47 research outputs found

    Learning Augmented Optimization for Network Softwarization in 5G

    Get PDF
    The rapid uptake of mobile devices and applications are posing unprecedented traffic burdens on the existing networking infrastructures. In order to maximize both user experience and investment return, the networking and communications systems are evolving to the next gen- eration – 5G, which is expected to support more flexibility, agility, and intelligence towards provisioned services and infrastructure management. Fulfilling these tasks is challenging, as nowadays networks are increasingly heterogeneous, dynamic and expanded with large sizes. Network softwarization is one of the critical enabling technologies to implement these requirements in 5G. In addition to these problems investigated in preliminary researches about this technology, many new emerging application requirements and advanced opti- mization & learning technologies are introducing more challenges & opportunities for its fully application in practical production environment. This motivates this thesis to develop a new learning augmented optimization technology, which merges both the advanced opti- mization and learning techniques to meet the distinct characteristics of the new application environment. To be more specific, the abstracts of the key contents in this thesis are listed as follows: • We first develop a stochastic solution to augment the optimization of the Network Function Virtualization (NFV) services in dynamical networks. In contrast to the dominant NFV solutions applied for the deterministic networking environments, the inherent network dynamics and uncertainties from 5G infrastructure are impeding the rollout of NFV in many emerging networking applications. Therefore, Chapter 3 investigates the issues of network utility degradation when implementing NFV in dynamical networks, and proposes a robust NFV solution with full respect to the underlying stochastic features. By exploiting the hierarchical decision structures in this problem, a distributed computing framework with two-level decomposition is designed to facilitate a distributed implementation of the proposed model in large-scale networks. • Next, Chapter 4 aims to intertwin the traditional optimization and learning technologies. In order to reap the merits of both optimization and learning technologies but avoid their limitations, promissing integrative approaches are investigated to combine the traditional optimization theories with advanced learning methods. Subsequently, an online optimization process is designed to learn the system dynamics for the network slicing problem, another critical challenge for network softwarization. Specifically, we first present a two-stage slicing optimization model with time-averaged constraints and objective to safeguard the network slicing operations in time-varying networks. Directly solving an off-line solution to this problem is intractable since the future system realizations are unknown before decisions. To address this, we combine the historical learning and Lyapunov stability theories, and develop a learning augmented online optimization approach. This facilitates the system to learn a safe slicing solution from both historical records and real-time observations. We prove that the proposed solution is always feasible and nearly optimal, up to a constant additive factor. Finally, simulation experiments are also provided to demonstrate the considerable improvement of the proposals. • The success of traditional solutions to optimizing the stochastic systems often requires solving a base optimization program repeatedly until convergence. For each iteration, the base program exhibits the same model structure, but only differing in their input data. Such properties of the stochastic optimization systems encourage the work of Chapter 5, in which we apply the latest deep learning technologies to abstract the core structures of an optimization model and then use the learned deep learning model to directly generate the solutions to the equivalent optimization model. In this respect, an encoder-decoder based learning model is developed in Chapter 5 to improve the optimization of network slices. In order to facilitate the solving of the constrained combinatorial optimization program in a deep learning manner, we design a problem-specific decoding process by integrating program constraints and problem context information into the training process. The deep learning model, once trained, can be used to directly generate the solution to any specific problem instance. This avoids the extensive computation in traditional approaches, which re-solve the whole combinatorial optimization problem for every instance from the scratch. With the help of the REINFORCE gradient estimator, the obtained deep learning model in the experiments achieves significantly reduced computation time and optimality loss

    5Growth: An end-to-end service platform for automated deployment and management of vertical services over 5G networks

    Get PDF
    This article introduces the key innovations of the 5Growth service platform to empower vertical industries with an AI-driven automated 5G end-to-end slicing solution that allows industries to achieve their service requirements. Specifically, we present multiple vertical pilots (Industry 4.0, transportation, and energy), identify the key 5G requirements to enable them, and analyze existing technical and functional gaps as compared to current solutions. Based on the identified gaps, we propose a set of innovations to address them with: (i) support of 3GPP-based RAN slices by introducing a RAN slicing model and providing automated RAN orchestration and control; (ii) an AI-driven closed-loop for automated service management with service level agreement assurance; and (iii) multi-domain solutions to expand service offerings by aggregating services and resources from different provider domains and also enable the integration of private 5G networks with public networks.This work has been partially supported by EC H2020 5GPPP 5Growth project (Grant 856709)

