126 research outputs found

    Structural decomposition of general singular linear systems and its applications

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Exact Feedback Linearization of Systems with State-Space Modulation and Demodulation

    Get PDF
    The control theory of nonlinear systems has been receiving increasing attention in recent years, both for its technical importance as well as for its impact in various fields of application. In several key areas, such as aerospace, chemical and petrochemical industries, bioengineering, and robotics, a new practical application for this tool appears every day. System nonlinearity is characterized when at least one component or subsystem is nonlinear. Classical methods used in the study of linear systems, particularly superposition, are not usually applied to the nonlinear systems. It is necessary to use other methods to study the control of these systems. For a wide class of nonlinear systems, a rather important structural feature comes from the strong nonlinearity appearing as coupling between spectrally decoupled parts of the system. Even in the case of low frequencies, where lumped models can still be employed the nonlinear coupling between parts of the system requires specific treatment, using advanced mathematical tools. In this context, an alternative, frequency domain approach is pursued here. In the rest of this work, a specific system form of linearly decoupled but nonlinearly coupled subsystems is examined. The mathematical toolbox of the Hilbert transform is appropriately introduced for obtaining two low-pass subsystems that form an equivalent description of the essential overall system dynamics. The nonlinear coupled dynamics is investigated systematically by partitioning the coupled system state vector in such a way as to fully exploit the low-pass and the band-pass intrinsic features of free dynamics. In particular, by employing the Hilbert Transform, a low-pass equivalent system is derived. Then, a typical case is investigated thoroughly by means of numerical simulation of the original coupled low and band-pass, real-state-variable system and the low-pass-equivalent, complex-state-variable derived one. The nonlinear model equations considered here pave the way for a systematic investigation of nonlinear feedback control options designed to operate mechatronic transducers in energy harvesting, sensing or actuation modes

    Parametric uncertainty in system identification

    Get PDF

    On differential-algebraic control systems

    Get PDF
    In der vorliegenden Dissertation werden differential-algebraische Gleichungen (differential-algebraic equations, DAEs) der Form \ddt E x = Ax + f betrachtet, wobei EE und AA beliebige Matrizen sind. Falls EE nichtverschwindende Einträge hat, dann kommen in der Gleichung Ableitungen der entsprechenden Komponenten von xx vor. Falls EE eine Nullzeile hat, dann kommen in der entsprechenden Gleichung keine Ableitungen vor und sie ist rein algebraisch. Daher werden Gleichungen vom Typ \ddt E x = Ax + f differential-algebraische Gleichungen genannt. Ein Ziel dieser Dissertation ist es, eine strukturelle Zerlegung einer DAE in vier Teile herzuleiten: einen ODE-Anteil, einen nilpotenten Anteil, einen unterbestimmten Anteil und einen überbestimmten Anteil. Jeder Anteil beschreibt ein anderes Lösungsverhalten in Hinblick auf Existenz und Eindeutigkeit von Lösungen für eine vorgegebene Inhomogenität ff und Konsistenzbedingungen an ff. Die Zerlegung, namentlich die quasi-Kronecker Form (QKF), verallgemeinert die wohlbekannte Kronecker-Normalform und behebt einige ihrer Nachteile. Die QKF wird ausgenutzt, um verschiedene Konzepte der Kontrollierbarkeit und Stabilisierbarkeit für DAEs mit~f=Buf=Bu zu studieren. Hier bezeichnet uu den Eingang des differential-algebraischen Systems. Es werden Zerlegungen unter System- und Feedback-Äquivalenz, sowie die Folgen einer Behavioral-Steuerung Kxx+Kuu=0K_x x + K_u u = 0 für die Stabilisierung des Systems untersucht. Falls für das DAE-System zusätzlich eine Ausgangs-Gleichung y=Cxy=Cx gegeben ist, dann lässt sich das Konzept der Nulldynamik wie folgt definieren: die Nulldynamik ist, grob gesagt, die Dynamik, die am Ausgang nicht sichtbar ist, d.h. die Menge aller Lösungs-Trajektorien (x,u,y)(x,u,y) mit y=0y=0. Für rechts-invertierbare Systeme mit autonomer Nulldynamik wird eine Zerlegung hergeleitet, welche die Nulldynamik entkoppelt. Diese versetzt uns in die Lage, eine Behavior-Steuerung zu entwickeln, die das System stabilisiert, vorausgesetzt die Nulldynamik selbst ist stabil. Wir betrachten auch zwei Regelungs-Strategien, die von den Eigenschaften der oben genannten System-Klasse profitieren: Hochverstärkungs- und Funnel-Regelung. Ein System \ddt E x = Ax + Bu, y=Cxy=Cx, hat die Hochverstärkungseigenschaft, wenn es durch die Anwendung der proportionalen Ausgangsrückführung u=kyu=-ky, mit k>0k>0 hinreichend groß, stabilisiert werden kann. Wir beweisen, dass rechts-invertierbare Systeme mit asymptotisch stabiler Nulldynamik, die eine bestimmte Relativgrad-Annahme erfüllen, die Hochverstärkungseigenschaft haben. Während der Hochverstärkungs-Regler recht einfach ist, ist es jedoch a priori nicht bekannt, wie groß die Verstärkungskonstante kk gewählt werden muss. Dieses Problem wird durch den Funnel-Regler gelöst: durch die adaptive Justierung der Verstärkung über eine zeitabhängige Funktion k()k(\cdot) und die Ausnutzung der Hochverstärkungseigenschaft wird erreicht, dass große Werte k(t)k(t) nur dann angenommen werden, wenn sie nötig sind. Eine weitere wesentliche Eigenschaft ist, dass der Funnel-Regler das transiente Verhalten des Fehlers e=yyrefe=y-y_{\rm ref} der Bahnverfolgung, wobei yrefy_{\rm ref} die Referenztrajektorie ist, beachtet. Für einen vordefinierten Performanz-Trichter (funnel) ψ\psi wird erreicht, dass e(t)<ψ(t)\|e(t)\|<\psi(t). Schließlich wird der Funnel-Regler auf die Klasse von MNA-Modellen von passiven elektrischen Schaltkreisen mit asymptotisch stabilen invarianten Nullstellen angewendet. Dies erfordert die Einschränkung der Menge der zulässigen Referenztrajektorien auf solche die, in gewisser Weise, die Kirchhoffschen Gesetze punktweise erfüllen.In this dissertation we study differential-algebraic equations (DAEs) of the form Ex'=Ax+f. One aim of the thesis is to derive the quasi-Kronecker form (QKF), which decomposes the DAE into four parts: the ODE part, nilpotent part, underdetermined part and overdetermined part. Each part describes a different solution behavior. The QKF is exploited to study the different controllability and stabilizability concepts for DAEs with f=Bu, where u is the input of the system. Feedback decompositions, behavioral control and stabilization are investigated. For DAE systems with output equation y=Cx, we may define the concept of zero dynamics, which are those dynamics that are not visible at the output. For right-invertible systems with autonomous zero dynamics a decomposition is derived, which decouples the zero dynamics of the system and allows for high-gain and funnel control. It is shown, that the funnel controller achieves tracking of a reference trajectory by the output signal with prescribed transient behavior. Finally, the funnel controller is applied to the class of MNA models of passive electrical circuits with asymptotically stable invariant zeros

    Estimation and control of non-linear and hybrid systems with applications to air-to-air guidance

    Get PDF
    Issued as Progress report, and Final report, Project no. E-21-67
    corecore