/or constraints

change over time. Due to environmental changes in dynamic MOPs, feasible solutions

can become infeasible, and promising ones can become unexpectedly poor. The con-

sequences of dynamic environments give rise to new challenges to EAs. However, the

research on evolutionary dynamic multiobjective optimization is now at the very early

stage. There is a lack of diverse test environments, suitable performance metrics, and ef-

fective algorithms in the field of dynamic multiobjective optimization. These open issues

need to be addressed in order to promote the development of this field.

This chapter is organized as follows. First, the motivation of undertaking this research

is explained. Thereafter, the main objectives of this research are stated, followed by an

outline of contributions. Finally, the overall structure of this thesis is provided.

1.1 Motivation

Evolutionary multiobjecitve optimization (EMO) in static and dynamic environments is a

challenging research topic because it not only involves the simultaneous optimization of

multiple complex objectives, but also requires multiobjective EAs (MOEAs) to be capa-

ble of addressing many issues related to different optimization environments. There have

been great advances made in multiobjective optimization, many-objective optimization

and dynamic multiobjective optimization in recent years. However, the ability and appli-

cability of EAs to various optimization environments have not yet been well understood.

The primary motivation of this work is to extend EAs’ applicability to a wide variety

of MOPs, including both static and dynamic optimization environments, and facilitate the-

oretical foundations for dynamic multiobjective optimization. The following paragraphs

are devoted to explaining the incentive of this research work in detail.

A large number of EAs have been proposed for multiobjective optimization, and they

have been shown to be very promising for solving a variety of MOPs [43, 120, 188].

Among them, decomposition-based EAs [188] are a popular class of methods and have
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become a baseline algorithm by winning the continuous multiobjective optimization com-

petition in the 2009 IEEE Congress on Evolutionary Computation [190]. However, some

recent studies have shown that the decomposition-based EAs could be influenced by PF

geometries of MOPs, particularly when optimizing MOPs with complex PFs [139]. As a

result, they fail to provide a good coverage and distribution of solutions. This issue needs

to be addressed in order to improve the applicability of this kind of EAs.

Scalarizing functions are widely used in multiobjective optimization. Scalarizing func-

tions are an important tool to convert a MOP into a number of MOPs or sing-objective

problems [188]. Through conversion, the MOP becomes easier to be handled. Despite

great success, scalarizing functions are not yet fully understood. A particular question

related to scalarizing functions is: how do they affect the search behaviour of EAs? To

answer this question soundly, a deep investigation is required.

Many-objective problems are more challenging than MOPs for EAs. Due to the in-

crease in the number of objectives, Pareto dominance relation becomes ineffective to dis-

criminate solutions, leading to a dramatical loss of selection pressure during the search

[43]. Facing this issue, a natural question arises – is there any other effective method in

place of the Pareto dominance based selection method? This is an interesting question

and worthwhile of investigation.

Dynamic MOPs frequently appear in real-world applications [55]. This kind of prob-

lems brings new challenges to EAs. Dynamic test problems play an important role in

deeply studying and understanding dynamic environments. They are also helpful for al-

gorithm design and development. However, in the field of dynamic multiobjective op-

timization, there is a lack of standard test environments that can be used to deeply and

comprehensively study the challenges caused by dynamic environments and assess EAs’

ability to deal with these challenges. Therefore, standard test problems are desirable in

order to advance the development of EAs for dynamic MOPs.

While EAs have been shown to be powerful and efficient optimizers for static MOPs,

they encounter difficulties in solving dynamic MOPs. Due to environmental changes, EAs

are very likely to lose population diversity, and nondominated solutions discovered in the

previous environment may be no longer nondominated [61]. The changing environments

require EAs to be capable of maintaining diversity, detecting changes, and converging

quickly. In other words, a good EA should be able to track the changing PS/PF and

provide a set of well-diversified solutions for each environmental change. In this research

field, there is a great need of good EAs that are able to handle dynamic environments and

serve as baseline algorithms for algorithm comparison.
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1.2 Objectives

The overall purpose of this work is to make EAs applicable to various MOPs with different

problem characteristics and optimization difficulties. To accomplish the overall objective

some specific objectives are proposed:

• A review of decomposition-based EAs for MOPs with complex PFs will be con-

ducted. This will result in a further and extensive understanding of strengths and

weaknesses of decomposition-based EAs when solving this kind of problems. Novel

techniques will be proposed to alleviate or overcome the observed drawbacks, and

these new techniques will be examined on complex-PF MOPs and compared with

other peer methods to show the effectiveness.

• EAs with scalarizing functions for MOPs will be systematically studied. First, po-

tential drawbacks of existing scalarizing functions will be analysed qualitatively.

In view of the drawbacks of incorporating these scalarizing functions into EAs for

MOPs, new scalarizing functions will be proposed. These new scalarizing func-

tions will be studied quantitatively and qualitatively. They will also be integrated

into EAs to solve MOPs, and experimental studies will be carried out to show the

superiority of the proposed methods.

• Different selection methods will be investigated in the field of many-objective op-

timization. Particularly, the difference between diversity-biased and convergence-

biased selection methods will be studied. An extensive experimental study will

be conducted to identify the most suitable one from these two kinds of selection

methods for many-objective optimization. The selection method identified will be

combined with new strategies to form a new algorithm for many-objective optimiza-

tion. The new algorithm will be validated through fair comparisons with state of

the arts.

• An extensive investigation and thorough analysis in test suites for dynamic multi-

objective optimization will be carried out to identify the common dynamic features

among existing test suites. Based on the analysis, new and representative dynamic

characteristics that are rarely considered will be assessed, and this will lead to the

development of a new dynamic test suite. The new test suite will be used to study

the ability of EAs to handle environmental changes. The strengths and weaknesses

of some EAs for dynamic multiobjective optimization will be summarized.

• On the basis of the above testing, a new EA framework will be developed for dy-

namic multiobjective optimization. The new EA will take the advantage of steady-

state EAs in promoting convergence and the advantage of generational EAs in main-

taining diversity, thereby having the ability to react to changes quickly and search
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new PFs effectively. The proposed EA will be examined on a wide range of test

problems, and its performance will be validated by comparing existing popular dy-

namic multiobjective optimizers.

1.3 Contributions

The following summarises the main contributions of this thesis:

• A new two-phase search method and a niche-guided selection method are inte-

grated into decomposition-based EAs for solving MOPs with complex PFs (Chap-

ter 3). The popular decomposition-based EA, e.g., MOEA based on decomposition

(MOEA/D) [188], maintains diversity on the assumption that uniform weight vec-

tors provide a set of uniformly-distributed solutions. However, this assumption

hardly holds when the PF to be approximated is irregularly shaped, e.g., MOEA/D

is likely to generate duplicate solutions if the PF has disconnected segments. More-

over, MOEA/D uses a simple solution selection method for mating and replacement

without considering the density of solutions, which can easily lead to overexploita-

tion/underexploitation in some regions, particularly for complex PFs. In view of

these drawbacks, a two-phase search method is proposed to divide the search into

two phases, where the first phase is devoted to a coarse search and the second phase

helps refine the solutions obtained from the first phase and improve their distribu-

tion. A niche-guided selection is introduced to reduce the chance of selecting solu-

tions from overcrowded regions and enhance the search in underexplored regions,

thereby guaranteeing good population diversity during the search.

The two-phase and niche-guided (TPN) strategy is tested on a number of irregu-

lar MOPs with different PF characteristics, e.g., sharp-peak/long-tail PFs, discon-

nected PF segments and multimodal PFs. The experimental study has shown the

effectiveness of TPN in improving MOEA/D for solving complex MOPs. Further-

more, MOEA/D with TPN has been compared with other peers and state-of-the-art

algorithms, demonstrating that it is very promising for finding well-converged and

uniformly-distributed solutions for MOPs with various and complex PFs.

• New scalarizing functions (i.e., the multiplicative scalarizing function (MSF) and

penalty-based scalarizing function (PSF)) are introduced for hard MOPs and their

impact on search behaviour is deeply investigated (Chapter 4). Unlike the commonly-

used existing scalarizing functions, e.g., the weighted sum (WS), the weighted

Chebycheff (TCH) and the penalty-based boundary intersection (PBI) [188], which

are difficult to maintain the balance between diversity and convergence for hard

search environments, the MSF and PSF can induce adjustable improvement regions
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so that diversity can be well controlled during the search. Also, MSF and PSF pro-

mote the similar size of improvement regions. As a result, all the solutions to the

subproblems can make equally good progress during the evolution. Besides, an ef-

ficient EA based on the proposed scalarizing functions (eMOEA/D) is proposed for

multiobjective optimization.

The eMOEA/D algorithm has been investigated on a number of difficult MOPs

where local attractors can cause evolutionary stagnation. Compared with nine state-

of-the-art scalarizing-based or decomposition-based algorithms, eMOEA/D is more

capable of balancing diversity and convergence, thereby producing high-quality so-

lutions at the end of the search. This implies the usefulness of the new scalarizing

functions in dealing with hard MOPs.

• A novel diversity-first-and-convergence-second (DFCS) selection approach is pro-

posed to handle many-objective optimization (Chapter 5). Unlike most existing

Pareto-based EAs that approximate the PF in a convergence-first-and-diversity-

second manner, DFCS considers diversity as the first selection criterion. This way,

the loss of selection pressure resulting from Pareto dominance can be rescued by the

increase of diversity emphasis. On the basis of DFCS, a new EA, called SPEA/R,

is introduced to deal with many-objective problems. SPEA/R employs a set of di-

verse weight vectors to partition the objective space into a number of subspaces and

uses a Pareto-based method to do fitness assignment. As a result, SPEA/R makes it

possible to use Pareto dominance in many-objective optimization.

The effectiveness and promise of SPEA/R has been verified on both MOPs and

many-objective problems. This refutes the common belief that Pareto dominance is

ineffective in many-objective optimization. An interesting finding from empirical

studies is that diversity may be more important than convergence in the case of

optimizing many-objective problems considered in this thesis.

• A new test suite (i.e., JY) is developed for dynamic multiobjective optimization

(Chapter 6). The JY test suite is proposed to meet the need of standard test envi-

ronments in the field of dynamic multiobjective optimization. Unlike some existing

test suites, JY contains test problems with typical and diverse dynamic characteris-

tics, e.g., mixed PFs in terms of convexity and concavity that change over time, and

non-monotonic and time-varying linkages between variables instead of static mono-

tonic variable-linkage used in the literature. The JY test suite plays an important

role in furthering theoretical analysis and widening insights in the understanding of

dynamics involved in changing optimization environments.

The JY test suite has been adopted to study and assess the ability of different

MOEAs to deal with dynamic environments. According to the used performance
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metrics including both existing and new ones, JY is able to facilitate a comprehen-

sive understanding of MOEAs in response to environmental changes. Therefore, JY

is a promising toolbox for the research and development of dynamic multiobjective

optimization.

• A new EA based on the combination of generational and steady-state search meth-

ods is suggested for dynamic multiobjective optimization (Chapter 7). In the field

of dynamic multiobjective optimization, an important topic is to design effective

and efficient EAs that can handle dynamic environments well. In other words, EAs

should be able to maintain diversity and convergence well whenever there is an

environmental change. The proposed EA (i.e., SGEA) is inspired by the fast con-

vergence of steady-state EAs and the good diversity maintenance of generational

EAs. Unlike most existing approaches, SGEA detects and reacts to changes in a

steady-state manner and maintains population diversity in a generational manner.

It also uses history information and the new information about the population to

relocate the current population so that the population is close to the optima in new

environments. This way, SGEA is easy to track the change of the PF and solve the

current problem before new environments arrive.

The SGEA has been studied on a wide variety of test suites with different character-

istics. Empirical studies have revealed that SGEA reacts to environmental changes

faster and more stably than its competitors. SGEA works generally well on most

of the considered test problems. This work will attract more research interests in

dynamic multiobjective optimization.

1.4 Overview

The main purpose of this work is to investigate the suitability of EAs for solving different

kinds of MOPs and make subsequent improvements on the applicability of EAs for these

MOPs. As the performance of EAs is very problem-specific, the thesis is organized such

that (roughly) each chapter covers one kind of MOPs and/or an EA designed specifically

for this kind of MOPs. Thus, there may be a lack of strong links between some chapters.

Generally, however, Chapters 3, 4, and 5 can be in one group and are devoted to studying

static MOPs with different characteristics, whereas Chapters 6 and 7 are another group

which focuses on dynamic MOPs. Static MOPs from Chapter 3 to Chapter 5 have an in-

creasing level of optimization difficulties in the first group, and all the corresponding EAs

designed use the same idea of decomposition for dealing with these increasingly difficult

MOPs. The second group starts from constructing dynamic test environments to compare

existing EAs in handling dynamic characteristics (which are presented in Chapter 6), and
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ends with designing a new EA (in Chapter 7) to overcome the drawbacks identified by the

previous chapter.

To be specific, the thesis is organized as follows.

First, in Chapter 2, background knowledge and related work are presented. This chap-

ter introduces three main topics related to evolutionary multiobjective optimization, i.e.,

static multiojective optimization, many-objective optimization and dynamic multiobjec-

tive optimization. In each topic, related work is described, including basic concepts, test

suites, mainstream approaches, and performance metrics.

Chapter 3 starts with the motivation of improving decomposition-based EAs for solv-

ing MOPs with complex PFs. Then, a new two-phase search strategy and a niche-guided

selection strategy are suggested to be used in decomposition-based EAs. After that, ex-

tensive experiments are carried out to verify the effectiveness of the proposed method,

followed by deep sensitivity analysis.

Chapter 4 presents two new scalarizing functions after the illustration of potential

drawbacks of existing scalarizing functions. Based on the new scalarizing functions, an

efficient MOEA/D (i.e., eMOEA/D) is suggested. Broad algorithm comparisons are then

conducted to show the promise of the proposed algorithm, followed by a further investi-

gation into the impact of different strategies.

In Chapter 5, a new diversity-first-and-convergence-second (DFCS) selection method

is introduced to overcome the disadvantages of convergence-first based methods. With the

aid of DFCS and reference directions, a new optimizer, i.e., SPEA/R, is then suggested.

Experimental studies are conducted on both multiobjective and many-objective optimiza-

tion. Finally, further investigations are made to show the strengths and weaknesses of

SPEA/R and peer methods.

Chapters 6 and 7 focus on addressing open issues in the field of dynamic multiobjec-

tive optimization. Specifically, Chapter 6 attempts to construct a diverse dynamic multiob-

jective test environments by introducing a new test-bed consisting of diverse and typical

dynamic characteristics. The test bed is then used to examine the performance of some ex-

isting dynamic optimizers, providing a deep understanding of dynamics in time-changing

environments.

Based on the analysis of empirical results provided in the previous chapter, Chapter

7 introduces a dynamic EA to deal with dynamic environments. The proposed EA, i.e.,

SGEA, is tested and evaluated on various test environments, and general concerns about

this algorithms is discussed.

Chapter 8 summarizes the work presented in this thesis and points out contributions

to corresponding research field. Future research directions are also outlined.



Chapter 2

Background

This chapter is devoted to presenting preliminary knowledge of this thesis. The structure

of this chapter is organized as follows. Section 2.1 describes related work on evolutionary

multiobjective optimization, including problem definition and evolutionary approaches.

Section 2.2 reviews the work on evolutionary many-objective optimization, followed by a

review of the research on evolutionary dynamic multiobjective optimization (EDMO) in

Section 2.3. Section 2.4 summarizes this chapter.

2.1 Evolutionary Multiobjective Optimization

2.1.1 Multiobjective Optimization Problems

2.1.1.1 Problem Definition

A multiobjective optimization problem (MOP) can be mathematically described as fol-

lows:

min f (x) =
(

f1(x), f2(x), . . . , fM(x)
)T

s.t. x ∈Ωx,
(2.1)

where Ωx ⊆ Rn is the decision space and x = (x1, . . . ,xn)
T is a candidate solution. f :

Ωx 7→Ω f ⊆ RM contains M objective functions, and Ω f is the attainable objective space.

In this thesis, we only focus on MOPs with box constraints. That is, Ωx can be written as

Ωx = ∏n
i=1 [li,ui], where li and ui are upper and lower bounds of xi for all i = 1, . . . ,n.

More often than not, the objectives of the problem (2.1) are in conflict with each other.

This means, any improvement in one objective will inevitably result in deterioration of

another objective. Thus, no single solution exists that makes all the objectives reach their

optima. Instead, the optimality of the problem (2.1) consists of a set of trade-off solutions

(called Pareto-optimal set) that compromise all the objectives. Concepts related to Pareto

optimality [46] are described in the next section.
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2.1.1.2 Basic Concepts

Definition 2.1. A solution x is said to dominate another solution y if x is not worse than y

in all objectives and is better than y in at least one objective. This is denoted x� y.

Definition 2.2. A solution x∗ is said to be Pareto optimal if no another solution x in the

decision space satisfies x� x∗.

Definition 2.3. The Pareto-optimal set (PS) is a set of Pareto-optimal solutions, i.e.,

PS = {x ∈Ωx|x is Pareto optimal}.

Definition 2.4. The Pareto-optimal front (PF), the image of PS in the objective space, is

defined as,

PF = { f (x) ∈Ω f |x ∈ PS}.

Definition 2.5. The nondominated set (NS) of a set S is a subset of S, i.e., NS ⊂ S, and

consists of all the solutions that cannot be dominated by any other solution in S. NS is

expressed as

NS = {s ∈ S|∄t ∈ S, t � s}.

The above definitions are basic concepts in the field of multiobjective optimization

and will be frequently used throughout the thesis.

2.1.1.3 Test Suites

Many real-world optimization problems share various common features. Using artificial

test suites as a representative of these common features would make it possible to as-

sess different approaches in a much broader context than the usual empirical set for a

single application. Besides, artificial test suites also allow to ease theoretical analysis of

algorithms. So far, a number of test suites focusing on different types of features have

been proposed. In the following, we briefly introduce several test suites that are used for

continuous multiobjective optimization.

ZDT Test Suite ZDT [200] is one of the earliest test suites used in multiobjective op-

timization. This test suite contains six biobjective problems with different char-

acteristics, such as convex or concave PFs, continuous or discontinuous PFs, and

unimodal or multimodal PFs.

DTLZ Test Suite The DTLZ [48] test suite is developed to meet the need of scalable

test problems where the number of objectives can be easily scaled up. This test

suite has nine instances. DTLZ has various features, such as multimodality and

disconnectivity. There are also two instances that have inequality constraints.
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WFG Test Suite The WFG [82] test suite contains nine distinctive problems, each of

which has one or several typical characteristics. This test suite is constructed in

view of limitations of the ZDT and DTLZ test suites. In this test suite, more features

like mixed PF shapes, degeneration of PFs, biases, deception, and dependencies

between variables, are recommended to be used for performance assessment.

LZ Test Suite The LZ [120] test suite features nonlinear correlation between variables,

resulting in problems having complicated PS shapes. In practice, LZ test problems

can specify arbitrary PS shapes where dependencies between variables can be ad-

justed to control the difficulty of convergence. Following this idea, Zhang et al.

[190] proposed a test suite of 23 test problems for IEEE Congress on Evolution-

ary Computation (IEEE CEC2009) competition, in which more characteristics like

constraints and deceptive search spaces are recommended.

MOP Test Suite The MOP [127] test suite is an extension of ZDT and DTLZ but more

difficult than its predecessors. It originally has seven problems, each of which has

local attractors on the PF. Due to the existence of these local attractors, the MOP

problems cannot be solved well by many existing approaches, such as NSGA-II

[41] and MOEA/D [188]. Considering the lack of three-objective problems with

local attractors in intermediate regions of the PF, Jiang et al. [95] have recently

added two more instances to this test suite.

In addition to the above-mentioned test suites, there are also another kinds of test

suites. The OKA [135] test suite is a set of problems having complicated PSs, which

are constructed through a series of transformations. TYP-MOP [31] is a set of truly dis-

connected multiobjective problems where the true PF and PS are in the form of multiple

disconnected segments and has been used to examine algorithms’ ability to deal with dis-

connectivity. Cheng et al. [29] proposed a set of test problems for large-scale multi- and

many-objective optimization.

2.1.2 Related EAs

2.1.2.1 Introduction

EAs belong to the class of randomized search heuristics that mimic evolution by natural

selection. Multiobjective optimization EAs (MOEAs) extend the applicability of EAs to

solving MOPs. Over the past twenty years, there have been increasing research interests

in the design of MOEAs for solving MOPs. This is mainly because MOEAs have sev-

eral advantages over other optimization methods like mathematical programming. First,

MOEAs have low requirements on problem characteristics, e.g., differentiability, and they
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can deal with large and complex search spaces. Second, MOEAs can be used in the sit-

uation that there are not enough computational resources in terms of money, time, or

knowledge to construct a problem-dependent algorithm [15]. Third, MOEAs can provide

a set of trade-off solutions close to the PF/PS in a single run, whereas other mathematical

approaches like normal boundary intersection [39] can compute only one solution at a

time.

It is widely accepted that if no preference information is provided, MOEAs are ex-

pected to reach the following main optimization goals when approximating the PF.

• The approximation should be as close to the PF as possible. In other words, MOEAs

should provide good convergence performance.

• The approximation solutions should be well-diversified across the PF. That is,

MOEAs should provide a good distribution of solutions.

• The approximation should cover the PF well. That means, MOEAs should spread

solutions widely over the PF.

The first goal often refers to convergence whereas the second and the third are related

to diversity. Therefore, convergence and diversity are widely used to assess and measure

the performance of MOEAs. They are generally assumed to be conflicting in EMO, and

designing MOEAs is to reach the balance between convergence and diversity. Apart from

these goals, in practice MOEAs are also required to have low computational complexity.

This makes much sense if there are very limited computational resources.

2.1.2.2 General MOEA Framework

A general MOEA framework is illustrated in Fig. 2.1. MOEAs start with an initial popu-

lation of candidate individuals. Very often, the initial population is generated in a random

manner. However, if we have some knowledge about the characteristics of a good so-

lution, it is wise to use this information to create the initial population. The population

evaluation provides solutions with the exact objective values. The environmental selec-

tion is intended to preserve the best solutions in terms of convergence and diversity for

the next generational evolution. The population reproduction generates an offspring pop-

ulation. The population evaluation, environmental selection and population reproduction

run in turn until the stopping criterion is met.

According to the selection strategies used in the environmental selection, MOEAs can

be classified into different categories. The following sections provide a broad overview

of several main categories of MOEAs proposed in the literature.
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Fig. 2.1 The flowchart of general MOEAs.

2.1.2.3 Pareto-based Approaches

Pareto-based MOEAs employ the (weak) Pareto-dominance relation (i.e., “�”) [46], a

kind of notion that defines a partial order in the objective space, to discriminate individuals

in the population.

After decades of effort, a large number of Pareto-based MOEAs have been proposed.

The multiobjective genetic algorithm (MOGA) [56] is generally considered the first MOEA

that applies the concept of Pareto-based selection for mulitobjective optimization. Follow-

ing the idea of MOGA [56], some popular MOEAs with Pareto-based selection emerged,

including the niched Pareto genetic algorithm (NPGA) [80] and the nondominated sorting

genetic algorithm (NSGA) [155]. These algorithms established the utility of MOEAs for

solving MOPs. Then, new MOEAs, such as the strength Pareto evolutionary algorithm

(SPEA) [203], Pareto envelope based evolutionary algorithm (PESA) [35] and the Pareto

archived selection algorithm (PAES) [103], verified the importance of elitism, diversity

maintenance and external archiving. These algorithms are commonly referred to as first-
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generation. In the early 2000s, some second-generation algorithms were developed, and

many of them are an updated version of their first-generation counterparts, e.g., NSGA-II

[41], SPEA2 [202] and PEAS-II [36].

Pareto-based selection in MOEAs often has two stages. In the first stage, the popula-

tion is ranked into different fronts. Solutions in the same front usually have the same rank

value. The rank assignment can be conducted by dominance rank [155], dominance count

[56] or dominance strength [202, 203]. In the second stage, each solution from the same

font is assigned a density value. The density of solutions can be estimated by niching and

fitness sharing [56, 80], gridding [103], or crowding distance [41]. Density information

is used because it can help preserve solutions in sparse areas. Usually, solution ranking

is considered the first criterion for solution selection, while solution density is the second

criterion. The first criterion can promote population convergence, and the second one

helps to maintain good population diversity.

2.1.2.4 Decomposition-based Approaches

Decomposition-based MOEAs, such as multiple single objective Pareto sampling (MSOPS)

[83] and cellular multiobjective genetic algorithm (C-MOGA) [131], are a popular class

of metaheuristics for EMO. They decompose an MOP into a number of subproblems1

and simultaneously solve them in a collaborative manner. The MOEA based on decom-

position (MOEA/D) [188] is a representative of this class of metaheuristics. MOEA/D

decomposes an MOP by scalarizing functions (or termed decomposition approaches in

some works [188]) into a set of subproblems, each of which is associated with a search di-

rection (or weight vector) and assigned a candidate solution. In every generation, parents

from a mating pool are selected to generate an offspring solution for each subproblem.

Then, the offspring replaces certain existing solutions if it achieves better scalarizing val-

ues.

There are three popular scalarizing functions used for decomposition in decomposition-

based approaches, which are listed as follows:

(a) Weighted Sum (WS) Method[188]

Assume that w = (w1, . . . ,wm)
T is a weight vector where all components are non-

negative and should satisfy
m

∑
i=1

wi = 1. The WS method defines the following single-

objective problem:

min gws(x|w,z∗) = ∑m
i=1(wi| fi(x)− z∗i |)

s.t. x ∈Ωx.
(2.2)

1Note that, subproblems can be not only single-objective optimization problems [188] but multiobjective
ones [127].
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If necessary, throughout the paper, fi(x)− z∗i should be replaced by ( fi(x)− z∗i )/(z
nadir
i −

z∗i ) where z∗i and znadir
i are the i-th objective values of ideal point and nadir point found so

far [188], respectively. The WS method can obtain a set of PF points by different weight

vectors. The method can approximate the PF if it is convex, but will miss some PF points

if the PF is nonconvex [188].

(b) Weighted Tchebycheff (TCH) Method[188]

The TCH method converts an MOP into a scalar problem in the following form:

min gte(x|w,z∗) = max
1≤i≤m

(

1
wi
| fi(x)− z∗i |

)

s.t. x ∈Ωx,
(2.3)

where wi = 10−4 is used in this method if wi = 0. In Eq. (2.3), 1/wi instead of wi is

adopted in order to obtain a set of uniformly-distributed solutions from a set of uniformly-

distributed weight vectors [122]. The TCH method has the advantage in approximating

nonconvex PFs compared with the WS method. It has been widely employed as a decom-

position approach in MOEA/D variants [90, 120, 122, 175].

(c) Penalty-based Boundary Intersection (PBI) Method [188]

The PBI method converts an MOP into a scalar problem as follows:

min gpbi(x|w,z∗) = d1 +θd2

s.t. x ∈Ωx,
(2.4)

where

d1 =
‖( f (x)− z∗)T

w‖
‖w‖ , (2.5)

d2 = ‖ f (x)− (z∗+d1
w

‖w‖)‖. (2.6)

In PBI, θ is a user-defined penalty factor. d1 and d2 are the length of the projection

of vector ( f (x)− z∗) on the weight vector w and the perpendicular distance from f (x)

to w, respectively. θ is a key parameter for balancing convergence (measured by d1) and

diversity (measured by d2). Recent studies [147] have shown that, when PBI approximates

convex PFs, large diversity is likely to be obtained from minute and large θ values, and

small θ values are beneficial to convergence.

The performance of MOEA/D was compared with the improved nondominated sort-

ing genetic algorithm (NSGA-II) in [41] and [120] for MOPs with simple and complicated

PSs, respectively, showing that MOEA/D is able to generate the best set of diverse non-

dominated solutions close to the PF in all tested cases. Furthermore, the efficiency of

MOEA/D was confirmed by winning the unconstrained MOEA competition in the 2009
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IEEE Congress on EC (IEEE CEC 2009) [190]. Since then, MOEA/D has attracted in-

creasing research interest and various modified versions have been proposed in the liter-

ature [86, 127, 139]. Besides, the idea has also been integrated into hybrid algorithms

[21, 102, 121, 153].

2.1.2.5 Indicator-based Approaches

The main idea behind indicator-based approaches is that quality indicators are able to

quantify the quality of an approximate PF obtained. Indicator-based MOEAs often use

quality indicators to guide the search, particularly in the process of environmental selec-

tion.

The indicator-based evolutionary algorithm (IBEA) [201] is the first implementation

of indicator-based approaches. IBEA compares a pair of candidate solutions by an ar-

bitrary indicator. As a result, high-quality solutions are preserved for further evolution.

Later, Beume et al. [8] proposed a steady-state MOEA, called SMS-EMOA, based on

the hypervolume indicator. In environmental selection, the hypervolume contribution of

each candidate solution is computed, and the one with the least hypervolume contribu-

tion is excluded from the evolving population. Hyervolume-based MOEAs have received

increasing research interests because hypervolume is the only indicator complying with

Pareto dominance. However, a major drawback is that hypervolume is computationally

demanding, particularly when the number of objectives is high, which is the case with

many-objective optimization.

Apart from hypervolume, other indicators have also been successfully applied in

indicator-based approaches. The averaged Hausdorff indicator [151] is used in a number

of studies [141, 143] to replace hypervolume in the pursue of a computationally cheap

indicator-based MOEA. The R2 indicator [18] has also been suggested to be in place of

hypervolume in existing indicator-based MOEAs like SMS-EMOA.

2.1.2.6 Preference-based Approaches

Preference-based MOEAs originate from the fact that the number of Pareto optimal so-

lutions may be very large or even infinite and the decision maker may be only interested

in preferred solutions instead of the whole solutions. When preference information is

provided, the search can be directed toward the region of interest to the decision maker.

Some early attempts on preference-based MOEAs are the studies of [56, 64, 157], in

which preference information is used to rank the population. In [47], Deb et al. proposed

a preference-based MOEA. In this method, the decision maker’s performance information

is used to model an approximate value function after every few generations of an MOEA.

Then, the constructed value function is used to direct the search to more preferred solu-

tions.
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In a recent work, Wang et al. [172] have proposed to coevolve a family of prefer-

ences simultaneously with a population of candidate solutions, which leads to preference-

inspired coevolutionary algorithms (PICEAs). Following this idea, they suggested a real-

ization of PICEAs, called PICEA-g, and demonstrated that this method provides highly

competitive performance for MOPs.

2.1.3 Performance Assessment

Performance measures are of vital importance to indicate whether an algorithm can

achieve the optimization goals mentioned earlier. The following lists some widely used

indicators in EMO.

2.1.3.1 Generational Distance

The generational distance (GD) metric [41] is one of commonly-used performance mea-

sures in EMO. It measures how close an approximation is to the true PF. Let PF be a set

of uniformly distributed points in the true PF, and PF∗ be an approximation of the PF. The

GD is calculated as follows:

GD =
(∑

nPF∗
i=1 d

q
i )

1/q

nPF∗
, (2.7)

where nPF∗ = ‖PF‖, di is the Euclidean distance between the ith member in PF∗ and its

nearest member in PF . Very often, q = 2 is used.

2.1.3.2 Inverted Generational Distance

The inverted generational distance (IGD) metric in [183, 192] measures both the con-

vergence and diversity of solutions obtained by an algorithm. The IGD is calculated as

follows:

IGD =
∑

nPF

i=1 di

nPF
, (2.8)

where nPF = ‖PF‖, di is the Euclidean distance between the ith member in PF and its

nearest member in PF∗. To have a low IGD value, PF∗ must be very close to PF and

cannot miss any part of the whole PF .

2.1.3.3 Averaged Hausdorff Distance

Averaged Hausdorff distance (∆p) [151] is a recently developed metric that can somewhat

handle the outlier tradeoff. The metric is calculated as follows:

∆p(PF∗,PF)=max

{( ∑
x∈PF

d p(x,PF∗)

|PF|

)p

,

( ∑
x∈PF∗

d p(x,PF)

|PF∗|

)p}

, (2.9)
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where d(x,PF) is the distance between the member x of PF∗ and the nearest member of

PF , and d(x,PF∗) is the distance between the member x of PF and the nearest member

of PF∗. In this thesis, p = 2 is used.

2.1.3.4 Schott’s Spacing

Schott [150] developed a metric with regard to the distribution of the discovered PF, called

the spacing metric (S). S measures how evenly the members in a PF approximation (de-

noted PF∗) obtained by an algorithm are distributed, and is computed as:

S =
√

1
nPF∗−1 ∑

nPF∗
i=1 (Di−D)2

D = 1
nPF∗

∑
nPF∗
i=1 Di,

(2.10)

where Di is the Euclidean distance between the ith member and its nearest member in

PF∗.

2.1.3.5 Maximum Spread

The maximum spread (MS), first introduced by Zitzler et al. [200], measures to what

extent the extreme members (usually boundary points) in PF have been reached. Goh

and Tan [60] proposed a modified version of MS by taking into account the proximity of

PF∗ towards PF:

MS =

√

√

√

√

1
M

M

∑
k=1

[

min[PFk,PF∗k ]−max[PFk,PF∗k ]

PFk−PFk

]2

, (2.11)

where PFk and PFk is the maximum and minimum of the kth objective in PF , respec-

tively; Similarly, PF∗k and PF∗k is the maximum and minimum of the kth objective in PF∗,

respectively.

2.1.3.6 Hypervolume

The hypervolume (HV) [203] metric measures the size of the objective space dominated

by the approximated solution set S and bounded by a reference point R = (R1, . . . ,RM)T

that is dominated by all points on the PF, and is computed by:

HV (S) = Leb( ∪
x∈S

[ f1(x),R1]×·· ·× [ fM(x),RM]), (2.12)

where Leb(A) is the Lebesgue measure [98] of a set A.
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Based on HV, an alternative indicator is defined as follows:

HVD = HV (PF)−HV (PF∗), (2.13)

where HV D is called hypervolume difference. Thus, minimization of HVD is equivalent

to maximization of HV.

2.2 Evolutionary Many-objective Optimization

2.2.1 Many-objective Optimization Problems

2.2.1.1 Problem Definition

In general, many-objective optimization problems (MaOPs) are an extension of MOPs.

There is no agreed definition for MaOPs. However, one thing for sure is that MaOPs are

often related to MOPs with more than three objectives, that is, M > 3 in Eq. (2.1). Due to

the increase in the number of objectives, MaOPs bring about new challenges to MOEAs.

A typical challenge is that dominance mentioned earlier becomes less effective and even

unable to discriminate solutions. As a result, existing MOEAs specially designed for

MOPs cannot induce sufficient selection pressure during the search. MaOPs are signifi-

cantly different from MOPs, although both have the same mathematical description.

2.2.1.2 Test Suites

Test problems for many-objective optimization problems should have more than three

objectives. It is often desirable that the problems are scalable in terms of the number

of objectives, because this can allow a deep investigation into the impact of dimension

increase. So far, DTLZ [48] and WFG [82] are top two most popular test suites in many-

objective optimization.

There are also some other many-objective problems in the literature. Saxena et al.

[148] adapted several DTLZ problems so as to generate redundant objectives which can

evaluate dimensionality reduction techniques. Li et al. [115] proposed a test problem for

easing the difficulty of visualization in many-objective optimization. In this problem, the

performance of EAs on many objectives can be reflected by the distribution of solutions

on a 2-dimensional decision space. However, this problem is hard to be generalized to

any number of objectives.

Similar to the work of Li et al. [115], Ishibuchi et al. [84] also proposed to gener-

ate many-objective test problems in a two- or three-dimensional decision space. A main

advantage of their test problems is that many-objective approximations can be easily as-
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sessed in the decision space. However, these kinds of test problems fail to exactly exhibit

the performance of objective vectors through the visualization of decision vectors.

2.2.2 Related EAs

2.2.2.1 Modified Dominance Based Approaches

In many-objective optimization, the Pareto-dominance relation between solutions be-

comes less discriminating for MaOPs as most solutions become incomparable or non-

dominated, and for over ten objectives, almost all the solutions are nondominated [87].

For a geometrical interpretation, the reader is referred to [99, 156]. As a consequence,

the Pareto-dominance relation becomes of limited use for MaOPs, since it cannot induce

sufficient selection pressure towards the PF.

A straightforward approach is to modify or develop the definition of the Pareto-

dominance relation so as to increase the selection pressure. In an early attempt, a re-

laxed version of Pareto-dominance, known as ε-dominance, was proposed by Laumanns

et al. [108] to combine both the convergence and diversity of solutions in a compact form.

This modification makes it possible for Pareto-based MOEAs to strengthen the selection

pressure among solutions and has shown to be very promising for MaOPs [68, 101, 167].

Other studies along this direction, such as cone ε-dominance [7], k-optimality [54], prefer-

ence order ranking [51], fuzzy-dominance [54, 72], θ -dominance [186], and generalized

Pareto-optimality [199], have also been shown to provide competitive results.

2.2.2.2 Decomposition Based Approaches

Decomposition-based MOEAs, such as multiple single objective Pareto sampling

(MSOPS) [83] and MOEA/D [188], are originally designed for multiobjective opti-

mization, but they have great potential to handle many-objective optimization. Taking

MOEA/D for example, it can decompose an MaOP into a set of scalar subprolems. It

maintains population diversity by a set of evenly-distributed weight vectors. This way,

MOEA/D is capable of solving different types of optimization problems with varying de-

grees of success [59, 85, 90, 120, 188]. Besides, the decomposition-based idea has also

been exploited in some recently-developed MOEAs, e.g., NSGA-III [43], MOEA based

on dominance and decomposition (MOEA/DD) [112] and MOEA/D with a distance-

based updating strategy [185], to maintain population diversity or control convergence

for many-objective optimization.

2.2.2.3 Indicator-based Approaches

Indicator-based approaches are promising for many-objective optimization because solu-

tion selection is guided by quality indicators instead of Pareto dominance based selection
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methods. For this reason, their search ability does not deteriorate severely in the presence

of many objectives. In indicator-based approaches, the hypervolume indicator is always

preferred to any other indicators due to its Pareto dominance compatibility. IBEA [201]

based on this indicator was reported to obtain good results for many-objective optimiza-

tion [167]. However, hypervolume-based approaches are very computationally expensive,

which prevents their wide application in many-objective optimization. A number of at-

tempts have been made to alleviate this shortcoming. Ishibuchi et al. [88] proposed to

search for only a small number of representative solutions in the hope to reduce hyper-

volume computations in hypervolume-based approaches. Brockhoff and Zitzler [16] sug-

gested to conduct objective reduction before the use of hypervolume-based approaches.

Bader and Zitzler [6] proposed to use Monte-Carlo sampling methods to approximate

hypervolume so that the computational complexity can be significantly reduced.

Despite those efforts to improve the efficiency of hypervolume-based approaches,

it should be acknowledged that the efficiency gained is very limited, and most of

hypervolume-based approaches are still computationally demanding. This has motivated

increasing research in which other efficient quality indicators are explored in place of hy-

pervolume. A typical example is the R2 indicator [18], which is weakly Pareto-dominance

compatible and is very cheap in terms of computational efficiency. R2 has been success-

fully applied to solve MaOPs in a recent study [63].

2.2.2.4 Diversity Enhancement Approaches

Since Pareto dominance becomes less effective in producing selection pressure for many-

objective optimization, it may be wise to de-emphasize convergence and pay more atten-

tion to diversity maintenance or diversity promotion [2, 117, 169]. This is because diver-

sity enhancement can help to alleviate the loss of selection pressure. In [2], a diversity

management operator was introduced to manage the activation/deactivation of diversity

promotion on the crowding distance of NSGA-II [41]. Wagner et al. [167] reported a sig-

nificant improvement on the convergence performance of NSGA-II after modifying the

assignment of crowding distance values for boundary solutions. Recently, Li et al. [117]

proposed a shift-based density estimation (SDE) strategy to increase selection pressure

for MaOPs. For fitness assignment, SDE takes into account both the distribution and con-

vergence information of solutions, and nondominated solutions with poor convergence

are penalized. The empirical study in [117] showed a clear improvement for MOEAs

incorporating this strategy.

2.2.2.5 Dimensionality Reduction Approaches

This kind of approaches (i.e., objective reduction) focuses on the reduction of the number

of objectives [19, 30, 148, 154], which attempts to circumvent the problems of MaOPs
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by means of identification and removal of redundant objectives. As a result, the reduced

multiobjective problems can be solved effectively using existing MOEAs.

Dimensionality reduction approaches have three main advantages. First, they help to

reduce the computational complexity of MOEAs when dealing with MaOPs. Second, they

help the decision maker understand MaOPs better by identifying the redundant objectives.

Third, they function like data preprocessing methods and can be very independent of the

framework of MOEAs. As a result, they are very easy to be incorporated into any other

MOEAs.

However, dimensionality reduction approaches are based on the assumption that there

are redundant objectives in the MaOP under discussion. Therefore, this kind of approach

is of limited use in the situation where all the objectives are completely conflicting and

have equal importance.

2.2.3 Performance Assessment

2.2.3.1 Reference-point Based IGD

Due to the increase in the number of objectives, the PF of an MaOP is usually spread

over a very large objective space. As a result, a small-sized reference set is no longer

capable of representing the whole PF, which in turn affects the accuracy of reference set

based performance metrics, e.g., GD and IGD, when evaluating MOEAs’ performance.

On the other hand, it is often undesirable to use a large-sized reference set as it will lead

to other issues like space shortage and computational inefficiency. In view of this problem,

Deb and Jain [43] proposed a reference-point IGD for performance assessment of many-

objective optimization. In the reference-point IGD, the reference set is a set of points

which are the intersections of the PF and predefined search directions.

However, the reference-point IGD depends largely on predefined search directions. If

the used search directions are not sufficiently diversified, then any conclusions based on

this performance metric will be biased and unreliable. Also, this metric is applicable only

to reference-point based EAs.

2.2.3.2 R2 Indicator

The R2 indicator [17] is a recently-developed indicator at an attempt to replace hypervol-

ume [203] for many-objective optimization. The R2 indicator is based on utility functions

which map a vector to a scalar value in order to measure the quality of PF approximations.

In R2, the Tchebycheff function is used most. Therefore, R2 is defined as:

R2(P,W,z∗) =
1
|W | ∑

w∈W

min
p∈P
{ max

1≤i≤M
{wi|z∗i − pi|}}, (2.14)
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where W is a given set of uniformly-distributed weight vectors and z∗ is an utopian point.

P is a PF approximation. In recent studies, R2 has been reported to have desirable proper-

ties, i.e., it is weakly monotonic, produces well-distributed solutions and can be computed

in a fast manner.

2.2.3.3 Other Comparison Indicators

In recent years, there have been increasing research interests in diversity-based indicators

for many-objective optimization. Li et al. [113] proposed the diversity comparison indi-

cator (DCI) that employs a grid environment to assess both spread and uniformity. Later,

the same authors proposed another relative indicator called performance comparison in-

dicator (PCI) [114] to assess PF approximations obtained by many-objective algorithms.

PCI constructs a reference set with approximation sets and then uses this reference set to

aid quality assessment. The points in the reference set are divided into many clusters, and

PCI estimates the minimum moves of solutions in the approximation sets to weakly dom-

inate these clusters. Very recently, Wang et al. [170] have also developed a new diversity

metric for many-objective optimization, which is an accumulation of the dissimilarity in

the population.

2.3 Evolutionary Dynamic Multiobjective Optimization

2.3.1 Dynamic Multiobjective Optimization Problems

2.3.1.1 Problem Definition

There are many dynamic characteristics involved in dynamic MOPs (DMOPs), and dif-

ferent DMOPs may have different mathematical definitions. This thesis considers the

DMOPs defined as:
min F(x, t) = ( f1(x, t), ..., fM(x, t))T

s.t.















hi(x, t) = 0, i = 1, ...,nh

gi(x, t)≥ 0, i = 1, ...,ng

x ∈Ωx, t ∈Ωt,

(2.15)

where M is the number of objectives, nh and ng are the number of equality and inequality

constraints, respectively. Ωx ⊆ Rn is the decision space, t is the discrete time instance

defined as t = 1
nt
⌊ τ

τt
⌋ (where nt , τt , and τ represent the severity of change, the frequency

of change, and the iteration counter, respectively) and Ωt ⊆ R is the time space. F(x, t):

Ωx×Ωt → RM is the objective function vector that evaluates the solution x at time t.
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2.3.1.2 Classification of DMOPs

Having a sound and clear classification is of great importance not only for a better un-

derstanding of dynamism but also for an easier way to define or construct dynamic test

problems. Thus, before developing dynamic multiobjective test problems, one should an-

swer the question of what classes can be defined for them. Fortunately, there already have

been two classification criteria proposed in the literature, and they can be roughly termed

as effect-based and cause-based criteria, respectively.

(a) Effect-based Criterion

In most real-life MOPs, e.g. vehicle routing, the environments often change over

time. According to the induced effects on the PF/PS, Farina et al. [55] classified dynamic

environments into four different types:

• Type I - the PS changes over time while the PF remains stationary.

• Type II - both the PF and PS change over time.

• Type III - the PF changes over time while the PS remains stationary.

• Type IV - both the PF and PS remain stationary, though the objective functions or

the constraints may change over time.

Farina et al. further noted that, when the environment is dynamic, more types of the

above changes could occur simultaneously in the time scale.

(b) Cause-based Criterion

Tantar et al. [160] argued that effect-based criterion, although of undisputed impor-

tance, does not capture or does not describe where dynamic changes in DMOPs come

from or the cause of the dynamic changes. Accordingly, they suggested four cases (orig-

inally termed order, but we use case here to avoid misleading interpretation) of dynamic

environments:

• Case 1 - the decision variables change over time.

• Case 2 - the objective functions change over time.

• Case 3 - the current values of the decision variables or the objective functions de-

pend on their previous values.

• Case 4 - parts of or the entire environments change over time.
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2.3.1.3 Test Suites

As evolutionary dynamic multiobjective optimization (EDMO) is a quite new research

field, there is a lack of standard test suites to facilitate broad investigations on EAs’ per-

formance. So far, some attempts have been made to meet the demand, thereby generating

the following important test-beds:

FDA Test Suite The FDA [55] test suite is one of the most widely-used test-bed in

EDMO. It is derived from a modification of ZDT [200] and DTLZ [48]. Dynamic

characteristics involved in this test suite are time-dependent variations of PFs/PSs.

dMOP Test Suite Similar to FDA [55], the dMOP [61] test suite is also a modification of

ZDT [200]. However, dMOP contains a special problem, i.e., dMOP3. dMOP3 can

generate random selection of diversity-related variables. As a result, population di-

versity will drop dramatically when an environmental change occurs, making many

EAs difficult to track the change quickly.

UDF Test Suite UDF [11] is exactly a counterpart of its static version, i.e., LZ’s test suite

[190]. That is, UDF is obtained by adding some dynamic components to LZ’s test

suite. This test suite features nonlinear, time-varying and monotonic variable link-

ages, and variables in each problem can have different amount of change. Besides,

it also has problems that can induce uncertain PF variations whenever there is a

change.

HE Test Suite The HE [76] test suite borrows the framework of ZDT [200], LZ [190]

and WFG [82] and adds some dynamic features to these predecessors. Therefore,

this test suite inherits isolated or deceptive properties, which are hard for EAs to

handle.

SJY Test Suite SJY [93] is a recently developed test suite in which the number of objec-

tives for each problem can be easily scaled up. This test suite proposes different

kinds of PF-related functions. It can facilitate theoretical studies for evolutionary

dynamic many-objective optimization.

GTA Test Suite GTA [58] is a test suite based on LZ’s framework [120]. This test suite

addresses dynamic properties that are rarely considered in existing test problems,

such as time-varying fitness landscape modality, tradeoff connectedness and trade-

off degeneracy.

Apart from these, there are also several other kinds of dynamic test suites. Jin and

Sendhoff [96] proposed a generic idea that can construct DMOPs by dynamically chang-

ing the weights used to aggregate different objectives of static MOPs, but they did not
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provide clearly defined problems. Guan et al. [67] suggested that DMOPs can be the

replacement of some objectives by new objectives during the evolution. Mehnen et al.

[130] suggested DSW DMOPs and DTF problems. The T [81] test suite proposed by

Huang et al. introduce some Type-IV problems where the current found PS may affect

future PSs and/or PFs.

Despite fruitful contributions to DMOPs, no single test suite can capture all possible

features in dynamic environments. Standard test suites are much in need to further studies

and developments in EDMO.

2.3.2 Related EAs

In dynamic environments, it is often inefficient to restart the optimization process from

scratch whenever a change occurs, although the restart strategy may be a good choice if

the environmental change is considerably severe [14]. In the literature, various approaches

have been proposed to handle environmental changes. They can be roughly categorized

into the following groups, according to their diversity/convergence handling features.

2.3.2.1 Diversity Introduction

This approach aims to increase diversity after the detection of environmental changes.

Diversity introduction can be achieved by the mutation of selected old solutions [32, 44] or

random generation of some new solutions [44, 65]. According to [44], random generation

is helpful for handling dynamic environments with severe changes but may misguide the

search to new areas of the search space that is far from the current optima. In contrast,

hybermuation [32] may be beneficial in environments with small changes but may cause

evolutionary stagnation if environments change severely. However, diversity introduction

approaches can be easily incorporated into existing MOEA frameworks.

2.3.2.2 Diversity Maintenance

Instead of generating diversity after environmental changes, diversity maintenance ap-

proaches seek to maintain diversity through the run. Amongst these, random immigration

[25] is a popular technique that can be easily incorporated in MOEAs. Random immi-

grants are introduced into the evolving population at fixed intervals and only a small

portion of the population is replaced. This way, population diversity can be always main-

tained at a high level so that the search process will not be affected too much by environ-

mental changes.
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2.3.2.3 Memory Approaches

In EDMO, an important issue is how to reuse past knowledge obtained so far to help EAs

to adapt to the new environment quickly. Memory approaches are a kind of techniques

that can improve the speed of convergence. One benefit of memory approaches is that

solutions previously discovered can be reused for tracking future environmental changes,

thereby saving computational time. In memory approaches, the open issue is when to

retrieve and how to reuse memory. An early attempt along this direction is Wang and Li’

work [171], where four memory-based schemes are proposed. Later, Goh and Tan [61]

explored the use of memory to improve the tracking ability of EAs for DMOPs.

2.3.2.4 Prediction Approaches

When environmental changes follow a certain pattern, it is desirable to use prediction tech-

niques to compute or at least guess the location of the new optima. Prediction approaches

are widely used in EDMO because most test problems designed so far are kind of periodic

and can be predicted. Prediction models, such as autoregression (AR) [196, 197], feed-

back prediction [71], and Kalman filter [132], have been successfully applied to EDMO.

Usually, prediction approaches are used to predict gradient [105], population centroid

[136, 196], and search direction [182]. When this information is available, population

can be re-initialized close to the new optima. Prediction approaches are helpful to save

computational resources and speed up the tracking process. However, these approaches

may fail if environmental changes does not exhibit regular patterns.

2.3.2.5 Multi-population Approaches

Using multiple populations to solve dynamic optimization problems is not very new in

evolutionary computation, particularly in the field of dynamic single-objective optimiza-

tion [119]. Multiple populations can explore different search regions simultaneously so

that they are able to track any change or emergence of new optimal solutions. An ad-

vantage of multi-population approaches is that one population can exploit the current

optimal solution while the other populations are encouraged to explore the search space.

Dynamic competitive-cooperative coevolutionary EA (dCOEA) [61] is a first attempt to

apply multi-population approaches to deal with DMOPs.

2.3.3 Performance Assessment

EDMO is a relatively new research topic, so it has not yet had well-established perfor-

mance metrics. Some performance metrics used in EDMO are actually adapted from

their static counterparts. More specifically, they are an average of static metric values
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over a number of time steps. These commonly used dynamic performance metrics are

briefly described as follows.

2.3.3.1 Averaged IGD

Zhou et al. [196] modified the IGD metric and adopted the average of the IGD values

in some (e.g., Ts) time steps over a run as a performance indicator for EDMO, which is

computed as:

IGD =
1
Ts

Ts

∑
t=1

IGD(t), (2.16)

where IGD(t) refers to the IGD metric at time instance t and is calculated just before the

next change occurs.

2.3.3.2 HV Difference

Zhou et al. [197] suggested to use the hypervolume difference (HVD) to measure the

quality of the found PF, HVD is defined as:

HVD(t) = HV (PFt)−HV (PF∗t ). (2.17)

However, when the true PF is unknown, the HVD cannot be used. Facing this limitation,

Zeng [195] considered the maximum HV as a reference when measuring the quality of

the found PF.

Camara et al. [23] used the HVD to define an accuracy measure when the true PF is

known in advance, which is defined as

acc(t) = |HV (PFt)−HV (PF∗t )|, (2.18)

where the equation ensures that the accuracy measure is always a positive value.

2.3.3.3 Stability

The effect of the changes in the environment on the accuracy of the algorithm can be

quantified by the measure of stability that was introduced by Weicker [177] for dynamic

single-objective optimization and adapted for EDMO by Camara et al. [22]. Stability is

computed as:

stab(t) = max{0,acc(t−1)−acc(t)}, (2.19)

where acc(t) is defined in Eq. (2.18). A low stability value indicates better robustness

performance.
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2.3.3.4 Reactivity

In the meanwhile, Camara et al. [22] also took into account the response time for an

algorithm to recover after a change in the environment, thus presenting a measure of

reactivity based on the reactivity performance measure introduced by Weicker [177] for

dynamic single-objective optimization. Reactivity measure determines how long it takes

for an algorithm to reach a specified accuracy threshold ε , and is defined as:

react(t,ε) = min{t ′− t|t < t ′ < tmax,acc(t ′)≥ (1− ε)acc(t)}, (2.20)

where acc(t) is defined in Eq. (2.18), and tmax is the maximum number of iterations or

generations.

2.4 Summary

This chapter briefly reviews three main topics in the field of EMO, i.e., multiobjective opti-

mization, many-objective optimization and dynamic multiobjective optimization. In each

topic, the research progress regarding test environments, EAs, and performance measures

is presented.



Chapter 3

EAs for MOPs with Complex Pareto

Fronts

In real-world applications, the properties of MOPs can be very complex regarding their

PFs. Some MOPs may have a discontinuous PF whereas others may have an extremely-

shaped one. These irregular PF geometries affect much the distribution of solutions pro-

vided by EAs. In order for EAs to deliver maximum information about the irregular PF,

it is desired that EAs are able to learn from the MOP to be optimized and finally provide

uniformly-distributed solutions across the PF. In this chapter, we focus on MOEA/D [188]

and equip it with additional strategies so that it can deal with MOPs with complex PFs.

The rest of the chapter is organized as follows. Section 3.1 is devoted to delivering

related work and the incentive of this research work. In Section 3.2, the proposed method

is presented. Section 3.3 presents some experimental studies with regard to the proposed

method, followed by further investigation on the sensitivity of some key parameters. Sec-

tion 3.5 summarizes the work and points out related future research directions.

