research

Classification of Epileptic EEG Signals by Wavelet based CFC

Abstract

Electroencephalogram, an influential equipment for analyzing humans activities and recognition of seizure attacks can play a crucial role in designing accurate systems which can distinguish ictal seizures from regular brain alertness, since it is the first step towards accomplishing a high accuracy computer aided diagnosis system (CAD). In this article a novel approach for classification of ictal signals with wavelet based cross frequency coupling (CFC) is suggested. After extracting features by wavelet based CFC, optimal features have been selected by t-test and quadratic discriminant analysis (QDA) have completed the Classification.Comment: Electroencephalogram; Wavelet Decomposition; Cross Frequency Coupling;Quadratic Discriminant Analysis; T-test Feature Selectio

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 10/08/2021