Some geometrical methods for constructing contradiction measures on
Atanassov’s intuitionistic fuzzy sets

Elena E. Castiﬁeirul, Carmen Torres-Blanc* and Susana Cubillo®

Department of Applied Mathematics, Technical University of Madrid (UPM), 28660 Boadilla del
Monte, Madrid, Spain

Trillas er al. (1999, Soft computing, 3 (4), 197199} and Trillas and Cubillo (1999,
On non-contradictory input/output couples in Zadeh’s CRI proceeding, 28-32)
introduced the study of contradiction in the framework of fuzzy logic because of the
significance of avoiding contradictory outputs in inference processes. Later, the study
of contradiction in the framework of Atanassov’s intuitionistic fuzzy sets (A-IFSs) was
initiated by Cubillo and Castifieira (2004, Contradiction in intuitionistic fuzzy sets

proceeding, 2180 2186). The axiomatic definition of contradiction measure was stated
in Castifieira and Cubillo (2009, International journal of intelligent systems, 24,
863 -888). Likewise, the concept of continuity of these measures was formalized
through several axioms. To be precise, they defined continuity when the sets
‘are increasing’, denominated continuity from below, and continuity when the sets
‘are decreasing’, or continuity from above. The aim of this paper is to provide some
geometrical construction methods for obtaining contradiction measures in the
framework of A-IFSs and to study what continuitly properties these measures satisly.
Furthermore, we show the geometrical interpretations motivating the measures.
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1. Introduction

Due to the significance of avoiding contradictory outputs in inference processes, Trillas
et al. (1999) and Trillas and Cubillo (1999) studied contradiction in the framework of
fuzzy logic by introducing the concept of the contradictory set. They established that the
fuzzy set associated with the predicate P, and determined by the membership function up,
is contradictory if ‘pp(x) — p-p(x) for all x’, representing the implication *—’ by means of
the reticular order = of [0,1] and =P through some strong negation N. Remember that
N [0,1]1—10,1] is a strong fuzzy negation if it is a decreasing function satisfying
N(@) =1, N(1) = 0, and N? = id. Thus, pp is said to be contradictory regarding a strong
negation NV, or N-contradictory, if pp = N o up. This definition was generalized by Trillas
et al. (2002) with the aim of studying the laws of non-contradiction and excluded middle
from a new point of view. In that paper, the implication ‘—’ is replaced by a transitive
relation ‘F’ and the negation ‘=’ by a unary operation that is F-reversing.

In classical logic, the inequality pwp = N o up is true if and only if pp = pg. This would
lead to an alternative interpretation of the inequality wp = Nopup, namely, that P is
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‘weakly empty’ with respect to M. In this sense, Piasecki (1985) established that a set P is
w-empty if wp = 1 — pp.

Nevertheless, the extent to which the condition pp = Neup holds, that is, how
contradictory ump is, is a matter for consideration, since up can behave quite differently
regarding this characteristic. The need to speak not only of contradiction but also of degrees
of contradiction was later raised by Castifieira ef al. (2002), where some functions were
considered for the purpose of determining that degree. Later, an axiomatic model for
measuring how contradictory a fuzzy set is was proposed by Cubillo and Castifieira (2005).
Then, an axiomatic model to measure the contradiction in Atanassov’s intuitionistic fuzzy
sets (A-TFSs) was established by Castifieira and Cubillo (2009).

In this paper, we devise several methods for constructing contradiction measures on
A-IFSs. The paper is organized as follows. Section 2 establishes everything we need to
know about Atanassov’s fuzzy sets and contradiction measures to explain the new results.
Section 3 deals with contradiction measures that are completely semicontinuous. Finally,
Section 4 introduces some semicontinuous contradiction measures. In all cases, after
studying what kind of continuity the measures satisfy, we present the geometrical
interpretations that really motivated the construction of such measures.

2. Preliminaries
2.1 On the Atanassov intuitionistic fuzzy sets

Given a fuzzy predicate A in a universe of discourse X +# ), an A-IFS associated with A
(see Atanassov 1999) is a set A = {(x, ua(x), v4(x)) : x € X}, where p, : X — [0, 1],
vq 1 X — 10, 1] are called, respectively, the membership and non-membership functions,
and such that, forall x € X, pa(x) + v4(x) = 1. Let us denote the set of all A-TFSs on X as
TF(X).

The A-IISs could be considered as what Goguen termed L-fuzzy sets (Goguen 1967),
where the lattice L is the set L = {(ay, an) € [0, 177 o) + ap = 1} with the partial order
= defined as follows: given & = (¢, a2), B = (B1, B2) € L, @« = B holds if and only if
a; = B; and a; = Bo. (L, =p) is a complete lattice with least element, Oy = (0, 1), and
greatest element, 1; = (1,0).

So, an A-II'S A is an L-fuzzy set whose L-membership function y* € ¥ = {y:
X — L} is defined for each x € X as y*(x) = (ua(x), va(x).

The order = of L naturally induces a partial order on L, which is given as follows: if
x4 x® € 1%, ¥4 =1 x® holds if and only if x*(x) = ¥®(x) for all x € X. Thus, (L, =)
is a4 bounded and complete lattice in which the least and greatest elements are,
respectively, ¥* and y!' defined by y* (x) = 0y and y'*(x) = 1 for all x € X.

Furthermore, let us recall that a decreasing function A/ : L — L is an intuitionistic
fuzzy negation (IFN) if A'(0p) = 1; and A'(1;) = O; hold; and N is a strong IFN if the
equality N (N (@) = a holds for all @ € [ (for more about IFN, see Bustince er al. 2000,
Deschrijver et al. 2002, 2004).

