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Abstract

The rapid uptake of mobile devices and applications are posing unprecedented traffic burdens
on the existing networking infrastructures. In order to maximize both user experience and
investment return, the networking and communications systems are evolving to the next gen-
eration – 5G, which is expected to support more flexibility, agility, and intelligence towards
provisioned services and infrastructure management. Fulfilling these tasks is challenging,
as nowadays networks are increasingly heterogeneous, dynamic and expanded with large
sizes. Network softwarization is one of the critical enabling technologies to implement these
requirements in 5G. In addition to these problems investigated in preliminary researches
about this technology, many new emerging application requirements and advanced opti-
mization & learning technologies are introducing more challenges & opportunities for its
fully application in practical production environment. This motivates this thesis to develop
a new learning augmented optimization technology, which merges both the advanced opti-
mization and learning techniques to meet the distinct characteristics of the new application
environment. To be more specific, the abstracts of the key contents in this thesis are listed as
follows:

• We first develop a stochastic solution to augment the optimization of the Network
Function Virtualization (NFV) services in dynamical networks. In contrast to the
dominant NFV solutions applied for the deterministic networking environments, the
inherent network dynamics and uncertainties from 5G infrastructure are impeding
the rollout of NFV in many emerging networking applications. Therefore, Chapter
3 investigates the issues of network utility degradation when implementing NFV in
dynamical networks, and proposes a robust NFV solution with full respect to the
underlying stochastic features. By exploiting the hierarchical decision structures in
this problem, a distributed computing framework with two-level decomposition is
designed to facilitate a distributed implementation of the proposed model in large-scale
networks.

• Next, Chapter 4 aims to intertwin the traditional optimization and learning technologies.
In order to reap the merits of both optimization and learning technologies but avoid



x

their limitations, promissing integrative approaches are investigated to combine the
traditional optimization theories with advanced learning methods. Subsequently, an
online optimization process is designed to learn the system dynamics for the network
slicing problem, another critical challenge for network softwarization. Specifically,
we first present a two-stage slicing optimization model with time-averaged constraints
and objective to safeguard the network slicing operations in time-varying networks.
Directly solving an off-line solution to this problem is intractable since the future
system realizations are unknown before decisions. To address this, we combine the
historical learning and Lyapunov stability theories, and develop a learning augmented
online optimization approach. This facilitates the system to learn a safe slicing solution
from both historical records and real-time observations. We prove that the proposed
solution is always feasible and nearly optimal, up to a constant additive factor. Finally,
simulation experiments are also provided to demonstrate the considerable improvement
of the proposals.

• The success of traditional solutions to optimizing the stochastic systems often requires
solving a base optimization program repeatedly until convergence. For each iteration,
the base program exhibits the same model structure, but only differing in their input
data. Such properties of the stochastic optimization systems encourage the work
of Chapter 5, in which we apply the latest deep learning technologies to abstract
the core structures of an optimization model and then use the learned deep learning
model to directly generate the solutions to the equivalent optimization model. In
this respect, an encoder-decoder based learning model is developed in Chapter 5 to
improve the optimization of network slices. In order to facilitate the solving of the
constrained combinatorial optimization program in a deep learning manner, we design
a problem-specific decoding process by integrating program constraints and problem
context information into the training process. The deep learning model, once trained,
can be used to directly generate the solution to any specific problem instance. This
avoids the extensive computation in traditional approaches, which re-solve the whole
combinatorial optimization problem for every instance from the scratch. With the
help of the REINFORCE gradient estimator, the obtained deep learning model in the
experiments achieves significantly reduced computation time and optimality loss.
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Chapter 1

Introduction

1.1 Definition of Network Softwarization

The rising popularity of connected services and devices are actuating the explosive growth
of networking traffic volume. According to [1], by 2021, global mobile data traffic will
grow 7-fold, and the number of mobile users will be up to 5.5 Billion. The ever increasing
proliferation of smart devices, introduction of new emerging applications, together with an
exponential rise in service demands are posing a significant burden on existing networking
infrastructures. This urges the network domains to evolve a pressing solution in 5G networks
to handle the surging network traffic with satisfactory performance on both service experience
and investment return. 5G systems, with significantly improved performances on data rates,
capacity, latency, and Quality of Service (QoS)/Quality of Experience (QoE) , are expected
to be the panacea of most of the current networks’ problems [2], [3], [4].

Unlike the “one-size-fit-all” type of the current 4G technology, 5G era is touted as the
generation of mobile networks that will offer multi-tenancy support and service-tailored
connectivity [5]. Evolving from the success of 4G, 5G is anticipated to satisfy diverse business
demands with even conflicting requirements. By allowing different parties to instantiate
and run a software-based architecture, 5G becomes inherently a multi-tenant ecosystem,
provisioning a truly differentiated service on top of a shared network infrastructure.

To meet these extreme demands, 5G leverages the benefits of network virtualization [6]
to accommodate flexibility in providing carrier-grade differentiated networking services. The
notion of network virtualization concentrates on the concept of a software-based represen-
tation of both the hardware and software resources for data and/or control-plane Network
Functions (NFs). This lays the main foundation of network softwarization for 5G. Net-
work softwarization is the concept of designing, architecting, deploying and managing
network components, primarily based on software programmability properties [7]. It
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enables flexibility, adaptability, and even total reconfiguration of a network on the fly based
on timely requirements and behaviors. This, on the one hand, makes it possible to accom-
modate the diverse new emerging applications with 5G. On the other hand, more advanced
technologies for intelligent operation and management are also required by considering cost
and process optimization in the overall maintenance of the network lifecycle. This motivates
this thesis to develop a new learning augmented optimization technology to facilitate the
implementation of network softwarization in the context of 5G.

Apart from the extensively studied network virtualization technologies, two new enabling
technologies to implement the vision of network softwarization in 5G are the concepts of
network slicing and Network Function Virtualization (NFV).

Table 1.1 Typical 5G use cases and their QoS requirements

Use Cases Examples Requirements Mobility
Enhanced Mobile

Broad Band
4K/8K ultra high definition (UHD)
video, hologram, Augmented Reality
(AR), Virtual Reality (VR)

High capacity, video
cache

Yes

Massive Machine
Type

Communications

Sensor Networks (smart metering, logis-
tics, city, home, etc.)

Massive connection cov-
ering a very large area of
mostly immobile devices

No

Ultra Reliable and
Low Latency

Communications

Autonomous driving, smart grid, remote
surgery

Low latency and high reli-
ability

Yes

1.1.1 Network Slicing

5G networks aim to support a number of vertical services that are characterized by diverse
performance requirements. Many organizations e.g., International Telecommunication Union
(ITU), Third Generation Partnership Project (3GPP), have categorized these services into
serveral major use cases [8], [9]: enhanced mobile broadband (eMBB), massive machine-type
communications (mMTC) and ultra-reliable and low latency communications (URLLC). As
implied in Table 1.1, these emerging applications are subject to a wide spectrum of service
requirements for latency, throughput, reliability, as well as the underlying resources, which
are significantly beyond the capabilities of current networks. The diverse characteristics of
these categories require different solutions. In contrast to current architectural model of “one
size fits all”, the network slicing technology is enabling the networking systems to support
such functional and operational diversity.

According to the definition of 3GPP, network slicing is a technology that enables the
operator to create customized networks for different market scenarios with diverse



1.1 Definition of Network Softwarization 3

requirements, e.g., in terms of functionality, performance and isolation [10]. A network
slice is an end-to-end (E2E) logical network, including access and core networks, for a
given application scenario to flexibly provide one or more network services according to
the instructions of the controller [11]. A network slice instance consists of NFs and their
corresponding computing, storage, and networking resources. The controller translates
the use cases and business models into network slices, chains the relevant modular NFs,
assigns the relevant performance configurations and maps all of these functions on the
infrastructure resources. Hence, a network slice can span all domains of the network:
software modules running on cloud nodes, specific configurations of the transport network
supporting flexible location of functions, a dedicated radio configuration or even a specific
radio access technology (RAT), as well as configurations of the 5G devices. Essentially, with
network slicing an operator can deploy multiple logical networks over the same physical
infrastructure. This, on the other hand, also makes it more challenging to deploy and operate
these sliced network services under such complex environment.

The deployment of network slices relies on NFV and software-defined networking (SDN)
paradigms. The former allows, through the virtualization of NFs, the achievement of a
modular logical architecture and flexible placement of Virtual NFs (VNFs) throughout the
network. The latter allows simplification of forwarding functions but, more importantly,
a more advanced separation of control and user plane functionality [12]. As another key
concept in this thesis, the details of NFV is introduced next.

1.1.2 Network Function Virtualization

By harvesting the benefits of virtualization and cloud computing, NFV allows the deployment
of originally hardware-based proprietary NFs on virtual environments in the form of VNFs
[13]. The hosting environment of VNFs can be either Virtual Machines (VMs) or containers
[14], depending on their specific resource demands. A set of VNFs can be chained together
in a co-located or distributed cloud environment, offering network or value added services.
As shown in [15], an NFV architecture defines in gereral:

• VNFs that are software implementations of NFs deployed in virtual environments.

• NFV Infrastructure (NFVI), which comprises the logical environment’s building blocks,
i.e., storage, compute, network and their respective assisting hardware components.

• Management & Orchestration (MANO) that is responsible for the network wide
management and orchestration of VNFs and the NFVI.
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Through running VNFs as softwarized instances on a common NFVI, the paradigm of
NFV is becoming a key enabler to implement swift, flexible and scalable service deployment
in 5G. This makes it possible to support a more fine-grained control and optimization towards
the underlying networking services and resources.

In the context of network slicing, the NFV framework enables service chaining, capacity
and latency-oriented VNF embedding and management [16]. In an NFV based network
service, a dynamic Network Function Forwarding Graph (NFFG) [17] is established to chain
the required VNFs in a flexible way. The use of a NFFG enables an on-the-fly deployment of
network services with solely required network functions, depending on the service needs.
With a given NFFG, the MANO will reserve the required amount of infrastructure resources to
instantiate the service accordingly. Such process is non-trial since the underlying networking
environment is becoming increasingly complicated and unpredictable in 5G. This requires
more advanced optimization technologies to facilitate the operation and management towards
the newly constructed 5G architecture. Next, we will introduce a learning augmented
optimization technology to address this.

1.2 Definition of Learning Augmented Optimization

System design and operation often lead to diverse allocation problems, where limited re-
sources must be assigned to competing objects so as to achieve the best overall system
performance. Depending on the context, the allocation decisions may pertain to costs,
tasks, goods, or other resources that can be assigned to one or several agents. Most of
such problems can be interpreted as resource optimization problems. This thesis is targeted
at the nework optimization problems, which refer to the management of network re-
sources and functions in a given environment, with the goal of improving the network
performance.

Traditionally, such problems are extensively addressed through classic optimization mod-
els and solvers, such as convex optimization, game theory, metaheuristics etc. However,
with the rapidly improved model scales and compuation difficulties, traditional network
optimization approaches are being challenged by diverse new emerging network applica-
tions. Motivated by the latest success of Artificial Intelligence (AI), there is increasing
momentum recently in deploying learning based intelligent mechanisms for the forthcoming
5G to control the massive traffic volume in diverse networking landscapes. Different from
the prosperity of AI techniques in their dominant applications e.g., image/video/speech
recognitions, the application of many advanced AI techniques is still in its infancy in com-
munication and networking systems. This motivates this thesis to start a comprehensive
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research into the concept of learning augmented optimization, which aims at promoting
a greater integration of multiple AI tools (e.g., classic optimization, control theories
and machine learning) into networking architecture. This is bulit upon the theories of
both the traditional optimization modelling and data-driven learning.

Model

• Mathematical model
• Numerical model

Optimizers/Algorithms

• Derivative free
• Derivative based
• Population based
• Trajectory based
• Deterministic
• Stochastic
• Memory less
• History based
• Bio-mimic

Evaluators/Simulators

• Direct calculation
• Numerical simulator
• Experiment or trial
and error

Optimization

Fig. 1.1 A summary of optimization process.

1.2.1 Traditional Network Optimization

A typical optimization process is composed of three components [18], [19]: the model, the
optimizer/algorithm and the evaluator/simulator, as shown in Fig. 1.1. Typically, a general
network optimization problem can be formulated as:

minx f (x)
s.t.

hi(x)≤ bi, i = 1,2, . . . ,m
g j(x) = c j, j = 1,2, . . . ,n

(1.1)

where x is the set of optimization variables. The function f (x) is the objective function. The
constraint conditions hi(x)≤ bi and g j(x) = c j are the inequality and equality constraints,
respectively. The optimization problem formulated in (1.1) describes the problem of finding
an optimal x∗ that minimizes f (x) among all x satisfying the constraints hi(x) ≤ bi and
g j(x) = c j.
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When all functions involved in (1.1) are convex, problem (1.1) is a convex optimization
problem, which can be solved optimally by many efficient algorithms, such as interior-point
methods [20]. However, many of network optimization problems are nonconvex due to
the combinatorial property of allocating distributed network node & link resources. The
complexity of global optimization methods for nonconvex problems may grow exponentially
with the problem sizes, which are usually intractable. Alternatively, approximation and/or
heuristic algorithms are often used to seek a suboptimal solution to overcome the difficulties
of solving nonconvex problems.

In communication and networking areas, we can roughly list several optimization prob-
lems usually appeared in this field as follows.

• Integer Programming (IP) in which some or all optimization variables are constrained
to be integer values. This kind of problems is usually raised in the designs of allocating
multiple elementary network resources.

• Mixed Integer Programming (MIP) that concerns the problems having both discrete
and continuous variables. Such model is often used to deal with the problems of jointly
allocating discrete and continuous resources.

• Quadratic Programming (QP) where the objective function has quadratic terms.

• Semi-Definite Programming (SDP) which optimizes a linear function of the variables
subject to linear equality constraints and a nonnegativity constraint on the variables. In
many cases, nonconvex problems are usually transformed into SDP to get an efficient
algorithm that is easy to implement.

To cope with the nonconvexity in these optimization problems, many optimization
techniques have been proposed [21], such as dual decomposition, alternating search, penalty
function method, sequential parametric convex approximation, semidefinite relaxation, and
etc. These algorithms usually attempt to find an suboptimal but acceptable solution within
a given computation budget. As the advent of many latest machine learning techniques,
researchers are putting increasing attention on applying learning techniques to solve these
optimization models.

1.2.2 Learning for Optimization

Most of the existing studies to solve optimization problems focused on sub-optimal or
heuristic algorithms, whose optimality gaps are difficult to quantify and control. Instead of a
hand-engineered optimization algorithm, the concept of “learn to optimize” aims to cast an
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optimization model as a learning problem, allowing the algorithm to learn to exploit structure
in the problems of interest in an automatic way [22], [23]. With the capabilities of inferring
decisions from history experiences and observations, learning based solutions present a great
complement to the existing optimization based solutions. This success can be attributed
to the data-driven philosophy that underpins machine learning, which favours automatic
discovery of patterns from data over manual design of systems using expert knowledge.

Machine learning-based methods have gained great momentum as a disruptive way to
learn a near-optimal solution for difficult optimization problems. Recent attempts in [22]–
[24] have demonstrated the promissing performance in a number of optimization problems.
In spite of the preliminary success, applying fully learned optimization algorithms into real
systems still faces many additional difficulties. As exposed in [25], a prominent shortcoming
of these methods is that they require large amounts of training problem instances, e.g.,
millions of samples are needed for a small-size system. This incurs a significant cost for
sample acquisition, and may not be feasible in particularly many NP-hard combinatorial
optimization problems. Secondly, resource management problems are constrained by nature,
but the ability of existing machine learning-based methods in dealing with constraints is
limited. Finally, networks are inherently dynamic. Thus, a pre-trained machine learning
model may be useless or suffer from severe performance deterioration as the network setting
changes.

Consequently, instead of an exclusive choice, an alternative path foward is to commit
to an integration of multiple AI tools to harvest their complementary strengths for existing
problems. All of these motivate the research work on the learning augmented optimization
technology in this thesis.

1.3 Research Problems, Challenges and Objectives

1.3.1 Problems and Challenges

Network softwarization, as a new conceptual technology, is still at its infancy. Currently, it
remains a formidable challenge to implement, particularly in the dynamical 5G networking
environment. In this respect, optimization and learning based approaches are two solid tools
to move the way forward. Despite the great success of traditional optimization and intelligent
learning technologies in their dominant applications, both of them struggle to confront these
emerging challenges in current and near-future networking systems.

Concretely, the learning models (normally manifested with a neural network structure in
deep learning) and classic optimization models (composed by a set of constraint and objective
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functions) work in quite different ways. Optimization technology excells at generating stable
and theorectically supported solutions and has successful applications in a wide range of
domains. However, the drawbacks are that these solutions are usually dedicated only to
the specific problems and require proficient domain knowledge to design and deploy them.
In contrast, intelligent learning technologies, e.g., deep learning, are normally data-driven
and exhibit great generality towards a set of problems that share similar structural patterns.
Nevertheless, the black-box operations in learning technologies limit their application in
many industrial fields, since controllable and interpretive solutions are more desired for many
industrial applications.

In this setting, among the diverse optimization and learning methods, which of them are
more preferable in the considered networking scenarios? How to intertwin the two distinct
technnologies to reap their individual strengths but avoid their weaknesses? As a result,
a holistic solution that integrates the merits of both traditional optimization and advanced
learning technologies is timely needed. With this spirit in mind, we can summarize three
critical problems along with their challenges to be targeted at in this thesis as follows:

• Optimization with stochastic learning for netowork softwarization in dynamic
networks: The optimization of network softwarization involves solving probably very
high-dimensional and complicated combinatorial optimization programs. This presents
great computational difficulty since these programs are often NP-hard. Additionally,
the dynamicity of the underlying networks are exacerbating the solving process, which
normally requires solving a complicated stochastic optimization program in an iterative
way. When some priori knowledge about the network changing patterns (e.g., historical
statistics or stochastic probability models) are presented, how can we integrate these
priori knowledge to augment the optimization decisions timely and robustly so that
they can adapt the system to the fast changing networks? This is still a challenging
problem for the implementation of network softwarization.

• Optimization with online learning for network softwarization: However, explicit
knowledge about the environment is not always available, e.g., zero-day traffic. In this
case, environmental knowledge and traffic statistics can only be learned progressively
through run-time observations, which are then used to aid the system optimizaiton.
Therein, among the diverse optimization techniques, many classic optimization tech-
nologies are applicable for our targeted problems, such as convex optimization, IP,
online optimization etc. In the field of learning technologies, at hand are a wide range
of machine/deep learning and reinforcement learning approaches. How to integrate
these solid theories to compose a learning augmented online optimization for the
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targeted problems? Particularly, when explicit statistics/knowledge are absent or only
partially observed, how can we learn progressively and adapt the optimization online
to safeguard the system performance in the long run? This is another challenging work
in this thesis.

• Deep learning to solving the network optimization problems: Many latest deep
learning technologies have demonstrated their promissing performance in areas e.g.,
speech recognition, image processing etc. However, the applications in networking
domains present more constraints and requirements. The extension of these data-
driven solutions to networking domains is non-trival. It requires to integrate a learning
progress to reduce the optimality loss meanwhile respecting all the optimization con-
straints. However, deep learning techniques and optimization programs are attributed
to completely different model structures. How to deploy a deep learning approach
effiently within an optimization framework is still an open problem.

1.3.2 Objectives

This thesis aims at providing a systematic analysis to conceptualize the technology of learning
aumented optimization. Accordingly, practical solutions will be developed to address these
optimization problems for network softwarization. More specifically, methods will be
introduced to 1) implement the efficient deployment solution of NFV in dynamic networks,
2) develop a learning augmented online optimization for network slicing in 5G, and 3) cope
with the challenge of applying deep learning to solve combinatorial optimization problems.
Further details will be outlined in Section 1.4.

1.4 Thesis Outline and Contribution

In this chapter, we have provided an introduction insight to the technologies of network
softwarization and learning augmented optimization. In the remainder of this thesis, we
will examine various state-of-the-art work and elaborate the designs of learning augmented
optimization in the diverse problems of network softwarization. The key contents of this
thesis are outlined in Fig. 1.2. The contributions of this thesis are summarized as follows.

• Chapter 2 presents a thorough review of the existing work on network softwarization
and optimization techniques. In light of the problems in network softwarization, the
overall 5G backgrounds and two critical enabling technologies, NFV and network
slicing, are summarized. Then, we analyze three types of optimization techniques
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Intelligent optimization of
network softwarization

Stochastic NFV
(Chapter 3)

LAO for online
network slicing
(Chapter 4)

Deep learning NFV
(Chapter 5)

Network
softwarization

Learning augmented
optimization (LAO)

Fig. 1.2 Key contents of this thesis.

for the targeted problems, including deterministic, stochastic and online optimization
technologies. This review builds a solid background for the methods proposed in this
thesis.

• With the observations into the network utility degradation when implementing NFV
in dynamic networks, Chapter 3 designs a robust NFV solution that exploits the prior
stochastic knowledge to improve the system optimization. Unlike existing deterministic
NFV solutions, which assume given network capacities and/or static service quality
demands, this Chapter explicitly integrates the prior knowledge about the network
dynamics into a two-stage stochastic resource utilization model. By exploiting the
hierarchical decision structures in this problem, a distributed computing framework
with two-level decomposition is designed to facilitate a distributed implementation of
the proposed model in large-scale networks. The experimental results demonstrate a
multi-fold performance improvement from the proposed solution.

• The robust NFV solution in Chapter 3 still requires the stochastic pattern information
so that we can evaluate the candidate solutions by stochastic sampling technologies.
In Chapter 4, we further release this requirement and consider the underlying system
is fully unknown but can be observed through the real-time running. In this setting,
Chapter 4 first classifies both the model-based and data-driven learning techniques
that can be combined to imporve an optimization process. Subsequently, a learning
augmented online optimization approach is developed to learn a safe network slicing
solution from both prior knowledge and real-time observations. This is based on a
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two-stage slicing optimization model with time-averaged constraints and objective. An
offline solution to this problem is intractable since the future realizations of the system
states are unknown before decisions. In contrast, an online solution can improve the
optimization progressively by integrating knowledge learned from new observations.
This eschews the biased decisions that only customize immediate performance over
the instant system state in the existing network slicing solutions in the literature. We
prove that the proposed solution is always feasible and nearly optimal, up to a constant
additive factor. Finally, we demonstrate a huge improvement over the compared
state-of-the-art algorithms.

• Distinct to the above optimization approaches for the targeted problems, Chapter 5
opens a new research direction, in which latest deep learning tools are introduced to
these emerging problems. Specifically, we propose an encoder-decoder graph learning
structure to represent and solve the traditional combinatorial optimization problems in
a deep-learning manner. With the powerful data analysis of deep learning approaches,
the proposed solution is able to solve the traditional optimization problem at tens of
times faster speed with a less optimality loss. In addition, the optimality loss can be
possibly further reduced by providing a stronger rollout policy as the baseline model.
This presents a promissing research direction for the traditional optimization process to
work in concert with advanced deep learning approches to build the future intelligent
networks.

To summarize, this thesis researches the technology of learning augmented optimization
and its application for the problems of network softwarization. The proposed methods
are expected to contribute positively to both the optimization technologies and network
softwarization. In the next chapter, a comprehensive review of existing solutions is pro-
vided. In addition to this, each primary chapter also makes some extra efforts to explain its
contributions and most related works to make clear the contents in that chapter.





Chapter 2

Related Work

In Chapter 1, an overview of 5G network softwarization and network optimization techniques
is presented coupled with the research problems, challenges and aims of this thesis. In this
chapter, we provide a comprehensive review of existing research efforts around this new
networking concept and optimization techniques. This chapter starts with the introduction of
5G network softwarization in Section 2.1, which elaborates both the achievements towards
the overall 5G expectations and enabling techniques involved in network softwarization. Op-
timization techniques for network softwarization are then presented in Section 2.2, including
both traditional and learning based network optimization techniques.

2.1 Network Softwarization in 5G

With the diverse new emerging networking services and more challenging operational re-
quirements, the architectures of mobile networks (both core and radio access networks),
fixed networks, and service delivery platforms are subject to an unprecedented technology-
economic transformation. To improve the situation, many organizations are resorting to
network softwarization for the next-wave network evolution through the technologies of NFV
and SDN. In such a transition, more commodity servers and shared hardware devices will be
introduced to replace these special-purpose devices in 4G. This will yield significant benefits
in terms of reducing expenditure and operational costs of next generation (5G and beyond)
networks. Also, it enables fully programmable, flexible, service/vertical-tailored, and auto-
mated end-to-end networks (i.e., network slices). The concept of network softwarization is
expected to serve diverse services and verticals, including, but not limited to, Tactile Internet
of Things, Pervasive Robotics, Self-driving, Immersive communications, Industry 4.0, and
Augmented Reality.
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Network softwarization works in concert with many other enabling techniques to achieve
the overall expectations of 5G. In light of the overall challenges and efforts in 5G, the existing
achievements in 5G are first introduced in this section.

