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Trillas et al. (1999, Soft computing, 3 (4), 197-199) and Trillas and Cubillo (1999, 
On non-contradictory input/output couples in Zadeh's CRI proceeding, 28-32) 
introduced the study of contradiction in the framework of fuzzy logic because of the 
significance of avoiding contradictory outputs in inference processes. Later, the study 
of contradiction in the framework of Atanassov' s intuitionistic fuzzy sets (A-IFSs) was 
initiated by Cubillo and Castiñeira (2004, Contradiction in intuitionistic fuzzy sets 
proceeding, 2180-2186). The axiomatic definition of contradiction measure was stated 
in Castiñeira and Cubillo (2009, International journal of intelligent systems, 24, 
863-888). Likewise, the concept of continuity of these measures was formalized 
through several axioms. To be precise, they defined continuity when the sets 
'are increasing', denominated continuity from below, and continuity when the sets 
'are decreasing', or continuity from above. The aim of this paper is to provide some 
geometrical construction methods for obtaining contradiction measures in the 
framework of A-IFSs and to study what continuity properties these measures satisfy. 
Furthermore, we show the geometrical interpretations motivating the measures. 
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1. Introduction 

Due to the significance of avoiding contradictory outputs in inference processes, Trillas 
et al. (1999) and Trillas and Cubillo (1999) studied contradiction in the framework of 
fuzzy logic by introducing the concept of the contradictory set. They established that the 
fuzzy set associated with the predicate P, and determined by the membership function ¡xp, 
is contradictory if l ¡xp{x) —> fi-.p(x) for all x', representing the implication '—>' by means of 
the reticular order < of [0,1] and -"P through some strong negation N. Remember that 
N: [0,1] —> [0, 1] is a strong fuzzy negation if it is a decreasing function satisfying 
N(0) = 1, N(l) = 0, and A^2 = id. Thus, ¡xp is said to be contradictory regarding a strong 
negation N, or A^-contradictory, if ¡xp < N° ¡xp. This definition was generalized by Trillas 
et al. (2002) with the aim of studying the laws of non-contradiction and excluded middle 
from a new point of view. In that paper, the implication '—>' is replaced by a transitive 
relation '1=' and the negation '-•' by a unary operation that is l=-reversing. 

In classical logic, the inequality ¡xp < N ° ¡xp is true if and only if ¡xp = ¡xy. This would 
lead to an alternative interpretation of the inequality ¡xp < N°¡xp, namely, that P is 
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'weakly empty' with respect to N. In this sense, Piasecki (1985) established that a set P is 
w-empty if ¡xp < 1 — ¡xp. 

Nevertheless, the extent to which the condition ¡xp < N°¡xp holds, that is, how 
contradictory ¡xP is, is a matter for consideration, since ¡xP can behave quite differently 
regarding this characteristic. The need to speak not only of contradiction but also of degrees 
of contradiction was later raised by Castiñeira et al. (2002), where some functions were 
considered for the purpose of determining that degree. Later, an axiomatic model for 
measuring how contradictory a fuzzy set is was proposed by Cubillo and Castiñeira (2005). 
Then, an axiomatic model to measure the contradiction in Atanassov's intuitionistic fuzzy 
sets (A-IFSs) was established by Castiñeira and Cubillo (2009). 

In this paper, we devise several methods for constructing contradiction measures on 
A-IFSs. The paper is organized as follows. Section 2 establishes everything we need to 
know about Atanassov's fuzzy sets and contradiction measures to explain the new results. 
Section 3 deals with contradiction measures that are completely semicontinuous. Finally, 
Section 4 introduces some semicontinuous contradiction measures. In all cases, after 
studying what kind of continuity the measures satisfy, we present the geometrical 
interpretations that really motivated the construction of such measures. 

2. Preliminaries 

2.1 On the Atanassov intuitionistic fuzzy sets 

Given a fuzzy predicate A in a universe of discourse X ¥^ 0, an A-IFS associated with A 
(see Atanassov 1999) is a set A = {(x, ¡xA(x), vA{x)) : x G X}, where ¡xA : X—> [0, 1], 
vA ". X—> [0,1] are called, respectively, the membership and non-membership functions, 
and such that, for all i £ I , ¡XA(X) + PA(X) < 1. Let us denote the set of all A-IFSs on X as 
1T(X). 

The A-IFSs could be considered as what Goguen termed L-fuzzy sets (Goguen 1967), 
where the lattice L is the set L = {(«i, «2) G [0, l ] 2 : «i + «2 — 1} with the partial order 
<L defined as follows: given a = {a\, a-¿), j8 = (/3i, ¿82) £ L, & — 1 P holds if and only if 
OL\ < /3i and «2 — ft. (L, <[_) is a complete lattice with least element, 0L = (0,1), and 
greatest element, \\_ = (1, 0). 

So, an A-IFS A is an L-fuzzy set whose L-membership function / E L = {x '• 
X —> L} is defined for each i £ X a s XA(X) = (ftWi VA(X)). 

The order < L of L naturally induces a partial order on Lx, which is given as follows: if 
XA, XB G LX, XA =% XB holds if and only if X

A(x) <L x
B{x) for all x G X. Thus, (Lx, <L) 

is a bounded and complete lattice in which the least and greatest elements are, 
respectively, x°L a nd X1L defined by ^°L(x) = 0^ and X1L(X)

 =
 1L f° r aU x (E X. 

Furthermore, let us recall that a decreasing function Ai : L —> L is an intuitionistic 
fuzzy negation (IFN) if Áf(0i) = h and Áf(li) = 0L hold; and Áfis a strong IFN if the 
equality Af(Af(a)) = a holds for all a G L (for more about IFN, see Bustince et al. 2000, 
Deschrijver et al. 2002, 2004). 

2.2 On the contradiction on A-IFSs 

The study of contradiction in the framework of A-IFSs was initiated by Cubillo and 
Castiñeira (2004). As in the fuzzy case, an A-IFS A, or alternatively xA G Lx, is said to be 
contradictory with respect to some strong IFN Ai, or A is A/"-contradictory, if xA(x) ^1 
(Af° xA)(x) for all x G X, where xA is the L-membership function of A. Also, A (or xA) is 
said to be contradictory if there exists a strong negation Ai such that A is A/"-contradictory. 



