230,754 research outputs found

    Fuzzy goal programming for material requirements planning under uncertainty and integrity conditions

    Full text link
    "This is an Accepted Manuscript of an article published in International Journal of Production Research on December 2014, available online: http://www.tandfonline.com/10.1080/00207543.2014.920115."In this paper, we formulate the material requirements planning) problem of a first-tier supplier in an automobile supply chain through a fuzzy multi-objective decision model, which considers three conflictive objectives to optimise: minimisation of normal, overtime and subcontracted production costs of finished goods plus the inventory costs of finished goods, raw materials and components; minimisation of idle time; minimisation of backorder quantities. Lack of knowledge or epistemic uncertainty is considered in the demand, available and required capacity data. Integrity conditions for the main decision variables of the problem are also considered. For the solution methodology, we use a fuzzy goal programming approach where the importance of the relations among the goals is considered fuzzy instead of using a crisp definition of goal weights. For illustration purposes, an example based on modifications of real-world industrial problems is used.This work has been funded by the Universitat Politecnica de Valencia Project: 'Material Requirements Planning Fourth Generation (MRPIV)' (Ref. PAID-05-12).Díaz-Madroñero Boluda, FM.; Mula, J.; Jiménez, M. (2014). Fuzzy goal programming for material requirements planning under uncertainty and integrity conditions. International Journal of Production Research. 52(23):6971-6988. doi:10.1080/00207543.2014.920115S697169885223Aköz, O., & Petrovic, D. (2007). A fuzzy goal programming method with imprecise goal hierarchy. European Journal of Operational Research, 181(3), 1427-1433. doi:10.1016/j.ejor.2005.11.049Alfieri, A., & Matta, A. (2010). Mathematical programming representation of pull controlled single-product serial manufacturing systems. Journal of Intelligent Manufacturing, 23(1), 23-35. doi:10.1007/s10845-009-0371-xAloulou, M. A., Dolgui, A., & Kovalyov, M. Y. (2013). A bibliography of non-deterministic lot-sizing models. International Journal of Production Research, 52(8), 2293-2310. doi:10.1080/00207543.2013.855336Barba-Gutiérrez, Y., & Adenso-Díaz, B. (2009). Reverse MRP under uncertain and imprecise demand. The International Journal of Advanced Manufacturing Technology, 40(3-4), 413-424. doi:10.1007/s00170-007-1351-yBookbinder, J. H., McAuley, P. T., & Schulte, J. (1989). Inventory and Transportation Planning in the Distribution of Fine Papers. Journal of the Operational Research Society, 40(2), 155-166. doi:10.1057/jors.1989.20Chiang, W. K., & Feng, Y. (2007). The value of information sharing in the presence of supply uncertainty and demand volatility. International Journal of Production Research, 45(6), 1429-1447. doi:10.1080/00207540600634949Díaz-Madroñero, M., Mula, J., & Jiménez, M. (2013). A Modified Approach Based on Ranking Fuzzy Numbers for Fuzzy Integer Programming with Equality Constraints. Annals of Industrial Engineering 2012, 225-233. doi:10.1007/978-1-4471-5349-8_27DOLGUI, A., BEN AMMAR, O., HNAIEN, F., & LOULY, M. A. O. (2013). A State of the Art on Supply Planning and Inventory Control under Lead Time Uncertainty. Studies in Informatics and Control, 22(3). doi:10.24846/v22i3y201302Dubois, D. (2011). The role of fuzzy sets in decision sciences: Old techniques and new directions. Fuzzy Sets and Systems, 184(1), 3-28. doi:10.1016/j.fss.2011.06.003Grabot, B., Geneste, L., Reynoso-Castillo, G., & V�rot, S. (2005). Integration of uncertain and imprecise orders in the MRP method. Journal of Intelligent Manufacturing, 16(2), 215-234. doi:10.1007/s10845-004-5890-xGuillaume, R., Thierry, C., & Grabot, B. (2010). Modelling of ill-known requirements and integration in production planning. Production Planning & Control, 22(4), 336-352. doi:10.1080/09537281003800900Heilpern, S. (1992). The expected value of a fuzzy number. Fuzzy Sets and Systems, 47(1), 81-86. doi:10.1016/0165-0114(92)90062-9Hnaien, F., Dolgui, A., & Ould Louly, M.-A. (2008). Planned lead time optimization in material requirement planning environment for multilevel production systems. Journal of Systems Science and Systems Engineering, 17(2), 132-155. doi:10.1007/s11518-008-5072-zHung, Y.-F., & Chang, C.-B. (1999). Determining safety stocks for production planning in uncertain manufacturing. International Journal of Production Economics, 58(2), 199-208. doi:10.1016/s0925-5273(98)00124-8Inderfurth, K. (2009). How to protect against demand and yield risks in MRP systems. International Journal of Production Economics, 121(2), 474-481. doi:10.1016/j.ijpe.2007.02.005JIMÉNEZ, M. (1996). RANKING FUZZY NUMBERS THROUGH THE COMPARISON OF ITS EXPECTED INTERVALS. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 04(04), 379-388. doi:10.1142/s0218488596000226Jiménez, M., Arenas, M., Bilbao, A., & Rodrı´guez, M. V. (2007). Linear programming with fuzzy parameters: An interactive method resolution. European Journal of Operational Research, 177(3), 1599-1609. doi:10.1016/j.ejor.2005.10.002Jones, D. (2011). A practical weight sensitivity algorithm for goal and multiple objective programming. European Journal of Operational Research, 213(1), 238-245. doi:10.1016/j.ejor.2011.03.012Lage Junior, M., & Godinho Filho, M. (2010). Variations of the kanban system: Literature review and classification. International Journal of Production Economics, 125(1), 13-21. doi:10.1016/j.ijpe.2010.01.009Jung, J. Y., Blau, G., Pekny, J. F., Reklaitis, G. V., & Eversdyk, D. (2004). A simulation based optimization approach to supply chain management under demand uncertainty. Computers & Chemical Engineering, 28(10), 2087-2106. doi:10.1016/j.compchemeng.2004.06.006Koh, S. C. L. (2004). MRP-controlled batch-manufacturing environment under uncertainty. Journal of the Operational Research Society, 55(3), 219-232. doi:10.1057/palgrave.jors.2601710Lai, Y.