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ABSTRACT 

This thesis is concerned with the evaluation of properties of early design models, 

the control structure selection and the representation and properties of composite system 

models. The work is motivated by the need to introduce a Systems and Control Theory 

based framework for early design stages of the overall system design of engineering 

processes, and in particular chemical processes, such as process synthesis and control 

structure selection. The overall spirit of the work is that engineering design is an 

evolutionary process, the different stages of which shape the structure of the resulting 

system models and precondition the potential for design at the next stage. The work 

identifies a number of key problems in the overall design, which are of a generic, systemic 

character, and then deals with working out solutions for such problems. The results 

contribute in the development of a framework for systems integration using as criteria and 

tools, those provided by Systems and Control Theory. The work aims to provide a control 

theoretic dimension to the rules and practices currently used in the specific application 

areas. 

The thesis contributes in the development of a Systems and Control conceptual and 

tools framework for integrated design of engineering processes by providing results in the 

following areas: 

" Specification of a number of generic problems in the field of integrated design and 

identification of relevant control theoretic concepts and tools. 

" Study of Model Orientation for linear implicit state-space models and definition of 

classes of oriented realisations. 

" Development of solutions to two problems of Structural Identification for uncertain 

early process models related to infinite zero structure and McMillan degree. 

" Development of a generic representation of composite systems that allows the study of 

transition from the aggregate to composite system properties, as a generalised Control 

Design and characterisation of some key system properties. 



Specification of a framework for integrated Control Structure Selection and 

development of software for many approaches of the "interaction analysis" indicators. 

The results contribute in the area of development of the systems and control ideas 

for the problems of systems integration and early design. The work emphasises the strong 

links between Modelling, Selection of Control Structures and Control Structural 

methodologies. 
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Chapter 1 Introduction 

Chapter 1 

INTRODUCTION 

Increasing demands for efficient operations and utilisation of energy and raw 

materials in chemical processes drive the need for more integrated processes. This 

increasing integration is expressed in terms of heat and material recycles and produces 

processes with greater coupling, which leads to behaviours determined by the properties of 

the resulting system rather than the individual dynamics of the subprocesses. This 

integration, also, has a significant impact on the dynamics, control and operation of process 

plants. The process of synthesis in the chemical process area is predominantly characterised 

by the chemical engineering practice, which involves conceptual design, optimisation, 

hazard and operability studies, process controllability etc. These activities are dominated by 

rules of the area, heuristics and some use of control indicators. The field can benefit by 

deploying system theoretic approaches, which in fields like network synthesis have 

benefited the design of electric networks and electronics. However, such techniques have 

not been deployed in any systematic way for chemical processes. One of the main objectives 

of this thesis is to develop the framework for composite structure evolution in the process 

synthesis area by developing a generic representation that will allow the systematic use of 

control theoretic tools, which can complement the current technology and practices. 

Process control provides a way of satisfying the need for more efficient and reliable 

operation of processes. Traditional process control deals with the design of simple control 

schemes (single-loop design of PID controllers by providing rules for tuning) and 

multivariable schemes are designed, nowadays, using Model Predictive Control (MPC) 

methodologies. However, it is also providing useful tools in the earlier design stages and 

control structure selection by supplying heuristics and simple indicators for selecting control 
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Chanter I Introduction 

structures. Furthermore, process control has been active by providing semi-heuristic 

approaches in the earlier stages of selecting input, output schemes and evaluating 

alternatives in process synthesis, in terms of operability and process controllability studies. 

Such areas are using some of the modem tools of linear and nonlinear control theory but 

they lack a coherent systematic framework for their development. An important contribution 

of the thesis is in the area of development of theory and tests, which may assist in the 

enrichment of such fields with a systemic framework and control theory based analysis. 