    A Survey of Mobility Management as a Service in Real-time Inter/Intra Slice Control

    Get PDF
    In-network softwarization, Network Slicing provides scalability and flexibility through various services such as Quality of Service (QoS) and Quality of Experience (QoE) to cover the network demands. For the QoS, a set of policies must be considered in real-time, accompanied by a group of functions and services to guarantee the end-user needs based on network demand. On the other hand, for the QoE, the service's performance needs to be improved to bring an efficient service to cover the demands of the end-user. The 3G Partnership Project (3GPP) defined the slice as a component of resources used to process a set of packets. These resources need to be flexible, which means the resources can be scaled up or down based on the demand. This survey discusses softwarization and virtualization techniques, considering how to implement the slices for future networks. Specifically, we discuss current advances concerning the functionality and architecture of the 5G network. Therefore, the paper critically evaluates recent research and systems related to mobility management as a service in real-time inter/intra slice control by considering the strengths and limitations of these contributions to identify the research gaps and possible research directions for emerging research and development opportunities. Moreover, we extend our review by considering the slice types and their numbers based on the 3GPP Technical Specification (3GPP TS). The study presented in this paper identifies open issues and research directions that reveal that mobility management at a service level with inter/intra slice management techniques has strong potential in future networks and requires further investigation from the research community to exploit its benefits fully

    A communication platform demonstrator for new generation railway traffic management systems: Testing and validation

    Get PDF
    Current rail traffic management and control systems cannot be easily upgraded to the new needs and challenges of modern railway systems because they do not offer interoperable data structures and standardized communication interfaces. To meet this need, the Horizon 2020 Shift2Rail OPTIMA project has developed a communication platform for testing and validating the new generation of traffic management systems (TMS), whose main innovative features are the interoperability of the data structures used, standardization of communications, continuous access to real-time and persistent data from heterogeneous data sources, modularity of components and scalability of the platform. This paper presents the main components, their functions and characteristics, then describes the testing and validation of the platform, even when federated with other innovative TMS modules developed in separate projects. The successful validation of the system has confirmed the achievement of the objectives set and allowed a new set of objectives to be defined for the reference platform for the railway TMS/Traffic Control systems

    A communication platform demonstrator for new generation railway traffic management systems: Testing and validation

    Get PDF
    \ua9 2023 The Author(s). Current rail traffic management and control systems cannot be easily upgraded to the new needs and challenges of modern railway systems because they do not offer interoperable data structures and standardized communication interfaces. To meet this need, the Horizon 2020 Shift2Rail OPTIMA project has developed a communication platform for testing and validating the new generation of traffic management systems (TMS), whose main innovative features are the interoperability of the data structures used, standardization of communications, continuous access to real-time and persistent data from heterogeneous data sources, modularity of components and scalability of the platform. This paper presents the main components, their functions and characteristics, then describes the testing and validation of the platform, even when federated with other innovative TMS modules developed in separate projects. The successful validation of the system has confirmed the achievement of the objectives set and allowed a new set of objectives to be defined for the reference platform for the railway TMS/Traffic Control systems

    Resource orchestration strategies with retrials for latency-sensitive network slicing over distributed telco clouds

    Get PDF
    The new radio technologies (i.e. 5G and beyond) will allow a new generation of innovative services operated by vertical industries (e.g. robotic cloud, autonomous vehicles, etc.) with more stringent QoS requirements, especially in terms of end-to-end latency. Other technological changes, such as Network Function Virtualization (NFV) and Software-Defined Networking (SDN), will bring unique service capabilities to networks by enabling flexible network slicing that can be tailored to the needs of vertical services. However, effective orchestration strategies need to be put in place to offer latency minimization while also maximizing resource utilization for telco providers to address vertical requirements and increase their revenue. Looking at this objective, this paper addresses a latency-sensitive orchestration problem by proposing different strategies for the coordinated selection of virtual resources (network, computational, and storage resources) in distributed DCs while meeting vertical requirements (e.g., bandwidth demand) for network slicing. Three orchestration strategies are presented to minimize latency or the blocking probability through effective resource utilization. To further reduce the slice request blocking, orchestration strategies also encompass a retrial mechanism applied to rejected slice requests. Regarding latency, two components were considered, namely processing and network latency. An extensive set of simulations was carried out over a wide and composite telco cloud infrastructure in which different types of data centers coexist characterized by a different network location, size, and processing capacity. The results compare the behavior of the strategies in addressing latency minimization and service request fulfillment, also considering the impact of the retrial mechanism.This work was supported in part by the Department of Excellence in Robotics and Artificial Intelligence by Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR) to Scuola Superiore Sant’Anna, and in part by the Project 5GROWTH under Agreement 856709