3.1 Introduction

In recent years, there have been increasing research interests in improving MOEA/D

for complex MOPs. As the uniformity of weight vectors plays a fundamental role in

MOEA/D, some researchers [66, 139, 159] employ weight adjustment schemes to achieve

the best approximation possible. However, the authors of [59] argued that an even or uni-

form distribution of weight vectors does not necessarily produce evenly-distributed solu-

tions on the PF. Another feasible way is to develop effective decomposition approaches

[85, 86, 189]. One of the most popular decomposition approaches is the weighted Tcheby-

cheff method, as mentioned in previous chapter. It has been recently demonstrated that

this approach cannot guarantee a good distribution of solutions even though uniformly-

distributed weight vectors are provided [59]. To overcome this drawback, the authors of
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[189] proposed a modified Tchebycheff approach based on normal boundary intersection

(NBI) [39] to overcome the sensitivity to scales of the objectives, thereby expecting a

good distribution of PF approximations. While it works well on bi-objective problems,

this approach can not be easily extended to higher dimensional problems. Another inter-

esting method for handling complex problems is to adopt an objective transform strategy

[126] if the geometry of the PF is below the hyperplane ∑M
i=1 fi = 1. The basic idea behind

it is to identify the PF geometry, getting the transformed PF as close to this hyperplane as

possible. The idea seems helpful. However, if there is noise in the approximate PF used

in identifying the PF shape, this method will fail. Besides, the identification of the PF ge-

ometry itself is an optimization problem, which requires extra computational resources.

To overcome these shortcomings, an improved MOEA/D with a two-phase (TP) strat-

egy and a niche-guided scheme, denoted MOEA/D-TPN, is proposed in this chapter. In

MOEA/D-TPN, TP is conditional and will be activated when there are less boundary or

extreme solutions than intermediate solutions in the population, which helps the algo-

rithm to dedicate computational resources to finding boundary solutions, and the niche-

guided scheme is used to perform the mating operation with parents in the less crowded

regions, thereby avoiding duplicated solutions in the offspring. MOEA/D-TPN is tested

on some existing and newly designed complex MOPs, showing better performance than

its predecessor. Additionally, the performance of MOEA/D-TPN is also compared with

two many-objective optimizers, mainly to see if MOEA/D-TPN is competitive in three-

objective cases.

3.2 Proposed Method

In this section, the MOEA/D-TPN algorithm is presented. MOEA/D-TPN improves

MOEA/D with two strategies: the TP strategy, which conditionally divides the whole

optimization process into two phases, and the niche-guided strategy, which helps increase

the population diversity in a more reliable way. The two strategies are described below.

3.2.1 Two-phase Optimization

As stated in [139], there are two main issues in MOEA/D. One is the nonuniformity of

approximate solutions along the convex PF that has complex shapes with a sharp peak

and long tail, where a small variation in one objective results in a large gap in another

objective. In this case, MOEA/D offers dense solutions in the intermediate region of

the PF and can hardly achieve well-distributed solutions in the extreme region of the PF

although a set of uniform weight vectors is provided. Fortunately, MOEA/D is free from

this drawback in concave MOPs [126]. Thus, it is natural to achieve uniform solutions for
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Fig. 3.1 Distribution of the extreme weight vectors (circles) and intermediate weight vec-
tors (black dots): (a) the 2-objective case; (b) the 3-objective case.

a convex MOP by solving the scalar optimization subproblems in a reversed form

max gr(x|w,r∗) = min
1≤ j≤M

w j(r
∗
j − f j(x))

s.t. x ∈Ωx,
(3.1)

where r∗ is the nadir point constructed from the worst objective values for the entire PS,

i.e., r∗j = max{ f j(x)|x ∈Ωx} for each j = 1, . . . ,M.

When handling an MOP, however, its convexity-concavity is not always known be-

forehand. This gives rise to the problem on how to properly choose the subproblem form.

Besides, the nadir point is also not available before the evolution. For these reasons, we

propose the TP method that divides the whole evolution procedure into two phases. The

first Mr% of the entire computing resources is called the first phase, where MOEA/D uses

the scalar subproblem form of Eq. (??) and concentrates on convergence and diversity. At

the end of the first phase, a crowding-based method is used to evaluate whether MOEA/D

has obtained a set of uniform solutions or not. The crowding-based method assesses the

density of solutions in both the intermediate region and the extreme region of the PF. If the

solutions in the intermediate region is denser than those in the extreme region, it implies

that the MOP is probably convex, and the use of the reversed scalar subproblem form will

be more suitable in the remaining optimization phase. Note that the nadir point used in

Eq. (3.1) for the second phase can be constructed by the obtained nondominated set (NS)

from the first phase. The following illustrates how the crowding-based method works.

Any weight vector w used in MOEA/D should satisfy the restriction w1+ · · ·+wM = 1,

where each ingredient w j is non-negative. According to the Arithmetic Mean-Geometric

Mean Inequality (AM-GM) theorem, ∏M
j=1 w j ≤ (∑M

j=1 w j/M)M or simply ∏M
j=1 w j ≤

(1/M)M always holds, and the equality condition of this inequality is that if and only if

all ingredients of w are equal, which means w is located in the centre of the hyperplane

w1+ · · ·+wM =1. In other words, the larger ∏M
j=1 w j is, the closer the weight vector is
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to the central weight vector. Therefore, we can categorize the set of N weight vectors

employed in MOEA/D into two subsets, the intermediate subset Wm and the extreme

subset We, as follows:

Wm = {wi ∈Ωw|∏M
j=1 wi

j ≥ 0.5( 1
M
)M}

We = Ωw/Wm,
(3.2)

where Ωw is the set of N weight vectors generated by the simplex-lattice design used

in the original MOEA/D. A value of 0.5 is used in Eq. (3.2) as it can generate a good

classification between Wm and We. A too large or too small value of this parameter will

cause size imbalance of the classified subsets. Fig. 3.1 shows examples in 2-D and 3-D

cases.

Then, according to the weight vector subsets Wm and We, the population can be divided

into two sub-populations, called the intermediate sub-population Pm and the extreme sub-

population Pe, respectively. The crowdedness of the two sub-populations are estimated

by

Dmid =
1
|Pm| ∑

i∈Pm

γ(i), (3.3)

Dext =
1
|Pe| ∑i∈Pe

γ(i), (3.4)

where Dmid and Dext are the crowdedness values for the intermediate and extreme sub-

populations, respectively. γ(i) quantifies the crowding level of the ith solution in a sub-

population, which is defined as follows:

γ(i) =
1
T

∑
j∈B(i)

di j, (3.5)

where di j is the distance between the solutions i and j, B(i) and T are the neighbouring

members of solution i and the neighbourhood size in MOEA/D, respectively. The defini-

tion of γ(i) is not trivial because it measures the closeness of the T neighbouring solutions

to the ith solution.

It should be noted that the second phase is an alternative, which means if there is no

much difference between Dmid and Dext , the second phase can be eliminated from the

evolution procedure, and the first phase will last for the whole evolution.

3.2.2 Niche-guided Mating/Update Selection

Another issue regarding MOEA/D is that it will produce many similar solutions due to

the neighbourhood mating and updating strategy. The neighbourhood mating plays an

important role in MOEA/D. In the original version of MOEA/D [188], the authors used
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the simulated binary crossover (SBX) [42] operator to produce new solutions. Later in

MOEA/D-DE [120], the same authors employed the DE operator [138], instead of SBX,

to perform the mating operation and increased the population diversity by selecting three

parent solutions from the whole population with a small probability 1− δ . This modifi-

cation, however, can not guarantee that the selected solutions are distinct and may result

in producing similar solutions in each generation. When an MOP has disconnected sub-

regions on the PF, the effect is more severe and many scalar subproblems may obtain

similar solutions on breakpoints, leading to a decrease in the population diversity. Thus,

the selection of mating range is also of great importance to the performance of MOEA/D.

In the following, we propose a niche-guided scheme for the selection of the mat-

ing/update range. The scheme computes the niche count of each individual over its T

neighbouring individuals instead of all members of the population. The niche count, nc(i),

for each individual i, is calculated by summing a sharing function over its T neighbouring

individuals as:

nc(i) =
T

∑
j=1

sh(di j), (3.6)

where di j is the distance between individuals i and j, and sh(di j) is the sharing function

that measures the similarity level between individuals i and j, which is defined as:

sh(di j) =

{

1− (
di j

σshare
)α , if di j ≤ σshare

0, otherwise,
(3.7)

where σshare is a predefined niche radius and α is a constant, called the sharing level [62].

If the niche count of an individual is over a given threshold, it means that the individual

is similar to its T neighbouring individuals and it is desirable to choose individuals outside

the neighbourhood as the mating parents. Hence, the mating/update range can be defined

as follows:

P′′ =

{

P, if nc(i)< β ,

P′, otherwise.
(3.8)

where β is the threshold that is closely related to the niche radius σshare, i.e., β is mainly

determined by σshare. As the maximum value of nc(i) is T , we set β to be T/2 in this

work. P and P′ are calculated by

P =

{

B(i), if rand1 < δ ,

{1, . . . ,N}, otherwise.
(3.9)

P′ =

{

P, if rand2 < 0.5,

{1, . . . ,N}/B(i), otherwise.
(3.10)
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where rand1 and rand2 generate independently random numbers in the range [0,1], P re-

mains the same as in MOEA/D-DE [120]. The definition of P′ means that, if the niche

count of individual i reaches the threshold β , it has a 50% chance to select individuals out-

side its neighbourhood as the mating parents. This makes sense when MOEA/D pursues

a high level of diversity but the neighbouring solutions are very similar.

3.2.3 The Framework of MOEA/D-TPN

For simplicity, we apply the DE operator [138] and polynomial mutation operator [46] to

produce offspring in the proposed algorithm, which is the case with MOEA/D-DE [120].

The DE operator generates a candidate solution ŷ by:

ŷk =

{

x
r1
k +F× (xr2

k − x
r3
k ), with probability CR,

x
r1
k
, with probability 1−CR.

(3.11)

where ŷk is the kth component of ŷ, and x
r1
k

, x
r2
k

, and x
r3
k

are three distinct individuals

randomly chosen from the population. CR and F are two control parameters.

The polynomial mutation produces a solution y = (y1, . . . ,yn) from ŷ as follows:

yk =

{

ŷk +σk× (uk− lk), with probability pm,

ŷk, with probability 1− pm.
(3.12)

with

σk =

{

(2× rand)
1

η+1 , if rand < 0.5,

1− (2−2× rand)
1

η+1 , otherwise.

where rand is a uniform random number from [0, 1]. The distribution index η and the

mutation rate pm are two control parameters. uk and lk are the lower and upper bounds of

the kth decision variable, respectively.

The framework of MOEA/D-TPN is given in Algorithm 3.1. We would like to make

the following remarks on the algorithm:

1. Since the distribution of the N weight vectors greatly affects the performance of

MOEA/D, we use the WS-transformation scheme in [139] to generate a uniform

spread of N weight vectors. Besides, as shown in Line 10 of Algorithm 3.1, at

the beginning of the second phase, the N weight vectors should be reinitialized

since the scalar subproblem form (i.e., the search direction) has changed. To obtain

a uniform distribution of weight vectors for the reversed scalar subproblem form,

we firstly use the simplex-lattice design to generate N points {w1, . . . ,wN} on the

hyperplane w1+· · ·+wM = 1, then calculate the N search directions ŵi(i= 1, . . . ,N)

by ŵi =(1−wi
1, . . . ,1−wi

M). After that, the WS-transformation is applied on ŵi(i=
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Algorithm 3.1: MOEA/D-TPN
Input: MaxGen: the stopping criterion

Mr: computational resources allocated for the first phase
N: the number of subproblems considered in MOEA/D
T : the neighbourhood size
δ : the probability for selecting neighbourhood
nr: the maximum number of replaceable solutions
σshare: the niche radius

Output: An approximated PF
1 Generate a uniform spread of N weight vectors: w1, . . . ,wN and then compute the T

closest weight vectors to each weight vector by the Euclidean distance. For each
i = 1, . . . ,N, set B(i) = {i1, . . . , iT} where wi1 , . . . ,wiT are the T closest weight
vectors to wi;

2 Generate an initial population x1, . . . ,xN by uniformly randomly sampling from the
decision space;

3 Set FV i := F(xi), EP1 := /0, and EP2 := /0;
4 for gen← 1 to MaxGen do

5 if gen == Mr ∗MaxGen then

6 Calculate Dmid and Dext by Eqs. (3.3) and (3.4), respectively;
7 if Dmid < 0.9Dext then

8 Save the population in EP1;
9 Set the nadir point r = {r1, . . . ,rM} where r j = max1≤i≤N f j(x

i);
10 Re-initialize the N weight vectors for the second evolution phase and

re-calculate the T closest weight vectors to each weight vector;
11 end

12 end

13 for i← 1 to N do

14 Calculate the niche count of individual i and set the mating/update range as
P′′ by Eq. (3.8);

15 Set r1 = i and randomly select two indexes r2 and r3 from P′′;
16 Apply the DE operator on individuals r1, r2 and r3 by Eq. (3.11) to generate

a solution ȳ, and perform the polynomial mutation operator on ȳ by
Eq. (3.12) to produce a new solution y;

17 Update the reference point z if the evolution is in the first phase;
18 Check if y is better than any individual x j in P′′ (g(y|w j,z)≤ g(x j|w j,z) for

the first phase and g(y|w j,r)≥ g(x j|w j,r) for the second phase). If y is
better and no more than nr individuals in P′′ have been replaced, x j is
replaced by y;

19 end

20 end

21 Save the final population in EP2;
22 Output the non-dominated solutions from EP1∪EP2;



3.2 Proposed Method 37

1, . . . ,N) to generate the working weight vectors. Due to the variation of the weight

vectors, we have to recalculate the T closest weight vectors to each weight vector

(Line 10).

2. In Line 5, we set the proportion of the computational resources allocated for the

first evolution phase to be Mr. Intuitively, a large Mr gives the algorithm a large

proportion of computational resources to converge toward the PF and makes the

estimated nadir point (Line 9) more reliable. If Mr is too large, it may lead to the

algorithm not having enough computational resources to execute the second-phase

evolution. Besides, for easy-to-converge problems, Mr = 0.5 may be enough for es-

timating the crowdedness of the population as well as the nadir point. Accordingly,

Mr is suggested to be in [0.5, 0.8]. In this work, Mr is set to 0.7 based on some

preliminary experiments.

3. In some cases, the algorithm has already achieved a set of well-distributed solutions

along the target PF at the end of the first phase, but Dmid may be slightly smaller

than Dext (Line 6), which gives an illusion that there are more solutions in the

intermediate region than in the extreme region. To reduce the risk of being misled,

Dmid is compared with 90% of the Dext value when comparing the crowdedness of

the two regions (Line 7).

4. Similar to MOEA/D-DE [120], the proposed algorithm adopts the DE operator to

produce new solutions (Line 16). But, it selects parent individuals in a reliable

way that guarantees a wide exploration when the neighbouring solutions are over-

crowded. In other words, the niche-guided scheme helps maintain the population

diversity.

5. In some sense, the second phase can be regarded as a stage of refining the already

obtained solutions in the first phase since the second phase is expected to find a set

of well-distributed solutions. Thus, in the second phase, instead of reinitializing the

population, we use the final population of the first phase as the initial population.

Besides, this will not interrupt the evolution process, which is quite important to the

convergence performance of any MOEAs.

6. The algorithm uses two external population archives, EP1 and EP2, to store the

approximated solutions in the two phases. Then, at the end of the whole evolution,

nondominated solutions are identified from EP1 and EP2 and served as the final

optimization results. Intuitively, EP1 tends to keep intermediate solutions, while

EP2 is more likely to store boundary solutions.



3.3 Experimental Studies 38

3.2.4 Computational Cost of One Generation of MOEA/D-TPN

MOEA/D-TPN has the same framework as MOEA/D-DE [120], thus the increased com-

putation cost is attributed to its detection step for the two-phase scheme and calculation

of the niche count for niche-guided mating selection. The detection step (line 6 in Algo-

rithm 1) requires O(MNT ) computations. Reinitialization (line 10 in Algorithm 1) would

also requires O(MNT ). Calculation of the niche count for each individual (line 14 in

Algorithm 1) requires O(MT ) computations. Other operations have smaller complexity.

Therefore, the computational cost of MOEA/D-TPN in each generation is O(MNT ).

3.3 Experimental Studies

3.3.1 Test Problems and Performance Metrics

To investigate the performance of MOEA/D-TPN on problems with complex PF shapes,

we develop some new test instances (F1-F4), each of which has a non-concave PF shape.

Besides, two more commonly used test functions, UF4 [190] and convex DTLZ2 [43],

are also included in the experiments. UF4 is a 2-objective problem with a complicated PS

shape, whilst the convex DTLZ2 is adapted from the original DTLZ2 problem [49], whose

Pareto-optimal surface is almost flat at the edges, but changes sharply in the intermediate

region. Deb et al. [43] have shown in their experimental study that, on the convex DTLZ2,

some MOEA/D variants fail to find points on the boundary of the PF. The details of these

test instances are presented in Table 3.1.

In our experimental studies, we adopt two widely used metrics, i.e., IGD [204] and

HV [203], for performance assessment. The reference point R is set to (2.0,2.0)T for

bi-objective test instances, which meets the requirement that R should be worse than the

nadir point of the problems when calculating HV.

3.3.2 Parameter Settings

Four MOEA/D variants, i.e., MOEA/D, MOEA/D-N (i.e., MOEA/D with the niche

scheme only), MOEA/D-TP (i.e., MOEA/D with the TP scheme only), and MOEA/D-

TPN, are tested on the test instances. Note that, the term “MOEA/D" here refers to

the MOEA/D-DE optimizer except that the WS-transformation method [139] is used for

weight vector initialization. The control parameters for the compared algorithms were set

the same as in [120]. In the last three variants, the sharing radius σshare was set to 0.005,

and the two-phase control parameter Mr was set to 0.7.

The population size in each algorithm was set to 200 for the 2-objective instances and

300 for the 3-objective instances. Each algorithm was executed 30 runs independently for
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Table 3.1 Test Instances

Instance Description Domain Notes

F1

f1(x) = (1+g(x))x1

f2(x) = (1+g(x))(1−√x1)
5

g(x) = 2sin(0.5πx1)(n−1+
n

∑
i=2

(y2
i − cos(2πyi)))

where yi=2:n = xi− sin(0.5πxi)
PF: f2 = (1−√ f1)

5

PS: xi = sin(0.5πxi), i = 2, . . . ,n

[0,1]n

n = 30

Unimodal
Convex
Separable

F2

f1(x) = (1+g(x))(1− x1)

f2(x) =
1
2(1+g(x))(x1+

√
x1 cos2(4πx1))

g(x) = 2sin(0.5πx1)(n−1+
n

∑
i=2

(y2
i − cos(2πyi)))

where yi=2:n = xi− sin(0.5πxi)

PF: f2 =
1
2(1− f1 +

√
1− f1 cos2(4π(1− f1)))

PS: xi = sin(0.5πxi), i = 2, . . . ,n

[0,1]n

n = 30

Multimodal
Disconnected
Separable

F3

f1(x) = (1+g(x))x1

f2(x) =
1
2(1+g(x))(1−x0.1

1 +(1−√x1)
2 cos2(3πx1))

g(x) = 2sin(0.5πx1)(n−1+
n

∑
i=2

(y2
i − cos(2πyi)))

where yi=2:n = xi− sin(0.5πxi)

PF: f2 =
1
2(1− f 0.1

1 +(1−√ f1)
2 cos2(3π f1))

PS: xi = sin(0.5πxi),∀xi ∈ xII

[0,1]n

n = 30

Multimodal
Disconnected
Separable

F4

f1(x) = (1+g(x))( x1√
x2x3

)

f2(x) = (1+g(x))( x2√
x1x3

)

f3(x) = (1+g(x))( x3√
x1x2

)

g(x) =
n

∑
i=4

(xi−2)2

PF: f1 f2 f3 = 1
PS: xi = 2, i = 3, . . . ,n

[1,4]n

n = 30

Unimodal
Convex
Separable

UF4

f1(x) = x1 +
2
|J1| ∑

j∈J1

h(y j)

f2(x) = 1− x2
1 +

2
|J2| ∑

j∈J2

h(y j)

y j = x j− sin(6πx1 +
jπ
n
), j = 2, . . . ,n

h(y j) =
|y j|

1+e
2|y j | , j = 2, . . . ,n

where J1 = { j| j is odd and 2≤ j ≤ n},
J2 = { j| j is even and 2≤ j ≤ n}
PF: f 2

1 + f2 = 1
PS: x j = sin(6πx1 +

jπ
n
), j = 2, . . . ,n

[0,1]×
[−2,2]n−1

n = 10

Multimodal
Concave
Nonseparable

Convex
DTLZ2

f1(x) = ((1+g(x))cos(0.5πx1)cos(0.5πx2))
4

f2(x) = ((1+g(x))cos(0.5πx1)sin(0.5πx2))
4

f3(x) = ((1+g(x))sin(0.5πx1))
2

g(x) =
n

∑
i=3

(xi−0.5)2

PF:
√

f1 +
√

f2 + f3 = 1
PS: xi = 0.5, i = 3, . . . ,n

[0,1]n

n = 10

Unimodal
Convex
Separable
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each test instance on a computer with a configuration of Intel(R) Core(TM)2 Duo CPU

2.4GHz processor and 4.00GB memory. The maximum number of generations was set to

500 for all the test instances.

3.3.3 Comparison Among MOEA/D Variants

Figures 3.2 and 3.3 plot the approximated PF achieved by each MOEA/D variant with the

best IGD value on each test instance. F1 and F3 are problems with complex PF shapes of

a sharp tail and a long tail. So, the use of TP evidently provides a good distribution in the

extreme regions. F2 has several disconnected regions on the PF, and the original MOEA/D

only finds a small part of solutions on the PF. Nevertheless, the use of the niche-guided

scheme helps MOEA/D to solve this difficulty. It is also interesting that MOEA/D-TP

also achieves a good approximation on this problem. One possible reason for this is

that in the second phase, the weight vectors need to be re-initialized, which may cause

the variation of search directions, and thus increase the population diversity. In Fig. 3.3,

again, TP is very helpful in identifying boundary points for F4 and convex DTLZ2. UF4 is

a concave problem, and the proposed TP scheme will not be activated in this case, which

helps us focus analysis on the influence of the niche-guided scheme. Besides, UF4 also

has strong dependencies between variables. Thus, to obtain a good approximation of this

problem, an algorithm must be capable of maintaining population diversity. As shown in

the middle column of Fig. 3.3, MOEA/D variants with the use of the niche-guided scheme

have improved population diversity, thus achieving a better distribution of approximated

solutions than those without this strategy. It can be also observed that TP is not activated

in this case since MOEA/D-TPN and MOEA/D-N achieve similar results in Fig. 3.3 on

UF4.

The plots of MOEA/D (which uses only WS-transformation) on F1, F3 and convex

DTLZ2 in Figs. 3.2 and 3.3 also clearly indicate that a uniform distribution of weight

vectors will not necessarily lead to a set of evenly distributed solutions on the PF. This

may motivate researchers to seek other possible improvements like advanced decompo-

sition approaches, instead of pursuing a better distribution of weight vectors, to enhance

MOEA/D.

Table 3.2 shows the results regarding the IGD and HV metrics. Specially, reference

points (5,5,5)T and (2,2,2)T are selected for the computation of the HV metric for the

F4 and convex DTLZ2 test problems according to their nadir points, respectively. Best

values are marked in boldface. For each instance, the two-sided Wilcoxon signed rank test

[179] at the 95% confidence level is performed between MOEA/D-TPN and each of the

other compared algorithms. ‘+’, ‘-’ or ‘*’ denotes that the performance of the compared

algorithm is significantly better than, worse than, or equivalent to that of MOEA/D-TPN,

respectively, and they are marked on the median values. It is clear that MOEA/D-TPN
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Fig. 3.2 PF approximations with the lowest IGD values among 30 runs on F1-F3.

performs significantly better than MOEA/D and MOEA/D-N on all the test instances, and

performs similarly to MOEA/D-TP on F3, F4, UF4 and convex DTLZ2. This further

validates the efficiency of the proposed algorithm in solving complex problems tested in

this work.
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Fig. 3.3 PF approximations with the lowest IGD values among 30 runs on F4, UF4 and
convex DTLZ2.

3.3.4 Comparison with Peer Algorithms

To have a fair comparison, peer algorithms, such as MOEA/D-NBI [189] and MOEA/D

with objective transform (TMOEA/D) [126], that are specially designed for solving MOPs
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Table 3.2 Best, median and worst IGD and HV values of the four algorithms on the test
problems

Metric Prob. MOEA/D MOEA/D-N MOEA/D-TP MOEA/D-TPN

IGD

F1
4.4032E-02 4.4105E-02 2.8330E-03 2.8260E-03

(4.4287E-02)− (4.4278E-02)− (2.8465E-03)− 2.8455E-03

4.4504E-02 4.4482E-02 2.8670E-03 2.8610E-03

F2
2.2880E-03 2.2830E-03 1.6630E-03 1.6480E-03

(2.2930E-03)− (2.2890E-03)− (1.6995E-03)− 1.6780E-03

1.5622E-01 2.3370E-03 1.5570E-01 1.8000E-03

F3
1.1038E-02 1.0936E-02 2.2620E-03 2.2344E-03

(1.1181E-02)− (1.1245E-02)− (2.3545E-03)∗ 2.3835E-03
1.1739E-02 1.3015E-01 2.4950E-03 2.6090E-03

F4
8.3978E-02 8.4353E-02 7.5811E-02 7.1559E-02

(8.4398E-02)− (8.4962E-02)− (7.6760E-02)∗ 7.6872E-02
8.5074E-02 8.5784E-02 7.8385E-02 7.8119E-02

UF4
3.6898E-02 3.5806E-02 3.6853E-02 3.5704E-02

(4.2410E-02)− (4.2400E-02)− (4.2323E-02)∗ 4.2361E-02
4.8510E-02 4.8282E-02 4.8409E-02 4.8264E-02

Convex
DTLZ2

9.1408E-02 8.9932E-02 2.8870E-02 2.9198E-02
(9.3433E-02)− (9.3486E-02)− (3.3324E-02)∗ 3.2598E-02

9.6259E-02 9.5988E-02 3.5477E-02 3.5458E-02

HV

F1
3.9568 3.9564 3.9568 3.9592

(3.9508)− (3.9500)− (3.9496)− 3.9536

3.9432 3.9400 3.9424 3.9436

F2
3.6968 3.6964 3.6968 3.6986

(3.6744)− (3.6734)− (3.6742)− 3.6774

3.5120 3.6588 3.5184 3.6608

F3
3.9224 3.9272 3.9252 3.9280

(3.9146)− (3.9176)− (3.9195)∗ 3.9198

3.9012 3.8724 3.9032 3.9024

F4
99.8375 100.1625 100.9213 100.9125

(98.9938)− (98.6813)− (99.9688)∗ 99.8337
98.2250 98.1250 99.0000 99.0250

UF4
3.2328 3.2272 3.2312 3.2416

(3.1866)− (3.1932)− (3.1934)∗ 3.1946

3.1524 3.1536 3.1512 3.1604

Convex
DTLZ2

7.9096 7.9232 7.9688 7.9696

(7.8932)− (7.9020)− (7.9544)∗ 7.9572

7.8696 7.8856 7.9400 7.9472

with complex PF geometries should be tested in our experiments. Since MOEA/D-NBI is

only applicable to bi-objective cases, we choose F1 to F3, and UF4 as the test instances in

this part. The parameter settings of each algorithm are derived from the referenced paper.
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The statistical results of the three algorithms are presented in Table 3.3. It can be

clearly seen from the table that MOEA/D-TPN significantly outperforms the other two

algorithms on the four tested problems in terms of IGD and HV. For TMOEA/D, the

poor performance can be attributed to that the shapes of the test instances are extremely

irregular, and TMOEA/D may not be able to accurately identify them, thus it cannot

achieve a good approximation. For MOEA/D-NBI, apart from the extremely irregular PF

geometries of the test problems, the lack of effective diversity maintenance strategy may

be another reason for its poor performance. Nevertheless, MOEA/D-TPN considers the

distribution of solutions and uses TP to adjust search directions. Accordingly, it achieves

a better approximation for each instance. To have a better understanding of differences

among the three different kinds of algorithms, we also plot the approximations obtained

by TMOEA/D and MOEA/D-NBI for F1, F2 and UF4 in Fig. 3.4.

3.3.5 Comparison with Other Algorithms

In this subsection, SPEA2+SDE [117] and NSGA-III [43] are used for comparison. The

algorithms compared are newly-developed techniques and have shown to be very promis-

ing for solving MOPs. To increase difficulties for these algorithms, four extra test prob-

lems with complex PF shapes are used in the experiment, which are presented in Table 3.4.

POL is derived from Poloni’s study [137], whose PF is discontinuous and has a long tail.

mF4 is a modified version of F4, and is more difficult for MOEAs to find boundary solu-

tions on the PF since both the search space and the objective space have been scaled. The

modification leads to the variation of the objective scale, i.e., fi ∈ [0.1,10], i= 1,2, . . . ,M.

F5 has an irregular PF shape and poses difficulties for MOEAs to approximate extreme

regions. F6 is a multi-modal convex problem and has deceptive properties. It challenges

algorithms in finding a global PF as well as extreme regions. In other words, the four

test functions from Table 3.4 are more challenging than those used in our previous ex-

periment, imposing various effects on the performance of MOEAs. Specially, reference

points (20,30)T , (12,12,12)T , and (2,2,2)T , which should be slightly worse than the

nadir point, are selected for the HV calculation of POL, mF4, and another three-objective

problems, respectively. The parameter settings in each algorithm are derived from the

referenced paper.

Table 3.5 gives the statistical results of the IGD, HV and T values on these test func-

tions, where “T” represents the run-time of an algorithm, recorded in seconds. It can be

observed that, for the tested problems, MOEA/D-TPN achieves significantly better results

than the other two algorithms in terms of IGD and HV. Specifically, judging from the IGD

values, SPEA2+SDE struggles to converge toward the PF on mF4 and F5, while NSGA-

III performs poorly on POL and F6. As for the run-time performance, MOEA/D-TPN
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Table 3.3 Best, median and worst IGD and HV values of the peer algorithms on four test
problems

IGD HV

Prob. TMOEA/D
MOEA/D

-NBI
MOEA/D

-TPN
TMOEA/D

MOEA/D
-NBI

MOEA/D
-TPN

F1
3.4720E-03 2.8690E-03 2.8260E-03 3.9592 3.9563 3.9592

(3.8615E-03)− (2.8720E-03)− 2.8455E-03 (3.9514)− (3.9496)− 3.9536

4.5490E-03 2.8800E-03 2.8610E-03 3.9432 3.9428 3.9436

F2
2.9960E-03 1.6410E-03 1.6480E-03 3.6960 3.7008 3.6986

(4.2245E-03)− (1.9650E-03)− 1.6780E-03 (3.6720)− (3.6744)− 3.6774

1.8772E-02 1.5566E-01 1.8000E-03 3.6532 3.5316 3.6608

F3
3.4610E-03 2.4550E-03 2.2344E-03 3.9280 3.9272 3.9280

(4.3285E-03)− (2.6590E-03)− 2.3835E-03 (3.9174)− (3.9174)− 3.9198

1.3451E-02 2.9640E-03 2.6090E-03 3.8996 3.9016 3.9024

UF4
4.9577E-02 3.8695E-02 3.5704E-02 3.2136 3.2402 3.2416

(6.4952E-02)− (4.2808E-02)− 4.2361E-02 (3.1356)− (3.1894)− 3.1946

8.7681E-02 4.9567E-02 4.8264E-02 3.0544 3.0812 3.1604
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Fig. 3.4 PF approximations with the lowest IGD values among 30 runs on F1, F2 and
UF4.

clearly exceeds the other two algorithms by a significant margin, SPEA2+SDE ranks the

second, and NSGA-III ranks the last.

Fig. 3.5 shows the approximate PF of the lowest IGD value over 30 runs obtained

by each algorithm. It is clear to see that MOEA/D-TPN is able to converge to the PFs

and cover the entire PFs of the first three test functions, and finds most of solutions for

F6. On F6, SPEA2+SDE loses the boundary areas, while MOEA/D-TPN keeps most

of them. However, MOEA/D-TPN loses extreme areas, while SPEA2+SDE keeps well.
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Table 3.4 Extra Test Instances

Instance Description Domain Notes

POL

f1(x) = 1+(A1−B1)
2 +(A2−B2)

2

f2(x) = (x1 +3)2 +(x2 +1)2

A1 = 0.5sin(1)−2cos(1)+ sin(2)−1.5cos(2)
A2 = 1.5sin(1)− cos(1)+2sin(2)−0.5cos(2)
B1 = 0.5sin(x1)−2cos(x1)+sin(x2)−1.5cos(x2)
B2 = 1.5sin(x1)−cos(x1)+2sin(x2)−0.5cos(x2)

[−π ,π ]n

n = 2

Unimodal
Non-convex
Nonseparable

mF4

f1(x) = (1+g(x))( x1√
x2x3

)

f2(x) = (1+g(x))( x2√
x1x3

)

f3(x) = (1+g(x))( x3√
x1x2

)

g(x) =
n

∑
i=4

(xi−5)2

PF: f1 f2 f3 = 1
PS: xi = 5, i = 3, . . . ,n

[1,10]n

n = 30

Unimodal
Convex
Separable

F5

f1(x) = (1+g(x))((1− x1)x2)
f2(x) = (1+g(x))(x1(1− x2))

f3(x) = (1+g(x))(1− x1− x2 +2x1x2)
6

g(x) =
n

∑
i=3

(xi−0.5)2

PF: f3 = (1− f1− f2)
6

PS: xi = 0.5, i = 3, . . . ,n

[0,1]n

n = 30

Unimodal
Convex
Nonseparable

F6

f1(x) = cos4(0.5πx1)cos4(0.5πx2)

f2(x) = cos4(0.5πx1)sin4(0.5πx2)

f3(x) =
(

1+g(x)
1+cos2(0.5πx1)

) 1
1+g(x)

g(x) = 1
10

n

∑
i=3

(1+ x2
i − cos(2πxi)))

PF: f3(1+
√

f1 +
√

f2) = 1
PS: xi = 0, i = 3, . . . ,n

[0,1]n

n = 30

Multimodal
Convex
Separable

While SPEA2+SDE performs well on POL and F6, it struggles to converge to the PFs of

mF4 and F5. NSGA-III achieves fair results on POL, mF4 and F5, but it fails to cover the

whole extreme regions of these problems. NSGA-III performs poorly and obtains many

points on a local PF surface on F6 since this is a deceptive problem with a complex PF,

but the other algorithms have successfully found many global solutions on this problem.

Fig. 3.6 shows the evolution curves of the average IGD values for the test problems

against generation. Clearly, all the algorithms have a fast convergence performance on

the test functions. Meanwhile, a notable improvement of the IGD values can be observed

in MOEA/D-TPN when TP is activated (at the 350th generation), leading to MOEA/D-

TPN achieving better late-stage performance than SPEA2+SDE and NSGA-III on these

problems.
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Table 3.5 Best, median and worst IGD, HV and T (seconds) values of the three algorithms
on the extra test problems

Metric Prob. SPEA2+SDE NSGA-III MOEA/D-TPN

IGD

POL
7.9373E-02 1.4470E-01 5.6305E-02

(1.0496E-01)− (2.0711E-01)− 5.9582E-02

1.7027E-01 2.2150E-01 6.1822E-02

mF4
1.4703E+00 1.4805E-01 1.2396E-01

(1.4738E+00)− (1.5435E-01)− 1.2535E-01

1.4783E+00 1.6239E-01 1.2754E-01

F5
1.8505E-01 2.5032E-02 1.3646E-02

(1.8536E-01)− (2.7036E-02)− 1.4040E-02

1.8613E-01 2.9269E-02 1.4545E-02

F6
3.3742E-02 4.4938E-01 1.6892E-02

(4.8208E-02)− (5.1625E-01)− 1.9734E-02

6.6152E-02 5.4934E-01 2.4442E-02

HV

POL
5.3820E+02 5.3535E+02 5.3832E+02

(5.3589E+02)− (5.3535E+02)− 5.3646E+02

5.3220E+02 5.3106E+02 5.3256E+02

mF4
1.4285E+03 1.6610E+03 1.6665E+03

(1.4160E+03)− (1.6533E+03)− 1.6599E+03

1.4030E+03 1.6440E+03 1.6520E+03

F5
7.7864E+00 7.9840E+00 7.9832E+00

(7.7364E+00)− (7.9760E+00)− 7.9770E+00

7.6664E+00 7.9704E+00 7.9714E+00

F6
6.0536E+00 3.8400E+00 6.0656E+00

(5.9720E+00)− (3.7672E+00)− 6.0012E+00

5.8832E+00 3.7000E+00 5.9440E+00

T

POL
2.0201E+02 3.9143E+02 6.9348E+01

(2.0550E+02)− (4.2283E+02)− 7.3065E+01

2.2123E+02 6.2033E+02 8.1042E+01

mF4
3.5728E+02 4.5907E+02 7.5071E+01

(3.6065E+02)− (5.7852E+02)− 8.6718E+01

4.2019E+02 6.4615E+02 9.4585E+01

F5
4.5921E+02 6.0510E+02 7.2329E+01

(4.7347E+02)− (6.1632E+02)− 8.0427E+01

5.1030E+02 7.9555E+02 9.1976E+01

F6
4.3947E+02 4.8475E+02 7.7635E+01

(4.5637E+02)− (5.0677E+02)− 7.8930E+01

4.7875E+02 6.7858E+02 9.9403E+01
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Fig. 3.5 PF approximations with lowest IGD values among 30 runs on POL, mF4, F5 and
F6.

3.4 Sensitivity Analysis

3.4.1 Further Investigation of TP

As has been shown in the previous experimental study, the TP scheme evidently improves

MOEA/D by providing a better set of evenly-distributed solutions for the tested problems.
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Fig. 3.6 Evolution of the mean IGD values of the test problems: (a) POL, (b) mF4, (c) F5,
and (d) F6.

There are two basic issues involved in TP, however, which may influence the performance

of the proposed algorithm. One is the definitions of the intermediate and extreme regions,

since the definitions are based on the continuous PF, we would wonder what will happen

to them for disconnected problems. The other one is whether TP has an influence on

population diversity. Therefore, we carried out the following experiments.

3.4.1.1 Influence of Different Types of PF on Dmid and Dext

To have a better understanding of the definition and function of Dmid and Dext , we use

F1 to F3 as the test problems, which represent two different types of problems. All the

parameter settings of MOEA/D-TPN remain unchanged in the experiment. The crowded-

ness values of Dmid and Dext against generation are plotted in Fig. 3.7, where Vs denotes a

stable value obtained by Dext in the first phase (350 generations). The figure clearly shows

that, for both continuous and discontinuous problems, Dmid is smaller than Dext when they

reach their stable level, and the introduction of the second phase evolution helps find more

extreme solutions, thus narrowing the gap between their crowdedness values. This indi-

cates, for disconnected problems, the definitions of intermediate and extreme regions are

also very meaningful and helpful. In the early stage (roughly 30 generations), especially
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Fig. 3.7 Evolution curves of Dmid and Dext on F1, F2, and F3.

shown for F2 in Fig. 3.7, Dmid seems to be higher than Dext , and this is probably because

the number of extreme solutions is too low, and many extreme individuals of We share the

same solutions, leading to a small value of Dext . It is worth noting that, the figure also

confirms that parameter 0.9 is able to determine whether there is a significant difference

between Dmid and Dext .

3.4.1.2 Influence of TP on Population Diversity

As discussed in previous experiments, TP not only helps in finding extreme solutions, but

seems to have the potential to increase population diversity for F2. To further investigate

the diversity performance of TP, we tested MOEA/D+TP on F2. Fig. 3.8 shows the popu-

lation at the 350th, 360th, 370th and 380th generations. We can observe that, at the end of

the first phase (350th generation), the algorithm only finds solutions on the top left of the

PF. When TP is triggered, the population gradually covers the disconnected subregions

on the bottom right of the PF, which means TP helps diversify the population across the

whole PF. One possible reason for this is that search directions have been changed in
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Fig. 3.8 Influence of TP on population diversity for F2.

Table 3.6 IGD values obtained by MOEA/D-TPN with different Mr settings for the in-
stances F1 and F3

F1 F3
Mr Best Median Worst Best Median Worst
0.5 2.8338E-03 2.8487E-03 2.8652E-03 2.3177E-03 2.5467E-03 2.7673E-03
0.6 2.8328E-03 2.8476E-03 2.8664E-03 2.2376E-03 2.5282E-03 2.7168E-03
0.7 2.8256E-03 2.8455E-03 2.8614E-03 2.2342E-03 2.3835E-03 2.6090E-03
0.8 2.8272E-03 2.8506E-03 2.8662E-03 2.2667E-03 2.3880E-03 2.5654E-03
0.9 2.8367E-03 2.8564E-03 2.8911E-03 2.2795E-03 2.4364E-03 2.6435E-03
1 4.4105E-02 4.4278E-02 4.4482E-02 1.0936E-02 1.1245E-02 1.3015E-01

the second phase, which in return increases the chance for the population to explore new

regions, thus providing a better distribution and coverage of solutions.

3.4.2 Effect of the Parameter Mr

The previous experimental results have shown that the TP scheme can improve the perfor-

mance of MOEA/D. To further investigate the effect of the two-phase control parameter

Mr on the performance of MOEA/D-TPN, six values of Mr (i.e., 0.5, 0.6, 0.7, 0.8, 0.9, 1)

are tested on the instances F1 and F3. Note that, Mr = 1.0 means that the algorithm does

not use the TP scheme. All the other parameters remain unchanged.

The IGD values are shown in Table 3.6. It can be clearly seen that Mr = 0.7 pro-

duces better results than the other settings for F1 and F3. Besides, the IGD values further

demonstrate that the use of TP provides a notable improvement (different IGD values of

Mr = 1 and Mr < 1) in approximating the PFs of F1 and F3.
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Table 3.7 IGD values obtained by MOEA/D-N with different σshare settings for the in-
stances F2 and UF4

F2 UF4
σshare Best Median Worst Best Median Worst
0.001 2.2851E-03 2.2935E-03 2.3380E-03 4.0583E-02 4.4081E-02 4.8602E-02
0.005 2.2832E-03 2.2891E-03 2.3370E-03 3.5806E-02 4.2000E-02 4.8282E-02
0.01 2.2857E-03 2.2931E-03 2.3401E-03 3.9485E-02 4.2244E-02 4.8336E-02
0.05 2.3556E-03 2.5442E-03 2.8170E-03 3.9932E-02 4.3017E-02 4.8391E-02
0.2 3.2096E-03 4.0473E-03 6.5844E-03 4.1503E-02 4.3274E-02 4.8961E-02
0.5 4.3035E-03 4.9096E-03 1.3758E-02 4.1904E-02 4.3827E-02 5.0084E-02

3.4.3 Effect of the Sharing Radius σshare

In the proposed algorithm, the sharing radius σshare in the sharing function is an important

factor. A large σshare will reduce the impact of the niche-guided scheme, while a small

one may lead to too much exploration in the search space and may not ensure a fast

convergence of the population. In the following, σshare is set to 0.001, 0.005, 0.01, 0.05,

0.2, and 0.5, and MOEA/D-N is tested on F2 and UF4, both of which have shown to

be sensitive to σshare in the previous study. Note that, we do not use MOEA/D-TPN

here because TP helps to solve the problem, which may shadow the importance of the

niche-guided scheme. So, to avoid this situation, it is better to investigate the effect of the

sharing radius separately.

Table 3.7 gives the effect of varying the sharing radius σshare. Clearly, high values of

σshare aggravate IGD values because the algorithm is given more chance to produce a new

individual by selecting neighbouring parent individuals, while a low value will make the

algorithm concentrate on global exploration and cannot provide sufficient convergence

performance. Notably, setting the value of σshare to 0.005 offers better results on the

tested instances F2 and UF4.

3.4.4 Effect of Population Size

The population size (N) is another key factor that greatly affects the performance of al-

gorithms. To investigate its influence, we test three levels of population sizes for the

algorithms SPEA2+SDE, NSGA-III and MOEA/D-TPN on the problems POL and mF4.

Table 3.8 shows the population size settings for these algorithms. Since both NSGA-III

and MOEA/D-TPN use the simplex-lattice design to set the number of reference points or

sub-problems, their population sizes should satisfy the requirement N =CH
M+H−1, where

H is the number of divisions on each objective and M is the number of objectives. The

population size for NSGA-III is set as the smallest multiple of four higher than N, which



3.4 Sensitivity Analysis 53

Table 3.8 Population size settings for three algorithms

POL mF4

Level
SPEA2
+SDE

NSGA
-III

MOEA/D
-TPN

SPEA2
+SDE

NSGA
-III

MOEA/D
-TPN

1 52 52 50 48 48 45
2 100 100 100 92 92 91
3 200 200 200 192 192 190

Table 3.9 Best, median and worst IGD values of three algorithms on POL and mF4

POL mF4

Level
SPEA2
+SDE

NSGA
-III

MOEA/D
-TPN

SPEA2
+SDE

NSGA
-III

MOEA/D
-TPN

1
1.8971E-01 3.1802E-01 1.8071E-01 1.5419E+00 3.5911E-01 4.2461E-01
2.6678E-01 5.3476E-01 2.0400E-01 1.5695E+00 3.7089E-01 4.4307E-01
3.6169E-01 6.0683E-01 2.6377E-01 1.6279E+00 3.8630E-01 4.7349E-01

2
1.4821E-01 2.4915E-01 9.4054E-02 1.4931E+00 2.6242E-01 2.5146E-01

1.8373E-01 3.2066E-01 1.0687E-01 1.5119E+00 2.7067E-01 2.6229E-01

2.4422E-01 3.6438E-01 1.2287E-01 1.5232E+00 2.7626E-01 2.6902E-01

3
7.9373E-02 1.4470E-01 5.6305E-02 1.4775E+00 1.7747E-01 1.6328E-01

1.0496E-01 2.0711E-01 5.9582E-02 1.4795E+00 1.8393E-01 1.6476E-01

1.7027E-01 2.2150E-01 6.1822E-02 1.4842E+00 1.8544E-01 1.6714E-01

is referenced to the setting in [43]. SPEA2+SDE has the same population size setting as

NSGA-III.

Table 3.9 gives the IGD results of the three algorithms at different population size

levels. It can be observed that, for POL, MOEA/D-TPN outperforms the rest on each

level of the population size by a clear margin. When the population size is too small,

NSGA-III obtains better IGD values for mF4 than MOEA/D-TPN and SPEA2+SDE, but

it is gradually exceeded by MOEA/D-TPN with an increase in the population size. This

implies MOEA/D-TPN work well if a normal size of population is provided.

3.4.5 Limitations

The study has two main limitations. The first is that there are some parameters involved

in MOEA/D-TPN, and it is not easy for users to set them in advance without any knowl-

edge about a problem. For example, the setting of the control parameter Mr used in the

two-phase scheme may vary with the difficulty of the problem considered. On one hand,

for easy problems, Mr = 0.5 may be enough to drive most of individuals toward the true

PF, but for difficult problems, Mr = 0.5 may not be enough to obtain an accurate esti-

mation of population crowdedness and the nadir point. On the other hand, a large Mr is

good for estimating population crowdedness, but may cause the algorithm to have few
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computational resources for the second-phase evolution, thus unable to have a good ap-

proximation at the end of the evolution. For these reasons, Mr is suggested to be in [0.5,

0.8]. Note that, the two-phase scheme is really helpful for complex problems in question

and a value of 0.7 for Mr generates good results for them. Another key parameter is σshare,

and its setting relates to the number of objectives and the population size. σshare = 0.005

may not be the best choice for all the problems, however, the experimental study has

seen an improvement in MOEA/D with the use of niche. The second limitation is the

current work mainly focuses on bi- and three-objective complex problems, which may in-

duce some bias. Although MOEA/D-TPN has achieved encouraging performance on the

problems in question, that does not imply MOEA/D-TPN is always better than the other

compared algorithms. Further investigations are required to have a better understanding

of its performance.

3.5 Summary

An extensive review of the performance of MOEA/D has shown that the MOEA/D algo-

rithms tend to find solutions located in the intermediate region of an irregular PF and have

difficulty in solving problems with complex PF shapes, i.e., the PF with a sharp peak and

long tail, and disconnected regions. This chapter has extended the MOEA/D framework

to overcome this drawback by introducing a novel TP scheme and a niche-guided scheme.

While TP alternatively divides the whole optimization procedure, according to the crowd-

edness of solutions on the PF, into two phases, and helps the population in finding points

on the boundary of the PF in the second phase; the niche-guided scheme is used to main-

tain the population diversity in cases where the PF has several disconnected regions that

may result in MOEA/D producing many duplicate solutions. In this way, the improved

MOEA/D is expected to be capable of handling difficult landscapes and achieving desir-

able optimization results.

The proposed algorithm has been tested on some complex problems, including exist-

ing and newly designed test functions. Experimental results have shown that the improved

MOEA/D achieves better performance than several compared MOEA/D variants, and out-

performs another two algorithms, i.e., SPEA2+SDE and NSGA-III, on the test problems.

We would like to summarize some key findings regarding the proposed MOEA/D-TPN as

follows:

1. The niche-guided scheme provides a high level of population diversity for complex

test problems (e.g., F2, UF4) during the evolution, especially when the problem

being optimized is discontinuous.

2. When solving problems whose PF has a sharp peak or a long tail, MOEA/D with

TP shows significantly better performance than that without TP. The improved
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MOEA/D has been tested on the convex version of DTLZ2, mF4, and F5, prov-

ing that it is very efficient for finding points on the boundary of the PF. Besides,

TP can adjust search directions and diversify individuals (e.g., F2), which may be

helpful for disconnected problems.

3. The experimental results have also revealed that, although a good distribution of

weight vectors (i.e., WS-transformation) for MOEA/D is available, it cannot nec-

essarily guarantee the evenness of the resulting solutions on complex PF shapes.

This may motivate researchers to seek other possible improvements, like advanced

decomposition approaches, to enhance MOEA/D instead of pursuing only a better

distribution of weight vectors.



Chapter 4

EAs Based on Scalarizing Functions for

MOPs

Scalarizing functions, as the name suggests, are a kind of functions that can cast a vector

to a scalar value. This way, two vectors can be indirectly distinguished by comparing

the scalar values cast. It is well recognized that scalarizing functions can be incorporated

with EAs to solve MOPs. With the aid of scalarizing functions involving possibly human

decision makers’ preference information, an MOP is transformed into a number of sim-

ple subproblems. After the scalarization phase, these simple subproblems can be solved

by some existing theory and methods. So far, many scalarizing-based EAs have been

proposed and their effectiveness has been widely verified.

Despite their popularity for MOPs, the properties of scalarizing functions have not

been well understood. In this chapter, while identifying limitations of existing scalarizing

functions, we propose new scalarizing functions and analyze their properties deeply. After

that, we develop an EA framework based on the proposed scalarizing functions for solving

hard MOPs.

This chapter is organized as follows. In Section 4.1, we introduce some related knowl-

edge and the incentive of this research work. Section 4.2 presents the proposed scalarizing

functions, followed by an EA framework on the basis of them in Section 4.4. Section 4.5

provides experimental studies with respect to the proposed EA framework. A deep analy-

sis of parameter sensitivities is presented in Section 4.6. Section 4.7 concludes the work.

4.1 Introduction

Despite plenty of advances, decomposition-based EAs like MOEA/D still receive increas-

ing research interests. A particular research direction is with regard to scalarizing func-

tions, which have not been fully explored yet. In MOEA/D, the weighted sum (WS), the

weighted Tchebycheff (TCH) and penalty-based boundary intersection (PBI) are the top
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three commonly-used scalarizing functions. These scalarizing functions respectively have

their own strengths and drawbacks [174, 184, 185]. In view of the advantages and disad-

vantages of each scalarizing function, Ishibuchi et al. [85, 86] proposed to use different

scalarizing functions adaptively or simultaneously during the search. In [59], a gener-

alized form of scalarizing functions was developed to cope with various PF geometries.

Sato [147] proposed an inverted PBI method to overcome the poor spread performance of

existing scalarizing functions in some problems. Modified or advanced scalarizing func-

tions have also been developed to facilitate environmental selection in other algorithms

[28, 94, 144, 186].

It is noteworthy that one important property of a scalarizing function is the shape or

positioning of its contour lines [50, 184]. The contour lines are a set of equal scalarizing

function values and play a crucial role in guiding the search in scalarizing search algo-

rithms [50]. In [50], the authors argued that the dynamics of the search process is rather

independent of the scalarizing function under consideration and instead mainly influenced

by the induced contour lines. Another study [175] showed that constraining the contours

of the scalarizing function can improve the search ability. Recently, Wang et al. [174]

have systematically studied the search ability of a family of widely-used scalarzing func-

tions with different contours, called the Lp scalarizing functions, and have argued that

different contours should be used at different search stages.

Generally, desired contours in scalarizing search algorithms can be obtained by 1) us-

ing traditional scalarizing functions and modifying their contours by adding constraints

[175] or specifying different parameters [174] or 2) designing new and effective scalariz-

ing functions. The former method looks intuitive and easy but may not always generate

the exact contours one wants. For example, the modified scalarizing functions (exclud-

ing PBI) in both [175] and [174] cannot produce contour lines that have opening angles

[50] smaller than π/2, which may not balance diversity and convergence well during the

search. In this chapter, the focus is on the latter.

The three scalarizing functions mentioned previously, i.e., WS, TCH, and PBI, have

been widely used in decomposition-based MOEAs. Their contour lines are displayed in

Fig. 4.1. Despite great success in solving a variety of MOPs, these scalarizing functions

have their own limitations. For example, PBI is very sensitive to the search landscape of

the objective space and may miss some PF points if the underlying penalty factor is not

well-tuned [147, 184].

On the other hand, WS and TCH belong to the family of the Lp (p ≥ 1) scalarizing

functions [174], and they are two extreme cases of this family (WS and TCH correspond

to L1 and L∞, respectively). As pointed out by Wang et al. [174], TCH is the best in the

Lp family in terms of diversity maintenance because its contour lines have the smallest

opening angle, i.e., π/2, as shown in Fig. 4.1(b). However, We argue here that a contour

with π/2 opening angle is still insufficient to maintain diversity in some cases. Fig. 4.2
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Fig. 4.1 Illustration of three scalarizing functions on weight vector w, where dashed lines
are contour lines.

illustrates a situation where the L∞ scalarizing function fails to maintain diversity. In the

figure, three individuals (B, C and D) are of great importance to diversity, but they will

be replaced by two boundary individuals (A and E) because their improvement regions 1

contain A and/or E, i.e., {A}⊂Φ(B), {A, E}⊂Φ(C), and {E}⊂Φ(D). This implies that

L∞ along with its family members lacks the property of maintaining/promoting diversity

itself. It may be of little use and even fails if search environments are very complex and

little information is available in advance.

f1

f2z∗

w2

w3

w4

w1
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E

Fig. 4.2 Illustration of solution distribution in the bi-objective space. Dashed lines are
contours of L∞ scalarizing functions.

Generally, the above-mentioned drawback with regard to TCH can be alleviated by

the following possible ways. First, constraints can be added to the contour line of TCH to

reduce the opening angle or TCH works with appropriate replacement strategies to stop

1In scalarizing-based search, the improvement region (denoted Φ(x)) of a solution x refers to the area
where any other solution is better than this solution in terms of the scalarizing value.
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abandoning diverse individuals. Second, a new and effective scalarizing function with

adjustable contours or improvement regions to control diversity would help MOEA/D

yield good performance. Obviously, the second approach is more straightforward and

easier to implement because it does not require any modification of the basic framework of

decomposition-based algorithms. For this reason, it is desirable to devise new scalarizing

functions for evolutionary multiobjective optimization (EMO).