-J., & Hwang, C.-L. (1993). Possibilistic linear programming for managing interest rate risk. Fuzzy Sets and Systems, 54(2), 135-146. doi:10.1016/0165-0114(93)90271-iLee, H. L., & Billington, C. (1993). Material Management in Decentralized Supply Chains. Operations Research, 41(5), 835-847. doi:10.1287/opre.41.5.835Lee, Y. H., Kim, S. H., & Moon, C. (2002). Production-distribution planning in supply chain using a hybrid approach. Production Planning & Control, 13(1), 35-46. doi:10.1080/09537280110061566Li, X., Zhang, B., & Li, H. (2006). Computing efficient solutions to fuzzy multiple objective linear programming problems. Fuzzy Sets and Systems, 157(10), 1328-1332. doi:10.1016/j.fss.2005.12.003Louly, M.-A., & Dolgui, A. (2011). Optimal time phasing and periodicity for MRP with POQ policy. International Journal of Production Economics, 131(1), 76-86. doi:10.1016/j.ijpe.2010.04.042Louly, M. A., Dolgui, A., & Hnaien, F. (2008). Optimal supply planning in MRP environments for assembly systems with random component procurement times. International Journal of Production Research, 46(19), 5441-5467. doi:10.1080/00207540802273827Mohapatra, P., Benyoucef, L., & Tiwari, M. K. (2013). Integration of process planning and scheduling through adaptive setup planning: a multi-objective approach. International Journal of Production Research, 51(23-24), 7190-7208. doi:10.1080/00207543.2013.853890Mula, J., & Díaz-Madroñero, M. (2012). Solution Approaches for Material Requirement Planning* with Fuzzy Costs. Industrial Engineering: Innovative Networks, 349-357. doi:10.1007/978-1-4471-2321-7_39Mula, J., Poler, R., & García, J. P. (2006). Evaluación de Sistemas para la Planificación y Control de la Producción/[title] [title language=en]Evaluation of Production Planning and Control Systems. Información tecnológica, 17(1). doi:10.4067/s0718-07642006000100004Mula, J., Poler, R., & Garcia, J. P. (2006). MRP with flexible constraints: A fuzzy mathematical programming approach. Fuzzy Sets and Systems, 157(1), 74-97. doi:10.1016/j.fss.2005.05.045Mula, J., Poler, R., & Garcia-Sabater, J. P. (2008). Capacity and material requirement planning modelling by comparing deterministic and fuzzy models. International Journal of Production Research, 46(20), 5589-5606. doi:10.1080/00207540701413912Mula, J., Poler, R., & Garcia-Sabater, J. P. (2007). Material Requirement Planning with fuzzy constraints and fuzzy coefficients. Fuzzy Sets and Systems, 158(7), 783-793. doi:10.1016/j.fss.2006.11.003Mula, J., Poler, R., García-Sabater, J. P., & Lario, F. C. (2006). Models for production planning under uncertainty: A review. International Journal of Production Economics, 103(1), 271-285. doi:10.1016/j.ijpe.2005.09.001Noori, S., Feylizadeh, M. R., Bagherpour, M., Zorriassatine, F., & Parkin, R. M. (2008). Optimization of material requirement planning by fuzzy multi-objective linear programming. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 222(7), 887-900. doi:10.1243/09544054jem1014Olhager, J. (2013). Evolution of operations planning and control: from production to supply chains. International Journal of Production Research, 51(23-24), 6836-6843. doi:10.1080/00207543.2012.761363Peidro, D., Mula, J., Alemany, M. M. E., & Lario, F.-C. (2012). Fuzzy multi-objective optimisation for master planning in a ceramic supply chain. International Journal of Production Research, 50(11), 3011-3020. doi:10.1080/00207543.2011.588267Peidro, D., Mula, J., Jiménez, M., & del Mar Botella, M. (2010). A fuzzy linear programming based approach for tactical supply chain planning in an uncertainty environment. European Journal of Operational Research, 205(1), 65-80. doi:10.1016/j.ejor.2009.11.031Peidro, D., Mula, J., Poler, R., & Lario, F.-C. (2008). Quantitative models for supply chain planning under uncertainty: a review. The International Journal of Advanced Manufacturing Technology, 43(3-4), 400-420. doi:10.1007/s00170-008-1715-yPeidro, D., Mula, J., Poler, R., & Verdegay, J.-L. (2009). Fuzzy optimization for supply chain planning under supply, demand and process uncertainties. Fuzzy Sets and Systems, 160(18), 2640-2657. doi:10.1016/j.fss.2009.02.021Sabri, E. H., & Beamon, B. M. (2000). A multi-objective approach to simultaneous strategic and operational planning in supply chain design. Omega, 28(5), 581-598. doi:10.1016/s0305-0483(99)00080-8Selim, H., & Ozkarahan, I. (2006). A supply chain distribution network design model: An interactive fuzzy goal programming-based solution approach. The International Journal of Advanced Manufacturing Technology, 36(3-4), 401-418. doi:10.1007/s00170-006-0842-6Suwanruji, P., & Enns, S. T. (2006). Evaluating the effects of capacity constraints and demand patterns on supply chain replenishment strategies. International Journal of Production Research, 44(21), 4607-4629. doi:10.1080/00207540500494527Torabi, S. A., & Hassini, E. (2008). An interactive possibilistic programming approach for multiple objective supply chain master planning. Fuzzy Sets and Systems, 159(2), 193-214. doi:10.1016/j.fss.2007.08.010Torabi, S. A., & Moghaddam, M. (2012). Multi-site integrated production-distribution planning with trans-shipment: a fuzzy goal programming approach. International Journal of Production Research, 50(6), 1726-1748. doi:10.1080/00207543.2011.560907Zimmermann, H.-J. (1978). Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems, 1(1), 45-55. doi:10.1016/0165-0114(78)90031-

    Fuzzy Partial Metric Spaces

    Full text link