As we want to know not only whether a set is contradictory, but also to what extent this 
property holds, we dealt with the problem of measuring the contradiction in the case of 
A-IFSs. A general and axiomatic model for measuring contradiction on IT{X) was 
presented by Castiñeira and Cubillo (2009). They established and justified a number of 
axioms; moreover, they gave several examples to illustrate those new concepts. The first 
definition presented there is as follows. 

DEFINITION 2.1 (CASTIÑEIRA AND CUBILLO 2009). Let X ^ 0 be a uni verse of discourse, a 

function C : Lx—• [0,1] is a measure of contradiction on the XT(X), or on lx, if the 
following is satisfied: 

(c.i) C(X
0L)=U 

(c.ii) if x = (/A, v) G Lx satisfies In f^x v(x) = 0 (we say that x is L-normal), then 
C(x) = 0; 

(c.iii) anti-monotonicity: given / j s G L 1 such that xA —L XB> then 
C(XA) s C(X

B). 

The set of all measures of contradiction on Lx was denoted by CM.(TT(X)) or more 
concisely CM(LX). 

Furthermore, as the above definition does not determine gradually varying degrees of 
contradiction, other axioms were also introduced to model the continuity, from both below 
and above, of contradiction measures, as follows. 

DEFINITION 2.2 (CASTIÑEIRA AND CUBILLO 2009). Let X ^ 0, a contradiction measure 

C : Lx — [0, 1] is said to be 
• completely semicontinuous from below if the following axiom is satisfied: 

(c.iv) for each indexed family {X'}¡<EI ^ Lx, 

lnfC(X
i) = c(supX 

i e I V ¿el 

holds, where SupI(=i x' G Lx is defined for all x G X as (SupI(=i x')(.x) 
Sup,ei x'(x); 

• completely semicontinuous from above if the following axiom is satisfied: 
(c.v) for each indexed family ¡ ^ ¡ } i e I C L x \ L j , where Lx = {X G l ' 

^ i s L-normal}, 

SuVC{X
i) = c(lníx-

ÍEX \ , e I 

holds, where Inf¿(=i x' G Lx is defined for all x G X as (Inf¿(=i x')(.x) = Infiel ^ ' W -

Remark 1. Note that for each i 6 X, we have the A-IFS on 2 defined by 

Ax = {(i, I¿Í(X), Vi(x)) : i G I}. 

whose closure (Atanassov 1986) is the A-IFS 

C(AX) = <¡ [i, Sup/A¿(x), Inf Vi(x) ) :i&l 



which, considered as an L-fuzzy set on I, has the L-membership function 

Sup^'(x) = Sup/A¿(x), Inf Vi(x) 
¿El V ¿E l i e I 

Note also that for each i £ I , the interior (Atanassov 1986) of Ax is the A-IFS 

I(Ax) = -s U, lnf/Jbi(x), Sup i>¡(x) : ¡ E 1 

which, considered as an L-fuzzy set on X, has the L-membership function 

Inf *'(*) = ( Jnffii(x), Sup^(x) 
¿E l ¿ex y e l 

The set of all contradiction measures that are completely semicontinuous from below 
on XT(X) was denoted by CÁ4CSC(LX) and the set of all contradiction measures that are 
completely semicontinuous from above by CÁ4CSC(L ). 

Remark 2. In the above paper, Castiñeira and Cubillo (2009), it was proved that the 
functions C*,C* : Lx —> [0,1] defined, respectively, for each x = (M, V) €= Lx as 

í 0 if x G L* 
CÁX) = lllKx) and C*(X) = { Sup Kx) if x G LX\L^ 

xex 

satisfy C* G CA1CSC(LX) and C* G OM c s c(Lx) . 
Nevertheless, the axioms (c.iv) and (c.v) of complete continuity could appear to be too 

restrictive because there exist contradiction measures, in which the valúes change 
gradually, like the functions proposed by Castiñeira et al. (2006), which do not satisfy 
them. For this reason, we established other weaker axioms using semilattices. Before we 
state these axioms, remember that Tsee Blyth (2005) or Birkhoff (1940)] a set S C lx is an 
upper semilattice if for all 

XA,XB G S, Sup{^ A , ^ B } G S holds; and S (Z Lx is a lower 
semilattice if for all xA, XB G S, lnf{xA,XB) G S h ° l d s -
DEFINITION 2.3 (CASTIÑEIRA AND CUBILLO 2009). Let X ^ 0, a contradiction measure 

C : Lx — [0, 1] is said to be 
• semicontinuous from below if it satisfies the following axiom: 

(c.vi) for each upper semilattice {X'}Í<EI C L , the following holds: 

Inf C(xi) = c( Sup X 
i e I \ ¡ e l 

• semicontinuous from above if it satisfies the following axiom: 
(c.vii) for each lower semilattice {X'}¡<EI ^ L X \ L Q , the following holds: 

S u p C ( / ) = C ( I n f ^ 
¿el \ ' e I 



The set of all contradiction measures that are semicontinuous from below on Lx was 
denoted by CÁ4SC(LX) and the set of all contradiction measures that are semicontinuous 
from above by CMSC(LX). 

Moreover, it was shown by Castiñeira and Cubillo (2009) that 

0 ^ CMCSC(LX) £ CMSC(LX) £ CM(LX): 

0 =¿ CMCSC(LX) S CMSC(LX) S CM(LX). 

Finally, it is important to take into account that 

• every axiom of continuity implies anti-monotonicity; 
• if X1 = (P'Í,VÍ)

 f o r a i l ' É l , then I n f ¿ e I y = (Inf,ei /A¿, Sup,e I v¡) and 
Supiei^1 = (Sup¿eI/u¿, Inf,ei v¡). 

3. Families of completely semicontinuous contradiction measures 

In this section, we introduce three families of functions showing that they are contradiction 
measures that are completely semicontinuous from below. Also, we construct other 
functions or contradiction measures that are completely semicontinuous from above. In all 
cases, we study not only what kind of continuity the functions satisfy but also what they do 
not. We also state the geometrical interpretations that have suggested the construction of 
those functions. 

THEOREM 3.1. If <p : [0, 1] —> [0,1] is an order automorphism, then the following is 
satisfied. 

(a) The function C9* : Lx — [0, 1] defined for each x = 0"-, V) G LX by C9*{x) = 
InfrEX (<P ° v)(x) is a contradiction measure that is completely semicontinuous from 
below. 

(b) The function Cv* : Lx — [0,1] defined by 

o if*el£ 
Sup,ex(<p^)(x) i f ^ G L x \ L ^ 

y<*(x) =- • 

is a contradiction measure that is completely semicontinuous from above. 

