231 research outputs found

    Optimal design and freeform extrusion fabrication of functionally gradient smart parts

    Get PDF
    An extrusion-based additive manufacturing process, called the Ceramic On-Demand Extrusion (CODE) process, for producing three-dimensional ceramic components with near theoretical density was developed. In this process, an aqueous paste of ceramic particles with a very low binder content (\u3c1 vol%) is extruded through a moving nozzle at room temperature. After a layer is deposited, it is surrounded by oil (to a level just below the top surface of most recent layer) to preclude non-uniform evaporation from the sides. Infrared radiation is then used to partially, and uniformly, dry the just-deposited layer so that the yield stress of the paste increases and the part maintains its shape. The same procedure is repeated for every layer until part fabrication is completed. Sample parts made of alumina and fully stabilized zirconia were produced using this process and their mechanical properties including density, strength, Young\u27s modulus, Weibull modulus, toughness, and hardness were examined. Microstructural evaluation was also performed to measure the grain size, and critical flaw sizes were obtained. The results indicate that the proposed method enables fabrication of geometrically complex parts with superior mechanical properties. Furthermore, several methods were developed to increase the productivity of the CODE process and enable manufacturing of functionally graded materials with an optimum distribution of material composition. As an application of the CODE process, advanced ceramic components with embedded sapphire optical fiber sensors were fabricated and properties of parts and sensors were evaluated using standard test methods --Abstract, page iv

    Automatic extraction of retinal features from colour retinal images for glaucoma diagnosis: a review

    Get PDF
    Glaucoma is a group of eye diseases that have common traits such as, high eye pressure, damage to the Optic Nerve Head and gradual vision loss. It affects peripheral vision and eventually leads to blindness if left untreated. The current common methods of pre-diagnosis of Glaucoma include measurement of Intra-Ocular Pressure (IOP) using Tonometer, Pachymetry, Gonioscopy; which are performed manually by the clinicians. These tests are usually followed by Optic Nerve Head (ONH) Appearance examination for the confirmed diagnosis of Glaucoma. The diagnoses require regular monitoring, which is costly and time consuming. The accuracy and reliability of diagnosis is limited by the domain knowledge of different ophthalmologists. Therefore automatic diagnosis of Glaucoma attracts a lot of attention.This paper surveys the state-of-the-art of automatic extraction of anatomical features from retinal images to assist early diagnosis of the Glaucoma. We have conducted critical evaluation of the existing automatic extraction methods based on features including Optic Cup to Disc Ratio (CDR), Retinal Nerve Fibre Layer (RNFL), Peripapillary Atrophy (PPA), Neuroretinal Rim Notching, Vasculature Shift, etc., which adds value on efficient feature extraction related to Glaucoma diagnosis. © 2013 Elsevier Ltd

    Fiber Bragg Grating Based Sensors and Systems

    Get PDF
    This book is a collection of papers that originated as a Special Issue, focused on some recent advances related to fiber Bragg grating-based sensors and systems. Conventionally, this book can be divided into three parts: intelligent systems, new types of sensors, and original interrogators. The intelligent systems presented include evaluation of strain transition properties between cast-in FBGs and cast aluminum during uniaxial straining, multi-point strain measurements on a containment vessel, damage detection methods based on long-gauge FBG for highway bridges, evaluation of a coupled sequential approach for rotorcraft landing simulation, wearable hand modules and real-time tracking algorithms for measuring finger joint angles of different hand sizes, and glaze icing detection of 110 kV composite insulators. New types of sensors are reflected in multi-addressed fiber Bragg structures for microwave–photonic sensor systems, its applications in load-sensing wheel hub bearings, and more complex influence in problems of generation of vortex optical beams based on chiral fiber-optic periodic structures. Original interrogators include research in optical designs with curved detectors for FBG interrogation monitors; demonstration of a filterless, multi-point, and temperature-independent FBG dynamical demodulator using pulse-width modulation; and dual wavelength differential detection of FBG sensors with a pulsed DFB laser

    The Application of Zeeko Polishing Technology to Freeform Femoral Knee Replacement Component Manufacture