Control structure design is one of the major areas of concern in this thesis and it is 

defined as the structural decisions involved in control system design, including the 

following tasks [Nish. et al, 1], [Skog. & Post!., 1]: 

(i) Selection of control objectives 

(ii) Selection of controlled variables 

(iii) Selection of measured variables 

(iv) Selection of manipulated variables 

(v) Selection of a structure interconnecting the measured and manipulated variables 

(vi) Selection of desirable dynamics for the defined structure schemes 

Unfortunately, there is no systematic procedure available for translating the results 

from process design into the specifications needed for synthesising a control system. In 

practice, most problems are solved without any concise theoretical tools. Advances have 

been made in control theory and in the formulation of tools for analysing certain properties 

regarding the controllability of a plant. These tools can be used in screening and proposing 

possible control structures, but a systematic method for generating promising alternative 

structures has not been proposed. One major reason for this, is the fact that until recently 

most process plants were already designed and constructed before the control structure 

selection phase. This imposes serious limitations on the ability of the designer to explore all 

possible alternatives for the control structure. Physical aspects of the system, such as 

process units size and location, economic and environmental restrictions etc., affect the 

freedom of choice between alternative control schemes. Another major reason, is the 

difficulty in identifying and defining mathematically the control structure design problem, 

due to its size and its resulting complexity and the large cost involved in making a precise 

problem definition, including for example, a detailed steady-state and dynamic model of the 

plant. In practice, problems are resolved by facing each operation individually and not in a 
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Chanter 1 Introduction 

plantwide manner. An alternative way, to avoid this is the use of suitable heuristic rules 

based on experience and understanding of the whole process. 

The need for improvement of"process synthesis and control structure selection 

becomes more urgent in the area of engineering processes. In fact, processes have been 

designed in the past based on a set of given criteria and requirements. Changes in demands 

and requirements imply that existing processes may not be suitable for the new demands. 

Certain improvements may be introduced by retuning or redesigning the controllers. 

However, this may not be adequate for many systems. Reengineering of such processes may 

require a more drastic intervention in earlier stages such as control structure selection 

(improved new structures) and possibly intervention in the structuring of the interconnection 

between subprocesses, which implies an intervention in process synthesis. The general 

framework for intervention in control structure selection and process synthesis can be also 

beneficial for this more restricted, and more difficult, problem of reengineering. 

One of the major aims here is to examine the general issues arising in the selection 

of systems of actuation and measurement variables and then provide a system and control 

theory based framework for global instrumentation. Global instrumentation is seen as a 

model structure shaping, design stage as far as the characteristics of the final model are 

concerned [Karc., 8]. Taking into account that the structure of the model determines what 

can be achieved under compensation, global instrumentation is intimately linked to control 

design. The problems of control design and overall selection of input, output structures for a 

process have - been considered within the area of control structure selection, rather 

extensively, in terms of examples, in the process control area. However, no systematic 

attempt has been made towards the development of a unifying framework for the selection 

of systems of actuation and measurement variables for processes, where the model shaping 

role of global instrumentation is the central feature. The general analysis of the effect of 

selection of inputs and outputs [Karc., 8] is further developed here by establishing a link 

between process synthesis, control structure selection and well structuring of early process 

models. 

This thesis focuses on the problems regarding the development and properties of 

early process models. In order to move towards a more integrated view of the structure of 

the final model that can be used for design, problems need to be identified and addressed as 

early as possible. The definition of process variables and their subsequent classification into 

controlled, measured manipulated, disturbances etc. plays a very important role in the 

design of a control scheme. Failure to identify and classify them correctly can lead to very 
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difficult or even impossible requirements from the control structure. Progenitor models, 

which are models that correspond to all possible inputs and all possible outputs, are 

examined. The fact that they are derived using heuristics and physical arguments regarding 

the process may lead them to having very large dimensions and be ill-defined. This 

investigation takes a step forward by defining procedures that may lead to the derivation of 

effective models of the models, which are subsets of the original progenitor model that have 

favourable structural characteristics. 

A vast array of indicators have been developed, in order to aid the selection of 

control structures. These indicators assist the designer to select control pairings between 

inputs and outputs that have favourable properties and dismiss alternatives that will create 

problems in the closed-loop plant. The indicators focus on different properties and aspects 

of the control structure and can tackle a steady-state or a dynamic version of the plant. The 

problem in the area of process control is that there is not an integrated framework, in which 

these indicators can provide conclusive results regarding alternative control structures. 