Proof. All the axioms of contradiction measures and their continuity are trivially preserved 
under any order automorphism. Thus, it follows from C9* = <p°C* and C*1'* = (p°C*, 
where C* and C* are the contradiction measures presented in Remark 2, that Cv* G 
CMCSC(LX) and C** G CMCSC(LX). ' D 

Figure 1 shows a simple geometrical interpretation of the measures C9* and C*1'*. 

Example 3.2. Let {A^A}AG(-I ») t>e t n e family of Sugeno's negations (Sugeno 1974), 
defined for all a G [0,1] by N\(a) = (1 — a)/(l + Xa); and let {Ny}y<=(Qj00) be the family 
of Yager's negations (Yager 1980), defined for all a G [0,1] by Ny(a) = (1 - a^)xh. 
Then, 



«p-'ícnx)) 

Figure 1. Geometrical interpretation of the measures C¡p* and C*. 

(a) if (p\ = N\°NS, where Ns is the standard negation Ns(a) = l — a, then 
C(pk*(.X) = In í rex(X x ) / (1 + A — Xv(x))), for each x = 0 A ! ̂ ) *= "-X, defines a 
contradiction measure that is completely semicontinuous from below on Lx; 
analogously, the function defined for each x = 0 A ! V) *= L X \ L Q by Cn'*(x) = 
Sup x e x (M.x)/(l + A - XiKx))) and Cw '*(^) = 0 if x G L* satisfies C"* G CA1CSC 

(Lx); 

(b) if <py = Ny°Ns, then Cv^(x) = I n v e r t í - (1 - K * ) ) 7 ) 1 / T , for each X G Lx, 
defines a contradiction measure that is completely semicontinuous from below 
on Lx, whereas C^'*(x) = S u p x e x ( l - (1 - v{x))y)lly if ^ 6 L x \ L j , and 
C*"7'*^) = 0 if ^ G L 0 , defines a contradiction measure that is completely 
semicontinuous from above. 

We know that the measures Cv* and Cv* satisfy Cv* G CMcsc(l
x) C CMsc(l

x) 
and C* * G CMCSC(LX) C C A f c ( l x ) . Now let us see what kind of continuity they do not 
satisfy. 

PROPOSITION 3.3. Let tp : [0,1] —> [0,1] be an order automorphism and let Xbe an infinite 
set, then the following is satisfied. 

(a) Cv* £ CMsc(lx) and consequently Cv* £ OA/f s c(lx) . 
(b) C9''* £ CA1SC(LX) and consequently C9''* £ OM c s c ( l x ) . 

Proof. We are going to prove only (a) because the proof of (b) is similar. Let VF(X) be the 

family of all finite subsets of X. We consider the family of A-IFSs taking the same valué 0L 

on a finite number of elements of the universe, and the valué (0,1/2) on the others, 

i-e- ÍXA}AGVF(X) C L X \ L O s u c h t h a t f o r e a c h A G VFÍX), 

0L ifx 

^ (0,1) ifx$A. 

We have that {XA}A<EVF(X) C L X \ L Q is a lower semilattice. Indeed, if xA\XM e 

{XA}A(,vF(x), then I n f { ^ , ^ } = X
AiUM, where xAlUM G { ^ I A E P . O O as Ai U A2 is a 

finite set. 

Thus, C ^ O t 4 ) = <p(l/2) ^ 1 for all X
A G { * A } A E Í V « and so 

AEPF(X) 
Sup C ^ ( * A ) = <p( - l * 1 . 

However, C ^ ( I n f A e W ) * A ) = C^ix*1) = 1- Therefore, Cv* £ OM s c ( l A ) . D 



The foliowing results show contradiction measures taking discrete valúes in [0, 1]. 
They are general constructions based on two cases given by Castiñeira and Cubillo (2009). 
Therefore, we omit their proofs because they are similar to the proofs of those cases. 

To simplify the notation, we consider intervals in L with some extreme in [0, l ] 2 as 

foUows:if /3=(/3i , /32)G [0, l ] 2 , 

[0L,j3] = { ( a i , a 2 ) e l : « i ^ ft &a2 > ft}, 

[p, lL] = { ( « i , « 2 ) G L : « i > i 8 i & a 2 ^ i 8 2 } . 

THEOREM 3.4. L e t / : [0,1] —> [0,1] be a continuous and decreasing function satisfying 
/ ( l ) = 0, let <p : [0,/(0)] —> [0,1] be an order isomorphism, and let Y = {yn}n<EN ^ [0,1] 
be a decreasing sequence such that y\ = / ( 0 ) and Inf„¡=^ {yn} = 0. We consider the 
function C9fy : Lx —> [0,1] defined for each x = (M, V) €= Lx by 

[0 if x G L* 
C9>/,y(Ar) = < <p(j,„) if S u p ^ x ) G Rn •• 

xGX 

where flj = [0L,(0,yO] and Rn = [0L, ( r ' O O ^ l V O i , (T 'O'»-! ) , ) '»- ! ) ] for all » > 1 
(see Figure 2(a)). Then C^/.y G O M c s c ( l x ) . 

THEOREM 3.5. L e t / : [0,1] —> [0,1] be a continuous and decreasing function satisfying 
/ ( l ) = 0, let <p : [0,/(0)] —> [0,1] be an order isomorphism, and let Y = {yn}ne.n ^ [0,1] 
be a decreasing sequence such that y\ = / ( 0 ) and Inf„e^ {yn} = 0. We consider the 
function C9j'Y : Lx — [0,1] defined for each * = (/A, V) G L X by 

(0 if * G l * 

where /?! = l \ [ (0 ,y i ) , 1L] and for all n > 1, 

fln=[(rWi),yn-i),iü 

\([(f _1Cv»),y»), iü u {(«i,0) G L -.f-^n-ú < «i ^/^Cv»)}) 

(see Figure 2(b)). Then C^ ' 3 , G £M C Í C ( l x ) . 

(a) 
0L 

Figure 2. Construction of the regions i?„ in Theorems 3.4 and 3.5. 



Under the hypotheses in the above theorems, Cvjty and CV'*'Y satisfy Cvjty ÉE 
CMCSC(LX) C CMSC(LX) and C'p'f'¥ G CMCSC(LX) C CMS¿(LX). Now letus see whatkind 
of continuity they do not satisfy. 