    "This is an Accepted Manuscript of an article published by Taylor & Francis in International Journal of General Systems on 01 Dec 2018, available online: https://doi.org/10.1080/03081079.2018.1552687"[EN] In this paper we provide a concept of fuzzy partial metric space (X, P, ¿) as an extension to fuzzy setting in the sense of Kramosil and Michalek, of the concept of partial metric due to Matthews. This extension has been defined using the residuum operator ¿¿ associated to a continuous t-norm ¿ and without any extra condition on ¿. Similarly, it is defined the stronger concept of GV -fuzzy partial metric (fuzzy partial metric in the sense of George and Veeramani). After defining a concept of open ball in (X, P, ¿), a topology TP on X deduced from P is constructed, and it is showed that (X, TP) is a T0-space.Valentin Gregori acknowledges the support of the Ministry of Economy and Competitiveness of Spain under Grant MTM2015-64373-P (MINECO/Feder, UE). Juan Jose Minana acknowledges the partially support of the Ministry of Economy and Competitiveness of Spain under Grant TIN2016-81731-REDT (LODISCO II) and AEI/FEDER, UE funds, by the Programa Operatiu FEDER 2014-2020 de les Illes Balears, by project ref. PROCOE/4/2017 (Direccio General d'Innovacio i Recerca, Govern de les Illes Balears), and by project ROBINS. The latter has received research funding from the European Union framework under GA 779776. This publication reflects only the authors views and the European Union is not liable for any use that may be made of the information contained therein.Gregori Gregori, V.; Miñana, J.; Miravet-Fortuño, D. (2018). Fuzzy Partial Metric Spaces. International Journal of General Systems. https://doi.org/10.1080/03081079.2018.1552687SBukatin, M., Kopperman, R., & Matthews, S. (2014). Some corollaries of the correspondence between partial metrics and multivalued equalities. Fuzzy Sets and Systems, 256, 57-72. doi:10.1016/j.fss.2013.08.016Camarena, J.-G., Gregori, V., Morillas, S., & Sapena, A. (2010). Two-step fuzzy logic-based method for impulse noise detection in colour images. Pattern Recognition Letters, 31(13), 1842-1849. doi:10.1016/j.patrec.2010.01.008Demirci, M. (2012). The order-theoretic duality and relations between partial metrics and local equalities. Fuzzy Sets and Systems, 192, 45-57. doi:10.1016/j.fss.2011.04.014George, A., & Veeramani, P. (1994). On some results in fuzzy metric spaces. Fuzzy Sets and Systems, 64(3), 395-399. doi:10.1016/0165-0114(94)90162-7Grabiec, M. (1988). Fixed points in fuzzy metric spaces. Fuzzy Sets and Systems, 27(3), 385-389. doi:10.1016/0165-0114(88)90064-4Grečova, S., & Morillas, S. (2016). Perceptual similarity between color images using fuzzy metrics. Journal of Visual Communication and Image Representation, 34, 230-235. doi:10.1016/j.jvcir.2015.04.003Gregori, V., Miñana, J.-J., & Morillas, S. (2012). Some questions in fuzzy metric spaces. Fuzzy Sets and Systems, 204, 71-85. doi:10.1016/j.fss.2011.12.008Gregori, V., Morillas, S., & Sapena, A. (2010). On a class of completable fuzzy metric spaces. Fuzzy Sets and Systems, 161(16), 2193-2205. doi:10.1016/j.fss.2010.03.013Gregori, V., & Romaguera, S. (2000). Some properties of fuzzy metric spaces. Fuzzy Sets and Systems, 115(3), 485-489. doi:10.1016/s0165-0114(98)00281-4Gregori, V., & Sapena, A. (2002). On fixed-point theorems in fuzzy metric spaces. Fuzzy Sets and Systems, 125(2), 245-252. doi:10.1016/s0165-0114(00)00088-9Gutiérrez García, J., Rodríguez-López, J., & Romaguera, S. (2018). On fuzzy uniformities induced by a fuzzy metric space. Fuzzy Sets and Systems, 330, 52-78. doi:10.1016/j.fss.2017.05.001Höhle, U., & Klement, E. P. (Eds.). (1995). Non-Classical Logics and their Applications to Fuzzy Subsets. doi:10.1007/978-94-011-0215-5Klement, E. P., Mesiar, R., & Pap, E. (2000). Triangular Norms. Trends in Logic. doi:10.1007/978-94-015-9540-7MATTHEWS, S. G. (1994). Partial Metric Topology. Annals of the New York Academy of Sciences, 728(1 General Topol), 183-197. doi:10.1111/j.1749-6632.1994.tb44144.xMenger, K. (1942). Statistical Metrics. Proceedings of the National Academy of Sciences, 28(12), 535-537. doi:10.1073/pnas.28.12.535Miheţ, D. (2008). Fuzzy -contractive mappings in non-Archimedean fuzzy metric spaces. Fuzzy Sets and Systems, 159(6), 739-744. doi:10.1016/j.fss.2007.07.006Schweizer, B., & Sklar, A. (1960). Statistical metric spaces. Pacific Journal of Mathematics, 10(1), 313-334. doi:10.2140/pjm.1960.10.313Shukla, S., Gopal, D., & Roldán-López-de-Hierro, A.-F. (2016). Some fixed point theorems in 1-M-complete fuzzy metric-like spaces. International Journal of General Systems, 45(7-8), 815-829. doi:10.1080/03081079.2016.1153084Ying, M. (1991). A new approach for fuzzy topology (I). Fuzzy Sets and Systems, 39(3), 303-321. doi:10.1016/0165-0114(91)90100-5Yue, Y. (2015). Separated ▵+-valued equivalences as probabilistic partial metric spaces. Journal of Intelligent & Fuzzy Systems, 28(6), 2715-2724. doi:10.3233/ifs-15154

    Fuzzy multi-objective optimisation for master planning in a ceramic supply chain

    Full text link
    This is an Accepted Manuscript of an article published in International Journal of Production Research on 2012, available online: http://www.tandfonline.com/10.1080/00207543.2011.588267.In this paper, we consider the master planning problem for a centralised replenishment, production and distribution ceramic tile supply chain. A fuzzy multi-objective linear programming (FMOLP) approach is presented which considers the maximisation of the fuzzy gross margin, the minimisation of the fuzzy idle time and the minimisation of the fuzzy backorder quantities. By using an interactive solution methodology to convert this FMOLP model into an auxiliary crisp single-objective linear model, a preferred compromise solution is obtained. For illustration purposes, an example based on modifications of real-world industrial problems is used.This research has been carried out in the framework of a project funded by the Science and Technology Ministry of the Spanish Government, entitled 'Project of reinforcement of the competitiveness of the Spanish managerial fabric through the logistics as a strategic factor in a global environment' (Ref. PSE-370000-2008-8).Peidro Payá, D.; Mula, J.; Alemany Díaz, MDM.; Lario Esteban, FC. (2012). Fuzzy multi-objective optimisation for master planning in a ceramic supply chain. International Journal of Production Research. 