2.2  On the contradiction on A-IFSs

The study of contradiction in the framework of A-TFSs was initiated by Cubillo and
Castifieira (2004). As in the fuzzy case, an A-1ES A, or alternatively y* € L*, is said to be
contradictory with respect to some strong IFN A/, or A is N-contradictory, if y*(x) =<
(N o y")(x) for all x € X, where y* is the L-membership function of A. Also, A (or x*)}is
said to be contradictory if there exists a strong negation A such that A is A-contradictory.



As we want to know not only whether a set is contradictory, but also to what extent this
property holds, we dealt with the problem of measuring the contradiction in the case of
A-TFSs. A general and axiomatic model for measuring contradiction on ZJF(X) was
presented by Castifieira and Cubillo (2009). They established and justified a number of
axioms; moreover, they gave several examples to illustrate those new concepts. The first
definition presented there is as follows.

DEFINITION 2.1 (CASTINEIRA AND CUBILLO 2009). Let X # 0 be a universe of discourse, a
function C: LY —[0,1] is a measure of contradiction on the TF(X), or on LY, if the
following is satisfied:

(ci) Cx™ =1;

(cii) if y = (u, v) € LY satisfies Inf.ex #(x) = 0 (we say that y is L-normal), then

Clx) =0,
(c.iii) anti-monotonicity: given x*, % € 1Y such that =1 x¥%, then
Clx) = CGeP).

The set of all measures of contradiction on L¥ was denoted by CM(ZF (X)) or more
concisely CM(L®).

Furthermore, as the above definition does not determine gradually varying degrees of
contradiction, other axioms were also introduced to model the continuity, from both below
and above, of contradiction measures, as follows.

DEFINITION 2.2 (CASTINEIRA AND CUBILLO 2009). Let X # @, a contradiction measure
C: ¥ — 10, 1] is said to be
e completely semicontinuous from below if the following axiom is satisfied:
(c.iv) for each indexed family {x'},e; C L¥,

Inf C(x") = C 4

gt ~c{s?)
holds, where Supiezr x' € ¥ is defined for all x € X as (Supier x)(x) =
Supier X'(¥);

e completely semicontinuous from above if the following axiom is satisfied:

(c.v) for each indexed family {y'})er C L*\L5, where 1) = {y€l*:
xisL-normal},

TN
SupC() = c(igx )
holds, where Inf,ez ' € ¥ is defined for all x € X as (Infier ¥ )(x) = Infier ¥ (x).

Remark 1. Note that for each x € X, we have the A-IFS on 7 defined by
A = {(i, i(x), v(x)) 1 i € T},

whose closure (Atanassov 1986) is the A-IFS

CAy) = { (r’, Sup w;(x), Inf v,-(x)) i e I},
ieT €T



which, considered as an L-fuzzy set on Z, has the L-membership function
Sup Xj(.\ﬁ) = (Sup Mi(x), Inf V,(,\‘.)).
i€T €T €1
Note also that for each x € X, the interior (Atanassov 1986) of A, is the A-IFS

f(Ay) = { (i, Inf w;(x), Sup Vf(x)) L= }=
€7 T

which, considered as an L-fuzzy set on Z, has the L-membership function

Inf x'(x) = (}gg #i(x), Sup v,-(x)).
The set of all contradiction measures that are completely semicontinuous from below
on ZF(X) was denoted by CM (LX) and the set of all contradiction measures that are
completely semicontinuous from above by CAM“(IL*).

Remark 2. In the above paper, Castifieira and Cubillo (2009), it was proved that the
functions C.,C" : 1¥ — [0, 1] defined, respectively, for each y = (u, v) € L as

0 ifyelg
Cilx) = }g vx) and C*(x) = ?2}13 nx) ify€e |LX\|L§

satisfy Cu € CM (17X and C* € CM(LY).

Nevertheless, the axioms (c.iv) and (c.v) of complete continuity could appear to be too
restrictive because there exist contradiction measures, in which the values change
gradually, like the functions proposed by Castifieira et al. (2006), which do not satisfy
them. For this reason, we established other weaker axioms using semilattices. Before we
state these axioms, remember that [see Blyth (2005) or Birkhoff (1940)] aset S C LY isan
upper semilattice if for all y*, x¥ € S, Sup{x*, ¥*} € S holds; and § C L* is a lower
semilattice if for all y*, x® € S, Inf{ x*, ¥®} € S holds.

DEFINITION 2.3 (CASTINEIRA AND CUBILLO 2009). Let X -4 @, a contradiction measure
C: ¥ — [0, 1] is said to be
e semicontinuous from below if it satisfies the following axiom:
(c.vi) for each upper semilattice {y'};er C L¥, the following holds:

}E;C(x): C(?él}),\/)i

e semicontinuous from above if it satisfies the following axiom:
(c.vii) for each lower semilattice { y'},er C LY\, the following holds:

SupC(xH =C (lnf x’) _
H=y

iel



The set of all contradiction measures that are semicontinuous from below on LY was
denoted by CMS.:([LX) and the set of all contradiction measures that are semicontinuous
from above by CA*(LY).

Moreover, it was shown by Castifieira and Cubillo (2009) that

@ # CMe (L) & CM (L) & CMLY),
@ # CME (1Y) & e & em ).

Finally, it is important to take into account that

e every axiom of continuity implies anti-monotonicity;
o if y¥'=(w,v) for all i €T, then Inficr ¥’ = (Inficr pi, Supier ) and
Supier X' = (Supier i, Infier »;).

3. Families of completely semicontinuous contradiction measures

In this section, we introduce three families of functions showing that they are contradiction
measures that are completely semicontinuous from below. Also, we construct other
functions or contradiction measures that are completely semicontinuous from above. In all
cases, we study not only what kind of continuity the functions satisfy but also what they do
not. We also state the geometrical interpretations that have suggested the construction of
those functions.

THeEOREM 3.1. If ¢ :]0,1] —[0,1] is an order automorphism, then the following is
satisfied.

