282 research outputs found

    Computational intelligence techniques for maximum energy efficiency of cogeneration processes based on internal combustion engines

    Get PDF
    153 p.El objeto de la tesis consiste en desarrollar estrategias de modelado y optimización del rendimiento energético de plantas de cogeneración basadas en motores de combustión interna (MCI), mediante el uso de las últimas tecnologías de inteligencia computacional. Con esta finalidad se cuenta con datos reales de una planta de cogeneración de energía, propiedad de la compañía EnergyWorks, situada en la localidad de Monzón (provincia de Huesca). La tesis se realiza en el marco de trabajo conjunto del Grupo de Diseño en Electrónica Digital (GDED) de la Universidad del País Vasco UPV/EHU y la empresa Optimitive S.L., empresa dedicada al software avanzado para la mejora en tiempo real de procesos industriale

    An architectural framework for self-configuration and self-improvement at runtime

    Get PDF
    [no abstract

    Automatic object classification for surveillance videos.

    Get PDF
    PhDThe recent popularity of surveillance video systems, specially located in urban scenarios, demands the development of visual techniques for monitoring purposes. A primary step towards intelligent surveillance video systems consists on automatic object classification, which still remains an open research problem and the keystone for the development of more specific applications. Typically, object representation is based on the inherent visual features. However, psychological studies have demonstrated that human beings can routinely categorise objects according to their behaviour. The existing gap in the understanding between the features automatically extracted by a computer, such as appearance-based features, and the concepts unconsciously perceived by human beings but unattainable for machines, or the behaviour features, is most commonly known as semantic gap. Consequently, this thesis proposes to narrow the semantic gap and bring together machine and human understanding towards object classification. Thus, a Surveillance Media Management is proposed to automatically detect and classify objects by analysing the physical properties inherent in their appearance (machine understanding) and the behaviour patterns which require a higher level of understanding (human understanding). Finally, a probabilistic multimodal fusion algorithm bridges the gap performing an automatic classification considering both machine and human understanding. The performance of the proposed Surveillance Media Management framework has been thoroughly evaluated on outdoor surveillance datasets. The experiments conducted demonstrated that the combination of machine and human understanding substantially enhanced the object classification performance. Finally, the inclusion of human reasoning and understanding provides the essential information to bridge the semantic gap towards smart surveillance video systems

    AI Solutions for MDS: Artificial Intelligence Techniques for Misuse Detection and Localisation in Telecommunication Environments

    Get PDF
    This report considers the application of Articial Intelligence (AI) techniques to the problem of misuse detection and misuse localisation within telecommunications environments. A broad survey of techniques is provided, that covers inter alia rule based systems, model-based systems, case based reasoning, pattern matching, clustering and feature extraction, articial neural networks, genetic algorithms, arti cial immune systems, agent based systems, data mining and a variety of hybrid approaches. The report then considers the central issue of event correlation, that is at the heart of many misuse detection and localisation systems. The notion of being able to infer misuse by the correlation of individual temporally distributed events within a multiple data stream environment is explored, and a range of techniques, covering model based approaches, `programmed' AI and machine learning paradigms. It is found that, in general, correlation is best achieved via rule based approaches, but that these suffer from a number of drawbacks, such as the difculty of developing and maintaining an appropriate knowledge base, and the lack of ability to generalise from known misuses to new unseen misuses. Two distinct approaches are evident. One attempts to encode knowledge of known misuses, typically within rules, and use this to screen events. This approach cannot generally detect misuses for which it has not been programmed, i.e. it is prone to issuing false negatives. The other attempts to `learn' the features of event patterns that constitute normal behaviour, and, by observing patterns that do not match expected behaviour, detect when a misuse has occurred. This approach is prone to issuing false positives, i.e. inferring misuse from innocent patterns of behaviour that the system was not trained to recognise. Contemporary approaches are seen to favour hybridisation, often combining detection or localisation mechanisms for both abnormal and normal behaviour, the former to capture known cases of misuse, the latter to capture unknown cases. In some systems, these mechanisms even work together to update each other to increase detection rates and lower false positive rates. It is concluded that hybridisation offers the most promising future direction, but that a rule or state based component is likely to remain, being the most natural approach to the correlation of complex events. The challenge, then, is to mitigate the weaknesses of canonical programmed systems such that learning, generalisation and adaptation are more readily facilitated