2.1.1 Overall Challenges and Efforts in 5G

The combined effects of emerging millimeter wave (mm-wave) spectrum access, hyper-
connected vision and new application-specific requirements are triggering the next major
evolution in communications and networking– 5G [2], [26]. 5G envisions magnitudes of
increase in data rates, bandwidth, coverage and connectivity, with a massive reduction in
round trip latency and energy consumption. Blending the different research initiatives by
industries and academia, eight major requirements [26] of next generation 5G systems are
identified as:

1) 1 ∼ 10 Gbps data rates in real networks: This is almost 10 times increase from
traditional Long Term Evoluation (LTE) network’s theoretical peak data rate of 150
Mbps.

2) 1 ms round trip latency: Almost 10 times reduction from 4G’s 10 ms round trip time.

3) High bandwidth in unit area: It is needed to enable large number of connected devices
with higher bandwidths for longer durations in a specific area.

4) Enormous number of connected devices: In order to realize the vision of Internet of
Things (IoT), emerging 5G networks need to provide connectivity to thousands of
devices.

5) Perceived availability of 99.999%: 5G envisions that network should practically be
always available.

6) Almost 100% coverage for ‘anytime anywhere’ connectivity: 5G wireless networks
need to ensure complete coverage irrespective of users’ locations.

7) Reduction in energy usage by almost 90%: Development of green technology is already
being considered by standard bodies. This is going to be even more crucial with high
data rates and massive connectivity of 5G wireless.

8) High battery life: Reduction in power consumption by devices is fundamentally
important in emerging 5G networks.



2.1 Network Softwarization in 5G 15

With these eight above-mentioned requirements, industries, academia and research organi-
zations have started collaborating in different aspects of 5G systems. Particularly, this section
provides a thorough reviews on the overall 5G network architectures and standarization
activities, which are closely connected to the solution designs of network softwarization.

First, many new network architectures are proposed in order to provide a holistic support
towards the End-to-End (E2E) networking services in 5G. The promising new paradigms
includes Cloud-Radio Access Network (C-RAN), Heterogeneous Network (HetNet), split
control and user planes and etc. C-RAN resolves some of the major problems associated
with increasing demands for high data rates [27]. C-RAN is based on fundamentals of
centralization and virtualization. The baseband resources are pooled at BaseBand Unit
(BBU), situated at remote central office (not at the cell sites). Remote Radio Heads (RRH),
comprising of transreciever components, amplifiers and duplexers enable digital processing,
analog-digital conversions, power amplification and filtering. RRHs are connected to BBU
pool [28]. This simplified BS architecture offers to improve system architecture, mobility,
coverage performance and energy efficiency while at the same time reducing the cost of
network deployment and operation [27], [28]. Another way to handle the wireless traffic
explosion, expected in 5G communication, is deployment of large number of small cells
giving rise to HetNets [29]. By deploying low power small BSs, network capacity is
improved and the coverage is extended to coverage holes. Moreover, the overlap of all small,
pico, femto cells with the existing macro cells, leads to improved and efficient frequency
reuse [29], [30]. The changes in architecture and air interface emphasizes on small cells and
increased number of antennas. Configuration and maintenance of many servers and routers,
in such a dense 5G deployment, is a complex challenge. SDN offers a simplified solution
for this complex challenge. SDN considers a split between control and data planes, thereby
introducing swiftness and flexibility in 5G networks [31].

The broad overview of 5G standardization activities is summarized in Fig. 2.1. It points
out that the first standard is expected to mature by 2020. To deploy 5G in alignment with
the market demands, 5GPPP is working for early agreements with major stakeholders for
multitenancy and single digital market [33], [34]. METIS (Mobile and wireless communica-
tions Enablers for the Twenty-twenty (2020) Information Society) and HORIZON 2020 are
the major 5G research project initiated and funded by the European Union (EU) [35], [36].
Moreover, different globally vendors and operators are also working towards their vision
of 5G. Ericsson [37] expects 5G development should start in a backward compatible way
with existing 4G LTE networks. This will help in continuing services using the same carrier
frequency to traditional devices. Qualcomm [38] is developing and driving 4G and 5G in
parallel to achieve the maximum potential. The unified platform should help in improving
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cost and energy efficiency, while enabling a vast range of new services. Huawei is collaborat-
ing with international trade associations, universities, governments and ecosystem partners
to establish crucial 5G innovations [39]. Docomo network has identified two important
trends: (i) pervasive wireless connectivity (ii) extensive rich content delivery in real time [40].
It believes integration of both the higher and lower frequency bands holds the key to 5G
deployment. The lower frequencies will be responsible for basic coverage and the higher
frequencies will provide high data rates. Optimizing spectrum usage, revolutionary advances
in 5G, dense small cells and improved performance are key concepts of Nokia’s realization
for 5G wireless [41].
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Fig. 2.1 Timeline of 5G standardization activities.

The above-mentioned challenges and visions of 5G networks lays the foundations of
this thesis and motivate us to perform a comprehensive research into the technologies of
network softwarization under the overall blueprint. Next, we provide a view on the existing
achivements already done around the key enablers of network softwarization in 5G.

2.1.2 Network Slicing

Network slicing logically isolates NFs and resources that are specifically tailored to a vertical
market’s need on a single common network infrastructure. This enables a flexible stakeholder
ecosystem that allows technical and business innovation integrating physical and/or logical
network and cloud resources into a programmable, open software-oriented multi-tenant
network environment.
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Network slicing relies on the concept of virtualization. The idea of virtualization, i.e.,
creating a virtual form of a physical entity through software methods and processes, formed
the vision of virtual systems spanning across computing platforms, network resources, and
storage devices [65]. This requires that a network slicing solution must be able to coordinate
efficiently diverse heterogenous resources.

In the context of 5G, many researchers have discussed the architecture of network slicing.
A representative example of the network slice orchestration architecture given by 5GPPP [66]
is illustrated in Fig. 2.2. Such an architecture considers a flexible separation of the control
and data planes across a shared and dedicated network segments. A realization of network
slice orchestration architecture, focusing on the RAN and on distributed core network, is
considered in [69], [45]. The architecture relies on the principles of multi-service and multi-
tenancy support. A network slicing architecture for integrated 5G communications is analyzed
in [70], which demonstrates its realization for LTE considering different orchestration and
control technologies.

A network slice is an E2E logical network that might span across multiple subnetworks,
including RAN and core network. In order to meet the slicing demands of diverse network
types, there are a broad researches working on the composition of the network infrastructure
and its virtualization. For example, a mix of central and edge cloud computing infrastructures
are proposed in [71], [72] , where resources can be allocated to either of them, depending on
the slice requirements. This provides a flexible approach to meet the sub-millisecond latency
requirement for some tactile services, such as remote surgery and autonomous driving.

Considering the virtualization of the core network infrastructure, researches done in
the context of cloud computing can be leveraged. Specifically, technologies like kernel-
based virtual machines and Linux containers can provide isolation guarantees in terms of
processing, storage, and network resources at the operating system or process level [73]. On
the other hand, virtualization approaches for the RAN are at an early stage. Applying VM
and container-based solutions in this domain does not fully address the problem as they do
not deal with the additional dimension of virtualizing and isolating radio resources (spectrum
and radio hardware). Existing RAN virtualization approaches that account for this dimension
fall into one of two categories [73]:

• Providing a dedicated chunk of spectrum for each virtual base station (slice) to deploy
a full virtual network stack on top of it [72];

• Dynamically sharing the spectrum between different virtual base station instances
(slices) by employing common underlying physical and lower medium access control
(MAC) layers [74].
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Fig. 2.2 A representative network slice orchestration architecture.

Common to all proposals, the deployment of network slices relies on NFV & SDN
paradigms. As a result, 5G network control and data planes (C-/D-plane) will be organized
by VNFs, instantiated in general purpose cloud infrastructures and communicating via
programmable interfaces. Next, we provide a review on the existing work on NFV.

2.1.3 Network Function Virtualization

In spite of the performance superiority, 5G network functions face critical functional and
architectural challenges, including the increased network complexity and equipment cost. A
growing group of companies and standardization bodies are pushing researches of implement-
ing the 5G network functions as software components by using the NFV paradigm to improve
cost efficiency, flexibility, and performance guarantees. NFV is one of the key enabling
technologies to implement the network softwarization. Generally, NFV can overcome some
challenges of 5G by [15], [51]:

• Optimizing resource provisioning of the VNFs for cost and energy efficiency;

• Mobilizing and scaling VNFs from one hardware resource to the other;

• Ensuring performance guarantees of VNFs operations, including maximum failure
rate, maximum latency, and tolerable unplanned packet loss;

• Ensuring coexistence of VNFs with non-virtualized network functions.
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Fig. 2.3 depicts a referenced NFV architecture, which supports a wide range of services
described as forwarding graphs by orchestrating the VNF deployment and operation across
diverse computing, storage, and networking resources [15]. In Fig. 2.3, NFV management
and orchestration comprises resource provisioning modules that achieve the promised benefits
of NFV.

Fig. 2.3 A reference architecture of NFV.

Driven by the demand of industrial application and technical evolution, NFV based
service orchestration is recently receiving increasing attentions by all participants. The
service orchestration takes many similarities with the previous problem of virtual network
embedding (VNE) [52] in placement aspect, but additional topological and service-specific
requirements are posed:

• Different from the isolation requirement in VNE, virtual nodes (i.e., VNFs) in a service
chain are allowed to share their service capacities to multiple service requests for same
processing. This will associate the shared VNFs with multiple services, coupling the
placement decisions with the admission results of multiple services when admission
control is performed.

• Virtual nodes within a single service chain can be embedded into same substrate nodes.
Whereas, different hosts are selected for different nodes in a virtual network so as to
construct a forwarding network.
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• The topology of a Service Function Chain (SFC) is flow-shaped, comprised by flow
paths from pairs of source and destination. Nodes in each flow path usually constitute
the dedicated processing for some specific flow(s). While VNE exhibits no such
topological context information.

• The processing of a virtual node in a service chain would probably cause different
rate variation to the served flow, resulting in heterogeneous resource requirements on
nodes and links. In contrast, nodes in virtual network only perform data forwarding
and resource requirements and node types are homogeneous within the topology.

To realize the envisions of NFV, Network Providers (NPs) need to orchestrate the network
service at an abstract level by constructing a SFC, in which the involved VNFs and their
logical connections that a service flow needs to traverse are defined (i.e., VNF chaining
phase). The SFC is then optimally placed in instantiations bound to particular resources in
the substrate network (i.e., SFC placement phase).

The SFC construction is similar to the problem of web service composition [53], which
addresses the problem of how to compose a complex web service by chaining a set of
elementary services. However, the chaining criteria for a service chain are quite different from
those for web services due to the additional requirements on substrate resource allocation for
placing VNFs. In the field of VNF chaining, intuitive semantic description is currently widely
used [55], [56], [57]. This mechanism mainly relies on obvious mutual dependency relation
between VNFs to determine their logical connectivity in a chain. [54] presents a flexible
framework for the chain graph construction. Whereas, the proposed framework is designed
from the perspective of high-level policy description, rather than from the perspective of
topology and resource optimization.

The initial VNF/SFC placement researches mainly focus on optimizing the placement
solutions with acceptable computing complexity under a given capacitated wired substrate
network. The authors in [58] address the NFV node location problem, but leaving the link
chaining problem into future research. Service decomposition is studied in [59] by supporting
selecting a more refined topology. While the global topology optimization and rate variation
problems are not addressed. [60] initiates the rate variation problem in NFV, in which only
a simple rate variation model is presented based on a fixed node chaining order. However,
when the global chaining order of NFs is subject to optimization, different ordering solutions
would create different rate variation effect in a SFC graph.

Recently, there also exists a few work studing the elastic and online algorithms when
the underlying system is dynamic. Among the very few of them, in [61], the authors
model the elastic placement solution towards the dynamic workload, which is different
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from the dynamicity problem of substrate network. The temporal scheduling problem is
studied in [62], [63]. [62] addresses the VNF scheduling problem by jointly considering the
scheduling and traffic steering. [63] models the temporal flexibilities for the VNE problem.
Whereas, homogeneous wired network scenarios are targeted in all above work. As an
extension, [64] studies the similar problem in distributed and wireless networks. Compared
to the simple considerations of wireless network in [64], it is neccessary to conside the
detailed network fluctuation and jointly combine the temporal and spatial features of substrate
resources for the placement problem, which is more important from a long-term perspective.

2.2 Optimization Techniques for Network Softwarization

Following the general form of an optimization model in (1.1), we can, without loss of
generality, classify the models to be used in the context of network optimization into three
categories: deterministic network optimization, dynamic/stochastic network optimization and
online network optimization.

2.2.1 Deterministic Network Optimization

When all system states (i.e., the coefficiencies of all objective and constraint functions) are
known as a priori, we can formulate the involved problem as a deterministic optimization
model, which can be an instance in any form of IP, MIP or QP etc. The deterministic
optimization models capture the shared structures of network optimization problems, which
are the basic foundations of the other optimization techniques. In the context of NFV, we can
enumerate a list of Resource Allocation problems (i.e., NFV-RA problems) that are solved
through some deterministic optimization approaches.

For example, Riera et al. [65] propose an analytic model for the VNF Forwarding Graph
aiming to optimize the execution time of the network services deployed. This work presents a
formulation for an optimal resource allocation for the NFV-RA problem. In addition, common
economic metrics, performance metrics, etc. are introduced to evaluate and compare different
approaches. Therefore, this analytic model can be used by different variants. Ghaznavi et
al. [61] model the NFV-RA problem as MIP, different from the basic model, the authors
consider distributed VNFs and workload balancing, so the formulation is much more complex
than basic formulation. Therefore, a local search heuristic is proposed. Similarly, Luizelli
et al. [66] decompose the problem into tree phase: (i) placement of VNFs, (ii) assigning
VNFs to service requests, (iii) chaining the VNFs, and this insight is similar with the idea
presented in [55]. The authors use Integer Linear Program (ILP) to model this problem



22 Related Work

and present a heuristic. Cohen et al. [58] claim that the NFV-RA problem can be reduced
to two NP-hard problems, the facility location problem and the Generalized Assignment
Problem (GAP), which implies that the SFC placement problem is also NP-hard. Therefore,
the authors propose an approximation algorithm based on solving GAP and then rounding
the fractional solution computed into an integral solution.

In general, depending on the types of variables (continuous, discrete or mixed), linearity
of all objective and constraint functions (linear, quadratic, convex or non-convex etc.), three
general classic optimization solvers can be summarized: optimal solver, approximate solver
and heuristic solver.

Optimal solvers find global optimal solutions. When a problem is convex or in small
size, optimal solution can be solved by algorithms e.g., interior-point methods, branch and
bound, dynamic programming, cutting plane methods, etc [20], [67]. A good example is
presented in [68], which uses ILP to formulate VNF placement in mobile network, and use
CPLEX, MATLAB, and CVX to solve the problem. Other similar studies can also be found
in e.g., [69], [70]. However, the complexity of global optimization methods for nonconvex
problems may grow exponentially with the problem sizes. Therefore, they are commonly
used to solve small instances and present an optimal bound reference for heuristic solutions.

Approximate solvers give a trade-off between optimal solution and algorithm complexity.
Therefore, a polynomial time algorithm can be found according to the compromising of
optimality. A good application is the work in [71], which presents a polynomial time service
chain approximation algorithms both for the case with admission and without admission
control. This is achieved based on an extension of the classic Linear Programming (LP) and
randomized rounding techniques. Moreover, the ILP formulation in [58] is also solved by
reducing the problem to the GAP and then solving it with an approximation algorithm that
shows proven performance bound.

Heuristic solvers try to exploit the problem-specific knowledge and for which we have
no guarantee that they find the optimal solution [72]. As another related technique, a
metaheuristic is formally defined as an iterative generation process which guides a subordinate
heuristic by combining intelligently different concepts for exploring the search space. Learing
strategies are used to abstract structure information in order to find efficiently near-optimal
solutions [73]. Service chain deployment is supposed to be low delay or real-time, therefore,
fast heuristics are preferred in NFV-RA. Threre are a large quantity of heuristic-based
solutions for NFV-RA problem. For example, Bari et al. [55] propose a dynamic programming
based heuristic to solve large instances, which provides solutions within 1.3 times of the
optimal solution obtained by solving ILP using CPLEX. The authors in [74] give a MILP
formulation and a heuristic algorithm that solves the problem incrementally, which can solve
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the problem for incoming flows without impacting existing flows. Metaheuristic algorithms
are another way to overcome the hardness of NFV-RA problem. A lot of metaheuristics can
be used to find better solutions, e.g., simulated annealing, tabu search, genetic algorithms, etc.
For example, Bouet et al. [75] consider the problem of dynamically deploying Deep Packet
Inspection (DPI) in NFV environment. The authors propose a method based on genetic
algorithms, which provides a tradeoff between the number of engines and the network load to
minimize the global cost of the deployment. Mijumbi et al. [76] consider the placement and
scheduling of network functions in NFV. Then a greedy algorithm and a tabu search-based
algorithm are proposed to solve the problem effectively.

2.2.2 Dynamic and Online Network Optimization

Normally, the above literatures assume that the network is static. In contrast, how to allocate
resource at run time in a dynamic environment is a much more complex problem. Although
this problem is similar to the basic NFV-RA problem, real-time NFV-RA has significant new
challenges due to its dynamic features. First, resource that a VNF occupies may scale due to
dynamic traffic. For example, a DPI needs less computing resource when the traffic decreases.
Second, the QoS demands of VNFs may change due to changes of service requests. For
example, when an established service request asks for low latency, reallocation of VNFs
is required. Third, we should monitor the VNFs for reliability problem. For example,
when VNF failures happen, we need reassign VNFs for corresponding service requests [77].
Therefore, in order to overcome those challenges, we should rethink the NFV-RA problem
and propose new solutions.

Callegati et al. [78] use OpenFlow to properly steer traffic flows. According to the case
study and proof of concept, the authors claim that both layer 2 and layer 3 approaches are
functionally viable to implement the dynamic SFC. Shi et al. [77] have the insight that VNFs
resources are not allocated simultaneously. Therefore, a preemptive resource allocation
strategy is proposed. To realize the strategy, the authors model the SFC-RA problem as
Markov Decision Process (MDP). In addition, Bayesian learning is used to predict future
resource reliability. Leveraging the concept of asynchronous partition [79], the authors
propose an algorithm based on MDP.

Another research direction to address the dynamic problem is to use online network
optimization techniques. In this respect, we consider the service requests arrive one by one
and are embedded when its arrival. Those solution typically belongs to Online Algorithms
[80]. In such scenario, migration of VNFs may be necessary due to new requests arrival.

The authors in [74] give a MILP formulation to determine the placement of SFC while
minimizing the resource utilization of nodes and links, in order to decrease delay. The
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highlight of this paper is that the authors develop a heuristic to solve the problem incre-
mentally, which support large size instances and can solve problem for incoming flows
without impacting existing flows. Lukovszki and Schmid [81] propose a deterministic online
algorithm which achieves a competitive ratio of O(logl), where the node capacities are at
least logarithmic. In addition, the authors prove that the proposed algorithm is asymptotically
optimal in the class of both deterministic and randomized situations. At last, an ILP formula-
tion is presented to show that the problem is NP-complete. Mijumbi et al. [76] consider the
problem of online mapping and scheduling of VNFs. In this situation, each service is created
and embedded as its need arises, and VMs can be shared by multiple VNFs. In addition, the
authors propose three greedy algorithms and a tabu search-based heuristic.

2.2.3 Learning for Network Optimization Problems

5G systems are expected to support exploding mobile traffic volumes, real-time extraction
of fine-grained analytics, and agile management of network resources, so as to maximize
user experience. Fulfilling these tasks is challenging, as the networking environments are
increasingly complex, heterogeneous, and dynamic. One potential solution is to resort to
advanced machine learning (ML) techniques, in order to help manage the rise in data volumes
and algorithm-driven applications. ML enables systematic mining of valuable information
from traffic data and automatically uncover correlations that would otherwise have been too
complex to extract by human experts [82]. This facilitates network analysis and management
with high accuracy and in a timely manner, overcoming the run-time limitations of traditional
mathematical techniques (e.g. convex optimization, game theory, meta heuristics).

The up-to-date studies that are at the intersection of deep learning and network optimiza-
tion have underpined the new and powerful tools in this space. For example, Liu et al. exploit
a Deep Belief Network (DBN) to discover the correlations between multi-commodity flow
demand information and link usage in wireless networks [83]. Based on the predictions made,
they remove the links that are unlikely to be scheduled, so as to reduce the size of data for
the demand constrained energy minimization. Their method reduces runtime by up to 50%,
without compromising optimality. Deep learning can also improve the efficiency of routing
rules. Lee exploits a 3-layer deep neural network to classify node degree, given detailed
information of the routing nodes [84]. The classification results along with temporary routes
are exploited for subsequent virtual route generation using the Viterbi algorithm. Mao et al.
employ a DBN to decide the next routing node and construct a software defined router [85].
By considering Open Shortest Path First as the optimal routing strategy, their method achieves
up to 95% accuracy, while reducing significantly the overhead and delay, and achieving
higher throughput with a signalling interval of 240 milliseconds. The application of deep
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learning for scheduling problems can also be found in [86], [87]. In their studies, deep
reforcement learning techniques are exploited to solve the corresponding network scheduling
problems. More studies can be found in a number of survey papers e.g. [92]– [95].

With a similar resource allocation problem as this thesis, Ferreira et al. employ deep
State-Action-Reward-State-Action to address resource allocation management in cognitive
communications [88]. By forecasting the effects of radio parameters, this framework avoids
wasted trials of poor parameters, which reduces the computational resources required. In [89],
Mennes et al. employ multilayer perceptrons to precisely forecast free slots prediction in
a Multiple Frequencies Time Division Multiple Access (MF-TDMA) network, thereby
achieving efficient scheduling. Zhou et al. adopt LSTMs to predict traffic load at base
stations in ultra dense networks [90]. Based on the predictions, their method changes the
resource allocation policy to avoid congestion. The work in [91] sheds light on the radio
control and signal detection problems. With accurate traffic forecasting, their proposal
improves the performance of spectrum sharing in dynamic wireless environments, as it
attains near-optimal spectrum assignments.

In summary, from these existing work in the literature, deep learning is more frequently
used with its strong capability of prediction, which is different from our objective that aims
to learn directly a solution for network optimization problems.

2.3 Conclusion

In this chapter, an organised overview of existing studies for both network softwarization
and network optimization is present. Generally, it is very challenging to implement the
visions of network softwarization in the context 5G since the basic problem is often NP-hard
and the underlying environment is frequently changing. From the next chapter, three key
research topics will be detailed concerning the involved resource allocation problems and
optimization techniques: 1) stochastic NFV optimization solution, 2) learning augmented
online optimization for network slicing and 3) a deep learning solution to solving the involved
combinatorial optimization problems.





Chapter 3

Network Function Virtualization: A
Stochastic Perspective

In this chapter, we present a stochastic NFV solution, in which we introduce prior stochastic
knowledge about the environment to improve the NFV optimization in dynamic networks.
Part of the contents in this chapter are summarized based on our prior publication in [99].

3.1 Introduction

The increasing mobility of humans and connected devices are actuating the explosive growth
of mobile Internet traffic. According to [1], by 2021, global mobile data traffic will grow
7-fold, and the number of mobile users will be up to 5.5 Billion. To meet the extreme traffic
demands, the next-generation networks (5G) are expected to be equipped with 5x as many as
base stations and utilize 200x more spectrum than 4G [109]. This makes the orchestration
of so many 5G elements to achieve the desired objectives get even more challenging than
before.

To improve the situation, many organizations are resorting to the technologies of SDN
& NFV [5], [45] for the next-wave network evolution. As illustrated in Fig. 3.1, in such a
transition, more commodity servers and shared hardware devices will be introduced to replace
these special-purpose devices in 4G. As a result, services will be constructed as individually
optimized Service Function Chains (SFCs) [13]. These SFCs are then implemented with the
isolated network resources sliced from the underlying network infrastructure. This enables
prompt delivery of new services with better flexibility, agility and lower capital and operating
expenditures [109].
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Fig. 3.1 NFV for next-generation network evolution.

As shown in Fig. 3.1, in an NFV based network service, VNFs will be dynamically
chained as a specific SFC topology according to its service offerings. In order to implement
such a service, one critical task is to perform the SFC placement in the underlying physical
network bound to diverse resource and service requirements. This is achieved by placing
VNFs in hosting servers and then connecting the placed VNFs with physical links through the
proper allocation of infrastructure resources (e.g., CPUs, cable bandwidth, radio spectrum).