4.2 New Scalarizing Functions

In the following, two new scalarizing functions are proposed for EMO.

4.2.1 Multiplicative Scalarizing Function (MSF)

The MSF approach is written as:

gms f (x|w,z∗) =

[

max
1≤i≤M

(

1
wi
| fi(x)− z∗i |

)]1+α

[

min
1≤i≤M

(

1
wi
| fi(x)− z∗i |

)]α , (4.1)

where α is a control parameter, and if the denominator is zero, a sufficiently small positive

value (e.g., 10−4) is added to keep division legal. When α = 0, gms f (x|w,z∗) degenerates

to Eq.(2.3) presented in Chapter 3. That is, the TCH method is a special case of MSF.

For denotion convenience, let f̃i = fi− z∗i . We also assume u and v (1≤ u,v≤M) are

the indices that maximize and minimize f̃i/wi (1≤ i≤M), respectively. Fig. 4.3 presents

contour lines of MSF with different α values on the ( f̃u/wu)( f̃v/wv)-plane. As can be

seen from the figure, the size of the improvement region decreases with the increase of

α . Obviously, α ≥ 0 is more desired compared with α < 0 because just like the WS

method, MSF with α < 0 is unable to approximate non-convex PFs and is very likely to

lose diversity as mentioned earlier2. For this reason, we only consider α ≥ 0 in this work.

Theorem 1. On the f̃u f̃v-plane, the maximum size of improvement region enclosed by

gms f (x|w,z∗) = c (c≥ 0), denoted ∆(c), is equal to wuwvc2/(2α +1).

Proof. The improvement region is enclosed by the curve gms f (x|w,z∗) = c, as shown

in Fig. 4.4. It is easy to see that gms f (x|w,z∗) = c and f̃u/wu = f̃v/wv have two com-

mon points of intersection, i.e., (0,0) and (cwu,cwv). Next, we calculate the two parts of

gms f (x|w,z∗) = c below and above f̃u/wu = f̃v/wv, respectively.

2However, α ≤ 0 may provide fast convergence in the early stage of the search and solve concave MOPs
efficiently.
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If f̃u/wu > f̃v/wv, then gms f (x|w,z∗) = ( f̃u/wu)
1+α/( f̃v/wv)

α = c. Thus fv =

wv
(1+α)
√

c( f̃u/wu)α .

If f̃u/wu < f̃v/wv, then gms f (x|w,z∗) = ( f̃v/wv)
1+α/( f̃u/wu)

α = c. Thus fv =

wv
α

√

1
c
( f̃u/wu)(1+α).

Therefore, ∆(c) is equal to the area bounded by the above two function curves. That

is,

∆(c) =
∫ cwu

0

(

wu
α

√

1
c
( f̃u

wu
)(1+α)−wu

(1+α)

√

c( f̃u

wu
)α
)

d f̃u=
wuwvc2

2α+1 . (4.2)

It is clear from the theorem that, the size of the improvement region (particularly

in the bi-objective space) for a predefined weight vector is controlled by α . When α

is fixed, the improvement region is affected by the weight vector values, as shown in

Fig. 4.5. Generally, intermediate weight vectors tend to have larger ∆(c) values than
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Fig. 4.5 Contour lines of MSF with α = 0.5 for contour values of 0.4, 0.8, and 1.2.

boundary ones. This is because the product of the elements of an intermediate weight

vector is larger than those of an boundary weight vector. This means that subproblems

associated with intermediate weight vectors have more opportunities to be updated than

those with boundary weight vectors. Thus, to be fair for all the subproblems, it is plausible

to penalize intermediate subproblems or compensate boundary subproblems so that all

subproblems can have relatively equal size of improvement regions.

According to Theorem 1, a straightforward way of balancing subproblems is to vary

α for different subproblems. In this work, we adjust α as follows:

α = β
{

M min
1≤i≤M

(wi)
}

, (4.3)

where wi is the i-th element of weight vector w, and M is the number of objectives.

0 ≤ M min
1≤i≤M

(wi) ≤ 1 always holds under the assumption of ∑M
i=1 wi = 1. β is the un-

derlying control parameter. It is worth mentioning that the improvement region in TCH

is non-adjustable as it is constant (i.e., ∆(c) = wuwvc2) if both the contour line value c

and the weight vector w are predetermined. However, for MSF, ∆(c) can control each

subproblem’s improvement region through the adjustment of α (or β in Eq.(4.3)).

4.2.2 Penalty-based Scalarizing Function (PSF)

Inspired by the idea of PBI that controls diversity by penalizing solutions far away from

a weight vector, we modify the weighted Chebycheff function in the following way:

gps f (x|w,z∗) = max
1≤i≤M

( 1
wi
| fi(x)− z∗i |

)

+αd, (4.4)

d =

√

‖ f (x)− z∗‖2‖w‖2−‖( f (x)− z∗)T w‖2

‖w‖ , (4.5)
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Fig. 4.7 Contour lines of PSF with α = 1.0 for contour values of 0.4, 0.8, and 1.2.

where d is the perpendicular distance of a solution to the weight vector w, i.e., d is the

same as the perpendicular distance d2 defined in PBI [188] (see Eq. (2.6) for the definition

of d2). α is a penalty value used to control diversity. Fig. 4.6 illustrates contour lines

of PSF with different α values. Similar to MSF, the improvement region of PSF varies

dramatically with α , and α ≥ 0 is preferable as diversity is the focus of this work. Fig. 4.7

presents the contour lines of PSF for different weight vectors.

Like MSF, the size of improvement region of PSF also depends largely on α and the

considered weight vector w. Thus, PSF use the same adjustment strategy (see Eq.(4.3)) to

balance different subproblems.

4.2.3 Similarities and Differences

4.2.3.1 MSF and PSF vs Lp

Let us revisit the problem previously illustrated in Fig. 4.2, where L∞ and other Lp scalar-

izing functions cannot induce proper contours or improvement regions to avoid diver-

sity loss. We wonder whether the proposed MSF and PSF can overcome this drawback.
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Fig. 4.8 presents the contours of MSF and PSF (both with α = 1) passing through three

important points (B, C and D). It is clear that when MSF or PSF is used, all the five

points from A to E can survive during the replacement because no point resides in the

improvement region of another point. Thus, MSF and PSF are effective and promising

for diversity maintenance.

4.2.3.2 MSF vs PSF

The improvement region of both methods varies with α , and both degenerates to TCH

when α = 0. For α ≥ 0, however, the geometries of MSF and PSF are different. the

contour lines of MSF are nonlinear whereas those of PSF are polytopes. Thus, boundary

points beside the ideal point can be in an improvement region induced by PSF, but this is
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not the case with MSF. Fig. 4.9 presents a situation where a boundary point X will replace

an intermediate point Y associated with the search direction w if PSF with inappropriate

opening angles is used. But this will not happen in MSF. For this reason, MSF may

keep diversity better than PSF whereas PSF may have advantage in locating boundary

solutions.

4.2.3.3 PSF vs PBI

Since PSF borrows the idea of diversity maintenance from PBI, PSF and PBI have sim-

ilar contour lines, i.e., their contour lines are polytopes. However, they differs much in

convergence promotion. Specifically, PBI measures convergence via d1 values [188] (see

Eq. (2.6) for the definition of d1). In complex problems with irregular PF shapes [90],

d1 values vary significantly. In order to balance diversity and convergence, PBI needs

to carefully select the penalty factor. Otherwise, PBI is likely to obtain an incomplete

approximation of the PF [147]. Unlike PBI, PSF measures convergence via TCH, which

can approximate both convex and nonconvex PF geometries. Therefore, PSF may be less

sensitive to different PF scenarios compared with PBI.

4.3 Parameter Sensitivity in MSF and PSF

As our focus is mainly on the diversity aspect of scalarizing functions, test problems used

for experimental validation should be able to challenge MOEAs’ diversity performance.

For this reason, the MOP [127] test suite is selected. This test suite has seven instances,

each of which has local attractors on boundary regions of the PF. Thus, MOEAs are very

easily trapped into these attractors if their diversity is not well maintained. A detailed de-

scription of the MOP test suite can be found in Appendix A, where two more tri-objective

instances, i.e., MOP8 and MOP9, are proposed by considering new characteristics. MOP8

places local attractors in the intermediate regions of its linear PF, whereas MOP9 increases

optimization difficulties by placing local attractors only on corner regions (i.e. the inter-

section of the PF and coordinate axes). These added features are expected to further

understanding of MOEAs’ search behaviour.

The proposed MSF and PSF are integrated into the MOEA/D-DE [120] framework,

whose recombination operator is replaced by the adaptive operator [123] due to its re-

ported success on MOP problems [127].

Parameters in MOEA/D-DE were set as follows. The population size N was 100

and 105 for bi- and tri-objective problems, respectively. The neighbourhood size T was

T = 0.1N and the probability δ used to select mating neighbourhood was δ = 0.9. The

maximal allowable number nr of solutions to be replaced by a child solution was nr = 2.

Due to the difficulty of the MOP test suite, the maximum number MaxGen of generations
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Fig. 4.10 Mean IGD values obtained by MSF with different β settings.

was set to MaxGen = 5000. The total number of independent runs was 31. Performance

metrics chosen for this experiment are IGD [192], ∆p [151] and HVD [197].

Since both MSF and PSF use Eq. (4.3) to assign α values, we just need to test the

influence of different β values in Eq. (4.3). In the experimental study, β was chosen from

{0, 0.05, 0.2, 1, 5, 10, 20} for MSF and {0, 1, 5, 10, 20, 100} for PSF. β = 0 is a special

case where both MSF and PSF degenerate to TCH.

Figs. 4.10–4.12 plot the mean values of three metrics obtained by MSF with different

β settings, where standard deviation is shown around the mean values. Two observa-

tions can be obtained from the figures. First, all the three metrics are roughly consistent

when they are used for performance assessment. The only exception occurs on MOP7,

where both IGD and ∆p show the performance improves at first and then degrades as β

increases from 0 to 20. HVD, however, shows a conflicting performance trend on MOP7.

This may be because HVD prefers boundary solutions but does not necessarily favour

well-diversified distribution on this particular instance. Second, for the majority of the

problems, the performance is likely to be maximized when β approximately equals one.
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Fig. 4.11 Mean ∆p values obtained by MSF with different β settings.

Meanwhile, it seems that a smaller β value is suitable for MOP8. This implies that, when

local attractors reside in the intermediate regions of the PF, restrictions on the diversity

aspect of MSF can be relaxed and MSF with a large improvement region is helpful in this

situation.

On the other hand, the mean values of the three metrics obtained by PSF with different

β settings are displayed in Figs. 4.13–4.15. Similar observations can be obtained from

these figures, and PSF works best on most of the problems when β is around ten.

The above results clearly show that both MSF and PSF can help improve

decomposition-based MOEAs if the corresponding control parameter is well configured.

The experiment indirectly reflects that the popular TCH method (corresponding to the

case of β = 0 in MSF and PSF) are not always the best choice, and enhancing diversity

can leads to a clear performance improvement.

Besides, the mean HVD evolution curves obtained by MSF and PSF versus the number

of generations are shown in Figs. 4.16 and 4.17. We can observe that different β values
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Fig. 4.12 Mean HVD values obtained by MSF with different β settings.

result in distinct performances. β = 0 is not the best setting for MSF and PSF on the

majority of the test problems in terms of final HVD values. However, it seems that smaller

β values are likely to converge faster, owing to relatively larger improvement regions.

These observations suggest decomposition-based MOEAs may need different β (or the

resulting α) values at different stages of the search. Therefore, it is plausible to adaptively

adjust the value of α during the search.

4.4 Proposed EA Framework

The proposed MOEA/D variant (eMOEA/D) remains almost the same as its predecessors

[120, 188] except a few modifications in scalarizing methods, population reproduction and

solution replacement. The framework of the algorithm is depicted in Algorithm 4.1. First,

a set of uniformly-distributed weight vectors is created, and each weight vector is assigned

a neighbourhood containing T closest weight vectors. Meanwhile, the ideal and nadir
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Fig. 4.13 Mean IGD values obtained by PSF with different β settings.

points are estimated by the best and worst objective values, respectively, in the population.

Then, either MSF or PSF is chosen as a scalarizing function beforehand. The α value of

the scalarizing function SF is generationally updated in line 7. For each subproblem i,

mating parents are selected only from B(i) (see line 9), which is the same as the original

MOEA/D [188] but different from another popular variant MOEA/D-DE [120]. In line 10,

genetic operators are applied on the selected parents to produce offspring. The offspring

is evaluated in terms of the objective vector and is then used to update the ideal point.

From line 12 to line 21, a new solution replacement strategy is introduced, and similar

to MOEA/D-DE, we also place a restriction on the number of replacements (see lines

18-20). At the end of every generation, the approximated nadir point is updated by the

whole population.

In the following subsections, the main modifications, i.e., the adaptive scalarizing

strategy, reproduction operation and solution replacement, are explained in detail.
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Fig. 4.14 Mean ∆p values obtained by PSF with different β settings.

4.4.1 Adaptive Scalarizing Strategy

While the proposed scalarizing functions are helpful for maintaining population diversity,

it may decrease the convergence performance. A small α value in both MSF and PSF are

beneficial to convergence, but it is very likely to cause loss of diversity. This is just the

case with TCH, which struggles to recover from the loss of diversity for hard problems.

Without any information about problem properties a priori, it is plausible to emphasize

diversity at the early stage of search and then gradually emphasize convergence at the late

stage. To this end, we propose an adaptive strategy to adjust the value of α (line 7 of

Algorithm 4.1). As a result, Eq.(4.3) is rewritten as follows:

α = β (1− gen

MaxGen
)
{

M min
1≤i≤M

(wi)
}

, (4.6)

where gen is the current generation number, and MaxGen is the maximum number of

generations. It is clear that, for each subproblem, α is decreased linearly as the evolution
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Fig. 4.15 Mean HVD values obtained by PSF with different β settings.
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Fig. 4.16 Evolution curve of the mean HVD metric obtained by MSF with different β
settings.
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Fig. 4.17 Evolution curve of the mean HVD metric obtained by PSF with different β
settings.

proceeds and becomes zero at the end of search. This means, both MSF and PSF gradually

degenerate to TCH, and in this process the improvement region for each subproblem is

gingerly increased, resulting in steady-state de-emphasis of diversity and speed-up of

convergence simultaneously. Note that, any adaptive decreasing strategy (whatever is

linear or nonlinear) can be used as long as it can reduce α gradually. The linear strategy

is adopted here because it is very simple and meets the requirement of reducing α well.

4.4.2 Reproduction Operation

Reproduction operation (lines 9–10 of Algorithm 4.1) includes mating pool selection and

genetic recombination. In many MOEA/D variants [120, 176], a probability parameter

δ is adopted to select a mating pool from either the neighbourhood of solutions or the

whole population. The main purpose for this is to increase population diversity. However,

this induces the difficulty in tuning of such an extra parameter. Since we have introduced

advanced scalarizing functions that can keep diversity well, we discourage the use of the

probability parameter and simply set the mating pool as the neighbourhood of solutions.

When mating parents are randomly selected from the mating pool, the next step is

to perform genetic operators on the mating parents to generate offspring. In this work,

we use the adaptive recombination operator [123] as our genetic operator. The adaptive

operator was also used in [127] and showed good performance for hard problems.

4.4.3 Replacement Operation

Replacement operation (lines 12–21 of Algorithm 4.1) is a key step in many MOEA/D

variants. It is related to what and how subproblems can be updated. If a new solution is
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Algorithm 4.1: The eMOEA/D Framework
Input: stopping criterion (MaxGen), population size (N), neighbourhood size (T ),

replacement size (nr);
Output: approximated Pareto-optimal set P;

1 Generate a uniform spread of N weight vectors: {w1, w2, . . . , wN} and then
compute the T closest weight vectors to each weight vector by the Euclidean
distance. For each wi, set B(i) = {i1, . . . , iT} where wi1 , . . . , wiT are the T closest
weight vectors to wi;

2 Generate an initial population P = {x1, . . . ,xN} by uniformly randomly sampling
from the decision space;

3 Initialize ideal and nadir points, i.e., z∗ and znad;
4 Choose a scalarizing function SF for MOEA/D;
5 gen← 1;
6 while gen≤MaxGen do

7 Update α for the selected SF according to Eq. (4.6);
8 for i← 1 to N do

9 Randomly select indexes r1 and r2 from B(i);
10 Apply genetic operators on individuals xr1 , xr2 to produce a new solution y;
11 Evaluate the objective vector of y, and update z∗;
12 Find the T most suitable subproblems for y: S = {s1,s2, . . . ,sT};
13 c← 0 ;
14 for j← 0 to T do

15 if gSF(y|ws j ,z∗)<gSF(xs j |ws j ,z∗) then

16 xs j ← y and c← c+1;
17 end

18 if c≥ nr then

19 break;
20 end

21 end

22 end

23 Update znad using P, gen← gen+1;
24 end

not suitable for subproblems that are chosen to be updated, then both population diversity

and convergence can be negatively affected. To this end, various replacement strategies

have been proposed [176, 198]. The main idea behind these strategies is to find the most

suitable subproblem for a newly-generated individual y and then conduct replacement

within the neighbourhood of this subproblem.

However, these strategies fail to consider that the individual y may not be good for

the neighbouring subproblems of the most suitable subproblem. If the individual does

not improve any solution of the neighbourhood of the most suitable subproblem but does

improve other subproblems outside the neighbourhood, it should enter the population.

In other words, the replacement range should be gingerly elaborated. In this work, the



4.5 Experimental Studies 73

replacement range is composed of the most T suitable subproblems. It is calculated as

follows. First, gSF(y|wi,z∗) is computed for each 1≤ i ≤ N. Second, all the gSF(y|wi,z∗)

values are sorted in ascending order. Then, the subproblems corresponding to the first T

smallest values are regarded as the replacement range S = {s1,s2, . . . ,sT}, with s1 being

the first most suitable and sT being the T -th most suitable (line 12 of Algorithm 4.1).

The replacement procedure (lines 14–21 of Algorithm 4.1) is executed on the ordered

replacement range S = {s1,s2, . . . ,sT} one by one. Like its predecessor [120], the pro-

posed eMOEA/D framework allows at most nr solutions to be replaced by a newly gener-

ated solution.

4.5 Experimental Studies

The experiment in this section is designed for two purposes. One is to verify the proposed

eMOEA/D. The other purpose is to deeply analyze the performance of other existing

decomposition-based MOEAs and discuss the applicability of some recently-developed

many-objective MOEAs in multiobjective optimization.

4.5.1 Compared Algorithms and Parameter Settings

Algorithms for comparison consist of decomposition-based and dominance-based

MOEAs. The decomposition-based MOEAs are MOEA/D with TCH [120], ACD [175],

AGR [176], DU [185], STM [122], and M2M [127] schemes. The dominance-based

MOEAs are PICEA-g [172] and NSGA-III [43]. Note that, NSGA-III can be seen as a

mixture of decomposition-based and dominance-based methods. For notational conve-

nience, MSF∗ and PSF∗ denote the proposed eMOEA/D with MSF and PSF, respectively.

Key parameters in each compared algorithm remain the same as in the referenced pa-

pers. The population size, stopping criterion, and other important parameters are kept the

same as in Section 4.3. All the algorithms use the adaptive operator [123] as the recombi-

nation operator. The key factor β in MSF∗ and PSF∗ is set to 1 and 10, respectively, based

on the previous experimental study.

4.5.2 Experimental Results and Analysis

In this subsection, the ∆p and HVD results are reported as IGD and ∆p have shown con-

sistent performance assessment in the previous experiment. Tables 4.1 and 4.2 show the

best, median, and worst values of ∆p and HVD over 30 independent runs, respectively.

The best values obtained by one of the ten algorithms are highlighted in bold face. The

differences between the approximations are assessed by the Wilcoxon rank-sum test [179]

at the 0.05 significance level, with the standard Bonferroni correction [1] to deal with the
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Table 4.1 Best, median, and worst ∆p values obtained by different algorithms

Prob. MSF∗ PSF∗ TCH ACD AGR DU STM M2M PICEA-g NSGA-III

9.14E-03 9.38E-03 7.37E-02 9.50E-03 1.86E-02 1.01E-02 8.65E-03 1.46E-02 4.10E-01 1.12E-02
MOP1 9.46E-03 9.68E-03 3.97E-01‡ 9.77E-03 1.99E-02‡ 1.04E-02‡ 9.98E-02‡ 1.60E-02‡ 4.17E-01‡ 1.16E-02‡

9.95E-03 9.92E-03 4.11E-01 9.95E-03 2.63E-02 1.17E-02 3.96E-01 1.75E-02 4.21E-01 4.75E-02
4.60E-03 4.63E-03 1.89E-01 4.62E-03 7.65E-03 5.47E-03 4.72E-03 1.18E-02 3.60E-01 6.01E-03

MOP2 4.67E-03 4.67E-03 2.35E-01‡ 4.67E-03 2.26E-02‡ 5.74E-03‡ 7.47E-03‡ 1.36E-02‡ 3.73E-01‡ 1.59E-02‡

4.86E-03 5.58E-03 4.12E-01 4.87E-03 2.02E-01 7.60E-03 2.76E-01 1.22E-01 4.12E-01 1.44E-01
5.65E-03 5.24E-03 4.63E-01 5.11E-03 1.05E-02 6.52E-03 4.63E-01 1.28E-02 4.63E-01 6.92E-03

MOP3 6.02E-03 6.00E-03 4.93E-01‡ 5.98E-03 3.49E-02‡ 8.37E-03‡ 4.63E-01‡ 1.55E-02‡ 4.63E-01‡ 4.11E-01‡

3.40E-02 4.04E-02 6.36E-01 8.77E-03 1.41E-01 3.76E-02 4.76E-01 2.87E-02 4.76E-01 4.63E-01
6.65E-03 8.43E-03 3.04E-01 8.28E-03 7.08E-03 6.72E-03 6.60E-03 1.28E-02 3.38E-01 6.76E-03

MOP4 1.31E-02 1.31E-02 3.19E-01‡ 1.33E-02 1.45E-02‡ 1.32E-02 2.81E-01‡ 1.55E-02‡ 3.64E-01‡ 2.89E-01‡

2.52E-02 2.49E-02 3.74E-01 2.04E-02 9.64E-02 1.88E-02 2.90E-01 2.87E-02 3.87E-01 2.97E-01
8.58E-03 9.11E-03 2.95E-01 1.07E-02 1.80E-02 1.54E-02 2.64E-02 1.81E-02 2.25E-01 1.88E-02

MOP5 3.11E-02 1.26E-02 6.28E-01‡ 1.27E-02⋄ 2.32E-02‡ 1.69E-02⋄ 1.92E-01‡ 2.65E-02‡ 3.48E-01‡ 2.84E-02‡

1.21E-01 4.14E-02 1.08E+00 1.53E-01 4.61E-02 3.52E-02 1.92E-01 2.12E-01 5.78E-01 2.23E-01
4.30E-02 4.34E-02 2.83E-01 1.76E-01 8.15E-02 5.15E-02 5.69E-02 1.29E-01 2.83E-01 5.05E-02

MOP6 4.35E-02 4.40E-02 3.59E-01‡ 2.65E-01‡ 1.62E-01‡ 6.10E-02‡ 2.49E-01‡ 1.76E-01‡ 3.59E-01‡ 2.06E-01‡

4.69E-02 4.90E-02 3.59E-01 5.37E-01 2.66E-01 1.49E-01 2.83E-01 1.08E+00 3.59E-01 2.50E-01
7.78E-02 6.78E-02 3.69E-01 3.25E-01 2.83E-01 8.70E-02 3.24E-01 1.89E-01 4.21E-01 3.25E-01

MOP7 8.30E-02 7.21E-02 4.21E-01‡ 3.59E-01‡ 3.59E-01‡ 1.01E-01† 3.59E-01‡ 2.46E-01‡ 4.21E-01‡ 3.25E-01‡

1.34E-01 2.55E-01 4.21E-01 4.21E-01 4.21E-01 1.84E-01 4.21E-01 3.80E+00 4.21E-01 4.22E-01
4.13E-02 4.10E-02 6.22E-02 1.73E-01 6.21E-02 7.01E-02 4.54E-02 2.29E-01 4.73E-01 4.43E-02

MOP8 4.71E-02 4.58E-02 1.65E-01‡ 3.00E-01‡ 2.10E-01‡ 7.78E-02‡ 5.40E-02‡ 6.43E-01‡ 1.36E+00‡ 4.56E-02

7.82E-02 8.74E-02 4.61E-01 4.14E-01 4.26E-01 9.30E-02 4.04E-01 1.13E+00 1.67E+00 4.75E-02

7.01E-02 8.23E-02 3.24E-01 1.69E-01 1.64E-01 8.79E-02 3.24E-01 2.02E-01 3.26E-01 3.25E-01
MOP9 7.78E-02 9.17E-02 5.11E-01‡ 3.67E-01‡ 2.24E-01‡ 9.25E-02† 3.25E-01‡ 3.36E-01‡ 5.09E-01‡ 3.25E-01‡

9.30E-02 2.40E-01 7.47E-01 9.78E-01 3.78E-01 2.13E-01 4.09E-01 1.06E+00 6.75E-01 3.25E-01

† and ⋄ indicate MSF∗ and PSF∗ significantly outperform the corresponding algorithm, respectively.
‡ indicates both MSF∗ and PSF∗ significantly outperform the corresponding algorithm.
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Table 4.2 Best, median, and worst HVD values obtained by different algorithms

Prob. MSF∗ PSF∗ TCH ACD AGR DU STM M2M PICEA-g NSGA-III

1.39E-02 1.43E-02 7.66E-02 1.59E-02 2.73E-02 1.53E-02 1.32E-02 2.48E-02 5.81E-01 1.64E-02
MOP1 1.43E-02 1.46E-02 5.46E-01‡ 1.61E-02‡ 2.91E-02‡ 1.58E-02‡ 6.80E-02‡ 2.70E-02‡ 5.97E-01‡ 1.71E-02‡

1.50E-02 1.49E-02 5.82E-01 1.64E-02 3.56E-02 1.69E-02 5.39E-01 2.88E-02 6.08E-01 3.95E-02
6.30E-03 6.48E-03 1.48E-01 6.90E-03 1.02E-02 8.39E-03 6.42E-03 1.76E-02 2.85E-01 8.97E-03

MOP2 6.39E-03 6.55E-03 2.22E-01‡ 8.29E-03‡ 1.82E-02‡ 8.64E-03‡ 6.78E-03 1.91E-02‡ 3.12E-01‡ 9.79E-03‡

6.53E-03 8.36E-03 3.33E-01 9.51E-03 2.64E-01 1.20E-02 1.84E-01 1.36E-01 3.33E-01 9.81E-02
6.08E-03 6.29E-03 2.15E-01 6.13E-03 1.03E-02 8.12E-03 2.15E-01 1.26E-02 2.15E-01 9.38E-03

MOP3 6.76E-03 6.80E-03 3.48E-01‡ 7.16E-03† 1.24E-02‡ 8.69E-03‡ 2.15E-01‡ 1.53E-02‡ 2.15E-01 2.10E-01‡

7.94E-03 1.45E-02 4.15E-01 1.03E-02 1.55E-01 3.19E-02 2.82E-01 1.88E-02 2.82E-01 2.15E-01
3.45E-03 6.48E-03 2.78E-01 7.21E-03 4.35E-03 4.26E-03 3.06E-03 8.72E-03 3.57E-01 5.60E-03

MOP4 9.45E-03 9.57E-03 3.12E-01‡ 1.33E-02‡ 1.31E-02 1.02E-02 2.29E-01 1.48E-02‡ 3.77E-01⋄ 2.58E-01‡

2.10E-02 1.54E-02 3.48E-01 2.82E-02 1.25E-01 1.33E-02 2.45E-01 2.47E-02 3.96E-01 2.87E-01
1.38E-02 1.45E-02 4.72E-01 1.70E-02 2.73E-02 2.33E-02 2.94E-02 2.92E-02 3.13E-01 2.50E-02

MOP5 1.63E-02 1.60E-02 4.72E-01‡ 1.77E-02 3.12E-02‡ 2.46E-02‡ 3.13E-01‡ 3.55E-02‡ 4.72E-01‡ 3.14E-02‡

2.09E-02 1.87E-02 4.72E-01 1.88E-02 4.63E-02 3.95E-02 3.13E-01 5.45E-02 4.72E-01 3.34E-01
5.15E-02 5.25E-02 2.46E-01 1.20E-01 9.28E-02 6.23E-02 5.77E-02 1.53E-01 2.40E-01 6.56E-02

MOP6 5.25E-02 5.31E-02 3.47E-01‡ 2.17E-01‡ 2.00E-01‡ 7.66E-02‡ 1.83E-01‡ 1.91E-01‡ 3.38E-01‡ 1.74E-01‡

6.32E-02 6.50E-02 3.47E-01 3.47E-01 2.91E-01 1.20E-01 2.46E-01 2.96E-01 3.39E-01 2.00E-01
9.58E-02 1.08E-01 2.60E-01 1.70E-01 1.58E-01 9.67E-02 1.58E-01 1.63E-01 2.66E-01 1.77E-01

MOP7 1.03E-01 1.11E-01 2.72E-01‡ 2.62E-01‡ 2.65E-01‡ 1.13E-01 2.55E-01‡ 2.14E-01‡ 2.66E-01‡ 1.81E-01‡

1.60E-01 2.10E-01 2.72E-01 2.98E-01 2.72E-01 1.88E-01 2.72E-01 1.20E+00 2.67E-01 2.87E-01
4.44E-02 4.38E-02 8.65E-02 6.59E-02 6.94E-02 9.25E-02 5.62E-02 2.63E-01 4.75E-01 5.31E-02

MOP8 5.81E-02 5.46E-02 2.02E-01‡ 1.16E-01‡ 1.01E-01‡ 1.01E-01‡ 6.88E-02‡ 4.29E-01‡ 6.11E-01‡ 5.74E-02
9.58E-02 1.09E-01 3.81E-01 1.54E-01 1.52E-01 1.71E-01 3.15E-01 7.30E-01 7.28E-01 6.24E-02

9.25E-02 8.05E-02 1.59E-01 1.32E-01 1.04E-01 9.71E-02 1.58E-01 2.05E-01 1.70E-01 1.76E-01
MOP9 1.01E-01 1.03E-01 6.15E-01‡ 3.96E-01‡ 1.72E-01‡ 1.03E-01‡ 1.59E-01‡ 2.48E-01‡ 6.08E-01‡ 1.79E-01‡

1.71E-01 3.25E-01 6.76E-01 6.20E-01 3.58E-01 2.23E-01 4.78E-01 4.63E-01 6.76E-01 1.81E-01

† and ⋄ indicate MSF∗ and PSF∗ significantly outperform the corresponding algorithm, respectively.
‡ indicates both MSF∗ and PSF∗ significantly outperform the corresponding algorithm.
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problem of the higher probability of Type I errors in multiple comparisons. Signs of †,

⋄ and ‡ in superscript form on median values indicate the significance of the proposed

methods.

From the tables, we can obtain the following observations:

1. Compared with the predecessor TCH, all the other MOEA/D variants show im-

provements on the MOP problems in some sense. The improvements are obvious

on the five bi-objective problems, as indicated by the ∆p and HVD values. However,

on the four tri-objective problems, ACD, AGR, STM, and M2M do not have any

advantage over TCH, as their ∆p and HVD values are very similar to those of TCH.

2. The two dominance-based MOEAs, i.e, PICEA-g and NSGA-III, are generally no

better than the decomposition-based ones on these problems, and NSGA-III per-

forms better than PICEA-g in terms of the metrics.

3. MSF∗ and PSF∗ significantly outperform the other algorithms on the majority of

cases. On the bi-objective cases, ACD also shows comparable performance in terms

of ∆p. However, ACD degrades dramatically and performs worse than most of the

algorithms on the tri-objective cases.

4. DU, PICEA-g, and NSGA-III, who were originally devised for many-objective opti-

mization, show little advantage for solving the test problems. Specifically, both DU

and NSGA-III work on the bi-objective cases but deteriorate significantly on the

tri-objective cases. PICEA-g, however, performs poorly on all the test problems.

5. Apart from dimensionality, other characteristics of the test problems also affect the

compared algorithms’ performance. Taking MOP6 and MOP8 for example, they

have the same PF shape except that the former has local attractors in boundary

regions of the PF whereas the latter has those in intermediate regions. Judging

by HVD, MOPs with boundary attractors are easier than those with intermediate

ones for MSF∗, PSF∗, DU, M2M, and PICEA-g, but seem more difficult for STM

and NSGA-III. Additionally, if we compare the algorithms’ performance on MOP7

and MOP9, we can see that most of the algorithms degrade when the number of

local attractors in boundary regions decrease. This is understandable because the

decrease of the number of local attractors reduces the chance of finding boundary

solutions on the PF. However, it seems that such features do not influence too much

the performance of the proposed methods, as the obtained HVD results vary little.

For the inspection of the real performance of these algorithms, we also plot their PF

approximations on several selected test problems in Figs. 4.18 to 4.21. From the plots, we

can observe that some algorithms (e.g., ACD, AGR, DU and M2M) converge slowly and

some (e.g., TCH, PICEA-g, and NSGA-III) cannot maintain diversity well. Also, most
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Fig. 4.18 PF approximations obtained by ten algorithms for MOP1.

of them cannot work well on tri-objective problems, particularly on MOP9. Nevertheless,

both MSF∗ and PSF∗ show better performance compared with the other algorithms.

4.6 Further Investigations

4.6.1 Influence of Mating Selection

Many MOEA/D variants are developed based on the predecessor [120], and thus in-

evitably inherit a parameter δ that is the probability of choosing mating parents from

the neighbourhood of subproblems rather than the whole population. δ is of undisputed

importance in the predecessor because it helps much to enhance diversity. However, most

MOEA/D variants take for granted that δ is always beneficial.

Here, δ from 0 to 1, with an increment of 0.2, is tested in the framework of MSF∗.

Fig. 4.22 shows the influence of δ on the obtained HVD values. It is clear that a large

value of δ is roughly good for all the problems. This indicates that the higher probability

of choosing subproblems’ neighbourhood as mating range, the better the resulting perfor-
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Fig. 4.19 PF approximations obtained by ten algorithms for MOP5.

mance. This is probably because our methods have already soundly considered diversity

within scalarizing functions, and in this situation using as much neighbourhood mating

as possible to enhance local search helps the convergence of population. Thus, in our

eMOEA/D framework we discourage the use of δ and simply select only the neighbour-

hood as the mating range.

4.6.2 Influence of Replacement Strategies

It has been shown that the performance of decomposition-based MOEAs can be signif-

icantly affected by replacement strategies [122, 176]. To achieve efficient population

replacements, MOEA/D needs to find an appropriate replacement range. Most often,

the replacement range is the neighbourhood of the best matched subproblem [122]. In

AGR [176], the best matcher is the one having the minimal scalarizing function value,

whereas in other MOEA/D variants [198], the best matcher is considered the one that can

be improved most among all the subproblems. However, in our MOEA/D framework, the

replacement range consists of the top T best matchers. In this subsection, we investigate
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Fig. 4.20 PF approximations obtained by ten algorithms for MOP6.

the influence of different replacement strategies. We compare our replacement strategy

(called TMS) with that of AGR (called NMS). To study the influence of the definition of

matchers, we also include a replacement strategy whose replacement range is composed

of the top T most improved subproblems, and this strategy is called TIS. To assess the ef-

ficiency of replacement strategies, we define the replacement rate (RR) of the population

in every generation as

RR =
NT

Nnr

, (4.7)

where NT is the total number of replacements that occur in the considered generation, and

as has been stated before, N and nr are the population size and the maximal allowable

number of replacements, respectively. The larger the value of RR, the better the replace-

ment efficiency.

The three above-mentioned strategies have been tested in MSF∗ on four selected prob-

lems. Fig. 4.23 plots the evolution curves of the mean RR value of 100 independent runs.

It can be observed that replacements occur mainly at the early stage of search and the

occurrence drops to near zero as the population is near the PF. Another observation is that

NMS performs worse than TMS and TIS in terms of the RR value, and TMS is better

than TIS on the two bi-objective problems but is similar to TIS on the two tri-objective
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Fig. 4.21 PF approximations obtained by ten algorithms for MOP9.

problems. The high replacement rate of TMS helps the population evolve fast. This obser-

vation can be also used to partly explain why MSF∗ and PSF∗ perform better than AGR

in the previous experiments.

4.6.3 Comparison of PSF and PBI

Since PSF and PBI have similar contour lines, it is interesting to make a comparison

between them. Both PSF and PBI use our eMOEA/D framework, and accordingly the

comparison objects are actually PSF∗ and the proposed eMOEA/D with PBI. They are in-

vestigated in two convex problems, i.e., F1 and convex DTLZ2 (CDTLZ2), mentioned in

[90]. The convex problems are chosen here because it has been increasingly recognized

that irregularly-shaped problems (particularly convex ones) influence much the perfor-

mance of scalarizing functions [90, 139, 147, 174]. The penalty factor of PBI is set to 5,

according to [188]. Other parameter settings remain the same as in Section 4.5.2 except

the maximal number of generations is changed to 500.

The whole approximations of 31 independent runs are plotted in Fig. 4.24, and the

corresponding ∆p and HVD values are shown in Table 4.3. Both the considered indicators

and the graphical plots clearly illustrate that PSF helps yield better performance than
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Fig. 4.22 Mean HVD values obtained by MSF∗ with different δ settings.
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Fig. 4.23 Evolution curves of the mean RR obtained by different replacement strategies.

PBI. By inspecting closely the approximations in the figure, we can see that PBI favours

intermediate regions of the PF and is very likely to miss boundary solutions in convex

problems. This is due to the fact that PBI favours solutions with small distances to the
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Fig. 4.24 PF approximations of PSF∗ and PBI over 30 runs on two convex problems.
Table 4.3 Best, median and worst values of ∆p and HVD obtained by PSF∗ and PBI

∆p HVD
Prob. PSF∗ PBI PSF∗ PBI

7.53E-02 2.93E-01 4.51E-03 3.34E-02
F1 7.57E-02 2.93E-01 4.53E-03 3.35E-02

7.87E-02 2.93E-01 4.63E-03 3.35E-02
4.53E-02 8.56E-02 2.12E-02 2.63E-02

CDTLZ 4.61E-02 9.03E-02 2.17E-02 2.90E-02
4.86E-02 9.52E-02 2.28E-02 3.11E-02

ideal point found so far if the penalty factor is not properly set or population diversity

receives little emphasis. On the other hand, PSF∗ has a better coverage than PBI and has

the potential to maintain extreme solutions and boundary solutions.

4.6.4 Influence of Recombination Operators

This section investigates the influence of different recombination operators on the perfor-

mance of our methods. We have compared Li and Liu’s operator (named LLX) [123]

with simulated binary crossover (SBX) [42] and differential evolution (DE) [138] on the

problems MOP1 and MOP2. The investigation is conducted on the MSF∗ framework, and

parameter settings remain the same (parameters in DE are the same as those of MOEA/D-

DE).

Table 4.4 provides the HVD results obtained by different recombination operators.

It is clear to see that the performance depends largely on the recombination operator

chosen for population reproduction. LLX performs the best in terms of the HVD metric,

followed by DE, and SBX ranks the last. For visual inspection, we also plot the whole PF

approximations over 30 independent runs obtained by each recombination operator, which

are shown in Fig. 4.25 and 4.26. It is clear again that LLX shows much better performance

than the other two operators. A possible explanation for the high performance of LLX is

that LLX can focus on generating diversified individuals at the early stage of the search

and then place more emphasis on population convergence as the evolution proceeds. This

kind of adaptive strategy helps yield appealing approximations.
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Table 4.4 Best, median and worst HVD values obtained by MSF with different recombi-
nation operators

Problem SBX DE LLX

MOP1
4.98E-02 3.26E-02 1.39E-02

5.93E-02 3.75E-02 1.43E-02

8.46E-02 4.25E-02 1.50E-02

MOP2
1.18E-01 1.02E-02 6.30E-03

2.07E-01 7.35E-02 6.39E-03

3.27E-01 3.27E-01 6.53E-03
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Fig. 4.25 PF approximations obtained by different recombination operators for MOP1.
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Fig. 4.26 PF approximations obtained by different recombination operators for MOP2.

4.7 Summary

Decomposition-based MOEAs are an important class of methods for multiobjective opti-

mization, and have been frequently shown to work well when proper scalarizing functions

are provided. In this chapter, we have proposed two new scalarizing functions which can

induce controllable contours.

By adjusting the size of induced improvement regions, the new scalarizing func-

tions can easily manage population diversity. We have studied the influence of the new
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scalarizing functions and have demonstrated that the proposed scalarizing functions with

proper control of diversity can significantly boost the performance of decomposition-

based MOEAs. Additionally, we have proposed an efficient MOEA/D (i.e., eMOEA/D)

framework based on new strategies. We have studied the effect of the new strategies.

The experimental results have clearly verified the effectiveness of the efficient MOEA/D

framework.

In the current work, the proposed eMOEA/D uses a very simple adaptive strategy (i.e.,

linearly decreasing α in MSF and PSF) to adjust the balance between diversity and con-

vergence at different stages of the search. Despite appealing performance, the adaptive

strategy may not be the best choice because different search stages have different (not

necessarily linearly-decreasing) convergence or diversity requirements. Further investi-

gations in this direction are beneficial. In our future research, it will be also interesting

to investigate the performance of the proposed scalarizing functions in many-objective

optimization.



Chapter 5

EAs for Many-objective Optimization

Problems

In many real-world applications, optimization problems often involve four or more objec-

tives [87]. Recent studies have suggested that conventional MOEAs are subjected to the

scalability challenge, i.e., the performance of these MOEAs degrades dramatically with

the increase in the number of objectives. This fact gives rise to a new term, known as

many-objective optimization problems (MaOPs), to better refer to those MOPs that have

four or more objectives. Note that some communities, such as the multi-criterion decision

making (MCDM) [4], do not differentiate between multiobjective and many-objective op-

timization.

In many-objective optimization, Pareto-based EAs become of limited use as a large

portion of population becomes nondominated with regard to each other. In other words,

these kinds of algorithms cannot induce sufficient selection pressure toward a set of trade-

off solutions. To overcome this difficulty, a straightforward way is to stress solutions’

contribution to diversity so that selection pressure can be improved. Following this line,

in this chapter we propose a new method to deal with many-objective optimization.

The rest of this chapter is organized as follows. Section 5.1 presents related work and

the incentive of this research. In Section 5.2, a new population sorting method is proposed.

Section 5.3 describes the framework of the proposed algorithm, together with a detailed

description of its components. Section 5.4 presents experimental studies on multiobjective

and many-objective optimization. Extensive investigations and discussions regarding the

proposed algorithm are provided in Section 5.5. Section 5.6 concludes this work.

5.1 Introduction

In the design of EAs for multiobjective optimization, two goals should be considered: 1)

minimizing the gap between candidate solutions and the true PF (convergence) and 2)
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maximizing the distribution of candidate solutions (diversity). However, these two goals

are generally assumed to be conflicting [201]. In practice, most existing MOEAs achieve

convergence by prior Pareto-based sorting of the evolving population and diversity by the

additional calculation of individuals’ density information. The well-known nondominated

sorting genetic algorithm II (NSGA-II) [41] and strength pareto evolutionary algorithm 2

(SPEA2) [202] are representative examples of this method. Taking nondominated sorting

[41] for example, it sorts a combined population (R) as follows. First, each individual

is compared with all other individuals in R, and all nondominated solutions of R are

identified and assigned to front L1. Then, individuals in L1 are removed from R, and the

remaining individuals in R are compared with each other to determine the nondominated

set, which are assigned to front L2. The procedure is repeated until no individuals are left

in R, i.e., all individuals have been assigned to a front.

Fig. 5.1 gives a graphical illustration of the nondominated sorting. The main idea

behind the nondominated sorting is to classify the entire combined population into differ-

ent nondominated fronts according to individuals’ convergence. After the nondominated

sorting, the new population can be constructed by selecting solutions of different nondom-

inated fronts, one at a time. The selection starts with individuals of the first front L1 and

continues with those of the second front L2, followed by the rest of the fronts and so on.

Since only limited slots are allowable in the new population, not all fronts can be con-

sidered. When the last allowed front (e.g., Ll) is being considered, there may exist more

individuals in Ll than the remaining slots in the new population. In this situation, niche-

preservation strategies, such as crowding distance [41], the-farthest-the-first method [27],

and nearest neighbour technique [202], are desirable for selecting the remaining number

of individuals from front Ll in order to maintain diversity.

Methods like nondominated sorting actually conduct environmental selection in a

convergence-first-and-diversity-second manner [127]. The advantage is that it can pro-

vides a fast convergence speed. However, the disadvantage is that this kind of meth-

ods may undermine population diversity if well-converged individuals are not diversified.

Taking Fig. 5.1 again as an example, diversity loss occurs if only six nondominated in-

dividuals are allowed to be preserved. The loss of diversity in the example could further

incur evolutionary stagnation where overcrowded boundary regions are overexploited and

intermediate regions are left unexplored. Furthermore, convergence-first based methods

have encountered great difficulties in many-objective optimization where problems have

four or more objectives [43]. In many-objective optimization, the convergence-first-and-

diversity-second strategy can be of limited use because the proportion of nondominated

solutions is very high and diversity preservation is very likely to be carried out only on

nondominated solutions. The population is at the risk of losing diversity and preserved

solutions may be far from each other if nondominated solutions are not well distributed.

Correspondingly, reproduction operators struggle to generate promising solutions for un-
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Fig. 5.1 Nondominated Sorting.

explored regions as distant parents are not very effective to generate good offspring solu-

tions in many-objective optimization [43, 106]. In fact, some dominated but promising

solutions can contribute to population diversity, and proper use of them can increase the

selection pressure in many-objective optimization. In this sense, diversity outweighs con-

vergence and should be emphasized in many-objective optimization.

Bearing this in mind, this chapter proposes a new sorting approach with the aid of

a set of diverse reference directions. The approach sorts the population into different

fronts, each front representing a level of diversity and convergence. On the basis of this

new sorting approach, together with reference directions, a new version of strength Pareto

evolutionary algorithm (SPEA), denoted SPEA/R, is proposed for both multiobjective

and many-objective optimization. SPEA/R is a substantial extension of early-developed

prominent SPEA methods [202, 203].

5.2 Diversity-based Sorting

The proposed sorting method (diversity first and convergence second or DFCS) works as

follows. First, the objective space is partitioned into a number of subspaces with the aid

of a reference direction set W . Reference directions in W are required to be uniformly

distributed. Then, each individual (whose objective values need to be normalized be-

forehand) in the combined population is associated with a subspace. This can be done

by identifying the nearest reference direction to the considered individual. In each sub-

space, individuals are assigned a fitness value that can reflect its convergence level. Po-

tential fitness assignment approaches for this purpose can be scalarizing functions used

in MOEA/D [188], strength fitness in SPEA2 [202], or nondominated ranks in NSGA-II
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Fig. 5.2 DFCS Sorting.

[41], whichever is the easiest for users to implement. An individual with the best fitness

from each subspace is assigned to front L1. After that, the individuals in L1 are removed

from the subspaces, and another one with the best fitness from each subspace is assigned

to front L2. If multiple solutions have the same fitness, a random one is considered. This

procedure continues until each individual in each subspace has been assigned to a front.

Note that, in case that a subspace is empty, this subspace is skipped.

Fig. 5.2 illustrates the outcome of DFCS sorting, where population distribution is iden-

tical to that of Fig. 5.1. After sorting, the new population can be constructed by selecting

solutions of different fronts, one at a time. Similar to the nondominated sorting, not all

fronts can be considered due to the limited number of slots in the new population. If

the last allowed front (e.g., Ll) has more individuals than the remaining slots, random

selection on Ll can be performed to fill up the new population. Note that, it is advisable

to use techniques that are helpful for convergence to select individuals from Ll . For ex-

ample, fitness assignment can be performed on Ll , and individuals with relatively good

convergence are priorly selected.

The advantages and disadvantages of the proposed DFCS sorting are summarized as

follows.

Advantages As can be seen from Fig. 5.2, the DFCS sorting enhances local diversity

in each subspace. As a result, population diversity can be well maintained during

the evolution. Besides, population convergence is also properly considered in the

course of sorting. The sorting method can provide a good coverage and spread of

approximation.

Disadvantages Since the DFCS sorting employs a reference direction set for population

partition, the resulting population distribution depends largely on the uniformity of
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Algorithm 5.1: Framework of SPEA/R
Input: N (population size)
Output: : approximated Pareto-optimal front

1 Generate a diverse reference direction set W : W := Reference_Generation();
2 Create an initial parent population P;
3 while stopping criterion not met do

4 Apply genetic operators on P to generate offspring population P;
5 Q := P∪P;
6 Normalize objectives of members in Q: Q := Objective_Normalization(Q);
7 for each reference direction i ∈W do

8 Identify members of Q close to i: E(i) := Associate(Q,W, i);
9 Calculate fitness values of members in E(i): Fitness_Assignment(E(i));

10 end

11 P := DFCS_Environment_Selection(Q,W );
12 end

the reference direction set. Also, the convergence speed of algorithms based on

DFCS might be affected, due to the emphasis on diversity.

5.3 DFCS-based Strength Pareto EA

The basic framework of the proposed algorithm, called SPEA/R, is based on DFCS sort-

ing and presented in Algorithm 5.1. SPEA/R starts with an initial population and the

construction of a predefined set of reference directions, which splits the objective space

into a number of independent subregions, helping guide the search toward the whole PF

with a good guarantee of population diversity in the objective space. For each generational

cycle, on the basis of the preserved parent population, SPEA/R applies genetic operator

to reproduce an offspring population, followed by a union of the parent and offspring

populations. Then, to make it capable of handling problems with disparately scaled ob-

jectives, SPEA/R introduces an objective normalization strategy after the merging of the

two populations. Afterwards, each member in the combined population is associated with

a reference direction (or a subregion). This way, the combined population members are

distributed to different subregions. A novel fitness assignment technique is applied on

individuals residing in each subregion. Thereafter, DFCS-based environmental selection

is adopted to construct a new parent population for the next generation. In the following

subsections, the implementation of each component of SPEA/R will be detailed step by

step.
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5.3.1 Generation of the Reference Direction Set

Any reference-direction-based MOEA cannot ignore the importance of the setting of ref-

erence directions (or weight vectors in [188]). Early MOEA/D algorithms employ a sys-

tematic approach, developed by Das and Dennis [39], to generate H =
(

p+M−1
M−1

)

reference

directions on a unit simplex for M objectives, where p is the number of divisions con-

sidered along each objective coordinate. The systematic approach works well for a small

number of objectives, especially for bi-objective problems, where the number of reference

directions can be arbitrarily designated. For MaOPs, however, this approach will generate

a large number of reference directions if intermediate reference directions (which require

p≥M) within the simplex are pursued [43]. This inevitably pushes up the computational

burden of MOEAs. To avoid such a situation, a two-layer (boundary and inside layers)

approach for objectives over seven was proposed in [43, 112], which uses the systematic

approach to generate two reference direction sets: one set on the boundary layer and the

other on the inside layer. Despite that the two-layer approach improves the generation of

reference directions, it still produces a large number of reference directions for MaOPs,

which will be illustrated later.

To reduce these drawbacks, we present a k-layer reference direction generation ap-

proach. Since any reference direction should be sampled from a unit simplex, we can

partition the unit simplex into a number of subsimplexes and then generate a set of di-

verse reference directions on each subsimplex. First, we denote the central reference

direction as C = (1/M, · · · ,1/M), and the ith extreme reference direction (the intercept

on the ith axis) as Bi = (b1, · · · ,bM) where bi = 1 and b j = 0 for all j 6= i, 1 ≤ j ≤ M,

1≤ i≤M. Thus, the unit simplex can be partitioned into M subsimplexes, each of which

(denoted as Simp(i)) is bounded by points C, Bi and Bi+1. In the following, we explain

how to use our proposed k-layer approach to generate reference directions for the subsim-

plex Simp(i), and reference directions on other subsimplexes can be constructed in the

same way.

For the subsimplex Simp(i), we first generate points on sides CBi and CBi+1. As

illustrated in Fig. 5.3(a), the rth reference direction (denoted as Dr
i ) within the line CBi

can be calculated as follows:

Dr
i = C+

r

k
(Bi−C), (5.1)

where r ∈ {1, · · · ,k}. This generates k reference directions (actually k layers from vertex

C to the base BiBi+1) from the central point to the ith extreme point. After that, we

focus on calculating reference directions within the rth layer. Likewise, the tth reference

direction within the line Dr
i D

r
i+1 on the rth layer is computed by

D̂t
i,r = Dt

i +
t

r+1
(Dr

i+1−Dt
i), (5.2)
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Fig. 5.3 Intersections of reference directions and a unit simplex: (a) reference directions
on the subsimplex Simp(i); (b) reference directions (with 28 directions generated by 3
layers) in three-dimensional space.

where t ∈ {1, · · · ,r}. This generates r reference directions for the rth layer of Simp(i).

Similarly, diverse reference directions on the rest of M−1 subsimplexes can be produced

by the above method. At last, the constructed reference direction set W comprises the

central reference direction C, and reference directions of each layer in each subsimplex.

It is easy to see that, for k layers, the total number (Hk
M) of reference directions for an

M-objective problem is given by

Hk
M =

M

∑
i=1
{

k

∑
r=1

r+ k}+1 =
Mk(k+3)

2
+1. (5.3)

For example, for M = 3 and k = 1, the reference directions are created on a triangle with

vertices at (1,0,0), (0,1,0), and (0,0,1), including three midpoints of the sides of the trian-

gle and an intermediate point at (1/3,1/3,1/3). Fig. 5.3(b) presents a simple example of

reference direction set generated by three layers. In this work, for bi-objective problems,

we use Das and Dennis’s systematic approach to predefine a set of uniform reference di-

rections, while for M > 2, the k-layer approach is used. The generation of a predefined

reference direction set is described in Algorithm 5.2.

5.3.2 Offspring Reproduction and Objective Normalization

Reproduction (line 4 in Algorithm 5.1) is a step to create a new offspring population to

update the parent population P (which is actually regarded as the archive). Here, mating

selection plays a important role in reproduction. Each parent individual P1 ∈ P needs a

mate P2 ∈ P to do reproduction. SPEA/R employs a restricted mating scheme to select the

mate P2 for P1. Specifically, K candidates different from P1 are randomly chosen from the

parent population. Then, the candidate minimizing the Euclidean distance (in objective

space) to P1 can be screened as P2. K = 20 is recommended in this work based on some
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Algorithm 5.2: Reference_Generation()

Input: K (number of layers), M (number of objectives), N (archive size)
Output: W (reference direction set)

1 if M < 3 then

2 Use Das and Dennis’s method [39] to generate W ;
3 end

4 else

5 Generate extreme points Bi for i = 1, · · · ,M, and the central point C;
6 for i := 1 to M do

7 for r := 1 to K do

8 Calculate all points on the r-th layer by Eq. (5.2);
9 end

10 end

11 end

Algorithm 5.3: Objective_Normalization(Q)

Input: Q (combined population)
Output: Q (normalized population)

1 for i := 1 to M do

2 Compute the ideal point zi
min := minq∈Q fi(q);

3 Compute the worst point zi
max := maxq∈Q fi(q);

4 end

5 for each member q ∈ Q do

6 Computed the normalized objective vector by Eq. (5.4);
7 Save the normalized q to Q;
8 end

preliminary experiments. The restricted mating scheme may help alleviate recombination

issues in many-objective optimization, where recombining two distant or very different

parents is too disruptive and not likely to generate good children [43, 106].