PROPOSITION 3.6. Let/ : [0,1] —> [0, 1] be a continuous and decreasing function satisfying 
/ ( l ) = 0, let <p : [0,/(0)] —> [0,1] be an order isomorphism, and let Y = {yn}n<EN C [0,1] 
be a decreasing sequence such thatyi = / (0 ) and Inf„e^ {y„} = 0. Then the following is 
satisfied. 

(a) CVtftY £ CMSC(LX) and therefore CVtftY £ £MCÍC(lx). 
(b) C^'Y £ C7WSC(LX) and therefore C^'Y £ OMcsc(lx). 

Proof. Again, we are going to prove only (a) because the proof of (b) is similar. As 
y\ = / ( 0 ) > 0, we consider «o €= ^ such that l/«o — y\ and let {^"}„>„0 be the chain (and 
then it is a lower semilattice too) defined for all x G X by xn(x) = (0,;yi — 1/M)' then 
(Inf„>„0 ^")(x) = (Q,yi) for allx G X. Thus, C^j^CInf^^, *") = <p(yi) = 1. Nevertheless, 
as there is Af G N such that y i > y! — 1/n > y2 f° r all n> N, then C^j^ix") = V(y2) f° r 

all « > N, and C^j^ix") < v(y2) f° r all «o — « < N. Therefore, Sup„>„0 C^j^ix") = 

<p(y2) < vKyi)- • 

The last pair of families of contradiction measures that we look at in this section are 
two families of functions taking valúes in the whole interval [0, 1]. One of them comprises 
measures that are completely semicontinuous from below and the other one contains 
measures that are completely semicontinuous from above. 

THEOREM 3.7. Le t / : [0,1] —> [0,1] be a continuous and decreasing function satisfying 
/ ( l ) = 0 and let <p : [0,/(0)] —> [0,1] be an order isomorphism. Then the function Cvj : 
Lx — [0,1] defined for each x = (/¿, V) G LX by 

C^fix) = Ig<p(Min{(f °M)(x), v(x)}) 

satisfies Cpj G CMcsc(l
x). 

Proof. Let us confirm the axioms: 
(c.i) C^jix^) = <p(Min{/(0), 1}) = 1; 
(c.ii) let x = (M, V) G LX be an L-normal set, as <p is continuous then 

C<P,f(x) = <P (Mini Inf / o /A)(JC)! inf J<JC) 1 ) = <p( Mini Inf (f ° /A)(JC), 01 ) = 0; 
V I XE.X XE.X \ I \ I XE.X \ I 

(c.iv) let {x'}¡ei ^ Lx, where ^ ' = (/A¿, V¿) for all / G X, because of the properties 
of the functions <p and / we have 

Cpj Supx l ) = Inf <p Min<̂  /°Sup/A¿ (X), Inf ^(x) 
e l / *e ; í \ L \ ¿ex / l G I 

: Inf <p[ Min<̂  Inf (f°fii)(x), Inf V,-(JC) 

xex \ I ¿el ¿el 
: Inf Inf <p(Min{(f ° M¿)(*), v¡(x)}) = Inf C ^ 1 ' ) . D 

¿ei^ex ¿el 
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/"'(a) 

Figure 3. Geometrical interpretation of the measures constructed in Theorem 3.7. 

(Minj/(jup, Sup ¡x(x) I, Inf v{x) 

A geometrical interpretation 
We can write 

Cv,fiX) = <P 

so if we denote a = Min{f(S\xpx(=x fi(x)), lnfx(=x v{x)}, then either Supx ex M x ) =f~1(a) 
and Infjex Kx) - « o r Supxex M x ) — / _ 1 ( a ) a n d Inírex Kx) = a- Thus, we consider 
the square región for which the vértex is located on the curve «2 = / ( « i ) ( s e e Figure 3) 
as follows: 

Ra = {(f~\¿), ai) G L : a2 > a} U {(ai , a) £ L : a , ^ / ^ ( a ) } , 

for all a G [0,/(0)]. Henee, the following statement is satisfied. 

Similarly, we can obtain the following result. 

THEOREM 3.8. L e t / : [0,1] —> [0,1] be a continuous and decreasing function satisfying 
/ ( l ) = 0 and let <p : [0,/(0)] — [0,1] be an order isomorphism. Let C9j : Lx — [0,1] be 
the function defined for each x = (M, ^) €= Lx by 

C^ÍX) 

ro 
i if * £ I * and Sup I<JC) > /(O) 

Sup^>(Max{(f °/A)(JC), ¿<X)}) otherwise. 

Then C ' ' G OM c s c ( l x ) . 

A geometrical interpretation 
Let us suppose that ^ G L is not L-normal and Supx(=x v{x) < /(O), thus 

C*J(x) '{'G Max<¡ / ( Inf /JL(X) , Sup v(x) 

and if a = Max{f(l\\fx(=x M X ) ) J Supx ex Kx)} then 



OL 

\ 
\ 

•'Vio) 
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Y A 
/"'(a) \ 

a2=/(ai) 

•U 
/"'(a) 

Figure 4. Geometrical interpretation of the measures constructed in Theorem 3.8. 

where (see Figure 4) 

Ra = {(f ~\a), «2) G L : 0 < a2 < a } U {(«i, a) G L : a , s / ^ a ) } , 

for each a G (0,/(0)). Moreover, CvJ(x) = <p(Q) if and only if lnfx(=x X(x) G fl0 = 
[0,1] X {0} and C^ix) = <p(f(0)) if and only if lníx&xX(x) G Rm = {(au a2) G L\ 
{ ( 0 , 0 ) } : a 2 > / ( 0 ) o r a 1 = 0 } . 

The geometrical interpretations of Theorems 3.7 and 3.8 show that the measures C9j 
and Cv'* can be interpreted as a limit step of the measures Cvjty and CV'*'Y, respectively 
(see Figures 2 -4 ) . 

Example 3.9. To illustrate the above theorems with specific examples, consider again the 
family {A^A}AG(-I,OO) of Sugeno's negations and the family {A^7}7(=(0oo) of Yager's 
negations. Thus, if <py(a) = ay and / = Ny, with y G (0, oo), or / = N\ we have the 
following. 