(a) The function Cgx : L¥ — [0, 1] defined for each y = (u, ») € ¥ by Co(x)=
Inf,ex (@° p)(x)is a contradiction measure that is completely semicontinuous from
below.

(b) The function C®* : L* — [0, 1] defined by

0 if yely

DF (2 — _
T Suprex (oo n) ity € NI

is a contradiction measure that is completely semicontinuous from above.

Proof. All the axioms of contradiction measures and their continuity are trivially preserved
under any order automorphism. Thus, it follows from Cy. = @eCs and C*" = @e(”,
where C. and C* are the contradiction measures presented in Remark 2, that Cepr €
CMe(LY) and CP* € CM™(LY). O

Figure 1 shows a simple geometrical interpretation of the measures C,» and C#",

Example 3.2. Let {N)})g(-10) be the family of Sugeno’s negations (Sugeno 1974),
defined for all & € [0, 11by Ny(a) = (1 — @)/(1 + Aa); and let {Ny} (g 0y be the family
of Yager’s negations (Yager 1980), defined for all o € [0, 1] by Ny(a) = (1 — a”)]/”.
Then,
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Figure 1. Geometrical interpretation of the measures Cg+ and 6o,

(a) if @y = NyoN,;, where N, is the standard negation N (a) =1 — «, then
Co+(X) = Infrex ((x)/(1 + A — Ap(x))), for each y=(u,v) € L*, defines a
contradiction measure that is completely semicontinuous from below on [L*;
analogously, the function defined for each y = (i, %) € L"\L§ by C*"(x) =
Sup,ex (M(x)/(1 + A — Aix))) and C¥*(y) = O if ¥ € L] satisfies C** € CM*
((B9%

(b) if @, =N,°N,, then C, .(x) = Infex(l — (1 — Hx)"Y/?, for each x € L*,
defines a contradiction measure that is completely semicontinuous from below
on L*, whereas C*""(y) = Supex(l — (1 — If(x_))”)lfy if yeL"\L¥, and
C' () =0 if ye I]_‘g. defines a contradiction measure that is completely
semicontinuous from above.

We know that the measures C,. and C%" satisfy C . € C Mo (1F) C CM (L5
and C¥" € CM“(LY) C CM*(LY). Now let us see what kind of continuity they do not
satisfy.

PROPOSITION 3.3. Let @ : [0, 1] — [0, 1] be an order automorphism and let X be an infinite
set, then the following is satisfied.

(@) Cps & CAM*(1*) and consequently Cor & CMEe(LY.
(b) C*" & CM,(L*) and consequently C¥* & CM .. (L%).

Proof. We are going to prove only (a) because the proof of (b) is similar. Let Pr(X) be the
family of all finite subsets of X. We consider the family of A-IFSs taking the same value Oy
on a finite number of elements of the universe, and the value (0, 1/2) on the others,
ie. {x¥*tiep,0 C L*\LY such that for each A € Pg(X),

0. ifxEA
Y
XW=13(0,d) ifx¢a

We have that {x*}sep,an C L¥\L§ is a lower semilattice. Indeed, if y, % €
{x* Yaepyx), then Inf{x*, x*2} = xM"%, where y"1"42 &€ {x* baepi a8 Ay U Asisa
finite set.

Thus, Cex(x*) = @(1/2) # 1 for all x* € {x"}aep.x) and so

1
Sup Cpulx™) = 99(5) # 1.
AEPL(X)

However, Cq«(Infaep,c0 X*) = Cex(x™) = 1. Therefore, Cyx & CM*(LY). O



The following results show contradiction measures taking discrete values in [0, 1].
They are general constructions based on two cases given by Castifeira and Cubillo (2009).
Therefore, we omit their proofs because they are similar to the proofs of those cases.

To simplify the notation, we consider intervals in L with some extreme in [0, 1]* as
follows: if B = (B1, B) € [0, 117,

0, Bl={(a1, ) EL: oy = B & an = B},

B, Lil={(a, ) EL:q = 1 &az = B}
TurorREM 3.4. Let f : [0, 11— [0, 1] be a continuous and decreasing function satisfying
f(1)=0,let ¢:[0,f(0)] — [0, 1] be an order isomorphism, and let ¥ = {y,},en C [0, 1]

be a decreasing sequence such that y; = f(0) and Inf,en {y,} = 0. We consider the
function C,, 5y : L* — [0, 1] defined for each x=(u v e L* by

0 if y e L}
Cory(0) = e(y,) 1f Sup y(x) € R, »
xeX
where Ry = [07,(0, v} and R, = [01, (f (7). va)IN[O1, (F '(yn 1), ¥n 1) forall n > 1
(see Iigure 2(a)). Then Cy vy € CMCSC([LX).

Treorem 3.5. Let f: [0, 1] — [0, 1] be a continuous and decreasing function satisfying
f(1)=0,let ¢:]0,f(0)] — [0, 1] be an order isomorphism, and let ¥ = {y, },.ery € [0, 1]
be a decreasing sequence such that y; = f(0) and Inf,en {y,} = 0. We consider the
function C#/7 : X — [0, 1] defined for each y = (u, v) € LY by

0 ifyely

Y —
G (X) e (P(_);n) if Inf X(x) =) Rn :
XEX

where R; = I\[(0,y1), 11] and for all n > 1,

Rﬂ :[(f ](,)"n—l)a,‘f"n—l)- ]-[I_J
\IE Ok LTU (e, EL:f o) < an = F oD

(see Figure 2(b)). Then C*/Y &€ CAM(1LY).

(a)
0

»=f0) 3

Yna
Yn

Sna) F0m) 1y, S'Ga) 10m) I

Figure 2. Construction of the regions R, in Theorems 3.4 and 3.5.



Under the hypotheses in the above theorems, Cgy and iy satisfy Cyry €
CM 5o (LX) C CM(LF) and €Y € CM™ (LX) C CM*(LY). Now let us see what kind
of continuity they do not satisfy.