After the production of the new offspring population P, SPEA/R then combines it and

the parent population to form a population Q (line 5 in Algorithm 5.1), which is used later

to normalize the objectives of individuals (line 6 in Algorithm 5.1). The normalization

procedure is described in Algorithm 5.3. First, the ideal point zmin = (z1
min, · · · ,zM

min) and

the worst point zmax = (z1
max, · · · ,zM

max) are constructed from the nondominated set of the

combined P and P, where zi
min = min( fi(q)) and zi

max = max( fi(q)), q ∈ Q, i = 1, · · · ,M.

Then, the objectives of member q are translated as follows:

f̂i(q) =
fi(q)− zi

min

zi
max− zi

min

, (5.4)

where i ∈ {1, · · · ,M} and f̂i(q) denotes the ith normalized objective of member q.
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Algorithm 5.4: Associate(Q,W, i)

Input: Q (combined population), W (reference direction set)
Output: E(i) (individuals in the ith subregion)

1 for each q ∈ Q do

2 for each w ∈W do

3 Compute the acute angle 〈F̂(q),w〉;
4 end

5 Assign ŵ = w : argminw∈W 〈F̂(q),w〉;
6 Assign θq = 〈F̂(q), ŵ〉;
7 Save q in E(ŵ);
8 end

5.3.3 Member Association and Fitness Assignment

After mapping the objectives of members of Q into a unit hypercube, next we need to

associate each member in the normalized population Q with a reference direction (line 8

in Algorithm 5.1). The member association procedure is presented in Algorithm 5.4. For

each reference direction wi ∈W , i ∈ {1, · · · ,Hk
M}, we define a subregion, denoted as Ψi,

in the objective space, as follows:

Ψi = {F̂(x) ∈Ω f |〈F̂(x),wi〉 ≤ 〈F̂(x),w j〉}, (5.5)

where j ∈ {1, · · · ,Hk
M}, x ∈ Ωx, F̂(x) is the normalized objective vector of x, and

〈F̂(x),w j〉 is the acute angle between vectors F̂(x) and w j. Using this definition can

easily identify a number of members residing in Ψi, denoted as E(i), from the normalized

population Q.

The idea of decomposing the objective space has also been employed in [21, 112, 127].

In both [21] and [127], the objective space decomposition provides a way to approximate

a small segment of the PF, while in [112], it is used for local density estimation and

diversity maintenance.

The decomposition of the objective space can facilitate fitness assignment, as shown

in Algorithm 5.5. In detail, each member a in E(i) is assigned a “local” 1 strength value

S(a), representing the number of solutions it dominates in E(i):

S(a) =C({b ∈ E(i)|a� b,a ∈ E(i)}), (5.6)

1The term “local” used here is to clarify the difference between our fitness assignment and that in SPEA2
[202].
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Algorithm 5.5: Fitness_Assignment(E(i))

Input: E(i) (individuals in the ith subregion), Q (combined population), W

(reference direction set)
Output: FV (fitness values of members in E(i))

1 for each a ∈ E(i) do

2 Compute the “local” raw fitness R(a) using Eq. (5.7);
3 Estimate the density value D(a) using Eq. (5.8);
4 Compute the “local” fitness value FVl(a) := R(a)+D(a);
5 Assign the final fitness value FV (a) using Eq. (5.10);
6 end

where C(·) denotes the cardinality of a set. The “local” strength value is then used to

calculate the “local” raw fitness R(a) of a member a in E(i), as follows:

R(a) = ∑
b∈E(i),b�a

S(b), (5.7)

where the “local” raw fitness depends on the strengths of its dominators in the same sub-

region. Note that, similar to SPEA2, the fitness is to be minimized here.

In the case where individuals in E(i) do not dominate each other, their raw fitness

values will be zero and the above fitness assignment will make no sense. Fig. 5.4 presents

such a situation, where both a and b are in the same subregion and they are nondominated

individuals. Intuitively, a is better than b because a is closer to the associated reference

direction (y-axis). Thus, individuals’ other information should be considered. We adopt

an angle-based density estimation technique to discriminate between individuals having

identical raw fitness values. Each individual a ∈ E(i) has a unique angle value θa =

〈F̂(a),wi〉, which is actually the acute angle between F̂(a) and the associated reference

direction wi. Then, the density D(a) of individual a is estimated by

D(a) =
θa

θa +θm
, (5.8)

where θm = max
1≤i≤Hk

M

min
j 6=i

(wi,w j), i.e., the largest acute angle between two neighbouring

reference directions, is added to ensure that D(a) is smaller than one. The “local” fitness

value of individual a, denoted as FVl(a), is composed of its raw fitness and density value,

combined in the following form:

FVl(a) = R(a)+D(a). (5.9)

This way, individuals with better local diversity and convergence will have higher final

fitness. Thus, a is better than b in the case illustrated in Fig. 5.4.
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Fig. 5.4 Influence of decomposed subregions on environmental selection. The grey area
represents the subregion occupied by w2, i.e., Ψ2, and the dashed lines are used to indicate
d dominates c.

Despite great benefit for subregion diversity and local convergence, the “local” fitness

assignment may impair global convergence if all individuals in Ψi are dominated by indi-

viduals in other subregions. To avoid this situation, individual a is also assigned a “global”

fitness value, denoted as FVg(a), which is actually the raw fitness in SPEA2 (see [202]).

Besides, if a is the only member in Ψi and dominated by individuals in other subregions,

it should be given a chance to survive to the next generation. Thus, the final fitness of a,

or FV (a), is calculated as:

FV (a) =

{

FVl(a) if |Ψi|= 1;

FVl(a)+FVg(a) otherwise .
(5.10)

Considering again the example in Fig. 5.4, individual c is the only member in the associ-

ated subregion Ψ2, but, it is dominated by d in another subregion. This means Ψ2 might

be an underexploited area in the objective space and the search in this area should be

enhanced. Conventional Pareto-dominance based techniques, e.g., NASG-II and SPEA2,

however, are likely to ignore or even simply abandon important individuals like c in this

area. In contrast, the proposed fitness assignment rewards the isolated c at an attempt to

attract other individuals toward the underexploited area. This way, the fitness assignment

hopefully provides a good approximation to each region of the PF.

5.3.4 Environmental Selection

In the environmental selection (line 11 in Algorithm 5.1), the best N individuals that can

balance diversity and convergence should be preserved. Here, we present a new envi-

ronmental selection strategy, which is shown in Algorithm 5.6. The strategy conducts

DFCS-based sorting where individuals’ convergence degree is measured by their fitness

to classify the combined population Q into different fronts {F1,F2, . . .}. Solution selec-
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Algorithm 5.6: DFCSEnvironment_Selection(Q,W )

Input: N (population size), Q (combined population), W (reference direction set)
Output: P (new parent population).

1 Set P = /0;
2 {F1,F2, . . .}= DFCS_Sort(Q); // DFCS sorting based on fitness;
3 l← 1;
4 while C(P∪Fl)≤ N do

5 P← P∪Fl;
6 l← l +1;
7 end

8 Fill up P with the best N−C(P) individuals in terms of fitness from Fl .

tion starts from F1 and ends until the last front Fl to be considered has more individuals

than the remaining slots. Then, Fl is sorted according individuals’ fitness and then the

best N−C(P) individuals are selected to fill up the N-sized P.

It should be noted that SPEA/R encourages convergence on the last front to be consid-

ered (line 8 in Algorithm 5.6). This is desirable because previous selection on the higher

fronts has stressed diversity and later selection on Fl should prefer convergence to strike

the balance between these two goals.

5.3.5 Computational Complexity of SPEA/R

The objective normalization (line 6 in Algorithm 5.1) requires O(MN) computations. In

line 8 of Algorithm 5.1, associating a combined population of 2N individuals to Hk
M refer-

ence directions takes O(MNHk
M). Suppose that Li =C(E(i)), the number of individuals in

the subregion Ψi, then ∑
Hk

M

i=1 Li = N. Thus, fitness assignment for E(i) (line 9 in Algorithm

5.1) requires O(ML2
i ) operations. For environmental selection, computational resources

are mainly consumed by DFCS sorting. In Algorithm 5.6, line 2 requires O(N logN)

comparisons to perform DFCS sorting. In this work, the population size N depends on

Hk
M, as N ≈ Hk

M. On average, the number of individuals in the ith subregion will be

Li = 2N/Hk
M ≈ 2. Thus, the average complexity of one generational cycle of SPEA/R is

O(MN2). In the worst case, that is, all the 2N individuals get trapped into one subregion

and other subregions do not contain any member, the computational complexity reaches

O(MN2), which is the same as the average complexity.
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5.4 Experimental Studies

5.4.1 Experiments on Multiobjective Optimization

As a starting point, SPEA/R is studied on multiobjective problems. The test problems

used here are the MOP [127] test suite, which is a modification of ZDT [200] and DTLZ

[48] but more difficult than these predecessors. Since SPEA/R uses a framework similar

to MOEA/D-M2M [127], it is interesting to make a comparison between them. Addition-

ally, we also compared SPEA/R with a subproblem-constrained MOEA/D, i.e., MOEA/D-

ACD [175], which is a recently-developed algorithm and has shown great promise for the

MOP test problems. These three algorithms2 employ the recombination operator [123],

as suggested in MOEA/D-M2M [127]. For fairness, MOEA/D-ACD uses our reference

direction initialization method. The population size was set to 100 (by the systematic

approach [39]) and 313 (by our k-layer approach with k = 13) for bi- and three-objective

problems, respectively. The maximum number of generation was set to 5000 for all the

problems, and each algorithm was executed 30 independent runs for each problem. A

detailed description of the MOP [127] test suite is provided in Appendix A.

5.4.1.1 Experimental Results and Analysis

Table 5.1 presents the results of SPEA/R, MOEA/D-M2M, and MOEA/D-ACD, where

the mean and standard deviation values of IGD and HV are reported and the best value

for each problem is marked in boldface. The differences between the approximations

are assessed by the Wilcoxon rank-sum test [179] at the 0.05 significance level, with the

standard Bonferroni correction [1] to deal with the problem of the higher probability of

Type I errors in multiple comparisons.

The MOP [127] test suite contains seven hard-to-converge problems. In this suite,

MOP4 is the only disconnected problem, and MOP6 and MOP7 are two three-objective

problems. Besides, MOP4 to MOP7 are also diversity-resistant, which may be a big

challenge to approximating well-distributed PFs if population diversity is not well main-

tained. Table 5.1 shows that SPEA/R performs significantly better than MOEA/D-M2M

on most of the test problems, in terms of IGD and HV. SPEA/R competes well with

MOEA/D-ACD in terms of HV on these problems. Generally, SPEA/R mainly loses on

the three-objective MOP6. On another three-objective MOP7, however, SPEA/R wins the

comparison by a clear margin.

To have a better understanding of these algorithms’ performance, PF approximations

over 30 runs for the seven MOP problems are displayed in Fig. 5.5. As can be seen from

the figure, SPEA/R, MOEA/D-M2M, and MOEA/D-ACD are all able to approximate

2The source codes of MOEA/D-M2M and MOEA/D-ACD are from
http://www.cs.cityu.edu.hk/∼qzhang/publications.html.



5.4 Experimental Studies 98

Table 5.1 Mean and stand deviation IGD and HV values on MOP problems

Metric Prob. SPEA/R MOEA/D-M2M MOEA/D-ACD

IGD

MOP1 8.7805E-3(1.9373E-4) 9.4133E-3(8.4998E-4)‡ 9.0088E-3(1.6739E-4)†

MOP2 4.2374E-3(3.8551E-5) 8.2719E-3(1.6819E-2)‡ 4.4633E-3(5.8251E-5)†

MOP3 4.8235E-3(1.4936E-4) 1.0236E-2(1.9945E-2)‡ 4.9031E-3(1.5359E-4)†

MOP4 5.8664E-3(1.5107E-3) 6.5855E-3(1.6268E-3)‡ 7.7672E-3(1.5285E-3)‡

MOP5 1.2053E-2(7.0952E-4) 9.3834E-3(5.1483E-4) 8.6467E-3(2.2862E-4)

MOP6 4.0020E-2(2.6624E-3) 3.8164E-2(1.6047E-3)† 2.5999E-2(3.5385E-4)

MOP7 5.7604E-2(2.3640E-3) 8.7838E-2(2.9091E-2)‡ 1.0901E-1(3.9980E-3)‡

HV

MOP1 3.6522E+0(2.8854E-4) 3.6514E+0(1.0269E-3)‡ 3.6520E+0(2.4682E-4)†

MOP2 3.3264E+0(1.0877E-4) 3.3226E+0(1.8367E-2)‡ 3.3207E+0(3.8048E-4)‡

MOP3 3.2101E+0(1.1819E-4) 3.1825E+0(1.1641E-1)‡ 3.2084E+0(1.1626E-3)†

MOP4 3.5128E+0(2.3030E-3) 3.5109E+0(2.9883E-3)† 3.5071E+0(3.5365E-3)‡

MOP5 3.6457E+0(1.1503E-3) 3.6502E+0(1.4470E-3) 3.6414E+0(5.7291E-3)†

MOP6 7.7687E+0(3.9912E-3) 7.7356E+0(1.4549E-2)‡ 7.7956E+0(1.6302E-3)

MOP7 7.3919E+0(3.2270E-3) 7.3659E+0(3.0804E-2)‡ 7.3730E+0(1.6802E-2)‡

‡ and † indicate SPEA/R performs significantly better than and equivalently to the corresponding algo-
rithm, respectively.

the PF for the seven problems, but they perform differently in terms of convergence and

diversity. Specifically, SPEA/R converges better than the other two algorithms on the first

four bi-objective problems. On the two three-objective problems, i.e., MOP6 and MOP7,

MOEA/D-M2M cannot achieve uniformly-distributed approximations and misses some

boundary regions of the PF. This means that MOEA/D-M2M may not be able to cover

the whole PF in higher-dimensional objective space. MOEA/D-ACD performs poorly

in terms of diversity for MOP7, implying that adding constraints to subproblems is not

sufficient to deal with hard-to-converge and diversity-resistant problems like MOP7. In

contrast, SPEA/R maintains diversity well on both MOP6 and MOP7, although it does

not fully converge to the PF in some runs.

Fig. 5.6 shows the three algorithms’ IGD curves against the number of generations,

where MOP1 is excluded as it has the similar IGD curve to MOP3. Clearly, SPEA/R is

more capable of reducing the IGD value than the others and wins in most cases at late

stage. This means that proper diversity maintenance helps promote the performance of

SPEA/R.

The experiment on the MOP test suite shows that, SPEA/R and MOEA/D-M2M per-

form distinctly although both share some similar properties, e.g., decomposition of the

objective space. The high performance of SPEA/R may be attributed to its good balance

between diversity and convergence, which is achieved by our new proposed fitness assign-

ment and environmental selection.
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Fig. 5.5 PF approximations for MOP test problems over 30 runs.
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Fig. 5.6 IGD curves of three algorithms for six MOP problems.

5.4.1.2 Comparison of Evolution Behaviour with MOEA/D-M2M

Experimental results in the previous subsection have validated the performance of

SPEA/R, but it is still not clear why SPEA/R performs better than MOEA/D-M2M on

the MOP test suite despite their similar framework. To answer this question, we further

compare the evolution behaviour of these two algorithms on MOP2 and MOP3. To be

more specific, the PF approximations obtained from three stages, i.e., the 50th (early

stage), 500th (middle stage), and 1000th generation (late stage), are recorded, which are

plotted in Fig. 5.7. It is clear to see from the figure that SPEA/R maintains good popu-

lation diversity all the time, whereas MOEA/D-M2M tends to partition population into

several subpopulations far away from each other before the late stage, which means di-

versity between neighbouring subpopulations is poorly controlled. As a consequence,

MOEA/D-M2M takes more effort than SPEA/R to search unexplored regions before con-

verging toward the PF and providing a good distribution of population, as illustrated by

the 1000th-generation approximation for MOP2. This reason can be also used to explain

the poor distribution of MOEA/D-M2M on the three-objective MOP6 and MOP7 in the

previous experiment. The figure also indicates that the use of DFCS-based selection strat-

egy can help SPEA/R to manage diversity and convergence well during the search.



5.4 Experimental Studies 101

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

f1

f
2

 

 

PF

MOEA/D-M2M

SPEA/R

0 0.5 1 1.5 2 2.5 3

f1

0

0.5

1

1.5

2

2.5

3

f
2

PF

MOEA/D-M2M

SPEA/R

0 0.5 1
0

0.5

1

0 0.5 1 1.5 2 2.5 3

f1

0

0.5

1

1.5

2

2.5

3

f
2

PF

MOEA/D-M2M

SPEA/R

0 0.5 1
0

0.5

1

MOP2

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

f1

f
2

 

 

PF

MOEA/D-M2M

SPEA/R

0 0.5 1 1.5 2 2.5

f1

0

0.5

1

1.5

2

2.5

f
2

PF

MOEA/D-M2M

SPEA/R

0 0.5 1 1.5
0

0.5

1

1.5

0 0.5 1 1.5 2 2.5

f1

0

0.5

1

1.5

2

2.5

f
2

PF

MOEA/D-M2M

SPEA/R

0 0.5 1
0

0.5

1

MOP3

Fig. 5.7 Evolution behaviour comparison between SPEA/R and MOEA/D-M2M for three
stages on MOP2 and MOP3. Left: 50th generation; middle: 500th generation; right:
1000th generation.

5.4.2 Experiments on Many-objective Optimization

Having had a good start on multi-objective optimization, SPEA/R is now examined on

many-objective optimization. The following contributes to making a comparison of

SPEA/R with state-of-the-art algorithms on many-objective problems.

5.4.2.1 Test Problems

The test problems used for algorithm comparison come from the WFG toolkit [82]. These

problems contain a number of challenging characteristics, i.e., nonseparability, deception,

multimodality, biased attributes, and various PF geometries. For each WFG test problem,

the number of objectives varies from two to twelve, which considers both multiobjective

and many-objective optimization. As recommended by the developers [82], the number

of decision variables of all test instances is n = k+ l, where k and l are the number of

position-related variables and distance-related variables, respectively. k = 2× (M− 1)

and l = 10 are used in this work.
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5.4.2.2 Compared Algorithms

Five popular or newly-developed MOEAs are used for comparison in our experimental

studies. They are MOEA/D [188], HypE [6], SPEA2+SDE [117], PICEA-g [172], and

NSGA-III [43], which represent different classes of metaheuristics. A brief description of

each compared algorithm is given below.

1. MOEA/D3 [188]: it is a representative of decomposition-based algorithms. In this

work, PBI is adopted as the aggregation function for MOEA/D because it is em-

pirically proved to be more effective than other decomposition methods for many-

objective optimization in a recent study [43], and normalization [188] is used for

scaled problems.

2. HypE4 [6]: it is a representative of indicator-based MOEAs, which employs the

hypervolume metric as an indicator in the environmental selection. In HypE, the

fitness value of a solution is determined by not only its own hypervolume contribu-

tion but also the hypervolume contribution shared with others. Additionally, for the

sake of computational complexity, HypE uses Monte Carlo simulation to approxi-

mate the exact hypervolume values.

3. SPEA2+SDE5 [117]: this method introduces a density estimator that considers both

the distribution and convergence information of individuals to increase the selec-

tion pressure in many-objective optimization. SPEA2+SDE has shown to be very

promising for MaOPs [117].

4. PICEA-g6 [172]: it introduces a new concept of preference-based coevolutionary

algorithm (PICEA), which coevolves a family of decision-maker preferences to-

gether with a population of candidate solutions, for many-objective optimization.

PICEA-g is an implementation of such a concept, where preferences gain higher

fitness if it is satisfied by fewer solutions, and solutions gain fitness by meeting as

many preferences as possible.

5. NSGA-III7 [43]: it is an upgraded version of the most popular dominance-based

NSGA-II algorithm, where a number of supplied reference points are used as a

guideline for handling MaOPs. The basic framework of NSGA-III remains similar

to NSGA-II, except that it maintains population diversity by niche preservation.

3The code of MOEA/D is from http://dces.essex.ac.uk/staff/qzhang/.
4The code of HypE is from http://www.tik.ee.ethz.ch/pisa/.
5The source code of SPEA2+SDE can be downloaded from

http://www.tech.dmu.ac.uk/ syang/publications.html.
6The source code of the PICEA-g algorithm can be downloaded from

http://www.sheffield.ac.uk/acse/staff/rstu/ruiwang/index.
7The source code of NSGA-III (version 1.1) can be downloaded from

http://web.ntnu.edu.tw/∼tcchiang/publications/nsga3cpp/nsga3cpp.htm.
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Table 5.2 Population size for different algorithms using the k-layer approach

M k Hk
M MOEA/D NSGA-III SPEA/R

2 - 100 100 100 100
3 7 105 105 108 108
5 7 175 175 176 176
8 6 217 217 220 220

12 5 241 241 244 244

5.4.2.3 Parameter Settings

The parameters of the six MOEAs considered in the experiments are referenced from their

original papers. Some key parameters in these algorithms were set as follows:

1. Reproduction parameters: All the algorithms used the simulated binary crossover

(SBX) and polynomial mutation [43] as their genetic operators. The crossover prob-

ability was pc = 1.0 and its distribution index was ηc = 20. The mutation probabil-

ity was pm = 1/n and its distribution ηm = 20.

2. Population size: The population sizes (N) of different algorithms are presented in

Table 5.2. The population sizes of all the algorithms except MOEA/D were set as

4⌈Hk
M/4⌉, which is the smallest multiple of four not smaller than Hk

M, according to

the suggestion in [43]. In other words, HypE, PICEA-g, and SPEA2+SDE use the

same population size settings as NSGA-III and SPEA/R.

3. Stopping criterion and the number of executions: Each algorithm was terminated

after a pre-specified number of generations. To be specific, for WFG problems,

each algorithm stops after 300, 600, 1000, 1500, and 2000 generations for 2-, 3-, 5-,

8-, 12-objective cases, respectively. Additionally, each algorithm was executed 30

independent times on each test instance.

5.4.2.4 Experimental Results and Analysis

The performance measures for quantifying the performance of the compared algorithms in

this section are IGD [43] and HV [203]. Note that, the PF points used for computing IGD

here are a set of target points on the PF associated with reference directions, as suggested

in [43]. For HV computation, the ith objective of the reference point used is 2i+2 for all

the WFG problems, and the HV values presented in this work are all normalized to [0,1]

by dividing ∏M
i=1 (2i+2). The IGD and HV values of six algorithms on nine WFG test

problems are presented in Tables 5.3 and 5.4, respectively.

The WFG1 problem mainly examines whether an MOEA can handle bias and mixed

PF shapes. Both IGD and HV metrics indicate that PICEA-g is more suitable for this

kind of problem than the other compared algorithms. SPEA/R competes well and even
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Table 5.3 Mean and standard deviation IGD values obtained by six algorithms for WFG
problems

Prob. M HypE PICEA-g MOEA/D NSGA-III SPEA2+SDE SPEA/R

WFG1

2 8.8317E-1(3.0615E-2)† 8.4573E-1(7.7703E-2)† 1.0781E+0(4.1187E-2)‡ 1.0260E+0(5.5762E-2)‡ 8.2124E-1(3.9450E-2) 9.0085E-1(2.0778E-2)
3 1.2748E+0(4.3651E-2)‡ 7.8534E-1(8.9205E-2) 1.2041E+0(3.1711E-2)† 1.3784E+0(4.0202E-2)‡ 1.2648E+0(2.3129E-2)‡ 1.1794E+0(2.4394E-2)
5 1.8676E+0(6.2653E-2)‡ 5.3311E-1(1.3060E-1) 1.4877E+0(3.0123E-2)† 2.0084E+0(1.0479E-1)‡ 1.8980E+0(1.6956E-2)‡ 1.4780E+0(3.5911E-2)
8 2.5670E+0(6.2118E-2)† 1.4327E+0(1.4821E-1)† 2.7002E+0(3.2555E-1)‡ 2.7334E+0(9.6093E-2)‡ 2.7327E+0(6.3839E-2)‡ 1.5879E+0(6.9790E-2)
12 3.6640E+0(4.1488E-1) 3.2660E+0(6.1898E-1) 4.9319E+0(7.5027E-1)† 4.8169E+0(2.8691E-1)† 3.6292E+0(8.4763E-2) 4.7653E+0(7.7595E-1)

WFG2

2 1.3134E-1(5.5902E-2)‡ 8.6982E-2(6.4363E-2)‡ 6.5756E-1(2.4753E-1)‡ 9.8399E-2(7.0368E-2)‡ 8.6488E-2(6.8054E-2)‡ 5.3339E-2(5.9669E-2)

3 3.9965E-1(9.4628E-2)‡ 3.0184E-1(1.3370E-1)‡ 1.6004E+0(5.1826E-1)‡ 2.7108E-1(1.9464E-1)‡ 2.9113E-1(1.3529E-1)‡ 1.9273E-1(1.4337E-1)

5 1.0282E+0(3.1081E-1)‡ 6.9710E-1(3.7222E-1)‡ 3.4876E+0(9.7999E-1)‡ 6.1589E-1(5.8567E-1)‡ 5.2034E-1(1.8118E-1)‡ 4.1324E-1(1.9367E-1)

8 1.6356E+0(2.0123E-1)‡ 1.0825E+0(3.2538E-1)‡ 6.9688E+0(3.6616E+0)‡ 2.5990E+0(5.5451E-1)‡ 1.0398E+0(8.0346E-2)† 9.2918E-1(1.5704E-2)

12 3.6569E+0(1.0009E+0)‡ 1.9909E+0(1.6166E-1)† 1.4420E+1(7.0122E+0)‡ 5.3146E+0(2.1231E+0)‡ 2.0416E+0(2.9444E-1)† 1.9406E+0(4.8101E-1)

WFG3

2 6.1055E-2(2.1969E-2)‡ 1.5970E-2(1.0060E-3)‡ 2.1120E-2(1.0954E-2)‡ 1.7672E-2(3.9260E-3)‡ 1.4922E-2(1.3055E-3)‡ 9.5981E-3(1.4972E-3)

3 3.6647E-1(7.0170E-2)‡ 1.2092E-1(8.5003E-3)† 8.4610E-2(2.0841E-2) 1.1033E-1(1.9565E-2)‡ 1.0415E-1(9.6999E-3) 1.2706E-1(1.9111E-2)
5 8.7070E-1(3.4817E-1)‡ 4.2029E-1(2.6257E-2)† 2.1410E-1(9.2308E-3) 3.9046E-1(5.6144E-2) 6.8446E-1(7.4234E-2)‡ 4.7455E-1(5.0952E-2)
8 1.2895E+0(3.8251E-1) 1.0091E+0(1.1303E-1) 8.6567E+0(2.5278E-2)‡ 2.4852E+0(1.3923E+0)‡ 2.3216E+0(2.1709E-1)‡ 1.8096E+0(7.9589E-1)
12 2.1678E+0(6.4471E-1)† 1.5164E+0(4.9334E-1) 1.3202E+1(5.0194E-2)‡ 6.1449E+0(1.0145E+0)‡ 4.3313E+0(2.2150E-1)‡ 2.2071E+0(8.9759E-1)

WFG4

2 3.1877E-2(6.5145E-3)‡ 1.6304E-2(1.2351E-3)‡ 2.7940E-2(6.4054E-3)‡ 1.2596E-2(3.0353E-3)‡ 3.0674E-2(6.3801E-3)‡ 4.0642E-3(6.3104E-4)

3 5.6412E-1(8.5813E-2)‡ 2.0043E-1(7.9213E-3)‡ 6.9098E-2(1.0745E-2)‡ 6.3007E-2(5.4682E-3)‡ 2.9956E-1(1.5741E-2)‡ 2.8864E-2(2.1139E-3)

5 2.0444E+0(2.2951E-1)‡ 1.1045E+0(4.7317E-1)‡ 1.4182E-1(1.4965E-2)‡ 3.6864E-1(4.4117E-1)‡ 1.2366E+0(7.4328E-2)‡ 1.0932E-1(7.3118E-3)

8 6.0523E+0(1.5295E+0)‡ 6.6026E+0(7.9339E-1)‡ 1.4683E+1(1.1304E+0)‡ 2.3447E+0(8.3237E-1)‡ 3.7387E+0(2.1384E-1)‡ 3.0963E-1(4.4228E-2)

12 1.1022E+1(1.4125E+0)‡ 1.4136E+1(9.6910E-1)‡ 2.4085E+1(3.8119E-7)‡ 9.3126E+0(9.3937E-1)‡ 7.8294E+0(2.7645E-1)‡ 5.545E-1(5.8877E-2)

WFG5

2 1.4442E-1(2.9026E-2)‡ 6.9351E-2(1.8443E-3)† 7.2942E-2(1.6355E-3)† 6.9201E-2(1.9862E-3)‡ 8.1770E-2(4.0625E-3)‡ 6.8656E-2(6.0334E-4)

3 7.9362E-1(1.4324E-1)‡ 2.1530E-1(6.1536E-3)‡ 1.0567E-1(4.0651E-3)† 2.1164E-1(1.2089E-2)‡ 2.8447E-1(1.1878E-2)‡ 1.0007E-1(2.7774E-3)

5 2.3647E+0(5.0181E-1)‡ 9.3128E-1(1.7072E-2)‡ 1.7300E-1(2.0329E-2)‡ 3.6011E-1(2.7441E-2)‡ 1.1152E+0(5.7730E-2)‡ 1.5221E-1(3.3155E-3)

8 5.0708E+0(9.3870E-1)‡ 3.6695E+0(6.6358E-1)‡ 1.4665E+1(1.6616E-1)‡ 1.0424E+0(1.2969E+0)‡ 3.0894E+0(1.6408E-1)‡ 2.9294E-1(7.8991E-3)

12 1.1590E+1(3.7303E+0)‡ 1.1189E+1(6.7757E-1)‡ 2.3809E+1(3.6910E-2)‡ 1.1152E+1(1.7458E+0)‡ 6.8783E+0(3.5983E-1)‡ 5.9182E-1(5.6574E-2)

WFG6

2 9.5505E-2(2.7439E-2)‡ 8.7771E-2(1.6443E-2)† 1.2231E-1(2.9457E-2)‡ 6.2542E-2(8.0865E-3) 8.3074E-2(2.2805E-2)† 8.2235E-2(1.7636E-2)
3 5.0657E-1(5.9845E-2)‡ 2.2653E-1(1.1940E-2)‡ 1.6990E-1(4.3933E-2)‡ 1.3889E-1(1.6059E-2)† 3.0489E-1(2.5190E-2)‡ 1.2494E-1(1.8689E-2)

5 1.7161E+0(1.7421E-1)‡ 9.3252E-1(2.8199E-2)‡ 2.4944E-1(5.9006E-2)‡ 2.5876E-1(1.8224E-2)‡ 1.1083E+0(4.5895E-2)‡ 1.9652E-1(2.1632E-2)

8 3.5742E+0(2.2169E-1)‡ 2.4527E+0(1.0243E-1)‡ 1.3441E+1(3.4359E+0)‡ 3.5306E-1(3.9311E-2)‡ 2.8712E+0(1.5114E-1)‡ 3.1442E-1(4.5861E-2)

12 8.5555E+0(1.2719E+0)‡ 8.3868E+0(1.5120E+0)‡ 2.4086E+1(1.0499E-3)‡ 1.2026E+0(1.4127E+0)‡ 6.5637E+0(3.4155E-1)‡ 5.6185E-1(6.4777E-2)

WFG7

2 8.2165E-2(2.8926E-2)‡ 1.5910E-2(6.6738E-4)‡ 2.3036E-2(5.5223E-3)‡ 6.1770E-3(1.2478E-3)‡ 2.9225E-2(4.7514E-3)‡ 3.0428E-3(6.4407E-4)

3 6.6418E-1(9.6773E-2)‡ 1.9958E-1(6.0806E-3)‡ 1.0757E-1(6.5050E-2)‡ 4.5169E-2(5.3488E-3)‡ 2.6732E-1(1.8452E-2)‡ 1.7752E-2(2.2178E-3)

5 2.1347E+0(2.2676E-1)‡ 9.3521E-1(2.3560E-2)‡ 1.3512E-1(2.0759E-2)‡ 1.9524E-1(3.9223E-2)‡ 1.2314E+0(7.5941E-2)‡ 7.6146E-2(6.0145E-3)

8 5.7576E+0(1.2137E+0)‡ 4.7858E+0(1.3194E+0)‡ 4.1326E+0(4.8119E+0)‡ 1.9059E+0(5.2245E-1)‡ 3.3239E+0(2.3293E-1)‡ 4.4555E-2(1.4906E-3)

12 1.3634E+1(2.8675E+0)‡ 1.1684E+1(1.1888E+0)‡ 1.8854E+1(7.2573E+0)‡ 9.0098E+0(1.1672E+0)‡ 7.2319E+0(2.0432E-1)‡ 1.2239E+0(1.7913E-1)

WFG8

2 1.1761E-1(1.3492E-2)‡ 1.7830E-1(8.4903E-3)‡ 1.9949E-1(7.7770E-2)‡ 1.0440E-1(4.4972E-3)‡ 9.6227E-2(7.0488E-3)‡ 6.5348E-2(8.3518E-3)

3 6.4260E-1(9.6987E-2)‡ 3.6302E-1(6.6066E-3)‡ 2.9721E-1(1.8361E-2)‡ 2.6280E-1(1.1173E-2)‡ 3.9859E-1(1.2363E-2)‡ 1.8791E-1(1.2203E-2)

5 3.0822E+0(3.6658E-1)‡ 1.1359E+0(1.5299E-1)‡ 6.2743E-1(2.4932E-2)‡ 6.2983E-1(3.4558E-2)‡ 1.3975E+0(7.1725E-2)‡ 4.4959E-1(6.3168E-2)

8 6.6256E+0(6.9786E-1)‡ 4.8593E+0(6.4988E-1)‡ 1.4786E+1(5.2920E-1)‡ 3.9291E+0(8.5793E-1)‡ 3.6385E+0(1.3014E-1)‡ 7.7559E-1(1.7947E-1)

12 1.2621E+1(1.3872E+0)‡ 1.2125E+1(8.1783E-1)‡ 2.4081E+1(1.6969E-2)‡ 9.5723E+0(7.4981E-1)‡ 7.5282E+0(2.7831E-1)‡ 25918E+0(1.5246E+0)

WFG9

2 1.1042E-1(2.1126E-1)‡ 2.5073E-2(2.0117E-3)‡ 1.1382E-1(9.2790E-2)‡ 4.1288E-2(3.6557E-2)‡ 4.6615E-2(4.5168E-2)‡ 2.3333E-2(1.8028E-3)

3 8.5309E-1(3.9767E-1)‡ 2.0280E-1(5.3020E-3)‡ 3.6735E-1(8.0129E-2)‡ 2.1455E-1(2.8924E-2)‡ 2.8436E-1(2.9944E-2)‡ 1.3565E-1(6.0332E-2)

5 2.2225E+0(5.9275E-1)‡ 9.0468E-1(2.3965E-2)‡ 5.6825E-1(5.1271E-2)‡ 4.7457E-1(2.0885E-2)† 1.2446E+0(1.0233E-1)‡ 4.4527E-1(1.0612E-1)

8 5.6313E+0(2.0539E+0)‡ 2.3506E+0(1.8201E-1)‡ 1.4075E+1(3.1523E+0)‡ 1.4547E+0(7.5551E-1)‡ 3.2874E+0(2.1696E-1)‡ 1.0596E+0(2.1459E-1)

12 1.1425E+1(4.1445E+0)‡ 9.0759E+0(1.1149E+0)‡ 2.3886E+1(1.0426E-1)‡ 7.0250E+0(2.2799E+0)‡ 6.8976E+0(3.8740E-1)‡ 1.9587E+0(4.1090E-1)

‡ and † indicate SPEA/R performs significantly better than and equivalently to the corresponding algorithm, respectively.

outperforms the others for relatively low-dimensional cases (in objective space). But, it is

defeated by NSGA-III on the 12-objective WFG1 in terms of the HV metric.

WFG2 challenges algorithms’ ability to locate all disconnected PF segments and han-

dle nonseparable variable dependencies. For this problem, all the algorithms can achieve

impressive performance in low-dimensional cases (in objective space), and SPEA/R wins

by a clear margin. However, when the number of objectives is over five, the performance

of MOEA/D and NSGA-III degrades sharply whereas SPEA/R continues to yield good re-

sults. SPEA/R wins in the 8-objective case and can compete with HypE and SPEA2+SDE

in the 12-objective case, as indicated by both IGD and HV metrics. This means SPEA/R

can deal with disconnectivity.

WFG3 features a degenerated and linear PF shape, and its variables are nonsepara-

ble as well. For this problem, while SPEA/R performs best for the 2-objective case, its

performance degrades sharply when the number of redundant objectives increases, which

is also the case for the other algorithms except PICEA-g. PCIEA-g is roughly the best

performer for this problem because it generates nondominated reference points in the ob-
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Table 5.4 Mean and standard deviation HV values obtained by six algorithms for WFG
problems

Prob. M HypE PICEA-g MOEA/D NSGA-III SPEA2+SDE SPEA/R

WFG1

2 6.1349E-1(8.4520E-3)† 6.2383E-1(2.1342E-2) 5.2963E-1(2.6156E-2)‡ 5.2796E-1(2.1870E-2)‡ 6.3186E-1(1.1067E-2) 6.0736E-1(5.9395E-3)
3 5.9929E-1(8.2784E-3)‡ 7.3526E-1(2.6053E-2) 5.8131E-1(2.7399E-2)‡ 5.4419E-1(2.4954E-2)‡ 6.0147E-1(6.0920E-3)‡ 6.2420E-1(6.0584E-3)
5 5.2153E-1(7.6354E-3)‡ 9.1200E-1(5.4121E-2) 5.7746E-1(7.5357E-3)‡ 5.4737E-1(1.7873E-2)‡ 5.0145E-1(3.6774E-3)‡ 5.7919E-1(5.4070E-3)
8 4.3738E-1(1.3688E-2)‡ 9.3707E-1(2.1198E-2) 4.3174E-1(4.4287E-2)‡ 4.8199E-1(1.7796E-2)‡ 4.2294E-1(2.3498E-3)‡ 6.2128E-1(7.8831E-2)
12 3.7561E-1(4.6241E-3)‡ 9.2162E-1(2.9084E-2) 3.2474E-1(7.3978E-2)‡ 7.4386E-1(4.0646E-2) 3.6416E-1(3.7633E-3)‡ 4.2884E-1(5.9670E-2)

WFG2

2 7.9746E-1(3.0072E-2)‡ 8.1726E-1(3.3376E-2)‡ 6.5750E-1(5.0778E-2)‡ 8.0801E-1(3.4064E-2)‡ 8.1659E-1(3.4444E-2)‡ 8.3092E-1(2.9447E-2)

3 9.2195E-1(5.6280E-2)‡ 9.0282E-1(6.9396E-2)‡ 6.4363E-1(7.0612E-2)‡ 9.1538E-1(6.8576E-2)‡ 9.0856E-1(6.6674E-2)‡ 9.4106E-1(6.0781E-2)

5 9.2808E-1(7.4718E-2)‡ 9.4948E-1(7.9765E-2)‡ 6.2190E-1(8.7394E-2)‡ 9.6131E-1(6.1941E-2)‡ 9.7887E-1(3.5391E-2)‡ 9.8674E-1(3.7587E-2)

8 9.7630E-1(3.8039E-3)‡ 9.8194E-1(5.5797E-2)‡ 5.5675E-1(2.5975E-1)‡ 9.1862E-1(1.0630E-1)‡ 9.8544E-1(2.1334E-3)‡ 9.9759E-1(6.6128E-4)

12 9.6801E-1(1.1392E-2)‡ 9.9860E-1(8.5921E-4) 3.3908E-1(3.1366E-1)‡ 7.9068E-1(1.6581E-1)‡ 9.7314E-1(3.9702E-2)‡ 9.8832E-1(9.2631E-2)

WFG3

2 8.1688E-1(4.4403E-3)‡ 8.2899E-1(4.8416E-4)† 8.2486E-1(4.3417E-3)‡ 8.2634E-1(1.1226E-3)‡ 8.2739E-1(1.0559E-3)‡ 8.2945E-1(1.3184E-3)

3 7.5060E-1(9.0712E-3)‡ 8.9256E-1(7.5315E-4) 7.9356E-1(5.8079E-3) 7.8197E-1(4.1079E-3)† 7.8383E-1(4.3288E-3)‡ 7.7947E-1(8.0418E-3)
5 6.6263E-1(2.6816E-2)‡ 9.5989E-1(1.2055E-3) 7.3844E-1(5.3374E-3) 7.1730E-1(7.5465E-3)† 6.8788E-1(1.3525E-2)† 6.8696E-1(1.1909E-2)
8 6.0613E-1(2.3359E-2) 9.8966E-1(5.0622E-4) 1.2210E-1(1.2553E-3)‡ 4.6929E-1(1.0987E-1)‡ 4.8493E-1(3.3216E-2)† 4.9757E-1(4.4357E-2)
12 5.6477E-1(2.7196E-2) 9.5252E-1(6.7478E-2) 8.6302E-2(1.5356E-3)‡ 3.3546E-1(3.7684E-2)‡ 3.2742E-1(6.1689E-3)‡ 4.8913E-1(4.4723E-2)

WFG4

2 7.2511E-1(6.1498E-3)‡ 7.3428E-1(5.4716E-4)† 7.2972E-1(1.3665E-3)‡ 7.3314E-1(9.9494E-4)‡ 7.1096E-1(1.1254E-2)‡ 7.3497E-1(6.0901E-4)

3 8.2289E-1(2.1555E-2)‡ 8.4966E-1(1.1654E-3)† 8.3709E-1(2.2772E-3)‡ 8.3960E-1(1.2736E-3)‡ 7.6916E-1(1.1329E-2)‡ 8.5842E-1(9.0221E-4)

5 7.4786E-1(3.9699E-2)‡ 9.1105E-1(7.2895E-2)‡ 9.1690E-1(1.2970E-3)‡ 8.7615E-1(4.9747E-2)‡ 7.5415E-1(1.2288E-2)‡ 9.2169E-1(1.2998E-3)

8 5.8468E-1(6.8400E-2)‡ 7.0094E-1(7.4721E-2)‡ 1.3762E-1(8.1625E-2)‡ 8.0583E-1(4.5507E-2)‡ 5.8432E-1(2.5894E-2)‡ 9.5797E-1(3.9059E-3)

12 5.3389E-1(5.8040E-2)‡ 6.6260E-1(7.2208E-2)‡ 7.6923E-2(5.9845E-9)‡ 7.1332E-1(3.0720E-2)‡ 5.3058E-1(3.7951E-2)‡ 9.1609E-1(7.8544E-2)

WFG5

2 6.8762E-1(4.8597E-3)‡ 7.0799E-1(2.7043E-3)‡ 7.0280E-1(1.5455E-3)† 7.0558E-1(3.3458E-3)† 6.8987E-1(7.5992E-3)‡ 7.1227E-1(9.3626E-4)

3 7.6888E-1(2.2719E-2)‡ 8.2305E-1(1.5867E-3)† 8.1368E-1(2.3212E-3)† 8.0667E-1(2.8385E-3)‡ 7.7206E-1(7.9184E-3)‡ 8.2437E-1(2.0573E-3)

5 7.4369E-1(5.0270E-2)‡ 9.0566E-1(1.5576E-3) 8.7778E-1(2.3524E-3)† 8.4922E-1(3.6613E-3)‡ 7.8108E-1(1.0898E-2)‡ 8.8792E-1(1.1292E-3)
8 6.0049E-1(7.9653E-2)‡ 8.4677E-1(4.8498E-2)‡ 1.0334E-1(5.3172E-3)‡ 8.5495E-1(6.6536E-2)‡ 6.9019E-1(1.6596E-2)‡ 9.0023E-1(2.9488E-3)

12 4.3256E-1(6.7488E-2)‡ 7.3490E-1(4.4608E-2)‡ 6.8603E-2(8.1182E-4)‡ 6.3626E-1(5.0428E-2)‡ 5.9168E-1(2.0913E-2)‡ 9.0236E-1(6.6030E-3)

WFG6

2 6.9937E-1(1.1071E-2)† 7.0821E-1(5.5304E-3)† 6.9412E-1(1.0969E-2)‡ 7.1557E-1(3.0357E-3) 6.9758E-1(1.5288E-2)† 7.1001E-1(6.5120E-3)
3 7.8656E-1(1.1842E-2)‡ 8.1866E-1(6.8386E-3)‡ 8.0201E-1(1.2884E-2)‡ 8.1457E-1(4.2668E-3)‡ 7.7216E-1(1.2142E-2)‡ 8.2552E-1(6.3065E-3)

5 8.0206E-1(2.2080E-2)‡ 8.9790E-1(1.0352E-2)† 8.6441E-1(1.4974E-2)‡ 8.6594E-1(5.3327E-3)‡ 7.7777E-1(1.3556E-2)‡ 8.9930E-1(7.7577E-3)

8 7.0169E-1(5.5025E-2)‡ 9.2290E-1(7.9111E-3)† 1.9017E-1(1.8471E-1)‡ 9.0534E-1(9.3956E-3)‡ 7.2350E-1(1.6221E-2)‡ 9.2855E-1(1.5045E-2)

12 5.1133E-1(4.6498E-2)‡ 8.2963E-1(5.2905E-2)‡ 6.8017E-2(2.6487E-3)‡ 9.0514E-1(3.8475E-2)† 6.3134E-1(2.2436E-2)‡ 9.1604E-1(1.2921E-2)

WFG7

2 7.1926E-1(4.5563E-3)‡ 7.3505E-1(2.4614E-4)† 7.3136E-1(1.0965E-3)‡ 7.3510E-1(3.1131E-4)† 7.2082E-1(8.9974E-3)‡ 7.3615E-1(1.1625E-3)

3 8.1856E-1(1.4867E-2)‡ 8.5110E-1(8.3476E-4)† 8.3278E-1(1.5401E-2)‡ 8.4263E-1(1.1488E-3)‡ 7.9338E-1(1.3433E-2)‡ 8.5171E-1(3.4081E-4)

5 7.4819E-1(5.6439E-2)‡ 9.4257E-1(9.5013E-4) 9.2071E-1(1.3121E-3)‡ 8.9358E-1(4.7463E-3)‡ 7.4066E-1(1.4528E-2)‡ 9.2528E-1(6.1088E-4)
8 5.8792E-1(7.2407E-2)‡ 8.2636E-1(8.6834E-2)‡ 7.4490E-1(2.7588E-1)‡ 8.4280E-1(2.5436E-2)‡ 6.9531E-1(1.9407E-2)‡ 9.5110E-1(1.7669E-2)

12 4.6000E-1(8.2486E-2)‡ 7.6346E-1(6.1408E-2)‡ 2.7676E-1(2.8129E-1)‡ 7.5706E-1(3.6351E-2)‡ 6.3525E-1(2.3553E-2)‡ 9.4407E-1(9.1515E-3)

WFG8

2 6.7904E-1(1.0189E-2)‡ 6.7029E-1(3.8045E-3)‡ 6.6299E-1(2.3559E-2)‡ 6.9584E-1(1.4755E-3)‡ 6.8948E-1(4.3227E-3)‡ 7.0318E-1(3.3615E-3)

3 7.2386E-1(2.5175E-2)‡ 7.7446E-1(2.1990E-3)‡ 7.6918E-1(4.6432E-3)‡ 7.9129E-1(2.5827E-3)‡ 7.2355E-1(8.3819E-3)‡ 8.0651E-1(5.3416E-3)

5 6.2664E-1(4.0359E-2)‡ 8.3085E-1(1.5580E-2)‡ 7.9897E-1(1.7626E-3)‡ 7.9816E-1(5.4098E-3)‡ 7.0110E-1(1.1835E-2)‡ 8.5983E-1(1.8504E-2)

8 5.6633E-1(4.5007E-2)‡ 8.0925E-1(4.2507E-2)‡ 1.2037E-1(2.3436E-2)‡ 7.3449E-1(1.9296E-2)‡ 6.3416E-1(1.7580E-2)‡ 8.8805E-1(3.8120E-2)

12 5.4577E-1(6.2990E-2)‡ 7.4233E-1(4.8267E-2)‡ 7.6453E-2(2.1549E-3)‡ 6.9534E-1(3.5933E-2)‡ 5.5797E-1(1.9437E-2)‡ 8.7084E-1(2.2243E-1)

WFG9

2 6.9556E-1(3.9680E-2)‡ 7.1483E-1(8.6702E-4)† 6.8383E-1(2.8965E-2)‡ 7.0797E-1(1.1834E-2)‡ 7.0116E-1(1.4582E-2)‡ 7.1499E-1(1.4646E-3)

3 7.4158E-1(7.1225E-2)‡ 8.1680E-1(2.8524E-3)† 7.2575E-1(2.5631E-2)‡ 7.8864E-1(1.2055E-2)‡ 7.6490E-1(1.6052E-2)‡ 8.2240E-1(2.2316E-2)

5 6.4243E-1(1.0678E-1)‡ 8.5030E-1(5.3667E-2)† 7.5157E-1(2.2857E-2)‡ 7.9189E-1(3.9893E-3)‡ 7.1535E-1(2.8081E-2)‡ 8.6833E-1(4.2512E-2)

8 4.4778E-1(1.0543E-1)‡ 8.4756E-1(5.2963E-2) 1.2548E-1(1.6679E-1)‡ 7.5797E-1(2.7755E-2)‡ 6.3961E-1(1.9066E-2)‡ 8.1250E-1(4.0473E-2)
12 3.8782E-1(1.3885E-1)‡ 7.7356E-1(4.2001E-2)‡ 5.9415E-2(6.0946E-3)‡ 6.6920E-1(3.6199E-2)‡ 5.9417E-1(2.9346E-2)‡ 7.8937E-1(4.7711E-2)

‡ and † indicate SPEA/R performs significantly better than and equivalently to the corresponding algorithm, respectively.

jective space to guide the search in every generation. The other algorithms to a certain

extent try to spread the population over the whole objective space for the sake of diversity,

leading to a very limited number of points on the degenerated PF. Despite that, SPEA/R

outperforms MOEA/D and NSGA-III and performs competitively with SPEA2+SDE for

the 8- and 12-objective cases. This may be because fitness assignment in SPEA/R favours

nondominated solutions.

The problems WFG4 to WFG9 have an identical hyperellipse surface, but they differ

in some other characteristics. To be specific, WFG4 introduces multimodality to test

algorithms’ ability to escape from local optima, and WFG5 is a deceptive problem, and the

difficulty lies in the large “aperture” size of the well/basin leading to the global minimum.

WFG6 has a significant nonseparable reduction, and WFG7-9 all introduce some bias to

challenge algorithms’ diversity, but WFG8-9 are nonseparable. Also, variable linkages in

WFG8 are much more difficult than that in WFG9.

For WFG4-WFG9, SPEA/R wins nearly all the tested cases in terms of IGD and

HV, showing its high ability to deal with a number of considered characteristics in these
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Fig. 5.8 Parallel coordinates of final solutions obtained by six algorithms for the 12-
objective WFG4 instance.

problems. Considering the HV metric, PICEA-g also achieves very competitive results on

these problems, and outperforms or compares well with SPEA/R in some cases. However,

none of the other algorithms can compete with SPEA/R.

The above experimental studies show that the tested algorithms’ performance can be

influenced by at least two factors, i.e., problem characteristics and the number of objec-

tives. Clearly, degeneration in WFG3 poses a big challenge to reference-based algorithms,

i.e., MOEA/D, NSGA-III, and SPEA/R, as they roughly pursue diversified population

over the whole objective space. On the other hand, an increase in the number of objec-

tives to some extent influences all the tested algorithms. MOEA/D is the most influenced

one among six algorithms, which experiences a sharp drop when the number of objectives

increases from five to twelve, as indicated by the deterioration of IGD and HV. This is con-

sistent with some recent studies [112, 185]. This observation shows MOEA/D struggles

to solve difficult many-objective WFG problems.

To understand why SPEA/R generally performs better than the other algorithms, we

graphically plot the parallel coordinates (normalized by the nadir point) of final solutions

obtained by each algorithm for the 12-objective WFG4–6 in Figs. 5.8–5.10. The figures

clearly show that SPEA/R is able to obtain a good spread of solutions in the entire range

of the PF ( fi ∈ [0,2i], for all i), whereas HypE, PICEA-g, MOEA/D, and NSGA-III miss

some parts of the PF. Due to effective density estimation, SPEA2+SDE shows very com-

petitive diversity performance, but it does not cover well the entire PF. Thus, we can con-

clude that the outperformance of SPEA/R over the other algorithms results largely from
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Fig. 5.9 Parallel coordinates of final solutions obtained by six algorithms for the 12-
objective WFG5 instance.
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Fig. 5.10 Parallel coordinates of final solutions obtained by six algorithms for the 12-
objective WFG6 instance.

its sound diversity maintenance and its effective fitness assignment, which are capable of

balancing diversity and convergence during the search.
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Fig. 5.11 Comparison of the population size required by different methods: (a) the system-
atic approach and k-layer approach for low-dimensional cases; (b) the two-layer approach
and k-layer approach for high-dimensional cases.

5.5 Further Investigations

5.5.1 Comparison of Reference Direction Generation Approaches

As the population size (Popsize) of MOEAs is closely associated with the number of refer-

ence directions, we compare our proposed k-layer approach with the systematic approach

used in MOEA/D [188] and the two-layer approach used in NSGA-III [43] in terms of

required Popsize for different numbers of objectives. Since the two-layer approach is

an improved version of the systematic approach for generating reference directions in

the case of 7 or more objectives, we just need to compare our k-layer approach with the

former and the latter in low-dimensional cases and high-dimensional cases, respectively.

The results are given in Fig. 5.11, where for each approach, 20 different levels of

Popsize are continuously sampled. Clearly, for three objectives, the systematic approach

shows better Popsize settings than the k-layer approach. However, when M is increased

from 5 to 7, the k-layer approach has more choice to set the population size in the range of

10 to 1000. For 8-objective problems, the two-layer approach works slightly better than

the k-layer method, but for much higher objectives, the Popsize generated by the two-layer

approach grows very fast, particularly for 30 objectives. In this case, the k-layer approach

gives more options to configure a desirable population size. Thus, in comparison with

the other two approaches, the k-layer approach appears more suitable for generating a

reasonable size of population for MaOPs with a large number of objectives.