    Computational intelligence techniques for maximum energy efficiency of cogeneration processes based on internal combustion engines

    Get PDF
    153 p.El objeto de la tesis consiste en desarrollar estrategias de modelado y optimización del rendimiento energético de plantas de cogeneración basadas en motores de combustión interna (MCI), mediante el uso de las últimas tecnologías de inteligencia computacional. Con esta finalidad se cuenta con datos reales de una planta de cogeneración de energía, propiedad de la compañía EnergyWorks, situada en la localidad de Monzón (provincia de Huesca). La tesis se realiza en el marco de trabajo conjunto del Grupo de Diseño en Electrónica Digital (GDED) de la Universidad del País Vasco UPV/EHU y la empresa Optimitive S.L., empresa dedicada al software avanzado para la mejora en tiempo real de procesos industriale

    Many-Objective Genetic Type-2 Fuzzy Logic Based Workforce Optimisation Strategies for Large Scale Organisational Design

    Get PDF
    Workforce optimisation aims to maximise the productivity of a workforce and is a crucial practice for large organisations. The more effective these workforce optimisation strategies are, the better placed the organisation is to meet their objectives. Usually, the focus of workforce optimisation is scheduling, routing and planning. These strategies are particularly relevant to organisations with large mobile workforces, such as utility companies. There has been much research focused on these areas. One aspect of workforce optimisation that gets overlooked is organisational design. Organisational design aims to maximise the potential utilisation of all resources while minimising costs. If done correctly, other systems (scheduling, routing and planning) will be more effective. This thesis looks at organisational design, from geographical structures and team structures to skilling and resource management. A many-objective optimisation system to tackle large-scale optimisation problems will be presented. The system will employ interval type-2 fuzzy logic to handle the uncertainties with the real-world data, such as travel times and task completion times. The proposed system was developed with data from British Telecom (BT) and was deployed within the organisation. The techniques presented at the end of this thesis led to a very significant improvement over the standard NSGA-II algorithm by 31.07% with a P-Value of 1.86-10. The system has delivered an increase in productivity in BT of 0.5%, saving an estimated £1million a year, cut fuel consumption by 2.9%, resulting in an additional saving of over £200k a year. Due to less fuel consumption Carbon Dioxide (CO2) emissions have been reduced by 2,500 metric tonnes. Furthermore, a report by the United Kingdom’s (UK’s) Department of Transport found that for every billion vehicle miles travelled, there were 15,409 serious injuries or deaths. The system saved an estimated 7.7 million miles, equating to preventing more than 115 serious casualties and fatalities

    Bio-inspired Medium Access Control for Wireless Sensor Networks

    Get PDF
    This thesis studies the applications of biologically inspired algorithms and behaviours to the Medium Access Control (MAC) layer of Wireless Sensor Networks (WSNs). By exploring the similarity between a general communications channel and control engineering theory, we propose a simple method to control transmissions that we refer to as transmission delay. We use this concept and create a protocol inspired by Particle Swarm Optimisation (PSO) to optimise the communications. The lessons learned from this protocol inspires us to move closer to behaviours found in nature and the Emergence MAC (E-MAC) protocol is presented. The E-MAC protocol shows emergent behaviours arising from simple interactions and provides great throughput, low end-to-end delay and high fairness. Enhancements to this protocol are later proposed. We empirically evaluate these protocols and provide relevant parameter sweeps to show their performance. We also provide a theoretical approach to proving the settling properties of E-MAC. The presented protocols and methods provide a different approach towards MAC in WSNs