The SFC placement problem (or service chain composition problem as termed in related
work [67], [110]) is similar to the Virtual Network Embedding (VNE) problem [111] for
network virtualization. Essentially, both problems aim to make efficient implementations of
virtual requests in a physical network infrastructure. However, as discussed in [67], existing
solutions to VNE problems are not sufficient for the SFC placement problems due to the
specific features and applications of NFV.

Inheriting the methodologies built upon Integer Linear Programming (ILP) or Mixed
Integer Linear Programming (MILP) for VNE, many preliminary studies have attempted
to model and solve this new problem under a deterministic resource or traffic condition.
However, with the penetration of NFV into more emerging networking applications [109],
more network dynamics and uncertainties are expected than the current networks, which
will make many existing deterministic NFV solutions not directly applicable. These network
dynamics can be summarized as the following three classes:

a) Architecture level: In order to achieve an efficient utilization of higher and wider
frequency spectrum beyond 6GHz, 5G networks will be heterogeneously constructed
with more Radio Access Technologies (RAT), such as GSM, W-CDMA, LTE, W-LAN
and new 5G RAT(s) [109]. The coexistence and cooperation of ever-increasing radio
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systems will highly oscillate the network topology and bring more dynamics and
uncertainties to the network operation and management.

b) Traffic level: In a virtualized operation environment in 5G, the traffic of each request
may be collected from an individual mobile user, multi-tenant users, or a group of
sensors. In many emerging 5G scenarios, the traffic profiles and demanded Service
Level Agreements (SLAs) are to be highly varied and unpredictable. For example, in
Internet-of-Things (IoT) applications, with the asynchronous activation and silence,
node failures and mobility of large dynamic numbers of interconnected sensors and
actuators, the collective traffic load injected into the traffic aggregation point (e.g.,
gateway) of a network slice is always time-varying.

c) Resource level: With the increasing network cloudification in NFV, more globally
controlled resources will be pooled together for more efficient utilization. The fre-
quent resource scaling by the expected network self-management and -optimization
procedures [112] for 5G will result in high instability and uncertainty on the resource
distributions in each substrate node and link. With the expected coexistence of legacy
and millimeter Wave (mmWave) spectrum bands [113], the 5G radio environment is
also becoming increasingly unpredictable because of fast-fading, shadowing effects
and interference.

When these dynamics are presented, the resource and/or traffic conditions are always
time-varying. In this case, the deterministic SFC placement decisions can only customize the
networking performance over the instantly observed information. However, this would leave
the system vulnerable to potential network changes after decisions are made.

A straightforward solution to handle this situation is to migrate and re-route the VNF
instances reactively by re-invoking a deterministic model (e.g., MILP) to compute a new
or recourse solution against each network change. However, no matter whether they are
executed dynamically or online, such a solution can lead to frequent network reconfiguration
and instability. In addition, it is also unaffordable in terms of the additional service latency
incurred by the expensive re-computation of these usually NP-hard models. For example, in
many delay-sensitive 5G applications [109], a millisecond-order system response is required,
which is even beyond the time required for most existing model solvers to find a converged
solution. To maintain a seamless service provisioning in dynamic networks, it is desirable to
have a service deployment strategy that can handle the network changes proactively.

Therefore, in this chapter, we highlight the network utility degradation problem for the
implementation of NFV in dynamic networks and aim to design a robust NFV deployment
solution in both centralized and distributed fashions. Different from the posterior scaling
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or migration based dynamic algorithms in the literature, this chapter alternatively resorts
to reinforce the temporal robustness of the obtained SFC placement decisions from every
expensive attempt of model solving by integrating future stochastic information at the initial
placement decision phase. The contributions of this chapter can be summarized as follows:

• We implement the SFC placement in dynamic networks with a carefully designed
Stochastic Resource Allocator (SRA) that: 1) jointly exploits the already-observed and
future stochastic information to infer the placement decisions, and 2) balances of the
immediate reward with the impact of each decision on future rewards.

• We provide a centralized optimal solution by solving the SRA model with a two-
stage stochastic program and identify the hardness involved in solving SRA in a large
instance, including the need of enumerating an exponentially expanding constraint set,
and computing the expected random functions.

• A distributed computing framework with two-level decomposition is developed to
facilitate a distributed implementation of the SRA in large-scale networks. Supported
by the classic decomposition theory, the complicated combinatorial program only
needs to be solved during service initialization, while the subsequent service running
only involves the solving of a simple linear program. This significantly reduces the
computation complexity involved in the whole duration of service running controls.

• Extensive simulation experiments are conducted with the settings in accordance with
5G expectations. Through the comparisons with the incumbent placement solutions,
the results confirm that the proposed solution not only achieves significant performance
improvement, but also effectively reduces risks of service quality violation in dynamic
networks.

The rest of this chapter is organized as follows. Section 3.2 summarizes the related work.
In Section 3.3, we formally derive the resource utility model for SFC placement in dynamic
networks and analyze its optimal implementation. The distributed implementation based on
two-level decomposition is presented in Section 3.4. Section 3.5 illustrates the performance
evaluation results. Finally, in Section 3.6, conclusions are made.

3.2 Related Work

As a key enabling 5G technology, NFV has been gaining momentum among an ever-growing
community of researchers from both academia and industry. It has been also the focus of
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different standardization bodies (e.g., 3GPP, ETSI and 5GMF) [5]. A global architecture
can be found in [15], which defines the modules and interfaces that ensure the life-cycle
management of NFV services. In the envisioned architecture, the technical implementation
of NFV plays a critical role on the provisioning efficiency and service performance. Next,
we provide a concrete review to highlight the differences between our work and the existing
NFV solutions.

3.2.1 Deterministic NFV Modelling and Solutions

The preliminary efforts for the SFC placement problem mainly focus on optimizing the
SFC placement with acceptable computing complexity in static settings. In this era, many
centralized solutions based on deterministic optimization methods were proposed. For
example, based on the multiple-objective Mixed Integer Quadratic Programming (MIQP),
an initial study on placing VNFs was provided in [56]. However, its solution is developed
through a Pareto set analysis while the solution scalability issue is left unattended. In [55], the
authours formulated the VNF orchestration problem as an ILP, and a dynamic programming-
based heuristic was provided to solve the problem in large instances. Based on the tools of
MILP and game theory, extensive studies on deterministic VNF placement algorithms can
also be found in [114]– [118]. Nevertheless, as aforementioned, these centralized solutions
usually have scalability and/or accuracy issues and are often insufficient for large-scale
dynamic networks.

In addition to these centralized solutions, the authors in [110] investigated the drawbacks
of centralized placement solutions and proposed a distributed NFV solution by exploiting
congestion games. A similar attempt is the work in [119] which provides a Markov approx-
imated algorithm to solve the centralized placement model in a distributed way. In these
existing studies, their solutions are solved only over the already observed network and service
conditions. Consequently, these deterministic placement solutions, no matter in a centralized
or distributed fashion, are not directly applicable to dynamic networks. In contrast, the SFC
placement problem in dynamic networks is more complex. Beyond the considerations for a
deterministic problem, more network dynamics are needed to handle in order to guarantee
the effectiveness of the obtained solutions.

3.2.2 Dynamic Resource Utility for NFV Networks

There also exists a few studies in the literature striving to address similar resource utility
problems for dynamic NFV networks.
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Among the very few studies, Jia et al. in [120] proposed an online NFV scaling solution
to handle the time-varying traffic volumes in geo-distributed Datacenters. However, the cost
and drawbacks of dynamic scaling of VNF instances are not addressed in their solution.
With a similar motivation, the resource provisioning solution proposed by Li et al. [121]
is also proactive, although its objective is to assign requests with bounded response time.
This is achieved by using SFC consolidation with timing abstraction, but the placement
of SFCs is still based on deterministic models and VNF instance migration. Ghaznavi
et al. in [61] optimized the VNF placement under changing workload. This is achieved
by dynamically migrating the VNF instances on the basis of the migration costs in the
current instant. This work was then extended in [122] by taking into account the benefits
and penalties of these migrations in successive instants. However, different from the work
in these existing studies, this chapter highlights the challenges of network dynamics that
potentially limit the application of reactive scaling or migration strategies. Alternatively, we
focus on generating SFC placement policies that can work robustly even when network state
changes.

3.2.3 Network Applications of Decomposition Methods

As a complement, the applications of decomposition theories are also surveyed to show
both the wide theoretical effectiveness and the differences between our application and
other related networking problems. Decomposition methods are widely used in large-scale
networks where a centralized solution is infeasible, non-scalable or too costly. Deniel et al.
in [123] developed a generic application framework of decomposition methods for network
utility maximization problem. A related survey of decomposition methods on many practical
network applications can be found in [124]. Among these applications, the work in [111]
comes closest to ours, in which they applied the Column Generation technique to decompose
the deterministic centralized VNE model into two smaller subproblems. As a similar resource
utility problem in supply chain network design, the authors in [125] proposed an accelerated
benders’ decomposition approach to expedite the solution time of the centralized MILP
model.

Decomposition approaches require a good decomposable model structure. By exploiting
the problem-specific structures in the proposed SRA model, we build a two-level decomposi-
tion framework to facilitate the distributed implementation of the proposed SRA solution.
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3.3 A Robust Placement Model

As implied in Fig. 3.1, the SFC placement is essentially a graph-embedding problem. That
is, mapping VNF nodes into substrate nodes and connecting VNFs with substrate links to
implement the SFC graphs in the physical network topology. As discussed in Section 3.1, this
is non-trivial as many problem-specific features are presented in the target problem. In what
follows, we will design a stochastic resource utility model to implement the SFC placement
with fully respect to the features of NFV paradigms and network dynamics. In this chapter,
we treat the networking system as a discrete time stochastic system in which the network
dynamics are assumed to follow stationary random processes. Moreover, resource scaling or
migration of VNF instances are not considered due to the aforementioned challenges. The
symbol notations used in this chapter are listed in Table 3.1.

3.3.1 Model Formulation

In this chapter, we consider a resource-limited network system, in which partial admission
control is applied. That is, requests can be accepted by compromising service quality rather
than be directly rejected when the available physical resources are not enough to fully
meet the required demands. In addition, once accepted, each service will occupy isolated
resources to instantiate its sliced network until new scheduling decisions are made or service
is terminated. Such a pay-as-you-go admission policy is more practical than the existing all-
or-nothing policy when the networks and/or resource demands of a service are time-variant.

To present the network dynamics, we consider a discrete time stochastic networking sys-
tem, in which the service rate demands β s(t) and the available amounts of wireless resources
at access nodes (e.g., wireless transmission capacity), cv(t), are subject to random variations.
The Probability Distribution Functions (PDF) of random variables are assumed known as a
priori (via e.g., estimations from historical statistics). At the beginning of every time slot
t ∈ {0,1,2, · · ·}, the network controller observes a state update ω(t) = (β s(t)s∈S,cv(t)v∈V ),
which specifies the current realizations of rate demands and resource state. Depending on
ω(t0) and the statistics about network dynamics, the controller, at the beginning of every
scheduling interval T , decides a robust placement policy π = (πs,π f→v,πe→l)

T
s∈S for the

running duration [t0, t0 +T ], and then adapts users’ service rates to real-time observations at
each time t.

From an algorithmic point of view, the design of placement policy in such a system
requires to decide policies for admission control, VNF placement, and VNF chaining in a
sequential order. This is fundamentally a combinatorial optimization process, which decides
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Table 3.1 Notations for Chapter 3

System parameters

(V,L )
Directed graph for physical network topol-
ogy with node v ∈V and link luv ∈ L con-
necting u to v

cvr Residual resource capacity on physical
node v ∈V for resource r ∈ R

cl Residual bandwidth capacity on physical
link l

cv Residual wireless capacity on access
node v

kl ,kr Usage price for per-unit link & node re-
sources

T Scheduling interval

Request parameters
S Received service requests f ∈ F s VNFs in service s, and let F = ∪s∈SF

s

d f r
Resource demand of r ∈ R required to in-
stantiate an instance of VNF f on a hosting
node

ei j ∈ Es Virtual link connecting VNF i to j for
service s, and let E = ∪s∈SEs

bs Service price or benefit when unit rate of s
is routed β s ≤ β s

0
Rate demand requested by s, which is
assumed to be up bounded by β s

0
Decision variables

πs
Binary, 1 iff service request s ∈ S is ac-
cepted πe→l

Binary, 1 iff the routing of virtual link
e ∈ Es uses physical link l ∈ L

π f→v Binary, 1 iff f ∈F is placed on node v ∈V γs Allocated rate for request s
Key auxiliary mathematical operators and symbols

(·)T Vector transpose | · | Return the cardinality of a vector
0,1 All-one and all-zero vectors, respectively Eγγγ [·] Take expectation over γγγ

us(·) Revenue function for s ∈ S Us(·) Weighted revenue function for s ∈ S
Qs(·) Utility function of s for policy approxima-

tion
w Weight for future revenue

Cs
nd Node resource cost for s ∈ S Φe→l Auxiliary variable for linearization

π̃ Fractional placement solution π̄ Approximate binary placement solution

a long-term optimal placement policy π under a stochastic environment. Following the
pay-as-you-go billing model for network services [126], this chapter defines the following
revenue oriented utility function for each s ∈ S:

us(γ
s,πs) = γ

s(bs − ∑
e∈Es

l∈L

klπe→l)− ∑
f∈F s

v∈V,r∈R

π f→vd f rkr (3.1)

where πs = (πs,π f→v,πe→l)
T is the placement policy for s, Cs

lk = γs
∑e∈Es

l∈L
klπe→l and Cs

nd =

∑ f∈F s

v∈V,r∈R
π f→vd f rkr are the cost for using the link and node resources, respectively.

Once a service is instantiated, a fixed node installation cost Cs
nd is charged, but the practi-

cal link cost Cs
lk(t) and the benefit from this service are dynamically decided by the allocated

service rate γs(t) at runtime. Clearly, only services with benefit larger than all costs will be
accepted by providers. Based on this insight, the concept of beneficial placement is defined
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as follows:

Definition 1 (Beneficial placement). Given a placement policy πs, the placement of service
request s is beneficial if the placement action for this request incurs a positive collective
revenue (i.e., ∑t∈[t0,t0+T ] us(γ

s(t)|πs)> 0).

Based on the observed information ω(t0), an immediate revenue can be counted as
follows:

U(γ(t0),π) = ∑s∈S us(γ
s(t0),πs) (3.2)

For any future time t f > t0, the realizations of ω(t f ) are to be observed after the placement
decisions. Consider the stochastic nature of the network, an expected future revenue under a
given placement policy π made at t0 can be calculated as follows:

Ū(γ(t f )|π) = Eγ

[
∑
s∈S

γ
s(t f )(bs − ∑

e∈Es

l∈L

klπe→l)−Cs
nd
]

(3.3)

where γ = γs(t f )s∈S is a random vector dependent on the random outcome of ω(t f ).
The current placement decision has an impact not only on the immediate revenue, but

also on the future revenues. From the network provider’s point of view, the objective is
always to maximize the long-term revenue under as minimum resource cost as possible.
Consequently, efficient policies have to balance the benefits of an immediate reward with
the expected impact of each decision on future rewards. This leads to the following global
objective function designed to maximize the long-term revenue:

U(γ,π) =

immediate exploitation︷ ︸︸ ︷
U(γ(t0),π) + w

future exploration︷ ︸︸ ︷
Ū(γ(t f )|π)

= ∑
s∈S

{(
bs − ∑

e∈Es,l∈L

klπe→l
)(

γ
s(t0)+wEγ

[
γ

s(t f )
])

− (1+w)Cs
nd︸ ︷︷ ︸

Us(γs,πs)

}
(3.4)

where Us(·) is the weighted utility function for an individual service, and w≥ 0 is a weighting
factor to control the decisions’ balance between exploiting immediate revenue and exploring
the potentially better future revenue after network state changes.

Then, the intended SFC placement process can be readily formulated as the Stochastic
Resource Allocation (SRA) program in Algorithm 1.

In Algorithm 1, (3.5b) and (3.5e) are the capacity upper bounds for link and node
resources, respectively. (3.5c) guarantees that the total allocated rates for the set of services
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Algorithm 1 The stochastic resource allocation for SFC placement in dynamic networks
Input: resource and traffic states at t0, PDFs of ω(t f ), network and SFC topologies.
Output: placement policy π∗ and running rate γ∗(t0).

U(γ∗,π∗) = max
π∈{000,111}

γ≥000

∑
s∈S

Us(γ
s,πs) (3.5a)

s.t. ∑
e∈Es,s∈S

πe→lγ
s(t)≤ cl,∀l ∈ L , t ∈ {t0, t f } (3.5b)

∑
s∈Sv

γ
s(t)≤ cv(t),∀v ∈V, t ∈ {t0, t f } (3.5c)

γ
s(t)≤ πsβ

s(t),∀s ∈ S, t ∈ {t0, t f } (3.5d)

∑
f∈F

π f→vd f r ≤ cvr,∀v ∈V,r ∈ R (3.5e)

∑
v∈V

π f→v = πs,∀ f ∈ F s,s ∈ S (3.5f)

∑
luv∈O(u)

πei j→luv − ∑
lvu∈I(u)

πei j∈lvu = πi→u −π j→u,∀ei j ∈ Es,s ∈ S,u ∈V (3.5g)

Sv attached to access node v will not overload its real-time wireless resource capacity.
(3.5d) sets the rate upper bound that should be allocated for each service. (3.5f) imposes
the variable dependencies and guarantees that each VNF will be placed at most once. In
this chapter, unsplittable flow [127] is considered for constructing each virtual link. Let
O(u) and I(u) denote the outgoing and incidental edges of node u, respectively. Then, the
correlated connection between VNF placement decisions and VNF chaining decisions is
finally expressed as (3.5g). Dependent on the practical applications, this model is versatile
enough to integrate more problem-specific constraints. In production environment, service-
related parameters are from the received request information. The network-related parameters
can be collected from network configurations and real-time network telemetry [128].

For any deterministic realization (i.e., a problem instance with all parameters determined),
the model in Algorithm 1 corresponds to an MIQP. However, by exploiting the binary
structure, this model can be readily linearized to a pure MILP. Let us define auxiliary variable
Φe→l = πe→lγ

s to substitute the quadratic expressions in (3.5a) and (3.5b) with the following
two extra constraints:

Φe→l ≤ γ
s,∀e ∈ Es,s ∈ S, l ∈ L (3.6)

γs

β s
0
−1+πe→l ≤

Φe→l

β s
0

≤ γs

β s
0
+1−πe→l (3.7)
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Note that (3.6) is redundant when the link cost term is counted in the objective function.
In contrast to the dominant deterministic NFV resource utilization models in the literature,

the proposed SRA jointly refers to both currently observed network information and future
variation information at the placement decision phase. The added extra information can help
exclude non-beneficial service placement more accurately, but also drive the model to the
following more challenging dilemma when solving it.

Exploitation-exploration dilemma: One needs to balance the exploitation of the placement
action currently optimal with the exploration of other actions that currently appear subopti-
mal but may turn out to be superior in the long run.

Algorithm 1 can be directly solved with all possible realizations of ω(t f ). However,
this may require solving the resultant MILP model under an unmanageably large set of
realizations of these random parameters, which is usually intractable. Next, we attempt to
address this problem through a two-stage equivalent process.

3.3.2 The Global Optimality Solved through A Two-Stage Equivalence

Recall the structure of the model in Algorithm 1, the whole program can be re-arranged
to a hierarchical two-stage process by separating the binary variables from continuous
variables. Let us treat the case at t0 as a special realization of future randomness. Then, the
maximization problem in SRA can be reformulated as the following equivalent two-stage
minimization problem (in linearized format):

U(γ∗,π∗) = min
π∈{000,111}

{
(1+w)∑

s∈S
Cs

nd +min
γ≥000
Φ≥000

Eγ

[
∑
s∈S

t∈{0,1}

wt( ∑
e∈Es

l∈L

klΦe→l(t)−bs
γ

s(t))
]}

(3.8)

where wt is the weighting factor for current and future time. Thus, we have w0 = 1,w1 = w.
At the first stage, the program in (3.8) manages to decide a placement policy π with the

constraints solely related to binary variables. Under the given policy π , a policy evaluation
program with only continuous variables (i.e.,γ) is then applied at the second stage to evaluate
the achievable average revenue.
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For any determined placement policy π̄ at each t, the inner minimization problem in (3.8)
can be reduced to the following linear subproblem (policy evaluation program):

(SP) min
γ≥000,Φ≥000

Eγ

[
∑
s∈S

wt

(
∑

e∈Es,l∈L

klΦe→l(t)−bs
γ

s(t)
)]

(3.9a)

s.t. ∑
e∈Es,s∈S

Φe→l(t)≤ cl,∀l ∈ L (3.9b)

∑
s∈Sv

γ
s(t)≤ cv(t),∀v ∈V (3.9c)

γ
s(t)≤ π̄sβ

s(t),∀s ∈ S (3.9d)

Φe→l(t)− γ
s(t)≤ β

s
0(1− π̄e→l),∀e ∈ Es, l ∈ L ,s ∈ S (3.9e)

γ
s(t)−Φe→l(t)≤ β

s
0(1− π̄e→l),∀e ∈ Es, l ∈ L ,s ∈ S (3.9f)

Define column vector µ := (µ0
l ,µ

1
v ,µ

2
s ,µ

3
sel,µ

4
sel)

T as dual variables associated with each
constraint in SP. Then, the dual of SP can be formulated as:

(DSP) max
µ≤000

Ecv,β s
[
−D(µ, π̄, t)

]
(3.10a)

s.t. µ
4
sel −µ

3
sel −µ

0
l ≤ wtkl,∀e ∈ Es, l ∈ L ,s ∈ S (3.10b)

∑
e∈Es,l∈L

(µs
sel −µ

4
sel)−µ

2
s −µ

1
vs
≤−wtbs,∀s ∈ S (3.10c)

where vs is the attached access node1 for s, and D(µ, π̄, t) is defined as follows:

D(µ, π̄, t) = ∑
l∈L

clµ
0
l + ∑

v∈V
cv(t)µ1

v +∑
s∈S

π̄sβ
s(t)µ2

s + ∑
l∈L

s∈S,e∈Es

(µ3
sel +µ

4
sel)β

s
0(1− π̄e→l)

(3.11)

The SP in (3.9) is a parametric linear program and always has a feasible solution under
any given policy π̄ . In this case, according to duality theory [20], the DSP in (3.10) has
always a bounded optimal solution corresponding to an extreme point of the polyhedron in
dual space. After the transition from the primal SP to its dual, we can see that the uncertain
parameters only exist in the objective function of dual problem, but the constraints of dual
problem constitute a fixed polyhedron whose space is independent of the network variations
and the chosen placement policy. Therefore, through the complete enumeration of extreme
points, the original problem in (3.8) can be equivalently solved by the following master

1For simplifying exposition, single access node is considered for each s.
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problem:

(MP) min
U,π∈Pπ

π∈{000,111}

U (3.12a)

s.t. U ≥− ∑
t∈{0,1}

Ecv,β s[D(µ̄i,π, t)]+(1+w)∑
s∈S

Cs
nd,∀µ̄i ∈ P∆ (3.12b)

where Pπ is the policy space defined by (3.5e)-(3.5g), and P∆ is the set of extreme points in
the DSP’s polyhedron.

Recall the structure of the function D(·) in (3.11), cv is independent of π when evaluating
any given extreme point µ̄i. Accordingly, we can reduce (3.12b) with

Ecv,β s[D(µ̄i,π, t)] = Eβ s[D(µ̄i,π, t)|cv = c̄v] (3.13)

where c̄v is the mean value of cv.
As a consequence, under the above separated two-stage structure, we only need to know

the mean values of resource variations, although the detailed realization distributions of rate
demands are still required. This property significantly reduces the number of random samples
that are required to calculate the expectation of future average revenue.

When the problem is presented in a small instance, the MP can be solved efficiently with
global optimality by enumerating all extreme points and possible realizations of β s in (3.12b).
Compared with the state-of-the-art methods, e.g., directly adapting Column Generation [111]
or Sample Average Approximation [125] to solve the SRA model, the above two-stage
strategy requires less samples and thus results in a smaller problem to solve.

However, it would get very hard to do this for large-scale networks. Tri-fold challenges
can be identified when solving the SRA model in a large instance with global optimality.

First, by removing the constraints (3.12b), the original problem is relaxed to the combi-
nation of classic facility location and multi-commodity flow problems [129], which are both
NP-hard. Consequently, any single attempt of solving the problem with global optimality in
a large instance is time consuming if not impossible. Second, to solve the problem in a large
instance, there is typically an exponentially increased number of extreme points in the dual
polyhedron. However, a more challenging problem is the computation of the expected value
for the random function D(µ̄i,π, t). When the number of service requests gets large, this
may involve an unmanageably large set of realization combinations for (β s)s∈S. All of these
factors make it essentially impractical to completely enumerate all the constraints in (3.12b).
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Consequently, in the following sections, we consider to design distributed models and
approximate algorithms to alleviate the computational challenges of implementing this model
in large-scale networks.