50(11):3011-3020. https://doi.org/10.1080/00207543.2011.588267S301130205011Alemany, M.M.E.et al., 2010. Mathematical programming model for centralized master planning in ceramic tile supply chains.International Journal of Production Research, 48 (17), 5053–5074Beamon, B. M. (1998). Supply chain design and analysis: International Journal of Production Economics, 55(3), 281-294. doi:10.1016/s0925-5273(98)00079-6Chen, C.-L., & Lee, W.-C. (2004). Multi-objective optimization of multi-echelon supply chain networks with uncertain product demands and prices. Computers & Chemical Engineering, 28(6-7), 1131-1144. doi:10.1016/j.compchemeng.2003.09.014Chern, C.-C., & Hsieh, J.-S. (2007). A heuristic algorithm for master planning that satisfies multiple objectives. Computers & Operations Research, 34(11), 3491-3513. doi:10.1016/j.cor.2006.02.022Kreipl, S., & Pinedo, M. (2009). Planning and Scheduling in Supply Chains: An Overview of Issues in Practice. Production and Operations Management, 13(1), 77-92. doi:10.1111/j.1937-5956.2004.tb00146.xLai, Y.-J., & Hwang, C.-L. (1993). Possibilistic linear programming for managing interest rate risk. Fuzzy Sets and Systems, 54(2), 135-146. doi:10.1016/0165-0114(93)90271-iLi, X., Zhang, B., & Li, H. (2006). Computing efficient solutions to fuzzy multiple objective linear programming problems. Fuzzy Sets and Systems, 157(10), 1328-1332. doi:10.1016/j.fss.2005.12.003Mula, J., Peidro, D., Díaz-Madroñero, M., & Vicens, E. (2010). Mathematical programming models for supply chain production and transport planning. European Journal of Operational Research, 204(3), 377-390. doi:10.1016/j.ejor.2009.09.008Mula, J., Peidro, D., and Poler, R., 2010b. The effectiveness of a fuzzy mathematical programming approach for supply chain production planning with fuzzy demand.International Journal of Production Economics, In pressPark *, Y. B. (2005). An integrated approach for production and distribution planning in supply chain management. International Journal of Production Research, 43(6), 1205-1224. doi:10.1080/00207540412331327718Peidro, D., Mula, J., Poler, R., & Lario, F.-C. (2008). Quantitative models for supply chain planning under uncertainty: a review. The International Journal of Advanced Manufacturing Technology, 43(3-4), 400-420. doi:10.1007/s00170-008-1715-yPeidro, D., Mula, J., Poler, R., & Verdegay, J.-L. (2009). Fuzzy optimization for supply chain planning under supply, demand and process uncertainties. Fuzzy Sets and Systems, 160(18), 2640-2657. doi:10.1016/j.fss.2009.02.021Selim, H., Araz, C., & Ozkarahan, I. (2008). Collaborative production–distribution planning in supply chain: A fuzzy goal programming approach. Transportation Research Part E: Logistics and Transportation Review, 44(3), 396-419. doi:10.1016/j.tre.2006.11.001Selim, H., & Ozkarahan, I. (2006). A supply chain distribution network design model: An interactive fuzzy goal programming-based solution approach. The International Journal of Advanced Manufacturing Technology, 36(3-4), 401-418. doi:10.1007/s00170-006-0842-6Torabi, S. A., & Hassini, E. (2008). An interactive possibilistic programming approach for multiple objective supply chain master planning. Fuzzy Sets and Systems, 159(2), 193-214. doi:10.1016/j.fss.2007.08.010Haehling von Lanzenauer, C., & Pilz-Glombik, K. (2002). Coordinating supply chain decisions: an optimization model. OR Spectrum, 24(1), 59-78. doi:10.1007/s291-002-8200-3Zimmermann, H.-J. (1978). Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems, 1(1), 45-55. doi:10.1016/0165-0114(78)90031-

    Decision making with Dempster-Shafer belief structure and the OWAWA operator

    Get PDF
    [EN] A new decision making model that uses the weighted average and the ordered weighted averaging (OWA) operator in the Dempster-Shafer belief structure is presented. Thus, we are able to represent the decision making problem considering objective and subjective information and the attitudinal character of the decision maker. For doing so, we use the ordered weighted averaging ¿ weighted average (OWAWA) operator. It is an aggregation operator that unifies the weighted average and the OWA in the same formulation. This approach is generalized by using quasi-arithmetic means and group decision making techniques. An application of the new approach in a group decision making problem concerning political management of a country is also developed.We would like to thank the anonymous reviewers for valuable comments that have improved the quality of the paper. Support from the Spanish Ministry of Education under project JC2009-00189 , the University of Barcelona (099311) and the European Commission (PIEFGA-2011-300062) is gratefully acknowledgedMerigó, JM.; Engemann, KJ.; Palacios Marqués, D. (2013). Decision making with Dempster-Shafer belief structure and the OWAWA operator. Technological and Economic Development of Economy. 19(sup 1):S100-S118. https://doi.org/10.3846/20294913.2013.869517SS100S11819sup 1Antuchevičienė, J., Zavadskas, E. K., & Zakarevičius, A. (2010). MULTIPLE CRITERIA CONSTRUCTION MANAGEMENT DECISIONS CONSIDERING RELATIONS BETWEEN CRITERIA / DAUGIATIKSLIAI STATYBOS VALDYMO SPRENDIMAI ATSIŽVELGIANT Į RODIKLIŲ TARPUSAVIO PRIKLAUSOMYBĘ. Technological and Economic Development of Economy, 16(1), 109-125. doi:10.3846/tede.2010.07Brauers, W. K. M., & Zavadskas, E. K. (2010). PROJECT MANAGEMENT BY MULTIMOORA AS AN INSTRUMENT FOR TRANSITION ECONOMIES / PROJEKTŲ VADYBA SU MULTIMOORA KAIP PRIEMONĖ PEREINAMOJO LAIKOTARPIO ŪKIAMS. Technological and Economic Development of Economy, 16(1), 5-24. doi:10.3846/tede.2010.01Dempster, A. P. (1967). Upper and Lower Probabilities Induced by a Multivalued Mapping. The Annals of Mathematical Statistics, 38(2), 325-339. doi:10.1214/aoms/1177698950ENGEMANN, K. J., MILLER, H. E., & YAGER, R. R. (1996). DECISION MAKING WITH BELIEF STRUCTURES: AN APPLICATION IN RISK MANAGEMENT. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 04(01), 1-25. doi:10.1142/s0218488596000020ENGEMANN, K. J., FILEV, D. P., & YAGER, R. R. (1996). MODELLING DECISION MAKING USING IMMEDIATE PROBABILITIES. International Journal of General Systems, 24(3), 281-294. doi:10.1080/03081079608945123Engemann, K. J., & Miller, H. E. (2009). Critical infrastructure and smart technology risk modelling using computational intelligence. International Journal of Business Continuity and Risk Management, 1(1), 91. doi:10.1504/ijbcrm.2009.028953Fodor, J., Marichal, J.-L., & Roubens, M. (1995). Characterization of the ordered weighted averaging operators. IEEE Transactions on Fuzzy Systems, 3(2), 236-240. doi:10.1109/91.388176Han, Z., & Liu, P. (2011). A FUZZY MULTI-ATTRIBUTE DECISION-MAKING METHOD UNDER RISK WITH UNKNOWN ATTRIBUTE WEIGHTS / NERAIŠKUSIS MAŽESNĖS RIZIKOS DAUGIATIKSLIS SPRENDIMŲ PRIĖMIMO METODAS SU NEŽINOMAIS PRISKIRIAMAIS REIKŠMINGUMAIS. Technological and Economic Development of Economy, 17(2), 246-258. doi:10.3846/20294913.2011.580575Keršulienė, V., Zavadskas, E. K., & Turskis, Z. (2010). SELECTION OF RATIONAL DISPUTE RESOLUTION METHOD BY APPLYING NEW STEP‐WISE WEIGHT ASSESSMENT RATIO ANALYSIS (SWARA). Journal of Business Economics and Management, 11(2), 243-258. doi:10.3846/jbem.2010.12Liu, P. (2009). MULTI‐ATTRIBUTE DECISION‐MAKING METHOD RESEARCH BASED ON INTERVAL VAGUE SET AND TOPSIS METHOD. Technological and Economic Development of Economy, 15(3), 453-463. doi:10.3846/1392-8619.2009.15.453-463Liu, P. (2011). A weighted aggregation operators multi-attribute group decision-making method based on interval-valued trapezoidal fuzzy numbers. Expert Systems with Applications, 38(1), 1053-1060. doi:10.1016/j.eswa.2010.07.144Merigó, J. M. (2011). A unified model between the weighted average and the induced OWA operator. Expert Systems with Applications, 38(9), 11560-11572. doi:10.1016/j.eswa.2011.03.034Merigó, J. M. (2012). The probabilistic weighted average and its application in multiperson decision making. International Journal of Intelligent Systems, 27(5), 457-476. doi:10.1002/int.21531Merigó, J. M., & Casanovas, M. (2009). Induced aggregation operators in decision making with the Dempster-Shafer belief structure. International Journal of Intelligent Systems, 24(8), 934-954. doi:10.1002/int.20368Merigó, J. M., & Casanovas, M. (2010). The uncertain induced quasi-arithmetic OWA operator. International Journal of Intelligent Systems, 26(1), 1-24. doi:10.1002/int.20444MERIGÓ, J. M., & CASANOVAS, M. (2011). THE UNCERTAIN GENERALIZED OWA OPERATOR AND ITS APPLICATION TO FINANCIAL DECISION MAKING. International Journal of Information Technology & Decision Making, 10(02), 211-230. doi:10.1142/s0219622011004300MERIGÓ, J. M., CASANOVAS, M., & MARTÍNEZ, L. (2010). LINGUISTIC AGGREGATION OPERATORS FOR LINGUISTIC DECISION MAKING BASED ON THE DEMPSTER-SHAFER THEORY OF EVIDENCE. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 18(03), 287-304. doi:10.1142/s0218488510006544MERIGO, J., & GILLAFUENTE, A. (2009). The induced generalized OWA operator. Information Sciences, 179(6), 729-741. doi:10.1016/j.ins.2008.11.013Merigó, J. M., & Gil-Lafuente, A. M. (2010). New decision-making techniques and their application in the selection of financial products. Information Sciences, 180(11), 2085-2094. doi:10.1016/j.ins.2010.01.028Merigó, J. M., & Wei, G. (2011). PROBABILISTIC AGGREGATION OPERATORS AND THEIR APPLICATION IN UNCERTAIN MULTI-PERSON DECISION-MAKING / TIKIMYBINIAI SUMAVIMO OPERATORIAI IR JŲ TAIKYMAS PRIIMANT GRUPINIUS SPRENDIMUS NEAPIBRĖŽTOJE APLINKOJE. Technological and Economic Development of Economy, 17(2), 335-351. doi:10.3846/20294913.2011.584961Podvezko, V. (2009). Application of AHP technique. Journal of Business Economics and Management, 10(2), 181-189. doi:10.3846/1611-1699.2009.10.181-189Reformat, M., & Yager, R. R. (2007). Building ensemble classifiers using belief functions and OWA operators. Soft Computing, 12(6), 543-558. doi:10.1007/s00500-007-0227-2Srivastava, R. P., & Mock, T. J. (Eds.). (2002). Belief Functions in Business Decisions. Studies in Fuzziness and Soft Computing. doi:10.1007/978-3-7908-1798-0Torra, V. (1997). The weighted OWA operator. International Journal of Intelligent Systems, 12(2), 153-166. doi:10.1002/(sici)1098-111x(199702)12:23.0.co;2-pWei, G.-W. (2011). Some generalized aggregating operators with linguistic information and their application to multiple attribute group decision making. Computers & Industrial Engineering, 61(1), 32-38. doi:10.1016/j.cie.2011.02.007Wei, G., Zhao, X., & Lin, R. (2010). Some Induced Aggregating Operators with Fuzzy Number Intuitionistic Fuzzy Information and their Applications to Group Decision Making. International Journal of Computational Intelligence Systems, 3(1), 84-95. doi:10.1080/18756891.2010.9727679Xu, Z. (2005). An overview of methods for determining OWA weights. International Journal of Intelligent Systems, 20(8), 843-865. doi:10.1002/int.20097Xu, Z. (2009). A Deviation-Based Approach to Intuitionistic Fuzzy Multiple Attribute Group Decision Making. Group Decision and Negotiation, 19(1), 57-76. doi:10.1007/s10726-009-9164-zXu, Z. S., & Da, Q. L. (2003). An overview of operators for aggregating information. International Journal of Intelligent Systems, 18(9), 953-969. doi:10.1002/int.10127Yager, R. R. (1988). On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Transactions on Systems, Man, and Cybernetics, 18(1), 183-190. doi:10.1109/21.87068YAGER, R. R. (1992). DECISION MAKING UNDER DEMPSTER-SHAFER UNCERTAINTIES. International Journal of General Systems, 20(3), 233-245. doi:10.1080/03081079208945033Yager, R. R. (1993). Families of OWA operators. Fuzzy Sets and Systems, 59(2), 125-148. doi:10.1016/0165-0114(93)90194-mYager, R. R. (1998). Including importances in OWA aggregations using fuzzy systems modeling. IEEE Transactions on Fuzzy Systems, 6(2), 286-294. doi:10.1109/91.669028Yager, R. R. (2004). Generalized OWA Aggregation Operators. Fuzzy Optimization and Decision Making, 3(1), 93-107. doi:10.1023/b:fodm.0000013074.68765.97Yager, R. R., Engemann, K. J., & Filev, D. P. (1995). On the concept of immediate probabilities. International Journal of Intelligent Systems, 10(4), 373-397. doi:10.1002/int.4550100403Yager, R. R., & Kacprzyk, J. (Eds.). (1997). The