5.5.1.1 Uniformity

Unlike the simplex-lattice design (SLD) method used in MOEA/D and NSGA-III, our

k-layer method generates the reference direction set from the subsimplex’s point of view.
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Table 5.5 Population size settings for SLD and k-layer for different numbers of objectives

M SLD k-lyer

3 45 105 231 528 43 106 232 511
4 56 120 286 560 57 109 261 541
5 70 126 210 495 71 101 221 451
6 56 126 252 462 55 121 211 463
7 28 84 210 462 36 99 190 456
8 36 120 240 660 41 113 281 521
9 45 165 210 495 46 127 244 487

10 55 110 230 440 51 141 201 441
15 30 135 240 680 31 136 211 526

Table 5.6 Centred L2-discrepancy values of SLD and k-layer for different population sizes

M SLD k-layer

3 1.13E-01 1.11E-01 1.10E-01 1.11E-01 1.12E-01 1.12E-01 1.12E-01 1.12E-01
4 4.87E-01 5.17E-01 5.52E-01 5.89E-01 4.20E-01 4.14E-01 4.14E-01 4.14E-01

5 1.18E+00 1.28E+00 1.32E+00 1.43E+00 9.93E-01 9.79E-01 9.78E-01 9.78E-01

6 2.39E+00 2.44E+00 2.70E+00 2.80E+00 1.92E+00 1.92E+00 1.93E+00 1.93E+00

7 3.78E+00 4.43E+00 4.58E+00 5.05E+00 3.61E+00 3.50E+00 3.47E+00 3.45E+00

8 6.46E+00 7.72E+00 5.46E+00 6.21E+00 6.09E+00 5.92E+00 5.84E+00 5.86E+00

9 1.26E+01 1.27E+01 1.08E+01 1.43E+01 9.91E+00 9.67E+00 9.61E+00 9.55E+00

10 1.98E+01 1.45E+01 1.89E+01 1.36E+01 1.58E+01 1.54E+01 1.52E+01 1.53E+01
15 1.58E+02 1.62E+02 1.31E+02 1.61E+02 1.39E+02 1.32E+02 1.33E+02 1.32E+02

As a result, the k-layer method can give more options for setting Popsize when the number

of objectives is very large. Here, we investigate the uniformity of reference direction set

generated by different methods. Since the coupling between Popsize and the number of

objectives (M) exists in both SLD and the k-layer method, it is very unlikely to generate

the same Popsize using these two methods. A feasible way to compare the uniformity

between SLD and the k-layer method is to generate similar Popsize. Also, we consider

four levels of Popsize, that is, Popsize approximately equals 50, 100, 250, and 500, which

is shown in Table 5.5. Note that, SLD can generate each considered Popsize of points

by choosing different settings for the two-layered method of NSGA-III. The most widely

used discrepancy measure, i.e., centred L2-discrepancy (CD2) [78], is adopted to evaluate

the uniformity of a reference direction set, and the smaller CD2 is, the more uniform a

reference direction set will be.

Table 5.6 presents the CD2 values of SLD and k-layers on different population sizes,

where the best value for each population size is marked in boldface. It can be observed

that, in the 3-objective case, SLD has slightly better distribution than the k-layer method,

whereas for M > 3, the k-layer method gives much better CD2 values than SLD in most
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cases. It is understandable that the k-layer method generates a more uniform reference

direction set in higher-dimension cases (in objective space), because it decomposes the

whole simplex into M subsimplexes, and each subsimplex can get a number of uniformly-

distributed points. In contrast, SLD use a two-layered structure to distribute points in high-

dimensional cases (in objective space). It generates points only on the layers, and cannot

generate intermediate or near intermediate points on the simplex. So, the distribution of

SLD is not very uniform in high-dimensional cases (in objective space).

The k-layer method is just an example of using subsimplexes to design the reference

direction set. The whole simplex consists of M subsimplexes for the M-objective case,

and each subsimplex is a two-dimensional simplex. So, it is easier to distribute points on

these subsimplexes than on the whole M-dimensional simplex. However, it is far from

being satisfying because there is still a coupling between the Popsize and the number of

objectives. Subsimplex-based design methods are promising for reducing the coupling,

and more work is required to generate an arbitrary Popsize free from the influence of the

number of objectives. It should be noted that a uniformly-distributed reference direction

set does not necessarily produce a uniform distribution of solutions on the PF. This is

because the task to uniform a reference set on the simplex is not equivalent to that to well

distribute solutions on the PF that has various geometries.

5.5.1.2 Influence on Search Performance

Next, we analyze the search performance of algorithms with different reference direction

generation methods, i.e., the SLD method and the k-layer method. The two methods are

tested on MOEA/D-ACD and SPEA/R. Since both SLD and k-layer methods have a close

coupling with Popsize, it is desirable to choose similar Popsizes to make a fair comparison

between these two methods. For this reason, we use a Popsize of 105 and 106 for SLD

and k-layer, respectively, in 3-objective cases, which has been shown in Table 5.5.

The influence of SLD and k-layer is examined on 3-objective WFG4, and the IGD

results obtained by MOEA/D-ACD and SPEA/R are presented in Fig. 5.12. Note that,

5050 uniformly-sampled points from the true PF of the 3-objective WFG4 are used to

calculate the IGD metric. Two interesting observations can be obtained from the figure.

First, SPEA/R outperforms MOEA/D-ACD in terms of IGD, regardless of the reference

direction generation methods. Second, for both algorithms, the k-layer method helps

yield better IGD values than the SLD method. Thus, the proposed reference direction

generation method is very effective to guide the search toward the 3-dimensional PF (in

objective space).

Afterwards, we examine the effectiveness of the k-layer method on high-dimensional

cases (in objective space). To do this, we compare the k-layer method with SLD on 8-

objective WFG4, and the Popsize of SPEA/R is set to 161. Note that, here SLD represents
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Fig. 5.12 Boxplots of the IGD results obtained by algorithms using the SLD and k-layer
approaches for the 3-objective WFG4 instance.

SLD k-layer

0.3

0.4

0.5

0.6

0.7

0.8

IG
D

Fig. 5.13 Boxplots of the IGD results obtained by SPEA/R using the SLD and k-layer
approaches for the 8-objective WFG4 instance.

the two-layered approach proposed in NSGA-III. Fig. 5.13 presents boxplots of the IGD

values obtained by SPEA/R with different reference direction generation methods, show-

ing the k-layer method help achieve better IGD values than SLD. Additionally, the nor-

malized parallel coordinate plot of SPEA/R with the two different methods is displayed

in Fig. 5.14. We can observe from the figure that both methods are able to provide a set

of solutions residing in the entire PF. While the k-layer method covers well the PF, SLD

misses a small part of the PF, e.g., there is no solution in the region where fi ∈ [0.1,0.4]

for all i. Therefore, the proposed reference direction generation method can guide the

search well in high-dimensional cases (in objective space).
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Fig. 5.14 Parallel coordinates of final solutions obtained by different reference direction
generation methods for the 8-objective WFG4 instance.

5.5.2 SPEA/R vs NSGA-III

SPEA/R and NSGA-III share some similarities in the way that they keep diversity with

the aid of reference directions. Besides different methods for constructing reference di-

rections, there are several key differences between them, resulting in distinct search be-

haviours. First, SPEA/R introduces a restricted mating selection to enhance reproduction

instead of random selection, which is very helpful for many-objective optimization where

distant parents are not likely to generate good solutions. Second, SPEA/R uses a simple

normalization method based on the worst value of each objective, whereas normalization

in NSGA-III requires intercept computation and hyperplane construction, which are com-

putationally expensive, particularly for many-objective problems, and NSGA-III may also

have difficulty in hyperplane construction due to duplicate extreme points. Third, niche

preservation strategies are different in SPEA/R and NSGA-III. Whenever preserving a

member from the last front considered, NSGA-III tries to repeatedly identify reference

directions having the worst niche count, which is the number of members associated with

these reference directions that has been preserved in higher fronts (the higher, the bet-

ter). This procedure is computationally inefficient. Furthermore, this strategy may result

in some isolated but promising members in lower fronts being abandoned if nondomi-

nated sorting terminates before considering these lower fronts, implying that population

diversity in NSGA-III is still not well maintained. In contrast, as illustrated in Section

5.4.1.2, SPEA/R intentionally gives higher priority to diversity than convergence when

performing the environmental selection, leading to impressive performance on MOP test

instances, and the niche preservation strategy in SPEA/R has also been further validated

on multi- and many-objective WFG problems.

Generally, normalization and niche preservation are all aimed to help keep diversity.

To understand the second and third differences, we tested SPEA/R and NSGA-III on dis-



5.5 Further Investigations 113

0

5

10

0

50

100

0

200

400

600

800

f1f2
f
3

0

5

10

0

50

100

0

200

400

600

800

f1f2

f
3

0

5

10

0

50

100

0

200

400

600

800

f1f2

f
3

0

5

10

0

50

100

0

200

400

600

800

f1f2

f
3

NSGA-III (median) NSGA-III (worst) SPEA/R (median) SPEA/R (worst)

Fig. 5.15 PF approximations for scaled WFG5 in median and worst cases.

parately scaled three-objective WFG5. That is, the objectives f1, f2, and f3 are multiplied

with 5, 52, and 53, respectively. Fig. 5.15 plots PF approximations of the median and

worst IGD values over 31 runs, showing that the simple normalization method used in

SPEA/R can deal with scaling objectives and the new DFCS strategy is capable of pro-

viding a uniform distribution of solutions. NSGA-III, however, struggles to solve the

scaled WFG5. In the median case of NSGA-III, the intercept-based normalization is able

to diversify points over the whole PF but the niche preservation cannot provide a good

distribution. In the worst case, NSGA-III drives the majority of points toward the f1 f3

plane, and misses a large part of the PF. One reason for this is that NSGA-III tends to pre-

serve members in higher fronts that have better convergence, and less-converged isolated

ones in lower fronts are likely to leave unconsidered, leading to poor diversity during the

search. Therefore, NSGA-III cannot compete with SPEA/R in terms of diversity.

5.5.3 Influence of Fitness Assignment and Niche Preservation

Although Section 5.4.1.2 has revealed that good population diversity contributes to the

performance of SPEA/R, in this subsection we try to unveil more reasons behind the high

performance of SPEA/R.

Fitness assignment and diversity preservation are the core of SPEA/R, which control

the balance between convergence and diversity. To understand why our strategy yields

high performance, we further design three other SPEA/R variants that use different strate-

gies. The first one, called SPEA/R-A, removes global fitness from Eq. (5.9) when cal-

culating individuals’ fitness. Instead of removing global fitness, the second variant, i.e.,

SPEA/R-B, removes local fitness, so an individual’s final fitness is composed of global

fitness and density. The third variant (named SPEA/R-C) sorts individuals and does selec-

tion according to fitness values. Thus, SPEA/R-A favours diversity whereas SPEA/R-C

favours convergence, and SPEA/R-B does not consider local convergence. The variants

are compared with the original SPEA/R on 7 MOP problems and 9 WFG problems with

2, 3, 5, 8, and 12 objectives. The HV results of each algorithm for a total of 52 instances

are calculated, and the statistical testing result based on HV is given in Table 5.7, where

statistical significance is shown by the Wilcoxon signed-rank test [179] at the 0.05 signifi-
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Table 5.7 Statistical difference between SPEA/R and two variants

Sign SPEA/R-A SPEA/R-B SPEA/R-C

SPEA/R vs.
B 12 4 51
E 40 47 1
W 0 1 0
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Fig. 5.16 The IGD metric against the number of generations for two instances: SPEA/R
(solid); SPEA/R-A (dashed); SPEA/R-B (dotted).

cance level with Bonferroni correction. In the table, the signs ‘B’, ‘E’, and ‘W’ represent

SPEA/R is significantly better than, equivalent to, and significantly worse than the com-

pared variant, respectively.

It is clear that SPEA/R generally performs better than the other variants. Specifically,

SPEA/R outperforms SPEA/R-A in a number of cases, indicating that the use of global

fitness is a good choice for SPEA/R in some situations. The comparison between SPEA/R

and SPEA/R-B shows that the use of local fitness does not make a big difference but may

help SPEA/R achieve slightly better performance for a few instances. For SPEA/R-C, the

lack of diversity maintenance induces a significant lag behind SPEA/R. This observation

further confirms that the high performance of SPEA/R is mainly due to sound diversity

preservation.

Since SPEA/R, SPEA/R-A, and SPEA/R-B differ only in fitness assignment, one

would wonder why SPEA/R works better (though not significantly better in most cases)

than the other two variants. To investigate this, we plot the mean IGD curves of these

variants against the first 300 generations on MOP3 and 2-objective WFG4, as shown in

Fig. 5.16. It can be observed that SPEA/R converges fastest, followed by SPEA/R-B, and

SPEA/R-A ranks last. SPEA/R is better than SPEA/R-A because adding local fitness can

strengthen discrimination between individuals so that more-converged individuals can be

preserved. In contrast, without the use of global fitness, SPEA/R-A converges relatively

slower than SPEA/R and SPEA/R-B. This illustrates that the joint use of global fitness and

local fitness can speed up the search process, although not very significantly. However,
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we should point out that there is no much difference between SPEA/R and SPEA/R-B in

MaOPs. This is because the local fitness value will be zero when the majority of indi-

viduals are nondominated in the case of many objectives. In other words, SPEA/R may

degenerate to SPEA/R-B in this situation.

5.5.4 Influence of Restricted Mating

Restricted mating selection is somewhat similar to the concept of neighbourhood used

in MOEA/D, in which close parents are likely to generate good offspring. It has a key

parameter K, i.e., the number of parent candidates, and the influence of this parameter

is investigated on four WFG problems. Table 5.8 reports the HV values obtained by

SPEA/R with different settings of K. It can be observed that, K = 20 (10%–20% of

population size) yields better results than the other settings for all the cases except the

8- and 12-objective WFG5 and the 2-objective WFG6. Particularly, for many-objective

problems, e.g., the 8- and 12-objective cases, there is a noticeable improvement on the HV

metric when K is increased from 2 to 20. This means proper restricted mating can benefit

population reproduction, thereby promoting algorithms’ performance for many-objective

optimization.

The above experiment has shown that proper restricted mating is good for population

reproduction. However, we should point out that restricted mating can be used only when

population diversity is well maintained. This is because, if population individuals are

not well distributed, then restricted mating can cause overexploitation in overcrowded

regions so that isolated regions may be left under-explored or even unexplored, resulting

in a further deterioration of population diversity. This has been illustrated in Section 5.5.3,

where the overlook of diversity maintenance makes SPEA/R-C significantly worse than

SPEA/R although restricted mating has been employed there.

5.5.5 Peformance of SPEA/R on Problems with More Objectives

SPEA/R has the advantage of population diversity maintenance so that it can handle

MaOPs. To further investigate whether this advantage can deal with problems with more

objectives, we tested SPEA/R on WFG4 with 20 and 40 objectives. This means the dif-

ficulty of the problem is massively increased as nearly all population members are non-

dominated with respect to each other. The population size was set to 280 and 560 for

20 and 40 objectives, respectively. Due to the increase of the difficulty of the problem,

SPEA/R should be given more computational resources. Hence, the maximum number of

generations was set to 3000 and 5000 for 20 and 40 objectives, respectively.

Fig. 5.17 shows the normalized parallel coordinates of final solutions obtained by

SPEA/R for two instances. Clearly, on both 20 and 40 objectives, SPEA/R can still obtain
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Table 5.8 Mean and standard deviation HV values obtained by SPEA/R with different K values for four WFG problems

Prob. M K=2 K=5 K=10 K=20 K=40 K=50

WFG5

2 7.0444E-1(2.6807E-3) 7.0331E-1(1.4893E-3) 7.0290E-1(1.5121E-3) 7.1227E-1(9.3626E-4) 7.0240E-1(1.0190E-3) 7.0225E-1(1.2918E-3)

3 8.1491E-1(2.2212E-3) 8.1506E-1(2.5168E-3) 8.1509E-1(2.6994E-3) 8.2437E-1(2.0573E-3) 8.1398E-1(1.3143E-3) 8.1376E-1(1.1227E-3)

5 8.7474E-1(2.0417E-3) 8.7699E-1(2.8228E-3) 8.7754E-1(1.4904E-3) 8.8792E-1(1.1292E-3) 8.7778E-1(1.3177E-3) 8.7786E-1(1.0863E-3)

8 8.8822E-1(8.3131E-3) 8.9728E-1(3.1274E-3) 8.9833E-1(1.2579E-2) 9.0023E-1(2.9488E-3) 9.0064E-1(3.1272E-3) 8.9896E-1(3.0760E-3)

12 8.2542E-1(4.0708E-2) 8.3170E-1(6.4925E-2) 8.6648E-1(9.6071E-2) 9.0236E-1(6.6030E-3) 9.0357E-1(5.3041E-3) 8.9903E-1(1.3462E-2)

WFG6

2 7.0956E-1(7.4317E-3) 7.1207E-1(4.9637E-3) 7.1049E-1(6.8942E-3) 7.1001E-1(6.5120E-3) 7.1125E-1(4.4444E-3) 7.1112E-1(6.4365E-3)

3 8.1414E-1(8.6380E-3) 8.1048E-1(6.0997E-3) 8.1501E-1(5.5185E-3) 8.2552E-1(6.3065E-3) 8.1704E-1(6.4877E-3) 8.1612E-1(6.9906E-3)

5 8.7020E-1(1.2008E-2) 8.7366E-1(1.2462E-2) 8.7589E-1(8.0459E-3) 8.9930E-1(7.7577E-3) 8.7429E-1(1.3280E-2) 8.7756E-1(8.3509E-3)

8 8.8848E-1(2.9622E-2) 8.9990E-1(1.9014E-2) 9.0585E-1(1.0637E-2) 9.2855E-1(1.5045E-2) 9.0146E-1(1.2872E-2) 9.0041E-1(1.2033E-2)

12 8.6720E-1(8.0397E-2) 8.8930E-1(4.9023E-2) 8.9676E-1(5.2199E-3) 9.1604E-1(1.2921E-2) 9.0072E-1(2.5975E-2) 8.9359E-1(6.1651E-2)

WFG7

2 7.3554E-1(5.8256E-4) 7.3573E-1(4.3877E-4) 7.3570E-1(4.2235E-4) 7.3615E-1(1.1625E-3) 7.3531E-1(5.4513E-4) 7.3455E-1(1.5055E-3)

3 8.5109E-1(3.6231E-4) 8.5135E-1(2.8815E-4) 8.5120E-1(3.8447E-4) 8.5171E-1(3.4081E-4) 8.5022E-1(3.7511E-4) 8.5007E-1(3.9649E-4)

5 9.2148E-1(1.0175E-3) 9.2385E-1(5.7867E-4) 9.2498E-1(6.6708E-4) 9.2528E-1(6.1088E-4) 9.2504E-1(8.4886E-4) 9.2451E-1(1.7558E-3)

8 8.1636E-1(7.3633E-2) 8.8675E-1(5.2499E-2) 9.1107E-1(6.1033E-2) 9.5110E-1(1.7669E-2) 9.0279E-1(3.2266E-2) 8.4598E-1(6.7261E-2)

12 9.0203E-1(1.1885E-1) 9.2156E-1(8.3763E-2) 9.3326E-1(3.5592E-2) 9.4407E-1(9.1515E-3) 8.8898E-1(8.1680E-2) 8.5109E-1(1.4778E-1)

WFG8

2 6.9842E-1(2.5016E-3) 7.0146E-1(3.4153E-3) 7.0138E-1(3.2326E-3) 7.0318E-1(3.3615E-3) 7.0262E-1(3.5139E-3) 7.0264E-1(3.2564E-3)

3 7.9341E-1(3.4538E-3) 8.0085E-1(6.2528E-3) 8.0478E-1(7.1091E-3) 8.0651E-1(5.3416E-3) 8.0817E-1(5.9836E-3) 8.0802E-1(5.7856E-3)

5 8.0213E-1(3.0860E-3) 8.0994E-1(3.9769E-3) 8.2573E-1(2.0662E-2) 8.5983E-1(1.8504E-2) 8.5576E-1(3.6934E-2) 8.4240E-1(1.7857E-2)

8 8.6003E-1(6.8351E-2) 8.6155E-1(4.5106E-2) 8.7114E-1(4.3606E-2) 8.8805E-1(3.8120E-2) 8.6770E-1(5.7081E-2) 8.5679E-1(6.3412E-2)

12 8.4546E-1(5.2716E-2) 8.5492E-1(2.0422E-1) 8.5888E-1(2.2243E-1) 8.7084E-1(2.2243E-1) 8.5445E-1(1.6750E-1) 7.4837E-1(1.6586E-1)
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Fig. 5.17 Parallel coordinates of final solutions obtained by SPEA/R for WFG with 20 (a)
and 40 (b) objectives.

a set of diverse solutions in the entire range of the PF. Thus, the proposed DFCS-based

selection in SPEA/R is very promising for solving many-objective problems.

5.5.6 Further Discussion

It has been well recognized that convergence and diversity are two main but hard-to-

balance goals in designing MOEAs. Any bias toward one goal will inevitably aggra-

vate the other. In many-objective optimization, the balance between them is still of great

importance. However, when handling MaOPs, most MOEAs inherit elitist preservation

from their counterparts of multiobjective optimization that emphasizes nondominated so-

lutions in the population, resulting in very little room left for diversity maintenance. Even

if these MOEAs did not intentionally emphasize convergence, they could not elude the

fact that an increasingly large fraction of population becomes nondominated with an in-

crease in the number of objectives. In other words, they perform environmental selection

in a convergence-first-and-diversity-second manner. As a result, when the MOEAs are ap-

plied to many-objective optimization, there will be a large number of nondominated indi-

viduals after the convergence-first selection, and diversity preservation will be performed

only on the nondominated individuals. Correspondingly, some regions occupied by domi-

nated individuals will be scarcely explored, and diversity preservation becomes of limited

use in this case. In contrast, SPEA/R adopts a DFCS strategy to perform environmental

selection, at an attempt to maximize population diversity and strengthen exploitation in

less-converged regions during the search. Our experiments have shown its promise for

both multiobjective and many-objective optimization.

However, we may wonder why SPEA/R can work well on problems with over 12 ob-

jectives, where nearly all individuals (over 95% of population) are nondominated [87].
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Fig. 5.18 The relative frequency of the number of subregions occupied only by dominated
solutions.

This means, in this situation, the DFCS strategy in SPEA/R has no advantage over other

MOEAs in diversity preservation because there is hardly any region that can be occupied

by very few dominated individuals. There is no doubt that, when population is randomly

generated, the fraction of dominated individuals is close to zero for 10 objectives and over

[87]. But, what if the population is a combination of parent and offspring populations,

which is the case with MOEAs? To investigate this, we consider the search behaviour of

SPEA/R on the 12-objective WFG5 over 2000 generations. In every generation, SPEA/R

distributes a combined population toward Hk
M subregions (which equals the total num-

ber of reference directions) of the objective space, and the number (Nd) of subregions in

which only dominated solutions reside is recorded. Fig. 5.18 shows the relative frequency

of different Nd values over 2000 generations. Clearly, in the majority of generations domi-

nated solutions do not solely occupy any subregions. In this situation, dominated solutions

make little contribution to diversity as nondominated solutions covers all subregions of

the evolving population. However, there are also over 20% generations in which some

subregions are occupied by dominated but not nondominated solutions. In this case, dom-

inated solutions make a difference to population diversity. Additionally, we also compute

the percentage of dominated solutions in the combined population of every generation of

SPEA/R for a single run, as shown in Fig. 5.19. It can be observed from the figure that,

there is still a noticeable proportion of dominated solutions in the combined population

before the population converges to the POF. All these observations clearly confirm that

preservation of dominated solutions for diversity promotion through the DFCS strategy is

still beneficial to SPEA/R when handing many objectives.

On the other hand, Fig. 5.19 can also be used to explain why the compared MOEAs

in this work cannot compete with SPEA/R. As shown in this figure, there are at least

50% nondominated solutions in the combined population nearly every generation. Since
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Fig. 5.19 The percentage of dominated solutions in every generation of SPEA/R for 12-
objective WFG5.

HypE, MOEA/D, PICEA-g, NSGA-III, and SPEA2+SDE all prefer nondominated solu-

tions, there is no room for them to preserve dominated but diverse solutions when select-

ing only half of the combined population for next generation. As a consequence, regions

occupied by dominated solutions will be left unexplored, which can cause diversity loss

in the population.

The reason why our observation is inconsistent with the study of [87] in terms of the

proportion of dominated solutions is that, the combined population comprises parent and

offspring members, and there is a close relationship between them. Thus, there are more

dominated members than expected. However, we should be aware that there might be

very few or even no dominated solutions if the number of objectives is considerably large,

e.g., 100. In this case, the DFCS selection strategy may be of limited use.

5.6 Summary

It has been repeatedly reported that conventional Pareto-dominance based MOEAs may

be unsuitable for many-objective optimization, although they can successfully solve two-

or three-objective problems. In this chapter, we have suggested a diversity-first-and-

convergence-second method, i.e., DFCS, for population sorting. DFCS is used to revive

an early SPEA algorithm for handling both MOPs and MaOPs. Through incorporating a

set of predefined reference directions, the proposed algorithm, i.e., SPEA/R, partitions the

objective space into a number of subregions of interest, and individuals in each subregion

are guided along predefined search directions. Unlike most existing MOEAs preferring

nondominatd solutions, SPEA/R adopts the DFCS selection strategy, which can increase

the selection pressure for many-objective optimization where a large fraction of popu-
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lation is nondominated. SPEA/R also employs a restricted mating scheme to improve

reproduction efficiency. Besides, the proposed framework has significantly reduced the

computational effort of SPEA-based methods, providing the overall computational com-

plexity bounded by O(MN2).

Our experimental study has demonstrated the efficacy of SPEA/R on a number of

MOP and WFG test problems with 2 to 40 objectives and various optimization difficulties.

A fair comparison with several state-of-the-art MOEAs suggests that SPEA/R is very

comparative for both multiobjective and many-objective optimization. This implies that

giving high priority to diversity over convergence can be another effective way to handle

many-objective optimization.

Although SPEA/R has provided encouraging performance on the test problems con-

sidered in this work, it needs to be examined on a wider range of problems (e.g., compli-

cated PS and PF shapes). Also, as the research on many-objective optimization is still in

its infancy, there are some open issues remaining to be solved, such as the computation-

ally expensive calculation of performance metrics and visualization of a many-objective

trade-off front. Therefore, these should be very interesting topics for our future work.



Chapter 6

A Test Environment for Dynamic

Multiobjective Optimization

Artificial benchmark problems have played a fundamental role in determining whether

a dynamic MOEA has the ability to solve DMOPs. Furthermore, benchmark problems

contribute to analyzing and identifying the strengths and weaknesses of an MOEA in

order to modify it and improve its performance. However, one of the main issues in

the field of evolutionary dynamic multiobjective optimization (EDMO) is that there is a

lack of effective standard test functions, and a few publications [55, 73, 76, 130, 183]

pointed out that there should be more investigations of DMOPs to promote the research

of EDMO. Such issue is, however, yet to gain as much attention as the fields of static

MOPs [102, 116, 142] and dynamic single-objective optimization problems [13, 37, 40,

69, 96, 111, 118, 133, 161, 173, 183].

Beside the lack of effective and diverse test environments for EDMO, there is little

work on understanding the strengths and weaknesses of MOEAs in dynamic environ-

ments. Without any knowledge of these, it will be hard for researchers and practitioners

to develop effective techniques that can handle DMOPs well.

This chapter makes an attempt to fill the above-mentioned gaps. First, a new test

environment is proposed to facilitate theoretical analysis for EDMO. Then, extensive al-

gorithm comparisons are conducted based on the proposed test suite.

This chapter is organized as follows. Section 6.1 introduce some related work and

the incentive of this research. Section 6.2 presents the proposed test environment, where

details of each test problem are explained and a comparison with other existing test suites

is illustrated. In Section 6.3, algorithm comparisons based on the proposed test suite are

presented. Section 6.4 concludes the chapter and points out future research directions in

EDMO.
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6.1 Introduction

The first research on constructing DMOPs was conducted by Jin and Sendhoff [96], who

proposed to aggregate different objectives of existing static MOPs and vary the weights

dynamically. Later, Farina et al. [55] made a clear classification of DMOPs according

to the possible effects of environmental changes on the PF/PS, and they also considered

several dynamic scenarios that may appear in dynamic environments. Following those

scenarios, they further suggested a test suite of five FDA test functions based on the ex-

isting ZDT [200] and DTLZ [48] test suites of static MOPs. Since then, various dynamic

benchmarks have sprung up in the literature [11, 23, 33, 67, 81, 93, 130].

Analyzing those existing DMOPs, we can observe that most of commonly used

DMOPs are adapted from the ZDT [200] and DTLZ [48] test suites. In other words,

they are the variants of the FDA [55] test problems. As a consequence, they share more

or less same or similar properties (e.g., same objective functions). Furthermore, few have

taken into account the following characteristics: (1) mixed PFs in terms of convexity and

concavity that change over time; (2) complicated diversity-resistant schemes that hinder a

set of diverse solutions; (3) problems that can change between different types during the

evolution; (4) non-monotonic and time-varying relationship between variables instead of

static monotonic variable-linkage used in the literature. The lack of the above-mentioned

characteristics in DMOPs implies that the DMOPs currently used in the literature are not

sufficiently diverse and challenging. Therefore, developing a new set of test functions that

covers those characteristics to compare the performance of DMOAs becomes meaningful

and essential, which is greatly needed in the domain of EDMO.

Based on the understanding of the limitations of current DMOP test problems and

inspired by the works of [48, 55, 82, 200], this work attempts to design a diverse EDMO

test environments in order to facilitate theoretical analysis.

6.2 Proposed Test Suites

6.2.1 The Proposed Benchmark Generator

The proposed benchmark generator is based on the following framework:

JY :























min F(x, t) = ( f1(x, t), f2(x, t))
T

f1(x, t)=(1+g(xII, t))(h(xI)+At sin(Wtπh(xI)))
αt

f2(x, t)=(1+g(xII, t))(1−h(xI)+At sin(Wtπh(xI)))
βt ,

(6.1)



6.2 Proposed Test Suites 123

where 0 ≤ h(xI) ≤ 1, and xI and xII are sub-vectors of the decision vector x. At and Wt

are two parameters to control the local shape of the PF, with At adjusting the curvature

and Wt controlling the number of mixed convex and concave segments on the PF. A large

value of Wt causes the PF to have disconnected regions, while a small value produces a

continuous PF. Here, Wt is recommended to be an integer. αt and βt (αt > 0, βt > 0) are

parameters that control the overall shape of the PF: when αt > 1 and βt > 1 or αt < 1 and

βt < 1, the overall shape is convex or concave, respectively; when αt = βt = 1, the overall

shape is linear; otherwise, the overall shape is mixed. g(xII, t) is a non-negative function,

hindering algorithms from converging towards the true PF. The minimum of g(xII, t) is

zero. Thus, Eq. (6.1) can produce various PF geometries by properly configuring relevant

parameters. Generally, the mathematical description of the continuous PF for Eq. (6.1) is

as follows:

f
1

αt

1 + f
1
βt

2 = 1+2At sin



Wtπ
f

1
αt

1 − f
1
βt

2 +1

2



 , (6.2)

where the values of At and Wt must enable Eq. (6.1) to be a continuous PF. To have a

better understanding of the proposed generator, we denote F1 = αt
√

f1− βt
√

f2 and F2 =
αt
√

f1 +
βt
√

f2. This means that a clockwise rotation with an angle π/4 is made from the

current coordinate axis. Then, Eq. (6.2) can be rewritten as:

F2 = 1+2At sin

(

Wtπ
F1 +1

2

)

, (6.3)

where a sine wave is described if Wt 6= 0 and At 6= 0. Thus, the proposed generator has

a wave-like geometry, containing both concave and convex regions. Figure 6.1 illustrates

examples of PFs of JY with linear and non-linear overall shapes.

6.2.2 Test Instances

In this work, we concentrate on h(xI) = x1, although we recognize that movement across

the PF can be achieved by adjusting a number of variables, i.e., the use of rotation matrices

for h(xI) and the normalization of h(xI). Below, we provide ten benchmark instances with

detailed information for a number of types of changes in the environment.

JY 1, as shown in Eq. (6.4), is a Type I problem, where the PS changes over time in

a regular pattern, with xi = G(t), ∀xi ∈ xII. It mainly tests the convergence speed and

reactivity of an algorithm, and fast-convergence algorithms can easily solve this problem.

The control of processing plants [81], where the PS varies in different time-dependent sce-

narios and controllers are required to have a fast response speed, can be a corresponding
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Fig. 6.1 PFs of JY with different overall shapes: (a) αt = βt = 1, At = 0.1, and Wt = 3; (b)
αt = βt = 1, At = 0.05, and Wt = 6; (c) convex or concave overall shapes with At = 0.05
and Wt = 6; (d) mixed overall shapes with At = 0.05 and Wt = 6.

real-world application of JY 1.

JY 1:






















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





























min F(x, t) = ( f1(x, t), f2(x, t))
T

f1(x, t) = (1+g(xII, t))(x1+At sin(Wtπx1))

f2(x, t) = (1+g(xII, t))(1− x1+At sin(Wtπx1))

g(xII, t) = ∑xi∈xII
(xi−G(t))2,G(t) = sin(0.5πt)

At = 0.05, Wt = 6

xI = (x1) ∈ [0,1],xII = (x2, ...,xn) ∈ [−1,1]n−1.

(6.4)

JY 2, as shown in Eq. (6.5), is a Type II problem with dynamic PFs and PSs. The PS

changes over time, and the objective vector oscillates among several modes. As a result,

the PF, as illustrated in Fig. 6.2, changes its shape over time (refer to Eq. (6.2)). A similar

real-world application is the electric power supply problem [104], where the objective
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Fig. 6.2 PF of JY 2 with 21 time windows varying from 0 to 2. For a better visualization,
f1 +2t and f2 +2t are shown on the x and y axes, respectively.

functions oscillate among several optimization modes, resulting in the change of optimal

solutions in real time.

JY 2:


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


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








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





min F(x, t) = ( f1(x, t), f2(x, t))
T

f1(x, t) = (1+g(xII, t))(x1+At sin(Wtπx1))

f2(x, t) = (1+g(xII, t))(1− x1+At sin(Wtπx1))

g(xII, t) = ∑xi∈xII
(xi−G(t))2,G(t) = sin(0.5πt)

At = 0.05,Wt = ⌊6sin(0.5π(t−1))⌋

xI = (x1) ∈ [0,1],xII = (x2, ...,xn) ∈ [−1,1]n−1.

(6.5)

JY 3, as shown in Eq. (6.6), introduces time-varying non-monotonic dependencies

between any two decision variables, which is close to real-world problems like the

greenhouse system [165]. The PF of JY 3 is similar to that of JY 2, and the PS is

y1 = |x1sin((2α + 0.5)πx1)|, α = ⌊100sin2(0.5πt)⌋, yi =
√

yi−1, i = 2, ...,n, meaning

that each variable has different amount of change.

JY 3:


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






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
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
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
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
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



















min F(x, t) = ( f1(x, t), f2(x, t))
T

f1(x, t) = (1+g(xII, t))(y1+At sin(Wtπy1))

f2(x, t) = (1+g(xII, t))(1− y1+At sin(Wtπy1))

g(xII, t) = ∑xi∈xII
(y2

i − yi−1)
2,A(t) = 0.05

Wt = ⌊6sin(0.5π(t−1))⌋,α = ⌊100sin2(0.5πt)⌋

y1 = |x1 sin((2α +0.5)πx1)|,yi = xi, i = 2, ...,n

xI = (x1) ∈ [0,1],xII = (x2, ...,xn) ∈ [−1,1]n−1.

(6.6)
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Fig. 6.3 PS of JY 3 for the first two variables with 6 time windows varying from 0 to 0.5.
For a better visualization, x1 and x2 + t are shown on the x and y axes, respectively.

The PS for variables x1 and x2 is shown in Fig. 6.3, where the dependency between these

two variables is non-monotonic and becomes increasingly complicated as time elapses.

Furthermore, the density of solutions also changes over time. Therefore, JY 3 not only

assesses the effect of variable-linkage but also tests the diversity performance of an algo-

rithm in a dynamic environment.

JY 4, as shown in Eq. (6.7), is constructed to have a time-changing number of discon-

nected PF segments, which is the case with hydro-thermal power scheduling [44] where

the PF is discontinuous. This problem may pose challenges to some algorithms to find all

the PF components. As illustrated in Fig. 6.4, the PF of JY 4 is subject to the definition of

Eq. (6.2), but has a number of disconnected segments. The PS is xi = G(t), ∀xi ∈ xII.

JY 4:






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
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


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


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












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





min F(x, t) = ( f1(x, t), f2(x, t))
T

f1(x, t) = (1+g(xII, t))(x1+At sin(Wtπx1))

f2(x, t) = (1+g(xII, t))(1− x1+At sin(Wtπx1))

g(xII, t) = ∑xi∈xII
(xi−G(t))2,G(t) = sin(0.5πt)

At = 0.05, Wt = 101+|G(t)|

xI = (x1) ∈ [0,1],xII = (x2, ...,xn) ∈ [−1,1]n−1.

(6.7)

Contrary to the above problems, JY 5 (as shown in Eq. (6.8)) does not have a mixed

PF and is a Type III problem. Its PF is very simple and changes from convex geometry

to concave geometry. The PF is defined in Eq. (6.2) and illustrated in Fig. 6.5. A similar

real-life problem that has changing PF shapes can be referred to the route guidance system

[168].
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Fig. 6.4 PF of JY 4 with 11 time windows varying from 0 to 2. For a better visualization,
f1 + t and f2 + t are shown on the x and y axes, respectively.
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Fig. 6.5 PF of JY 5 with 21 time windows varying from 0 to 2.

JY 5:


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
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





min F(x, t) = ( f1(x, t), f2(x, t))
T

f1(x, t) = (1+g(xII, t))(x1+At sin(Wtπx1))

f2(x, t) = (1+g(xII, t))(1− x1+At sin(Wtπx1))

g(xII, t)=∑xi∈xII
x2

i ,At= 0.3sin(0.5π(t−1)),Wt= 1

xI = (x1) ∈ [0,1],xII = (x2, ...,xn) ∈ [−1,1]n−1.

(6.8)

The above-generated instances are all unimodal, and they are not sufficiently chal-

lenging. In contrast, JY 6 is a multimodal problem, where not only the number of local

optima changes over time, but also the PS is dynamically shifted. The PF of JY6 remains

stationary, and its PS is xi = G(t), ∀xi ∈ xII.
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JY 6:
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





min F(x, t) = ( f1(x, t), f2(x, t))
T

f1(x, t) = (1+g(xII, t))(x1+At sin(Wtπx1))

f2(x, t) = (1+g(xII, t))(1− x1+At sin(Wtπx1))

g(xII, t) = ∑xi∈xII
(4y2

i − cos(Ktπyi)+1)

At = 0.1, Wt = 3,Kt = 2∗ ⌊10∗ |G(t)|⌋

G(t) = sin(0.5πt),yi = xi−G(t), i = 2, ...,n

xI = (x1) ∈ [0,1],xII = (x2, ...,xn) ∈ [−1,1]n−1.

(6.9)

JY 7 takes into account the shift of PS, multimodality, and the overall shape of the

PF. Different from JY 6, the number of local optima in JY 7 remains fixed, and the overall

PF shape can be concave or convex due to environmental changes. The PS is xi = G(t),

∀xi ∈ xII, and the PF is mathematically described in Eq. (6.2) and similarly illustrated in

Fig. 6.1(c). A multimodal real-world problem similar to JY 7 can be the dynamic speed

reducer design [180, 191].

JY 7:
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











min F(x, t) = ( f1(x, t), f2(x, t))
T

f1(x, t) = (1+g(xII, t))(x1+At sin(Wtπx1))
αt

f2(x, t) = (1+g(xII, t))(1− x1+At sin(Wtπx1))
βt

g(xII, t) = ∑xi∈xII
(y2

i −10cos(2πyi)+10)

At = 0.1,Wt = 3,αt = βt = 0.2+2.8∗ |G(t)|

G(t) = sin(0.5πt),yi = xi−G(t), i = 2, ...,n

xI = (x1) ∈ [0,1],xII = (x2, ...,xn) ∈ [−1,1]n−1.

(6.10)

JY 8:


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
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
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
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





min F(x, t) = ( f1(x, t), f2(x, t))
T

f1(x, t) = (1+g(xII, t))(x1+At sin(Wtπx1))
αt

f2(x, t) = (1+g(xII, t))(1− x1+At sin(Wtπx1))
βt

g(xII, t) = ∑xi∈xII
x2

i ,G(t) = sin(0.5πt)

At = 0.05,Wt = 6,αt =
2
βt
,βt = 10−9.8∗ |G(t)|

xI = (x1) ∈ [0,1],xII = (x2, ...,xn) ∈ [−1,1]n−1.

(6.11)

In JY 8 (see Eq. (6.11)), the PS remains static, but the PF changes over time. The

dynamism of JY 8 lies in the change of its overall PF shape, in which the geometry and
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Fig. 6.6 PF of JY 8 with 11 time windows varying from 0 to 1. For a better visualization,
f1 +2t and f2 +2t are shown on the x and y axes, respectively.

the number of mixed segments of the PF vary over time. The PF is defined in Eq. (6.2)

and illustrated in Fig. 6.6.

The first three types of change can be easily realized when constructing test func-

tions, and they have been widely reported in the literature. However, many real-world

optimization problems with dynamic characteristics, e.g., the controller selection for dy-

namic plants [81], may jump between types. To the best of our knowledge, none of this

kind of test function has been introduced into the family of DMOPs. In this work, we

propose such a problem that cyclically switches from Type I to Type II, then to Type III.

Technically, this kind of problem is macroscopically a Type II problem from the perspec-

tive of the whole period of changes. Despite that, we would refer to this kind of change as

the Mixed Type from a microscopic angle, which can help us to analyze the performance

of algorithms on a problem with changing types. This type of problem can be formulated

as follows:

JY 9:
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
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





min F(x, t) = ( f1(x, t), f2(x, t))
T

f1(x, t) = (1+g(xII, t))(x1+At sin(Wtπx1))

f2(x, t) = (1+g(xII, t))(1− x1+At sin(Wtπx1))

g(xII, t)= ∑
xi∈xII

(xi+σ−G(t))2,G(t)= |sin(0.5πt)|

At = 0.05, Wt = ⌊6sinσ (0.5π(t−1))⌋, σ ≡ ⌊ τ
τtρt
⌋ (mod 3)

xI = (x1) ∈ [0,1],xII = (x2, ...,xn) ∈ [−1,1]n−1,

(6.12)

where ρt represents the frequency of type change, and is suggested as ρt = 5, meaning

that the current type lasts 5 time windows. If σ = 0, JY 9 is a Type I problem, and the PS

is xi = G(t), ∀xi ∈ xII, the PF is referred to Eq. (6.2) and similar to Fig. 6.1(b). If σ = 1,
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Fig. 6.7 PF of JY 9 with 12 time windows varying from: (a) 0.5 to 1; (b) 1 to 1.5. For a
better visualization, f1 +2t and f2 +2t are shown on the x and y axes, respectively.

JY 9 belongs to Type II, where the PS is xi = G(t)−1, ∀xi ∈ xII, and the PF is referred to

Eq. (6.2) and illustrated in Fig. 6.7(a). If σ = 2, JY 9 is a Type III problem with the PS

being xi = −1, ∀xi ∈ xII, and the PF not being Eq. (6.2) since g(xII, t) 6= 0. In this case,

the minimum of g(xII, t) is g∗(t) = (n−1)(1−G(t))2. Thus, the PF is:

f1 + f2 = (1+g∗(t))(1+2At sin(Wtπ(
f1− f2

2(1+g∗(t))
+

1
2
))), (6.13)

where the PF is illustrated in Fig. 6.7(b).

To increase the flexibility of type changes, that is, the problem can be any type after a

type change, we introduce a more challenging problem as follows:

JY 10:
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









min F(x, t) = ( f1(x, t), f2(x, t))
T

f1(x, t) = (1+g(xII, t))(x1+At sin(Wtπx1))
αt

f2(x, t) = (1+g(xII, t))(1−x1+At sin(Wtπx1))
βt

g(xII, t)= ∑
xi∈xII

(xi+σ−G(t))2,G(t)= |sin(0.5πt)|

A(t) = 0.05, W (t) = 6

αt = βt = 1+σG(t),σ ≡ (⌊ τ
τtρt
⌋+R) (mod 3)

xI = (x1) ∈ [0,1],xII = (x2, ...,xn) ∈ [−1,1]n−1,

(6.14)

where JY 10 is almost defined the same as JY 9, however, in addition to two time-

dependent parameters αt and βt that control the simple overall PF shape, JY 10 introduces

a random integer R ∈ [1,3] to switch the problem into a random type of change every ρt

time windows. This randomness makes the test problem hard to optimize. The PS of
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JY 10 is the same as that of JY 9, but the PF is a little different, which is defined as:

f
1

αt

1 + f
1
βt

2 = (1+g∗(t))(1+2At sin(Wtπ(
f

1
αt

1 − f
1
βt

2

2(1+g∗(t))
+

1
2
))), (6.15)

where g∗(t) is defined the same as in JY 9, and the PF is similar to that of JY 9 (as illustrated

in Eq. (6.13)) except that there are two more time-varying parameters, i.e., αt and βt , in

Eq. (6.15). When JY 10 is in Type III (σ = 2), the PF not only has a time-varying overall

shape, but also shifts over time because of the time-changing value of g∗(t). Due to the

stochastic nature of change, it is not possible to draw the actual time-changing PFs of

JY 10.

In total, ten test instances are developed in this chapter. In practice, more complicated

benchmark problems can be generated by further varying parameters At , Wt , αt , or βt over

time.

6.2.3 Comparion with Other Benchmarks

Table 6.1 presents a comparison between some existing test suites and the proposed one,

where the main characteristics of each test suite are briefly tabulated. On the basis of the

comparison, we would like to highlight the following features of the JY test suite:

1. The JY test suite introduces a new type of change, i.e., Mixed Type, to help classify

DMOPs. Correspondingly, two Mixed Type instances are included in this test suite.

2. In addition to sharing some common PF properties, most of the JY instances have

mixed convex/concave components on the PF, and the number of mixed compo-

nents is controllable and can be time-changing.

3. There is a JY problem with nonlinear, time-varying and non-monotonic variable

linkages, while variable linkages in other test suites, e.g., UDF and ZJZ, are mono-

tonic, which may be easy to crack by hill-climbing methods.

4. JY develops a problem with random changes on the problem type, that is, the prob-

lem can be any types when a change occurs.

5. JY includes a problem with time-varying multimodality. This means the difficulty

of the problem changes over time due to the changing number of local optima.

6. JY problems are newly developed whereas many existing DMOPs are adapted from

their static counterparts or from the FDA test suite.
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Table 6.1 Comparison of characteristics involved in some existing test suites for EDMO

Test Suite Problem Type PF Geometry
Variable
linkage

Randomness Other Features Origination

FDA[55]
Type I,
Type II,
Type III

continuous, concave, convex,
time-varying curvature
and/or location

no no unimodal
ZDT[200],
DTLZ[48]

dMOP[61]
Type I,
Type II,
Type III

continuous, convex,
time-varying curvature

no
random selection
of diversity-related
variables for dMOP3

unimodal FDA[55]

DSW[130] Type II
continuous, convex,
time-varying location

no no
unimodal,
disconnected PS

Schaffer[149]

DIMP[105] Type I continuous, concave, convex no no
unimodal, multimodal,
variables have different
amount of change

ZDT[200]

T[81]
Type III,
Type IV

continuous, concave, convex no no
unimodal, multimodal,
time-varing number
of objectives/variables

DTLZ[48]

HE[76] Type III
continuous, discontinous,
time-varying curvature

static and
nonlinear linkage

no
unimodal, multimodal,
isolated, deceptive

ZDT[200],
LZ[120],
WFG[82]

UDF[11]
Type II,
Type III

continuous, discontinuous,
time-varying curvature
and/or location

nonlinear, time-varying
and monotonic linkage

random selection of
PF variations for
UDF9 and UDF10

unimodal, multimodal,
variables have different
amount of change

UF[193]

ZJZ[197] Type II
continuous,
time-varying curvature

nonlinear, time-varying
and monotonic linkage

no unimodal FDA[55]

JY

Type I,
Type II,
Type III,
Mixed Type

mixed PF components,
continuous, discontinuous,
time-varying curvature
and/or location

nonlinear, time-varying
and non-monotonic
linkage

random selection
of problem types
for JY10

unimdal, multimodal,
time-varying multimodality,
variables have different
amount of change

New
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6.2.4 Discussions

Changing factors in real-world applications vary from problem to problem. Generally

speaking, changing factors can be objective functions, decision variables, time-linkage,

constraints, switch-mode changes, as revealed by the survey in [133]. As a consequence,

real-life problems present various dynamic characteristics, such as time-changing PS

and/or PF, disconnectivity, multimodality, undetectability, periodicity, and predictability.

On the other hand, it is often hard or even impossible to use only a few artificial bench-

marks to simulate all dynamic real-life problems as problems have a variety of mathe-

matical definitions. Therefore, in our work, the JY test problems are mainly aimed to

imitate several representative dynamics of real-world applications instead of defining sim-

ilar mathematical formulations, and these test problems have some dynamic properties in

common with the referenced real-world examples.

Although there is a lack of clear link that to what extent test problems reflect real-

world scenarios, it is not trivial to use these test problems to test and improve the perfor-

mance of MOEAs. After all, what if these test problems appear in real-world applications

and algorithms struggle to handle them? In this sense, the test problems can serve as a

useful tool to identify strengths and weaknesses of algorithms before these algorithms

can be applied to real-world DMOPs. Nevertheless, the test problems are far from being

realistic, and it is necessary to further investigate their relation to real-world applications.

6.3 Experimental Studies

6.3.1 Performance Metrics

Performance metrics are of great importance to assessing MOEAs. The averaged IGD

[196] is widely used for performance assessment in EDMO. Beside this indicator, we

develop several new EDMO performance metrics based on existing static metrics. The

following is devoted to detailing these new metrics.

6.3.1.1 Averaged Spacing

The spacing (S) metric [150] is an important indicator for quantifying algorithms’ per-

formance in static multiobjective optimization. However, it has not been employed for

dynamice multiobjective optimization. A method of extending the S metric to examine

the performance of algorithms for DMOPs is to define the average S metric over all time

steps in a run:

S =
1
Ts

Ts

∑
t=1

S(t), (6.16)
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Fig. 6.8 An example of the obtained PF∗ far from the PF .

where S(t) refers to the S metric at time instance t and is calculated just before the next

change occurs, and Ts is the number of time steps.

6.3.1.2 Maximum Spread

The maximum spread (MS), first introduced by Zitzler et al. [200], measures to what

extent the extreme members in the true PF have been reached. Goh and Tan [60] proposed

a modified version of MS by taking into account the proximity of PF∗ towards PF (see

Eq. (2.11)).

A large value of MS indicates a good spread of PF∗, and MS will have a value of

one when PF∗ covers the whole PF [60]. Sometimes, however, a high MS value can be

deceptive. Figure 6.8 gives such an example, where PF∗ is far from PF , and MS equals

one since min[PFk,PF∗k ] is smaller than max[PFk,PF∗k ] in Eq. (2.11), k = 1,2. In this case,

the maximum spread is not justifiable and may cause a misleading understanding of the

approximation PF∗. For this reason, we propose a revised maximum spread (RMS) as

follows:

RMS =

√

√

√

√

1
M

M

∑
k=1

[

µL([PF∗k ,PF∗k ]
⋂

[PFk,PFk])

µL([PFk,PFk])

]2

, (6.17)

where µL(A) represents the Lebesgue measure [98] of the set A. Let us consider again

the example illustrated in Fig. 6.8, by computing RMS, we can get RMS=0. This is

reasonable since PF∗ does not converge well, not to mention spread widely over the PF .

In order to apply the RMS metric to evaluate the performance of algorithms for

DMOPs, an alternative method is to calculate the average of the RMS values over Ts

time steps:

RMS =
1
Ts

Ts

∑
t=1

RMS(t), (6.18)

where RMS(t) represents the RMS value at time instance t.
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Fig. 6.9 Illustration of performance measure against time.

6.3.1.3 Robustness

In dynamic environments, it is desirable to make algorithms as robust as possible. In

other words, algorithms must be able to resist changes and be immune to an amount of

uncertainty and perturbation. There have been some studies on robustness performance

for dynamic optimization [57, 97], showing that robustness is a quite important goal in

dynamic environments. Besides, many existing performance measures are adapted from

their static counterparts and may not be suitable for dynamic environments. For example,

suppose that PMt (the smaller, the better) is a performance measure of population Pt at

time t, the average value of PMt over some time steps in a run is commonly used in dy-

namic optimization [61, 124, 196, 197]. As a compact form of assessment, average values

are helpful for measuring algorithms’ performance, but it can not reflect the robustness

performance. As illustrated in Fig. 6.9, the dashed and solid curves respectively represent

the performance of two algorithms. Both algorithms have the same or similar average

values in terms of PMt , but the dashed is more robust than the other one, thus it is clear

that the dashed achieves better performance on PMt .

In this work, the robustness of an algorithm on PMt can be defined as:

R(PM) =

√

√

√

√

1
Ts−1

Ts

∑
t=1

(PMt−PM)2, (6.19)

where R(PM) denotes the robustness of the metric PM over Ts time steps and PM is the

average of PM values over Ts time steps, i.e., PM = ∑
Ts

t=1 PMt/Ts. A smaller value of

R(PM) indicates a better robustness performance on the PM metric. Note that, PM can

be any unary performance metric pertinent to the multiobjective optimization goals of

proximity, diversity and distribution. With this definition of robustness, in Fig. 6.9, the
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dashed algorithm will achieve better performance than the solid one in terms of robustness

on the performance measure PMt .

6.3.2 Compared Algorithms and Parameter Settings

This work considers six MOEAs from the literature and compares their performance on

the proposed test suite to assess the property and difficulty of these benchmark functions.

These algorithms are classified into two groups. The first group includes four well-known

dynamic MOEAs: dynamic multi-objective particle swarm optimization (DMOPSO) al-

gorithm [110], dynamic non-dominated sorting genetic algorithm II (DNSGA-II) [44],

dynamic competitive-cooperative coevolutionary algorithm (dCOEA) [61], and popula-

tion prediction strategy (PPS) [196]. Each algorithm in this group has a mechanism of

dealing with dynamism for dynamic optimization. Note that, there are two versions of

DNSGA-II, and DNSGA-II with randomly created solutions whenever a change occurs

is adopted here. The second group includes two classic MOEAs: strength pareto evo-

lutionary algorithm II (SPEA2) [202] and MOEA based on decomposition (MOEA/D)

[188], and they are high-performance algorithms for static multiobjective optimization.

To handle dynamic environments, the algorithms of this group adopt the following strat-

egy in our experiments: 10% randomly selected population members are re-evaluated for

change detection, and the restart scheme is employed for change response. The parameter

settings for all the tested algorithms are inherited from the referenced papers.