3.4 A Distributed Implementation Based on Two-Level De-
composition

It is well known that the computation load and the required memory for solving an optimiza-
tion program increase exponentially with the number of variables and constraints. Therefore,
by harvesting the above separated two-stage structure of the SRA model, we first design the
following higher-level decomposition to reduce the large scale of the SRA model brought by
the enumeration of extreme points and possible realizations of (β s)s∈S in (3.12b). This is
achieved based on the theory of stochastic decomposition [130].

3.4.1 Higher-Level Decomposition

By exploiting the method of stochastic decomposition, it is possible to decompose the
complicated monolithic model in a large instance into a series of solvable submodules in
a distributed way. The solution of original model can then be reached by solving these
submodules in an iterative manner. This is implemented through the concepts of variable
partition and constraint delay.

Following the two-stage structure of the SRA model in Section 3.3.2, we first construct
the Higher-level Sub-Problem (HSP) exactly same as the SP model in (3.9). The HSPs
are a series of linear programs with only continuous variables. Then, a dimension-reduced
Higher-level Master Problem (HMP) can be initially constructed as a relaxed version of the
MP model in (3.12) without the constraint (3.12b).

Instead of a complete enumeration of constraints in (3.12b), the method of stochastic
decomposition alternatively solves the HMP model to generate a trial decision for the
placement policy. The trial placement policy is then fed into the HSPs with randomly
sampled parameters. Accordingly, the associated DSPs are solved to obtain the resultant
extreme point and an approximation towards the original objective function under current
samples. Next, a constraint of (3.12b) related to this extreme point will be inserted into
the HMP, which is then solved again until a predefined termination criterion achieved. The
overall progress is outlined in Algorithm 2.
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Note that the extra terms in (3.14) are introduced to exclude unnecessary policy trials.
Normally, we have ∑s∈S{πs −∑e∈Es,l∈L

klπe→l
β s }≪U , thus the impact of introduced terms

on the optimality of U is negligible.

Algorithm 2 Approximate stochastic decomposition algorithm for SRA
Input: resource and traffic states at t0, PDFs of (cv)v∈V and (β s)s∈S, network and SFC

topologies.
Output: placement policy π̄ and running rate γ∗(t0).

1: Initialization: set m = 0, collect current observation ω(t0).
2: do m = m+1 and solve the following HMP to obtain trail policy π̄m:

U l
m(π̄m) = min

U,π∈Pπ

π∈{000,111}

U −∑
s∈S

{
πs − ∑

e∈Es,l∈L

klπe→l

bs

}
(3.14)

3: draw random samples for the future realizations of (cv)v∈V and (β s)s∈S according to
their PDFs.

4: solve the DSPs in (3.10) for each t with the generated samples and policy π̄m to obtain
the extreme point µ̄m and an empirical estimation to the original expected objective
value:

Uu
m =− ∑

t∈{0,1}
D(µ̄m, π̄m, t)+(1+w)∑

s∈S
Cs

nd (3.15)

5: if termination criteria meet then
6: solve HSPs with π̄m for t0 to get the allocated rate γ∗ for current time.
7: else
8: add the following optimality constraint to the program in (3.14):

U ≥− 1
m ∑

t∈{0,1}
D(µ̄m,π, t)+(1+w)∑

s∈S
Cs

nd (3.16)

9: update the coefficients in previous optimality cuts as follows and go to step 2:

D(µ̄i,π, t) =
m−1

m
D(µ̄i,π, t),∀t ∈ {0,1}, i = 1, · · · ,m−1 (3.17)

10: end if

Termination criteria: For discrete distributions of random parameters, the sample space
is deterministic. Therefore, by using the whole sample space at each iteration, the lower and
upper bounds of original objective function can be derived precisely from the results of U l

m

and Uu
m, respectively. In this case, a deterministic criterion can be used by monitoring the

optimality gap between upper and lower bounds. However, for continuous distributions, the
bound gap is subject to statistical variation due to the random sampling outcomes. Then,
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an alternative criterion is to monitor the progress of incumbent solutions. For example, the
iteration stops when the incumbent solution has remained unchanged for a certain number
of iterations within a tolerant variation on the expected objective value. Such criteria can
provide better safeguards to prevent the sensitivity of the selected solution to additional
sampling.

The proof of the asymptotic optimality of Algorithm 2 is similar to many existing
stochastic approximation applications [132], thus is not explicitly presented here.

For each iteration in Algorithm 2, all sampled subproblems are linear programs, which
can be solved easily via many standard LP solvers [20]. However, the HMP corresponds to
an MILP problem, which is still NP-hard, although the dimension has already been reduced
compared with the original problem. Therefore, the handicap regarding solving the NP-hard
HMP still persists for large-scale networks. In the following, we will build a lower-level
decomposition to turn the HMP into a decoupled resource utility problem for each service
request, which can then be solved with better scalability.

3.4.2 Lower-Level Decomposition

Recall the structure of HMP model, we can see that the constraints in (3.12b) and (3.5e) are
coupled among all service requests. This results in an exponentially increased computation
complexity as more service requests are required to schedule. However, if these coupling
constraints are relaxed, the original HMP model naturally turns into an individual resource
utility problem for each service request. Each of these problems can then be, independently
and parallelly, solved. This is implemented as follows through linear relaxation and dual
decomposition.

Since the HMP is only introduced to generate the bound and trial placement policy
for HSPs, the accurate but expensive solving for the optimal solution at every iteration is
not essential. Alternatively, simple and faster approximation algorithms can be adopted to
generate a new trial policy. The trial policy can then be gradually improved through fast
iterations. Therefore, instead of directly getting an optimal solution for the HMP in (3.14) at
each iteration, a linear relaxed version of HMP can be first solved as follows:

(RHMP) π̃ = argmin
U,π∈Pπ

π∈[000,111]

U −∑
s∈S

{
πs − ∑

e∈Es,l∈L

klπe→l

bs

}
(3.18)

The RHMP relaxes the binary constraint in HMP to the continuous value ranging from
[0,1]. The fractional placement solution π̃ obtained from the RHMP conveys the globally
coordinated resource allocation information when all requests compete for the shared re-
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sources. We can anticipate that larger fractional values of decision variables would suggest a
better revenue if the corresponding service is accepted and placed accordingly. Therefore, by
proportionally weighting the placement selections with the corresponding fractional solu-
tions, an approximate solution to the HMP can be solved from a weighted HMP program as
follows:

(WHMP) π̄ = argmax
π∈Pπ ,π∈{000,111}

∑
s∈S

Qs(π
s) (3.19)

where Qs(π
s) is the utility function for individual service, which is defined as

Qs(π
s) = α1π̃sπs − ∑

f∈F s

v∈V

α2π f→v

π̃ f→v +1
− ∑

e∈Es

l∈L

α3πe→l

π̃e→l +1
(3.20)

where α1 ≫ α2 ≫ α3 are weights to preserve the hierarchical decision order along πs →
π f→v → πe→l .

In WHMP, the objective function has a separable structure, but the resource constraint
(3.5e) in Pπ is coupled across all s ∈ S. Since strong duality holds when solving the WHMP
through its Lagrange dual problem, this constraint can be decoupled for each s ∈ S by means
of dual decomposition [123].

We define the Lagrangian of the WHMP by relaxing the coupling constraint (3.5e) in Pπ

as

L(π,λ ) = ∑
s∈S

Qs(π
s)+ ∑

v∈V,r∈R
λvr

(
cvr −∑

s∈S
∑

f∈F s
π f→vd f r

)
= ∑

s∈S

{
Qs(π

s)− ∑
f∈F s

v∈V,r∈R

λvrπ f→vd f r
}
+ ∑

v∈V
r∈R

λvrcvr (3.21)

where λ is the non-negative Lagrange multiplier associated with the constraint (3.5e).
Clearly, for a given λ , the resulted Lagrangian dual problem can be decomposed into

solving, independently for each s ∈ S, the following Lower-level Sub-Problem (LSP):

(LSP) Ls(π̄
s,λ ) = max

πs∈{000,111}
Qs(π

s)− ∑
f∈F s

v∈V,r∈R

λvrπ f→vd f r (3.22a)

s.t. ∑
v∈V

π f→v = πs,∀ f ∈ F s (3.22b)

∑
luv∈O(u)

πei j→luv − ∑
lvu∈I(u)

πei j→lvu = πi→u −π j→u,∀ei j ∈ Es,u ∈V (3.22c)
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LSPs can be directly solved through existing integer program solvers since only several
VNFs and virtual links are involved in the placement process. Additionally, linear relaxation
and rounding based approximate solvers (e.g., [129]) are also applicable in order to further
reduce the computation complexity.

Physically, the Lagrange multiplier λ corresponds to the resource congestion price, on
which each service has to depend to decide the amount of resources to be used at their own
benefits. Then, in order to achieve the original global optimality, the minimum congestion
price can be solved by using the following Lower-level Master Problem (LMP) to coordinate
all LSPs:

(LMP) λ̂ = argmin
λ≥000

∑
s∈S

Ls(π̄
s,λ )+ ∑

v∈V,r∈R
λvrcvr (3.23)

When the analytical expression of Ls is absent, the (LMP) can be recursively solved
through the following gradient method:

λvr(n+1) =
⌈
λvr(n)−δ (cvr − ∑

f∈F

π̄ f→vd f r)
⌉+

,∀v ∈V,r ∈ R (3.24)

where n is the iteration index, δ > 0 is a positive step size, and ⌈·⌉+ denotes the projection
onto the non-negative orthant.

In Algorithm 3, we provide the detailed implementation of the approximate dual decom-
position for solving the HMP.

Algorithm 3 Approximate dual decomposition algorithm for solving the HMP
Input: coefficient matrix for HMP, mean values of network states (Eβ s[β s]s∈S,(cv)v∈V ).
Output: trial placement policy π̄ .

1: set n = 0 and λvr(0) equal to some non-negative value for all (v,r).
2: solve RHMP to obtain the fractional solution π̃ .

▷ Solving WHMP under π̃

3: do n = n+1, and solve all LSPs to obtain a local placement policy π̄ = {π̄s}s∈S.
4: update congestion prices according to (3.24) and broadcast the new prices to all LSPs.
5: go to step 3 until maximum iterates or tolerant variation on the collective utility L(π,λ )

reached.
▷ Revenue evaluation

6: solve HSP with π̄ and statistical mean values, i.e., ω(t f ) = (Eβ s[β s]s∈S,(cv)v∈V ).
7: calculate the individual revenue as follows based on the solution obtained in step 6:

Us = us(γ
s(t0), π̄s)+Tus(γ

s(t f ), π̄
s) (3.25)

8: reject requests with non-beneficial placement (i.e., Us ≤ 0) and return all accepted π̄s.
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Note that in Algorithm 3, the WHMP will only generate a placement solution that fully
respects the fractional placement results obtained in RHMP. But this does not guarantee
that every admitted request has a beneficial placement for the duration [t0, t0 +T ] since the
optimality constraints are not evaluated in WHMP. Therefore, under the placement solution
from the WHMP, a final revenue evaluation process is invoked to exclude the requests with
non-beneficial placement when the network is in the mean state.

Finally, by putting all together, the overall distributed computing framework for the SRA
model is illustrated in Fig. 3.2 and summarized as follows:

Step 0: Preprocessing the request information and collect the coefficient matrix of SRA
program.
Step 1: Solve HMP with lower-level decomposition algorithm:

1.1: Solve RHMP to obtain fractional solution;
1.2: For each s ∈ S, solve LSPs with given congestion price λ ;
1.3: Update congestion price and return to 1.2 until termination;
1.4: Individual revenue evaluation and return beneficial placement policy.

Step 2: Solve all DSPs to evaluate the optimality gap of current trial policy.
Step 3: Add new optimality constraint to HMP and return to Step 1 until termination.
Step 4: Network slice running management until next-round scheduling.

Considering the random iteration progress involved in the computing framework, it is
quite difficult to provide analytical results to the overall optimality and time complexity of
the proposed algorithm. In light of these, a set of numerical simulation analysis are provided
in next section.

3.5 Simulation Results

In this section, we conduct extensive simulation experiments with the settings in accordance
with 5G expectations to evaluate the proposed solution.

3.5.1 Simulation Setup

Following the similar setups used in the existing NFV/VNE experimental studies, e.g. [129],
[133], we generate synthetic network slices and random resource demands to support the
following simulation experiments. Current BT’s IP network topology within Europe2 is
considered as the physical network, which includes 21 nodes and 34 bidirectional links. 5

2http://www.topology-zoo.org/maps/BtEurope.jpg
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Fig. 3.2 Distributed SFC placement diagram based on two-level decomposition.

nodes from these 21 nodes are randomly selected to act as the wireless access nodes. For
each node in the network, a fixed amount of computing resources is configured. For each
fibre link, the transmission capacity is set proportionally scaled from the practical BT core
network bandwidth3.

In the following simulations, we emulate the envisioned 5G small cells with mmWave
spectrum to model the capacities of wireless access links connected to each access node.
Considering the fast transitions among Line-of-Sight (LOS), non-LOS (NLOS) and outage
network stages in mmWave channels [113], we use the Rician fading for LOS stage and
Rayleigh fading [134] for NLOS and outage stages. The transition probabilities between
any two channel states are set as equal. The channel parameters are configured so that
the resulting wireless capacity of each access node is on average within the envisioned
capacity range for a 5G cell [109]. Table 3.2 lists the main configurations for the simulation
experiments below.

3https://www.globalservices.bt.com/static/assets/pdf/products/optical_connect/BT_Optical_Connect_datash
eet.pdf
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Table 3.2 Simulation Setup for Chapter 3

Parameters Value
Node resource capacity cvr 5–10, uniformly distributed
Fixed link capacity cl 10Gbps
Resource prices [kl ,kr] [20/Gbps, 20]
# node resource type |R| 1
# VNFs |F s| 2
Node resource demand d f r 1–3, uniformly distributed
Aggregated rate demand β s 1–3Gbps, uniformly distributed
Service price bs 100–300, uniformly distributed
Rician factors K 1dB
Radio bandwidth B 1GHz
Normalized power allocation ρ LOS: 31.3dB; NLOS: 9.3dB; Outage: -4.3dB

3.5.2 The Compared Algorithms and Performance Metrics

Two reference algorithms, CG_SP [108] and CMG_SP are compared. In CG_SP, the
placement decisions are made only to optimize the immediate revenue at t0 based on already
observed network information. In CMG_SP, mean state information, Eβ s[β s]s∈S and (c̄v)v∈V

are used to represent their future states. The decisions of CMG_SP are then made to optimize
the same objective as the proposed SRA under the current observations and the mean states
of futures. CMG_SP is a widely used policy to handle with system dynamics [135]. This
comparison can provide an insight to the difference between the exploration of complete
PDF knowledge and simple statistic knowledge.

All compared algorithms require run-time collection of the instant system states. Since
the mean state information and PDF information are derived from the already collected
statistics, no extra overhead is required to run the CMG_SP and our proposal in practice.
For both reference algorithms, the corresponding placement models are solved through the
greedy node mapping with shortest path based link mapping [108].

In SRA, the iterative progress is set to stop when the incumbent solution has remained
unchanged for 5 iterates. In the lower-level decomposition, the tolerant variation on the
monitored utility is 10%. For both levels, the maximum number of iterations is limited to
50.

The following four metrics are used to evaluate the performance of our algorithms against
the compared ones.

1) Average revenue gain: This is defined as the ratio of average revenue achieved by
SRA (or CMG_SP) and that by CG_SP within the running period [0,T ].

2) Provisioning cost gain: Provisioning cost defines the average cost for occupying
physical node and link resources under each placement policy. Accordingly, the
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Fig. 3.3 Performance comparisons with T = 10: a) Average revenue gain, b) Provisioning cost gain, c)
Acceptance ratio, and d) SLA violation.
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provisioning cost gain is the ratio between the provisioning cost in SRA (or CMG_SP)
and that in CG_SP.

3) Acceptance ratio: The acceptance ratio of an algorithm measures the percentage of
total requests accepted by different algorithms. Combined with the revenue metric,
the acceptance ratio gives a sense of how well an algorithm performs on excluding
non-beneficial placements.

4) SLA violation: This is calculated as ∑s∈S ∑t∈[0,T ](πs − γs(t)/β s(t))/∑s∈S(T + 1)πs.
SLA violation measures the average offset degree of the allocated running service
rates within [0,T ] from the requested rate demands over all accepted requests, which
is an important metric reflecting users’ quality of experience towards the provisioned
services.

3.5.3 Performance Analysis

Fig. 3.3 depicts the compared performance under different settings. All performance metrics
are calculated by generating 1000 random samples to evaluate each placement policy. Based
on the simulation results, our key observations are summarized in the following.

1) From long-term consideration, extra future statistic information can enhance the
placement policy with 3 ∼ 5x better revenue. Fig. 3.3a shows the average revenues collected
from different algorithms. Under the given settings, the simulation results confirm that the
significant revenue improvement of the proposed SRA approach over the referenced two
algorithms. Compared with the only 1.5x revenue gain made by the deterministic algorithm
in [129] over the same CG_SP benchmark, the proposed SRA presents a more positive results
with up to 3 ∼ 5x revenue gain when network dynamics are considered.

Specifically, when the available physical resources are abundant, the possible network
variations have little impact on the placement decisions. In this case, the performance gain
in SRA are mainly contributed by the more efficient policy computing than the greedy
policies. With the increased requests, however, the resource competition among requests gets
intensified. As a result, any over-optimistic or -pessimistic placement decisions in CG_SP
would be detrimental to the long-term revenue performance. This is avoided in SRA with
the joint reference of future statistic information, thus creating a higher gain as resources
become scarce.

Benefiting from the calibration to the decisions by the statistical mean values, CMG_SP,
on the other hand, also achieves around 1.5x revenue gain over CG_SP. However, due to
the non-convexity of the achievable revenue under each combinatorial policy option, the
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accuracy from statistical mean values is highly compressed than that when complete PDFs
are used to capture the future network variations.

2) The nearly 5x better revenue of SRA only raises about 30% more resource cost. Fig.
3.3b shows the compared results on the provisioning cost gain over CG_SP. Combined with
the revenue results in Fig. 3.3a, we can see that SRA achieves up to 5x better revenue
but using only 30% more resources than CG_SP. This indicates that the available physical
resources are coordinated more efficiently to serve more requests when physical resources
become more scarce. However, with the greedy placement policies, about 20% more resource
investment only contributes 1.5x revenue gain for CMG_SP.

3) SRA makes more good-quality acceptances. As depicted in Fig. 3.3c, SRA accepts 2x
more services than CM_SP, and the ratio for CMG_SP is 1.5x. Then, we can get that the
revenue gains contributed by unit acceptance are 5/2 and 1.5/1.5 for SRA and CMG_SP,
respectively. This shows that the acceptances made by SRA are more beneficial, which
collectively contribute the higher revenue gain. The degradation of the compared algorithms
results from both the acceptance to the requests that are currently beneficial but long-term
non-beneficial and the exclusion of requests that are temporarily non-beneficial but long-term
beneficial.

4) Services deployed according to SRA policy present lower SLA violation risk. Fig.
3.3d shows that benefiting from the accurate capture of future network variations, the SLA
violation is significantly lower in SRA than the compared ones. This reflects a better long-
term robustness and users’ quality of experience towards the provisioned services in SRA
when network dynamics are presented. In contrast, the statistical mean values only decrease
a little the SLA violation risk in CMG_SP.

3.5.4 Effect of Different Weighting Balance

In SRA, the weight settings of parameter w show different emphasis on the future expected
revenue, which results in a performance tradeoff. The optimal value of w is subject to
parameter tuning, depending on the runtime estimation towards the quality of current and
future network states. For example, when the observed current network state is believed
overwhelmingly better than the average cases, setting a small value of w is more reasonable
so that the current good state can be fully exploited. Conversely, if the network state is
currently observed to be very bad, a large value of w should be set to leave more spaces to
explore potentially better performance in the future. However, estimating the quality of an
observed network state is non-trivial when the explicit expression of the system performance
over observations is absent.
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Table 3.3 Performance of SRA under Different w,T = 10.

Weight Average Provisioning Acceptance SLA
w revenue gain cost gain ratio violation

0.1 4.32 1.14 23.4% 41.5%
1.0 4.90 1.22 25.4% 42.0%
10 5.12 1.32 27.3% 43.6%
15 4.23 1.10 23.7% 38.3%
20 3.90 1.08 23.3% 38.1%
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Fig. 3.4 Weighting effects under different scheduling intervals.
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In this section, we evaluate the effect of different weight settings on the performance of
SRA. Table 3.3 and Fig. 3.4 enumerate the compared performance when the system is loaded
with request arrivals = 25. Based on the simulation results, the following two behaviors of
the proposed SRA solution are observed.

1) Selecting an appropriate weighting balance for each decision is a tradeoff. We observe
from Table 3.3 that the considered performance metrics exhibit different changes over the
setting of weight w. Under the given settings, the difference gap among these average revenue
gains is up to 1. Moreover, the average revenue gain and provisioning cost gain show more
sensitivity towards the setting of w. In contrast, the variation of w only makes little changes
on the SLA violation. This stands to the reason that the SLA violation is averaged over all the
accepted requests, thus is normally less sensible to the changes of w than the other metrics.

2) When the network variations follow stationary processes, best weight is not around
T , but a value approximately ranging between [1,10]. Stationarity is the property of a
stochastic process whose probability distribution is the same at all times [136]. In this case,
the averaged long-term observations will finally converge to the mean values of network
variations. As a consequence, if weighting according to the average revenue contribution of
the immediate and future ones in the objective function (5a), w = T should be a reasonable
weight option to balance the immediate and future revenues in the objective function (5a).
However, according to the simulation results in Fig. 3.4, w = T is not always better when T
takes different values. This shows the non-convexity property for the average revenue of SRA
in terms of w. The calculation of the optimal weight requires the accurate modelling of the
system performance over observations, which is complicated in the considered combinatorial
optimization scenario. Another alternative option is to set a dynamic weight through some
heuristic rules according to every observation. For the practical industrial application of the
proposed SRA solution, taking a value between [1,10] could be a mild weighting option
since this setting retains nearly 90% revenue gain in Fig. 3.4.

3.5.5 Effect of Statistical Error for Future

Stationary random processes are assumed for the network variations in the SRA model.
Therefore, a proactively improved decision can be made to create a better long-term revenue
based on the given PDFs of network variations. In this section, we release the stationarity
assumption and evaluate the performance of SRA when the estimated PDFs are subject to
statistical errors or temporal evolution. The error is presented by setting an offset between
the mean values of the practical and estimated PDFs. We summarize the observed behaviors
of the proposed SRA as follows.
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1) The superiority of the proposed SRA is preserved even when the estimated network
variations are subject to 50% statistical errors. The results for the considered performance
metrics with w = 1,T = 10 are depicted in Fig. 3.5. We use a positive ε to denote the
optimistic case when the statistical mean of future network variation is estimated 20% more
than its practical value. Likewise, pessimistic estimations are evaluated with a negative ε to
show the effect when the statistical mean of future network variation is estimated 20% less
than its practical value. In Fig. 3.5, multi-fold performance gains are still presented for the
SRA under statistical errors. However, it also causes a degradation up to 1 in terms of the
revenue gain for the case of ε =−50% when compared with the results under accurate PDF
information (i.e.,ε = 0).

2) Pessimistic estimation decreases the overall service capacity, while optimistic estima-
tion leads to more bad-quality acceptances. Also depicted in Fig. 3.5 are the performances
of SRA when ε takes different offset values. In the pessimistic estimation case, we can
observe that with the increased estimation errors, the accepted maximum loads are gradually
plummeted from the amount that the system can really serve. The decreased acceptance
directly results in the under utilization of network resources and considerable revenue loss.
On the other hand, SRA can make more acceptances in the optimistic case than the amount
that the system can really serve. However, the increased acceptances only take negative
effects, resulting in more revenue loss, provisioning cost and also SLA violation. This turns
out that the extra acceptances are actually non-beneficial that should not have been accepted.

3) The revenue loss due to the sub-optimality of SRA can be compensated by pre-setting
ε =+10% statistical error. In the case of ε =+10%, we can observe from Fig. 3.6 that the
SRA solver can load more requests than the case with error-free resource estimation. The
slightly increased acceptances turn out to be beneficial and finally contribute nearly 10%
revenue improvement. This confirms that due to the sub-optimality of the solution in SRA,
there are nearly 10% potential revenue loss. However, such loss can be compensated by
pre-setting the resource estimation with ε =+10% statistical error.