PROPOSITION 3.6. Let f : [0, 1] — [0, 1] be a continuous and decreasing function satisfying
f(1)=0,let ¢:10,£(0)] — [0, 1] be an order isomorphism, and let ¥ = {y,},en C [0, 1]
be a decreasing sequence such that y; = f(0) and Inf,ep {y,} = (. Then the following is
satisfied.

(@) Cpry & CM* (LY and therefore Cosy € CM(LY).
b) MY & CM,(LF) and therefore CP/Y & CM o (LF).

Proof. Again, we are going to prove only (a) because the proof of (b) is similar. As
yi = f(0) > 0, we consider np € N such that 1/ng = y; and let { ¥"},~,, be the chain (and
then it is a lower semilattice too) defined for all x € X by x"(x) = (0,y; — 1/n); then
(Infy,=, x¥")(x) = (0, y1) forall x € X. Thus, Cy, 7 y(Inf,=pn, ¥") = @(y1) = 1. Nevertheless,
asthereis N € Nlsuchthaty; > y; — I/n = y; foralln = N, then C,, ; y(x™) = ¢(y,) for
all n =N, and C, 7 y(X™") < @(y2) for all ny = n < N. Therefore, Sup,=n, Cs ry(x¥") =
P(y2) < @y1). O

The last pair of families of contradiction measures that we look at in this section are
two families of functions taking values in the whole interval [0, 1]. One of them comprises
measures that are completely semicontinuous from below and the other one contains
measures that are completely semicontinuous from above.

THEOREM 3.7. Let f : [0, 1]— [0, 1] be a continuous and decreasing function satisfying
f(1) =0 and let ¢ : [0,£(0)] — [0, 1] be an order isomorphism. Then the function C, ; :
L¥ — [0, 1] defined for each y = (u, ») € L* by

Co.s (00 = Tnf @Min{(F ° (), 1))
satisfies C, ; € CM ().
Proof. Let us confirm the axioms:
(i) Cor(x™) = @Min{f(0),1}) = 1;
(cii) let y = (u, ») € L* be an L-normal set, as ¢ is continuous then

Coy 0 = cp(Min{ Inf (o w)(x), Inf v(x)}) = go(Mm{_gg; (fom(x),O}) =0,

(civ) let {¥'};er C L¥, where ' = (u;, ;) for all i € T, because of the properties
of the functions ¢ and f, we have

Cof (?élip X ) =Inf ¢ (Mm{ (.f 2 ?él}’ uf) (x), Inf V.-(x)})

- g, o)

s i i i "0 L i — J i O
Inf Inf @(Min{(f e (), m(9)}) = Inf Cor(x')
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xeX
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Figure 3. Geometrical interpretation of the measures constructed in Theorem 3.7.

A geometrical interpretfation
We can write

Corlx)= (p(Min{f(Sup ;u(x)) , Inf u(x)}) ;
' xeX YeX

so if we denote o« = Min{f(Supyeyx u(x)), Inf,ex 1(x)}, then either Sup,ex w(x) =f ()
and Inf,exy M(x) = a or Supyexy u(x) =f @) and Inf,ey #(x) = @. Thus, we consider
the square region for which the vertex is located on the curve a, = f(eay) (see Figure 3)
as follows:

Ro={f ' wam)eEl:mx=a}U{(m,0)EL:a =f (@)},
for all & € [0,f(0)]. Hence, the following statement is satisfied.

Cof(X) = @(@)<=Sup x(x) € R,,.

xEX
Similarly, we can obtain the following result.

Tueorem 3.8. Let f : [0,1] — [0, 1] be a continuous and decreasing fulnction satisfying
F(1) = 0 and let ¢ : [0,£(0)] — [0, 1] be an order isomorphism. Let C* : [¥ — [0, 1] be
the function defined for each y = (u, v) € LY by

0 ifyely

1 if x & L and Sup 1(x) = f(0)
col () = &= Lgundagl mx) = f(

Sup e(Max{(f e w)(x), 1(x)}) otherwise.

xEX

Then C¥/ € CAM(LY).

A geometrical interpretation
Let us suppose that y € [ is not L-normal and Sup,cx 1(x) << £(0), thus

CHx=¢ (Max{f (lnfi mx)) , Sup v(x)})
YEX XEX
and if e« = Max{f(Inf,ex p(x)), Sup,ex 1x)} then

cof () = w(a)‘q:»lg;f(x(x) € Rq.
XE.



@ Nt £ =

Figure 4. Geometrical interpretation of the measures constructed in Theorem 3.8.

where (see Iigure 4)
Re={f '@ eEl:0<m=a}U{(@,0) EL: oy =f (@},

for each « € (0,f(0)). Moreover, C‘P’f(;() = (1) if and only if Infiex xy(x) € Ry =
[0,1]% {0} and C‘-”’f()() = @(f(0)) if and only if Inf.ex x(x) € Ry = {(a1, ) € L\
{(0,0} : ax = f(O)orery = 0}.

The geometrical interpretations of Theorems 3.7 and 3.8 show that the measures C, ¢
and C%/ can be interpreted as a limit step of the measures Ce sy and CeY | respectively
(see Figures 2—4).

Example 3.9. To illustrate the above theorems with specific examples, consider again the
family {Nj}yg(-1.) Of Sugeno’s negations and the family {N,} g of Yager's
negations. Thus, if ¢,(a) = «a? and f = N,, with y € (0, ), or f = N, we have the
following.