    Get PDF
    The purpose of this study was to develop an advanced 7-axis Computer Numerical Controlled (CNC) Polishing Machine from its successful original application of industrial optics manufacture into a process for the manufacture of femoral knee components to improve wear characteristics and prolong component lifetimes. It was indentified that the successful manufacture of optical components using a corrective polishing procedure to enhance their performance could be applied to femoral knee implant components. Current femoral knee implants mimic the natural shape of the joint and are freeform (no axis of symmetry) in nature hence an advanced CNC polishing machine that can follow the contours associated with such shapes could improve surface finish and conformity of replacement femoral knee bearing surfaces, leading to improved performance. The process involved generating machine parameters that would optimize the polishing procedure to minimize wear of materials used in femoral knee implant manufacture. Secondly a design of a Non-Uniform Refind B-Spline (NURBS) model for control of the Polishing Machine over the freeform contours of the femoral component. Completing the process involved development of a corrective polishing process that would improve form control of the components. Such developments would improve surface finish and conformity which are well documented contributors to wear and hence the lifeline of orthopaedic implants. By the means of comparison of this technique to that of a conventional finishing technique using pin-on-plate disc testing it was concluded that performance of the CNC polished components was an improvement on that of the conventional technique. In the case of form control their were slight indications through small decreases in peak to valley (PV) error that the process helped reduce form error and could increase the lifetime of femoral knee replacement components. The overall study provided results that indicate the the Zeeko process could be used in the application of polishing of hard-on-hard material combinations to improve form control without compromising surface finish hence improving lifetimes of the implant. The results have their limitations in the fact that the wear test performance was only carried out on orthopaedic implant materials using a pin-on-plate wear test rig. Due to the time limitations on the thesis it can be said that further analysis of correcting form without compromising surface finish on entire implant systems under full joint simulator testing which would provide mre realistic contitions would a more definitive answer be achieved

    Modern Applications in Optics and Photonics: From Sensing and Analytics to Communication

    Get PDF
    Optics and photonics are among the key technologies of the 21st century, and offer potential for novel applications in areas such as sensing and spectroscopy, analytics, monitoring, biomedical imaging/diagnostics, and optical communication technology. The high degree of control over light fields, together with the capabilities of modern processing and integration technology, enables new optical measurement systems with enhanced functionality and sensitivity. They are attractive for a range of applications that were previously inaccessible. This Special Issue aims to provide an overview of some of the most advanced application areas in optics and photonics and indicate the broad potential for the future

    Development of An In Vivo Robotic Camera for Dexterous Manipulation and Clear Imaging

    Get PDF
    Minimally invasive surgeriy (MIS) techniques are becoming more popular as replacements for traditional open surgeries. These methods benefit patients with lowering blood loss and post-operative pain, reducing recovery period and hospital stay time, decreasing surgical area scarring and cosmetic issues, and lessening the treatment costs, hence greater patient satisfaction would be earned. Manipulating surgical instruments from outside of abdomen and performing surgery needs precise hand-eye coordination which is provided by insertable cameras. The traditional MIS insertable cameras suffer from port complexity and reduced manipulation dexterity, which leads to defection in Hand-eye coordination and surgical flow. Fully insertable robotic camera systems emerged as a promising solution in MIS. Implementing robotic camera systems faces multiple challenges in fixation, manipulation, orientation control, tool-tissue interaction, in vivo illumination and clear imaging.In this dissertation a novel actuation and control mechanism is developed and validated for an insertable laparoscopic camera. This design uses permanent magnets and coils as force/torque generators in an external control unit to manipulate an in vivo camera capsule. The motorless design of this capsule reduces the, wight, size and power consumption of the driven unit. In order to guarantee the smooth motion of the camera inside the abdominal cavity, an interaction force control method was proposed and validated.Optimizing the system\u27s design, through minimizing the control unit size and power consumption and extending maneuverability of insertable camera, was achieved by a novel transformable design, which uses a single permanent magnet in the control unit. The camera robot uses a permanent magnet as fixation and translation unit, and two embedded motor for tilt motion actuation, as well as illumination actuation. Transformable design provides superior imaging quality through an optimized illumination unit and a cleaning module. The illumination module uses freeform optical lenses to control light beams from the LEDs to achieve optimized illumination over surgical zone. The cleaning module prevents lens contamination through a pump actuated debris prevention system, while mechanically wipes the lens in case of contamination. The performance of transformable design and its modules have been assessed experimentally