Furthermore, the indicators can provide conflicting results and, since there is not a 

weighting procedure giving precedence of some indicators over others, the selection can by 

no means, be completely straightforward. The general aspects of a framework for control 

structure selection are introduced here. 

The main objective of the thesis is to contribute in the development of a system and 

control framework for integrated design. This is achieved by developing results in the 

following areas: 

Development of a systems based framework for the role of selection of inputs and 

outputs in the shaping of the model that is used for control design. 

" Study of system problems in the development of early process models and, in 

particular, the study of the Model Orientation Problem (MOP) in a state-space set-up 

and the problem of well conditioning of large early dynamic models. 

" Development of diagnostics for large-scale early process models linked to two 

structural identification problems; the McMillan degree and the infinite zero structure 
identification 

" Development of a framework for representation of composite systems based on the 

notion of completeness and physical streams interconnection and the development of 

some results for describing properties of systems deviating from completeness. 
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" Reviewing and development of software for indicators linked to interaction analysis, 

as part of an integrated methodology for control structure selection. 

The above areas of work define elements of a systems theoretic framework, which 

is seen as complementary to the current chemical engineering practices. A reviewing of the 

fundamentals of control theory results and concepts and of the key problems and concepts in 

chemical process synthesis and process control design, provide directions for the further 

development of this work and clearly suggest that the field requires more extensive 

consideration. 

The structure of the thesis and the main results are described below: 

Chapter 2 examines the area of chemical process design from early stages and 

issues of process control and aims to extract the generic problems where systems and 

control theory can intervene by developing the required framework and tools. As such, this 

is used as the main motivation of the problems considered in this thesis. 

Chapter 3 is a first step in the development of the systems approach by 

considering the system issues in the selection of sets of inputs and outputs for large 

chemical processes and it is referred to as framework for Global Process Instrumentation. 

This term is used as a counterpart to the traditional instrumentation of physical variables, 

which deals with techniques for measuring physical variables (sensing) and acting upon 

physical variables (actuation). In this area, the model-shaping role of selection of input, 

output schemes is developed and clusters of control theoretic problems are developed. The 

work builds upon previous results [Kare., 8] and defines two of the problems subsequently 

studied in detail in the thesis. These are the Model Orientation Problem (MOP) and the 

effect of local input, output selection for the evolution of properties of composite processes. 

Chapter 4 is a systematic review of the background of linear systems and control 

theory, which provides the basic concepts and tools for the problems of generalised design, 

identified in the previous chapter. The results are based on linear systems and deal with the 

system structure expressed in terms of invariants and a large set of property indicators 

currently used in traditional control design. The spirit of the work is to present the above as 

notions, which evolve (are assigned in the early stages of system design). As such, this 

chapter is the essential background required for structure and system properties evolution in 

the early design stages. 

Chapter 5 deals with the problem of classifying implicit variables in early systems 

modelling by deciding which are suitable for control inputs or outputs based on control 
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theory criteria and the resulting structure of the model. The set-up for this study is matrix 

pencils and a state-space framework; however, these results may be also developed for more 

general classes, such as the autoregressive models. 

Chapter 6 examines the problem of evaluation of suitability of early models, 

derived on the basis of heuristics and physical arguments, which may not have the required 

qualities for control design. This problem may be thought of as part of the process 

controllability studies and it has a clearly systemic character. The main issue addressed is 

the selection of effective subsets of physical inputs and physical outputs, such that the 

resulting model is well behaved as far as the required properties for control design are 

concerned. 

Chapter 7 investigates alternative aspects of the study of early process models, 

which are characterised by dominant dynamics (coming from the simple subsystem models) 

and uncertainty about the values of other parameters. As part of the process controllability 

studies, it is important to be able to evaluate in an approximate but fast way, values of 

structural characteristics, such as the McMillan degree and the infinite zero structure. The 

study of these problems in large dimension early models with parameter uncertainty is 

referred to here as Structural Identification. The work extends previous results by 

introducing effective computational procedures and by unifying two different problems. 