(a) The measures CíPy^Á,Cq>y^y : Lx —> [0, 1] defined for each x = (M, V) €= Lx by 

^ W = I n f ( M m ( i ^ | , K x ) ) ) : 

C ^ C * ) = Inf Min(l - ^x)\ K*)7) 
xEX 

are completely semicontinuous from below. 
(b) The measures c^'N\C^'N^ : Lx — [0, 1] defined for each x = O , V) G LX by 

C^'NH.X) = < Sup(Max((l - ¡JL(X))/(1 + A/¿(x)), v(x))y if x G L x \ l * ¡ 

0 if * G l * 

C^'™7^) = { SupMax(l - ¡x(xy, v(x)y) if x G L X \ L Q 

are completely semicontinuous from above. 

We know that C9if G O M c s c ( l x ) C CMSC(LX) and C ' ' G CMCSC(LX) C C A f c ( l x ) . 
Now let us see what kind of continuity Cvj and Cv'* do not satisfy. 



PROPOSITION 3.10. Let / : [0,1] —> [0,1] be a continuous and decreasing function 
satisfying / ( l ) = 0 and let <p : [0,/(0)] —> [0,1] be an order isomorphism. Then, the 
following is satisfied. 

(a) If X is an infinite set, CvJ £ CMsc(lx), whence CvJ £ CMcsc(lx). 
(b) C ^ £ OM sc(lx), whence CvJ £ C7WCSC(LX). 

Proof. (a) The idea is the same as in Proposition 3.3. Again, we consider the set of all finite 
parts of X, VF(X), and let {XA}AEVFQ0 C ^ b e t h e family such that for each A G VF(X), 

{XA}AGVF(X) is a lower semilattice because if xA\XAl G
 {/IAGPPW

 t h e n 

Inf{^,^} = X
AlUAl G { /}AGP F(X)- Thus, C P i / (^ ) = <p(f(0)/2) < 1 for all X

A e 
{^A}Aeí>f(x)ands°SupAeí'f(x)Cf,,/(^'4) = <p(f(0)/2) < l.Howeve^Q/CIníiep^x)^) = 
C^/O^) = 1. 

(b) Let {^"}„e^ be the chain (and then it is a upper semilattice too) defined for all 
x G X by X"(JC) = (0,/(0)/«), then (Sup„eN *")(x) = (0,0) for all x G X. Thus 
C^CSupneN A'") = 0> as Sup„eN *" is l-normal. Nevertheless, C^ix") = 1 for all 
n<=N, and therefore Inf„eN C^ix") = L • 

4. Families of semicontinuous contradiction measures 

In this section, we introduce several families of semicontinuous contradiction measures. 
Some are functions taking discrete valúes in [0, 1] and the rest take valúes in the whole 
interval [0, 1]. Each family that is semicontinuous from below has a 'dual' family that is 
semicontinuous from above. 

THEOREM 4.1. Let <p : [0, 1] —> [0,1] be an order automorphism, let Y = {yn}neN c [0, 1] 
be a decreasing sequence such that Inf„¡=^ {y„} = 0 and y\ = 1, and let p > 0. We 
consider the family of regions in L bordered by the straight lines joining the two points 
(—p, 0) and (0,y„), for each n E N, as follows. 

Ri = {0L} 

Rn = \ (ai, a2) G L : yn + a\ — < a2 < yn-\ + <*\ —— \ Vw > 1. 
I P P ) 

Then, the following two functions are both contradiction measures that are semi­
continuous from below. 

(a) For each x €= Lx, 

<W(Af) = \ cp(yn) if Supxix) G Rn-
xGX 

(b) For each x G L* 

^ . r (X) N : X(X) HRk^ 0}. 



On the one hand, the family of (a) is a more general construction than another 
introduced by Castiñeira and Cubillo (2009). Thus (a) is proven by techniques similar to 
the proof shown there. Therefore, the proofs are omitted. On the other hand, although the 
construction in (b) is a new family, the proof of that statement is similar to the proof of (a). 

Figure 5 shows what the measures C9¡P¡Y
 a n d C<P,P,Y are like, emphasizing the difference 

between them. 
As in the above theorem, we obtain the following results. 

THEOREM 4.2. Let <p : [0,1] —> [0,1] be an order of automorphism, let Y = {yn}n<EN G 
[0,1] be a decreasing sequence such that Inf„¡=^ {y„} = 0 and y\ = 1, and let p > 0. 
For each n E N, we consider 

Rn = i («i , OÍ2) G L : yn+1 + «i -^— < a2 < y„ + «i — 
P P 

Then, the following two functions are both contradiction measures that are semicontinuous 
from above. 

(a) For each ^ E L , 

C^=U») 
o if x e K 

iflnfx(x)£R„. 
XE.X 

(b) For each x G L 

~C<P,P,Y(x) 

0 if x G l¿ 
ip(yn) if n = Inf{fe G N : X(X) n Rk =¿ 0}. 

Figure 6 shows a geometrical interpretation of the measures C(p'p'Y and C9'P'Y, 
emphasizing the difference between them. 

Let us present a sufficient condition on an A-IFS for the measures in Theorem 4.1 to be 
equal, and another one for measures in Theorem 4.2 to be equal. 

PROPOSITION 4.3. Let <p, p, and Y be the same as in the previous theorems, and 
X = (fi, v) G Lx, then the following holds. 

(a) If {X(X)}X<EX is a n upper semilattice, then C9¡P¡Y(X) = C<PJ>,Y(X) holds. 

(b) If {x(x)}x(=x is a lower semilattice, then C^ix) = C^ix) holds. 

á 2 = y„-2+a-\y»Jp 

ó-2=y„-i+a-iyn-/p 

<*2=y«-"*iyJp e„„7(x) = cpO»-i) 

Figure 5. Geometrical interpretation of the measures C¡p^j and C¡p^j. 



012 InfXW 

^2=yn+i+a-iynJp e^7(x)=(p(y„) 

ewtx)=cp(%+,) 

Figure 6. Geometrical interpretation of the measures C<P'P'Y and C<P,P,Y. 

Proof. Let us only prove part (a) because the proof of (b) is similar to that of (a). First, let us 
prove that if {x(x))xe.x is a n upper semilattice, then Supx ex x(x) *= xQQi where x(X) is the 
closure of x(X) under the usual topology on R restricted to L. As Supx(=x x(x) = 

(Supxexl¿(x), lnfx(=x v{x)), for all e > 0, there exist x\,X2 G X such that 

e 
iMxi) > Sup/Mx) -—¡=; 

x<=x V2 

e 
1ÁX2) < Inf IÁX) -\——. 

Besides, as {X(X)}X<EX is a n upper semilattice, there exists xe G X such that 

X(xe) = Sup{^(X!),^(X2)}. 