(a) The measures Cy n,,Cqp n, : L¥ — [0, 1] defined for each y = (u, ») € L* by
R U P 1
Co, v () = 1121“( (Mm (71 gyt D(Jt))) )
Co, v, (x) = Inf Min(1 — pu(x)”, 1x)")
L xEX

are completely semicontinuous from below.
(b) The measures C¥»™* C#Nr - X — [0, 1] defined for each y = (u, ») € L by

" if y e L
C#00 = | Sup (Max((1 = 0e)/(1+ M), W) if x € LNLE -
xEX
0 ify ely
o0 = SupMax(l — u()?, W07 if y € LA\
xEX

are completely semicontinuous from above.

We know that Cy, r € CM e (LF) C CM(LF) and €/ € CM“(LF) C CM*“(L).
Now let us see what kind of continuity C, ; and ¢®/ do not satisfy.



ProrosITION 3.10. Let f:[0,1]—[0,1] be a continuous and decreasing function
satisfying f(1) =0 and let ¢: [0,f(0)] — [0, 1] be an order isomorphism. Then, the
following is satisfied.

(a) If X is an infinite set, C, ; & CM(LY), whence Cor & CMEE(LY).
(b) € & CM,(LF), whence C¥/ & C M. (LF).

Proof. (1) The idea is the same as in Proposition 3.3. Again, we consider the set of all finite
parts of X, Pr(X), and let {x* taepp C L¥ be the family such that for each A € Pr(X),

0 ifxea
A — .
XD=1 (0,12) ifx¢ A,

{xA tacreen 18 a lower semilattice because if oyt e A taepycn. then
lnf{XAl,XA?} = XA‘UAZ = {XA }AEPF(’\-). Thus, CQ,,J:(XA) = qo(f(()_)/’l) < 1 for all )(A e
{x*}aep,a) andso Supsep, ) Co s (x*) = @(f(0)/2) < 1.However, Cy, ;(Infaep,x) x*) =
Cq:,f(/\’oﬂ) = L

(b) Let {x"},en be the chain (and then it is a upper semilattice too) defined for all
xE€X by x"x)=(0,f(0)/n), then (Sup,en x")x)=(0,0) for all x& X. Thus
CH'(Suppen ¥™) =0, as Supnep ¥" is L-normal. Nevertheless, C*/(y™) =1 for all
n € N, and therefore Inf,en C%/( xM =1 O

4. Families of semicontinuous contradiction measures

In this section, we introduce several families of semicontinuous contradiction measures.
Some are functions taking discrete values in [0, 1] and the rest take values in the whole
interval [0, 1]. Each family that is semicontinuous from below has a ‘dual’ family that is
semicontinuous from above.

TreoreM 4.1. Let ¢ : [0, 1] — [0, 1] be an order automorphism, let ¥ = {y, },en C [0, 1]
be a decreasing sequence such that Inf,ep {y,} =0 and y; =1, and let p > 0. We
consider the family of regions in L bordered by the straight lines joining the two points
(—p,0) and (0, y,), for each n € N, as follows.

Ry = {0}

an{(a1,a2)6l:yn+a1&£ oy <y, 1+a1yﬂ—_l} V> 1.
p P

Then, the following two functions are both contradiction measures that are semi-
continuous from below.
(a) For each y € ¥,
0 if y e Ly
Copy OO =% o(y,) ifSél)I(J X(x) € R,.

(b) For each y € L%,
0 if y €13

Cory WO =13 1) ifn=Sup{k €N : y(X) N R, # 0}.



On the one hand, the family of (a) is a more general construction than another
introduced by Castifieira and Cubillo (2009). Thus (a) is proven by techniques similar to
the proof shown there. Therefore, the proofs are omitted. On the other hand, although the
construction in (b) is a new family, the proof of that statement is similar to the proof of (a).

Figure 5 shows what the measures C,; , y and wag,; .y are like, emphasizing the difference
between them.

As in the above theorem, we obtain the following results.

TreoreM 4.2. Let ¢ : [0, 1]— [0, 1] be an order of automorphism, let ¥ = {y,},,en C
[0,1] be a decreasing sequence such that Inf,epn {y,} =0 and y; = 1, and let p > 0.
For each n € N, we consider

Yn = Yn
R, = {(ﬂfl-ﬂfz)E L:yay1 + ey pﬂ < SYn+081p}-

Then, the following two functions are both contradiction measures that are semicontinuous
from above.

(a) Foreach y € RS
0 ifyely

op.Y _
CH00 =\ o) if Inf x(x) € R,
xeX

(b) Foreach y € R
0 ify e L

oepY e
e @(y,) ifn=Inf{k € N : y(X) N Ry # 0}.

Figure 6 shows a geometrical interpretation of the measures C¥7" and C¥Y,
emphasizing the difference between them.

Let us present a sufficient condition on an A-IFS for the measures in Theorem 4.1 to be
equal, and another one for measures in Theorem 4.2 to be equal.

ProOPOSITION 4.3. Let ¢, p, and Y be the same as in the previous theorems, and
x = (@, ») € L, then the following holds.

(a) If {x(x)},ex is an upper semilattice, then Cy y(X) = Cgp,y(x) holds.
(b) If {x(x)},ex is a lower semilattice, then C¥¥¥(y) = C¥#¥ () holds.

fog
0y
SO0 Yyt Y olp
/ﬂ.2= Yn-1 +G.1 yn—I/P %,y(%) = (P(}%;)
©n) < S Yt Vil 2] =
orks 3 i Gy (0 = 003.)
y e (E/xk.}
£= &4
el . ™
p0 (0.0) Iy

Figure 5. Geometrical interpretation of the measures Cyp, y and Copp y.



2= Yty Yulp
/q'z =Xyt Yy /P

™) =)
O =t Y/ =

0 = 0D.
(0;;’3 C™ ) =90}.1)
e
g ]
s S
-p.0) 0,0 1p

Figure 6. Geometrical interpretation of the measures C¥%¥ and CeY.

