4,227 research outputs found

    Classification of Epileptic EEG Signals by Wavelet based CFC

    Full text link
    Electroencephalogram, an influential equipment for analyzing humans activities and recognition of seizure attacks can play a crucial role in designing accurate systems which can distinguish ictal seizures from regular brain alertness, since it is the first step towards accomplishing a high accuracy computer aided diagnosis system (CAD). In this article a novel approach for classification of ictal signals with wavelet based cross frequency coupling (CFC) is suggested. After extracting features by wavelet based CFC, optimal features have been selected by t-test and quadratic discriminant analysis (QDA) have completed the Classification.Comment: Electroencephalogram; Wavelet Decomposition; Cross Frequency Coupling;Quadratic Discriminant Analysis; T-test Feature Selectio

    Water Pipeline Leakage Detection Based on Machine Learning and Wireless Sensor Networks

    Get PDF
    The detection of water pipeline leakage is important to ensure that water supply networks can operate safely and conserve water resources. To address the lack of intelligent and the low efficiency of conventional leakage detection methods, this paper designs a leakage detection method based on machine learning and wireless sensor networks (WSNs). The system employs wireless sensors installed on pipelines to collect data and utilizes the 4G network to perform remote data transmission. A leakage triggered networking method is proposed to reduce the wireless sensor network’s energy consumption and prolong the system life cycle effectively. To enhance the precision and intelligence of leakage detection, we propose a leakage identification method that employs the intrinsic mode function, approximate entropy, and principal component analysis to construct a signal feature set and that uses a support vector machine (SVM) as a classifier to perform leakage detection. Simulation analysis and experimental results indicate that the proposed leakage identification method can effectively identify the water pipeline leakage and has lower energy consumption than the networking methods used in conventional wireless sensor networks

    Linear feature selection and classification using PNN and SFAM neural networks for a nearly online diagnosis of bearing naturally progressing degradations.

    No full text
    International audienceIn this work, an effort is made to characterize seven bearing states depending on the energy entropy of Intrinsic Mode Functions (IMFs) resulted from the Empirical Modes Decomposition (EMD).Three run-to-failure bearing vibration signals representing different defects either degraded or different failing components (roller, inner race and outer race) with healthy state lead to seven bearing states under study. Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) are used for feature reduction. Then, six classification scenarios are processed via a Probabilistic Neural Network (PNN) and a Simplified Fuzzy Adaptive resonance theory Map (SFAM) neural network. In other words, the three extracted feature data bases (EMD, PCA and LDA features) are processed firstly with SFAM and secondly with a combination of PNN-SFAM. The computation of classification accuracy and scattering criterion for each scenario shows that the EMD-LDA-PNN-SFAM combination is the suitable strategy for online bearing fault diagnosis. The proposed methodology reveals better generalization capability compared to previous works and it’s validated by an online bearing fault diagnosis. The proposed strategy can be applied for the decision making of several assets

    Fault diagnosis using an improved fusion feature based on manifold learning for wind turbine transmission system

    Get PDF
    In this paper, a novel fault diagnosis method based on vibration signal analysis is proposed for fault diagnosis of bearings and gears. Firstly, the ensemble empirical mode decomposition (EEMD) is used to decompose the vibration signal into several subsequences, and a multi-entropy (ME) is proposed to make up the fusion features of the vibration signal. Secondly, an improved manifold learning algorithm, local and global preserving embedding (LGPE), is applied to compress the high-dimensional fusion feature set into a two-dimension feature set. Finally, according to the clustering accuracy of different feature set, the fault classification and diagnosis can be performed in the reduced two-dimension space. The performance of the proposed technique is tested on the fault of wind turbine transmission system. The application results indicate that the proposed method can achieve high accuracy of fault diagnosis

    Decoherence and entropy of primordial fluctuations. I: Formalism and interpretation

    Full text link
    We propose an operational definition of the entropy of cosmological perturbations based on a truncation of the hierarchy of Green functions. The value of the entropy is unambiguous despite gauge invariance and the renormalization procedure. At the first level of truncation, the reduced density matrices are Gaussian and the entropy is the only intrinsic quantity. In this case, the quantum-to-classical transition concerns the entanglement of modes of opposite wave-vectors, and the threshold of classicality is that of separability. The relations to other criteria of classicality are established. We explain why, during inflation, most of these criteria are not intrinsic. We complete our analysis by showing that all reduced density matrices can be written as statistical mixtures of minimal states, the squeezed properties of which are less constrained as the entropy increases. Pointer states therefore appear not to be relevant to the discussion. The entropy is calculated for various models in paper II.Comment: 23 page
    • …
    corecore