Therefore, for all e > 0, there exists xe G X such that d(S\xpx<EX x(x)> x(xa)) < B, d 
being the Euclidean distance in R . Thus, Supxex x(x) *= xPO-

Now, if ^ i s L-normal, then C9¡P¡Y(X) = C<PJ>,Y(X) is trivially satisfied. Suppose tha t^ i s 
not L-normal and CVJ!Y(X) = v O O , f ° r some «o £ ^ - Thus, S\xpxGXx(x) *= ̂ no> f° r a i l 
y G X and for all n > n0, the following holds. 

i<y) > Inf v{x) > y„0 
ym Sup /A(X) yna + fi(y)—^ y„ + My) — 

p p 

Henee, x(y) £ #n+i f o r aH y G X and for all n > n0, i.e. ^(X) C U£Lj/?„, thus 
C<P,P,Y(X) - <p(yno)-

Moreover, as Rn P\ Rm = & for all n, m G N, then d(Sup x e x ;tfx), U ^ 1 / ^ ) = <i0 > 0. 
For í¿o, there exists XQ G X such that d(^-(xo), Supx(=x ^(x)) < <io since S\xpxGX x(x) ^ 
X(X). Thus, 

¿o = d ( Sup^(x), U ^ 1 * » ) ^ ¿ ( Sup^(x),^(x0) ) + d(^(x0), U ^ 1 * » ) 

\x<EX J \xEX J 

<dQ + d(x(xQ),yjn^Rn). 

Therefore, d(x(xo), U ^ 1 / ^ ) > 0 and so x(xo) G Rno, henee C ^ K * ) < «pO^). 
D 

Now, let us see what properties the measures constructed in Theorems 4.1 and 4.2 do 
not satisfy. 



PROPOSITION 4.4. Let <p : [0,1] —> [0,1] be an order of automorphism, let Y = {y„}„e^ C 
[0,1] be a decreasing sequence such that Inf„¡=^ {yn} = 0 andyi = 1, and letp > 0. Then, 
the following is satisfied. 

(a) C^Y,C^Y í CMCSC(LX) and C™*,C™r g OM c s c ( l x ) . 
(b) C ^ v A - v í CMSC(LX) and < W ' y , C ™ y £ O M s c ( l x ) . 

Proof. Let us pro ve the statements for CVJ,Y and C<j>,p,y; in the same way, we can obtain the 
results for C'p'p'¥ and C W ' F . 

(a) To show that C9¡P¡Y
 a n d Cm.p.F are not completely semicontinuous from below it is 

sufficienttoconsiderx1 >X2 *= "- such that ^ ' ( JC) = (0,y2) and^2(x) = ((p(l — y2))/(p + 
y2),(y2(p+l))/(p+y2)) for all x G X. Thus, ^ O O , * 2 ® C {(au a2) : a2 = y2 + 
ui(y2/p)} C R2 and, however, for all x G X, Sup{;^,;^2}(x) = ((p(l - y 2 ) ) / ( p + 
y i ) , ^ ) £ #2 as y2 < (y2(p + l )) /(p + J2) since 0 < y2 < 1 (see Figure 7). Thus, 

C9)P,Y(X ) = Q P . K * ) = C9)P)Yix ) = C^rOr ) = <p(y2) 

and, nevertheless, 

C ^ K S u p í ^ 1 , ^ 2 } ) = C ^ K S u p í ^ 1 , ^ 2 } ) = <p(yn) 

for some n > 2. Henee, C W i r £ £M C Í C ( l ) and C ^ y £ £ M c s c ( l ). 
(b) To show that C ^ y and C ^ y are not semicontinuous from above (and, therefore, 

not completely semicontinuous from above), we consider n o E M such that 1 — yn > y2 

for all « > «o and the chain {^"}„>„0 defined for all i £ í by xn(x) = (0,1 — yn)-
Thus, (Inf„>^ xn)(x) = 0L for allx G X and so C ^ y ( I n f , ^ x") = C^^ilnf^^ xn) = 1-
Nevertheless, Sup„>^ C^yC*") = Sup„>„0 C(pftY(.Xn) = ^yi) < 1 as C^pjix") = 
C<p,P,Y(.Xn) = Viyí) for all n > n0. Therefore, CV>P>Y í C A f c ( l x ) and C W , F £ 
OA/fc(lA). 

THEOREM 4.5. Let . 

function CVJ) : L -

D 

: [0, 1] —•[0,1] be an order of automorphism, then for all p > 0, the 
[0,1] defined for each x = (M, ^ E L by 

Ccp,p(.x) = <P 
P Inftex vjx) 

is a contradiction measure that is semicontinuous from below. 

«lyJVj+cx^/i» 

>•,//> 

Figure 7. Proof of Proposition 4.4(a). 



Proof. Let us note that C9¡p is well defined as 0 ^ p Inf^ex Kx) — P — P + Sup^ex /¿(x)-
To prove that Cvp £ CÁ4SC(LX), we only need to show that the function Cp(x) = 
ip InírEX K x)) / ( f + Supx ex M x)) is a contradiction measure that is semicontinuous from 
below, since the axioms (c.i), (c.ii), and (c.iv) are preserved under automorphism. 

Trivially, Cp satisfies the axioms (c.i)-(c.iii). Let us see the axiom (c.vi). Let 
{X'}Í<EI ^ Í-X be an upper semilattice x' = (/A¿, V¡) being for each i GE X. Due to the anti-
monotonicity of Cp, Inf¡ex Cp(x

l) s Cp(Sup¡ex %l) holds. To verify the other inequality, 
we consider e > 0, thus there exist i\, ¿2 GE X and there exist x\,x2 GE X such that 

Inf Inf i>i(x) £ v¡, (xj) < Inf Inf v¡(x) + e. 
l £ X ¿E l xGX ¿ E l 

Sup Sup fi¡(x) s fiÍ2(x2) > SupSup v¡(x) — s. 
xEX iEX XEX iET 

As {xl}¡ei i s a n upper semilattice, there exists ie GE X such that xl° = Supí^ ' 1 , ^ ' 2 } and 
thus the following holds. 