Proof. Let us only prove part (a) because the proof of (b) is similar to that of (a). IFirst, let us
prove that if { y(x)}.ey is an upper semilattice, then Sup,ey x(x) € ¥(X), where y(X) is the
closure of y(X) under the usual topology on R? restricted to L. As Sup.ex x(x) =
(Supsex p(x), Infrex 1(x)), for all £ > 0, there exist x;, x» € X such that

f(xy) > Sup pl(x) —
reEX

S

,\/_E .

Besides, as {y(x)},ex is an upper semilattice, there exists x, € X such that

Wz < Inf #(x) +

x(x) = Sup{ x(x1), x(x2)}.

Therefore, for all & > 0, there exists x, € X such that d(Sup,ex x(x). x(x.)) < e, d
being the Euclidean distance in R”. Thus, Suprex x(x) € x(X).

Now, if yis L-normal, then Cy, y(x) = Cep y(x) is trivially satisfied. Suppose that y is
not L-normal and C, y(x) = ¢@(y,,), for some ny € N. Thus, Sup,ex x(x) € R,,, for all
¥ € X and for all n = ny, the following holds.

) == R e yﬂu> ynu._,‘ y)z
1) = Tof 1) =y, + Sup )22 = 3, + )22 = y, + piy) 22
xEX xEX P P P
Hence, x(y) & R,y for all y € X and for all n=np, ie. yX)C U;'”:]Rn, thus

Cq:,p.Y(X) = (P()’-ﬂn)'
Moreover, as R, N R,, = @ for all n,m € N, then d(Sup,ex x(x), UZ‘;lan) =dy > 0.

For dy, there exists xy € X such that d(x(xp), Sup,ey x(x)) < dyy since Sup,ex y(x) €
x(X). Thus,

dy = d(Sup X(x), uj:zfm) = d(S:E X(x), X(m)) + d(x(x0), Upy ' Ry)
2

xeX
< do + d(x(x0), Vs 'R,).

Therefore, d()((xu), U;‘”:]]Rn) > () and so x(xp) € R,,, hence (y','qg.p‘lf(,\/) = @V, )- O

Now, let us see what properties the measures constructed in Theorems 4.1 and 4.2 do
not satisfy.



ProrosSITION 4.4. Let ¢ : [0, 1]— [0, 1] be an order of automorphism, let ¥ = {y, },en €
[0, 1] be a decreasing sequence such that Inf,ep {y,} = O and y; = 1, and let p > 0. Then,
the following is satisfied.

(@) Copy:Copy & CMeg(LY) and C*PPY CorY & CME(L®).
(b) Copy,Copy & CM*“(LY) and C#PY Co2Y & CM, (D).

Proof. Let us prove the statements for C,, y and ¢ op.ys in the same way, we can obtain the
results for C#™" and C#»Y.

(a) To show that C o and oy A not completely semicontinuous from below it is
sufficient to consider y', ¥* € " such that y!(x) = (0, y,) and ¥*(x) = ((p(1 — y2))/(p +
¥2), 0a(p 4+ D) (p+y2) for all x € X. Thus, x'(X), x*X) C {(ay, ) ey =y +
ai(y2/p)} C Ry and, however, for all x € X, Sup{y', x*}(x) = ((p(1 — y2))/(p +
ya),¥2) & Ry as ya < (ya(p + 1) /(p + y2) since 0 < y; < 1 (see Figure 7). Thus,

étp;p‘l’l’.xj) = Cr.p,p,Y(Xl) = Ccp,p:l'(.Xl) = ch,p.l’(X2) = (P(,vl)

and, nevertheless,

Copr(Supix', x* D = Copr(Supix', x*H = ¢(yn)

for some n > 2. Hence, Cppy & CM (LX) and (H,’w,)y & CM e (19).

(b) To show that Cy, y and C_fcp ¥ dre not semicontinuous from above (and, therefore,
not completely semicontinuous from above), we consider ny € N such that 1 —y, = v,
for all n = ny and the chain {x"},,, defined for all x € X by x"(x) = (0,1 — y,).
Thus, (Inf,:.,, x")(x} = 0 forallx € X and so C,, y(Infy=p, ") = (~3¢rply(luﬂ,;,f,n xH =1
Nevertheless, Sup,=n, Copy(X") = Supuzy, Copy(¥™) = @2} <1 as Cpy(x") =
Copy(x") = @(y2) for all n=ny Therefore, Copy & CM*(L*) and C,,y &
CME(LY). O

THEOREM 4.5. Let ¢ : [0, 11— [0, 1] be an order of automorphism, then for all p > 0, the
function C,, : X — [0, 1] defined for each y = (u, v) € * by

p Infex v(x) )
Coplit) = | LR P
er(X) gp(p + Supyex p(x)

is a contradiction measure that is semicontinuous from below.

0=V Vo lp

fp(l ) Yle+1)
% Piy

CLy=Y, ;+CL1 ¥, /P

=030 N7 = st 7
S
o
Z i o
e —— Sl 98
r.0) (0.0 1y

Figure 7. Proof of Proposition 4.4(a).



Proof. Let us note that C,, is well defined as (¢ = pInfiex m(x) = p = p + Supeex p(x).
To prove that Cy, € CM( LYy, we only need to show that the function C,(x)=
(p Infyex 1))/ (p + Supyex p(x)) is a contradiction measure that is semicontinuous from
below, since the axioms (c.i), (c.ii), and (c.iv) are preserved under automorphism.

Trivially, C, satisfies the axioms (c.i)—(c.ii). Let us see the axiom (c.vi). Let
{x'}.er C L* be an upper semilattice ¥* = (u;, v;) being for each i € Z. Due to the anti-
monotonicity of Cp, Infier Cp( Xf) = Cp(Supier )(") holds. To verify the other inequality,
we consider & > 0, thus there exist i;,i; € 7 and there exist x;, x> € X such that

Inf Inf v(x) = »; (x1) << Inf Inf »(x) + &,
YEX ieT xEX (T
Sup Sup () = pu;,(xs) > Sup Sup B(x) — .
YEX iET YEX iET

As {x'};e7 is an upper semilattice, there exists i, € 7 such that y* = Sup{x", ¥} and
thus the following holds.

flel)f( v, (x) = p (1) = v, () < tlg !Iéll'rf vi(x) + .