3.5.6 Convergence Analysis

The main computation cost of the proposed SRA solution comes from recursively calculating
the approximate HMP and sample averaged approximation in SPs. In the designed termina-
tion criteria, the maximum number of iterations is limited to 50 so that the solution can be
generated with a controlled time budget. Fig. 3.7 shows the average number of iterations
under different SRA weighting balance. The following two behaviors can be observed.

1) More iterations are required to make the solution converge when the future revenue
is considered with a higher weight than the immediate revenue. The future revenue in the
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Fig. 3.5 Performance comparisons under statistical error with w = 1,T = 10: a) Average revenue gain. b)
Provisioning cost gain. c) Acceptance ratio. d) SLA violation.
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proposed solution is evaluated through random samples at each iteration. When the future
revenue takes a higher weight than the immediate revenue, the achieved objective value will
get more sensitive to the outcomes of random sampling at each iteration. Consequently, more
samplings are required to converge the objective of the model to the tolerant value variation.

2) The required iterations to converge increase when more requests are presented. As
shown in Fig. 3.7, with the increase of request arrivals, more iterations are required to find
the accepted placement policies. This is reasonable, since more arrivals lead to more similar
policy options to compare with. However, with the fractional placement information used
in solving HMP, many unnecessary placement policy trials can be avoided. We can see
from Fig. 3.7 that all experiments finish the computation within an average number of 20
iterations. Combined with the results provided in Fig. 3.5, the performance achieved under
such iteration criteria retains nearly 90% optimality.

Although multiple iterations are required, the complicated combinatorial program in
the proposed solution only needs to be solved during service initialization. The robust
deployment decisions, once solved, can be used with robustness across the whole scheduling
interval. However, the subsequent service running controls only need to solve a simple
linear program. This significantly reduces the computation complexity involved in the course
of service running controls. Moreover, this proposed solution can be further accelerated
by harvesting distributed and parallel computing technologies in the proposed computing
framework.

Similar to the analysis to the VNE problem in [129], for the general version of the
considered problem, theoretical bounds do not exist. It is quite challenging to model the
analytic optimality bounds and convergence rate, due to possibly random termination of
the iteration progress. A reasonable direction is to explore stochastic and approximate ratio
analysis [137] in future work.
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3.6 Conclusions

In this chapter, we have highlighted the network utility degradation problem for NFV in
dynamic networks, and accordingly proposed a robust NFV deployment solution SRA that
is robust against network state changes within a certain running period. By exploiting the
problem-specific structures, a distributed computing framework with two-level decompo-
sition has been designed to facilitate a distributed implementation of the proposed SRA
model in large-scale networks. The simulation experiments have confirmed the performance
degradation of existing NFV solutions in dynamic networks, and demonstrated that the
proposed SRA solution can achieve up to 5x performance improvement against the compared
algorithms. The obtained solution has presented low sensitivity towards parameter errors and
even worked robustly with up to 50% statistical errors.

For the future work, more considerations are to be explored in terms of the more general
implementation of the SRA algorithm and the challenges in theoretical analysis.

First, in this chapter, a fixed pricing strategy is used to control the whole admission and
placement decisions. Considering the dynamics in networking market and traffic patterns,
more dynamic pricing model is expected. For example, if a request has a long lease time and
the market price of resources allocated to that request keeps fluctuating over the lease period,
a full-fledged economic model will be required in order to model the revenue function.

Additionally, the model or statistical information of networking environment, such as
traffic patterns and the PDFs of network variations, are required in this chapter. The accurate
and timely acquisition of these knowledge in a dynamic networking environment is non-
trivial. Therefore, a knowledge-free model extension is expected for future work to release the
assumption of complete and stationary PDF information with technologies e.g., multi-armed
bandit learning theory [135], reinforcement learning [138], etc.



Chapter 4

Learning Augmented Online
Optimization for Safe Network Slicing in
5G

The stochastic NFV solutions in previous chapter still require the input of the statistics
information about the underlying environment. In this chapter, we further release this assup-
tion and consider a networking environment where prior knowledge about the networking
environment is not available but can be collectively observed at runtime. Under this setting,
this chapter first presents promising approaches to intertwine learning and optimization
technologies and then designs in detail a learning augmeted online optimization approach
for the targeted problem. Part of the contents in this chapter are summarized from our work
in [139].

4.1 Introduction

With the evolution of SDN and NFV, 5G networks have advocated a revolutionary paradigm
called network slicing [5] [45] to construct network services. Unlike the large deployment of
dedicatedly built network devices in conventional networks, network slicing utilizes VNF to
implement individually optimized services on top of the same physical infrastructure. This
enables a more flexible, scalable and agile management towards the end-to-end physical
resources, including communication and computation resources, radio spectrum, energy, etc.

Network slicing has been accepted as an integrated part of the latest 3GPP release [140],
but its technical implementation is solution agnostic. With proper assumptions or knowledge
on traffic patterns and networking environment, a myriad of slicing solutions based on classic
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optimization theories (e.g., combinatorial/convex optimization) have been proposed (related
surveys can be found in [5], [141]). As with the dominant implementations of network
slicing in the literature, if the full knowledge of traffic and network states is assumed known,
e.g., observed/predicted states or Probability Distribution Functions (PDFs), we can always
compute in offline an optimal or approximate slicing policy to best respond to these given
network states.

However, with today’s networks becoming increasingly dynamic, heterogeneous, and
complex, the real-time tracking and explicitly modelling of the networking environment
are getting increasingly costly or even intractable. The concrete examples can be easily
found from these typical 5G scenarios where massive human-/machine-type connections are
presented or millimeter wave enabled small cells are densely deployed [35]. As observed in
the practical measurement campaigns in [113], the system states of small cells with millimeter
wave spectrum evolve rapidly on nearly a millisecond order. Meanwhile, the number of
system parameters per 5G node is expected to more than 2000 [96]. In these popular 5G cases,
it is strongly vulnerable to the environmental changes for traditional slicing schemes that
customize the immediate performance over a given deterministic environment information
in the literature. This requires that a slicing system should be able to make decisions in
the absence of partial system state information while the resulted solution efficiencies are
safeguarded across the whole running trajectory. Compared with the existing challenges
addressed in the literature, e.g., solving the NP-hard combinatorial slicing model, this leads
to three additional challenges on implementing of a safe network slicing in the considered
complex 5G context:

• The slice operation environment frequently evolves with great uncertainties, and
explicit environment knowledge/models are unavailable ahead of schedule;

• Timely control response, possibly on a millisecond order, is required in order to secure
the system running as desired. This precludes the traditional scaling or migration based
dynamic slicing solutions, which re-solve slicing models after each network change.
This is because each attempt of solving a usually NP-hard slicing model in large-scale
networks is costly and time-consuming;

• In addition to the real-time performance and constraints, the chosen slicing policy
should also be able to work properly across the whole system trajectory and to safeguard
the long-term system performance and constraints.

Based on the above insights, it is essential for a slicing system to observe environment
variations, learn uncertainties, and accordingly plan response actions properly. Therefore, in
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this chapter, we aim to safeguard the network slicing in dynamic 5G networks so that the
returned slicing policy is always feasible and the resultant system performance is long-term
safeguarded.

To address these challenges and objectives, we first investigate the promising approaches
to intertwine the learning and optimization technologies and then build a two-stage slicing
optimization model with time-averaged constraints and objective. This provides a two-
phase control to secure the slicing process: initial slice deployment and long-term slice
operation. Directly solving an off-line solution to this problem is intractable since the future
realizations of the objective and constraint functions are unknown before decision-making in
the considered 5G context. Therefore, we propose a learning augmented online optimization
approach by intertwining historical learning and online learning to deploy and operate
network slices with both historical records and real-time observations. We prove that the
proposed slicing solution is always feasible and nearly optimal, up to a constant additive
factor. In the proposed solution, the involved combinatorial model only needs to be solved
during the initial deployment phase, while the subsequent operation controls only involve
solving a simple continuous program. Therefore, this solution is robust and agile to respond
to any dynamics. In the simulation, we demonstrate up to 2.6× improvement when compared
with the state-of-the-art baselines.

The major contributions of this chapter can be summarized as follows:

• We present a two-stage model structure with the learning augmented optimization
framework to safeguard the network slicing in 5G. This facilitates great robustness and
prompt adaptation for the network slicing in a dynamic environment.

• By intertwining the classic learning techniques and traditional optimization tools,
we present an approximate solution to solve the hard combinatorial program for the
robust slice deployment policy under incomplete system knowledge. An analytical
probabilistic bound is provided, which can be improved by increasing the sample size.

• We propose an online slice operation policy with misloading calibration, which en-
ables the deployed network slices to learn from and adapt to real-time observations.
This provides a proven better performance bound than the referenced online learning
algorithm while maintaining a same solution feasibility.

• Finally, extensive simulation experiments are conducted with the settings in accordance
with 5G expectations. Through the comparison with the incumbent network slicing
solutions, we demonstrate the efficacy of the proposed learning augmented online
optimization approach for the targeted network slicing problem.
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The rest of this chapter is structured as follows. We first investigate the related works in
Section 4.2. Section 4.3 presents the promising approaches to intertwine the learning and
optimization technologies. The implementation of the safe network slicing optimization
model is presented in Section 4.4. To obtain a robust slice deployment policy, we propose a
historical learning approach in Section 4.5 to approximate the proposed slicing model from
historical records. Then, the safe slice operation control solution is presented in Section 4.6.
The simulation results are summarized in Section 4.7. Finally, Section 4.8 concludes this
chapter.

4.2 Related Work

Network slicing has been identified as the backbone of the rapidly evolving 5G technology [5].
By allowing different parties to instantiate and run software-based network services, this
paradigm facilitates the development of service-tailed and truly differentiated services on
top of a shared underlying network infrastructure. Gaining momentum from immense 5G
applications [35], network slicing has been the focus of an ever-growing community of
researchers from both academia and industry.

4.2.1 Network Slice Modelling and Optimization

There are many preliminary deterministic network slicing modelling and solutions reported
in the literature, which extensively study the basic implementation of network slicing in
static networks. These studies mainly focus on the optimization of the resource solutions
with acceptable computing complexity under a given network state. Thus, these solutions
are not directly applicable in the considered problem. Related works can be found in
e.g., [141], [118]- [68].

There also exist a few studies in the literature striving to address similar resource utility
problems for dynamic NFV networks. Among these very few work, Ying et al. in [150]
addressed the joint optimization problem of dynamic radio resources and computing resource.
A robust resource allocation framework is presented in [142] with an iterative algorithm
to auto-scale slices in response to the changing environment. With a similar motivation,
the resource provisioning solution proposed by Li et al. [152] is also proactive although
their objective is to assign requests with bounded response time. This is achieved by using
slice consolidation with timing abstraction, but the placement of slices is still based on
deterministic models, and the instance migration of VNFs is involved when new requests
arrive. Split/Merge [153] provides system support for achieving efficient, load-balanced
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elasticity when scaling in and out of virtual middleboxes. However, as aforementioned,
scaling or migration based dynamic solutions are precluded in our problem. In our previous
work in [99], we provided a stochastic solution to the similar problem and showed that
explicit PDF models of environmental knowledge can contribute considerable improvements.
In this chapter, we release the dependence of explicit environmental models of our prior
solution by exploiting the learning and online optimization tools. This makes the resulted
slicing solution applicable to more generic settings.

4.2.2 Network Optimization with Online Learning Approaches

Recently, there is also an increasing traction on developing model-based online solutions
to handle dynamic networking problems. In this regard, the dynamic systems are explicitly
modelled and then controlled by exploiting the structural information or statistical knowledge.

The pioneering works can be traced back to the studies that are based on online compu-
tation and competitive analysis [156]. Among the most related studies, Jia et al. in [151]
investigated the online scaling problem of NFV service chains across geo-distributed data-
centers. Their solution aims to handle practical time-varying traffic volumes and relies on
the dynamic scaling of VNF instances. Evan et al. in [52] studied the online embedding of
virtual networks. Their goal is to select high-benefit requests in a way that the likelihood that
future requests can be embedded as well is maximized.

Other major attempts are the applications of Lyapunov optimization [146] and multi-
armed bandits (MAB) theories [135] to model the resource allocation problems operating
in dynamic systems. In this case, these classic online learning theories are exploited to
make a sequence of control decisions with progressively learned knowledge about system
dynamics and to optimize the long-term cumulative rewards. For example, Mao et al.
developed in [154] a Lyapunov optimization based dynamic computation offloading solution
for mobile-edge computing applications.

Huang et al. in [144] studied the learning-aided stochastic network optimization with
dual learning and online queue-based control. Neely in [147] investigated the application of
Lyapunov theories for the distributed stochastic sensor network problem. The applications
of MAB can also be found in the problems for antenna beam selection [102], mobile edge
computing [103], etc.

However, all these works are mainly focused on addressing the sequential online control
problems under the imperfect system state information. This is achieved by repeatedly
solving their base models with progressively collected new observations across time. In
contrast, this chapter highlights the stochastic combinatorial hardness of the considered
problem. Herein, it is not supported to repeatedly solve the combinatorial models with



62 Learning Augmented Online Optimization for Safe Network Slicing in 5G

new knowledge. Additionally, we attempt to intertwine the classic learning and online
optimization theories so that we can integrate both empirical data experience and domain
expertise to enhance the slicing solution.

4.3 Learning Augmented Optimization: Promising Inte-
grative Approaches

Before the analysis towards the safe network slicing problem, we first present the promising
integrative approaches to implement the learning augmented optimization. Nowadays,
deploying learning based intelligent mechanisms is gaining momentum for 5G networks to
control the massive traffic volume in diverse networking landscapes, such as high mobility
and machine-to-machine connectivity [97]. With the capabilities of inferring decisions from
historical experiences and observations, learning based solutions present a great complement
to the existing optimization based solutions in particular in the following three situations:

Problems are un-modelable: 5G expands its coverage to more emerging applications.
To support the slicing of these services with diverse differentiated policies, multiple KPIs
are required to be balanced and optimized for the new system designs, including delay,
reliability, connection density, etc. These KPIs might be either dependent or conflict, making
the modelling of the problem with a unified optimization model already intractable, not to
mention the complexity in tracking the ever-changing service requirements and networking
environment. Nevertheless, learning based solutions are able to avoid the needs of explicitly
modelling the target problems and environment. The learned solutions have also higher-level
generality and are versatile to a set of general problems with the same patterns.

Problems need unified solutions: In traditional communication system designs, critical
modules are usually optimized with individual models and problem-specific algorithms. Such
a processing has huge complexity and efficiency problem in the implementation of slicing
systems, since a single network slice instance could include the whole end-to-end network
components and resources from the radio boundary to datacenter. With the data records of
history system operations, it is possible to learn a unified solution from past controls and
network states for the cross-layer optimization of all cascaded modules without going into
the details of system structures.

Models are expensive to solve: For network slicing operations, the involved service and
resource optimization problems are often formulated as constrained combinatorial programs,
which are NP-hard and possess exponentially increased computation complexity. Existing
heuristic or approximation approaches to solving this kind of models do not work well in
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terms of either performance or computation cost. Data-driven approaches, on the other hand,
open a new window for such problems since these learned decisions from data do not require
directly solving these complicated models any more.

However, different from the prosperity of AI techniques in the data analysis applications
e.g., image/video/speech recognitions, the application of many advanced AI techniques
like machine/deep learning is still in its infancy in communication and networking systems.
The challenges include the difficulties in characterizing the appropriate input and output
patterns for a learning system to correctly reflect the highly dynamic nature of large-scale
heterogeneous networks. Moreover, the huge training cost in terms of both computation
and convergence time are still open problems for their applications in real-time networking
systems. Finally, the requirement of carrier-grade service reliability is also beyond the
accuracy of existing learning based optimization solutions. For example, at least 10% of
the results are invalid tours when applying the latest pointer networks to solve the classic
Travelling Salesman Problem (TSP) [98].
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Fig. 4.1 A general framework of learning augmented optimization system for network slicing in 5G: The
intelligent controller decides the VNF embedding and routing strategies based on the learning augmented
optimization, and then the requested network slices are embedded accordingly in the available 5G infrastructures.

Looking ahead, learning augmented optimization, through greater integration of multiple
AI tools (e.g., classic optimization, control theories and machine learning) into networking
architecture, is gaining increasing traction. As depicted in Fig. 4.1, such an approach can
integrate both the knowledge learned from empirical data and domain expertise with explicit
optimization models. This provides a promising way to develop a cognitive network that will
show network-wide intelligence to meet the management requirements of sliced resources
and services in 5G.



64 Learning Augmented Online Optimization for Safe Network Slicing in 5G

Fig. 4.1 illustrates the general framework for learning augmented optimization and its
application in the network slicing problem. Essentially, this retains the basic optimization
structure, but more learned information from historical records and run-time observations are
introduced to improve the optimization outcomes. The efficacy of learning components here
includes reduced computation time and/or optimality loss, or solution robustness. Depending
on the the availability of prior knowledge about the environment and the needs of different
optimization problems, there exists serveral feasible approaches to augment the optimization
process with learning. Next, we investigate the learning techniques that are feasible to
augment the applications of classic optimization theories for network softwarization in 5G.
Fig. 4.2 shows a family-tree of these techniques. Depending on whether structural models
are available, these approaches can be summarized as the following two categories.

4.3.1 Optimization with Model-driven Learning Approaches

If structural information or statistical knowledge are available so that explicitly mathematical
models can be developed for the stochastic dynamic systems, the optimal policies can be
found analytically. In this regard, classic learning theories from stochastic learning, multi-
armed bandit and Lyapunov optimization are powerful for constructing such optimization
frameworks.

Optimization with stochastic learning: This approach models the system uncertainties
and dynamics as certain stochastic processes. Historical records are first used to construct an
internal model of the transitions and outcomes in the environment with given probability dis-
tributions. Appropriate actions can then be chosen by searching or planning under the model
constructed from the data. This is a statistically efficient way to use experience. Provided
that constant re-planning is possible, this allows action selection to be readily adaptive to the
changes during the transition contingencies. This approach is particularly useful for problems
when system mechanisms are well understood, e.g., optimization problems for radio resource
management and utilization [100], [101], since many well designed channel models have
been readily available to capture the critical system features. The work of Chapter 3 can be
linked to this category.

Multi-armed bandits: Multi-armed bandits (MAB) have been used to model the prob-
lems of proportioning resources among competing objectives under a fixed budget. The
properties of these objectives are only partially known at the time of decision making, but
which may become better understood as time passes. In this case, MAB aims to make a
sequence of control decisions with progressively learned knowledge about these objectives to
optimize long-term cumulative rewards. The critical idea of MAB is to balance the trade-off
between the exploitation of specific control action that has the highest immediate payoff and
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Learning augmented
optimization in 5G

Optimization with model-driven
learning Optimization with data-driven learning

• Stochastic learning: model dynamics
as stochastic processes, then used to
improve the optimization progress;

• Multi-armed bandits: learn from trials
to improve trade-off between
knowledge exploitation and exploration;

• Lyapunov optimization: progressively
learn dynamics to achieve system
stability while optimizing objective.

• Prediction assisted optimization: predict
unmodelable dynamics and then best respond to
predicted network profiles with machine learning;

• Learn to optimize: transform an optimization
program into an equivalent deep learning model
and then solve it in a data-driven way.

• Optimization with model-free reinforcement
learning: improve optimization with
reinforcement strategies to maximize cumulative
rewards in the absence of mathematical models of 
the environment. 

Objective: absorb both the knowledge learned from empirical data and domain-knowledge with explicit 
optimization models to meet the real-time management requirements of network slicing services in 5G.

Fig. 4.2 Learning augmented optimization techniques.

the exploration of the other actions that might have a better payoff after more knowledge
are learned. The applications of MAB can be found in problems for beam selection [102],
mobile edge computing [103] etc.

Lyapunov optimization: Lyapunov functions have been extensively used in control
theory to achieve the stability of dynamic systems. The goal of Lyapunov optimization for
dynamic systems is to achieve system stability (i.e., satisfy cumulative system constraints)
while optimizing some performance objectives. This is achieved by progressively learning
system uncertainties from new observations and then augmenting the control actions accord-
ingly. With the learned knowledge, the resulting control solution can be steered to achieve
the exact same efficiency as the optimal control strategy that is derived when all system
dynamics are known as a priori. This approach is particularly powerful for optimizing a
stochastic system with time-averaged objectives and constraints, e.g., minimizing averaged
cumulative energy consumption [104] or maximizing long-term averaged throughput [105].

4.3.2 Optimization with Data-driven Machine Learning

In many cases, however, mathematical models of environment and even action rewards
are not known, and we need to observe and analyze the sample paths of the system to
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determine the performance and make improvement decisions. In this case, the diverse data-
driven machine learning tools, including supervised/unsupervised/model-free reinforcement
learning, are applicable to improve the optimization processes. Machine learning is a subset
of AI that uses statistical techniques to learn from and make predictions on data, without
being explicitly programmed [97]. Considering the aforementioned challenges of directly
applying machine learning in our problem, the traditional optimization procedures can be
improved with machine learning algorithms in the following two ways.

Prediction-aided optimization through machine/deep learning: One critical issue
hindering the further development of network slicing is the complex system uncertainties and
dynamics, which are difficult to model analytically in the considered 5G context. To address
this challenge, a natural approach is to first predict the realizations of these uncertainties in the
near future and then to proceed by best responding to the predicted profiles. When compared
with the existing optimization approaches that customize immediate rewards/costs over
observed states, the additional predicted knowledge can enhance these traditional solutions
with a better robustness. Depending on whether prior labels are available in the database,
supervised/unsupervised learning has been widely used for the tasks of data-driven prediction.
For example, in [106], the authors exploited supervised learning to predict wireless data
and location interface configurations that can be used to optimize energy consumption in
mobile devices. Their experimental results showed that it is possible to achieve up to 90%
successful prediction and 50% improvement of energy saving with the aid of neural networks
and k-nearest neighbor algorithms.

Optimization with model-free reinforcement learning: Adequate history observations
are required for learning a model of how the environment works. When the data acquisitions
are difficult or time costly, model-free reinforcement learning will then be a way out. The
problems of interest in the optimization with model-free reinforcement learning are particu-
larly concerned with an exact computation of optimal solutions but without estimation or
use of an explicit environment model. The objective is to take proper real-time actions to
maximize certain cumulative rewards. This is coincident with the design objective for the 5G
network slicing systems, since long-term averaged performance is more meaningful than an
instant outcome for a stochastic system. One of the most classic examples is Q-learning [107],
which directly estimates the optimal Q-values of each action in each state, from which a
strategy is derived by choosing the action with the highest Q-value in the current state.

Deep learning to directly solve an optimization program: Instead of serving as an
auxiliary component, deep learning in this kind of approaches is directly used to generate
a solution that respects the whole constraints of an optimization program. Once trained
with labelled data set or reinforcement policies, the obtained learning model can directly
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generate an optimal/suboptimal solution to the targeted problem without searching repeatedly
the whole solution space from the scratch for every problem instance. This points out a
promising direction to solve particularly many NP-hard combinatorial optimizaiton problems.
Preliminary testaments to the applications of these approaches can be found in e.g., [172]-
[173], [98]. A prominent example is from [175], where the graph attention network has been
proven very effective for solving the classic TSP problem.

As a showcase, an learning augmented online optimization with Lyapunov theory will be
developed in the following parts of this chapter. In next chapter, an approach that applies
deep learning tools to directly solve the optimization process will also be provided. We
note that the integrative technology of learning augmented optimization supports a wide
range of combinations between the diverse learning and optimizaiton technologies. The work
of this thesis serves as a start point to stimulate the innovative use of learning augmented
optimization approaches in more applications.

4.4 System Model

With the technology of NFV, a sliced network service is constructed with solely required
VNFs that are chained in a specific order according to its service policies. The installa-
tion/teardown and operations of network slices are mutually independent, although the
underlying infrastructures are shared. In this case, one critical task for network slicing is to
plan the utilization of the shared resources with adherence to diverse service and resource
constraints. This is non-trivial and more challenging than planning 4G network services due
to the rapidly expanded scales of network elements and connections as well as the frequently
changing network environment in 5G.

Let us treat the 5G slicing system as a discrete-time stochastic system with time-varying
resources ct . Upon the given limited system resources, slicing requests with random resource
demands dt are required to schedule and control. At the beginning of each time slot t ∈
{0,1,2, . . .}, the system controller is able to observe a state update ωt = (dt ,ct), which
specifies the independent realizations of current traffic and network states. The network
slicing optimization problem aims to decide a robust slicing policy at the beginning of every
scheduling interval T so that the slicing system can be configured and operated with full
respect to the desired objectives and constraints.
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4.4.1 Preliminaries

Considering the dynamic system feature in this chapter, we apply partial admission control
policy. Consequently, requests can be accepted (i.e., deployed) but run with compressed
service rates rather than be directly rejected when the available resources at the decision-
making time are not enough to fully meet the required demands. This ameliorates the
over-/under-loading problem caused by partial observations at decision time. In this setting,
the slicing policy can be split into two parts: slice deployment policy and slice control policy.