Inf v¡ (x) < Vi (xi) < vu (xi) < Inf Inf v¡(x) + e. 
xGX e e l£XiEI 

Sup/J,4(x) > /A¿e(x2) S M,2(X2) > Sup Sup/A;(X) - 8. 
l£X xGX i'GI 

Then, 

n / 1 N p l n í t e x ^ W . ^Clnf^ex Inf,Gi ^¿W + e) 

p + S u p x e x /A¡E(X) /? + S u p x e x Sup¿ex /A,(X) - e 

Taking into account that {i¡, : e} C X, we arrive at 

Inf C„(x ) ^ Inf CpOf ) — Inf 
¿GI F

 e>0 ^ £ > 0 p + Sup^ex Sup¡ei /¿¿(x) - e 
P(lnftex Inf;ei Vi(x)) 

CplSupx')- D 
p + Sup^ex Sup¡ei M¡(x) V ¿GI 

A geometrical interpretation 

Ccp,p(.X) = <P[ — r ^ 7T = <P(«) 
Vj? + Sup^ex M W 

if and only if (a//?) Supx ex M x ) + a = Inf^ex v{x). This is equivalent to 

Sup^-(x) = Sup/j,(x), Inf v(x) 
XEX \XEX X<EX / 

staying on the straight line a2 = a+ a\ &/p, that is (see Figure 8), 

C<P,P(X) = fi^^^Supx(x) G Ra = {(ai, a2) GE L : a2 = a + ona/p}. 



ew(x)=<p(a) 

s- -\ arctan(<x/p) 
c^oy (o,o) 

a2= a + a j aJp 

a . 

Figure 8. Geometrical interpretation of the measure constructed in Theorem 4.5. 

THEOREM 4.6. Let <p : [0,1] —> [0,1] be an order automorphism, then for all p > 0, the 
function C ^ : Lx —> [0,1] defined for each ^ = (/A, V) £ L X by 

C^C*) = Inf < 
pv(x) 

+ fi(x) 

is a contradiction measure that is semicontinuous from below. 

Proof. Again it is sufficient to prove that Cp £ CÁ4SC(LX), where Cp(x) = \nixexpv(x)/ 
(p + fi(pc)) for each x = (M, v) £ L . The axioms (c.i) and (c.ii) are trivially satisfied by 
Cp. 

To show (c.vi), we consider any upper semilattice {x'}¡ei ^ Lx, where x' = (lM, vd 
for each / £ I. Let us prove that for all x £ X the following is satisfied: 

Inf 
Vi(x) Infiel ^i'W 

(1) 
¡ E l /? + /A¡(x) /? + Sup¡eX/A¡(x) 

Let x £ X be a fixed element, 

Inf,ei ^¡W „ ^,'W 
< 1 

p + Sup,-ei IM(X) p + /Jj(x) 

holds for all j £ X. Let us see that the previous lower bound of the set {i>¡(x)/(p + 
fii(x))}iej C [0,1] is its greatest lower bound. To do this, we must find for each e > 0 an 
index L £ I such that 

Inf,ei v¡(x) ViÁX) 
< 

Inf,ei v¡(x) 

p + Sup,-ei fii(x) p + iLie (x) p + Sup,-ei /A¡(X) 

From 

we can infer 

Infiel VÍ(X) 
< 

I n f e i Vi(x) 

p + Sup¡ei IM(X) p + Sup¡ei /¿¡(x) 

I n f e i Vi(x)(p + Sup¡ei /¿¡(x)) 
— P < OUp fli(X). 

I n f e i *í(*) + e(p + Sup¡ e i /A,(X)) ¿ ex 



thus, there exists ; E I such that 

Infiel Vi(x)(p + Sup ¿ e i ^(x)) 
— ———-—— — - -p< fij(x) < Sup fii(x). 
Inf¿er Viix) + s(p + Supiei /¿¡(x)) ¿ex 

It follows from the inequality on the left in (2) that 

I n f e i viix) 

(2) 

I n f e i Viix) <ip + fij(x)) 
Sup¡ei fii(x) 

thus, there exists t E l such that 

Inf Viix) < ^(x) < ip + fijixj) ( — ' E J — — + e 
¿ex \ p + Supiei/a¡(x) 

(3) 

Now, as {^'}¡ei is an upper semilattice, there exists ie GE X such that xl° = Sup{;^, xk}-
From (3) and taking into account that /A/(X) ^ /¿¡,,(x) and J^(JC) S v¿e(jc), we obtain 

Vijx) Viix) 
< 

I n f e i v¡ix) 

p + ¡iie ix) p + ¡Xjix) p + Sup¡ei ufa) 

Henee, equality (1) is proved and therefore 

I n f C p ( / ) = InfInf 
pviix) 

¿ex 
Inf p Inf 

Viix) 

e l x G X p + fl¡(x) xGX i<El p + /¿¡ix) 

p Infiei Viix) - ( i 

Inf = C„ Sup y 
xex p + Supiei fi¡(x) ^ V ¿el D 

A geometrical interpretation 

Again, if Ry = {(«i , «2) £ L : «2 = T + &iy/p}, then 

C w ( * ) = Via)^a = Inf {y G [0,1] : W) n fl7 ^ 0} . 

That is, Ctp^ix) = a. if and only if «2 = « + «i «//> is the straight line with the smallest 
slope among all the straight lines «2 = J + «i y/í" touching the closure of xiX) (see 
Figure 9). 

Measures that are semicontinuous from below constructed in the above theorems have 
their 'dual' measures that are semicontinuous from above. 

e„(x) = <p(a) 

(0,a) 

^ ** "\ arctan(a//7) 

("-^0) (0,0) 

a 2 = a + 0^ aJp 

<*i 

Figure 9. Geometrical interpretation of the measure constructed in Theorem 4.6. 



THEOREM 4.7. Let <p : [0,1] —> [0,1] be an order of automorphism, for all p > 0, the 
function Cv'p : Lx — [0,1] defined for each x = ÍP, V) GE LX by (Figure 10) 

Lo 

C^ix) = \ ,JpSupxEXv(x)\ :f„t= ¡\X\r\X 

0 i f ^ G L ^ 

if vG l x \ l i 

is a contradiction measure that is semicontinuous from above. 

THEOREM 4.8. Let <p : [0,1] —> [0,1] be an order of automorphism, for all p > 0, the 
function C^'P : Lx — [0,1] defined for each x = 0¿, ") £ Lx by (Figure 10) 

c^ix) — • 
if A* e L¿ 

i f * G E l M ¿ 

is a contradiction measure that is semicontinuous from above. 
The measures C9¡p and C9¡p can be interpreted as a limit step of the measures C9¡P¡Y

 a nd 
C<p,P,Y, respectively, where the sequence Y = {yn}n<EN is replaced by the whole interval 
[0,1], and the regions Ry are obtained by making yn-\ match yn. In the same way, the 
measures C(p'p and Cq,,p can be considered as a limit step of the measures C(p'p'Y and C9'P'Y, 
respectively. 