    5G Network Slicing using SDN and NFV: A Survey of Taxonomy, Architectures and Future Challenges

    Get PDF
    In this paper, we provide a comprehensive review and updated solutions related to 5G network slicing using SDN and NFV. Firstly, we present 5G service quality and business requirements followed by a description of 5G network softwarization and slicing paradigms including essential concepts, history and different use cases. Secondly, we provide a tutorial of 5G network slicing technology enablers including SDN, NFV, MEC, cloud/Fog computing, network hypervisors, virtual machines & containers. Thidly, we comprehensively survey different industrial initiatives and projects that are pushing forward the adoption of SDN and NFV in accelerating 5G network slicing. A comparison of various 5G architectural approaches in terms of practical implementations, technology adoptions and deployment strategies is presented. Moreover, we provide a discussion on various open source orchestrators and proof of concepts representing industrial contribution. The work also investigates the standardization efforts in 5G networks regarding network slicing and softwarization. Additionally, the article presents the management and orchestration of network slices in a single domain followed by a comprehensive survey of management and orchestration approaches in 5G network slicing across multiple domains while supporting multiple tenants. Furthermore, we highlight the future challenges and research directions regarding network softwarization and slicing using SDN and NFV in 5G networks.Comment: 40 Pages, 22 figures, published in computer networks (Open Access

    Comunicaciones MĂłviles de MisiĂłn CrĂ­tica sobre Redes LTE

    Get PDF
    Mission Critical Communications (MCC) have been typically provided by proprietary radio technologies, but, in the last years, the interest to use commercial-off-the-shelf mobile technologies has increased. In this thesis, we explore the use of LTE to support MCC. We analyse the feasibility of LTE networks employing an experimental platform, PerformNetworks. To do so, we extend the testbed to increase the number of possible scenarios and the tooling available. After exploring the Key Performance Indicators (KPIs) of LTE, we propose different architectures to support the performance and functional requirements demanded by MCC. We have identified latency as one of the KPI to improve, so we have done several proposals to reduce it. These proposals follow the Mobile Edge Computing (MEC) paradigm, locating the services in what we called the fog, close to the base station to avoid the backhaul and transport networks. Our first proposal is the Fog Gateway, which is a MEC solution fully compatible with standard LTE networks that analyses the traffic coming from the base station to decide whether it has to be routed to the fog of processed normally by the SGW. Our second proposal is its natural evolution, the GTP Gateway that requires modifications on the base station. With this proposal, the base station will only transport over GTP the traffic not going to the fog. Both proposals have been validated by providing emulated scenarios, and, in the case of the Fog Gateway, also with the implementation of different prototypes, proving its compatibility with standard LTE network and its performance. The gateways can reduce drastically the end-to-end latency, as they avoid the time consumed by the backhaul and transport networks, with a very low trade-off

    A flexible network architecture for 5G systems

    Get PDF
    In this paper, we define a flexible, adaptable, and programmable architecture for 5G mobile networks, taking into consideration the requirements, KPIs, and the current gaps in the literature, based on three design fundamentals: (i) split of user and control plane, (ii) service-based architecture within the core network (in line with recent industry and standard consensus), and (iii) fully flexible support of E2E slicing via per-domain and cross-domain optimisation, devising inter-slice control and management functions, and refining the behavioural models via experiment-driven optimisation. The proposed architecture model further facilitates the realisation of slices providing specific functionality, such as network resilience, security functions, and network elasticity. The proposed architecture consists of four different layers identified as network layer, controller layer, management and orchestration layer, and service layer. A key contribution of this paper is the definition of the role of each layer, the relationship between layers, and the identification of the required internal modules within each of the layers. In particular, the proposed architecture extends the reference architectures proposed in the Standards Developing Organisations like 3GPP and ETSI, by building on these while addressing several gaps identified within the corresponding baseline models. We additionally present findings, the design guidelines, and evaluation studies on a selected set of key concepts identified to enable flexible cloudification of the protocol stack, adaptive network slicing, and inter-slice control and management.This work has been performed in the framework of the H2020 project 5G-MoNArch co-funded by the E
    corecore