We first clearly define the two policies to be optimized in this chapter as follows.

Definition 1 (Slice deployment policy π+ ∈ P+): is a policy vector specifying which slice
requests are accepted, where to instantiate and how to chain the required VNFs along with
routing paths in the underlying physical networks.

Definition 2 (Slice control policy π− ∈ P−): is a contingency plan for choosing a single
running control action to adapt the flow rates of deployed slices to a given network event
observation under the chosen slice deployment policy π+.

where P+,P− are the solution spaces for the two policies, respectively.
In this chapter, we denote a slicing policy π := {π+,π−} to be safe if it is feasible

across the runtime (i.e., without violating any real-time or time-averaged constraints) while
optimizing the long-term system performance.

4.4.2 The Deterministic Network Slicing Optimization Problem

As aforementioned, real-time scaling and migration of deployed slice instances are not
considered. In this case, the slicing system can be sequentially controlled as a two-stage
process: (i) decide a long-term feasible and optimized slice deployment policy with an
initial knowledge, and (ii) then under the given deployment, adaptively control the running
flow rates allocated to the deployed network slices according to the real-time environment
changing. As with the extensively studied slicing models in the literature, we can abstract,
without loss of generality1, the network slicing optimization problem under any given system
state ω as the following Two-Stage Slicing (T2S) Program:

(T2S model) π = argmin
π+,π−

f (π+,π−,ω) (4.1)

s.t. π+ ∈ P+ and π+ is binary (4.2)

π− ∈ argmin
π−≥0

{
f (π−,ω|π+)

∣∣ul(π−,ω)≤ 0, l = 1,2, . . . ,L
}

(4.3)

1Equality constraints can be equivalently expressed through two inequality constraints.
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where

• { f ,ul}: the objective function and a set of utility functions specifying the real-time
constraints required for running the deployed network slices in the physical network.
Their values are random, dependent on the realization of system state ω;

• P+: the solution space to be defined by a set of constraints to guarantee that the chosen
π+ is a valid slice deployment policy (e.g., satisfying flow conservation). A concrete
example is provided in (4.45)–(4.47);

• π+: a vector of decision variables indicating which physical nodes and link paths are
used to construct the accepted network slices;

• π−: real-time running flow rates allocated to the accepted network slices under the
given slice deployment policy π+ and system state ω;

As claimed in extensive existing studies e.g., [142], under the given system state ω ,
solving this problem is NP-hard. By this token, many reported exact or approximated
computing strategies in the literature can be used to solve this problem, such as dynamic
programming [55] or integer relaxation [143]. However, the resulted solution can only
customize the system performance that is best respond to the given system state. When the
system evolves frequently and explicit models of the system environment are unavailable
a-priori, the obtained slicing solutions through these traditional approaches are not safe
across time.

Next, we safeguard the long-term performance of this T2S model by incorporating
time-averaged performance metrics.

4.4.3 Safeguarding Long-Term Performance with Time-Averaged Met-
rics

Let us denote {πt
−}∞

t=0 as the slice control policy across t and f (π+,π
t
−,ωt) as the time-

variant objective function. Then, we define the time-averaged objective function as follows:

f̄
(
π+,{π

t
−}∞

t=0
)
= lim

t→∞

1
t

t−1

∑
τ=0

Eω

[
f (π+,π

τ
−,ωτ)

]
(4.4)
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Likewise, we define a set of time-averaged utility functions ḡk,k ∈ {1,2, . . . ,K} through
its time-variant function gk(π+,π

t
−,ωt) as follows:

ḡk
(
π+,{π

t
−}∞

t=0
)
= lim

t→∞

1
t

t−1

∑
τ=0

Eω

[
gk(π+,π

τ
−,ωτ)

]
(4.5)

In order to safeguard the slicing optimization solutions in 5G, we first extend the T2S
model in (4.1) with its time-averaged objective and constraints. This results in our new
proposed Two-Stage Safe Slicing (T3S) model as follows:

(T3S model) π = argmin
π+,{πt

−}∞
t=0

f̄
(
π+,{π

t
−}∞

t=0
)

(4.6)

s.t. ḡk
(
π+,{π

t
−}∞

t=0
)
≤ c̄k,k ∈ {1,2, . . . ,K} (4.7)

Constraints (4.2)− (4.3),∀t (4.8)

where c̄k is the upper bound (or cost budget) of the time-averaged utility ḡk.
In this new slicing model, three differences can be highlighted when compared with the

existing system formulations. First, by optimizing the time-averaged objective, it captures
the concerns on the long-term performance safety in the considered stochastic system.
Second, with the time-averaged constraints in (4.7), this model provides a higher flexibility
to consolidate both the long-term and real-time running requirements for deploying the sliced
services in dynamic networks. Finally, the combinatorial solution for π+ is optimized to
respond to long-term system behaviours. This circumvents the complicated amendments to
π+ (e.g., dynamic scaling or migrating deployed slice instances). Alternatively, the adaptation
to real-time changes is handled through simplified continuous programs in the slice operation
process.

A concrete application example of the T3S model is that network providers want to
optimize their long-term revenues from the provisioning of network slices. The available
resource capacities are time-varying due to e.g., wireless channel fluctuation, traffic variations
[99], [155]. In this case, the providers need to keep the average operation cost for e.g., energy
or bandwidth within given budgets. Meanwhile, both the real-time (e.g., delay, jitter) and long-
term (e.g., packet loss/service interruption rate) service qualities should meet the contracted
service level agreements. This is fundamentally more complicated than the deterministic
counterparts.

In T3S model, we need to infer at the beginning of every scheduling interval a robust
slicing policy that not only has an impact on the immediate system performance but also on the
future ones. However, the objective function f (π+,π

t
−,ωt), utility functions gk(π+,π

t
−,ωt)
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and gl(π
t
−,ωt) are unknown before decisions. Thus it is intractable to directly solve an

optimal off-line solution to this problem.
Based on the above analyses, we resort to enhance the traditional stochastic optimization

algorithms with learning components to solve this problem in two sequential steps. Specif-
ically, a historical learning process is first introduced to extract a robust slice deployment
policy. This eschews frequently re-solving the complicated combinatorial program in T3S.
Considering the imperfect matching of the long-term optimal policy with the real-time opera-
tion environment, an online adaptation scheme is presented in the slice operation process.
This provides an extra tunnel to learn from the real-time observations to further secure the
slicing system.

4.5 Robust Slice Deployment with Historical Learning

A system’s behavior is usually represented by a model, or by the trajectories that record the
operation history of a system. As the inevitable absence of future system knowledge in the
targeted problem, we resort to improve the slice deployment policy by learning from historical
system records, which are commonly available in real-life communications systems.

Let {ω̂t}Wt
t=1 be a learned trajectory of the system state ω from historical records for the

next Wt time window. Then, through approximating the cost and objective functions with the
learned trajectory, we can get a Sampled reduction of the stochastic T3S model (T4S) as the
following deterministic program:

(T4S model) π+ = argmin
π+

1
Wt +1

Wt

∑
t=0

f (π+,π
t
−, ω̂t) (4.9)

s.t.
1

Wt+1 ∑
Wt
t=0 gk(π+,π

t
−, ω̂t)≤ c̄k,k = 1,2, . . . ,K

π+ ∈ P+ and π+ is binary
πt
− ∈ argminπt

−≥0 f (πt
−, ω̂t |π+),∀t = 0,1, . . . ,Wt{

s.t.
ul(π

t
−, ω̂t)≤ 0, l = 1,2, . . . ,L

(4.10)

In T4S, the reduction of a stochastic problem to its deterministic approximation resembles
the sampling based techniques (e.g., [144], [125], [158]). Instead of a direct implementation
of T4S with i.i.d historical samples, the manipulation with learned outcomes reaps two-fold
benefits: i) this provides an interface for integrating advanced prediction tools to extract
the temporal dependencies of the underlying system evolution, and 2) saves tremendous
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computation on unnecessary samples when solving the combinatorial model. As a determin-
istic problem, many existing algorithms (fractional rounding, heuristic or decomposition, as
surveyed in [67]) can be invoked to solve an exact or suboptimal solution for the T4S model,
which is out of the focus in this work.
Misloading discussion: When an approximate solver is applied, the resultant suboptimal
policy π+ tends to accept less requests (i.e., under-loading case) so that the given cost budget
constraint will not be violated. Once under-loaded at the beginning, the system will not be
able to override π+ across the scheduling interval even a better networking environment is
detected. In contrast, if over-loaded due to imperfect prediction accuracy, more cost will be
devoted to maintaining the active of deployed slices. Thus, both cases will lead to system
degradation. In Section 4.6.1, a misloading (i.e., under-/over-loading) calibration scheme
will be introduced to ameliorate this issue.

The optimality of the learned deployment policy depends on both the prediction accuracy
and the distribution consistency between historical samples and future outcomes. When
the underlying stochastic processes are ergodic2, the simplest learning strategy would be a
directly random sampling from the historical records. However, the T4S model is versatile
to work with any suitable learning technique. We validated in Section 4.7 that the proposed
solution gains remarkable improvement even with a random sampling based learning strategy.
When the objective function f is linear with respect to ωt (as the case in the Benchmark
problem in Section 4.7.1), we can further get an analytical probabilistic bounds on the
objective value that improves (in expectation) with increasing sample/prediction window
size. This is presented in the following Proposition.

Proposition 1: Assume f is linear with respect to the ergodic process ωt . Let π∗
+ be the

optimal solution of T3S achieved through some ‘genius’ algorithm that knows the true system
trajectory {ωt}∞

t=1 a-priori. Then, we have

f̄
(
{π

t
−}W

t=0 | π̌+

)
≥ f̄

(
π
∗
+,{π

t
−}∞

t=0
)
≥ E

[
f̄
(
π̂
∗
+,{π

t
−}

Wt
t=0

)]
(4.11)

E
[

f̄
(
π̂
∗
+,{π

t
−}

Wt+1
t=0

)]
≥ E

[
f̄
(
π̂
∗
+,{π

t
−}

Wt
t=0

)]
(4.12)

where π̌+ is a fixed policy obtained by some approximation procedure, e.g., solving T4S
with W samples; π̂∗

+ is the optimal solution of T4S under the samples {ω̂t}Wt
t=1.

Proof. First, under any feasible deployment policy, say π̌+, the achievable value f̄
(
{πt

−}∞
t=0 | π̌+

)
is clearly a rigorous upper bound on f̄

(
π∗
+,{πt

−}∞
t=0

)
. As presented in [125], f̄

(
{πt

−}∞
t=0 | π̌+

)
can be estimated by solving the resultant continuous program under a large set of historical

2An ergodic process is a stochastic process whose behavior does not depend on the initial conditions and
whose statistical properties do not vary with time [157].
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samples. Therefore, the left-side inequality in (4.11) can provides an upper bound estimation
towards the true objective value. The right-side inequality of (4.11) shows a probabilistic
lower bound, which can be calculated by solving a set of sampled instances of T4S. This is
proved as follows.

According to the definition of (4.4), we can have

f̄
(
π
∗
+,{π

t
−}∞

t=0
)
= min lim

t→∞

1
t

t−1

∑
τ=0

E
[

f (π+,π
τ
−,ωτ)

]
(4.13)

= min
π

E
[

lim
t→∞

1
t

t−1

∑
τ=0

f (π+,π
τ
−,ωτ)

]
(4.14)

(a)
= min

π

1
Wt +1

E
[ Wt

∑
t=0

f (π+,π
t
−,ωt)

]
(4.15)

≥ E
[

min
π

1
WT +1

Wt

∑
t=0

f (π+,π
t
−,ωt)

]
(4.16)

(b)
≥ E

[ 1
Wt +1

Wt

∑
t=0

f (π̂∗
+,π

t
−,ωt)

]
(4.17)

= E[ f̄ (π̂∗
+,{π

t
−}

Wt
t=0)] (4.18)

where (a) follows with the ergodic theorem [157]; (b) follows since π̂∗
+ is the optimal solution

of the T4S model.
Next, we prove the monotonic feature of E

[
f̄
(
π̂∗
+,{πt

−}
Wt
t=0

)]
with respect to sample size

as follows:

E
[

f̄
(
π̂
∗
+,{π

t
−}

Wt+1
t=0

)]
= E

[
min

π

1
Wt +2

Wt+1

∑
t=0

f (π+,π
t
−,ωt)

]
(4.19)

= E
[

min
π

1
Wt +2

Wt+1

∑
t=0

1
Wt +1

Wt+1

∑
τ=0,τ ̸=t

f (π+,π
τ
−,ωτ)

]
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≥ 1
Wt +2

Wt+1
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t=0

E
[

min
π

1
Wt +1

Wt+1

∑
τ=0,τ ̸=t

f (π+,π
τ
−,ωτ)

]
(4.21)

=
1

Wt +2

Wt+1

∑
t=0

E
[

min
π

1
Wt +1

Wt

∑
τ=0

f (π+,π
τ
−,ωτ)

]
(4.22)

≥ E
[

f̄
(
π̂
∗
+,{π

t
−}

Wt
t=0

)]
(4.23)

Proof ends. ■
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4.6 Adaptive Online Slice Operation with Misloading Cal-
ibration

Once instantiated under the learned slice deployment policy π̂+ from the history records,
the original T3S model reduces to a simplified stochastic continuous program, which aims
to exert a slice running control process to further secure both the real-time and long-term
system performances. Since the future realizations and PDF models of ωt are unavailable
a-prior, we now propose an online learning approach to solve the T3S for the slice Running
control policy (called T3S-R model hereafter). In the following, π̂+ is identified as a known
parameter and will not be shown explicitly in the T3S-R problem. Additionally, we assume
the T3S-R is convex on πt

−, which is aligned with most of existing resource allocation
problems for network slicing.

4.6.1 Online Running Control with Misloading Calibration

In an online process, a solution has the following structure: At the beginning of every slot
t, the system controller observes a realization of ωt , and then a slice running control πt

− is
derived accordingly. In order to achieve the long-term objective, we construct the online
process with the theoretical support of queuing networks [146].

Let us treat each time-averaged constraint in (4.7) as a virtual queuing process. For each
constraint k ∈ {1,2, . . . ,K}, define a virtual queue Qt

k with initial condition Q0
k = 0. The

queue backlog updates over time via:

Qt+1
k = max{Qt

k +gk(π
t
−,ωt)− c̄k,0} (4.24)

The connection of such a queuing network with the T3S-R is that if we control to stabilize
the queue Qt

k, the average of the “arrival process” gk(π
t
−,ωt) must be less than or equal

to that of the “service process” c̄k. Consequently, the resultant control sequence will be a
feasible solution meeting the time-averaged constraint ḡk

(
π̂+,{πt

−}∞
t=0

)
≤ c̄k.

Let Qt = [Qt
1,Q

t
2, . . . ,Q

t
K] be the vector of queue backlogs, and define the Lyapunov

function Lt as follows:

Lt =
1
2
∥Qt∥2 =

1
2

K

∑
k=1

[Qt
k]

2 (4.25)

The value Lt is a scalar measure of the size of the queue backlogs till t. If we take
actions to consistently push this value down, then the queues will be stabilized (i.e., satisfy
the time-averaged constraints in (4.7)). Fig. 4.3 illustrates the online slice running control
process with the virtual queuing network.
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Fig. 4.3 Online slice running with the virtual queuing network.

In this online framework, the system observes the current queuing state Qt and new
realizations of ωt at the beginning of every slot t. Then, an one-shot control is exerted
accordingly to adapt the slice running to the new observations. Motivated by the theory
in [146], we implement the one-shot control by minimizing the following drift-plus-penalty
expression:

min
πt
−≥0

V f (πt
−,ωt)+

K

∑
k=1

Qt
kgk(π

t
−,ωt) (4.26)

s.t. ul(π
t
−,ωt)≤ 0, l = 1,2, . . . ,L (4.27)

where V is a non-negative weight that will be shown to affect the performance tradeoff.
Behind the one-shot control strategy is the intuition that more budget than the average c̄k

can be provided so that we can fully exploit the ‘good’ state ωt to collect a better objective
value f (πt

−,ωt). Balanced by the surplus budget from the under utilization of c̄k when ωt is
in ‘bad’ quality, the time-averaged utility budget constraints in (4.7) can still be preserved.

With the convergence analysis in [159], the control strategy from (4.26) is known to
provide an O(1/V ) approximation to the optimality of T3S-R with a convergence time of
O(V 2). However, considering the impacts of misloading resulted from imperfect prediction
accuracy and the approximation for solving the T4S model, we introduce a misloading
calibration scheme by extending the queue update function as following:

Qt+1
k = max{Qt

k +gk(π
t
−,ωt)− (c̄k +δk),0} (4.28)

where δk = max{c̄k − 1
Wt+1 ∑

Wt
τ=0 gk(π

τ
−, ω̂τ),0}.

δk measures the positive cost gap between the cost budget and the estimated utility due to
the suboptimality of π̂+. With the calibration from δk, (4.28) imposes a positive utility offset
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to the available cost budget. This avoids the unnecessary penalty on the objective f (πt
−,ωt)

in subsequent controls. As analyzed in Section 4.6.2, such a calibration leads to a better
convergence performance.

Finally, by putting all together, we are now ready to present the overall learning augmented
optimization approach for the safe network slicing in Algorithm 4.

Algorithm 4 The proposed learning augmented optimization approach for safe network
slicing.

Input: Historical system trajectory, network and requested slice topologies, V,Wt ,T .
Output: Slice deployment policy π̂+ and online running flow rate πt

−.
▷ Slice deployment at the beginning of every scheduling interval

1: (Historical Learning) Generate the realizations of ωt for the next Wt time slot.
2: (Deployment Policy Approximation) Infer the slice deployment policy π̂+ by solving

T4S model under samples {ω̂t}Wt
t=1.

3: Instantiate the accepted network slices according to policy π̂+.
▷ Online slice running control

4: (New Observations) Collect new observations for ωt ,Qt at the beginning of time slot t.
5: (One-shot Control) Decide the current slice running policy πt

− by solving the determinis-
tic problem defined in (4.26).

6: (Queue Update) Observe the resulting utility gk(π
t
−,ωt), and update virtual queues by

(4.28).
7: Go to Step 4 if t = t +1 is not the beginning of new scheduling interval
8: Otherwise go to Step 1.

4.6.2 Theoretical Analysis

We first show the running constraint violation across iteration in Algorithm 4.

Lemma 1: Let Q0
k = 0 and Qt

k updates according to (4.28). Then, Algorithm 4 satisfies: for
all t > 0, i) Qt

k is mean-rate stable (i.e., E[Qt
k] is upper bounded by a finite value), and ii)

ḡk
(
π̂+,{π

τ
−}t−1

τ=0
)
− c̄k ≤ E[Qt

k]/t +δk,∀k = 1,2, . . . ,K (4.29)

Proof. The boundedness of E[Qt
k] can be proved by contradiction. Assume Qt

k is infinite
large at some t. Then, in order to minimize the expression in (4.26), it must return a flow
running rate with πt

− = 0 and lead to the decrease of queue length for next slot, Qt+1
k , by

c̄k +δk. This continues until all Qt
k stabilize with certain finite queue backlogs. Consequently,

under the control of Algorithm 4, it is impossible for Qt
k to grow to infinity and thus all Qt

k

are mean-rate stable. As shown in (4.29), this property is useful to guarantee a declined
constraint violation across iterations. Next, we prove the constraint violation in (4.29).
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From (4.28), we have:

Qt+1
k ≥ Qt

k +gk(π
t
−,ωt)− (c̄k +δk) (4.30)

Summing over τ ∈ {0,1, . . . , t −1} gives:

Qt
k −Q0

k ≥
t−1

∑
τ=0

gk(π
τ
−,ωτ)− t(c̄k +δk) (4.31)

Dividing by t and using the fact that Q0
k = 0 gives

Qt
k

t
≥ 1

t

t−1

∑
τ=0

gk(π
τ
−,ωτ)− c̄k −δk (4.32)

Taking expectations and re-arranging terms yield (4.29). ■

The right side of (4.29) presents the running violation on the time-averaged constraints
in (4.7). With the boundness of Qt

k, it is clear that the term E[Qt
k]/t vanishes as t → ∞.

Additionally, the added calibration offset only takes positive values in the event of system
underloading. In this case, π̂+ tends to accept less loads, and the real-time running utility
gk(π

t
−,ωt) is less likely to exceed the average budget c̄k. Consequently, the added calibration

offset is inoffensive to the constraint in (4.7). This shows that Algorithm 4 maintains the
same solution feasibility as the existing drift-plus-penalty algorithm [159]. Meanwhile, as
we will shown below, the action of the misloading calibration can enhance Algorithm 4 with
a better objective convergence than the vanilla drift-plus-penalty algorithm.

Theorem 1: Let f̄
(
{π̂t

−}t−1
t=0

)
be the achieved objective value under the online control se-

quence {π̂t
−}t−1

t=0 by recursively solving program (4.26), and f̄ ∗ be the optimum of T3S-R
obtained by some ‘genius’ decision maker who holds a complete knowledge about the true
system trajectory {ωt}t−1

t=0. Then, we have:

f̄
(
{π̂

t
−}t−1

t=0
)
≤ f̄ ∗+

1
V

(
B− 1

t

t−1

∑
τ=0

K

∑
k=1

E[Qτ
k ]δk

)
(4.33)

where B is a positive constant that upper bounds the second moments of the “arrival” and
“service” processes of Qt

k as follows:

1
2

K

∑
k=1

E
[(

gk(π
t
−,ωt)− (c̄k +δ

t
k)
)2]≤ B (4.34)
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Proof. This can be proved by extending the result in [159] with the misloading calibration
scheme. Based on the objective function analysis in [159], we can bound the weighted-sum
expression in (4.26) under the new queue update function in (4.28) as follows:

E[∆τ ]+VE[ f (πτ
−,ωτ)]≤ B+V f̄ ∗−

K

∑
k=1

E[Qτ
k ]δk (4.35)

where ∆τ = Lτ+1 −Lτ , called the Lyapunov drift.
Summing (4.35) over the first t slots gives:

E[Lt ]−E[L0]+V
t−1

∑
τ=0

E[ f (πτ
−,ωτ)]≤ (B+V f̄ ∗)t −

t−1

∑
τ=0

K

∑
k=1

E[Qτ
k ]δk (4.36)

Dividing the above by Vt and using the fact that E[L0] = 0,E[Lt ]≥ 0, we have:

f̄
(
{π̂

t
−}t−1

t=0
)
=

1
t

t−1

∑
τ=0

E[ f (π̂τ
−,ωτ)] (4.37)

(a)
≤ 1

t

t−1

∑
τ=0

E[ f (πτ
−,ωτ)] (4.38)

≤ f̄ ∗+
1
V

(
B− 1

t

t−1

∑
τ=0

K

∑
k=1

E[Qτ
k ]δk

)
(4.39)

where (a) follows because π̂τ
− is the optimal solution of program (4.26). Proof ends. ■

With the fact that E[Qτ
k ]≥ 0 and δk ≥ 0, (4.33) shows that Theorem 1 always achieves

a tighter running performance bound than the vanilla drift-plus-penalty algorithm. This
particularly improves the performance when Qτ

k spurts due to a sudden improvement of the
system state when the system is under-loaded. This stands to the reason that it is less likely
to break the time-averaged constraints in this case. Then, the action of misloading calibration
provides a pullback on Qt

k to avoid the unnecessary penalty on f (πt
−,ωt) in (4.26), which

contributes the extra performance here.

4.7 Performance Evaluation and Analysis

In this section, we use synthetic scenarios to evaluate the proposed solutions. Current BT’s IP
network topology within Europe3 is considered as the physical network, from which arbitrary
node pair is chosen as the source and destination of each network slice request. 5 nodes

3http://www.topology-zoo.org/dataset.html
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in the whole 21 nodes are randomly selected to act as the wireless access nodes. For each
node in the network, a fixed number of computing resources is considered. Nevertheless, the
available wireless transmission capacity within each access node is time-variant. Considering
the long-term co-existence of 5G and legacy networks (3G/4G, etc.) and the tremendous
changes among Line-of-Sight (LOS), non-LOS (NLOS) and outage stages in 5G wireless
channels [113], we use the Rician fading and Rayleigh fading4 [148] to emulate the adopted
wireless networking environment. For each fading status, a fixed duration T∆ is set, and the
transition probabilities between statuses are equal. The channel parameters are configured so
that the resulted capacity of each access node is on average within the envisioned capacity
range for a 5G cell [109].