Ordered Weighted Averaging Operators. doi:10.1007/978-1-4615-6123-1Yager, R. R., Kacprzyk, J., & Beliakov, G. (Eds.). (2011). Recent Developments in the Ordered Weighted Averaging Operators: Theory and Practice. Studies in Fuzziness and Soft Computing. doi:10.1007/978-3-642-17910-5Yager, R. R., & Liu, L. (Eds.). (2008). Classic Works of the Dempster-Shafer Theory of Belief Functions. Studies in Fuzziness and Soft Computing. doi:10.1007/978-3-540-44792-4Zavadskas, E. K., & Turskis, Z. (2011). MULTIPLE CRITERIA DECISION MAKING (MCDM) METHODS IN ECONOMICS: AN OVERVIEW / DAUGIATIKSLIAI SPRENDIMŲ PRIĖMIMO METODAI EKONOMIKOJE: APŽVALGA. Technological and Economic Development of Economy, 17(2), 397-427. doi:10.3846/20294913.2011.593291Zavadskas, E. K., Vilutienė, T., Turskis, Z., & Tamosaitienė, J. (2010). CONTRACTOR SELECTION FOR CONSTRUCTION WORKS BY APPLYING SAW‐G AND TOPSIS GREY TECHNIQUES. Journal of Business Economics and Management, 11(1), 34-55. doi:10.3846/jbem.2010.03Zeng, S., & Su, W. (2011). Intuitionistic fuzzy ordered weighted distance operator. Knowledge-Based Systems, 24(8), 1224-1232. doi:10.1016/j.knosys.2011.05.013Zhang, X., & Liu, P. (2010). METHOD FOR AGGREGATING TRIANGULAR FUZZY INTUITIONISTIC FUZZY INFORMATION AND ITS APPLICATION TO DECISION MAKING / NUMANOMŲ NEAPIBRĖŽTŲJŲ AIBIŲ TEORIJA IR JOS TAIKYMAS PRIIMANT SPRENDIMUS. Technological and Economic Development of Economy, 16(2), 280-290. doi:10.3846/tede.2010.18Zhao, H., Xu, Z., Ni, M., & Liu, S. (2010). Generalized aggregation operators for intuitionistic fuzzy sets. International Journal of Intelligent Systems, 25(1), 1-30. doi:10.1002/int.20386Zhou, L.-G., & Chen, H. (2010). Generalized ordered weighted logarithm aggregation operators and their applications to group decision making. International Journal of Intelligent Systems, n/a-n/a. doi:10.1002/int.20419Zhou, L.-G., & Chen, H.-Y. (2011). Continuous generalized OWA operator and its application to decision making. Fuzzy Sets and Systems, 168(1), 18-34. doi:10.1016/j.fss.2010.05.009Zhou, L., & Chen, H. (2012). A generalization of the power aggregation operators for linguistic environment and its application in group decision making. Knowledge-Based Systems, 26, 216-224. doi:10.1016/j.knosys.2011.08.004Zhou, L., Chen, H., & Liu, J. (2011). Generalized Multiple Averaging Operators and their Applications to Group Decision Making. Group Decision and Negotiation, 22(2), 331-358. doi:10.1007/s10726-011-9267-1Zhou, L., Chen, H., & Liu, J. (2012). Generalized power aggregation operators and their applications in group decision making. Computers & Industrial Engineering, 62(4), 989-999. doi:10.1016/j.cie.2011.12.025Zhou, L.-G., Chen, H.-Y., Merigó, J. M., & Gil-Lafuente, A. M. (2012). Uncertain generalized aggregation operators. Expert Systems with Applications, 39(1), 1105-1117. doi:10.1016/j.eswa.2011.07.11

    Some geometrical methods for constructing contradiction measures on Atanassov's intuitionistic fuzzy sets

    Get PDF
    Trillas et al. (1999, Soft computing, 3 (4), 197–199) and Trillas and Cubillo (1999, On non-contradictory input/output couples in Zadeh's CRI proceeding, 28–32) introduced the study of contradiction in the framework of fuzzy logic because of the significance of avoiding contradictory outputs in inference processes. Later, the study of contradiction in the framework of Atanassov's intuitionistic fuzzy sets (A-IFSs) was initiated by Cubillo and Castiñeira (2004, Contradiction in intuitionistic fuzzy sets proceeding, 2180–2186). The axiomatic definition of contradiction measure was stated in Castiñeira and Cubillo (2009, International journal of intelligent systems, 24, 863–888). Likewise, the concept of continuity of these measures was formalized through several axioms. To be precise, they defined continuity when the sets ‘are increasing’, denominated continuity from below, and continuity when the sets ‘are decreasing’, or continuity from above. The aim of this paper is to provide some geometrical construction methods for obtaining contradiction measures in the framework of A-IFSs and to study what continuity properties these measures satisfy. Furthermore, we show the geometrical interpretations motivating the measures

    A bibliometric overview of how critical success factors influence on enterprise resource planning implementations

    Full text link
    [EN] This work conducts bibliometric research into publications during the period 1999 to early 2018. The aim of this study is to help gain a better understanding of the publications covering CSF and ERP implementations all over the world. The study includes the most cited articles, most cited authors and most influential institutions as well as the most prolific countries. A database of 301 articles from 86 different institutions and 48 countries has been documented and analyzed. The results indicate that this field is growing significantly over time and a small number of US institutions are currently the most productive in this field.Vicedo Payà, P.; Gil Gómez, H.; Oltra Badenes, RF.; Guerola-Navarro, V. (2020). A bibliometric overview of how critical success factors influence on enterprise resource planning implementations. Journal of Intelligent & Fuzzy Systems. 38(5):5475-5487. https://doi.org/10.3233/JIFS-179639S54755487385Bradford, M., & Florin, J. (2003). Examining the role of innovation diffusion factors on the implementation success of enterprise resource planning systems. International Journal of Accounting Information Systems, 4(3), 205-225. doi:10.1016/s1467-0895(03)00026-5Broadus, R. N. (1987). Toward a definition of «bibliometrics». Scientometrics, 12(5-6), 373-379. doi:10.1007/bf02016680Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences, 102(46), 16569-16572. doi:10.1073/pnas.0507655102Merigó, J. M., Gil-Lafuente, A. M., & Yager, R. R. (2015). An overview of fuzzy research with bibliometric indicators. Applied Soft Computing, 27, 420-433. doi:10.1016/j.asoc.2014.10.035Dereli, T., Durmuşoğlu, A., Delibaş, D., & Avlanmaz, N. (2011). An analysis of the papers published inTotal Quality Management & Business Excellencefrom 1995 through 2008. Total Quality Management & Business Excellence, 22(3), 373-386. doi:10.1080/14783363.2010.532337Petersen, C. G., Aase, G. R., & Heiser, D. R. (2011). Journal ranking analyses of operations management research. International Journal of Operations & Production Management, 31(4), 405-422. doi:10.1108/01443571111119533Maloni, M., Carter, C. R., & Kaufmann, L. (2012). Author affiliation in supply chain management and logistics journals: 2008‐2010. International Journal of Physical Distribution & Logistics Management, 42(1), 83-101. doi:10.1108/09600031211202481Hsieh, P.