Sup p;, (x) = py, (02} = py,(x2) > Sup Sup p(x) — &.
xEX xEX €7

Then,

plInfiex v, () & pUnf.cx Infier v:(x) + )
P+ Suprex pi,(x)  p + Suprex Supier wi(x) — &’

Cp()(fn) =

Taking into account that {i. : ¢} CZ, we arrive at

. . Inf,=y Inf;=7 200 >
Inf CP(X() < Inf Cp(/\/lc) < Inf P( Nlyex INl;e7 Y, (’C) + P)
ieT a=>0 e=0p + SuprX SupiEI [.Li(X) — &

pInf,ey Infier vi(x)) i
= =Cp| Supy' ). 0
p + Sup.ex Supier pi(x) ieT

A geometrical interpretation

= o PIhex¥®) ) _
Cor(0) = (P(P + Supyex !L(J‘f)) i

if and only if (e/p) Sup.ex p(x) + @ = Inf,ex #(x). This is equivalent to

Sup y(x) = (Sup Jdx), Inf V(X-))
XEX xEX

xEX

staying on the straight line e, = & + ayx/p, that is (see Figure 8),

Cop(x) = @la)<=>Sup x(x) E Ry = {(ay, ;) EL: ay = a + eya/p}.
xEX



Figure 8. Geometrical interpretation of the measure constructed in Theorem 4.5.

THEOREM_ 4.6. Let ¢¢: [0,1]— [0, 1] be an order automorphism. then for all p > 0, the
function Cy, : I¥ — [0, 1] defined for each y = (u, ) € 1* by

- . pix)
Corl0 = Ji ¥ (p ¥ u(x))

is a contradiction measure that is semicontinuous from below.

Proof. Again it is sufficient to prove that f,'p € CM, (L¥), where f,'p( x) = Infiex pr(x)/
(p + p(x)) for each y = (u, v) € LY. The axioms (c.i) and (c.ii) are trivially satisfied by
C,.

To show (c.vi), we consider any upper semilattice {x'},=7 C L*, where ¥’ = (w;, v7)
for each i € 7. Let us prove that for all x € X the following is satisfied:

vi(x)  Infieg 1(x)

n = : (1
€1 p+ pi(x)  p+ Supierpi(x) )

Let x € X be a fixed element,

Infiez v(x)  _  w(x)
P+ Supier pmi(x)  p+ pi(x)

holds for all j € 7. Let us see that the previous lower bound of the set {z;(x)/(p +
mi(x) bier € [0, 17 1s its greatest lower bound. To do this, we must find for each & > (0 an
index i, € T such that

Infiez vi(x)  _  #,(0) Infier vi(x)

p+ Supier pi(x)  pA+ pi(x)  p+ Supier pix)

e.

From

Infier vi(x) Infier vi(x) 4
E
p+ Supier pi(x)  p+ Supier wi(x)

we can infer

Infier v (x)(p + Supier pi(x))
Infier v(x) + &(p + Supier pi(x))

-P < Sup ,U,,'(.Xf),
ieT



thus, there exists j € Z such that

Infier %(X)(p + Supier pi(x))
Infier (x) + &(p + Sup;er pix))

P < (%) = Sup plx). 2)
i€
It follows from the inequality on the left in (2) that

Infier vi(x)
Inficr vi(x) < T e = i (SR
nfiez ¥i(x) < (p+ M(*))(ﬂ + Supier pi(x) S)

thus, there exists k£ & Z such that

Inf 1) = () < (p+ uﬂx))@ il L s). 3)

+ Supjer pi(x)

Now, as {¥'},=7 is an upper semilattice, there exists i, € Z such that y’ = Sup{y’/, ¥*}.
IFrom (3) and taking into account that w;(x) = w; (x) and »(x) = p; (x), we obtain

v (x) - % (x) Infier vi(x)
P+ i (x) Cp+ wi(x)  p+ Supier pi(x)

Hence, equality (1) is proved and therefore

Inf 8, (x) = Inf Inf 2= o ..
i€ZYEX p + pi(x) xE€X" €T p + pi(x)

Infier 30 > :
— pf Pz __ 5 (Supx:),
el

YEX p + Supier pi(x)

A geometrical interpretation

Again, if Ry = {(a1, ) EL: @ = y+ a1y/p}, then
Cop(X) = Pla)y<=>a = Inf{y € [0,1] : xX) N R, # B}.

That is, é%ﬁ(x) = o if and only if & = a4 aq/p is the straight line with the smallest
slope among all the straight lines a» = y+ «;y/p touching the closure of x(X) (see
Figure 9).

Measures that are semicontinuous from below constructed in the above theorems have
their ‘dual’ measures that are semicontinuous from above.

Figure 9. Geometrical interpretation of the measure constructed in Theorem 4.6.



THEOREM 4.7. Let ¢: [0,1]— [0,1] be an order of autorporphism, for all p > 0, the
function C¥¥ : 1X — [0, 1] defined for each y = (u, ) € ¥ by (Figure 10)

0 if y € Ly
C‘F:P( ) — s ) o 13
YT elprm) xS

is a contradiction measure that is semicontinuous from above.

THROREM 4.8. Let ¢ : [0,1]— [0, 1] be an order of automorphism, for all p > (, the
function C¥¥ : X — [0, 1] defined for each x= (v e LX by (Figure 10)

0 ifyel)

e = 5 .
C*"P(x) Supyex (p(pp:fg_)) if y e []_3“\|]_€)’L

is a contradiction measure that is semicontinuous from above.