Chapter 8 focuses on the development of a systems approach for the 

representation of composite structures and the evolution of basic system properties of the 

structural type (zeros, indices etc. ) and properties such as controllability, observability, 

stability etc. from the subsystem level to the composite system level. The work expands 

previous results on the notion of completeness [Karc., 10] by characterising the notion of 

fixed dynamics from the aggregate to the complete system, describing the implications of 

lack of completeness and by considering special cases of total loss of inputs or outputs at the 

subsystem level. The modelling of lack of completeness as decentralised input, output 

squaring down and the interconnection rule as output feedback establishes an important 

framework and tools for intervening with system theoretical tools in process synthesis. 

Chapters 9 and 10 deal with control structure selection with traditional 

methodologies based on interaction analysis. The development of software and the 

specification of a general framework for control structure selection, provide the means for 

using such results and a number of typical studies, and have a design character. 

Chapter 11 summarises the work and defines open issues and problems for future 

research. 
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Chapter 2 

SYSTEMS AND CONTROL CONCEPTS IN CHEMICAL PROCESS 

SYNTHESIS AND PROCESS CONTROL DESIGN APPROACHES 

2.1. INTRODUCTION 

The current desire for greater flexibility, higher efficiency, cost reduction and 

shorter cycle times together with concern for the environment, quality and safety, demands 

an integrated approach encompassing all types of activity from high level strategy to plant 

operation. Business level strategies cannot be accepted as feasible unless their realisation on 

the different operational layers is first considered; similarly, operational strategies are not 

acceptable unless their implementability on a given system, process is evaluated. The 

increased requirements for efficient, safe and environmentally friendly operations process 

plants can be met provided that they have been considered already at the early stages of 

plant design. Furthermore, modern plants are composed of units with smaller size and 

medium capacities, but with extensive use of recycles and increased degree of energy 
integration, which make the plant operation more sensitive to disturbances, and possibly 

lead to inherently unstable behaviour. Therefore, to design plants that are safe, easy to 

operate and cost-efficient, a new approach is required that will transcend the traditional 

separation and sequencing among the activities of process design, such as chemical process 

engineering (or other process nature dependent discipline), process optimisation and 

economic appraisal, instrumentation engineering, and control analysis and design. 

Designing plants, which can perform well throughout their life cycle, is difficult. Issues of 

redesign of existing systems frequently arise when the original operational assumptions are 

not valid anymore. Integrating operations and design is a formidable scientific and 
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technological challenge. The close integration of business, operational and design issues has 

not been considered so far in any systematic way and this has been the source of difficulties 

in implementing effectively business level strategies on industrial processes. The setting up 

of operations and design activities are supported by databases and software systems, which 

however are usually dedicated to the particular activity. Integration of software systems and 

data structures is an important issue, which heavily depends on adopting common standards. 

However, such issues are not considered here. 

The current practice of treating every design issue independently, without taking 

into account the existing interactions and relying on testing for the evaluation of 

alternatives, is time consuming, expensive and rarely leads to good results. The need for an 

integrated approach that breaks the traditional boundaries between technical and managerial 

disciplines, between operational and design issues, as well as between software and data 

supporting individual activities is becoming very strong. Global enterprises have to be able 

to respond to sudden changes in market demands and this implies that they have to be able 

to propagate high level decisions throughout the organisation down to the lowest level and 

in turn be able to perceive and react to changes at the lowest level. The responsiveness of 

the plant to such requirements implies that operational requirements have to be interpretable 

in design terms and these should be considered at the design stage; otherwise, the problem 

of plant redesign has to be considered, which by no means is a simple matter. The natural 

hierarchical organisation of operations and tasks defines a multimodel environment where 

understanding the role of interfaces becomes a critical issue. Hybrid systems are naturally 

linked to the problem of understanding behaviours based on multimodel interconnected 

processes, whereas global control and measurement issues arise due to the hierarchical form 

of organisation. 