    Layered fabrication of tool steel and functionally graded materials with a Nd:YAG pulsed laser

    Get PDF
    Rapid Prototyping technologies have been developed to transform three-dimensional computer models into physical prototypes within a compressed period of time. The problem of many existing laser and metal powder based techniques is the insufficient strength of parts to meet the practical requirements due to incomplete sintering or melting of powders. One of the research objectives was to melt tool steel powder completely and form fully dense fused structures with a 550 W Nd: YAG pulsed laser. The other objective was to produce material structures with graded composition, so-called Functionally Graded Materials (FGM). It is believed that this process could eventually produce preforms with complex material structures. Tungsten carbide was selected to be mixed with tool steel powder for possible wear resistance applications. The investigation on laser fusing tool steel was first carried out. The optimal process settings were concluded by measuring the contact angle, the surface roughness, bead height and variance of bead width of each single bead produced under various conditions. Fusing overlapped beads and multiple layers was then followed by studying the effects of scan spacings, scanning patterns and layer thickness. A scanning pattern was developed to effectively reduce porosity. Dense cubes of tool steel were then successfully produced with porosity of less than 1 %. Based on the findings from processing tool steel powder, different ratios of WC and tool steel were mixed and processed under the same processing conditions to produce FGMs. Various analysis techniques, including scanning electron microscopy, energy and wavelength dispersive X-ray were applied to examine the microstructures. WC was found partially dissolved in the matrix and evidence of liquid phase sintering was found in powder densification. Hardness, microhardness and nano-indentation testing were performed to show the hardness values in accordance with compositional changes in macro, micro, and nano-scales. The FGM of 80wt% H 10 and 20wt%WC showed an increase in hardness of at least 5-10% from the samples of H10

    The application of Zeeko polishing technology to freeform femoral knee replacement component manufacture

    Get PDF
    The purpose of this study was to develop an advanced 7-axis Computer Numerical Controlled (CNC) Polishing Machine from its successful original application of industrial optics manufacture into a process for the manufacture of femoral knee components to improve wear characteristics and prolong component lifetimes. It was indentified that the successful manufacture of optical components using a corrective polishing procedure to enhance their performance could be applied to femoral knee implant components. Current femoral knee implants mimic the natural shape of the joint and are freeform (no axis of symmetry) in nature hence an advanced CNC polishing machine that can follow the contours associated with such shapes could improve surface finish and conformity of replacement femoral knee bearing surfaces, leading to improved performance. The process involved generating machine parameters that would optimize the polishing procedure to minimize wear of materials used in femoral knee implant manufacture. Secondly a design of a Non-Uniform Refind B-Spline (NURBS) model for control of the Polishing Machine over the freeform contours of the femoral component. Completing the process involved development of a corrective polishing process that would improve form control of the components. Such developments would improve surface finish and conformity which are well documented contributors to wear and hence the lifeline of orthopaedic implants. By the means of comparison of this technique to that of a conventional finishing technique using pin-on-plate disc testing it was concluded that performance of the CNC polished components was an improvement on that of the conventional technique. In the case of form control their were slight indications through small decreases in peak to valley (PV) error that the process helped reduce form error and could increase the lifetime of femoral knee replacement components. The overall study provided results that indicate the the Zeeko process could be used in the application of polishing of hard-on-hard material combinations to improve form control without compromising surface finish hence improving lifetimes of the implant. The results have their limitations in the fact that the wear test performance was only carried out on orthopaedic implant materials using a pin-on-plate wear test rig. Due to the time limitations on the thesis it can be said that further analysis of correcting form without compromising surface finish on entire implant systems under full joint simulator testing which would provide mre realistic contitions would a more definitive answer be achieved.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    • …
    corecore