The measures C,, , and E,’W, can be interpreted as a limit step of the measures C, p, y and
é@ ».¥> Tespectively, where the sequence ¥ = {y,}.cn is replaced by the whole interval
[0,1], and the regions R, are obtained by making y,—; match y,. In the same way, the
measures C¥¥ and C¥¥ can be considered as a limit step of the measures C¥#* and C¥9¥,
respectively.

Now, let us establish a sufficient condition for C, , and éw to take the same values on
an A-IFS, and another one for C*¥ and C%* to be equal.

ProrosiTioN 4.9. Let ¢ and p be the same as in the previous theorems, and
x=(w v e L%, then the following holds.

(a) If {x(x)},ex is an upper semilattice, then Cy ,(x) :~Cw( ) holds.
(b) If {x¥(x)},ex is a lower semilattice, then C¥¥(x) = C¥?(x) holds.

Proof. To prove (a) we need to show that if { y(x)},cx 18 an upper semilattice, then

. x)  Infiex m(x)
xEX p+ p(x)  p+ Supsex m(x)

and to prove (b) we need to show that if {x(x)},=x is a lower semilattice, then

Sup Mx)  _ Supiex 1x)
xex p+px)  p+Infeex plx)

The proof of the above two equalities is similar to the proof of equality (1) in Theorem
4.6. O

Finally, let us see what kind of continuity the measures C ,, éw: C#¥ and C¥? do not
satisfy.

PROTOSITION 4.10. Let ¢ : [0, 11— [0, 1] be an order of automorphism and let p > (.
The following is satisfied.

(@) Cyp,Cop & CM (LX) and C#2,C9P & CM=(LF).


file://�/X/r/X

C¥x) =9(a)
C*0)=9(®)

Figure 10. Geometrical interpretation of the measures constructed in Theorems 4.7 and 4.8.

(b) If Xis an infinite set, then Cy,», Cyrp & CM™ (L") (therefore Cyp, Cop & CM(LY))
and C¥P C¥P & C M, (LY (therefore C¥7, C€P & CM ., (L¥)).
Proof. (a) Let x', x> € L* such that x'(x) = (0,1/2) € R, and
x (@) = (p/(1 +2p),(1 +p)/(1 + 2p)) € Ry

for all x€&€X, then Sup{x', x*}x)=@/(1+2p),1/2) € Rusopyjaa+py and
Inf{x', x*}(x) = (0,(1 + p)/(1 + 2p)) € Ryt pyya12p for all x € X as 1/2 < (1+p)/
(1 + 2p). Thus,

i 1 2 ; 1
Crp;p(X]) - Crp;p(X]) - ‘P<§) 4ng C‘P:P(XZ) e Cev,p(/\/z) - (P(E)’

) 1 ; .
Eer syl = CoP(x") = ‘P(E) and C#(x) = C(x") = “’(5)'

Therefore,

pr % 1
f{Cop (), Cop®)) = InF{Cyp(x1), CopxD)) = ﬁo()

Sup{C** (x"), C¥2(x*)} = Sup{C*"(x"),C** (x*)} = w(%)

and, nevertheless,

2 1 +2 1
Cop(Supix', X’ 1) = Cep(Supix', X = @( : ) & @(5)

41 +p)
()
¢ 3/

~ (b) As in Proposition 3.3, again consider 7P(X) and let {x* Yaepsons {)(B}BEpF(X, &
LY be the families such that for each A, B € Pr(X),

" . 1
Co(Inf(x", X)) = CH (nf(x', x*) = w(] +,f’) 4
+2p

0 ifxeA
A —
X®W=1(04) ifxea

(0} ifxesn
A Y



It holds that { y* taempon C [Lx\ﬂ_g is a4 lower semilattice, and {XB teemax) 18 an upper
semilattice, as if x*', x* € {x*laemsun, then Inf{x™, x4} = x4 € {x* lier,x)
zind if Xy o Xy, e { _)(H} BePycx). then Sup{ Xy Xh’z] = ™ e { XH]_BE?’F(X)- Furthermore,
Copx™ = Cop(x™ = (1/2) for all x* € {x*}4ep,x and CW’(XB) = 0H0E) =
@(l) = 1 for all £ e {XH}BEPF(X), and so

3 |
Sup Epl™i= Sup €)= qu(z) <1,
AEPF() AEPE(X)

Inf C?(y )= Inf C*™(x)=1.
BE?IJ]F(X) (XB) BE‘JI-':’IF(X) (XB)

However, Infiep.x) ¥ (x) = 01 and Suppep,x) Xﬁ(x) =(0,1/2) for all x € X, and

thus,
Copl Jof % ) =Copl If 3*]=1
= (AE’II;’IF(X)X ) o (AES{’IF(X)X ) :

C*( Sup x —C""*P( Sup x. —qp(—)<1.

BEP(X) BEPR(X)

2| =

5. Conclusions

In this work, we have tackled the problem of obtaining new families of contradiction
measures in the framework of A-IFSs. In previous papers, we proposed different types of
such measures, depending on the continuity properties they satisfy, and gave some
examples of such types of contradiction measures. But the challenge of obtaining a lot of
measures systematically remained open.

On the one hand, we cited in remark 2 and Section 3 examples that were given in a
previous paper. These examples defined contradiction measures that take discrete values
depending on specific regions, these regions being a partition of the lattice L. Based on
these examples, we have given general methods for building contradiction measures in the
following manner: by generalizing the determination of the regions of L and using
isomorphisms and decreasing functions.

On the other hand, we have introduced new methods of constructing contradiction
measures. These take all the values of the interval [0,1]. Furthermore, these measures can
be interpreted as a limit step of the above measures that took discrete values.

The key to all these constructions is to determinate the regions of L in order to define
the values of the contradiction measures. In the case of completely semicontinuous
measures, those regions are semilattices.
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