The experiments were conducted at different combinations of change severity levels

and frequencies, i.e., (nt ,τt)=(5,10), (10,10) and (10,5). To guarantee the fairness for all

the tested algorithms, the total number of changes for problems JY 1−JY 10 was set to 20

during the evolution. Besides, 100 more generations were given to each algorithm before

the first change to minimize the potential effect of static optimization. Thus, the total

number of generations for running an algorithm was 100+ 20τt . For each problem, the

number of decision variables was set to 10, and each tested algorithm, with a population

size of 100, was executed 30 runs, and the experimental results were recorded. The ex-

perimental comparison employs SP, RMS, IGD, and R(PM) as the performance metrics,

and the IGD metric is selected as the indicator PM for the robustness metric. That is, we

use R(IGD) to reflect the robustness performance of MOEAs for EDMO. Furthermore,

for the computation of the IGD metric, 500 uniformly-distributed points (using the kth

nearest neighbour truncation method [202]) were sampled from the true PF at each time

step.
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6.3.3 Experimental Results

The experimental results reported in Tables 6.2 to 6.5 are the average values, standard

errors and individual ranks of four performance metrics, where the best results are high-

lighted in boldface. For each test instance and each algorithm, we conducted the Wilcoxon

rank-sum test [79] at the 0.05 significance level to judge whether the results of a studied

algorithm are significantly different from another compared algorithms. An algorithm

that outperforms most of the competitors will rank the first, and the one that outperforms

the least will be assigned the worst rank. In the case that several algorithms outperform

the same number of other algorithms, they share the same rank. The rank of each algo-

rithm for each test case is written in the tables in the superscript style. The last row of

each table presents the average rank of all the algorithms over the entire test cases.

Table 6.2 presents the S values of the algorithms for instances JY 1− JY 10. It can be

clearly observed from the table that, in most cases, dCOEA and MOEA/D maintain the

best population diversity. This performance may be attributed to the fact that, dCOEA

employs a multi-population strategy to keep diversity during the search and introduces

stochastic competitors to increase diversity when a change occurs, while MOEA/D al-

ways keeps a set of well-diversified subproblems regardless of environmental changes.

Both schemes are able to maintain a high level of population diversity for handling dy-

namic environments. It is not surprising that DNSGA-II achieves good diversity perfor-

mance for instances JY 5 and JY 8 because their PS remains stationary. In this case, the

optimization task is to adjust the distribution of solutions on the time-varying PFs, and

since this algorithm adopts the crowding distance to maintain a good distribution of so-

lutions on the PF, it is able to achieve good S values on these two instances. Besides,

DNSGA-II also performs the best in solving JY 3, showing its effectiveness in handling

strong dependencies between variables.

Table 6.2 also reveals the poor performance of DMOPSO and SPEA2 on the test cases.

The following factors may be used to explain their ineffectiveness: (1) when the envi-

ronment changes, DMOPSO only updates particles’ memory and SPEA2 does nothing

except restarting the optimization procedure, neither of them handles population diver-

sity; (2) DMOPSO uses niche sharing to penalize crowded regions and SPEA2 use the

k-th nearest neighbour density estimation technique to truncate redundant non-dominated

solutions. However, if there are not enough solutions in the archive, these diversity main-

tenance techniques may not be effective to keep a set of uniformly distributed solutions;

(3) the environmental changes may be too fast, which does not give DMOPSO and SPEA2

enough time to converge towards the moving PFs. The average rank in the last row of the

table further confirms that dCOEA and MOEA/D outperform other algorithms in finding

a diverse solution set.
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Table 6.2 Mean S metric values, standard deviations and individual ranks for benchmarks JY 1− JY 10

Prob. (nt ,τt ) DMOPSO DNSGA-II PPS dCOEA SPEA2 MOEA/D

(5,10) 2.2115E-1(4.3181E-2)(5) 3.0053E-1(8.4264E-2)(6) 9.0481E-2(2.1140E-2)(3) 3.4435E-2(5.7330E-3)(1) 1.5994E-1(2.4313E-2)(4) 3.5696E-2(1.4402E-2)(2)

JY1 (10,10) 1.1300E-1(1.3754E-2)(5) 7.7553E-2(1.3524E-2)(4) 6.9667E-2(3.7147E-2)(3) 3.5201E-2(3.3871E-3)(1) 1.5725E-1(2.7141E-2)(6) 3.6545E-2(1.0309E-2)(2)

(10,5) 1.7068E-1(2.0702E-2)(4) 1.6201E-1(2.5580E-2)(3) 1.8589E-1(7.2232E-2)(5) 7.3354E-2(2.3643E-2)(2) 4.7084E-1(8.4109E-2)(6) 4.9500E-2(1.8202E-2)(1)

(5,10) 2.5414E-1(4.7194E-2)(5) 2.8999E-1(6.2836E-2)(6) 9.4642E-2(2.5067E-2)(3) 3.1899E-2(4.2768E-3)(1) 1.5662E-1(2.8437E-2)(4) 7.6892E-2(2.9605E-2)(2)

JY2 (10,10) 1.0570E-1(1.6203E-2)(5) 7.3577E-2(1.0402E-2)(4) 5.8400E-2(3.7087E-2)(3) 3.0149E-2(7.0852E-3)(1) 1.5497E-1(1.8478E-2)(6) 5.6367E-2(2.0744E-2)(2)

(10,5) 1.6693E-1(2.3111E-2)(4) 1.4708E-1(2.6310E-2)(3) 1.7542E-1(6.2242E-2)(4) 6.0333E-2(2.0225E-2)(2) 4.4891E-1(4.9997E-2)(6) 5.1339E-2(2.5281E-2)(1)

(5,10) 1.6121E+0(5.8397E-1)(6) 2.7795E-1(2.5869E-1)(1) 9.1244E-1(6.1568E-1)(4) 3.4565E-1(2.7870E-1)(2) 9.4053E-1(1.6043E-1)(5) 3.5185E-1(1.3527E-1)(2)

JY3 (10,10) 1.5851E+0(5.3717E-1)(6) 1.2822E-1(1.4974E-1)(1) 1.1067E+0(6.2737E-1)(5) 4.5379E-1(3.4603E-1)(3) 9.1987E-1(1.4254E-1)(4) 3.4869E-1(1.1914E-1)(2)

(10,5) 1.7713E+0(6.8890E-1)(4) 2.7044E-1(2.5630E-1)(1) 1.8411E+0(1.1272E+0)(4) 5.8129E-1(3.9429E-1)(3) 2.1558E+0(5.0641E-1)(6) 5.5521E-1(2.4389E-1)(2)

(5,10) 1.5992E+0(3.1996E-1)(6) 1.9757E-1(3.7545E-2)(4) 2.0596E-1(4.8453E-2)(5) 1.8777E-1(7.5667E-2)(3) 1.6214E-1(1.5659E-2)(2) 1.1217E-2(9.8391E-3)(1)

JY4 (10,10) 8.9479E-1(2.8350E-1)(6) 8.5118E-2(2.7838E-2)(2) 1.2354E-1(3.8062E-2)(3) 1.3199E-1(4.1564E-2)(4) 1.8082E-1(1.8060E-2)(5) 9.8490E-3(3.9175E-3)(1)

(10,5) 7.1210E-1(2.3538E-1)(6) 1.8808E-1(5.9123E-2)(3) 1.7271E-1(7.2708E-2)(2) 2.1283E-1(7.1460E-2)(4) 3.1718E-1(3.6567E-2)(5) 2.0509E-2(9.7608E-3)(1)

(5,10) 1.0915E-1(3.2658E-3)(6) 1.0189E-2(8.6466E-4)(1) 5.1189E-2(3.6838E-2)(4) 1.6717E-2(1.4872E-3)(2) 9.4649E-2(1.2576E-2)(5) 3.9316E-2(1.1992E-2)(3)

JY5 (10,10) 7.4534E-2(2.5147E-2)(5) 1.1924E-2(4.4726E-3)(1) 5.2573E-2(3.0670E-2)(4) 1.6566E-2(1.1316E-3)(2) 8.8768E-2(1.5110E-2)(6) 3.4718E-2(1.1565E-2)(3)

(10,5) 1.3024E-1(2.8187E-2)(4) 1.5551E-2(1.0621E-2)(1) 1.5845E-1(1.9475E-2)(5) 3.2323E-2(4.5466E-3)(2) 1.9331E-1(2.6183E-2)(6) 5.3093E-2(2.0056E-2)(3)

(5,10) 2.3786E+0(3.6653E-1)(6) 2.2028E+0(4.8599E-1)(5) 1.2026E+0(8.5695E-2)(4) 3.7838E-1(2.0813E-1)(2) 1.1728E+0(1.4320E-1)(3) 1.7892E-2(8.1106E-3)(1)

JY6 (10,10) 1.5829E+0(2.3463E-1)(5) 1.8823E+0(4.0778E-1)(6) 1.2046E+0(1.8651E-1)(3) 3.1709E-1(1.3053E-1)(2) 1.2099E+0(1.5283E-1)(4) 2.1475E-2(1.6156E-2)(1)

(10,5) 1.8280E+0(2.4787E-1)(4) 2.3224E+0(6.4197E-1)(5) 1.5387E+0(3.0404E-1)(3) 9.2784E-1(4.8779E-1)(2) 2.4235E+0(3.9681E-1)(6) 2.1836E-2(1.6212E-2)(1)

(5,10) 5.2149E+0(6.8540E-1)(6) 3.7440E+0(6.1899E-1)(5) 3.6775E+0(3.6788E-1)(4) 4.2160E-1(3.3697E-1)(1) 1.6964E+0(2.6702E-1)(2) 2.0636E+0(5.6442E-1)(3)

JY7 (10,10) 5.3287E+0(7.7166E-1)(6) 2.8484E+0(5.7687E-1)(4) 3.6382E+0(3.0270E-1)(5) 2.6136E-1(1.2485E-1)(1) 1.6639E+0(2.5295E-1)(3) 1.1806E+0(5.5606E-1)(2)

(10,5) 5.3969E+0(6.4479E-1)(6) 3.6371E+0(6.7081E-1)(4) 4.2909E+0(4.4701E-1)(5) 7.1534E-1(3.0057E-1)(2) 3.3671E+0(4.1572E-1)(3) 6.0389E-1(4.2520E-1)(1)

(5,10) 1.5464E-1(3.1713E-2)(5) 1.0843E-2(1.5233E-3)(1) 5.3281E-2(1.8849E-2)(4) 1.8058E-2(2.6451E-3)(2) 1.9474E-1(3.4346E-2)(6) 3.8355E-2(1.1226E-2)(3)

JY8 (10,10) 1.4694E-1(2.8485E-2)(5) 1.4780E-2(8.9017E-3)(1) 3.8167E-2(2.5342E-2)(4) 2.0867E-2(3.1221E-3)(2) 1.8539E-1(3.4419E-2)(6) 3.5295E-2(9.3868E-3)(3)

(10,5) 2.3745E-1(3.9448E-2)(5) 2.1189E-2(1.7770E-2)(1) 9.8063E-2(2.3370E-2)(4) 3.4647E-2(5.9556E-3)(2) 5.6375E-1(1.0371E-1)(6) 6.8335E-2(2.0631E-2)(3)

(5,10) 5.4384E-1(1.1455E-1)(5) 6.9630E-1(1.6179E-1)(6) 3.6902E-1(6.0664E-2)(4) 6.0311E-2(1.4386E-2)(2) 1.4644E-1(1.9297E-2)(3) 3.7047E-2(1.2077E-2)(1)

JY9 (10,10) 3.7622E-1(7.4034E-2)(5) 3.6938E-1(1.0053E-1)(5) 2.4072E-1(3.6293E-2)(4) 2.9119E-2(3.9191E-3)(2) 1.5110E-1(2.4794E-2)(3) 3.4303E-2(1.1667E-2)(1)

(10,5) 4.0103E-1(1.0485E-1)(5) 3.1714E-1(5.6264E-2)(3) 3.2785E-1(4.5412E-2)(4) 1.0499E-1(7.0416E-2)(2) 4.7488E-1(5.2222E-2)(6) 4.2714E-2(2.0723E-2)(1)

(5,10) 6.0150E-1(2.0020E-1)(6) 3.2654E-1(1.3470E-1)(3) 3.3913E-1(4.7806E-2)(4) 4.7730E-2(1.7151E-2)(1) 2.4936E-1(8.0549E-2)(2) 3.9099E-1(1.8213E-1)(5)

JY10 (10,10) 4.1814E-1(2.2511E-1)(6) 3.4747E-1(3.0096E-1)(4) 2.6679E-1(4.4989E-2)(2) 4.1091E-2(1.2047E-2)(1) 2.6268E-1(1.1449E-1)(2) 3.9584E-1(1.2693E-1)(5)

(10,5) 6.0456E-1(2.0783E-1)(5) 4.8471E-1(2.3782E-1)(4) 3.8023E-1(4.5400E-2)(3) 1.6459E-1(1.1568E-1)(1) 7.0212E-1(2.4336E-1)(6) 3.2560E-1(2.4470E-1)(2)

rank 6 3 4 1 5 2
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Table 6.3 Mean RMS metric values, standard deviations and individual ranks for benchmarks JY 1− JY 10

Prob. (nt ,τt ) DMOPSO DNSGA-II PPS dCOEA SPEA2 MOEA/D

(5,10) 1(0)(1) 9.9999E-1(3.2465E-7)(2) 9.9912E-1(3.5339E-4)(3) 9.5816E-1(9.8363E-3)(6) 9.9909E-1(5.9294E-4)(4) 9.7922E-1(8.1579E-3)(5)

JY1 (10,10) 1(0)(1) 9.9987E-1(3.5809E-4)(2) 9.9906E-1(4.1814E-4)(4) 9.6271E-1(1.1780E-2)(6) 9.9917E-1(5.0906E-4)(3) 9.7800E-1(7.7631E-3)(5)

(10,5) 1(0)(1) 9.9998E-1(5.3940E-4)(2) 9.9566E-1(2.0018E-3)(3) 9.5815E-1(1.2602E-2)(5) 9.9303E-1(1.9295E-3)(4) 9.5034E-1(1.3157E-3)(6)

(5,10) 1(0)(1) 9.9995E-1(1.6266E-4)(2) 9.9900E-1(2.6726E-4)(3) 9.5975E-1(1.0485E-2)(6) 9.9811E-1(4.4254E-4)(4) 9.7528E-1(9.6337E-3)(5)

JY2 (10,10) 1(0)(1) 9.9978E-1(4.3952E-4)(2) 9.9905E-1(2.4062E-4)(3) 9.5680E-1(1.2611E-2)(6) 9.9844E-1(2.9795E-4)(4) 9.7494E-1(9.0494E-3)(5)

(10,5) 1(0)(1) 9.9996E-1(1.5875E-4)(2) 9.9629E-1(1.4581E-3)(3) 9.4872E-1(1.7932E-2)(6) 9.9116E-1(2.2180E-3)(4) 9.5278E-1(1.0165E-2)(5)

(5,10) 1(0)(1) 9.2753E-1(1.6563E-1)(3) 7.5296E-1(3.0290E-1)(5) 2.6686E-1(1.3579E-1)(6) 9.1774E-1(1.1188E-2)(4) 9.3233E-1(4.3157E-2)(2)

JY3 (10,10) 1(0)(1) 8.6286E-1(2.6734E-1)(5) 8.7780E-1(2.1439E-1)(4) 3.1828E-1(1.7272E-1)(6) 9.1387E-1(1.5497E-2)(3) 9.4710E-1(4.1344E-2)(2)

(10,5) 1(0)(1) 9.1820E-1(1.7955E-1)(3) 7.3352E-1(2.4975E-1)(5) 2.9578E-1(1.1712E-1)(6) 8.6372E-1(1.3534E-2)(4) 9.7648E-1(3.7596E-2)(2)

(5,10) 9.8302E-1(1.4597E-3)(2) 9.7614E-1(1.2568E-2)(4) 9.8519E-1(3.0860E-4)(1) 9.2414E-1(2.1227E-2)(6) 9.8278E-1(1.1903E-3)(3) 9.2831E-1(1.5238E-2)(5)

JY4 (10,10) 9.8362E-1(1.3336E-3)(3) 9.7826E-1(3.4126E-3)(4) 9.8594E-1(5.3743E-4)(2) 9.2796E-1(2.2971E-2)(6) 9.9777E-1(1.1098E-3)(1) 9.2799E-1(1.5013E-2)(5)

(10,5) 9.8000E-1(2.1633E-3)(3) 9.7397E-1(9.7036E-3)(4) 9.8478E-1(9.5697E-4)(2) 9.1911E-1(2.5120E-2)(5) 9.9589E-1(1.8165E-3)(1) 9.1306E-1(1.4408E-2)(6)

(5,10) 1(0)(1) 9.9959E-1(3.6413E-4)(2) 9.9916E-1(4.3684E-4)(3) 9.4969E-1(1.0827E-2)(6) 9.9873E-1(3.4385E-4)(4) 9.8468E-1(2.8648E-2)(5)

JY5 (10,10) 1(0)(1) 9.9916E-1(9.3236E-4)(3) 9.9929E-1(2.4941E-4)(2) 9.5120E-1(1.0035E-2)(6) 9.9871E-1(3.1110E-4)(4) 9.9850E-1(2.4088E-2)(5)

(10,5) 1(0)(1) 9.9814E-1(1.9238E-3)(2) 9.9675E-1(7.9841E-4)(3) 9.3398E-1(1.3265E-2)(6) 9.9449E-1(1.3927E-3)(4) 9.9251E-1(2.2933E-2)(5)

(5,10) 1(0)(1) 1.0000E+0(1.2098E-7)(2) 9.9184E-1(2.4440E-3)(3) 8.6658E-1(3.6885E-2)(6) 9.8531E-1(3.6202E-3)(4) 9.7467E-1(8.5146E-3)(5)

JY6 (10,10) 1(0)(1) 9.9997E-1(1.2127E-4)(2) 9.9039E-1(4.4466E-3)(3) 8.7947E-1(2.5634E-2)(6) 9.8513E-1(2.9510E-3)(4) 9.7641E-1(9.6097E-3)(5)

(10,5) 1(0)(1) 9.9954E-1(2.0746E-3)(2) 9.4255E-1(1.7664E-2)(3) 8.3131E-1(2.8317E-2)(6) 9.1314E-1(1.9895E-2)(5) 9.2885E-1(2.4804E-2)(4)

(5,10) 9.9178E-1(5.8574E-4)(1) 9.9182E-1(1.2689E-2)(1) 9.0733E-1(1.0826E-2)(4) 8.7990E-1(3.0917E-2)(5) 9.5959E-1(1.5128E-2)(3) 5.3937E-1(5.5567E-1)(6)

JY7 (10,10) 9.9488E-1(4.8072E-4)(1) 9.9286E-1(9.8146E-3)(2) 9.4809E-1(1.3820E-2)(4) 8.9970E-1(2.2385E-2)(5) 9.5493E-1(1.9552E-2)(3) 5.1396E-1(6.1510E-2)(6)

(10,5) 9.9337E-1(8.4847E-4)(1) 9.9157E-1(1.2335E-2)(2) 9.0219E-1(2.7365E-2)(3) 8.4798E-1(3.3826E-2)(5) 9.0482E-1(2.9825E-2)(3) 3.7993E-1(7.2743E-2)(6)

(5,10) 9.2233E-1(1.7493E-3)(2) 9.0951E-1(4.2461E-4)(4) 9.1733E-1(3.2631E-3)(3) 8.6593E-1(5.8224E-4)(6) 9.3861E-1(1.0197E-3)(1) 8.9406E-1(9.1086E-4)(5)

JY8 (10,10) 9.8218E-1(1.6495E-3)(1) 9.6507E-1(2.5432E-4)(2) 8.7143E-1(4.0633E-3)(5) 8.3318E-1(1.2091e-3)(6) 9.2017E-2(1.3050E-3)(3) 8.9786E-3(1.4708E-3)(4)

(10,5) 9.7094E-1(2.2361E-3)(1) 9.1614E-1(2.8160E-3)(2) 8.6154E-1(3.4112E-3)(5) 8.7941E-1(7.1417E-4)(4) 9.1323E-1(3.7025E-3)(2) 8.1056E-1(2.1731E-3)(6)

(5,10) 1(0)(1) 9.9997E-1(1.1694E-4)(2) 9.9799E-1(8.0809E-4)(3) 9.5169E-1(1.3956E-2)(6) 9.9893E-1(4.3958E-4)(3) 9.7751E-1(7.8537E-3)(5)

JY9 (10,10) 1(0)(1) 9.9999E-1(2.8008E-6)(2) 9.9847E-1(6.7767E-4)(3) 9.5247E-1(1.2076E-2)(6) 9.9872E-1(4.9874E-4)(3) 9.7946E-1(9.2575E-3)(5)

(10,5) 1(0)(1) 9.9995E-1(1.6680E-4)(2) 9.9255E-1(2.1887E-3)(3) 9.4205E-1(1.5013E-2)(6) 9.9282E-1(2.1178E-3)(3) 9.4852E-1(1.2511E-2)(5)

(5,10) 9.3853E-1(4.5985E-2)(3) 9.9324E-1(1.4542E-2)(1) 9.1482E-1(7.2486E-2)(4) 8.4226E-1(8.2853E-2)(6) 9.5205E-1(4.8964E-2)(2) 8.7657E-1(8.6824E-2)(5)

JY10 (10,10) 9.6913E-1(3.4319E-2)(3) 9.9614E-1(1.2884E-2)(1) 9.2927E-1(1.0833E-1)(4) 8.3554E-1(8.2731E-2)(6) 9.9894E-1(1.0032E-3)(1) 8.6999E-1(8.8566E-2)(5)

(10,5) 9.6782E-1(3.5337E-2)(2) 9.9567E-1(1.9382E-2)(3) 8.9672E-1(6.1693E-2)(4) 8.5666E-1(6.1780E-2)(5) 9.9700E-1(2.4440E-3)(1) 8.2538E-1(9.8427E-2)(6)

rank 1 2 3 6 4 5
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Table 6.4 Mean IGD metric values, standard deviations and individual ranks for benchmarks JY 1− JY 10

Prob. (nt ,τt ) DMOPSO DNSGA-II PPS dCOEA SPEA2 MOEA/D

(5,10) 2.4576E-2(4.3005E-3)(5) 4.5836E-2(5.9221E-3)(6) 9.0564E-3(2.7019E-3)(3) 3.4680E-3(2.5642E-4)(1) 1.5922E-2(9.6796E-4)(4) 3.3283E-3(2.2835E-4)(1)

JY1 (10,10) 9.9614E-3(1.0954E-3)(4) 1.6546E-2(1.9206E-3)(5) 7.6616E-3(5.2732E-3)(3) 3.6956E-3(2.7778E-4)(2) 1.5606E-2(1.2448E-3)(5) 3.4394E-3(2.9096E-4)(1)

(10,5) 1.5794E-2(1.8954E-3)(3) 4.0298E-2(7.0986E-3)(5) 2.2916E-2(2.0018E-3)(4) 4.8348E-3(4.9517E-4)(1) 4.0683E-2(3.7164E-3)(5) 8.8256E-3(5.8027E-4)(2)

(5,10) 2.9474E-2(5.0288E-3)(5) 4.8242E-2(6.3309E-3)(6) 9.5494E-3(2.1188E-3)(3) 2.9893E-3(3.1355E-4)(1) 1.6285E-2(7.9016E-4)(4) 4.8691E-3(1.7406E-4)(2)

JY2 (10,10) 1.0212E-2(1.3445E-3)(4) 1.5445E-2(2.2259E-3)(5) 7.4558E-3(6.2034E-3)(3) 3.0260E-3(3.4433E-4)(1) 1.6425E-2(1.2199E-3)(6) 4.8188E-3(9.3727E-5)(2)

(10,5) 1.5611E-2(1.4170E-3)(3) 4.2233E-2(8.0493E-3)(5) 1.9521E-2(1.1678E-2)(4) 4.3761E-3(4.2792E-4)(1) 4.4076E-2(3.2921E-3)(6) 8.8975E-3(4.8676E-4)(2)

(5,10) 1.4818E-1(7.8041E-2)(6) 5.3791E-2(4.9115E-3)(1) 6.1207E-2(2.4299E-2)(2) 6.1284E-2(7.8412E-3)(2) 1.2502E-1(6.6890E-3)(5) 6.2494E-2(4.5584E-3)(4)

JY3 (10,10) 1.7385E-1(8.7424E-2)(6) 5.2482E-2(8.9614E-3)(1) 7.1139E-2(1.9809E-2)(4) 6.1889E-2(7.0232E-3)(2) 1.2060E-1(6.6211E-3)(5) 6.4126E-2(7.3189E-3)(3)

(10,5) 1.8013E-1(6.8710E-2)(5) 6.0098E-2(1.4420E-2)(1) 8.3533E-2(3.4515E-2)(3) 6.7117E-2(1.1761E-2)(2) 2.1226E-1(1.4031E-2)(6) 9.8946E-2(8.8529E-3)(4)

(5,10) 1.4186E-1(1.9564E-2)(5) 1.3491E-1(2.1409E-2)(5) 3.4723E-2(4.8741E-3)(3) 2.0223E-2(1.2398E-2)(2) 7.0597E-2(5.9566E-3)(4) 1.2860E-2(1.0222E-3)(1)

JY4 (10,10) 6.1184E-2(1.6903E-2)(5) 5.8454E-2(7.1745E-3)(4) 2.6020E-2(1.5289E-2)(3) 1.6022E-2(5.3674E-3)(2) 9.1726E-2(7.6797E-3)(6) 1.2637E-2(1.0568E-3)(1)

(10,5) 6.3319E-2(8.6966E-3)(4) 1.2068E-1(1.8828E-2)(6) 4.5829E-2(2.6106E-2)(3) 2.4123E-2(1.5501E-2)(1) 1.1440E-1(7.3326E-3)(5) 2.3951E-2(1.2593E-3)(1)

(5,10) 7.8916E-3(5.5703E-3)(5) 5.8490E-4(1.6311E-5)(1) 5.2662E-3(4.0159E-3)(4) 2.5758E-3(1.8189E-4)(2) 1.6455E-2(4.3054E-4)(6) 4.8963E-3(4.9188E-4)(3)

JY5 (10,10) 5.0419E-3(1.5179E-3)(5) 5.7646E-4(1.5974E-5)(1) 4.8047E-3(3.0641E-3)(4) 2.5858E-3(2.1189E-4)(2) 9.2492E-3(5.2017E-4)(6) 4.6571E-3(3.5615E-4)(3)

(10,5) 8.5293E-3(2.0189E-3)(4) 6.7683E-4(3.0593E-5)(1) 1.4583E-2(1.5940E-3)(5) 3.7948E-3(4.0851E-4)(2) 2.1131E-2(9.6332E-4)(6) 4.8352E-3(4.1812E-4)(3)

(5,10) 4.5312E-1(4.5705E-2)(6) 3.7983E-1(3.8201E-2)(5) 2.3759E-1(1.2809E-2)(4) 3.6824E-2(3.8123E-3)(1) 2.0250E-1(1.1152E-2)(3) 4.3397E-2(1.8170E-3)(2)

JY6 (10,10) 2.9461E-1(2.4649E-2)(2) 2.5650E-1(2.7947E-2)(5) 2.3524E-1(3.2155E-2)(4) 2.9860E-2(3.7114E-3)(1) 2.0313E-1(1.0359E-2)(3) 4.3589E-2(4.3421E-3)(2)

(10,5) 3.7529E-1(3.1560E-2)(4) 3.8736E-1(4.8610E-2)(5) 2.8746E-1(4.7924E-2)(3) 4.8382E-2(6.9547E-3)(1) 3.9579E-1(1.4055E-2)(5) 1.0333E-1(8.8308E-3)(2)

(5,10) 7.5488E-1(3.0699E-2)(6) 3.6727E-1(2.4223E-2)(4) 4.4931E-1(2.1406E-2)(5) 1.9092E-2(5.7554E-6)(1) 1.2992E-1(8.9316E-3)(2) 3.1154E-1(1.8810E-2)(3)

JY7 (10,10) 7.5412E-1(3.0362E-2)(6) 3.1583E-1(3.0571E-2)(3) 4.4237E-1(1.9914E-2)(5) 1.6815E-2(2.9680E-3)(1) 1.3440E-1(9.7957E-3)(2) 3.0834E-1(2.5724E-2)(3)

(10,5) 7.8714E-1(3.5140E-2)(6) 4.3981E-1(3.6027E-2)(4) 4.9185E-1(3.4660E-2)(5) 3.8650E-2(1.0235E-2)(1) 3.0073E-1(1.8860E-2)(2) 3.6521E-1(2.3675E-2)(3)

(5,10) 1.2233E-2(1.7493E-3)(5) 2.0951E-3(4.2461E-4)(1) 8.1733E-3(3.2631E-3)(2) 8.6593E-3(5.8224E-4)(2) 2.3861E-2(1.0197E-3)(6) 8.9406E-3(9.1086E-4)(2)

JY8 (10,10) 1.2218E-2(1.6495E-3)(5) 1.6507E-3(2.5432E-4)(1) 6.7143E-3(4.0633E-3)(3) 6.3318E-3(1.2091E-3)(2) 2.2017E-2(1.3050E-3)(6) 7.9786E-3(1.4708E-3)(4)

(10,5) 1.7094E-2(2.2361E-3)(4) 3.1614E-3(2.8160E-3)(1) 1.6154E-2(3.4112E-3)(4) 9.7941E-3(7.1417E-4)(2) 5.9323E-2(3.7025E-3)(6) 1.1056E-2(2.1731E-3)(3)

(5,10) 9.1544E-2(9.3585E-3)(5) 1.4108E-1(1.2678E-2)(6) 7.2722E-2(6.3619E-3)(4) 3.7858E-2(1.0687E-3)(3) 2.0666E-2(1.4999E-3)(2) 3.3934E-3(2.2449E-4)(1)

JY9 (10,10) 4.8915E-2(1.0035E-2)(5) 6.8419E-2(1.1182E-2)(6) 4.3795E-2(4.3370E-3)(4) 5.0184E-3(3.2546E-4)(2) 2.1313E-2(1.6143E-3)(3) 3.3437E-3(1.7892E-4)(1)

(10,5) 6.3014E-2(7.3838E-3)(4) 9.6062E-2(9.4427E-3)(6) 6.2169E-2(5.5242E-3)(4) 6.3257E-3(7.1891E-4)(1) 5.0164E-2(2.4089E-3)(3) 8.8643E-3(5.9063E-4)(2)

(5,10) 9.0868E-2(1.8480E-2)(5) 7.6736E-2(2.2771E-2)(4) 1.3154E-1(1.8979E-2)(6) 2.7285E-2(1.5762E-2)(1) 6.2069E-2(2.5791E-2)(2) 6.8150E-2(4.9828E-2)(2)

JY10 (10,10) 6.8494E-2(2.6837E-2)(3) 8.4256E-2(4.7116E-2)(5) 9.8830E-2(3.3394E-2)(6) 2.8343E-2(1.7144E-2)(1) 3.0060E-2(1.0663E-2)(2) 6.6837E-2(5.6151E-2)(3)

(10,5) 1.1941E-1(4.5839E-2)(4) 1.3167E-1(5.6269E-2)(5) 1.2362E-1(1.2736E-2)(5) 2.8149E-2(1.5885E-2)(1) 7.5354E-2(3.1506E-2)(2) 8.4767E-2(5.5052E-2)(3)

rank 6 3 4 1 5 2
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Table 6.5 Mean R(IGD) metric values, standard deviations and individual ranks for benchmarks JY 1− JY10

Prob. (nt ,τt ) DMOPSO DNSGA-II PPS dCOEA SPEA2 MOEA/D

(5,10) 2.2615E-2(6.3383E-3)(5) 3.2366E-2(4.0559E-3)(6) 7.9716E-3(3.6594E-3)(3) 1.5553E-3(3.3643E-4)(2) 9.7472E-3(1.3009E-3)(4) 1.2275E-3(1.8507E-4)(1)

JY1 (10,10) 5.7792E-3(1.4972E-3)(3) 1.4496E-2(3.5270E-3)(6) 8.7222E-3(8.0187E-3)(4) 1.6116E-3(3.6058E-4)(2) 1.0752E-2(1.8823E-3)(5) 1.3288E-3(3.3161E-4)(1)

(10,5) 9.6013E-3(2.2318E-3)(3) 3.3601E-2(8.4655E-3)(6) 2.4806E-2(1.8720E-2)(4) 2.3275E-3(5.7419E-4)(1) 2.9593E-2(3.6770E-3)(5) 3.8537E-3(4.9485E-4)(2)

(5,10) 2.7095E-2(7.3523E-3)(5) 3.4828E-2(4.8267E-3)(6) 8.2951E-3(2.5605E-3)(3) 1.2066E-3(2.7053E-4)(1) 1.0338E-2(1.5988E-3)(4) 1.4403E-3(1.1767E-4)(2)

JY2 (10,10) 5.7417E-3(1.8539E-3)(4) 1.4973E-2(3.0940E-3)(6) 8.4245E-3(9.0147E-3)(3) 1.4200E-3(4.6466E-4)(1) 1.1386E-2(1.9980E-3)(5) 1.4287E-3(8.5421E-5)(2)

(10,5) 1.0072E-2(1.8844E-3)(4) 3.5567E-2(9.2729E-3)(6) 2.0801E-3(1.5323E-2)(2) 2.2158E-3(4.8969E-4)(1) 2.9810E-2(4.4291E-3)(5) 3.6835E-3(4.2791E-4)(2)

(5,10) 8.9665E-2(7.0631E-2)(6) 3.2106E-3(3.8492E-3)(1) 2.3475E-2(2.0171E-2)(2) 1.7667E-2(1.73823-2)(2) 3.6688E-2(4.9832E-3)(5) 2.2579E-2(1.2988E-2)(2)

JY3 (10,10) 1.0214E-1(6.9523E-2)(6) 2.1080E-3(2.5141E-3)(1) 3.1261E-2(1.4477E-2)(4) 2.1629E-2(1.5351E-2)(2) 3.8599E-2(6.4409E-3)(5) 2.2736E-2(1.9780E-2)(2)

(10,5) 1.0670E-1(7.3419E-2)(6) 9.3054E-3(2.3429E-3)(1) 4.0127E-2(2.3248E-2)(3) 2.8927E-2(2.1303E-2)(2) 8.5434E-2(7.9086E-3)(5) 5.4749E-2(1.1690E-2)(4)

(5,10) 1.3523E-1(2.1105E-2)(6) 7.9687E-2(1.5238E-2)(5) 2.2896E-2(5.2030E-3)(2) 3.2373E-2(4.9928E-2)(3) 5.6955E-2(8.7403E-3)(4) 5.3642E-3(1.1881E-3)(1)

JY4 (10,10) 6.6900E-2(2.8756E-2)(6) 4.0311E-2(9.2533E-3)(4) 2.4936E-2(2.2417E-2)(3) 1.3133E-2(1.1959E-2)(2) 5.6951E-2(7.7050E-3)(5) 5.0281E-3(1.3546E-3)(1)

(10,5) 5.7279E-2(1.5664E-2)(4) 7.8597E-2(1.8298E-2)(6) 4.2132E-2(2.9441E-2)(3) 3.1484E-2(4.7990E-2)(2) 6.7847E-2(9.0503E-3)(5) 1.0339E-2(1.2577E-3)(1)

(5,10) 3.5353E-3(2.0233E-3)(3) 6.3615E-5(2.2761E-5)(1) 4.8849E-3(4.2601E-3)(5) 1.1699E-3(2.4770E-4)(2) 1.5169E-2(6.0481E-4)(6) 4.2292E-3(3.2633E-4)(4)

JY5 (10,10) 2.5308E-3(1.0910E-3)(3) 4.8411E-5(2.2339E-5)(1) 4.0963E-3(3.2071E-3)(5) 1.2138E-3(2.9585E-4)(2) 5.4911E-3(5.4656E-4)(6) 3.9497E-3(2.5087E-4)(4)

(10,5) 4.8782E-3(1.4629E-3)(4) 8.3150E-5(2.5970E-5)(1) 1.1418E-2(1.2487E-3)(5) 1.9677E-3(5.5120E-4)(2) 1.3018E-2(1.1218E-3)(6) 4.1912E-3(5.4263E-4)(3)

(5,10) 2.3263E-1(2.5679E-2)(5) 2.4236E-1(3.1782E-2)(5) 1.1376E-1(8.6201E-3)(3) 2.9592E-2(3.8997E-3)(1) 1.0582E-1(1.0477E-2)(3) 2.9767E-3(3.8069E-3)(1)

JY6 (10,10) 1.5257E-1(2.0086E-2)(6) 1.3778E-1(2.2134E-2)(5) 1.0945E-1(2.9413E-2)(3) 2.2309E-2(4.5449E-3)(1) 1.0755E-1(9.8136E-3)(3) 2.7556E-2(4.4324E-3)(2)

(10,5) 2.0739E-1(2.4211E-2)(5) 2.4350E-1(4.7537E-2)(6) 1.6667E-1(5.0356E-2)(3) 3.8780E-2(9.9061E-3)(1) 1.8844E-1(1.3488E-2)(4) 4.3816E-2(4.4208E-3)(2)

(5,10) 7.5110E-1(4.0029E-2)(6) 3.0353E-1(3.3898E-2)(4) 3.5572E-1(3.0933E-2)(5) 2.0455E-2(1.1561E-2)(1) 1.2772E-1(1.4917E-2)(3) 1.0706E-1(1.2660E-2)(2)

JY7 (10,10) 7.0620E-1(3.9224E-2)(6) 2.8812E-1(5.3380E-2)(4) 3.3067E-1(3.1074E-2)(5) 1.7892E-2(5.6820E-3)(1) 1.1946E-1(1.5077E-2)(3) 1.1207E-1(1.9473E-2)(2)

(10,5) 7.4648E-1(4.9574E-2)(6) 4.1139E-1(3.4148E-2)(5) 3.3996E-1(4.0839E-2)(4) 4.5925E-2(2.0791E-2)(1) 2.5676E-1(2.6204E-2)(3) 1.1669E-1(1.2414E-2)(2)

(5,10) 6.6964E-3(1.5910E-3)(2) 1.3074E-3(5.9419E-1)(1) 7.0432E-3(3.9987E-3)(2) 1.0061E-2(1.3951E-3)(6) 8.6673E-3(1.0495E-3)(4) 9.8245E-3(2.0371E-3)(5)

JY8 (10,10) 5.7629E-3(1.8542E-3)(2) 8.8632E-4(4.4199E-4)(1) 5.7303E-3(3.9658E-3)(2) 8.8843E-3(1.3185E-3)(4) 1.0925E-2(1.8064E-3)(5) 1.0160E-2(2.1520E-3)(5)

(10,5) 8.3506E-3(1.9443E-3)(2) 2.7611E-3(5.8350E-3)(1) 1.3616E-2(2.5396E-3)(4) 9.8583E-3(1.7486E-3)(3) 3.2476E-2(7.0159E-3)(6) 1.8244E-2(2.7461E-3)(5)

(5,10) 1.3915E-1(1.8556E-2)(5) 2.1850E-1(2.0509E-2)(6) 8.9592E-2(7.8177E-3)(3) 1.0089E-1(3.7162E-3)(4) 2.0488E-2(2.7729E-3)(2) 1.3142E-3(2.6369E-4)(1)

JY9 (10,10) 4.2105E-2(8.7283E-3)(4) 7.7891E-2(1.3282E-2)(6) 6.8291E-2(7.9244E-3)(5) 3.5673E-3(2.2443E-4)(2) 2.1633E-2(3.6923E-3)(3) 1.3256E-3(2.5234E-4)(1)

(10,5) 5.2803E-2(8.4317E-3)(4) 1.0599E-1(1.2518E-2)(5) 9.2289E-2(1.0223E-2)(5) 3.9474E-3(7.5653E-4)(1) 4.6159E-2(5.5109E-3)(3) 4.0057E-3(5.3761E-4)(1)

(5,10) 7.7704E-2(2.5122E-2)(2) 9.9982E-2(3.4665E-2)(4) 1.5444E-1(2.6838E-2)(6) 3.3228E-2(1.4127E-2)(1) 8.3292E-2(3.8794E-2)(3) 1.1386E-1(7.3905E-2)(5)

JY10 (10,10) 6.1549E-2(2.9701E-2)(3) 1.2052E-1(6.1734E-2)(4) 1.1090E-1(2.4337E-2)(4) 3.2948E-2(1.6474E-2)(1) 3.8099E-2(2.1085E-2)(2) 1.0000E-1(8.6969E-2)(4)

(10,5) 1.1303E-1(5.4679E-2)(3) 1.5847E-1(6.7176E-2)(5) 1.4157E-1(1.3747E-2)(5) 3.2730E-2(1.7318E-2)(1) 8.4470E-2(4.4207E-2)(2) 1.2146E-1(8.1829E-2)(4)

rank 6 4 3 1 5 2
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The results of the RMS metric obtained by the algorithms are given in Table 6.3.

Clearly, DMOPSO produces significantly better RMS results than the rest of the com-

pared algorithms. DMOPSO obtains better maximum spread values in 22 out of the 30

test cases. This can be explained by the fact that, in DMOPSO, boundary solutions are

more likely to be chosen as leaders because they are located at less crowded areas, and

they will naturally drive more solutions towards boundary regions. Therefore, DMOPSO

is expected to cover extreme or boundary regions of the PF and tends to give a better RMS

value. The similar reason can be also used to explain the good performance of the second

best performer, i.e., DNSGA-II, on the RMS metric. In DNSGA-II, the crowding distance

technique will assign a high value to boundary solutions, so these solutions have more

opportunity to survive to the next generation. It is understandable that the performances

of dCOEA and MOEA/D in the RMS comparison are compromised because neither of

them rewards boundary solutions.

Table 6.4 presents the IGD metric values obtained by six algorithms. The results of

IGD are also almost consistent with those of S displayed in Table 6.2. This is reasonable

because the IGD metric measures not only the proximity of approximate solutions but

also their diversity or distribution. If the diversity performance of an algorithm is not good

enough, then its IGD value will be affected. This also implies that maintaining population

diversity is one of the main goals of handling dynamic environments. It can be seen from

Table 6.4 that DNSGA-II, dCOEA, and MOEA/D are the three best performers in terms of

the test problems considered in this work, and achieve better IGD metric values in 9, 14,

and 7 out of the 30 test cases, respectively. Note that, although DNSGA-II outperforms

the other algorithms for JY 3, JY 5 and JY 8, it struggles to handle multi-modality (see the

large values for JY 6 and JY 7). In addition, the mixed types of changes in JY 9 and JY 10

also challenge the performance of DNSGA-II, whose results are not as good as those of

the others. If we take a close look at the IGD metric values provided by the six algorithms

for JY 9 and JY 10, we can observe that, the randomness of the orders of types clearly

increases the difficulty of Mixed-Type DMOPs, thus affecting the performance of all the

algorithms. On the other hand, the IGD metric values of PPS on the 30 test cases are not as

good as expected in its original work. One possible explanation for its poor performance is

that, the population prediction strategy works well only under the assumption that the PFs

(PSs) of consecutive MOPs are similar to each other in most cases. However, the PFs (PSs)

of consecutive MOPs considered in this work are less similar, which causes difficulties

for PPS to predict exact or promising population locations in new environments.

The results in Table 6.4 also show the effects of the severity of change nt and the

frequency of change τt . In most cases, compared with severe landscape changes (nt = 5),

moderate changes (nt = 10) are less challenging for the algorithms, leading to roughly

better IGD metric values for the six algorithms. The influence of the frequency of change

can be observed from the different IGD metric values of nt and τt combinations between
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Fig. 6.10 The tracking of the IGD values obtained by six algorithms for time t from 0 to
2.

(10,5) and (10,10). The majority of the algorithms in fast landscape changes (τt = 5)

cannot provide as good results as they do in less frequent environmental changes (τt = 10).

Compared with the effect of severity nt , the effect of frequency τt is much more obvious

and challenging and the IGD metric values obtained by the algorithms become much

worse when the environment changes faster, i.e., the frequency of change τt becomes

smaller. Notably, MOEA/D commonly works well in each combination of nt and τt for

all the test problems except JY 8. This good performance can be attributed to the fast

convergence of MOEA/D, which helps the algorithm to track the changing PFs as quickly

as possible.

By comparing the algorithms’ performance for JY 1 and JY 6 on IGD, we can ob-

serve that, while these algorithms can easily handle the static unimodality of JY 1, they

face difficulties in handling the time-varying multimodality of JY 6 as the time-varying

multimodality distinctly aggravates these algorithms’ convergence, leading to massive

challenges to their tracking ability.
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The robustness performance of the six algorithms are presented in Table 6.5. The

R(IGD) values of these algorithms in this table are roughly consistent with their IGD

metric values shown in Table 6.4. dCOEA and MOEA/D are the two most robust MOEAs

on the 30 test cases, which further illustrates their ability to deal with various dynamisms.

It is interesting that although PPS never wins on the 30 test cases, its average rank value is

better than that of DNSGA-II, which wins over other algorithms in 9 out of the 30 cases

in terms of the R(IGD) metric. This means PPS is more robust than DNSGA-II in all the

test cases. If we compare the average ranks in both Table 6.4 and Table 6.5, it is also easy

to see that, in the event of an environmental change, PPS is on average expected to be

stabler than DNSGA-II although the IGD metric values of the former are not as good as

those of the latter.

In addition to showing some consistency with the IGD metric, the R(IGD) metric val-

ues in Table 6.5 can also help to further compare the performance of the tested algorithms,

especially when two or more algorithms achieve similar IGD values on a test case. To be

more specific, for JY 1, dCOEA and MOEA/D obtain similar IGD values shown in Table

6.4 for the setting of nt = 5 and τt = 10. In this case, it is hard to identify which one is

better on this test case in terms of the IGD metric. With the use of the robustness metric,

nevertheless, MOEA/D is shown to be more robust than dCOEA for the test case, which

can be observed from Table 6.5. In Table 6.4, PPS, dCOEA, and MOEA/D also achieve

similar IGD values for the test case JY 8 with nt = 5 and τt = 10, and the Wilcoxon

rank-sum test indicates there is no statistically significant difference among these three

algorithms in terms of the IGD metric. Again, the corresponding R(IGD) metric values

in Table 6.5 provide additional information to judge their performance, illustrating that

PPS is stabler than MOEA/D, which is in turn stabler than dCOEA with regard to the

IGD metric on this test case. When (nt,τt) is set to (10,5), the IGD values obtained by

DMOPSO and PPS are extremely close to each other for both JY 8 and JY 9, but their

R(IGD) metric values are very dissimilar, which can clearly distinguish their robustness

performance and hence rank DMOPSO as the better one between these two algorithms

in terms of IGD in this case. In addition, the effectiveness of the proposed robustness

performance measure can be observed by further checking the IGD and R(IGD) values

of DNSGA-II and SPEA2 for JY 6 with (nt ,τt) = (10,5), and DMOPSO and MOEA/D

for JY 10 with the setting of (nt,τt) = (10,10).

For a nicer readability of algorithm comparisons, the final rank of each algorithm

under each performance metric for every test problem is presented in Table 6.6, where

ordering in the rank column is purely alphabetical. Fig. 6.10 shows the tracking of IGD

values obtained by the six algorithms over the period from t = 0 to t = 2 for some test

problems.

To have a better understanding of the tracking ability of these algorithms, we also plot

the PF approximations of JY 2, JY 5 and JY 8 over a number of time steps in Figs. 6.11,
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Table 6.6 Performance rankings on four metrics for benchmarks JY 1− JY 10

Prob. Rank Ranking by S Ranking by RMS Ranking by IGD Ranking by R(IGD)

JY1

1th dCOEA DMOPSO MOEA/D dCOEA MOEA/D
2nd MOEA/D DNSGA-II PPS dCOEA
3rd PPS PPS DMOPSO PPS
4th DNSGA-II SPEA2 SPEA2 DMOPSO
5th DMOPSO MOEA/D DNSGA-II SPEA2
6th SPEA2 dCOEA DNSGA-II

JY2

1th dCOEA DMOPSO dCOEA dCOEA
2nd MOEA/D DNSGA-II MOEA/D MOEA/D
3rd PPS PPS PPS PPS
4th DNSGA-II SPEA2 DMOPSO DMOPSO
5th DMOPSO MOEA/D DNSGA-II SPEA2
6th SPEA2 dCOEA SPEA2 DNSGA-II

JY3

1th DNSGA-II DMOPSO DNSGA-II DNSGA-II
2nd MOEA/D MOEA/D dCOEA dCOEA
3rd dCOEA DNSGA-II SPEA2 PPS MOEA/D
4th PPS PPS MOEA/D PPS
5th SPEA2 dCOEA SPEA2 SPEA2
6th DMOPSO DMOPSO DMOPSO

JY4

1th MOEA/D PPS SPEA2 MOEA/D MOEA/D
2nd DNSGA-II DMOPSO dCOEA dCOEA
3rd PPS DNSGA-II PPS PPS
4th dCOEA MOEA/D DMOPSO SPEA2
5th SPEA2 dCOEA DNSGA-II SPEA2 DNSGA-II
6th DMOPSO DMOPSO

JY5

1th DNSGA-II DMOPSO DNSGA-II DNSGA-II
2nd dCOEA DNSGA-II dCOEA dCOEA
3rd MOEA/D PPS MOEA/D DMOPSO
4th PPS SPEA2 PPS MOEA/D
5th DMOPSO MOEA/D DMOPSO PPS
6th SPEA2 dCOEA SPEA2 SPEA2

JY6

1th MOEA/D DMOPSO dCOEA DNSGA-II
2nd dCOEA DNSGA-II MOEA/D dCOEA
3rd PPS PPS PPS SPEA2 DMOPSO
4th SPEA2 SPEA2 DMOPSO MOEA/D
5th DMOPSO MOEA/D DNSGA-II PPS
6th DNSGA-II dCOEA SPEA2

JY7

1th dCOEA DMOPSO dCOEA dCOEA
2nd MOEA/D DNSGA-II SPEA2 MOEA/D
3rd SPEA2 SPEA2 MOEA/D SPEA2
4th DNSGA-II PPS DNSGA-II DNSGA-II
5th PPS dCOEA PPS PPS
6th DMOPSO MOEA/D DMOPSO DMOPSO

JY8

1th DNSGA-II DMOPSO DNSGA-II DNSGA-II
2nd dCOEA SPEA2 dCOEA DMOPSO
3rd MOEA/D DNSGA-II PPS MOEA/D PPS
4th PPS PPS DMOPSO dCOEA
5th DMOPSO MOEA/D SPEA2 SPEA2 MOEA/D
6th SPEA2 dCOEA

JY9

1th MOEA/D DMOPSO MOEA/D MOEA/D
2nd dCOEA DNSGA-II dCOEA dCOEA
3rd PPS SPEA2 PPS SPEA2 SPEA2
4th DNSGA-II SPEA2 PPS DMOPSO PPS
5th DMOPSO MOEA/D DMOPSO DNSGA-II
6th dCOEA DNGA-II

JY10

1th dCOEA SPEA2 dCOEA dCOEA
2nd PPS DNSGA-II SPEA2 SPEA2
3rd SPEA2 DMOPSO MOEA/D DMOPSO
4th DNSGA-II PPS DMOPSO DNSGA-II MOEA/D
5th MOEA/D MOEA/D DNSGA-II PPS
6th DMOPSO dCOEA PPS
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Fig. 6.11 PFs of JY2 with lowest IGD values obtained by six algorithms for time t from
0 to 4.
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Fig. 6.12 PFs of JY5 with lowest IGD values obtained by six algorithms for time t from
0 to 2.

6.12 and 6.13, respectively. In Fig. 6.11, dCOEA can approximate the PFs of JY 2 very

well, and at the beginning time steps PPS does not track the changing PFs well because the

quality of history information stored by PPS is not high. Figs 6.12 and 6.13 further show

the good tracking performance of several algorithms (i.e., DNSGA-II, PPS and dCOEA

for JY 5 and JY 8).
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Fig. 6.13 PFs of JY8 with lowest IGD values obtained by six algorithms for time t from
0 to 2.

6.3.4 Influence of Variable Linkages

Since our work introduces a non-monotonic variable-linkage into JY 3, one would won-

der whether there is a clear difference between this variable-linkage and the monotonic

variable-linkage existing in ZJZ.

ZJZ is originally defined as:















































min F(x, t) = ( f1(x, t), f2(x, t))
T

f1(x, t) = x1

f2(x, t) = g(xII, t)(1− (
f1(x,t)

g(xII,t)
)H)

g(xII, t) = 1+∑xi∈xII
(xi +G(t)− xH

1 )
2

H = 1.5+G(t),G(t) = sin(0.5πt)

xI = (x1) ∈ [0,1],xII = (x2, ...,xn) ∈ [−1,2]n−1.

(6.20)

In order to deeply compare the difference between non-monotonic and monotonic vari-

able linkages, we replace the g(xII, t) with the one used in JY 3. This can minimize the

disturbance of the use of different objective functions.

Table 6.7 presents the comparison between different variable-linkage properties,

where “ZJZ+monotonic” and “ZJZ+non-monotonic” represent the original ZJZ and ZJZ

with non-monotonic variable-linkage of JY 3, respectively, and values in bold-face high-

light the best obtained results for each problem on each metric. It can be seen from the

table that, for the original ZJZ, PPS obtains best values in terms on MS and IGD whereas

MOEA/D performs the best on S and R(IGD). However, when non-monotonic variable
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Table 6.7 Influence of variable linkages on algorithms’ performance

Algorithm Metric JY3 ZJZ+monotonic ZJZ+non-monotonic

S 1.5851E+00(5.3717E-01) 2.9111E-02(1.9070E-03) 3.3344E-02(8.0712E-03)
MS 1(0) 7.0478E-01(8.3516E-03) 6.6106E-01(5.3750E-02)

DMOPSO IGD 1.7385E-01(8.7424E-02) 3.0126E-02(5.0483E-04) 3.5934E-02(1.0169E-03)
R(IGD) 1.0214E-01(6.9523E-02) 3.1006E-03(5.2539E-04) 5.4186E-03(5.9193E-04)

S 1.2822E-01(1.4974E-01) 1.8522E-02(1.9048E-03) 5.3331E-03(1.5832E-03)

MS 8.6286E-01(2.6734E-01) 6.8429E-01(5.4611E-02) 2.7616E-01(1.9868E-02)
DNSGA-II IGD 5.2482E-02(8.9614E-03) 1.5003E-02(2.3446E-03) 3.4607E-02(1.2575E-03)

R(IGD) 2.1080E-03(2.5141E-03) 9.8109E-03(1.5760E-03) 5.2191E-03(1.5803E-03)
S 1.1067E+00(6.2737E-01) 2.0776E-02(6.7486E-03) 7.6649E-02(7.7798E-03)

MS 8.7780E-01(2.1439E-01) 8.7880E-01(5.7405E-02) 4.6647E-01(1.7124E-02)
PPS IGD 7.1139E-02(1.9809E-02) 5.1615E-03(3.3355E-03) 3.3944E-02(5.6485E-04)

R(IGD) 3.1261E-02(1.4477E-02) 3.9624E-03(2.8232E-03) 4.2723E-03(5.9101E-04)

S 4.5379E-01(3.4603E-01) 2.3489E-02(2.4378E-03) 5.3304E-02(5.9985E-03)
MS 3.1828E-01(1.7272E-01) 4.6602E-01(1.7903E-02) 5.7387E-01(2.4312E-02)

dCOEA IGD 6.1889E-02(7.0232E-03) 2.2929E-02(8.9555E-04) 2.2566E-02(1.7229E-03)
R(IGD) 2.1629E-02(1.5351E-02) 6.4051E-03(9.5174E-04) 7.7948E-03(7.8941E-04)

S 9.1987E-01(1.4254E-01) 3.9290E-02(2.2268E-03) 4.6528E-02(4.6503E-03)
MS 9.1387E-01(1.5497E-02) 5.9360E-01(1.6754E-02) 7.9907E-01(2.2773E-02)

SPEA2 IGD 1.2060E-01(6.6211E-03) 2.2893E-02(4.8886E-04) 2.4095E-02(6.2133E-04)

R(IGD) 3.8599E-02(6.4409E-03) 3.8357E-03(3.7128E-04) 6.0995E-03(6.5995E-04)
S 3.4869E-01(1.1914E-01) 1.0234E-02(8.3466E-04) 7.1600E-03(1.7420E-03)

MS 9.4710E-01(4.1344E-02) 8.2433E-01(1.2889E-02) 5.9811E-01(2.6839E-02)
MOEA/D IGD 6.4126E-02(7.3189E-03) 7.9385E-03(3.7371E-04) 2.5316E-02(1.7813E-03)

R(IGD) 2.2736E-02(1.9780E-02) 2.9948E-03(4.9946E-04) 6.5317E-03(9.6642E-04)
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linkages are introduced to ZJZ, the four metric values obtained by most of the algorithms

experience a significant deterioration. Taking the S metric for example, DNSGA-II, PPS

and MOEA/D undergo massive changes when the non-monotonic variable-linkage is used.