    Long-term learning for type-2 neural-fuzzy systems

    Get PDF
    The development of a new long-term learning framework for interval-valued neural-fuzzy systems is presented for the first time in this article. The need for such a framework is twofold: to address continuous batch learning of data sets, and to take advantage the extra degree of freedom that type-2 Fuzzy Logic systems offer for better model predictive ability. The presented long-term learning framework uses principles of granular computing (GrC) to capture information/knowledge from raw data in the form of interval-valued sets in order to build a computational mechanism that has the ability to adapt to new information in an additive and long-term learning fashion. The latter, is to accommodate new input–output mappings and new classes of data without significantly disturbing existing input–output mappings, therefore maintaining existing performance while creating and integrating new knowledge (rules). This is achieved via an iterative algorithmic process, which involves a two-step operation: iterative rule-base growth (capturing new knowledge) and iterative rule-base pruning (removing redundant knowledge) for type-2 rules. The two-step operation helps create a growing, but sustainable model structure. The performance of the proposed system is demonstrated using a number of well-known non-linear benchmark functions as well as a highly nonlinear multivariate real industrial case study. Simulation results show that the performance of the original model structure is maintained and it is comparable to the updated model's performance following the incremental learning routine. The study is concluded by evaluating the performance of the proposed framework in frequent and consecutive model updates where the balance between model accuracy and complexity is further assessed

    High-Level Control of Agent-based Crowds by means of General Constraints

    Get PDF
    The use of virtual crowds in visual eects has grown tremendously since the warring armies of virtual orcs and elves were seen in The Lord of the Rings. These crowds are generated by agent-based simulations, where each agent has the ability to reason and act for itself. This autonomy is eective at automatically producing realistic, complex group behaviour but leads to problems in controlling the crowds. Due to interaction between crowd members, the link between the behaviour of the individual and that of the whole crowd is not obvious. The control of a crowd's behaviour is, therefore, time consuming and frustrating, as manually editing the behaviour of individuals is often the only control approach available. This problem of control has not been widely addressed in crowd simulation research. We propose, implement and test a system in which a user may control the behaviour of a crowd by means of general constraints. This Constraint Satisfaction system automatically alters the behaviour of the individuals in the crowd such that the group behaviour meets the provided constraints. We test this system on a number of scenarios involving dierent types of agents and compare the effectiveness of this automatic system to an expert user manually changing the crowd. We find our method of control, in most cases, to be at least as effective as the expert user

    Short term load forecasting based on hybrid artificial neural networks and particle swarm optimisation

    Get PDF
    Short term load forecasting (STLF) is the prediction of electrical load for a period that ranges from the next minute to a week. The main objectives of the STLF function are to predict future load for the generation scheduling at power stations; assessment of the security of the power system as well as for timely dispatching of electrical power. STLF is primarily required to determine the most economic manner in which an electrical utility can schedule generation resources without compromising on the reliability requirements, operational constraints, policies and physical environmental and equipment limitations. Another application of the STLF is for predictive assessment of the power system security. This system load forecast is an essential data requirement for off-line network analysis in order to determine conditions under which a system may become vulnerable. This information allows the dispatcher to prepare the necessary corrective actions. The third application of STLF is to provide the system dispatcher with more recent information i.e., the most recent forecast with the latest weather prediction and random behaviour taken into account. The dispatcher needs this information to operate the system economically and reliably. Due to the sensitivities surrounding a load forecast, it thus becomes crucial that the forecasting error is minimised. There are various methods that are used for short term load forecasting, namely; statistical methods and computational intelligence methods. Statistical methods are known as the regression methods which forecast the future electrical load based on historic time series load information. These methods have been in use for many years however due to the dynamic changes in the power system today such as the introduction of Independent Power Producers (IPPs) onto the grid; it becomes difficult to use these methods because they are very static and inflexible i.e. they cannot be manipulated by including rules or expert knowledge in order to counter the effect of any sudden changes in the power system. Their inability to adapt to the changing behaviour of the power system thus leads to high forecasting errors. Computational intelligence (CI) methods however are dynamic and are able to learn by experience. Short term load forecasts have been conducted by using various CI methods such as Artificial Neural Networks (ANNs), Genetic Algorithms (GAs), Fuzzy Logic (FL), Expert Systems (ES), and Particle Swarm Optimisation (PSO). Hybrid versions of these methods, where two or more CI methods are amalgamated in a process to forecast future load, have also been used. iv In this research, a traditional forecasting technique, Multiple Linear Regression (MLR), was compared with a CI technique, Artificial Neural Networks. ANN was also compared with another neural network method namely Elman Recurrent Neural Network (ERNN) to determine whether a more neural network method with memory yields better results as compared to ANN
    corecore