Now, let us establish a sufficient condition for C9¡p and C9¡p to take the same valúes on 
an A-IFS, and another one for Cp'p and C(p'p to be equal. 

PROPOSITION 4.9. Let <p and p be the same as in the previous theorems, and 
X = (fí, v) GE Lx, then the following holds. 

(a) If {X(X)}X<EX is a n upper semilattice, then C9¡p(x) = C9¡p(x) holds. 
(b) If {x(x)}xEX is a lower semilattice, then C^'ix) = C^'ix) holds. 

Proof. To pro ve (a) we need to show that if {x(x)}xex is a n upper semilattice, then 

T „ v(x) lnfx£X v(x) 
Inf = 

XEX p + ¡JXX) p + SupxGX iMx) 

and to prove (b) we need to show that if {x(x)}x<=x is a l°wer semilattice, then 

v{x) Supxex iKx) 
Sup = . 
xex P + p(x) p + lnfxf=x p(x) 

The proof of the above two equalities is similar to the proof of equality (1) in Theorem 
4.6. D 

Finally, let us see what kind of continuity the measures C9)P, C9P, Cp'p, and C(p'p do not 
satisfy. 
PROPOSITION 4.10. Let <p : [0,1] —> [0,1] be an order of automorphism and let p > 0. 
The following is satisfied. 

(a) C^C^p í CMCSC(LX) and C^ ,C^ GE CMCSC(LX). 

file://�/X/r/X


InfxW 
JXX 

Ét2= a+ aj aJp 

á 2 = a + a ] Wp 
enx)=cp(a) 
enx)=cp(a) 

a. 

Figure 10. Geometrical interpretation of the measures constructed in Theorems 4.7 and 4.8. 

(b) I f f i s a n infinite set, then CVtP,CVtP £ CMSC(LX) (therefore CVtP,CVtP £ CMCSC(LX)) 
and C ^ C ^ í CMSC(LX)'(therefore 0^,0^ £ OM c s c ( l x ) ) . 

Proo/. (a) Let x\x2 G Lx such that ^ ( J C ) = (0, 1/2) G fl1/2 and 

*2(x) = (p / ( l + 2p), (1 + p ) / ( l + 2p)) G K1/2 

for all x G X , then Sup{^1 ,^2}(x) = (p/(\ + 2p), 1/2) G Ra+^,)/(4(1+p)) and 
InfÍA'1, ^ 2 } W = (0, (1 + P ) / ( 1 + 2P» £ Ra+pW+2p) for all x G X as 1/2 < (1 +p)/ 
(1 + 2p). Thus, 

C^piX1) = CvAx1) = <P (¿\ and C w ( * 2 ) = C w ( * 2 ) = 

C^'V) = ̂ ' V ) = <P (£) and C^(*2) = C^ix2) = <P (£). 
Therefore, 

I n f í C ^ e r 1 ) , ^ * 2 ) } = I n f í C ^ U 1 ) , ^ ^ 2 ) } 

Sup{^(Y1),c^Ck'2)} = SupíC^V),^*2)} 

and, nevertheless, 

.1 . .2 1 , .2 i C ^ S u p í * 1 , ; ^ } ) = C ^ S u p í * 1 , ; ^ } ) 

C ^ ( I n f { ^ , * 2 } ) = C ^ ( I n f { ^ , * 2 } ) 

\ 4 ( l + p ) 

' 1 + P ' 

< 

> 
vl + 2pJ T \2j 

(b) As in Proposition 3.3, again consider VF(X) and let { / ^ g p ^ , {x }BGVF(X) C 

Lx be the families such that for each A, B G PHX) , 

XAW 

XBix) 

0L if x G A 

(0,¿) i f j c £ A : 

(0, i) i f x G f i 

0 L ifx^fi' 



It holds that {xA }A<EVF(X) ̂  L X \ L Q is a lower semilattice, and {x }B<EVF(X) is a n upper 

semilattice, as if X
A\XÁ2 e { ^ J A E Í M * ) - then lnf{X

Al,XAl} = XAlUAl e Í ^ J A E Í M * ) 

a n d i f ^ , ^ G {*B}BEÍMX)> t h e n S u p { ^ , ^ } =A-BiUB2 G { ^ J B G ^ W Furthermore, 

Cíp¡p(x
A)1=cl¡p(x

A) = <p(l/2) for all ^ G Ü ^ A E ^ O O and C ^ ( ^ ) = C"(xB) = 

<p(l) = 1 for all xB G {*B}BE?MX)> a n d s o 

Sup C W (* A ) = Sup Cíp¡p(x
A) = cp(\)<l., 

A<EVF(X) A<EVF(X) \¿J 

thus, 

Inf C<p'p(x)= Inf C<p'p(x)=l-
BGVFOO B BGVFOO B 

However, InfA(=-pF(x)XA(x) = Oí and S\ipBevF(x)X (x) = (P, 1/2) for all i £ í , and 

C w Inf x ) =CVJ Inf ^ ) = 1. 
^F\A£VF(X) I ^F\A£VF(X) I 

C"( Sup x )=C**( Sup xR)=v(l)<L 

\B£VF(X) B \B<=VF(X) B W 

5. Conclusions 

In this work, we have tackled the problem of obtaining new families of contradiction 
measures in the framework of A-IFSs. In previous papers, we proposed different types of 
such measures, depending on the continuity properties they satisfy, and gave some 
examples of such types of contradiction measures. But the challenge of obtaining a lot of 
measures systematically remained open. 

On the one hand, we cited in remark 2 and Section 3 examples that were given in a 
previous paper. These examples defined contradiction measures that take discrete valúes 
depending on specific regions, these regions being a partition of the lattice L. Based on 
these examples, we have given general methods for building contradiction measures in the 
following manner: by generalizing the determination of the regions of L and using 
isomorphisms and decreasing functions. 

On the other hand, we have introduced new methods of constructing contradiction 
measures. These take all the valúes of the interval [0,1]. Furthermore, these measures can 
be interpreted as a limit step of the abo ve measures that took discrete valúes. 

The key to all these constructions is to determínate the regions of L in order to define 
the valúes of the contradiction measures. In the case of completely semicontinuous 
measures, those regions are semilattices. 
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