Likewise, their increasing IGD values suggest the non-monotonic variable-linkage makes

the algorithms more difficult to converge than the monotonic variable-linkage.

The comparison between JY 3 and ZJZ also indicates that the former has a harder

convergence-resistant property than the latter, but the latter challenges algorithms’ cover-

age performance. Besides, the non-monotonic variable-linkage of JY 3 also causes some

difficulties for dCOEA to cover the PF well, as indicated by the poor MS value of dCOEA.

6.3.5 Limitations

In the EDMO community, the mean of performance measure over particular time steps is

widely adopted as it can present the performance of algorithms in a compact form. De-

spite of its significance and success, the mean value for experimental analysis might have

limitations if the considered performance measure contains outliers at a time step [74].

For this reason, the performance measures, i.e., S, RMS and IGD, may be inaccurate, and

other approaches, if exist, are needed to further verify conclusions based on these mea-

sures. However, besides measuring algorithms’ stability over a number of changes, the

proposed robustness metric can be also used as a tool to embody the impact of outliers on

a performance measure, because it takes into account the variability of the performance

measure values over different time steps. If there are outliers at a specific time step influ-

encing the performance measure, the robustness value will be large. This way, robustness

provides additional information to justify the performance of algorithms, increasing the

reliability of performance analysis. On the other hand, no performance measure is perfect,

and standard performance metrics are urgently needed in the field of EDMO.

6.4 Summary

An extensive study of the current DMOPs used to assess the performance of algorithms

showed that there is a lack of standard test functions that could occur in real-world life for

the EDMO domain. The commonly used DMOPs are so simple that some characteristics

are excluded, such as mixed convex/concave PF components, a more powerful diversity-

resistant structure in the problem, a non-monotonic correlation between variables and

a mixed type of problem that can jump between different types in a regular or random

pattern.

To address the above shortcomings, this chapter presents a generic scheme to gener-

ate desired benchmark functions that can compare the performance of different MOEAs.

Furthermore, six representative MOEAs were tested on 10 test instances generated by the



6.4 Summary 150

benchmark generator and the results were evaluated by several performance metrics, in-

cluding two new performance metrics proposed in this work. The comparison among

these algorithms shows that the proposed test instances are effective and can help to

clearly distinguish the performance of each algorithm through proper statistical testing.

The key findings from the empirical study are summarized as follows:

1. Fast converging algorithms, i.e., MOEA/D and dCOEA, can adapt quickly to chang-

ing environments, thus they may have advantages in dealing with DMOPs.

2. The lack of diversity maintenance brings about severe consequences to algorithms

like DMOPSO and SPEA2 in dynamic environments. DNSGA-II, dCOEA, and

MOEA/D performs very well regarding the spacing metric because they success-

fully maintain good population diversity during the evolution.

3. The modified maximum spread helps assess algorithms’ coverage over the PF.

Niche sharing (DMOPSO) and crowding distance (DNSGA-II) tend to reward

boundary solutions, thus the maximum spread of algorithms with those schemes

is roughly good.

4. Non-monotonic variable linkages are significantly harder than monotonic ones.

Time-changing multimodality (JY 6) is more challenging than static multimodality.

Besides, the mixed type of change (JY 9) complicates dynamic environments and

randomness (JY 10) in type of change further challenges algorithms’ performance.

5. Robustness is another important performance indicator for EDMO, which helps

to have a comprehensive assessment of algorithms’ performance. The experimen-

tal results have shown that, when several algorithms achieve similar values on a

performance metric and there is no statistically significant difference among them,

the proposed robustness performance measure can provide additional information

to distinguish their performance. This is really helpful for a better understanding

and comparison of algorithms’ performance. The significance of this new indicator

can be even clearer when a stable and high-performance transient response to an

environmental change is pursued.

Despite that the proposed benchmark generator can produce a series of features that

are rarely tested in the literature, further research is needed regarding how to extend the

generator to many-objective problems where the number of objectives is easy to scale up.

Besides, the current work focuses mainly on comparing the performance of existing dif-

ferent metaheuristics for EDMO. It is greatly needed to design new and robust MOEAs

that can handle various environmental changes. These issues will be left for further dis-

cussions in our future work.



Chapter 7

EAs for Dynamic MOPs

Many real-world optimization problems are multiobjective and dynamic in nature. Due

to multiobjectivity and dynamisms, the generic optimization goal of DMOPs is to ap-

proximate a sequence of PSs/PFs that change over time. To achieve this goal, MOEAs

should be able to track any environmental change accurately, react to it quickly, and pro-

vide good approximations. However, there is little work relating to algorithm design in

the field of EDMO. This is not only because DMO is a very new research area but also

because DMOPs are hard to handle. Despite that, new algorithms are desperately needed

to move forward the research in EDMO.

Inspired by the fast convergence of steady-state MOEAs and the good diversity main-

tenance of generational MOEAs, this chapter is devoted to exploring the possibility of

taking these two advantages to deal with DMOPs.

This chapter is organized as follows. In Section 7.1, a brief literature review about

EDMO and incentives behind this work are presented. Section 7.2 describes the frame-

work of the proposed SGEA, together with detailed descriptions of each component of

the algorithm. Section 7.3 is devoted to presenting experimental settings for comparison.

Section 7.4 provides experimental results and comparison on tested algorithms. A further

discussion of the algorithm is offered in Section 7.5. Section 7.6 concludes the chapter

with discussions on future work.

7.1 Introduction

In the past few years, there has been an increasing amount of research interest in the

field of EMO as many real-world applications, like thermal scheduling [163] and circular

antenna design [9], can be seen as MOPs. When an MOP involves time-dependent com-

ponents, it can be regarded as a DMOP. Many real-life problems in nature are DMOPs,

such as planning [20], scheduling [44, 134], and control [55, 187]. There have been a

number of contributions made to several important aspects of this field, including dy-
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namism classification [55, 160], test problems [11, 55, 76, 92, 93, 96], performance met-

rics [24, 55, 60, 61, 74, 160, 197], and algorithm design [24, 44, 55, 61, 75, 105, 196, 197].

Among these, algorithm design is the most important issue as it is the problem-solving

tool for DMOPs.

Due to the presence of dynamisms, the design of an MOEA for dynamic MOPs is

different from that for static MOPs. Specifically, dynamic MOEAs (DMOEAs) should

not only have a fast convergence performance (which is crucial to their tracking ability),

but also be able to address diversity loss whenever there is an environmental change in

order to explore the new search space. Besides, if changes are not assumed to be knowable,

DMOEAs should be able to detect them in order not to mislead the optimization process.

This is because, when a change occurs, the previously discovered PS may not remain

optimal for the new environment.

In principle, a change can be detected by re-evaluating dedicated detectors [44, 61,

182, 196, 197] or assessing algorithm behaviours [55, 125, 140]. The former is a easy-

to-use mechanism and allows “robust detection” [140] if a sufficient number of detectors

are used, but it may require additional cost since detectors have to be re-evaluated at

every generation, and it may not be accurate when there is noise in function evaluations.

The latter does not need additional function evaluations, but it may cause false positives

and thus make algorithms overreacting when no change occurs. Both of them cannot

guarantee that changes are detected [140].

On the other hand, whenever a change is detected, it is often inefficient to restart the

optimization process from scratch, although the restart strategy may be a good choice if

the environmental change is considerably severe [14]. In the literature, various approaches

have been proposed to handle environmental changes, and they can be mainly categorized

into diversity-based approaches and convergence-based approaches, according to their

algorithm behaviors. Diversity-based approaches focus on maintaining population diver-

sity whereas convergence-based ones aim to achieve a fast convergence performance so

that algorithms’ tracking ability is guaranteed. Generally, population diversity can be

handled by increasing diversity using mutation of selected old solutions or random gener-

ation of some new solutions upon the detection of environmental changes [44, 61, 197],

maintaining diversity throughout the optimization process [3, 5, 10], or employing multi-

population schemes [61, 152]. Proper diversity is helpful for exploring promising search

regions, but too much diversity may cause evolutionary stagnation [12].

Convergence-based approaches try to exploit past information for better tracking per-

formance [14], especially when the new PS is somewhat similar to the previous one or

environmental changes exhibit regular patterns. Accordingly, recording relevant past in-

formation to be reused at a later stage may be helpful for tracking the new PF as quickly

as possible. The reuse of past information is closely related to the type of environmental

change and hence can be helpful for different purposes [10]. If the environment changes



7.2 Proposed SGEA Method 153

periodically, relevant information of the current PS can be stored in a memory and can be

directly re-introduced into the evolving population when needed. This kind of strategy is

often called memory-based approaches and has been extensively studied in dynamic mul-

tiobjective optimization [14, 20, 61, 71, 191]. In contrast, if the environment change fol-

lows a regular pattern, past information can be collected and used to model the movement

of the changing PF/PS. As a result, the location of the new PS can be predicted, help-

ing the evolving population quickly track the moving PF. Prediction-based approaches

have received massive attention because most existing benchmark DMOPs (e.g., the FDA

test suite [55]) involve predictable characteristics, and studies along this direction can be

referred to [71, 105, 124, 125, 136, 182, 196, 197].

Aside from the above-mentioned approaches, some studies concentrate on finding an

insensitive robust PF instead of closely tracking the moving PF [57, 97, 146]. Robustness-

based approaches assume that when the environment changes, the old obtained solution

can still be used in the new environment as long as its quality is acceptable [97]. How-

ever, the criterion for an acceptable optimal solution is quite problem-specific, which may

hinder the wide application of these approaches.

Although a number of approaches have been proposed for solving DMOPs, the de-

velopment of DMOEAs is a relatively young field and more studies are greatly needed.

In this chapter, a new algorithm, called steady-state and generational EA (SGEA), is pro-

posed for efficiently handling DMOPs. SGEA makes most of the advantages of steady-

state EAs in dynamic environments [166] for environmental change detection and re-

sponse. If a change is detected, SGEA reuses a portion of old solutions with good di-

versity and exploits information collected from both previous environments and the new

environment to relocate a part of its evolving population. At the end of every generation,

like conventional generational EAs [45, 202], SGEA performs environmental selection to

preserve good individuals for the next generation. By mixing the steady-state and gener-

ational manners, SGEA can adapt to dynamic environments quickly whenever a change

occurs, providing very promising tracking ability for DMOPs.

7.2 Proposed SGEA Method

The basic framework of the proposed SGEA is presented in Algorithm 7.1. SGEA starts

with an initial population P and the initialization of an elitist population P and an archive

A through environmental selection. In every generational cycle, SGEA detects possible

environmental changes and evolves the population in a steady-state manner. If a change is

detected by a population member, then a change response mechanism is adopted to handle

the detected change. After that, genetic operation is applied to produce one offspring solu-

tion for the population member, which is then used to update the parent population P and
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Algorithm 7.1: Framework of SGEA
Input: N (population size)
Output: a series of approximated PFs

1 Create an initial parent population P := {x1, . . . ,xN};
2 (A,P) := EnvironmentSelection(P);
3 while stopping criterion not met do

4 for i← 1 to N do

5 if change detected and not responded then

6 ChangeResponse();
7 end

8 y := GenerateOffspring(P,A);
9 (P,A) := UpdatePopulation(y);

10 end

11 (A,P) := EnvironmentSelection(P∪P);
12 Set P := P;
13 end

archive A. At the end of each generation, P and P are combined. Similar to generational

EAs [45, 202] or speciation techniques used in niching [12, 107], a generational envi-

ronmental selection is conducted on the combined population to preserve a population of

good solutions for the next generation. This way, SGEA can be regarded as a steady-state

and generational MOEA. For a better understanding of SGEA, a graphical flowchart of

the algorithm is presented in Fig. 7.1. In the following subsections, the implementation

of each component of SGEA will be detailed step by step.

7.2.1 Environmental Selection

The environmental selection procedure (Algorithm 7.2), which aims to preserve a fixed

number of elitists from a solution set Q after every generational cycle, starts with fitness

assignment. Each individual i of Q is assigned a fitness value F(i), which is defined as

the number of individuals that dominate [202] it, as follows:

F(i) = |{ j ∈ Q| j � i, i ∈ Q}|, (7.1)

where | · | denotes the cardinality of a set. It should be noted that, various fine-grained

methods proposed in the literature [53, 172, 202] can be used to assign fitness values for

individuals. However, the fitness assignment method used in this work is relatively simple

and computationally efficient. Most importantly, when an external individual e enters the

set Q, the update of F(i) needs only one dominance comparison between individuals e and

i. The easy-to-update property of this method will be clearly embodied in the population

update procedure presented in Algorithm 7.4.
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Fig. 7.1 The flowchart of SGEA with the steady-state procedure (in light green) and gen-
erational procedure (in light grey).
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Algorithm 7.2: EnvironmentSelection(Q)

Input: Q (a set of solutions)
Output: A (archive), P (N elitists preserved)

1 Set A := /0 and P := /0;
2 Assign a fitness value to each member in Q;
3 for i← 1 to |Q| do

4 if F(i)< 1 then

5 Copy xi from Q to A;
6 end

7 end

8 if |A|< N then

9 Copy the best N individuals in terms of their fitness values from Q to P;
10 end

11 else

12 if |A|== N then

13 Set P := A;
14 end

15 else

16 Prune A to a set of N individuals by any truncation operator and copy the
truncated A to P;

17 end

18 end

Afterwards, individuals having a fitness value of zero are identified as nondominated

solutions and then copied to an archive A. If |A| is smaller than the population size N, the

best N individuals (including both dominated and nondominated ones) in terms of their fit-

ness values are preserved in an elitist population P. Otherwise, there can be two situations:

either the number of nondominated solutions fits exactly the population size, or there are

too many nondominated solutions. In the first case, all nondominated solutions are copied

to P. In the second case, a truncation technique is needed to reduce A to a population of

N nondominated solutions such that the truncated A have the best diversity possible. In

SGEA, the k-th nearest neighbour truncation technique proposed in the strength Pareto

EA 2 (SPEA2) [202] is used to perform the truncation operation, although we recognize

there are other options, e.g., the farthest first method [26, 27], which can also serve this

purpose. After that, solutions in the truncated A are copied to P.

Note that, like classic generational MOEAs, such as the nondominated sorting genetic

algorithm II (NSGA-II) [45] and SPEA2 [202], SGEA performs environmental selection

at the end of each generation. Thus, SGEA can be generally categorized into generational

MOEAs.
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Algorithm 7.3: GenerateOffspring(P,A)

Input: P (parent population), A (archive population)
Output: y (offspring solution)

1 if rnd < 0.5 then

2 Perform binary tournament selection on P to select two distinct individuals as
the mating parents;

3 end

4 else

5 Randomly pick an individual from A and perform binary tournament selection
on P to select another distinct individual as the mating parents;

6 end

7 Apply genetic operators to generate a new solution y;

7.2.2 Mating Selection and Genetic Operators

Mating selection is an important operation before the production of new offspring (line 8

of Algorithm 7.1). In this work, mating parents can be selected either from the parent pop-

ulation P or the archive population A. The benefit of such a mating selection method has

been extensively investigated on static MOPs in a number of studies [109, 128, 162, 203].

While selecting mating parents from P can maintain good population diversity, selecting

parents from A can significantly improve the convergence speed of the population, which

is considerably desirable in fast-changing environments. If a mating parent is to be se-

lected from P, SGEA performs a binary tournament selection according to individuals’

fitness values. If not, the mating parent can be randomly selected from the archive popu-

lation A.

Following the mating selection, genetic operators are applied on the mating parents to

generate a new offspring solution. In SGEA, the simulation binary crossover and polyno-

mial mutation are chosen as the recombination and mutation operators, respectively. The

reproduction procedure is presented in Algorithm 7.3.

7.2.3 Population Update

In SGEA, population update (line 9 of Algorithm 7.1) is conducted on both the parent

population P and archive population A, which is detailed in Algorithm 7.4. The update

operation on P is in fact replacing the worst solution of P with the newly generated solu-

tion y while the update on A is using y to update the archived nondominated set. First, if

y is not a duplicate solution, it will be compared with each member xi of P for the domi-

nance relation (lines 6 to 8 of Algorithm 7.4). If y dominates xi (y � xi), the fitness value

of xi is increased by one. If y is dominated by xi (xi � y), the fitness value of y is increased

by one. Then, the worst individual in P with the highest fitness value is identified, and if
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Algorithm 7.4: UpdatePopulation(y)

Input: y (offspring solution)
Output: P (updated parent population), A (updated archive population)

1 Set the fitness value of y as zero: F(y)← 0;
2 for i← 1 to |P| do

3 if y == xi then

4 Return;
5 end

6 if y≺ xi then

7 Add one to the fitness value of xi: F(i) := F(i)+1;
8 end

9 if y≻ xi then

10 Add one to the fitness value of y: F(y) := F(y)+1;
11 end

12 end

13 Compute the individual in P having the highest fitness value: î := i :
argmax{1≤i≤|P|}F(i);

14 if F(y)≤ F(î) then

15 Set xî := y and F(î) := F(y);
16 if F(y)< 1 then

17 Remove all solutions in A that are dominated by y, and add y to A if A is not
full;

18 end

19 end

there are two or more such individuals, a random one is selected. If y is not worse than the

identified individual xî in terms of the fitness value, the solution replacement takes place,

as shown in line 15 of Algorithm 7.4. Besides, if y is not dominated by any member in

P (which means its fitness value is zero), it should be further considered to update the

archive population A if A is not full. This means, the archive update occurs only when

y successfully enters the parent population. It can be observed that, the fitness assign-

ment method used here is easy to update an individual’s fitness value, which helps SGEA

conduct solution replacement in the parent population and archive update in an efficient

manner.

7.2.4 Dynamism Handling

This section discusses two main aspects of dynamism handling. One is change detection,

a step to detect whether a change has occurs during the evolutionary process. The other

is known as change response or change reaction, which takes actions to quickly react to

environmental changes so that the population adapts to new environments rapidly.
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7.2.4.1 Change Detection

Change detection can be performed by either re-evaluating a portion of existing solutions

[44, 61, 182, 196, 197] or assessing some statistical information of some selected popula-

tion members [55, 125, 140]. Since both methods choose a small proportion of population

members as detectors, detection may fail if changes occur on non-detectors. On the con-

trary, it will be computationally expensive if the whole population members are chosen

as detectors. Therefore, a good detection method should strike a balance between the

detection ability and efficiency.

The proposed algorithm detects changes in a steady-state manner, as shown in line 6

of Algorithm 7.1. In every generation, population members (in random order) are checked

one by one for discrepancy between their previous objective values and re-evaluated ones.

If a discrepancy exists in a population member, we assume a change is successfully de-

tected and there is no need to do further checks for the rest of population members. When

a change is detected, SGEA immediately reacts to it in a steady-state manner. The de-

tection method is beneficial to prompt and steady change reaction at the cost of high

complexity. For efficiency, the number of individuals re-evaluated for change detection is

restricted to a small percentage of the population size. It is worth noting that, re-evaluation

based change detection methods assume that there is no noise in function evaluations, i.e.,

they are not robust. Thus, the proposed method may not be suitable for detecting changes

in noisy environments.

7.2.4.2 Change Response

If a change is successfully detected, some actions should be taken to react to the envi-

ronmental change. A good change response mechanism must be able to maintain a good

level of population diversity and relocate the population in promising areas that are close

to the new PS. Simply discarding old solutions and randomly reinitializing the population

is beneficial to population diversity but may be time-consuming for algorithms to con-

verge. Likewise, fully reusing old solutions for the new environment might be misleading

if the landscapes of two consecutive changes are significantly different. Also, this may

cause the loss of population diversity. As a consequence, algorithms may get trapped into

local minima or cannot find all PF regions for the new environment. For these reasons, in

this work the population for the new environment consists of half of old solutions and half

of reinitialized solutions. The half old solutions are selected by the farthest first selection

method [26, 164], which was originally proposed to reduce an approximation set to the

maximum allowable size. The farthest first selection method has been reported to provide

better approximation than NSGA-II’s crowding distance [45] for unconstrained and con-

strained static MOPs [26, 27]. This method selects half of old solutions that maximize the

diversity in the objective space (line 3 of Algorithm 7.5). The other half reinitialized solu-
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Algorithm 7.5: ChangeResponse()

Input: y (offspring solution)
Output: P (parent population), A (archive population)

1 R := farthest_first_selection(P) [27];
2 Compute the centroid Ct of A at time step t using Eq. (7.2);
3 Set A := /0;
4 Re-evaluate solutions in R and copy nondominated solutions of R to A;
5 Compute search direction D using Eq. (7.4);
6 for each xt ∈ P\R do

7 Reinitialize xt using Eq. (7.5) and re-evaluate the new solution xt+1;
8 Remove all solutions in A that are dominated by xt+1, and add xt+1 to A;
9 end

10 Set Ct−1 :=Ct ;

tions in the new population are produced by a guess of the new location of the changed PS.

To make a correct or at least reasonable guess, one must know two things, i.e., moving di-

rection and movement step-size. The following paragraphs contribute to how to compute

them.

Let Ct be the centroid of PS and At be the obtained approximation set at time step t,

then Ct can be computed by:

Ct =
1
|At| ∑

x∈At

x. (7.2)

The movement step-size St to the new location of the changed PS at time step t + 1

can be estimated by:

St = ‖Ct −Ct−1‖, (7.3)

where St is actually the Euclidean distance between centroids Ct and Ct−1.

The moving direction should be carefully elaborated to guide the population toward

promising search regions. Otherwise, a completely wrong guess of the moving direc-

tion will mislead the population and make it hard to converge. Bearing this in mind, we

make use of half of the old solution set R preselected by the farthest first selection [26]

to compute the moving direction. First, The solutions in R are re-evaluated, and nondom-

inated solutions are saved in the pre-emptied archive A. Then, the moving direction can

be calculated by:

D =
CA−CR

‖CA−CR‖
, (7.4)

where CA and CR are centroids of A and R in the decision space, respectively.

Having obtained the moving direction and movement step-size, the other half popu-

lation can be easily reinitialized. For each member xt in P \R, its new location in the
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decision space is generated as follows:

xt+1 = xt +StD+ εt , (7.5)

where εt ∼ N(0, Iδt) is a Gaussian noise, added to increase the probability of the reinitial-

ized population to cover the PS in the new environment. I is an identity matrix and δt is

the standard deviation in the Gaussian distribution. δt is defined by:

δt =
St

2
√

n
, (7.6)

where St is the step-size defined in Eq. (7.3), and n is the number of decision variables.

The overall change response procedure is presented in Algorithm 7.5. It is worth

noting that when the first environment change occurs, the computation of Ct−1 is not

applicable. In this situation, random reinitialization is employed for the generation of

solutions in P \R. As long as the centroids of the approximation sets of two consecutive

environments are available, the above reinitialization method can be adopted.

It should be mentioned that, the proposed reinitialization method is somewhat pre-

dictive but in some sense beyond prediction. Prediction approaches usually collect only

history information to predict future events. However, our method exploits both the infor-

mation of previous environments and that of the new environment to reinitialize a portion

of solutions, which we would like to call “guided” solutions because their relocation is

guided by an estimate of the performance of the reused old solutions in the new environ-

ment. Therefore, this method may be helpful for quickly tracking the changing environ-

ment if the estimate of the new environment is reliable. It is worth mentioning that, the

guided reinitialization method implicitly assumes that a change does not affect too much

the relative positions between solutions in the PS. It may fail in case of a notable violation

of the assumption. In this situation, the proposed method may need to work with other

population reinitialization techniques in order to produce good tracking performance.

7.2.5 Computational Complexity of One Generation of SGEA

In the for loop (lines 5 to 9 in Algorithm 7.1) of each generation, computational resources

are mainly consumed by the offspring generation, population update and environmental

selection procedures, and other procedures need less computational cost. The generation

of an offspring solution (line 8 of Algorithm 7.1) requires O(M) computations, where M is

the number of objectives. The population update procedure (line 9 of Algorithm 7.1) takes

O(MN), where N is the population size. Thus, the whole steady-state evolution part takes

O(MN2) computations. The environmental selection procedure (line 11 of Algorithm

7.1) spends O(MN2) computations on fitness assignment and on average O(N2 logN)
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computations [202] on elitist preservation. Therefore, the overall computational com-

plexity of SGEA for one generational cycle is O(MN2) or O(N2 logN), whichever is

larger. It should be noted that, in fast-changing environments, the run-time complexity

of environmental selection might rarely reach O(N2 logN) as individuals usually are un-

likely well-converged (obtaining excessive nondominated solutions) within very limited

response time.

7.3 Experimental Design

7.3.1 Test Problems

Twenty-one test problems, including five FDA [55] problems, three dMOP [61] problems,

six ZJZ problems (F5-F10) [196], and seven UDF [11] problems, are used to assess the

proposed algorithm in comparison with other algorithms. The time instance t involved

in these problems is defined as t = 1
nt
⌊ τ

τt
⌋ (where nt , τt , and τ represent the severity of

change, the frequency of change, and the iteration counter, respectively). Note that, most

of the test problems have periodical changes.

7.3.2 Compared Algorithms

Four popular DMOEAs are used for comparison in our empirical studies. They are

the MOEA based on decomposition (MOEA/D) [188], dynamic version of NSGA-II

(DNSGA-II) [44], dCOEA [61], and PPS [196], representing different classes of meta-

heuristics. The following gives a brief description of each compared algorithm.

1. MOEA/D: as a representative of decomposition-based algorithms, MOEA/D [188]

converts a mutiobjective problem by aggregation functions into a number of single-

objective subproblems and optimizes them simultaneously. MOEA/D maintains

population diversity by the diversity of subproblems, and a fast convergence can

be achieved by defining a neighbourhood for each subproblem and performing mat-

ing selection and solution update within this neighbourhood. Due to these features,

MOEA/D has gained increasing popularity in recent years and has become a bench-

mark algorithm in static multiobjective optimization. In this work, the modified

version of the weighted Tchebycheff approach used in [185] is adopted as the ag-

gregation function for MOEA/D because it has been recently proved to provide

better distribution than its original version. Also, a limited number nr of solutions

will be replaced by any new solution, as suggested in [120].

2. DNSGA-II: it is a dynamic version of the popular NSGA-II algorithm [45], which

is a representative of Pareto-dominance based MOEAs. To make it suitable for han-
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dling dynamic optimization problems, Deb et al. [44] adapted NSGA-II by replac-

ing some population members with either randomly created solutions or mutated

solutions of existing solutions if a change occurs. While the former may perform

better in environments with severe changes, the latter may work well on DMOPs

with moderate changes. In our experiment, the latter method is adopted as it shows

slightly better performance than the former in the study of [44].

3. dCOEA: it hybridizes competitive and cooperative mechanisms observed in nature

to solve static MOPs and to track the changing PF in a dynamic environment [61].

dCOEA uses a fixed number of archived solutions to detect changes, and if detected,

its competitive mechanism will be started to assess the potential of existing informa-

tion of various subpopulations. To increase diversity after a change, dCOEA also

introduces stochastic solutions into the competitive pool. Besides, dCOEA uses

an additional external population to store useful but outdated archived solutions,

hoping to help the evolving population quickly adapt to the new environment by

exploiting these pieces of history information. It has been shown that dCOEA is

very promising for handling dynamic environments [61, 91].

4. PPS: it is a representative of prediction-based methods that model the movement

track of the PF or PS in dynamic environments and then use this model to predict

the new location of PS. In PPS [196], the PS information is divided into two parts:

the population centre and manifold. Based on the archived population centres over

a number of continuous time steps, PPS employs a univariate autoregression model

to predict the next population centre. Likewise, previous manifolds are used to

predict the next manifold. When a change occurs, the initial population for the

new environment is created from the predicted centre and manifold. PPS has been

proved to be very competitive for dynamic optimization when it is incorporated with

an estimation of distribution algorithm [192], and it outperforms other predictive

models [196].

7.3.3 Performance Metrics

In our experimental studies, we adopt some performance metrics introduced in Chapter 6,

i.e., the averaged spacing (S), averaged maximum spread (MS), and averaged IGD. These

indicators can help deeply investigate algorithms’ performance regarding convergence,

distribution, and diversity. Besides, we adopt the averaged HV difference (HVD) [197]

for performance assessment. The reference point for the computation of hypervolume is

(z1 +0.5,z2 +0.5, · · · ,zM +0.5), where z j is the maximum value of the j-th objective of

the true PF and M is the number of objectives.
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7.3.4 Parameter Settings

The parameters of the MOEAs considered in the experiment were referenced from their

original papers. Some key parameters in these algorithms were set as follows:

1. Population size: The population size (N) for all the test problems was set to 100.

To make MOEA/D have 100 subproblems for three-objective FDA4 and FDA5,

we first uniformly generate around 1000 weight vectors using the simplex-lattice

design [188], then prune them to 100 using the farthest first method [26, 27].

2. Parameter settings for SGEA: These parameters were set to the same values in all

the compared algorithms. Specifically, the crossover probability was pc = 1.0 and

its distribution index was ηc = 20. The mutation probability was pm = 1/n and its

distribution ηm = 20. The archive size was the same as the population size.

3. Stopping criterion and the number of executions: Each algorithm terminates after

a pre-specified number of generations and should cover all possible changes. To

minimize the effect of static optimization, we gave 50 generations for each algo-

rithm before the first change occurs. The total number of generations was set to

3ntτt +50, which ensures there are 3nt changes during the evolution. Additionally,

each algorithm was executed 30 independent times on each test instance.

4. The neighbourhood size and the number nr of solutions allowed to replace in

MOEA/D were set to 20 and 2, respectively.

5. For all the algorithms, the maximum 10% population members were chosen for

change detection. For the steady-state MOEA/D, it used the same change detection

mechanism as SGEA, and population re-evaluation for change response.

6. The number of uniformly sampled points on the true PF was set to 500 and 990 for

the computation of IGD for bi- and three-objective problems, respectively.

7.4 Experimental Results

7.4.1 Results on FDA and dMOP Problems

To study the impact of change frequency on algorithms’ ability in dynamic environments,

the severity of change (nt) was fixed to 10, and the frequency of change (τt) was set to

5, 10, and 20, respectively. The obtained average S, MS, IGD, and HVD results over a

series of time windows and their standard deviation values are presented in Tables 7.1,

7.2, 7.3, and 7.4, respectively, where the best values obtained by one of five algorithms
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Table 7.1 Mean and standard deviation values of S metric obtained by five algorithms

Prob. (τt,nt) DNSGA-II dCOEA PPS MOEA/D SGEA

(5,10) 2.5421E-2(2.5497E-3)‡ 3.3966E-2(2.6330E-3)‡ 6.1386E-2(1.6514E-2)‡ 4.6542E-1(1.4472E-1)‡ 1.3267E-2(1.1095E-3)

FDA1 (10,10) 1.0136E-2(7.4361E-3)‡ 1.8316E-2(1.4011E-3)‡ 1.7072E-2(6.5312E-3)‡ 4.8939E-1(1.9408E-1)‡ 7.5411E-3(5.8178E-4)

(20,10) 6.7495E-3(7.3732E-4)‡ 8.9615E-3(7.8094E-4)‡ 5.7913E-2(1.6129E-2)‡ 3.5391E-1(1.6524E-1)‡ 3.9986E-3(2.5969E-4)

(5,10) 7.6448E-3(3.1834E-4) 2.7693E-2(3.9466E-3)‡ 2.4594E-2(6.0101E-3)‡ 1.8142E-2(2.8950E-2)‡ 9.4054E-3(1.6736E-3)
FDA2 (10,10) 5.3715E-3(3.3796E-4) 1.5614E-2(2.8655E-3)‡ 1.7122E-2(3.9192E-3)‡ 1.5625E-2(2.4152E-2)‡ 6.5871E-3(8.7753E-4)

(20,10) 5.0340E-3(1.3246E-4)† 8.0937E-3(2.0835E-3)‡ 1.8392E-2(4.0463E-3)‡ 1.0903E-2(4.8363E-3)‡ 4.9516E-3(4.9187E-4)

(5,10) 1.7052E-2(2.3120E-3) 3.3698E-2(1.6310E-2)† 5.2045E-2(9.7887E-3)‡ 8.3517E-2(4.6837E-2)‡ 3.1669E-2(4.1347E-3)
FDA3 (10,10) 1.1167E-2(1.9011E-3) 1.7698E-2(9.1874E-3) 1.6536E-2(4.1971E-3) 4.6011E-2(1.8288E-2)‡ 2.4160E-2(1.8298E-3)

(20,10) 8.2268E-3(1.7859E-3) 1.2049E-2(6.1286E-3) 9.0478E-3(2.0861E-3) 2.9416E-2(8.6135E-3)‡ 2.2741E-2(9.9650E-4)
(5,10) 1.2706E-1(5.5003E-3)‡ 5.9217E-2(4.6346E-3) 1.0232E-1(9.7961E-3)† 1.8035E-1(3.2800E-2)‡ 8.7427E-2(7.6848E-3)

FDA4 (10,10) 9.1659E-2(3.8467E-3)‡ 3.8658E-2(3.2771E-3) 6.0989E-2(1.0643E-2)‡ 1.6494E-1(2.9433E-2)‡ 4.1252E-2(2.9737E-3)
(20,10) 5.5146E-2(2.1395E-3)‡ 2.7830E-2(1.5839E-3)† 4.8519E-2(2.9057E-3)‡ 1.6572E-1(2.5986E-2)‡ 2.5354E-2(2.8502E-3)

(5,10) 1.5306E-1(5.0947E-3)‡ 9.9019E-2(8.8149E-3)‡ 1.4717E-1(1.1045E-2)‡ 1.5505E-1(1.4762E-2)‡ 8.2228E-2(4.2364E-3)

FDA5 (10,10) 1.1245E-1(3.9588E-3)‡ 6.3211E-2(4.8740E-3)‡ 1.0820E-1(8.7265E-3)‡ 1.2839E-1(1.5067E-2)‡ 4.5009E-2(2.6441E-3)

(20,10) 8.0300E-2(2.3006E-3)‡ 4.9950E-2(3.1582E-3)‡ 8.6349E-2(4.1808E-3)‡ 1.0497E-1(7.8394E-3)‡ 3.0379E-2(6.7640E-4)

(5,10) 5.3389E-3(7.8416E-4)‡ 8.4983E-2(5.2562E-3)‡ 1.0375E-1(7.8713E-2)‡ 4.1207E-2(1.1779E-1)‡ 3.4712E-3(5.4488E-4)

dMOP1 (10,10) 5.5311E-3(1.3101E-3)‡ 1.5696E-2(9.5712E-3)‡ 2.5068E-2(2.4719E-2)‡ 5.6413E-2(2.0924E-1)‡ 2.7029E-3(3.0835E-4)

(20,10) 5.2961E-3(2.7514E-4)‡ 6.3031E-3(6.6072E-4)‡ 1.4722E-2(2.0239E-2)‡ 2.6844E-2(8.1479E-2)‡ 2.5010E-3(2.5768E-4)

(5,10) 1.6538E-2(1.7941E-3)‡ 6.0455E-2(2.1579E-3)‡ 2.7767E-2(4.5722E-3)‡ 1.4701E-1(5.3676E-2)‡ 1.3177E-2(1.4569E-3)

dMOP2 (10,10) 1.0690E-2(5.3335E-4)‡ 3.0587E-2(3.9867E-3)‡ 1.1608E-2(2.7373E-3)‡ 1.4459E-1(5.3516E-2)‡ 6.6710E-3(5.8584E-4)

(20,10) 6.2086E-3(1.9806E-4)‡ 1.4253E-2(1.7038E-3)‡ 6.2807E-3(1.1104E-3)‡ 1.4322E-1(6.6231E-2)‡ 3.9175E-3(2.9561E-4)

(5,10) 1.4393E-2(1.2499E-3)‡ 3.3786E-2(5.5519E-3)‡ 2.7518E-2(4.8871E-3)‡ 2.7281E-2(2.2967E-2)‡ 9.5664E-3(9.9353E-4)

dMOP3 (10,10) 8.1655E-3(6.5231E-4)‡ 1.5418E-2(1.0978E-3)‡ 1.6453E-2(2.3904E-3)‡ 1.2555E-2(2.0652E-3)‡ 5.4336E-3(6.0751E-4)

(20,10) 5.3930E-3(5.5912E-4)‡ 7.3129E-3(3.9782E-4)‡ 1.1264E-2(1.7604E-3)‡ 9.9081E-3(1.4603E-3)‡ 4.2793E-3(5.3812E-4)

‡ and † indicate SGEA performs significantly better than and equivalently to the corresponding algorithm, respectively.
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Table 7.2 Mean and standard deviation values of MS metric obtained by five algorithms

Prob. (τt ,nt) DNSGA-II dCOEA PPS MOEA/D SGEA

(5,10) 6.8875E-1(6.9604E-2)‡ 8.6361E-1(2.5899E-2)‡ 8.7571E-1(3.3122E-2)‡ 8.2378E-1(2.2483E-2)‡ 9.3411E-1(3.2794E-2)

FDA1 (10,10) 9.2689E-1(1.9129E-2)‡ 8.9378E-1(2.2115E-2)‡ 9.6555E-1(1.2319E-2)‡ 9.2142E-1(1.6053E-2)‡ 9.7277E-1(1.0854E-2)

(20,10) 9.8453E-1(2.1657E-3)† 9.2981E-1(1.2003E-2)‡ 9.8426E-1(4.8155E-3)† 9.6140E-1(8.4959E-3)‡ 9.8810E-1(6.2816E-3)

(5,10) 9.9649E-1(4.2818E-3)† 8.1389E-1(4.8855E-2)‡ 9.0733E-1(5.3057E-2)‡ 9.4951E-1(3.7796E-2)‡ 9.9231E-1(5.2065E-3)
FDA2 (10,10) 9.9730E-1(2.6637E-3)† 8.7511E-1(2.9208E-2)‡ 9.3410E-1(1.2746E-2)‡ 9.6362E-1(2.5629E-2)‡ 9.9308E-1(3.3464E-3)

(20,10) 9.9786E-1(1.9825E-3) 9.1688E-1(3.2152E-2)‡ 9.3897E-1(7.2423E-3)‡ 9.7535E-1(1.8048E-2)‡ 9.9342E-1(2.6409E-3)
(5,10) 6.3387E-1(1.1045E-1)‡ 5.0510E-1(4.5498E-2)‡ 6.0036E-1(3.4102E-2)‡ 7.3593E-1(9.3637E-2)‡ 8.8834E-1(8.9085E-2)

FDA3 (10,10) 7.6418E-1(7.9082E-2)‡ 5.7869E-1(3.6421E-2)‡ 6.0893E-1(2.6990E-2)‡ 8.2943E-1(8.4314E-2)‡ 9.3342E-1(7.1125E-2)

(20,10) 7.8775E-1(7.2659E-2)‡ 6.8023E-1(4.3336E-2)‡ 6.0760E-1(2.4411E-2)‡ 8.8984E-1(2.1886E-2)‡ 9.4731E-1(7.2987E-2)

(5,10) 9.9999E-1(3.2759E-6)† 9.6390E-1(7.4777E-3)‡ 9.9823E-1(7.5711E-4)‡ 9.9999E-1(2.1721E-6)† 9.9997E-1(1.9039E-5)
FDA4 (10,10) 1.0000E+0(7.8284E-7) 9.7421E-1(6.0289E-3)‡ 9.9903E-1(1.2185E-4)‡ 9.9999E-1(8.5330E-7) 9.9995E-1(2.6230E-5)

(20,10) 1.0000E+0(3.0455E-7) 9.8552E-1(2.3528E-3)‡ 9.9904E-1(9.8111E-5)‡ 1.0000E+0(2.6739E-7) 9.9992E-1(2.5034E-5)
(5,10) 9.9999E-1(2.0403E-6) 9.3043E-1(3.7021E-2)‡ 9.9758E-1(2.6961E-3) 9.9866E-1(3.2365E-3) 9.9442E-1(8.0786E-3)

FDA5 (10,10) 1.0000E+0(4.3629E-7) 9.5871E-1(3.5891E-2)‡ 9.9781E-1(3.8432E-3)‡ 9.9995E-1(1.4197E-4) 9.9949E-1(7.9814E-4)
(20,10) 1.0000E+0(7.6916E-8) 9.7908E-1(1.9611E-2)‡ 9.9955E-1(1.7863E-4)† 9.9999E-1(7.9466E-7) 9.9993E-1(5.9215E-5)
(5,10) 9.5971E-1(4.5522E-2)† 8.2629E-1(4.1500E-2)‡ 9.3007E-1(6.7780E-2)‡ 9.6544E-1(3.8454E-2)† 9.5950E-1(3.3426E-2)

dMOP1 (10,10) 9.8083E-1(2.0385E-2)† 8.8318E-1(2.5097E-2)‡ 9.7105E-1(3.3827E-2)‡ 9.8276E-1(1.5980E-2)† 9.8351E-1(1.3118E-2)

(20,10) 9.8836E-1(1.1924E-2)† 9.3962E-1(1.0940E-2)‡ 9.8192E-1(1.8910E-2)† 9.8869E-1(1.0211E-2)‡ 9.8534E-1(1.2710E-2)
(5,10) 7.1985E-1(9.8981E-2)‡ 7.4615E-1(5.4804E-2)‡ 8.5360E-1(1.3935E-2)‡ 7.9673E-1(1.2783E-2)‡ 9.4952E-1(1.3091E-2)

dMOP2 (10,10) 8.8398E-1(1.0456E-2)‡ 8.1368E-1(2.5334E-2)‡ 9.5016E-1(1.6218E-2)‡ 8.8264E-1(1.4109E-2)‡ 9.8099E-1(4.5689E-3)

(20,10) 9.8039E-1(3.2935E-2)‡ 9.0203E-1(1.6144E-2)‡ 9.7464E-1(2.6993E-3)‡ 9.5552E-1(5.9188E-3)‡ 9.9251E-1(1.4628E-3)

(5,10) 4.3016E-1(2.2614E-2)‡ 8.7837E-1(2.1444E-2) 8.5479E-1(1.3831E-2) 5.0950E-1(3.1263E-2)† 4.9760E-1(2.2063E-2)
dMOP3 (10,10) 5.3193E-1(2.1894E-2)† 9.1097E-1(1.1716E-2) 8.8793E-1(9.6772E-3) 6.3606E-1(1.8266E-2) 5.7573E-1(2.9590E-2)

(20,10) 6.2492E-1(1.9883E-2)‡ 9.4844E-1(1.1052E-2) 9.0666E-1(9.4326E-3) 7.7993E-1(1.9421E-2) 6.8486E-1(2.9571E-2)

‡ and † indicate SGEA performs significantly better than and equivalently to the corresponding algorithm, respectively.
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Table 7.3 Mean and standard deviation values of IGD metric obtained by five algorithms

Prob. (τt,nt) DNSGA-II dCOEA PPS MOEA/D SGEA

(5,10) 6.4053E-1(9.8895E-2)‡ 6.3686E-2(1.1610E-2)‡ 2.0885E-1(8.4104E-2)‡ 3.5649E-1(4.9023E-2)‡ 3.4182E-2(8.0969E-3)

FDA1 (10,10) 5.8213E-2(3.8909E-3)‡ 4.1342E-2(6.5605E-3)‡ 4.2736E-2(1.9486E-2)‡ 1.2112E-1(1.1879E-2)‡ 1.4809E-2(2.0621E-3)

(20,10) 4.1464E-2(4.2405E-3)‡ 2.3984E-2(2.2878E-3)‡ 1.6218E-2(7.9450E-3)‡ 4.0424E-2(2.2617E-3)‡ 7.5500E-3(1.4897E-3)

(5,10) 2.8517E-2(2.4351E-3)‡ 7.2853E-2(3.8658E-2)‡ 8.1301E-2(3.0399E-2)‡ 8.4088E-2(1.3585E-2)‡ 1.5004E-2(1.6826E-3)

FDA2 (10,10) 1.0805E-2(9.0279E-4)‡ 4.7325E-2(3.3605E-2)‡ 6.3561E-2(1.0647E-2)‡ 3.3894E-2(8.8878E-3)‡ 9.1174E-3(6.3334E-4)

(20,10) 6.5124E-3(5.2611E-4)† 3.2472E-2(4.6061E-2)‡ 6.2768E-2(9.0724E-3)‡ 1.6459E-2(4.9937E-3)‡ 6.3268E-3(4.0710E-4)

(5,10) 2.6346E-1(6.0463E-2)‡ 2.6371E-1(3.5505E-2)‡ 4.4378E-1(1.1102E-1)‡ 2.4764E-1(2.3050E-2)‡ 6.2525E-2(3.8414E-2)

FDA3 (10,10) 1.0821E-1(3.3153E-2)‡ 1.9526E-1(3.2807E-2)‡ 2.1946E-1(1.8132E-2)‡ 1.3090E-1(2.5891E-2)‡ 4.0371E-2(2.9061E-2)

(20,10) 9.0365E-2(2.8703E-3)‡ 1.2625E-1(3.1398E-2)‡ 1.9259E-1(2.4153E-2)‡ 5.4535E-2(8.3567E-3)‡ 3.5293E-2(2.9668E-2)

(5,10) 1.4906E+0(1.2669E-1)‡ 1.6224E-1(6.1969E-3) 3.0719E-1(1.9145E-2)‡ 1.3602E+0(1.6118E-1)‡ 4.6085E-1(6.6670E-2)
FDA4 (10,10) 7.6342E-1(4.4885E-2)‡ 1.2450E-1(4.5799E-3) 2.1151E-1(2.0215E-2)‡ 5.7713E-1(5.4877E-2)‡ 1.8302E-1(6.6613E-3)

(20,10) 2.6255E-1(1.6817E-2)‡ 1.0303E-1(1.7584E-3) 1.7909E-1(3.0438E-3)‡ 2.2277E-1(1.3352E-2)‡ 1.2684E-1(1.5029E-3)
(5,10) 1.7611E+0(1.0707E-1)‡ 4.3378E-1(4.6953E-2) 6.5562E-1(3.1705E-2)‡ 1.5704E+0(1.3189E-1)‡ 5.2338E-1(3.3442E-2)

FDA5 (10,10) 1.0239E+0(5.4901E-2)‡ 3.6283E-1(4.0631E-2)† 4.8031E-1(3.5207E-2)‡ 8.1980E-1(6.0501E-2)‡ 3.6260E-1(8.5854E-3)

(20,10) 4.8890E-1(1.2544E-2)‡ 3.1016E-1(2.7499E-2)† 3.7195E-1(1.2431E-2)‡ 4.0732E-1(1.4768E-2)‡ 3.0953E-1(2.2283E-3)

(5,10) 1.3135E-1(1.1037E-2)‡ 6.9595E-2(1.4007E-2)‡ 4.1528E-1(7.4997E-1)‡ 1.3604E-2(9.0549E-3)‡ 1.1207E-2(8.1627E-3)

dMOP1 (10,10) 8.8338E-3(5.0638E-3)‡ 3.9362E-2(6.2467E-3)‡ 5.0918E-2(9.3741E-2)‡ 9.3916E-3(4.3151E-3)‡ 8.2424E-3(5.3626E-3)

(20,10) 7.3907E-3(3.2736E-3)‡ 1.8848E-2(2.3214E-3)‡ 4.3965E-2(8.4779E-2)‡ 7.1797E-3(2.7117E-3)‡ 6.5411E-3(3.0256E-3)

(5,10) 6.8741E-1(7.5422E-2)‡ 1.2043E-1(2.0546E-2)‡ 1.5635E-1(1.8877E-2)‡ 4.9102E-1(4.1828E-2)‡ 3.0254E-2(3.4200E-3)

dMOP2 (10,10) 1.1864E-1(9.4674E-3)‡ 7.3299E-2(8.9931E-3)‡ 4.2819E-1(1.7367E-2)‡ 1.8898E-1(1.9146E-2)‡ 1.2148E-2(5.7205E-4)

(20,10) 1.5741E-1(6.7003E-4)‡ 3.4622E-2(4.3234E-3)‡ 2.0207E-2(2.4955E-3)‡ 5.6301E-2(3.9135E-3)‡ 6.3230E-3(1.7401E-4)

(5,10) 5.6244E-1(3.9864E-2)‡ 4.9556E-2(4.8079E-3) 1.7617E-1(8.0705E-2)† 3.4211E-1(1.9264E-2)‡ 1.8143E-1(9.6531E-2)
dMOP3 (10,10) 2.0009E-1(1.5091E-2)‡ 2.9589E-2(2.4806E-3) 1.1367E-1(1.2092E-2) 1.6853E-1(1.0496E-2)‡ 1.3248E-1(1.3627E-2)

(20,10) 1.0780E-1(8.5053E-3)‡ 1.6366E-2(1.7152E-3) 8.9901E-2(6.7418E-3)† 6.2795E-2(4.3764E-3) 8.1563E-2(1.2540E-2)

‡ and † indicate SGEA performs significantly better than and equivalently to the corresponding algorithm, respectively.
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Table 7.4 Mean and standard deviation values of HVD metric obtained by five algorithms

Prob. (τt ,nt) DNSGA-II dCOEA PPS MOEA/D SGEA

(5,10) 8.7093E-1(7.5592E-2)‡ 1.2585E-1(2.4080E-2)‡ 3.8772E-1(1.0116E-1)‡ 7.7026E-1(9.4376E-2)‡ 8.1493E-2(2.0911E-2)

FDA1 (10,10) 1.3610E-1(1.7463E-2)‡ 8.5252E-2(2.0248E-2)‡ 2.9712E-1(1.6596E-2)‡ 2.8825E-1(2.9076E-2)‡ 3.8112E-2(1.4430E-2)

(20,10) 3.5539E-2(1.3774E-2)‡ 5.4656E-2(1.6343E-2)‡ 2.8401E-1(1.5220E-2)‡ 1.3478E-1(9.2613E-3)‡ 2.0270E-2(1.2830E-2)

(5,10) 4.7185E-2(1.4726E-2)‡ 1.8564E-1(6.4420E-2)‡ 3.2184E-1(6.7336E-2)‡ 1.3022E-1(2.5946E-2)‡ 2.5498E-2(1.3466E-2)

FDA2 (10,10) 2.0598E-2(1.4744E-2)‡ 1.2486E-1(4.6708E-2)‡ 2.6663E-1(1.4716E-2)‡ 6.2906E-2(1.8881E-2)‡ 1.6745E-2(1.4126E-2)

(20,10) 1.3369E-2(1.4735E-2)‡ 8.6455E-2(7.0196E-2)‡ 2.5527E-1(9.4754E-3)‡ 3.2497E-2(1.4799E-2)‡ 1.2377E-2(1.4101E-2)

(5,10) 1.5478E+0(1.6485E-1)‡ 1.4594E+0(8.5119E-2)‡ 1.7549E+0(1.8461E-1)‡ 1.6606E+0(7.8359E-2)‡ 9.8045E-1(1.0710E-1)

FDA3 (10,10) 1.0970E+0(9.9053E-2)‡ 1.3223E+0(7.7970E-2)‡ 1.1626E+0(4.6925E-2)‡ 1.1225E+0(9.3170E-2)‡ 9.2413E-1(8.2603E-2)

(20,10) 1.0419E+0(7.9293E-2)‡ 1.1578E+0(6.6326E-2)‡ 1.0365E+0(7.4288E-2)‡ 9.4755E-1(2.2550E-2)‡ 9.1188E-1(8.1889E-2)

(5,10) 2.0595E+0(2.0121E-1)‡ 3.8011E-1(2.6939E-2) 7.7744E-1(6.8856E-2)‡ 3.9719E+0(1.6351E+0)‡ 1.0379E+0(1.3381E-1)
FDA4 (10,10) 1.5893E+0(6.6551E-2)‡ 2.7081E-1(3.5707E-2)† 4.3455E-1(7.2947E-2)‡ 1.2458E+0(1.3708E-1)‡ 2.7403E-1(2.4337E-2)

(20,10) 5.4876E-1(5.7277E-2)‡ 1.8048E-1(2.4395E-2)‡ 3.3435E-1(8.3758E-3)‡ 4.3462E-1(5.0662E-2)‡ 1.4480E-1(2.0339E-2)

(5,10) 6.7506E+0(1.9848E-1)‡ 2.7667E+0(2.8579E-1)‡ 3.8869E+0(3.1382E-1)‡ 7.0876E+0(1.0641E+0)‡ 2.7020E+0(2.2339E-1)

FDA5 (10,10) 5.4164E+0(1.6223E-1)‡ 2.3772E+0(2.7316E-1)‡ 2.1995E+0(3.9061E-1)‡ 4.8043E+0(2.6911E-1)‡ 1.8867E+0(9.3801E-2)

(20,10) 2.6454E+0(1.1158E-1)‡ 2.0207E+0(1.8696E-1)‡ 1.0481E+0(1.1778E-1) 2.1517E+0(1.0853E-1)‡ 1.7874E+0(7.1890E-2)

(5,10) 3.9375E-2(3.8881E-2)† 1.7307E-1(3.3448E-2)‡ 2.8629E-1(3.6238E-1)‡ 4.6453E-2(3.6865E-2)‡ 3.7523E-2(2.5376E-2)

DMOP1 (10,10) 2.2844E-2(2.0365E-2)‡ 1.1236E-1(2.0863E-2)‡ 9.2754E-2(1.3906E-1)‡ 2.5712E-2(1.5458E-2)‡ 1.9048E-2(1.4569E-2)

(20,10) 1.7194E-2(1.4792E-2)† 5.6555E-2(8.1366E-3)‡ 6.0241E-2(8.1387E-2)‡ 1.5920E-2(7.9781E-3) 1.8012E-2(1.3010E-2)
(5,10) 8.0662E-1(1.1259E-1)‡ 3.0338E-1(4.9212E-2)‡ 3.9550E-1(3.9842E-2)‡ 9.0438E-1(7.3270E-2)‡ 8.7174E-2(1.9234E-2)

DMOP2 (10,10) 2.9084E-1(2.5036E-2)‡ 2.0782E-1(2.4976E-2)‡ 1.1778E-1(4.3469E-2)‡ 4.4678E-1(4.2568E-2)‡ 3.5928E-2(1.1177E-2)

(20,10) 4.5002E-2(1.2356E-2)‡ 1.0906E-1(1.5524E-2)‡ 5.6596E-2(6.2322E-3)‡ 1.9824E-1(1.4847E-2)‡ 1.8517E-2(1.1142E-2)

(5,10) 9.5131E-1(3.4052E-2)‡ 1.0526E-1(1.6998E-2) 4.2264E-1(1.5786E-2)† 7.6163E-1(5.3913E-2)† 4.0715E-1(2.4743E-2)
DMOP3 (10,10) 4.7415E-1(2.8497E-2)‡ 6.5770E-2(1.3652E-2) 2.7970E-1(2.7200E-2) 4.5433E-1(2.8194E-2)‡ 3.1866E-1(2.9555E-2)

(20,10) 2.7629E-1(2.5543E-2)‡ 3.6360E-2(1.3138E-2) 2.2118E-1(1.5326E-2)† 2.8764E-1(2.0740E-2)‡ 2.1541E-1(3.0679E-2)

‡ and † indicate SGEA performs significantly better than and equivalently to the corresponding algorithm, respectively.
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are highlighted in bold face. The Wilcoxon rank-sum test [179] is carried out to indicate

significance between different results at the 0.05 significance level.