-N., & Chang, P.-L. (2009). An assessment of world-wide research productivity in production and operations management. International Journal of Production Economics, 120(2), 540-551. doi:10.1016/j.ijpe.2009.03.015Merino, M. T. G., do Carmo, M. L. P., & Álvarez, M. V. S. (2006). 25 Years of Technovation: Characterisation and evolution of the journal. Technovation, 26(12), 1303-1316. doi:10.1016/j.technovation.2005.11.005Podsakoff, P. M., MacKenzie, S. B., Podsakoff, N. P., & Bachrach, D. G. (2008). Scholarly Influence in the Field of Management: A Bibliometric Analysis of the Determinants of University and Author Impact in the Management Literature in the Past Quarter Century. Journal of Management, 34(4), 641-720. doi:10.1177/0149206308319533Goh, C.-H., Holsapple, C. W., Johnson, L. E., & Tanner, J. R. (1997). Evaluating and classifying POM journals. Journal of Operations Management, 15(2), 123-138. doi:10.1016/s0272-6963(96)00102-7Pilkington, A., & Meredith, J. (2008). The evolution of the intellectual structure of operations management-1980-2006: A citation/co-citation analysis. Journal of Operations Management, 27(3), 185-202. doi:10.1016/j.jom.2008.08.001Stonebraker, J. S., Gil, E., Kirkwood, C. W., & Handfield, R. B. (2011). Impact factor as a metric to assess journals where OM research is published. Journal of Operations Management, 30(1-2), 24-43. doi:10.1016/j.jom.2011.05.002Fagerberg, J., Fosaas, M., & Sapprasert, K. (2012). Innovation: Exploring the knowledge base. Research Policy, 41(7), 1132-1153. doi:10.1016/j.respol.2012.03.008Shiau, W.-L., Dwivedi, Y. K., & Tsai, C.-H. (2015). Supply chain management: exploring the intellectual structure. Scientometrics, 105(1), 215-230. doi:10.1007/s11192-015-1680-9Merigó, J. M., Cancino, C. A., Coronado, F., & Urbano, D. (2016). Academic research in innovation: a country analysis. Scientometrics, 108(2), 559-593. doi:10.1007/s11192-016-1984-4Cancino, C., Merigó, J. M., Coronado, F., Dessouky, Y., & Dessouky, M. (2017). Forty years of Computers & Industrial Engineering: A bibliometric analysis. Computers & Industrial Engineering, 113, 614-629. doi:10.1016/j.cie.2017.08.033Laengle, S., Merigó, J. M., Miranda, J., Słowiński, R., Bomze, I., Borgonovo, E., … Teunter, R. (2017). Forty years of the European Journal of Operational Research: A bibliometric overview. European Journal of Operational Research, 262(3), 803-816. doi:10.1016/j.ejor.2017.04.027Martínez-López, F. J., Merigó, J. M., Valenzuela-Fernández, L., & Nicolás, C. (2018). Fifty years of the European Journal of Marketing: a bibliometric analysis. European Journal of Marketing, 52(1/2), 439-468. doi:10.1108/ejm-11-2017-0853Merigó, J. M., Pedrycz, W., Weber, R., & de la Sotta, C. (2018). Fifty years of Information Sciences: A bibliometric overview. Information Sciences, 432, 245-268. doi:10.1016/j.ins.2017.11.054Merigó, J. M., & Yang, J.-B. (2017). A bibliometric analysis of operations research and management science. Omega, 73, 37-48. doi:10.1016/j.omega.2016.12.004Tur-Porcar, A., Mas-Tur, A., Merigó, J. M., Roig-Tierno, N., & Watt, J. (2018). A Bibliometric History of the Journal of Psychology Between 1936 and 2015. The Journal of Psychology, 152(4), 199-225. doi:10.1080/00223980.2018.1440516Valenzuela, L. M., Merigó, J. M., Johnston, W. J., Nicolas, C., & Jaramillo, J. F. (2017). Thirty years of the Journal of Business & Industrial Marketing: a bibliometric analysis. Journal of Business & Industrial Marketing, 32(1), 1-17. doi:10.1108/jbim-04-2016-0079Merigó, J. M., Blanco-Mesa, F., Gil-Lafuente, A. M., & Yager, R. R. (2016). Thirty Years of theInternational Journal of Intelligent Systems: A Bibliometric Review. International Journal of Intelligent Systems, 32(5), 526-554. doi:10.1002/int.21859Wang, W., Laengle, S., Merigó, J. M., Yu, D., Herrera-Viedma, E., Cobo, M. J., & Bouchon-Meunier, B. (2018). A Bibliometric Analysis of the First Twenty-Five Years of the International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 26(02), 169-193. doi:10.1142/s0218488518500095Yu D. , Xu Z. , Kao Y. , Lin C.T. , “The Structure and Citation Landscape of IEEE Transactions on Fuzzy Systems (1994–2015)”, IEEE Transactions on Fuzzy Systems 26(2) (2018).Tang, M., Liao, H., & Su, S.-F. (2018). A Bibliometric Overview and Visualization of the International Journal of Fuzzy Systems Between 2007 and 2017. International Journal of Fuzzy Systems, 20(5), 1403-1422. doi:10.1007/s40815-018-0484-5LÓPEZ-HERRERA, A. G., HERRERA-VIEDMA, E., COBO, M. J., MARTÍNEZ, M. A., KOU, G., & SHI, Y. (2012). A CONCEPTUAL SNAPSHOT OF THE FIRST DECADE (2002–2011) OF THE INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & DECISION MAKING. International Journal of Information Technology & Decision Making, 11(02), 247-270. doi:10.1142/s0219622012400020Cobo, M. J., Martínez, M. A., Gutiérrez-Salcedo, M., Fujita, H., & Herrera-Viedma, E. (2015). 25years at Knowledge-Based Systems: A bibliometric analysis. Knowledge-Based Systems, 80, 3-13. doi:10.1016/j.knosys.2014.12.035Yu, D., & Shi, S. (2015). Researching the development of Atanassov intuitionistic fuzzy set: Using a citation network analysis. Applied Soft Computing, 32, 189-198. doi:10.1016/j.asoc.2015.03.027Yu, D., Xu, Z., & Wang, W. (2018). Bibliometric analysis of fuzzy theory research in China: A 30-year perspective. Knowledge-Based Systems, 141, 188-199. doi:10.1016/j.knosys.2017.11.018Yu, D. (2015). A scientometrics review on aggregation operator research. Scientometrics, 105(1), 115-133. doi:10.1007/s11192-015-1695-2Zhang, Y., Chen, H., Lu, J., & Zhang, G. (2017). Detecting and predicting the topic change of Knowledge-based Systems: A topic-based bibliometric analysis from 1991 to 2016. Knowledge-Based Systems, 133, 255-268. doi:10.1016/j.knosys.2017.07.011Muhuri, P. K., Shukla, A. K., Janmaijaya, M., & Basu, A. (2018). Applied soft computing: A bibliometric analysis of the publications and citations during (2004–2016). Applied Soft Computing, 69, 381-392. doi:10.1016/j.asoc.2018.03.041Van Eck, N. J., & Waltman, L. (2009). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523-538. doi:10.1007/s11192-009-0146-