4.7.1 A Benchmarking Problem

As a benchmark, we extend the deterministic network slicing model in [142] to maximize
the time-averaged system revenue while safeguarding the time-averaged link resource cost
not exceeding a given budget. For clarity, the involved objective5 and constraint functions
are clearly defined as follows:

f (·) =−∑
s∈S

(
π

st
−(bs −

dynamic link cost︷ ︸︸ ︷
∑

l∈L s,e∈E

π
le
+ke)+

fixed node cost︷ ︸︸ ︷
∑

f∈F s,n∈N

π
f n
+ d f kn

)
(4.40)

g(·) = ∑
s∈S,l∈L s,e∈E

π
st
−π

le
+ke (4.41)

ul(·) :


π

st
− ≤ π

s
+ds,∀s ∈ S (4.42)

∑
l∈L s,s∈S

π
le
+π

st
− ≤ ce,∀e ∈ E (4.43)

∑
s∈{S|Sr(s)=na}

π
st
− ≤ cnat ,∀na ∈ Naccess (4.44)

and the solution space for a valid slice deployment policy π+ ∈ P+ is defined as follows:

P+ :



∑
f∈F s,s∈S

π
f n
+ d f ≤ cn,∀n ∈ N (4.45)

∑
n∈N

π
f n
+ = π

s
+,∀ f ∈ F s,s ∈ S (4.46)

∑
euv∈O(u)

π
li jeuv
+ − ∑

evu∈I(u)
π

li jevu
+ = π

iu
+ −π

ju
+ ,∀li j ∈ L s,s ∈ S,u ∈ N (4.47)

4But the proposed solution is not limited to any specific type of dynamics.
5Take minus to change to a minimization problem as defined in our models.
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where

• {N ,E } are the node and directed link sets in the physical network, respectively;

• {L s,F s} are the virtual link and VNF sets for slice request s ∈ S, respectively;

• π+ = {πs
+,π

le
+ ,π

f n
+ },∀s, l,e, f ,n are binary variables that decide whether slice request

s ∈ S should be accepted, whether physical link e should be used to construct the
virtual link l, and whether VNF f should be installed in physical node n, respectively;

• π− = {πst
−},∀s, t are variables that decide the running flow rates allocated to s at t;

• {Sr(s),Naccess} are the source node of s and access node set, respectively;

• {cn,ce,cnat} are the capacities of node, link and access resources, respectively;

• {bs,ke,kn} are the service price per unit rate and prices for using per unit physical link
and node resources, respectively;

• {ds,d f } are the demanded service rate of s, and the required computing resources to
instantiate f , respectively;

• {O(u), I(u)} are the outgoing and incidental links of physical node u, respectively;

• {euv, li j} are the physical link connecting node v from node u and virtual link connect-
ing VNF j from VNF i, respectively.

In this example, we aim to maximize the time-averaged system revenue f̄ under a
given time-averaged link cost budget c̄ (i.e., only one constraint, ḡ

(
π+,{πt

−}∞
t=0

)
≤ c̄, for

(4.7)). Specifically, Constraints (4.42) and (4.46) enforce the admission control on correlated
variables; (4.43) – (4.45) bound the capacities of corresponding link and node resources;
(4.47) expresses the single-path flow conservation [127].

The proposed solution is compared with three existing reference algorithms, Current-
Greedy (CG) [108] and Prediction Average Approximation (PAA) and Learning Augmented
Optimization (LAO)+CG. In CG, slicing decisions are made only to optimize instant system
revenue while guaranteeing that the resource cost constraint is not violated under the current
network state. In PAA, however, predictions of network states in the next Wt time window are
used to approximate the deployment policy in T4S. The slice running control policies in PAA
are then constructed to best respond to the predicted mean states. In contrast, in our proposed
approach (LAO), the slice deployment policy is first derived through historical learning.
Thereon, the deployed slices are adaptively operated with the Lyapunov stability and the
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misloading calibration scheme. In light of the separate efficacy of the slice deployment and
running control policies in LAO, we further exam the combinations of the proposed slice
deployment policy with CG based slice running control policy (for clarity, this is called
LAO+CG).

In the following experiments, upfront observation trajectories were first generated ac-
cording to the corresponding distributions. For simplyfication, we directly compared the
performance of PAA under the approximation with Wt error-free predictions, which is an
upper bound that PAA can achieve if a real prediction process is imposed. The historical
learning in LAO was implemented with a random sampling strategy, i.e., directly sampling
at random from these upfront trajectories. All compared algorithms were solved under a
same greedy solver, which greedily decides the slice placement policy πs

+ for each s through
Benders’ decomposition algorithm [125].

All algorithms are measured with the following five performance metrics: (1) time-
averaged system revenue, (2) time-averaged system throughput, (3) time-averaged link cost,
(4) number of accepted slice requests, and (5) time-averaged outage ratio of deployed services.
A service is considered outage if the real-time service rate is below a certain threshold (set as
0.2ds in experiments). The simulation parameters are shown in Table 4.1.

Table 4.1 Simulation Setup for Chapter 4

Parameters Value
cn,n ∈ N Fixed with an initial value uniformly distributed within

[5,10]
ce,e ∈ E 10Gbps
[kn,ke,bs] [10, 20/Gbps, 100/Gbps]
# of VNFs |F s| 3
Rate demand ds 1–3 Gbps, uniformly distributed
Node resource demand d f 1–3, uniformly distributed
Radio bandwidth 1 GHz
Rician factors 1dB
Power ratio of signal to noise plus interference Rician: 31.3 dB; Rayleigh: 12.8 dB
Channel duration T∆ 10
Scheduling interval T 20

4.7.2 Time-Averaged System Performance

We first test the time-averaged performance of compared algorithms when the system is
converged. In the following experiments, we apply Poison arrival process with the arrive rate
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Fig. 4.4 Performance comparisons with V = 50,Ts = 40,Wt = 40: a) Time-averaged system revenue, b) Time-
averaged link cost.

= 20 per scheduling interval and average service lifespan Ts = 40 for the received network
slice requests.

In Fig. 4.4, we plot the compared time-averaged objective value (i.e., system revenue)
as a function of cost budget c̄. We observe that the proposed slicing solution achieves
an obvious system performance improvement over the compared algorithms in all cases.
Moreover, under all cases, the converged time-averaged cost constraint is well preserved.
Such improvement manifests particularly when the system is greatly limited by the cost
budget constraint. For the best case, say c̄ = 400 in Fig. 4.4a, LAO gains even up to 2.6×,
1.63× and 1.37× better performance than CG, LAO+CG and PAA, respectively. This can
be interpreted as follows:

For CG, the slicing policies only best respond to the instant network states at the decision
time. As a consequence, any over-optimistic decision will lead to high resource cost (node
cost) for maintaining the over-loaded slices. Likewise, any over-pessimistic decision will
not be able to make full use of the available cost budget to improve the system performance.
Benefited from the approximation with the partial future predictions, these situations are
slightly alleviated in PAA. However, the predicted mean state information still fails to capture
the long-term system evolution and then adapt itself efficiently. By contrast, with full respect
to large history samples and learned dynamics, the proposed slicing solution well matches
the system dynamics, which finally contributes the significant system improvements.

Fig. 4.4 also shows that the performance of the compared three algorithms keeps quicker
growing than LAO as c̄ increases. This indicates that the cost budget plays more critical role
than the underlying available physical resources for the compared ones. When c̄ is large
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enough, other factors (e.g., wireless access resources) will become the key scarce resources
for the system to further improve.

4.7.3 Solution Feasibility and Convergence Analysis

Fig. 4.5 presents the real-time average performance. The achieved numerical results in Fig.
4.5c show that all the compared algorithms meet the required time-averaged resource cost
constraint throughout the running. However, this is achieved in CG and PAA by restricting
the real-time resource cost at each running time slot according to the fixed cost budget and
predicted mean state information, respectively. These drawbacks lead to very low utilization
of the available cost budget. However, combined with the virtual queue based slice running
policy in the proposed solution, the practical running link cost is below but very close to
the given cost budget line. This confirms the solution feasibility of the proposed slicing
policies, as analyzed in Lemma 1. On the other hand, we notice from both Fig. 4.4b
and Fig. 4.5c that the available cost budget is always under-exploited for all compared
algorithms. This is resulted from the suboptimality of the solution to the T4S program. When
an approximate solver is applied during solving the T4S model, only solutions preserving
the time-averaged cost constraint will be returned. Depending on the suboptimality gap of
the applied approximate solver, the estimated cost is always inevitably lower than the given
cost budget by a certain value.

Under a feasible slicing solution, Fig. 4.5a, Fig. 4.5b and Fig. 4.5d confirm that the
benefits of network providers and the provisioned service qualities are all superior in LAO
when compared with the other three. In Fig. 4.5e, the serrated changes on the number of
running services across t are the results of the scheduling towards new slice requests and the
service expiration of deployed slices. Fig. 4.5e shows that all compared algorithms nearly
maintains the same level of service loads when the overloading and underloading cases are
averaged. However, when combined with other performance metrics, we can see that a
similar loading level in LAO contributes up to 2.6× better revenue than CG. This indicates
that LAO coordinates the available resources for the competing requests in a more efficient
manner. The degradation of the compared algorithms results from both the misloading during
the slice deployment phase and the inefficient utilization of cost budget during the slice
running control.

4.7.4 Parameter Effectiveness

We now test the solution effectiveness of our proposal under different parameter settings.
Fig. 4.6 plots the running time-averaged performances under different V . It shows that
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Fig. 4.5 Performance comparisons with V = 50,Ts = 40,Wt = 40, c̄ = 400: a) Time-averaged system revenue
till t, b) Time-averaged system throughput till t, c) Time-averaged link cost till t, d) Time-averaged running
outage probability till t, e) Number of running services across t.
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Fig. 4.6 Performance comparisons of LAO under different V with c̄ = 400,Wt = 40,Ts = 40: a) Time-averaged
revenue till t, b) Time-averaged link cost till t, c) Timed-average throughput till t, d) Time-averaged running
outage probability till t.
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the solution superiority of our proposal is preserved under all values of V . Moreover, all
the resulted time-average system metrics keep sustainable improvement as V goes larger,
although the improvement gradually vanishes when V reaches a certain value.

Also revealed in Fig. 4.6, is the property that the running time-averaged system perfor-
mance converges more quickly when controlled by a smaller V . These results are consistent
with the theoretical analysis in Section 4.6.2 and [159]. The choice of a ‘good’ V depends on
the balancing requirements between the convergence speed and desired system performance,
which is subject to practical applications.

In Fig. 4.6, we can also observe that there is always a descending slop during the start-up
time along t axis. This is caused by the service expiration and tear-down of the deployed
services with lifespan less than scheduling interval (i.e., Ts ≤ T ). After a slow warm-up, more
active services with lifespan Ts > T will be accumulated and keep active in the following
scheduling intervals. Since these services, once deployed, will have impacts throughout
their lifespans, the service lifespan impose a direct influence on the decision accuracy of the
obtained slicing policies. In next section, we provide a more detailed analysis on the efficacy
of different service lifespans.

4.7.5 Efficacy of Different Service Lifespan

Intuitively, if the deployed services only possess a short lifespan, say Ts < T , the system will
get under-loaded during the remaining running time of a scheduling interval. In contrast, if
Ts ≫ T , say Ts = ∞, the system will keep loading new requests until the system is saturated
during the peak networking status. This will lead to overwhelming system overloading.
To illustrate this, we examined three different lifespan settings Ts = {20,50,100}. The
performance comparisons are shown in Fig. 4.7.

When services with short lifespans are largely loaded as the case of Ts = 20, Fig. 4.7
discloses that the system always maintains very low number of running services, resulting in
the underutilization of available resources. Inversely, if it comes to the case of Ts = 100, more
loaded services only lead to noticeable build-up of resource cost and service competition.
This deteriorates both the benefit of network providers and provisioned service quality. By
contrast, Ts = 50 achieves the best control towards the misloading problem. In practical
networking environment, the scheduling interval T is fine-tuned according to the features
of the supported services. Also, different network slices with policies and system settings
dedicated to the service features can be created. This is exactly one of the critical envision
when network slicing is advocated.
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Fig. 4.7 Performance comparisons of LAO under different Ts with V = 50,T = 40,Wt = 40, c̄ = 400: a) Time-
averaged system revenue till t, b) Time-averaged system throughput till t, c) Time-averaged link cost till t, d)
Time-averaged running outage probability till t, e) Number of running services across t.
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4.8 Conclusion

This chapter has highlighted the performance safety problem of slicing operations when the
environment is time-varying and difficult to track with explicit models due to its complexity
and heterogeneity. Based on the stochastic historical learning and online optimization, we
have accordingly developed a learning augmented online optimization approach to learn a
safe slicing solution from historical records and real-time observations. We have proved that
the feasibility of proposed solution with a sub-optimality, up to a constant additive factor.
Finally, we have demonstrated up to 2.6× improvement in the simulation when compared
with the referenced algorithms. This work is a good start to stimulate the further researches
on the innovative use of learning augmented optimization approaches for more dynamic and
stochastic networking problems.



Chapter 5

Deep Learning Solves the Optimization
of Service Function Chaining in 5G

The solutions presented in the previous chapters are basically model based solutions supported
with solid optimization/control theories. They are more dedicated to specific problems and
often require some assumptions and strong domain expertise. Additionally, the success
of these solutions to optimize the stochastic systems requires solving a base optimization
program repeatedly until convergence. The optimality loss and computation cost of the
final solutions are strongly dependent on the solving efficiency to the base optimization
program. However, for each iteration, the base program exhibits the same model structure,
but only differing in the input data. This makes it possible to apply the latest graph neural
network to abstract the core structures of an optimization model and then use the learned
deep learning model to directly generate the solutions to the equivalent optimization model.
In this chapter, we will present a new deep learning based solution to represent and solve
the targeted optimization problems in this thesis. The work of this chapter is able to bridge
the two distinct technologies (i.e., deep learning and optimization) and facilitate their joint
application in the field of communication and networks.

5.1 Introduction

The rapid uptake of mobile devices and the rising popularity of mobile applications and
services pose unprecedented demands on mobile and wireless networking infrastructure.
Upcoming 5G systems are evolving to support exploding mobile traffic volumes, real-time
extraction of fine-grained analytics, and agile management of network resources, so as to
maximize user experience [95]. Fulfilling these tasks is challenging, as nowadays networking
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environments are increasingly complex, heterogeneous, and evolving. One potential solution
is to resort to advanced Machine Learning (ML) techniques, in order to help manage the rise
in data volumes and data-driven applications. ML enables systematic mining of valuable
information from traffic data and automatically uncover correlations that would otherwise
have been too complex to extract by human experts [160]. The recent success of deep
learning underpins new and powerful tools that tackle problems in this space. As the flagship
of ML, deep learning has achieved remarkable performance in areas such as computer vision
and natural language processing (NLP) [161]. Networking researchers are also beginning to
recognize the power and importance of deep learning, and are exploring its potential to solve
problems specific to the networking domain [96], [162].

Traditionally, many networking control problems have been solved by constrained opti-
mization, dynamic programming and game theory approaches. Unfortunately, these methods
either make strong assumptions about the objective functions (e.g. function convexity) or
data distribution (e.g. Gaussian or Poisson distributed), or suffer from high time and space
complexity. As the networks become increasingly complex, such assumptions sometimes
turn unrealistic.

Additionally, as a typical application of the graph optimization, networking optimization
problems (especially when the problem is combinatorially NP-hard) have been traditionally
tackled by three main approaches [163]: exact algorithms, approximation algorithms and
heuristics. Exact algorithms are based on enumeration or branch-and-bound with an integer
programming formulation, but may be prohibitive for large instances. On the other hand,
polynomial-time approximation algorithms are desirable, but may suffer from weak optimal-
ity guarantees or empirical performance, or may not even exist for inapproximable problems.
Heuristics are often fast, effective algorithms that lack theoretical guarantees, and may also
require substantial problem-specific research and trial-and-error designing.

As claimed in [163], all three paradigms seldom exploit a common trait of real-world
optimization problems: instances of the same type of problems are solved again and again
on a regular basis, maintaining the same combinatorial structure, but differing mainly in
their data. That is, in many applications, values of the coefficients in the objective function
or constraints can be thought of as being sampled from the same underlying distribution.
For instance, a package delivery company routes trucks on a daily basis in a given city.
Thousands of similar optimizations need to be solved, since the underlying demand locations
can differ.

In contrast, ML methods have the potential to be applicable across many optimization
tasks by automatically discovering their own heuristics based on the training data, thus
requiring less hand-engineering than solvers that are optimized for one task or one specific
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problem instance only. Recently, there has been some seminal work on using deep learning
architectures to learn optimization solutions for combinatorial problems, including the Trav-
elling Salesman Problem (TSP) [98], routing problems [164] etc. However, the architectures
used in these works are generic and tested with only some toy problems.

In this chapter, we aim to address the challenging placement tasks of Service Function
Chain (SFC) during network softwarization by applying latest deep learning techniques to
learn a combinatorial solution directly from the historical data. The deep learning model is
constructed based on the latest graph attention mechanism and encoder-decoder architecture.
In order to facilitate the solving of the constrained optimization program for the targeted
network slicing problem in a deep learning manner, we design a problem-specific decoding
process by integrating program constraints and problem context information. The deep
learning model, once trained, can be used to directly generate the solution to any specific
problem instance through only some simple linear operations. This avoids the extensive
computation in traditional approaches of re-solving the whole combinatorial optimization
problem from the scratch and is promising to facilitate a wider technology penetration of
network softwarization in different applications. The contributions of this chapter can be
summarized as follows:

• Following the latest Transformer architecture, we construct a problem-specific attention
based graph encoder to learn the network topology and state information for the network
slice placement problem targeted in this chapter.

• A context-aware decoder is designed to generate the desire combinatorial solution
directly for the constrained optimization problem in network slicing. The constraints
are fully preserved by a specific masking mechanism, which are then integrated into a
context node to aid the decision of the combinatorial solution at each step.

• We train the new encoder-decoder model with the REINFORCE gradient estimator to
solve a realistic benchmarking problem for network slicing and verify the superiority
of the proposed approach through simulation.

5.2 Related Work

Inspired by the great success of deep learning in other domains, there exists a growing
number of recent papers that attempt to bring deep learning into the computer networking
domain. Alsheikh et al. identified the benefits and challenges of using big data for mobile
analytics and proposed a Spark based deep learning framework for this purpose [165]. Wang
et al. presented a traffic-driven deep learning solution to infer the network topology online
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for the problem of network topology configuration optimization. Graph CNN and LSTM
were leveraged in [166] to predict dynamic macroscopic traffic congestion. More recently,
Fadlullah et al. delivered a survey on the progress of deep learning in a board range of
areas, highlighting its potential application to network traffic control systems [92]. Zhang
et al. bridged the gap between deep learning and mobile and wireless networking research,
by presenting a comprehensive survey of the crossovers between the two areas [95]. In
general, most of these preliminary researches use deep learning tools to extract additional
information (e.g. pattern recognition or network state prediction), which are then used to
aid the decisions of network optimization and controls. This presents great difference with
our work, in which we aim to use deep learning techniques to directly solve constrained
combinatorial optimization problems for networking applications.

The application of Neural Networks (NNs) for optimizing decisions in combinatorial
optimization problems can be dated back to Hopfield and Tank [167], who applied a Hopfield-
network for solving small TSP instances. NNs have been applied to many related prob-
lems [168], although in most cases solutions are learned separately for every instance. More
recently, there is also an increasing attention among academia paid to directly learn a solution
for combinatorial optimization problems. In this respect, the majority of reported researches
only present the proof-of-concept results on some classic combinatorial optimization prob-
lems, including TSP, vehicle routing problem, knapsack problem, and etc. These pioneering
work, although still quite tutorial and only validated on some toy problems, open a promising
new direction for solving diverse practical combinatorial optimization problems.

Specifically, the first attempt was proposed by Vinyals et al. in [98], who introduced the
Pointer Network (PN) as a model that used attention to output a permutation of the input,
and trained this model offline in a supervised manner to solve the TSP. Bello et al. in [169]
introduced an Actor-Critic algorithm to train the PN without supervised solutions. They
considered each instance as a training sample and used the cost (tour length) of a sampled
solution for an unbiased Monte-Carlo estimate of the policy gradient. They introduced extra
model depth in the decoder by an additional glimpse [170] at the embeddings, masking nodes
already visited. For both papers, only small problem instances are tested and the reported
results only show margin gains when compared with traditional optimization solvers. Nazari
et al. in [164] replaced the LSTM encoder of the PN by element-wise projections, such that
the updated embeddings after state-changes can be effectively computed. They applied this
model on the Vehicle Routing Problem (VRP) with split deliveries and a stochastic variant.

Apart from the applications of separate encoder and decoder in above researches, the
authors in [163] presented a single model based on graph embeddings. They trained the model
to output the order in which nodes were inserted into a partial tour, using a helper function
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to insert at the best possible location. Their 1-step DQN [171] training method trained the
algorithm per step and incremental rewards provided to the agent at every step effectively
encouraged a greedy behavior. Nowak et al. in [172] trained a Graph Neural Network
(GNN) in a supervised manner to directly output a tour as an adjacency matrix, which
was converted into a feasible solution by a beam search. The model is non-autoregressive,
so cannot condition its output on the partial tour. Kaempfer and Wolf in [173] trained a
model based on the Transformer architecture [174] that outputs a fractional solution to the
multiple TSP (mTSP). The result can be seen as a solution to the linear relaxation of the
problem and they use a beam search to obtain a feasible integer solution. More recently,
closest to our work, the authors in [175] presented a general attention based model to learn
solutions for the diverse routing problems. They integrated decoding state information into a
context node and then updated the context node to generate sequential outputs. However, the
encoder-decoder structure is tied to the given routing problems, which limits its applications
in general combinatorial optimization problems. Therefore, a new learning model with
problem-specific structure is still absent for the placement problem of SFC.

The direct application of deep learning for VNF related networking problems is still in
its infancy. Among the very few work, Li et al. in [176] investigated the application of Deep
Reinforcement Learning (DRL) in the resource management of radio resource slicing and
priority-based core network slicing, and demonstrated the advantage of DRL over existing
competing schemes. Similarly, in [177], a DRL solution based on deep Q-learning was
presented for multi-tenant cross-slice resource orchestration, where a discrete number of
communication and computation resources have to be allocated to different slice tenants.
In [178], a deep deterministic policy gradient (DDPG) method with advantage function was
employed to allocate bandwidth resources to different network slices. Similar DRL solution
was also presented in [179], in which the authors leveraged an actor-critic architecture
to learn to provision resources to the VNFs in an online manner. The testaments in the
abobe work have demonstrated the promissing efficacy of DRL for the tasks of resource
management/allocation, which, however, are inherently different from the SFC placement
problem in this chapter. Moreover, the authors in [180] proposed a Graph Neural Network
(GNN)-based algorithm, which exploits the VNF forwarding graph topology information to
predict future resources requirements for each VNF component. Similarly, Artificial neural
network was applied in [181] to predict affinity of VNFs. Both of the above researches
are the applications of the deep learning techniques for the prediction tasks, which do
not directly output network control actions. Instead, the extracted additional prediction
information in their work are used to aid the decisions of subsequent network controls. To



94 Deep Learning Solves the Optimization of Service Function Chaining in 5G

the best knowledge of the author, this work is the first application of the concept of neural
combinatorial optimization for the SFC placement problem.

5.3 Attention Model

Without loss of generality, we abstract the optimization problem for the network slicing as
the following generic combinatorial program:

min f (π)
s.t.

gk(π)≤ ck,k = 1,2, . . . ,K
π are integers

(5.1)

where f denotes the objective function, g is a set of the specific resource and service utilities
for constructing network slices under a capacitated physical network, and π is a vector of
decision variables indicating which physical nodes and link paths are used to construct each
network slice in the final slicing strategy.

In the previous chapters, we have solved this problem/variants through several problem-
specific approaches. As we discussed before, each attempt of solving this problem in a large
dimension is time-consuming and computationally expensive. Moreover, any change to the
coefficients of objective or constraint functions will lead to the re-solving of the program
from the scratch. Next, we resort to the latest deep learning technologies to learn the solution
directly from the input data and without revoking any traditional optimization solvers. This
is achieved by an encoder-decoder architecture.

5.3.1 Encoder

The topology of network infrastructures presents a typical graph structure, in which the
traffic flows through a source-destination routing path with a set of nodes and connection
links in the graph. Different with the popular data structures (time-series data, image/video)
in the dominant deep learning applications (e.g., NLP, autonomous driving), the graph-
structured data in networking domains presents an irregular distribution pattern and strong
dependence among nodes and links, which make it difficult to represent and learn through
a deep learning model. In order to efficiently exploit the structure patterns and represent
the states of a network graph, a graph attention neural network [182] will be applied in this
work. Specifically, both the individual node features (e.g., coordination, available resources)
and topological features (e.g., neighbouring and connection relationship) will be embedded
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to form the initial states. Then, a Multi-Head Attention (MHA) mechanism [174] will be
applied to pass the initial state information along the connection topology so that the final
state of each node can represent the aggregated information from all other connected nodes.
Finally, the encoded graph state information will be fed to a problem-specific decoder to
generate the final optimization solution.