It can be observed from Table 7.1 that SGEA obtains the best results on the majority

of the tested FDA and dMOP instances, implying that it maintains better distribution of its

approximations over changes than the other compared algorithms in most cases. However,

it performs slightly worse than DNSGA-II for FDA2 and FDA3, and dCOEA for FDA4

with fast changes (i.e., τt = 5 and 10). For all the test instances, both PPS and MOEA/D

fail to show encouraging performance on the S metric, and MOEA/D seems struggling

for maintaining a uniform distribution of its PF approximations for dynamic optimization,

as indicated by the large S values in Table 7.1.

As shown in Table 7.2, the results on the MS metric are quite divergent. DNSGA-II

and SGEA obtain a spread coverage for FDA2, FDA4, and FDA5, although DNSGA-II

provides slightly better MS values than SGEA. For problems FDA1, FDA3, and dMOP2,

SGEA significantly outperforms the other algorithms by a clear margin in terms of the MS

metric. PPS and MOEA/D cover the PF very well for two three-objective problems, i.e.,

FDA4 and FDA5, and all the algorithms perform similarly on dMOP1 except dCOEA,

whose MS values are not very competitive in this case. To have a better understanding of

how algorithms’ MS performance can be affected by different dynamisms, we discuss a

little bit more on FDA3 and dMOP3. FDA3 is a problem in which environmental changes

shift the PS and affect the density of points on the PF whereas dMOP3 is a problem

where the population diversity can decrease dramatically. The results of MS show that,

for FDA3, SGEA can maintain a good coverage of the PF when the other algorithms

perform poorly. However, this is not the case for dMOP3, where only dCOEA and PPS

are able to distribute their obtained solutions widely on the PF. This means that the change

response mechanisms in DNSGA-II, MOEA/D, and SGEA may face big challenges when

dynamisms drastically aggravate population diversity.

Since the IGD metric mainly depends on the closeness, distribution, and coverage of

an approximation to the true PF, we can use IGD together with SP and MS to deeply and

extensively reveal the algorithms’ performance on the test instances. Table 7.3 clearly

shows that, SGEA performs the best on the majority of the test instances and mainly loses

on FDA4 and dMOP3, where dCOEA is the best performer, in terms of the IGD metric.

Clearly, the uncompetitive distribution (i.e., slightly large S metric) and poor coverage

(i.e., relatively small MS metric) of obtained approximations are the main reasons for the

low performance of SGEA on FDA4 and dMOP3, respectively. However, good S and

MS values do not necessarily result in satisfying IGD metric, and this can be particularly

observed from the case of DNSGA-II on FDA2, suggesting that DNSGA-II converges

worse than SGEA although it provides the best S and MS metrics on this problem. For

PPS and MOEA/D, the IGD performance is not competitive in spite of their good spread
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performance for most of the test instances, and this may be caused by their poor solution

distribution, as indicated by their large S values.

Table 7.4 presents the HVD metric obtained by five algorithms on the FDA and dMOP

problems. The obtained HVD values are roughly consistent with the IGD ones illustrated

in Table 7.3. Clearly, SGEA is more promising than the other algorithms to solve most

FDA and dMOP instances, but it is outperformed by dCOEA on FDA4 and DMOP3. Be-

sides, the steady-state MOEA/D also shows some appealing results on FDA3 and DMOP1

when τt equals 20, implying that its steady-state update method may be helpful for han-

dling slow-changing environments.

It can also be observed from the results of the three used metrics that, the frequency of

change has a significant effect on algorithms’ performance, and the effect decreases when

environmental changes become slow. For two three-objective problems, i.e., FDA4 and

FDA5, DNSGA-II and MOEA/D are most influenced by frequent changes and struggle

to push their populations toward the PF, as indicated by their large IGD and HVD values

in Tables 7.3 and 7.4, respectively. Overall, dCOEA and SGEA seem less sensitive to

the frequency of change, as can be seen from their gradual improvement on three metrics

when τt increases from 5 to 20. On the other hand, with the variation of frequency, there

are drastic improvements on DNSGA-II, PPS, and MOEA/D in most of the test instances.

Apart from tabular presentation, we provide evolution curves of the average IGD val-

ues on the test instances in Fig. 7.2. It can be clearly seen that, compared with the other

algorithms, SGEA responds to changes more stably and recovers faster for most of the

test problems, thereby obtaining higher convergence performance. The only exception

is dMOP3, where dCOEA performs the best, and due to the lack of population diversity

(indicated by poor MS values) when a change occurs, the IGD values obtained by SGEA

fluctuate widely on this problem. Despite that, SGEA performs similarly to PPS and bet-

ter than DNSGA-II and MOEA/D on dMOP3. For a graphical view of the algorithms’

tracking ability, we also plot their obtained PFs of FDA1, FDA2, FDA3 and dMOP3 over

31 time windows, which are shown in Fig. 7.3. Fig. 7.3 evidently shows that SGEA is

very capable of tracking environmental changes, but may be of limited coverage if there

is a significant diversity loss (e.g., on dMOP3) in dynamic environments.

7.4.2 Results on ZJZ and UDF Problems

Unlike the FDA and dMOP test suites, the ZJZ (F5-F10) [196] and UDF [11] test prob-

lems have nonlinear linkages between decision variables. Also, the ZJZ and UDF test

suites introduce a number of new dynamic features which are not included in FDA and

dMOP. Table 7.5 reports the HVD values obtained by five algorithms for these challenging

problems with (τt,nt) = (10,10).
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Fig. 7.2 Evolution curves of average IGD values for eight problems with τt = 10 and
nt = 10.

Compared with the average HVD values on FDA and dMOP problems given in Sec-

tion 7.4.1, the average HVD values obtained on ZJZ and UDF problems are generally

much higher, implying that the optimization difficulties are increased in the ZJZ and UDF
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Fig. 7.3 Obtained PFs for four problems with τt = 10 and nt = 10.

problems. Table 7.5 clearly shows that SGEA and PPS are top performers on these dif-

ficult problems. SGEA obtains the best HVD values on some problems while PPS wins

on others. SGEA performs significantly better than DNSGA-II on problems F5-F10, but

this superiority disappears when they are compared on the UDF problems, and there is

no much difference between them. This means SGEA has no much advantage in dealing

with difficult variable-linkage UDF problems. PPS, which is not impressive for solving

FDA and dMOP problems, shows very promising performance on some ZJZ and UDF

problems. This is because PPS employs an estimation of distribution algorithm [192]

as its reproduction operator. This operator can exploit problem-specific knowledge and

hence is very helpful for solving variable-linkage problems. With the aid of such a power-

ful operator, it is natural that PPS can obtain competitive results on these variable-linkage

DMOPs. In contrast to PPS, dCOEA faces dramatic difficulties to handle the ZJZ and

UDF problems, although it has previously shown good performance on FDA and dMOP
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Table 7.5 Mean and standard deviation values of HVD metric obtained by five algorithms on ZJZ and UDF problems

Prob. DNSGA-II dCOEA PPS MOEA/D SGEA

F5 1.2584E+0(2.5806E-2)‡ 1.1019E+0(1.6678E-1)‡ 4.0198E-1(9.9177E-2) 1.1908E+0(2.9956E-2)‡ 7.1648E-1(8.2355E-2)

F6 4.7654E-1(3.7611E-2)‡ 9.2223E-1(1.0246E-1)‡ 4.9294E-1(1.5074E-1)‡ 5.7587E-1(7.5659E-2)‡ 3.6068E-1(2.5674E-2)

F7 6.4963E-1(1.0867E-2)‡ 1.2297E+0(1.5928E-1)‡ 4.4905E-1(1.4280E-1) 6.5075E-1(2.8591E-2)‡ 6.0586E-1(1.5195E-2)

F8 1.0626E+0(4.6244E-2)‡ 8.8580E-1(1.2482E-1)‡ 1.3462E+0(1.0652E-1)‡ 1.0615E+0(6.6784E-2)‡ 4.5728E-1(3.2881E-2)

F9 8.8751E-1(3.4535E-2)‡ 1.0741E+0(1.9861E-1)‡ 6.8857E-1(7.7943E-2)‡ 8.5809E-1(4.6913E-2)‡ 5.7634E-1(7.0349E-2)

F10 1.2217E+0(5.0091E-2)‡ 8.5883E-1(8.8251E-2)‡ 5.3839E-1(1.2028E-1)† 1.0590E+0(5.9197E-2)‡ 5.7721E-1(2.3204E-2)

UDF1 5.1409E-1(3.2724E-2)† 7.4761E-1(3.8905E-2)‡ 7.9775E-1(5.2094E-2)‡ 6.1209E-1(9.4226E-2)‡ 5.1825E-1(5.0120E-2)

UDF2 5.5156E-1(2.4931E-2)‡ 6.1354E-1(2.8689E-2)‡ 4.3230E-1(1.9124E-2) 5.4236E-1(1.7627E-2)‡ 5.1049E-1(2.5728E-2)

UDF3 1.2217E+0(1.9063E-3)† 1.2314E+0(7.0157E-2)† 1.7374E+0(3.1733E-4)‡ 1.2266E+0(2.4696E-3)† 1.2212E+0(2.4181E-3)

UDF4 3.4766E-1(8.3674E-2)† 5.0624E-1(3.7884E-2)‡ 3.7727E-1(2.1791E-2)‡ 6.4101E-1(1.9436E-1)‡ 3.3216E-1(7.1516E-2)

UDF5 2.7870E-1(2.5461E-2)† 3.9877E-1(3.3025E-2)‡ 2.7052E-1(1.5772E-2)† 3.6585E-1(2.7331E-2)‡ 2.7251E-1(1.8914E-2)

UDF6 9.3426E-1(1.5483E-1) 1.2681E+0(7.2900E-2)‡ 1.8374E+0(1.0066E-2)‡ 1.2118E+0(1.4935E-1) 9.7707E-1(2.0394E-1)

UDF7 2.4041E+0(7.4722E-2)‡ 1.9125E+0(1.7349E-1)† 2.0607E+0(5.4338E-2)† 2.3287E+0(2.4253E-1)‡ 2.0625E+0(1.2304E-1)

‡ and † indicate SGEA performs significantly better than and equivalently to the corresponding algorithm, respectively.
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Fig. 7.4 Evolution curves of average IGD values for twelve variable-linkage problems
with τt = 10 and nt = 10.

problems.

Table 7.5 also shows that almost all the tested algorithms are struggling for three-

objective problems, i.e., F8 and UDF7, and disconnected problems, i.e., UDF3 and UDF6,
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as indicated by their relatively high HVD values. This is understandable because the

increase of the number of objectives and disconnectivity are themselves very challenging

in static optimization, let alone in dynamic optimization.

To show the evolution performance, Fig. 7.4 plots the evolution curve of the average

IGD metric values over 30 independent runs. We can see from the figure that SGEA is

able to respond to environmental changes fast and stably in most cases. DNSGA-II and

MOEA/D roughly have similar evolution curves on the majority of cases. PPS recovers

from environmental changes fast on some problems, e.g., F6, F9, UDF2, and UDF5, but

recovers slowly on other problems like F8 and UDF1. dCOEA seems struggling on these

variable-linkage DMOPs.

It is worth noting that, the tested algorithms do not react to changes stably on a few

problems, e.g., F5, F9, and F10. The IGD values vary widely on these problems because

they involves more severe changes in PS than the other ZJZ problems. Clearly, the severe

PS movement in F5 degrades the performance of SGEA, hence it is outperformed by PPS.

7.5 Discussions

7.5.1 Influence of Severity of Change

To examine the effect of severity levels on algorithms’ performance, experiments were

carried out on FDA and dMOP problems with τt fixed to 10, and nt set to 5, 10, and 20,

which represent severe, moderate, and slight environmental changes, respectively. Exper-

imental results of five algorithms on the HVD metric are given in Table 7.6.

It can be observed from the table that all the algorithms are very sensitive to the sever-

ity of change, as can be seen from the improvement of HVD when increasing the value

of nt . For different severity levels, SGEA is able to produce impressive performance and

wins on the majority of the instances, and this algorithm is mainly exceeded by dCOEA

on only two problems, i.e., FDA4 and dMOP3. However, for the problem dMOP3, the

HVD metric of SGEA deteriorates with the decrease of the severity level. One possible ex-

planation is that, on dMOP3, the amount of diversity loss is roughly the same for different

severity levels, but for different severity levels, SGEA reacts to changes differently, with a

large movement step-size for severe changes (nt = 5) and a small movement step-size for

slight ones (nt = 20). A larger movement step-size is likely to increase more population

diversity than a smaller one. Therefore, the increase of nt may negatively affect popula-

tion diversity, which in turn leads to the deterioration of the HVD metric. Such impact

suggests that SGEA may need diversity increase techniques to deal with problems like

dMOP3.
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Table 7.6 Mean and standard deviation values of HVD metric obtained by five algorithms with different values of nt

Prob. (nt ,τt) DNSGA-II dCOEA PPS MOEA/D SGEA

(5,10) 8.7093e-1(7.5592e-2)‡ 9.7456E-2(2.9072E-2)‡ 3.2998E-1(7.1818E-2)‡ 6.8904E-1(8.8855E-2)‡ 7.3337E-2(3.3442E-2)

FDA1 (10,10) 1.3610e-1(1.7463e-2)‡ 8.5252E-2(2.0248E-2)‡ 2.9712E-1(1.6596E-2)‡ 2.8825E-1(2.9076E-2)‡ 3.8112E-2(1.4430E-2)

(20,10) 3.5539e-2(1.3774e-2)‡ 7.7223E-2(1.1557E-2)‡ 3.0045E-1(4.5258E-2)‡ 1.2551E-1(1.1056E-2)‡ 2.6418E-2(6.6551E-3)

(5,10) 4.7185e-2(1.4726e-2)‡ 1.4908E-1(1.0125E-1)‡ 6.3330E-1(2.7223E-2)‡ 1.3071E-1(3.4644E-2)‡ 2.6401E-2(2.7317E-2)

FDA2 (10,10) 2.0598e-2(1.4744e-2)‡ 1.2486E-1(4.6708E-2)‡ 2.6663E-1(1.4716E-2)‡ 6.2906E-2(1.8881E-2)‡ 1.6745E-2(1.4126E-2)

(20,10) 1.3369e-2(1.4735e-2)‡ 1.2103E-1(3.8214E-2)‡ 1.9674E-1(4.0100E-3)‡ 3.1918E-2(9.5535E-3)‡ 1.1804E-2(7.2197E-3)

(5,10) 1.5478e+0(1.6485e-1)‡ 1.7059E+0(1.1325E-1)‡ 1.4126E+0(1.3048E-1)‡ 1.5956E+0(9.7437E-2)‡ 1.3476E+0(5.1086E-2)

FDA3 (10,10) 1.0970e+0(9.9053e-2)‡ 1.3223E+0(7.7970E-2)‡ 1.1626E+0(4.6925E-2)‡ 1.1225E+0(9.3170E-2)‡ 9.2413E-1(8.2603E-2)

(20,10) 1.0419e+0(7.9293e-2)‡ 1.1057E+0(7.6375E-2)‡ 1.1209E+0(5.0710E-2)‡ 8.0963E-1(2.0865E-2)‡ 7.1753E-1(6.8361E-2)

(5,10) 2.0595e+0(2.0121e-1)‡ 2.6980E-1(4.9426E-2) 8.2319E-1(1.7066E-1)† 2.9513E+0(1.2324E+0)‡ 7.9666E-1(1.7675E-1)
FDA4 (10,10) 1.5893e+0(6.6551e-2)‡ 2.7081E-1(3.5707E-2)† 4.3455E-1(7.2947E-2)‡ 1.2458E+0(1.3708E-1)‡ 2.7403E-1(2.4337E-2)

(20,10) 5.4876e-1(5.7277e-2)‡ 2.6163E-1(2.4904E-2)‡ 3.2629E-1(1.2176E-2)‡ 5.2499E-1(6.0127E-2)‡ 1.7814E-1(1.1872E-2)

(5,10) 6.7506e+0(1.9848e-1)‡ 3.8546E+0(3.7632E-1)‡ 3.6047E+0(5.8770E-1)‡ 7.1636E+0(1.0447E+0)‡ 3.5028E+0(2.8444E-1)

FDA5 (10,10) 5.4164e+0(1.6223e-1)‡ 2.3772E+0(2.7316E-1)‡ 2.1995E+0(3.9061E-1)‡ 4.8043E+0(2.6911E-1)‡ 1.8867E+0(9.3801E-2)

(20,10) 2.6454e+0(1.1158e-1)‡ 1.5328E+0(1.3437E-1)‡ 1.1066E+0(1.9178E-1)† 1.9665E+0(1.2036E-1)‡ 1.0914E+0(3.2851E-2)

(5,10) 3.9375e-2(3.8881e-2)† 1.0840E-1(3.4407E-2)‡ 5.4358E-1(4.5618E-1)‡ 4.0618E-2(3.0140E-2)† 3.9348E-2(3.0606E-2)

dMOP1 (10,10) 2.2844e-2(2.0365e-2)‡ 1.1236E-1(2.0863E-2)‡ 9.2754E-2(1.3906E-1)‡ 2.5712E-2(1.5458E-2)‡ 1.9048E-2(1.4569E-2)

(20,10) 1.7194e-2(1.4792e-2)‡ 1.1161E-1(1.5244E-2)‡ 2.5362E-2(4.4676E-2)‡ 2.0475E-2(1.4607E-2)‡ 1.3659E-2(7.8804E-3)

(5,10) 8.0662e-1(1.1259e-1)‡ 1.9770E-1(4.3839E-2)‡ 3.9550E-1(3.9842E-2)‡ 9.4022E-1(7.3354E-2)‡ 7.2866E-2(2.5493E-2)

dMOP2 (10,10) 2.9084e-1(2.5036e-2)‡ 2.0782E-1(2.4976E-2)‡ 1.1778E-1(4.3469E-2)‡ 4.4678E-1(4.2568E-2)‡ 3.5928E-2(1.1177E-2)

(20,10) 4.5002e-2(1.2356e-2)‡ 1.7868E-1(1.9365E-2)‡ 4.8491E-2(1.0317E-2)‡ 1.9085E-1(1.9080E-2)‡ 2.5743E-2(5.5744E-3)

(5,10) 9.5131e-1(3.4052e-2)‡ 6.6570E-2(2.8299E-2) 4.0187E-1(5.2945E-2)‡ 7.6718E-1(4.0803E-2)‡ 2.4586E-1(3.9623E-2)
dMOP3 (10,10) 4.7415e-1(2.8497e-2)‡ 6.5770E-2(1.3652E-2) 2.7970E-1(2.7200E-2)‡ 4.5433E-1(2.8194E-2)‡ 3.1866E-1(2.9555E-2)

(20,10) 2.7629e-1(2.5543e-2)‡ 6.2846E-2(7.6769E-3) 2.1883E-1(1.4532E-2)‡ 3.4128E-1(1.9083E-2)‡ 3.6274E-1(1.9356E-2)
‡ and † indicate SGEA performs significantly better than and equivalently to the corresponding algorithm, respectively.
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7.5.2 Study of Different Components of SGEA

This subsection is devoted to studying the effect of different components of SGEA. SGEA

has three key components, i.e., the “guided” reinitialization for change response, the

steady-state population update, and the generational environmental selection. To deeply

examine the role that each component plays in dynamic optimization, we adapt the orig-

inal SGEA into three variants. The first variant (SGEA-S1) does not use the the part

of “guided” change response. Instead, it re-evaluates all current population members in

the event of environmental changes. The second variant (SGEA-S2) discards the steady-

state upadate part of SGEA. In other words, SGEA-S2 generationally detects and reacts

to changes, and reproduces offspring. SGEA-S3 is another modification of SGEA, in

which the environmental selection at the end of every generation is conducted by pre-

serving a population of individuals with good fitness. This means, SGEA-S3 prefers

well-converged solutions regardless of their diversity. These three variants are compared

with the original SGEA on four problems with the setting of (τt,nt) = (10,10). Table 7.7

presents the average and standard deviation values of four metrics obtained by different

SGEA variants. The Wilcoxon signed-rank test [179] is carried out at the 0.05 signif-

icance level to indicate statistically significant difference between SGEA and the three

variants.

In Table 7.7, SGEA performs significantly better than the three variants on FDA1

in terms of four metrics, implying all the three key components are crucial to the high

performance of SGEA on this problem. For dMOP1, SGEA-S1, SGEA-S2, and SGEA

obtain considerably small IGD and HVD values, indicating they can solve this problem

very well. In contrast, SGEA-S3 seems incapable of solving dMOP1, as indicated by the

inferior four metrics. The poor performance of SGEA-S3 on dMOP1 is mainly due to

the lack of diversity maintenance, particularly when excessive nondominated solutions

are obtained. This case clearly illustrates the importance of generational environmental

selection to SGEA. For F5, there is notable difference between SGEA-S2 and the other

algorithms in terms of the metrics. SGEA-S2 obtains the worst S, IGD, and HVD val-

ues, although it has better coverage (MS) than the others. The results of SGEA-S2 on

F5 obviously suggest that the use of steady-state population update can significantly im-

prove the performance of SGEA. Besides, the difference between SGEA-S1 and SGEA

on F5, in terms of the IGD and HVD metrics, also validates the effectiveness of the

proposed “guided” population reinitialization for handling environmental changes. The

results of four algorithms on UDF1 show that SGEA is significantly better than SGEA-S1

and SGEA-S3. This observation further confirms the benefit of the “guided” population

reinitialization and generational selection used in SGEA for dynamic optimization.

It is not difficult to understand that, as a combination of three key components, SGEA

generally outperforms the other compared variants. The above observations clearly ex-
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Table 7.7 Performance Comparison of SGEA Variants

Problem Metric SGEA-S1 SGEA-S2 SGEA-S3 SGEA

FDA1

S 1.0573E-2(1.4425E-3)‡ 9.0396E-3(5.2292E-4)‡ 9.7488E-3(1.1191E-3)‡ 7.5411E-3(5.8178E-4)

MS 9.6158E-1(1.0782E-2)‡ 9.6332E-1(1.2436E-2)‡ 9.6631E-1(9.1630E-3)‡ 9.7277E-1(1.0854E-2)

IGD 1.9931E-2(1.6198E-3)‡ 2.6038E-2(2.9232E-3)‡ 1.6973E-2(1.8987E-3)‡ 1.4809E-2(2.0621E-3)

HVD 3.5270E-1(1.4660E-2)‡ 4.9284E-1(1.5196E-2)‡ 3.1760E-1(1.2533E-2)‡ 3.8112E-2(1.4430E-2)

dMOP1

S 2.4045E-3(1.3972E-4) 2.7215E-3(3.0493E-4)† 8.5790E-3(1.0189E-3)‡ 2.7029E-3(3.0835E-4)

MS 9.8107E-1(1.8150E-2)† 9.8097E-1(2.4778E-2)‡ 8.1045E-1(1.0711E-1)‡ 9.8351E-1(1.3118E-2)

IGD 9.0188E-3(4.3106E-3)‡ 8.5146E-3(6.9219E-3)‡ 4.9847E-2(3.1290E-2)‡ 6.5411E-3(3.0256E-3)

HVD 2.0653E-2(1.8715E-2)‡ 2.1863E-2(2.3243E-2)‡ 1.5789E-1(8.5491E-2)‡ 1.9048E-2(1.4569E-2)

F5

S 3.3094E-2(7.3229E-3)† 9.1399E-2(1.9653E-2)‡ 3.5606E-2(9.4640E-3)‡ 3.8765E-2(7.1231E-3)

MS 4.0412E-1(4.2687E-2)‡ 5.5816E-1(4.4388E-2) 4.7777E-1(4.8569E-2)† 5.0748E-1(4.2309E-2)

IGD 5.4434E-1(4.3308E-2)‡ 6.4214E-1(4.7136E-2)‡ 4.5958E-1(3.3362E-2)† 4.4195E-1(4.5046E-2)

HVD 9.2472E-1(6.3984E-2)‡ 1.1087E+0(4.2539E-2)‡ 7.8997E-1(5.9973E-2)‡ 7.1648E-1(8.2355E-2)

UDF1

S 2.6490E-2(2.8379E-2)‡ 6.8987E-2(3.6611E-2)‡ 2.5998E-2(2.0151E-2)‡ 2.1084E-2(1.8674E-2)

MS 6.5907E-1(1.8926E-1)‡ 8.5675E-1(8.3575E-2) 7.1284E-1(1.7661E-1)† 7.2501E-1(1.1595E-1)

IGD 1.6684E-1(6.5977E-2)‡ 9.9619E-2(1.0661E-2)† 1.4393E-1(4.6269E-2)‡ 1.2449E-1(3.3093E-2)

HVD 5.7070E-1(8.8933E-2)‡ 4.9834E-1(2.2682E-2)† 5.3806E-1(6.0746E-2)‡ 5.1825E-1(5.0120E-2)

‡ and † indicate SGEA performs significantly better than and equivalently to the corresponding algorithm, respectively.
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hibit the importance of each component in dealing with dynamic environments. Here,

we would like to give more explanations for the role of each component. The “guided”

population reinitialization exploits the information of new environments to coarsely relo-

cate some population members close to the new PS, which is beneficial to rapidly track the

changing PS. The steady-state update strategy can speed up the convergence process of the

population. This is because, within every generation, when an offspring individual is gen-

erated, it is immediately used to update the evolving population and the external archive.

Thus, the offspring, if very promising, has opportunities to be chosen as a parent for pro-

ducing new offspring. This way,the steady-state update strategy offers a fast convergence

speed and a steady reaction to changes as well. Although the steady-state update strategy

is helpful for convergence, it does not consider population diversity. For this reason, the

generational selection strategy is introduced to mainly maintain population diversity. One

particular situation is that, when plenty of nondominated individuals are available, the

generational selection can prune them so as to preserve a fixed-size population with good

diversity for next generation. As a result, the balance between convergence and diversity

can be properly struck during the evolution. In a nutshell, all these three components of

SGEA play an important role in reacting steadily and adapting rapidly to environmental

changes.

7.5.3 Influence of Introducing Mutated Solutions

In the previous section, empirical studies indicate that SGEA is very competitive for han-

dling dynamic environments, but it does not work as well as DNSGA-II for a good distri-

bution and coverage on problems like FDA2. Similar to DNSGA-II, we can introduce η%

mutated solutions of existing solutions into the new population of SGEA after a change,

and we call this version of SGEA as SGEA-v1. This means, the new population consists

of 50% of old solutions, η% (0≤ η ≤ 50) mutated solutions, and (50−η)% guided so-

lutions. Unlike SGEA, SGEA-v1 computes the moving direction (as shown in Eq. (7.4))

in a different way. To be specific, the 50% old solutions and η% mutated solutions are

regarded as the set R in Eq. (7.4), and nondominated solutions from R after re-evaluation

are copied to A. This way, (50−η)% of the new population to be re-initialized can ben-

efit from the reused old solutions as well as the mutated solutions, especially when these

solutions have a high level of diversity.

The effect of mutated solutions is studied on FDA1 and FDA2 with the setting of

τt = 10 and nt = 10, and η varied from 0 to 50. In the case of η = 0, SGEA-v1 is actually

the original SGEA, and η = 50 means there are no guided solutions in the new population.

The mutation probability and the distribution index for making mutated solutions were set

the same as in DNSGA-II [44].
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Table 7.8 S, MS and IGD values of SGEA-v1 for FDA1 and FDA2

Prob. η S MS HVD

FDA1

0 7.5411E-3(5.8178E-4) 9.7277E-1(1.0854E-2) 3.8112E-2(1.4430E-2)

10 9.4194E-3(5.2569E-4) 9.7253E-1(9.4358E-3) 3.9221E-2(1.3781E-2)

20 9.4802E-3(4.1391E-4) 9.7125E-1(9.1182E-3) 4.0204E-2(1.6126E-2)

30 9.8393E-3(6.5970E-4) 9.6881E-1(1.0522E-2) 4.2156E-2(1.4579E-2)

40 9.9007E-3(4.8708E-4) 9.6982E-1(7.8856E-3) 4.2984E-2(1.3953E-2)

50 1.1850E-2(1.4381E-3) 9.6134E-1(1.3593E-2) 5.0541E-2(1.3661E-2)

FDA2

0 6.5871E-3(8.7753E-4) 9.9308E-1(3.3464E-3) 1.6745E-2(1.4126E-2)

10 7.2513E-3(8.1050E-4) 9.9302E-1(3.1580E-3) 1.7192E-2(1.4852E-2)

20 7.1854E-3(8.2471E-4) 9.9275E-1(3.9994E-3) 1.7308E-2(1.4810E-2)

30 6.8743E-3(6.3021E-4) 9.9268E-1(4.8573E-3) 1.7439E-2(1.4599E-2)

40 7.0167E-3(1.9724E-4) 9.9165E-1(5.3058E-3) 1.7284E-2(1.4777E-2)

50 7.2156E-3(3.9059E-4) 9.9175E-1(5.0043E-3) 1.7209E-2(1.4652E-2)

Table 7.8 presents the results of SGEA-v1 for the two test problems. For FDA1, the

performance of SGEA-v1 on three metrics notably deteriorates with the increase in the

number of mutation solutions in population. The similar trend can be observed from

the results of FDA2, in which all the metric values are negatively influenced when η

increases. The negative effect of introducing mutated solutions can be explained by the

fact that, mutated solutions are more random than well-planned guided solutions used in

SGEA, and may take more time to be directed toward the true PF. In other words, such

mechanism seems not suitable for SGEA when handling dynamic environments.

7.5.4 Influence of Introducing Random Solutions

As illustrated in the previous experimental study, SGEA is quite vulnerable to severe di-

versity loss and thus cannot compete with dCOEA on dMOP3. For this reason, we devise

another version of SGEA, denoted SGEA-v2, which is inspired by the use of stochastic

competitors for diversity increase in dCOEA. SGEA-v2 has the similar change response

framework to SGEA-v1 except that it replaces η% of the population with randomly cre-

ated solutions. The influence of introducing random solutions is studied on dMOP3,

where η varies from 0 to 50.

The results of SGEA-v2 on dMOP3 with τt = 10 and nt = 10 are given in Table 7.9.

Clearly, the introduction of random solutions significantly improves the coverage perfor-
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Table 7.9 S, MS and IGD values of SGEA-v2 for dMOP3

η S MS IGD

0 5.4336E-3(6.0751E-4) 5.7573E-1(2.9590E-2) 1.3248E-1(1.3627E-2)

10 7.8473E-3(1.1449E-3) 8.8779E-1(2.3199E-2) 3.6223E-2(9.4230E-3)

20 8.7294E-3(3.0487E-3) 9.1631E-1(1.1874E-2) 3.0153E-2(4.1528E-3)

30 8.8099E-3(2.8361E-3) 9.3661E-1(1.5004E-2) 2.5424E-2(4.8542E-3)

40 9.3054E-3(2.6714E-3) 9.4759E-1(1.3064E-2) 2.2199E-2(4.1150E-3)

50 9.4439E-3(2.8387E-3) 9.4656E-1(1.2554E-2) 2.4757E-2(3.3081E-3)
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Fig. 7.5 PFs of dMOP3 (τt = 10 and nt = 10) obtained by SGEA-v2 over 31 time steps.

mance of SGEA, which in turn decreases the IGD values. Such benefit is maximized

when 40% random solutions are adopted, and the corresponding approximations of 31

time steps are illustrated in Fig. 7.5, showing that SGEA with the use of random solutions

is very capable of tracking the changing PF on dMOP3. On the other hand, the S metric

is negatively affected by random solutions, with a notable decline when η increases. This

is because the use of random solutions drastically increases population diversity, leading

to a wide spread of the population along the PF so that the uniformity of the obtained

approximation is not easy to keep. Thus, for dMOP3, the S metric is inconsistent with

MS and IGD.

Since the use of random solutions considerably help SGEA cope with diversity loss,

we wonder whether SGEA-v2 can win against the other compared algorithms on dMOP3.

SGEA-v2 with η = 40 is compared with the previous best performer, i.e., dCOEA, on

different dynamic scenarios of dMOP3. Table 7.10 and Fig. 7.6 present the comparison

results, clearly showing that SGEA-v2 significantly outperforms dCOEA in terms of the
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Table 7.10 Comparison between dCOEA and SGEA-v2 on dMOP3

Metric (τt,nt) dCOEA SGEA-v2

S

(5,10) 3.3786E-2(5.5519E-3) 1.9335E-2(4.5045E-3)

(10,10) 1.5418E-2(1.0978E-3) 9.3054E-3(2.6714E-3)

(20,10) 7.3129E-3(3.9782E-4) 4.8211E-3(1.0737E-3)

(10,5) 1.6060E-2(1.9712E-3) 1.0110E-2(2.6696E-3)

(10,20) 1.4903E-2(7.3451E-3) 7.7303E-3(1.2510E-3)

MS

(5,10) 8.7837E-1(2.1444E-2) 9.1029E-1(1.2201E-2)

(10,10) 9.1097E-1(1.1716E-2) 9.4759E-1(1.3064E-2)

(20,10) 9.4844E-1(1.1052E-2) 9.6644E-1(8.0110E-3)

(10,5) 9.1484E-1(1.4420E-2) 9.3430E-1(1.4221E-2)

(10,20) 9.1736E-1(8.7132E-3) 9.4923E-1(1.2537E-2)

IGD

(5,10) 4.9556E-2(4.8079E-3) 4.7222E-2(5.2525E-3)

(10,10) 2.9589E-2(2.4806E-3) 2.2199E-2(4.1150E-3)

(20,10) 1.6366E-2(1.7152E-3) 1.1448E-2(2.5416E-3)

(10,5) 2.9953E-2(3.5438E-3) 2.5428E-2(4.8462E-3)

(10,20) 3.1686E-2(2.6402E-3) 2.2085E-2(4.5406E-3)

three performance metrics. This further confirms the potential of SGEA for handling

dynamic environments if the population diversity is properly maintained.

7.5.5 Further Discussion

The previous experimental comparison and analysis have shown that SGEA is capable

of solving a wide range of DMOPs. Specifically, SGEA works well on simple DMOPs

without strong variable linkages, like most of the FDA and dMOP problems. In some

patterns of changes, such as, the geometric shapes of two consecutive PFs/PSs are similar,

changes are slight or do not cause diversity loss, and changes are relatively smooth, SGEA

is able to track the moving PFs/PSs effectively and efficiently. Therefore, SGEA provides

better performance than the other compared algorithms in these cases. The fact that most

of the test problems have periodical changes suggests SGEA is particularly applicable to

periodical environments.

However, like other algorithms, SGEA has some drawbacks too. One drawback is

that SGEA struggles to deal with changes that bring about severe diversity loss, which
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Fig. 7.6 Comparison of IGD curves between dCOEA and SGEA-v2 for dMOP3 with
τt = 10 and nt = 10.

has been illustrated by dMOP3. In practice, SGEA does not increase diversity when

changes occur, so it is vulnerable to the loss of diversity. However, as have shown in our

study, this drawback can be alleviated by introducing some randomly created individu-

als when a change is detected. Another drawback comes from the inefficiency of SGEA

for handling severe movements in PS. As verified by F5, such a severe change can sig-

nificantly degrade the performance of SGEA. Besides, the dissimilar geometric shapes

between two consecutive PFs/PSs (see results on F10) may challenge the performance of

SGEA. In case that a change affects too much the relative positions between solutions in

the PS, the guided reinitialization method of SGEA may not work well due to its linear

property. On the other hand, SGEA also suffers from optimization difficulties caused by

variable linkages. Experimental comparisons on the UDF problems evidently show that

SGEA and the other algorithms all have difficulty in solving strong variable-linkage prob-

lems. A possible way to solve variable linkages may be borrowing similar idea from the

optimizer of PPS or incorporating with new operators [163] to evolve the population.

7.6 Summary

This chapter has presented a steady-state and generational EAs, i.e., SGEA, for handling

multiobjective problems with time-varying characteristics. Different from existing dy-

namism handling approaches in the literature, SGEA detects and reacts to changes in a

steady-state manner. If a change is detected, SGEA reuses a portion of old solutions

with good diversity and re-evaluates them, providing the algorithm with some basic un-

derstanding of the landscape of the new environment. As a result, SGEA exploits useful

information extracted from the new environment, i.e., the moving direction, to relocate
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the remaining portion of population to regions near the new PF. Otherwise, a generational

cycle of static steady-state optimization is executed, in which the evolving population pro-

gressively interacts with an external archive, promoting the convergence speed of SGEA.

At the end of each generation, the previous and current populations are combined, and the

environmental selection is performed on the combined population to preserve elitists for

the next generation.

SGEA has been compared with other several popular DMOEAs on a number of

DMOPs, including bi- and three-objective problems, with different dynamic character-

istics and difficulties. Experimental studies have shown that, on the majority of the con-

sidered problems, SGEA is capable of tracking their changing PFs efficiently, but may

struggle to recover if the problem has strong variable linkages or changes cause a signifi-

cant diversity loss.

The main components of SGEA have been studied and their roles in handling dynamic

environments have been deeply illustrated. Besides, the influence of the introduction of

mutated and randomly created solutions for change reaction has been investigated, show-

ing that mutated solutions may have a negative effect on the elaborated SGEA, and the use

of random solutions can considerably alleviate the diversity loss caused by environmental

changes, thereby offering significant improvement on the performance of SGEA.

Although SGEA has provided encouraging performance on the test problems consid-

ered in this work, it needs to be examined on a wider range of dynamic environments,

such as changes that are hard to be detected or do not vary regularly. Our future work

includes the incorporation of new constraint handling techniques to deal with dynamic

constrained problems, new operators like [163] to evolve population, new detectors and

response mechanisms to handle environmental changes. Besides, new dynamic bench-

marks and performance metrics are needed to facilitate the analysis of DMOEAs.



Chapter 8

Conclusions and Future Work

In this chapter, the general results obtained from the previous chapters are summarized.

The contributions of this thesis are mentioned concerning every presented research work.

Moreover, different directions of future work that could extend on what this thesis presents

are summarized in the last part of the chapter.

8.1 Conclusions

Multiobjective problems occur frequently in practice and EAs have been applied success-

fully in many application areas to approximate Pareto-optimal solutions. However, EAs’

performance depends on problem properties and optimization environments. For exam-

ple, if an MOP has many objecitves, most state-of-the-art EAs will have difficulties to

find good approximations of the PF. This thesis has made a significant step towards un-

derstanding what causes optimization difficulties for EAs and figuring out how to help

EAs overcome these difficulties. The general results and contributions are summarized as

follows.

In Chapter 3, an improved decomposition-based EA (MOEA/D-TPN) equipped with

some new strategies is presented for solving MOPs with complex PFs. The proposed

MOEA/D-TPN is examined on a number of complex MOPs, including both existing

and newly-developed ones. Experimental studies show that, compared with peer algo-

rithms and several state-of-the-arts, MOEA/D-TPN is more capable of handling MOPs

with complex PF properties. They also indicate that the suggested strategies help im-

prove population diversity, avoid evolutionary stagnation during the search, and achieve

a set of well-distributed solutions close to the PF. The main contribution of the proposed

MOEA/D-TPN is the use of two new strategies that enhance the search in underexplored

regions due to their complex properties. Another contribution is the ability of MOEA/D-

TPN to find a good approximation of well-diversified and well-converged solutions for

MOPs with complex PFs.
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In Chapter 4, two new families of scalarizing functions are proposed to overcome the

difficulties faced by existing scalarizing functions, and their impact on EAs’ search behav-

ior is analyzed. Based on the proposed scalarizing functions, an efficient decomposition-

based EA (eMOEA/D) is suggested to deal with hard MOPs with local attractors. Ex-

perimental studies show two main findings. First, EAs need different scalarizing func-

tions for different search stages, and the suggested scalarizing function families perform

generally better than the well-known weight chebycheff function. Second, the proposed

eMOEA/D approach solves hard MOPs better in comparison with nine state-of-the-art al-

gorithms. The main contribution is the proposal of new scalarizing functions that control

EAs’ search behavior nicely. The second contribution is the deep analysis of the perfor-

mance of the proposed scalarizing functions. The third contribution is the efficient version

of MOEA/D that conducts solution selection and update in an efficient way.

Chapter 5 presents a diversity-first-and-convergence-second (DFCS) selection method

for EAs, making an attempt to overcome potential diversity loss caused by widely-used

convergence-first based selection methods. Based on DFCS, a new version of strength

Pareto EA (SPEA/R) is introduced in the hope of having the ability to deal with both

MOPs and many-objective problems. As a starting point, SPEA/R is compared with

top-performing algorithms on difficult MOPs, showing it is very capable of maintaining

diversity during the search and producing high-quality solutions. Having exhibited this

encouraging performance, SPEA/R is then examined on many-objective optimization. Ex-

perimental studies show that SPEA/R is very promising for solving many-objective prob-

lems with up to 12 objectives. The contributions of this work are manifold. First, a

novel selection method is proposed for improving EAs’ ability to balance diversity and

convergence. Second, a new weight vector generation method is introduced to produce

uniformly-distributed weight vectors. Third, a new EA framework is developed for han-

dling both MOPs and many-objective problems. Fourth, experimental studies have re-

vealed an interesting finding that diversity may play a more important role than conver-

gence in some many-objective optimization problems.

In Chapter 6, new test problems are presented to enrich test environments in the field

of dynamic multiobjective optimization. Several new performance metrics are proposed

to help the performance assessment of EAs in dynamic environments. Extensive empiri-

cal studies are conducted to examine the usefulness of the proposed test suite. Moreover,

algorithm comparisons are made to study the dynamic environments and help understand

the impact of environmental changes on EAs’ performance. This work has led to three

key contributions. The main contribution is the proposal of new test problems containing

diverse dynamic characteristics. The second contribution is the introduction of new perfor-

mance metrics that are suitable for performance assessment and algorithm comparisons

in dynamic multiobjective environments. The last contribution is the extensive algorithm
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comparisons which provide great insights in the impact of dynamic environments on EAs’

performance.

Finally, in Chapter 7, a new optimizer (SGEA) is introduced for handling dynamic

MOPs. The proposed SGEA approach is a combination of generational and steady-state

EAs, and therefore inherits the advantages of both kinds of EAs, i.e., good diversity main-

tenance and fast convergence speed. Furthermore, SGEA introduces a new change detec-

tion mechanism and a guided change reaction mechanism, which enable SGEA to detect

changes timely and effectively and respond to them efficiently. SGEA is tested with sev-

eral popular EAs existing in the field of dynamic multiobjective optimization on various

MOPs with different dynamic properties. This empirical study demonstrates the useful-

ness and potential for dealing with dynamic environments. Three important contributions

have been made regarding this work. The first contribution lies in an initial attempt to

combine generational and steady-state EAs for dynamic environments. The second con-

tribution is the new steady-state change detection method and the guided change response

strategy, which represent a great advance in the design of dynamics handling mechanisms.

The third contribution is the promise of SGEA that shows very nice ability to track envi-

ronmental changes and provide high-quality solutions for each static period of environ-

mental changes.

8.2 Future Work

Concerning the proposed methodologies, there are several possible aspects for future work

that have arisen from this research. These aspects can be summarized as follows:

Applicability of Decomposition-based EAs As a popular metaheuristic, EAs based on

decomposition have been widely applied to various MOPs, varying from simple

static problems [188] to dynamic ones [11]. Despite wide application with various

degrees of success, decomposition-based EAs have their own concerns, which limit

their applicability to some types of problems. A particular type of problems where

decomposition-based EAs seem unpromising is the problem with disconnected PF

segments. The poor performance is because decomposition-based EAs are invented

under the assumption that the PF is continuous. If there are disconnected PF seg-

ments, some weight vectors or subproblems will be wasted because their associated

solutions are dominated. To widen the applicability of decomposition-based EAs,

weight vectors or subproblems should be constructed to avoid producing undesir-

able dominated solutions. Another method can be the use of detection methods

which detect regions between disconnected PF segments and avoid searching these

regions. Besides, the proposed MOEA/D-TPN can be extended to many-objective

optimization and dynamic multi-objective optimization. We will also consider to
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develop a self-adaptive version of MOEA/D-TPN that is less sensitive to parameter

settings and even free from key parameters. Another interesting research line will

be to design a smart version of MOEA/D-TPN, where the solutions on the PF are

smart distributed [70, 77, 129]. In other words, we will emphasize the regions of

the PF that entail significant trade-off, and de-emphasizes the regions correspond-

ing to little trade-off. Besides, the issue on how to set an arbitrary population size

of MOEA/D in many-objective cases needs to be addressed in the future.

Test Suites Test suites are very important for theoretical study, as they not only ease the

theoretical analysis of problems, but also help evaluate EAs and in turn improve

their performance. In static multiobjective optimization, including both multiobjec-

tive and many-objective cases, ZDT [200], LZ [120], DTLZ [48], and WFG [82]

are commonly used test suites. Despite undisputed importance for performance as-

sessment, there test suites have underlying biases. A particular feature is that all

these problems can be mathematically formulated by two separate functions, the

position-related function and the distance-related function. However, it remains un-

known how popular this kind of problem is in real-life applications. Another feature

is that the PF geometry of these test problems ideally covers the whole objective

space if the PF is continuous. This feature favours some algorithms, particularly

decomposition-based algorithms as their weight vectors can be easily designed to

cover the whole objective space. If the PF does not contain any solution on the axis,

some existing EAs may face great difficulties to perform well. On the other hand,

in the field of dynamic multiobjective optimization, the popular test suites like FDA

[55] and dMOP [55] are far from being able to cover representative dynamic fea-

tures that occur in real-world applications. It is expected to make a deep survey on

the practicability of existing test suites, thereby providing a useful guideline on how

to make diverse test environments.

Variation Operators Genetic variation is a necessity of the process of evolution. It

has been shown in several chapters of this thesis that variation operators have a

great impact on EAs’ performance. Some variation operators like simulated bi-

nary crossover (SBX) [42] are good for diversity whereas others like differential

evolution (DE) [138] is beneficial for convergence. SBX and DE are sufficient for

solving simple MOPs while estimation-based recombination operators are required

to solve difficult MOPs with variable linkages [192]. This means different variation

operators are suitable for different MOPs and for different search stages. In order to

maximize EAs’ performance, a suitable variation operator or a method of automat-

ing the selection of variation operators is needed. In many-objective optimization.

It often happens that individuals tend to be far from each other, and recombining

two distant individuals are not likely to generate good offspring. As a result, this
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slows down the search process and therefore affects the final performance of EAs.

In this situation, neighbouring mating or restricted mating may be a good choice

and but needs to be deeply investigated. In dynamic multiobjective optimization, it

is desirable for EAs to have a fast convergence speed so as to be able to track en-

vironmental changes. Thus, fast-converging or dynamics-based variation operators

may be useful in this situation.

Change Detection in DMO Change detection is an important step in EDMO if changes

in the environment are made unknown to algorithms. Generally, change de-

tection can be conducted by either re-evaluating a portion of existing solutions

[44, 61, 182, 196, 197] or assessing some statistical information of some selected

population members [55, 125, 140]. Since both methods choose a small proportion

of population members as detectors, detection may fail if changes occur on non-

detectors. However, most environmental changes in existing dynamic test problems

are easily detectable and impose no challenges to these methods. In other words,

the effectiveness of these change detection techniques is not thoroughly examined

by existing studies in the literature. Therefore, change detection techniques are far

from being well understood in terms of their ability to detect possible environmental

changes.

An interesting research direction is to make an extensive investigation into the abil-

ity of different change detection methods. To do this, first, dynamic test problems

that have partially or wholly hard-to-detect changes should be constructed. Then,

different change detection methods are tested on the designed test problems, and

observations need to be deeply analyzed to well understand their detection ability.

On the other hand, it is worthy of attention to the efficiency of each change detec-

tion method because different methods may need different number of detectors to

be able to detect changes. In some cases, it may require the whole population mem-

bers to be detectors in order to detect changes, which is computationally expensive.

Linking Theory to Practice It has been increasingly recognized that there is a lack of

clear links between theoretical research and real-world applications. This issue

is related to how realistic the current academic research is and how to use the ob-

tained research findings to solve similar real-world problems. To answer these ques-

tions, a deep investigation should be made to analyze similarities and differences

between current academic benchmark problems and real-world problems. Based

on the observed similarities and differences, benchmark test suites can be improved

or widened by introducing some uncaptured characteristics of real-world problems.

This way, the link between theory and practice can be built up and academic re-

search can move forward in a practical way.
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All presented research works throughout this thesis are concentrated mainly on a

number of benchmark test suites. These test suites, however, are largely used for

academic purposes and hardly represent exact characteristics of real-life problems.

It remains unknown that how much the presented research is close to real-life appli-

cations. In the future, it is worth extending the current research work to real-world

problems, such as vehicle routing problems [100] and railway junction rescheduling

problems [52].

We can conclude that the field of EMO has still many interesting questions to offer

for future research. Especially the theoretical investigation of EAs’ search behavior for

various multiobjective optimization topics is still in its infancies and, from the author’s

point of view, will yield fruitful results in the future.
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Appendix A

MOP Test Problems

Table A.1 presents the formulation of the MOP test suite, including two new tri-objective

problems (i.e., MOP8 and MOP9). The number of decision variables is n = 10, and the

search space of these problems are [0,1]n.

Table A.1 MOP Test Suite

Instance Description Remarks

MOP1

f1(x) = (1+g(x))x1

f2(x) = (1+g(x))(1−√x1)
g(x) = 2sin(πx1)∑n

i=2(−0.9t2
i + |ti|0.6)

ti = xi− sin(0.5πx1), i = 2, . . . ,n
PS: {x ∈ R(n−1)|xi = sin(0.5πx1),2≤ i≤ n,x1 ∈ [0,1]}
PF: {( f1, f2)| f2 = 1−√ f1, f1 ∈ [0,1]}

Two extremal
attractors;
Convex PF.

MOP2

f1(x) = (1+g(x))x1

f2(x) = (1+g(x))(1− x2
1)

g(x) = 10sin(πx1)∑n
i=2

|ti|
1+exp(5|ti|)

ti = xi− sin(0.5πx1), i = 2, . . . ,n
PS: {x ∈ R(n−1)|xi = sin(0.5πx1),2≤ i≤ n,x1 ∈ [0,1]}
PF: {( f1, f2)| f2 = 1− f 2

1 , f1 ∈ [0,1]}

Two extremal
attractors;
Concave PF.

MOP3

f1(x) = (1+g(x))cos(0.5πx1)
f2(x) = (1+g(x))sin(0.5πx1)

g(x) = 10sin(πx1)∑n
i=2

|ti|
1+exp(5|ti|)

ti = xi− sin(0.5πx1), i = 2, . . . ,n
PS: {x ∈ R(n−1)|xi = sin(0.5πx1),2≤ i≤ n,x1 ∈ [0,1]}
PF: {( f1, f2)| f2 =

√

1− f 2
1 , f1 ∈ [0,1]}

Two extremal
attractors;
Concave PF.
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Table A.1: (Continued)

MOP4

f1(x) = (1+g(x))x1

f2(x) = (1+g(x))(1−√x1 cos2(2πx1))

g(x) = 10sin(πx1)∑n
i=2

|ti|
1+exp(5|ti|)

ti = xi− sin(0.5πx1), i = 2, . . . ,n
PS: {x ∈ R(n−1)|xi = sin(0.5πx1),2≤ i≤ n,x1 ∈ [0,1]}
PF: {( f1, f2)| f2 = 1−√ f1, f1 ∈ [0,1]}

Two extremal
attractors;
Disconnected PF.

MOP5

f1(x) = (1+g(x))x1

f2(x) = (1+g(x))(1−√x1)
g(x) = 2cos(πx1)∑n

i=2(−0.9t2
i + |ti|0.6)

ti = xi− sin(0.5πx1), i = 2, . . . ,n
PS: {x ∈ R(n−1)|xi = sin(0.5πx1),2≤ i≤ n,x1 ∈ [0,1]}
PF: {( f1, f2)| f2 = 1−√ f1, f1 ∈ [0,1]}

One intermediate
attractor;
Convex PF.

MOP6

f1(x) = (1+g(x))x1x2

f2(x) = (1+g(x))x1(1− x2)
f3(x) = (1+g(x))(1− x1)
g(x) = 2sin(πx1)∑n

i=3(−0.9t2
i + |ti|0.6)

ti = xi− x1x2, i = 3, . . . ,n
PS: {x ∈ R(n−2)|xi = x1x2,2≤ i≤ n,x j ∈ [0,1], j = 1,2}
PF: {( f1, f2, f3)| f1 + f2 + f3 = 1, fi ∈ [0,1], i = 1,2,3}

Many boundary
attractors;
Linear PF.

MOP7

f1(x) = (1+g(x))cos(0.5πx1)cos(0.5πx2)
f2(x) = (1+g(x))cos(0.5πx1)sin(0.5πx2)
f3(x) = (1+g(x))sin(0.5πx1)
g(x) = 2sin(πx1)∑n

i=3(−0.9t2
i + |ti|0.6)

ti = xi− x1x2, i = 3, . . . ,n
PS: {x ∈ R(n−2)|xi = x1x2,2≤ i≤ n,x j ∈ [0,1], j = 1,2}
PF: {( f1, f2, f3)| f 2

1 + f 2
2 + f 2

3 = 1, fi ∈ [0,1], i = 1,2,3}

Many boundary
attractors;
Concave PF.

MOP8

f1(x) = (1+g(x))x1x2

f2(x) = (1+g(x))x1(1− x2)
f3(x) = (1+g(x))(1− x1)

g(x)=5(|cos(πx1)|+|cos(πx2)|)
n

∑
i=3

|ti|
1+exp(5|ti|)

ti = xi− x1x2, i = 3, . . . ,n
PS: {x ∈ R(n−2)|xi = x1x2,2≤ i≤ n,x j ∈ [0,1], j = 1,2}
PF: {( f1, f2, f3)| f1 + f2 + f3 = 1, fi ∈ [0,1], i = 1,2,3}

One intermediate
attractor;
Linear PF.

MOP9

f1(x) = (1+g(x))cos(0.5πx1)cos(0.5πx2)
f2(x) = (1+g(x))cos(0.5πx1)sin(0.5πx2)
f3(x) = (1+g(x))sin(0.5πx1)

g(x) = 2sin(0.5π(x1+ x2))
n

∑
i=3

(|ti|0.6−0.9t2
i )

ti = xi− x1x2, i = 3, . . . ,n
PS: {x ∈ R(n−2)|xi = x1x2,2≤ i≤ n,x j ∈ [0,1], j = 1,2}
PF: {( f1, f2, f3)| f 2

1 + f 2
2 + f 2

3 = 1, fi ∈ [0,1], i = 1,2,3}

Two extremal
attractors
Concave PF.
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