    Fuzzy Free Path Detection based on Dense Disparity Maps obtained from Stereo Cameras

    Full text link
    In this paper we propose a fuzzy method to detect free paths in real-time using digital stereo images. It is based on looking for linear variations of depth in disparity maps, which are obtained by processing a pair of rectified images from two stereo cameras. By applying least-squares fitting over groups of disparity maps columns to a linear model, free paths are detected by giving a certainty using a fuzzy rule. Experimental results on real outdoor images are also presented.Nuria Ortigosa acknowledges the support of Universidad Polit'ecnica de Valencia under grant FPI-UPV 2008. Samuel Morillas acknowledges the support of Spanish Ministry of Education and Science under grant MTM 2009-12872-C02-01.Ortigosa Araque, N.; Morillas Gómez, S.; Peris Fajarnes, G.; Dunai Dunai, L. (2012). Fuzzy Free Path Detection based on Dense Disparity Maps obtained from Stereo Cameras. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems. 20(2):245-259. doi:10.1142/S0218488512500122S245259202Grosso, E., & Tistarelli, M. (1995). Active/dynamic stereo vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(9), 868-879. doi:10.1109/34.406652Wedel, A., Badino, H., Rabe, C., Loose, H., Franke, U., & Cremers, D. (2009). B-Spline Modeling of Road Surfaces With an Application to Free-Space Estimation. IEEE Transactions on Intelligent Transportation Systems, 10(4), 572-583. doi:10.1109/tits.2009.2027223Bloch, I. (2005). Fuzzy spatial relationships for image processing and interpretation: a review. Image and Vision Computing, 23(2), 89-110. doi:10.1016/j.imavis.2004.06.013Keller, J. M., & Wang, X. (2000). A Fuzzy Rule-Based Approach to Scene Description Involving Spatial Relationships. Computer Vision and Image Understanding, 80(1), 21-41. doi:10.1006/cviu.2000.0872Moreno-Garcia, J., Rodriguez-Benitez, L., Fernández-Caballero, A., & López, M. T. (2010). Video sequence motion tracking by fuzzification techniques. Applied Soft Computing, 10(1), 318-331. doi:10.1016/j.asoc.2009.08.002Morillas, S., Gregori, V., & Hervas, A. (2009). Fuzzy Peer Groups for Reducing Mixed Gaussian-Impulse Noise From Color Images. IEEE Transactions on Image Processing, 18(7), 1452-1466. doi:10.1109/tip.2009.2019305Poloni, M., Ulivi, G., & Vendittelli, M. (1995). Fuzzy logic and autonomous vehicles: Experiments in ultrasonic vision. Fuzzy Sets and Systems, 69(1), 15-27. doi:10.1016/0165-0114(94)00237-2Alonso, J. M., Magdalena, L., Guillaume, S., Sotelo, M. A., Bergasa, L. M., Ocaña, M., & Flores, R. (2007). Knowledge-based Intelligent Diagnosis of Ground Robot Collision with Non Detectable Obstacles. Journal of Intelligent and Robotic Systems, 48(4), 539-566. doi:10.1007/s10846-006-9125-6McFetridge, L., & Ibrahim, M. Y. (2009). A new methodology of mobile robot navigation: The agoraphilic algorithm. Robotics and Computer-Integrated Manufacturing, 25(3), 545-551. doi:10.1016/j.rcim.2008.01.008Sun, H., & Yang, J. (2001). Obstacle detection for mobile vehicle using neural network and fuzzy logic. Neural Network and Distributed Processing. doi:10.1117/12.441696Ortigosa, N., Morillas, S., & Peris-Fajarnés, G. (2010). Obstacle-Free Pathway Detection by Means of Depth Maps. Journal of Intelligent & Robotic Systems, 63(1), 115-129. doi:10.1007/s10846-010-9498-4Picton, P. D., & Capp, M. D. (2008). Relaying scene information to the blind via sound using cartoon depth maps. Image and Vision Computing, 26(4), 570-577. doi:10.1016/j.imavis.2007.07.005Zhang, Z. (2000). A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11), 1330-1334. doi:10.1109/34.888718Scharstein, D., & Szeliski, R. (2002). International Journal of Computer Vision, 47(1/3), 7-42. doi:10.1023/a:1014573219977Felzenszwalb, P. F., & Huttenlocher, D. P. (2006). Efficient Belief Propagation for Early Vision. International Journal of Computer Vision, 70(1), 41-54. doi:10.1007/s11263-006-7899-4Qingxiong Yang, Liang Wang, Ruigang Yang, Stewenius, H., & Nister, D. (2009). Stereo Matching with Color-Weighted Correlation, Hierarchical Belief Propagation, and Occlusion Handling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(3), 492-504. doi:10.1109/tpami.2008.99Zitnick, C. L., & Kang, S. B. (2007). Stereo for Image-Based Rendering using Image Over-Segmentation. International Journal of Computer Vision, 75(1), 49-65. doi:10.1007/s11263-006-0018-8Hartley, R., & Zisserman, A. (2004). Multiple View Geometry in Computer Vision. doi:10.1017/cbo9780511811685Lee, C. C. (1990). Fuzzy logic in control systems: fuzzy logic controller. I. IEEE Transactions on Systems, Man, and Cybernetics, 20(2), 404-418. doi:10.1109/21.52551C. Fodor, J. (1993). A new look at fuzzy connectives. Fuzzy Sets and Systems, 57(2), 141-148. doi:10.1016/0165-0114(93)90153-9Nalpantidis, L., & Gasteratos, A. (2010). Stereo vision for robotic applications in the presence of non-ideal lighting conditions. Image and Vision Computing, 28(6), 940-951. doi:10.1016/j.imavis.2009.11.011BOHANNON, R. W. (1997). Comfortable and maximum walking speed of adults aged 20—79 years: reference values and determinants. Age and Ageing, 26(1), 15-19. doi:10.1093/ageing/26.1.1
    corecore