The encoder that we use is similar to the one in the attention routing problem [175].
But we provide the problem-specific input features and replace the fully connected network
topology with a realistic directional-connected network topology. Thus, the attention weights
are updated according to the connection relationship in the graph structure. Specifically, the
encoder processes the input in following manner:

1. Initial embedding for input features xi:

h(0)i =W xxi +bx (5.2)

In contrast to the simple input feature (i.e., node coordinates) for TSP problem in [175],
the input features for the target problem exhibit a more complicated structure. The
placement of VNFs requires the information about the resource capacities of each node
in the graph, since this is directly connected with the placement decisions. Moreover,
information about node locations is required to chain the placed VNFs. Consequently,
in the SFC placement problem, the input features in xi consist of both the node
coordinates and resource capacities. The input dimension is dx = 2+Nr, where Nr is
the number of resource types in each node. The output dimension of h(0)i is dh.

2. N-layer attention for h(0)i :
The initial embeddings are updated using N sequential attention layers, each consisting
of two sublayers, which follows the Transformer architecture. Specificially, the first
attention sublayer computes a MHA that executes message passing between the nodes
with direct connections in the graph. Then, the second sublayer imposes a node-wise
fully connected feed-forward operation on the results of the multi-head attention. Let us
denote h(l)i as the embedding of node i ∈ {1, · · · ,N } produced by layer l ∈ {1, · · · ,N}.
Then, the attention procedure can be formally described as the following formulas:

First sublayer : ĥi = BNl
(

hl−1
i +MHAl

i
(
hl−1

1 , · · · ,hl−1
n

))
(5.3)

Second sublayer : h(l)i = BNl
(

ĥi +FF l(ĥi)
)

(5.4)

where a skip-connection [183] and batch normalization (BN) [184] are added in each
sublayer. These components help accelerate the training and also allows better model
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generality. The details of attention mechanism can be reviewed by referring to work
e.g. [174], [175].

3. Encoder masking:
To respect the connection structure in the graph, two different masking schemes are
introduced during computing the MHA process. Specifically, for the VNF placement
problem, although this is irrelevant to the practical topology structure, the selection of
each node to place a VNF is decided by the status of all other nodes. Therefore, a fully
connected network topology will be applied to calculate the message passing between
nodes. However, for the chaining problem, non-adjacent nodes in the practical network
graph will be masked during computing the attended node states.

4. Compute the graph embedding by aggregating the final node embedding results h(N)
i :

h̄(N) =
1

N

N

∑
i=1

h(N)
i (5.5)

Both the node embeddings h(N)
i , i = {1, · · · ,N } and the graph embedding h̄(N) are used

as input to the decoder. Fig. 5.1 depicts the structure of the applied encoder.
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Fig. 5.1 Attention based graph encoder.
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5.3.2 Decoder for VNF Placement

The learning models (normally manifested with a neural network structure in deep learning)
and classic optimization models (composed by a set of constraint and objective functions)
work in quite different ways. As two distinct technologies to solve a constrained optimization
problem, we need to guarantee an equivalent representation of the original constrained
optimization model with the deep learning model. However, the huge searching space of the
original problem makes it very challenging to decide the training output at each iteration.
Considering the possibly dependent decision structures in the problem, we will transform the
solving process into a problem-specific sequential decoding process by integrating program
constraints and other context information to the training process.

In general, we aim to use the learned graph state information from the Encoder to
calculate the output probability of selecting each node/link at each decoding step. To facilitate
this process, we will construct the context node with the encoded graph state information
and output information in previous steps so that the remaining selections can be updated
accordingly based on both the graph states and previous sequential outputs. Moreover,
masking scheme will be designed to exclude the selections (thus reduce the feasible selection
space) that do not meet all the constraints under existing output sequence. This guarantees
that the learned outcomes during both the training and test stages respect all the constraints
and objectives in the optimization model.

Specifically, the VNF placement problem here aims to find a combination of the physical
nodes to host the required VNFs, which is subject to a set of constraints e.g. resource capacity
constraints etc. Clearly, the decision of placing any VNF will has a direct influence on the
placement results of the remaining VNFs. Such a decision dependency relationship can be
learned with a parametric model, which selects a solution π given a problem instance s. This
can be factorized and parameterized by θ as the following probability chain rule:

pθ (π|s) =
N f

∏
t=1

pθ (πt |s,π1:t−1) (5.6)

where π1:t−1 specifies the placement decisions at all previous steps before t.
The parameters θ of the model are learnt by maximizing the conditional probability for

the training set as follows:

θ
∗ = argmax

θ
∑
s

N f

∑
t=1

log p(πt |s,θ) (5.7)

where N f is the number of VNFs, and the sum is over all training instances.
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With the stochastic policy p(π|s) for a given problem instance s, the solution of this
VNF placement problem can be decoded sequentially. At each step t, the decoder outputs
the placement decision for current VNF and then updates the network status accordingly.
Once selected to host the current VNF f , the selected node’s residual resources will change,
which will then influence the decisions for remaining VNFs. Following the structure in [175],
we integrate these decoding information into a special context node (c) and augment the
graph by connecting the context node to all graph nodes. The decoder computes an attention
sublayer on top of the encoder, but with messages only to the context node. Finally, the final
probabilities are computed using a single-head attention mechanism. The decoding process
is illustrated in Fig. 5.2 and is described in details as follows.
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Fig. 5.2 Context-aware decoder with attention for the VNF placement problem.

1. Construct node embedding for context node (c):
To facilitate the capacity constraints, we keep track of the residual resource capacities
ĉi,r,t for each type of resources r ∈ {1, · · · ,R} in nodes i ∈ {1, · · · ,N } at step t. After
a node, say i, is selected at step t, the resource status of node i is then updated as
follows:

ĉi,r,t =

max(0, ĉi,r,t −d f r) if t > 0

Ci,r if t = 0
(5.8)

where Ci,r is the initial resource capacity and d f r is the required amount of resources
to instantiate VNF f .

Based on the features of the VNF placement problem, it is reasonable to construct
the context of the decoder at step t with the graph embedding, the node πt f−1 selected
to host the previous VNF ( f −1) at step t f−1, the destination node Dst(s) of current
service s, resource demands d f r of current VNF f , and residual resource capacities
ĉi,r,t of all graph nodes i ∈ {1, · · · ,N }. However, the residual resource capacity
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corresponds to individual nodes. For efficiency, we include it in the computation of the
attention layer in (5.10). Therefore, the context node can be constructed as following:

h(N)
(c) =


[
h̄(N),h(N)

πt f−1
,h(N)

Dst(s)
,{d f r}r∈{1,··· ,R}

]
if t > 0[

h̄(N),h(N)
Sr(s)

,h(N)
Dst(s)

,{d f r}r∈{1,··· ,R}

]
if t = 0

(5.9)

where Sr(s) is the source/access node of current service s that includes current VNF f .

In (5.9), h̄(N) provides the holistic graph state information. The following two
terms guide the decoder to select nodes between πt f−1 and h(N)

Dst(s)
, which will be useful

for shortening the source-to-destination traversing path during the subsequent VNF
chaining process.

Next, we can compute the compatibility of this context node with all graph nodes
by using the above MHA mechanism. In the attention layer, we can first obtain
the query q(c) from the context node, and the keys ki and values vi from the node

embeddings h(N)
i as following:

q(c) =W Qh(N)
(c) ki =W Kh(N)

i +W K
d ĉi,r,t vi =WV h(N)

i +WV
d ĉi,r,t (5.10)

where (W Q,W K,WV ) are the weighting coefficiencies to be learnt. (W K
d ,WV

d ) are
(dk ×1) parameter matrices, which project the context information from the residual
resource capacity of individual node.

Finally, the compatibility of the query of context node with all graph nodes can
be computed as:

u(c) j =


qT
(c)k j√

dk
i f j is not masked

−∞ otherwise
(5.11)

where dk = dh/M and M is the number of heads in MHA.

2. Decoding masking:
To preserve other constraints, the following masking mechanism is applied during
every decoding step: (1) masking nodes with any residual resource capacity less than
the required resource demand to place current VNF; (2) if any VNF is failed to place
in a service, all nodes are masked for the remaining VNFs in this service (i.e., directly
reject this service).
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3. Calculation of log-probabilities:
In order to decode the selection at current step, we follow the operations in [169], using
a single attention head and clipping the result within [−C,C](C = 10) with tanh in the
final decoder layer. Then, we can get the final compatibility as

u(c) j =

C · tanh
(qT

(c)k j√
dk

)
i f j is not masked

−∞ otherwise
(5.12)

These compatibilities can be interpreted as unnormalized log-probabilities of
selecting each node. The final output probability vector p can be computed by using a
softmax:

pi = pθ (πt = i|s,π1:t−1) =
eu(c)i

∑
N
j=1 eu(c) j

(5.13)

where pi manifests the probability of selecting node i to host current VNF. With some
decoding strategy, e.g. greedy decoding, the selected node to host current VNF can be
directly decided by finding the node with maximum pi value.

5.3.3 Decoder for VNF Chaining

The VNF chaining problem aims to find the traversing path to reach the placed VNFs
according to the required order. The strong dependency among the sequential decisions
makes the problem quite complicated in traditional optimization approaches. Working
beyond the decoding structure for the VNF placement problem, we now re-construct the
context node (c) by integrating the link information to facilitate the decoding for the VNF
chaining progress. This is illustrated in details as follows:

1. Construct and embed context node (c):
Similar to the process for the context node c in Section 5.3.2, we keep track of the
residual link bandwidth ĉe,t for each graph link/edge e ∈ {1, · · · ,L} at step t. After a
link, say e, is selected at step t to construct the chaining path, the resource status of
link e is then updated as follows:

ĉe,t =

max(0, ĉe,t − rs) if t > 0

Ce if t = 0
(5.14)

where Ce is the initial resource capacity of link e, and rs is the requested flow rate for
current service s.
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Note that selecting a link is equivalent to select an adjacent node of the end
node of previously selected link. Therefore, the link context of the decoder at time t
can be constructed with the graph embedding, states of previously selected node and
destination node, and the requested flow rate of s as following:

h(N)
(c) =


[
h̄(N),h(N)

πt−1,h
(N)
Dst(s)

,rs

]
if t > 0[

h̄(N),h(N)
Sr(s)

,h(N)
Dst(s)

,rs

]
if t = 0

(5.15)

Likewise, we can now compute the compatibility u(c) j of h(N)
(c) with all nodes

through (5.10)–(5.12) accordingly. However, the resource context information in
(5.10) now becomes residual link resource capacity ĉe,t . Finally, the output probability
vector of selecting node j (and thus the corresponding outgoing link e connecting node
j from πt−1 or Sr(s)) to construct the current chaining path can be computed as the
following:

pi = pθ (πt = i|s,π1:t−1) =
eu(c)i

∑ j eu(c) j
(5.16)

where the above sum along j only includes the nodes that are not masked.

2. Decoding masking:
During the chaining process for each virtual link, all non-adjacent nodes and the node
selected at the last step are masked. Moreover, to preserve the link resource constraints,
the nodes are also masked if their remaining link capacities are less than the required
flow rate of current service. Finally, for any decoding step for service s, if the returned
output is NULL (i.e., all nodes are masked at some step), then the service request will
be rejected and all previously allocated resources for already placed VNFs and links in
service s will be released.

5.3.4 Decoding for Joint VNF Placement and Chaining

To this end, we can present the decoding procedures for the joint VNF placement and chaining
problem as follows:

1. Select a service request s according to some strategy, e.g., greedy approach and start the
decoding process from the source node Sr(s) of this service (i.e., previously selected
node πt−1 is the source node, πt−1 = Sr(s));

2. Obtain the node πt f to host the first VNF in the remaining ordered VNF set though the
decoder for the VNF placement. Here, t f denotes the step placing the current VNF;
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3. For each incremental step t = t +1, select a node πt according to the decoding result
for the VNF chaining to construct the chaining path from previously selected node.
This happens sequentially until reaching the node πt f or πt = NULL (if this occurs,
service s will be directly rejected);

4. Update the residual node resources, remaining VNF set and remaining link resources;

5. Go to Step 2 if the remaining VNF set is not empty and s is not rejected. Otherwise go
to Step 1 until all service requests have been iterated.

5.4 Numerical Evaluation

5.4.1 Experiment Setup

In order to train the whole model, we construct a benchmarking problem by using the
constraints (4.42)–(4.47). The objective function is to optimize the following cost function:

Cst(π) = ∑
s

(
∑

f
knd f + klLs

thrs − kp

)
(5.17)

where kn,kl,kp are the coefficiencies specifying the resource/service prices, Ls
th is the length

of the chaining path for service s, and d f ,rs indicate the corresponding resource demands
required to deploy such a SFC.

Finally, similar to [175], we use the REINFORCE gradient estimator [185] with baseline
b(s) to optimize the following loss function:

▽L (θ |s) = Epθ (π|s)
[
(Cst(π)−b(s))▽ log pθ (π|s)

]
(5.18)

where the baseline b(s) is defined as the cost achieved by the best model trained so far.
With the baseline as the supervisor, the training will always try to challenge the best

model achieved so far so that the model can improve itself progressively. Specifically, the
function Cst(π)− b(s) is negative if cost achieved by current solution π is better than the
baseline, causing actions to be reinforced.

To set up the simulation, we use current BT’s IP network topology within Europe1 as
the physical network. Arbitrary node pair is chosen as the source and destination of each
network slice request. 5 nodes are randomly selected to act as the access nodes. For each
node in the network, a fixed number (i.e., a random number in [5,10] in the experiments) of

1http://www.topology-zoo.org/dataset.html
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computing resources is considered. The capacity of each network link is configured as 10.
For each service, in addition to the access & destination nodes, 1 VNF demanding a random
computing resource within [1,3] is added. This leads to 2 virtual links to chain. The flow rate
of each service is configured as a random number within [1,3]. Coefficiencies of kn,kl,kp in
(5.17) are set to 200, 10, 2000, respectively. In the experiments, normalized objective value
−Cst(π)/kp is calculated as a measure of the revenue-related performance of the compared
algorithms.

Hyperparameters: We initialize model parameters with Uniform(−1/
√

dx,1/
√

dx). For
every epoch, we generate at random 51200 instances as the training data. The batch sizes
for training and evalution are set to 128. A constant learning rate η = 10−4 is applied. At
the end of each epoch, we use another 5000 random instances to evaluate the model trained
so far. Model parameters are updated with Adam [188] as optimizer during training. All
experiments are run on a single GPU (1080TI) with Pytorch2. The placement algorithm
proposed in [108] is chosen as a comparison, which decides the policies of VNF placement
and the subsequent VNF chaining through two separate optimization programs. Herein, the
OR-Tools3, an open-source optimization library developed by Google, is invoked to solve
the optimization programs in [108].

5.4.2 Performance Analysis

As a comparison, we first test the performance solved with the OR-Tools over 10000 instances,
which reports that the normalized objective value is 0.95 with a runtime of 32ms per iterate
in average. OR-Tools is written in C++, which is tested nearly 100x faster than Python4.
Since two different programming language are used, we do not directly compare the time
complexity between the traditional optimizer and the proposed neural one. The run-time
cost provided here only provides an insight to the time complexity of the corresponding
implementations. Next, we demonstrate the superiority of the proposed deep learning model
over the traditional optimization sovers. As manifested in (5.13), the decoding strategies
to map the probabilities to corresponding selections play an important role on the efficacy
of the trained model. Therefore, we test the results of the trained model with two different
decoding strategies to show the robustness of the trained model.
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Fig. 5.3 Normalized revenue achieved by the baseline model during training with greedy decoding.

Results achieved with greedy decoding

We first test the results achieved with the greedy decoding strategy. In this case, the node/link
with maximum probability in (5.13) is selected at each step. Fig. 5.3 shows the results
achieved by the baseline model. We can see that the performance is steadily improved across
iterations, which results in a better baseline model to challenge the run-time model training.
For the baseline model, we finally obtain an evaluation result of around 0.87 on normalized
revenue, which reaches 91.58% of the performance of the compared traditional optimization
algorithm. As the training is actually supervized by the run-time baseline model, the trained
model presents a 2.1% optimality loss when compared with the baseline model, but still
reaches 89.47% of the performance of the compared algorithm.

Additionally, the test results in this experiment report that there is nearly 2.5% of prob-
ability that the learned model fails to find a valid solution for the targeted problem. This
presents one of the shared limitations faced by existing learning-based solutions. That is,
due to the black-box operation, deep learning methods can only generate a solution with
some high probablity (can be possibly 99.9%) but without 100% guaranty. For a simple TSP
problem, for example, the latest Pointer Network in [98] can only find a valid solution with a
chance of around 90%. In practical application, the invalid solutions can be further filtered
by a beam search procedure [98] .

2https://pytorch.org/
3https://developers.google.com/optimization/
4https://www.ibm.com/developerworks/community/blogs/jfp/entry/A_Comparison_Of_C_Julia_Python_

Numba_Cython_Scipy_and_BLAS_on_LU_Factorization?lang=en
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Finally, we obtain a test runtime of about 70ms per iterate according to the above model
evaluation experiments. In practical production environment, the optimality gap between
the learning based solution and the traditional ones depends on the quality of labels (or
baseline models) used to supervise the training process. In our case, 10% optimality loss is
presented by the simple greedy decoding and self-learning strategies, in which we only use
the best trained model so far as the supervisor. More advanced rollout strategies proposed
in latest deep reinforcement learning methods can be exploited to provide a better training
supervision, such as deep Q learning [171], actor-critic networks [186] etc. However, in this
thesis, we only focus on how to apply the latest deep learning approaches to represent and
solve a traditional optimization model in a learning manner. We leave these further attempts
to future work.

Results achieved with sampling decoding

Next, we train and test the proposed deep learning model with the sampling decoding strategy
to show that a smarter decoding strategy at each step will reach a less optimality loss. In this
case, we use the probabilistic sampling results to select the decision at each step in (5.13).
Under this decoding strategy, we give a higher chance to select the node/link with higher
probability value, but also leave chances to explore the node/link with lower probability.
This reduces the constraint violation occurred in the greedy decoding case, in which only
node/link with maximum probablity can be selected.

Fig. 5.4 presents the training convergence of the baseline model under sampling decoding
strategy. The convergenced result reaches 0.96, even better than the result gained by Google
OR-Tools. This further demonstrates the superiority of the REINFORCE training policy,
which is able to generate a even better result than a supervised learning label. From the
results in Fig. 5.5, we can see that the test results also obtain significantly improvement
when the training model reaches convergence. Fig. 5.6 further depicts the length of the
returned chaining path. With an adequate learning into the paths explored previously, the
return chaining path is progressively optimized and finally converged to nearly optimal one.
However, due to the probabilistic sampling strategy, the performance of the convergenced
learning model experiences sharp jitters occasionally, as manifested in Fig. 5.5 – Fig. 5.7.
This can be avoided by taking multiple sampling trials and reporting the best as the final
solution. As shown in Fig. 5.7, the occasional performance jitters can be well eliminated
with only several more sampling trials.
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5.5 Conclusions

Traditional combinatorial optimization approaches are widely used to model and solve the
diverse control and management problems in the field of communication and networking.
Since these models are often NP-hard to solve, the traditional optimization solutions exhibit
a critical tradeoff between optimality loss and computation time. In order to address these
challenges and bring the latest deep learning technologies into the networking applications,
we have proposed in this chapter a new encoder-decoder based deep-learning solution,
which can represent and solve a traditional combinatorial optimization problem in a learning
manner. Through a simulation test over the emerging service function chaining problem in
5G, we have demonstrated that the proposed solution can achieve a less optimality loss than
the compared traditional solution. This presents a promising direction for introducing the
advanced learning technologies to empower the current and near-future 5G networks with
more intelligence.

Fig. 5.4 Normalized revenue achieved by the baseline model with sampling decoding during training.
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Fig. 5.5 Normalized revenue achieved by evaluating the training model with test data set and sampling decoding
strategy.

Fig. 5.6 Average chaining path length achieved by evaluating the training model with test data set and sampling
decoding strategy.
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Fig. 5.7 Accep ratio achieved by evaluating the training model with test data set and sampling decoding strategy.



Chapter 6

Conclusions and Future Work

Recent years have witnessed intense research efforts in developing novel optimization and
learning methods that strive to meet the various requirements for the implementation of
network softwarization in 5G. With the ever-growing demands of the diverse 5G emerging
applications and the networking intelligence, the research on network softwarization is ex-
pected to experience much speedy advancement in the upcoming years. In this thesis, several
aspects of network softwarization optimization problems have been examined, especially
with the learning augmented optimization. Three primary contributions have been made with
the faith that they will give rise to more research ideas and benefit practical applications in
this domain:

• Considering the inherently dynamic nature of the underlying physical networking
environment in 5G, a stochastic NFV solution along with its distributed implementation
have been designed. By explicitly integrating the knowledge of influential network
variations into a two-stage stochastic resource utilization model, the proposed solution
has presented a robust and swift NFV implementation for its application in dynamic
networks.

• With the proposed concept of learning augmented optimization, this thesis has investi-
gated the promissing approaches to integrate the traditional optimization and learning
technologies together for the optimization of network softwarization. Accodingly,
considering the possible absence of the statistics information about the underlying
stochastic environment, this thesis has proposed an online learning approach by com-
bining the stochastic combinatorial optimization and Lyapunov based learning theory.
This solution makes it possible to adjust the ongoing networking services to the
changing network status according to the newly observed information at runtime.
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• Finally, distinct to the above work, this thesis also starts the new attempt of fully
utilizing the latest deep learning technologies to solve the traditional cosntraint combi-
natorial optimization problems. This further facilitates the merging of the two distinct
technologies to empower the underlying networking systems with more intelligence.

Generally speaking, the technologies developed in this thesis aim to supply advanced
optimization technologies in an attempt to meet the distinct requirements of intelligent
network softwarization in 5G. They are initially driven from the research point of view and
expected to provide a solid theorectical guidance for the rollout of network softwarization
in practical engineering environment. To make further progress towards this direction, the
future work will primarily consider the following four aspects that may bring immediate
consequences:

• It is normally very difficult to obtain a large number of good-quality labels as the
training data set in many NP-hard combinatorial optimization problems. When training
the model by following a not so good supervisor/baseline, the performance of the
resulted model will suffer from great optimality loss. Therefore, a stronger basedline
or rollout policy is required to further improve the optimality gap between the deep
learning based optimization solvers and traditional optimization solvers. In this respect,
many latest deep reinforcement learning approaches bring a promissing direction to
move this work forward.

• In addition, the processing capabilities of a single machine have been greatly improved
by many new computing technologies, e.g., super-computer, GPU. In spite of this
fact, the memory and computation of a single machine are still significantly lagging
behind the requirements of processing the exploding big data in todays networking
environment. Therefore, a natural solution is to develop distributed and parallelized
solutions for the further improvement of intelligent optimization technologies. Apart
from the extensively applied data parallelization, there is still a huge space to explore
the parallelizations for both the mathematical optimization programs and machine
learning models. We believe more parallelization solutions in this field are anticipated
in the near future.

• Graphs arise naturally in many real-world applications including the diverse optimiza-
tion problems in the networking area. Traditionally, machine learning models for
graphs have been mostly designed for static graphs. However, many applications
involve evolving graphs. This introduces important challenges for the learning and
inference since nodes, attributes, and edges change over time. How to deal with graphs
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with dynamic structures is still an open problem. Dynamic graph neural network is
being actively researched on. We believe it would be a big milestone to achieve the
stability and adaptability of general graph neural networks.

• The performance of existing machine/deep learning techniques is still barely satisfac-
tory in real-time networking systems. Therefore, more efforts are still required so as
to develop a light-weight machine learning process for real-time system controls. For
example, to accelerate the data training process with analytical models (e.g., [187]).

• Finally, timely data monitoring and collection are normally required in these proposed
solutions so that the controller can get a real insight to the run-time networking
environment and make the response accordingly. This requires more efforts to develop
advanced network telemetry technology to support the intelligent optimization in this
thesis. This is non-trival since both modelling the environmental dynamics and data-
driven intelligence require a vast volume of data to work. A promising direction for
this problem would be to install edge/device-side intelligence. This avoids the delay
and overhead of data collections and brings intelligence directly to the locations where
the data is generated.

Although it still requires further efforts in improving the related methods and imple-
menting them in practical products, it is believed that the developments of these methods
will contribute positively to practical applications and inspire more competent solutions
to implement the network softwarization with more advanced optimization and intelligent
learning technologies.
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