2.2. INTEGRATING CONTROL INTO PLANT DESIGN 

Traditionally, process design and control system design have been separate 

activities and process control aspects have little or no influence on plant design. The design 

of the control system is undertaken after the process flowsheet has been synthesised and 

designed or even after major pieces of equipment have been ordered and placed. This does 

not allow us to have important information regarding the process, such as what units are in 

the plant and their sizes, the way they are interconnected, the range of operating conditions, 

possible disturbances, available measurements and manipulations. and what problems may 
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arise during start-up or shutdown of the plant. The above information is necessary for the 

design of an effective control scheme. On the other hand, it poses serious limitations, since 

the plant design determines, to a considerable degree, the process dynamics of the plant as 

well as the operability of it. So working with a largely specified system, the task to design a 

control scheme that ensures satisfactory operation of the plant is not easy. This task may not 

be always possible because the process may not possess a sufficient number of manipulated 

variables, strong interactions may exist amongst the processing units and it may not be 

possible to cope with all external disturbances. Also, the time lags may be significant or the 

process gains too low or to high or the process may be inherently unstable and in extreme 

situations, the plant may be uncontrollable even though the process design appears 

satisfactory from a steady-state point of view. The above observations demonstrate that the 

problems emerging have to be considered in the context of Complex Systems. 

The term Complex Systems, is a generic term used to describe some of the major 

challenges in Science and its applications, Engineering, Business, Society, Environment, 

etc. This term refers to problems which may be of large or small scale, centralised or 

distributed, have aý composite nature (in terms of simpler subproblems), high degree of 

interaction between subsystems, manifest a multi-facet behaviour (in terms of particular 

aspects), have possibly an internal organisation and require a multidisciplinary approach for 

their study. It is thus clear that complexity has many different dimensions and gaining 

understanding for each of these dimensions is critical in developing approaches for complex 

systems. The nature of complexity implies that there is need for division of the overall 

problem into subproblems, which may be more easily handled by teams of specialists. Such 

solutions are usually worked out by teams of experts with little knowledge on the issues of 

the other areas; furthermore, there is no global co-ordination and understanding of the 

interactions of the alternative aspects of complexity and this makes the development of 

acceptable global solutions a major challenge. Systems Integration emerges as the general 

task that can co-ordinate the activities in the particular subproblem areas to produce 

solutions, which are meaningful and optimal (in some sense) for the whole. The 

development of a systemic approach for such complex problems is the essence of 

integration. This requires ability to specialise the set of global objectives to the level of the 

subsystem, it needs methods to work out solutions which are locally and globally feasible 

and in a sense optimal, as well as understanding of interactions between the subsystems and 

alternative aspects of the overall problem. Systems integration is a multi-task, 

multidisciplinary problem that embodies major technological challenges. 

9 



Chanter 2 Systems and Control Concepts in Chemical Process Synthesis and Process Control Design 
Approaches 

The problem of system integration in process systems is examined here from the 

viewpoint considered in [Karc., 5]; this problem, however, is perceived by different people 

in different areas from entirely different viewpoints. The current dominant trend is to treat 

the problem as a software problem and neglect the multidisciplinary nature of the task and 

the very many different technological aspects of the problem, apart from those of software 

and data. The practical significance of integration has created some urgency in working out 

solutions to difficult problems and this has led to the development of interdisciplinary teams 

empowered with the task to create such solutions. Bringing together people from different 

areas is clearly necessary, but not sufficient in producing solutions with acceptable 

performance. The key issue here is the lack of methodology that bridges disciplines and 

provides a framework for studying problems in the interface of particular tasks. Recent 

developments in the area of hybrid systems, new developments in the area of organisation 

and overall architectures. contribute in the emergence of elements of such a methodology. 

There are, however, many more aspects in the effort to develop a framework of integration, 

which are currently missing. This chapter deals with the examination of the basic 

technology areas and the approaches developed within them for handling the difficult 

problems of integrated design. As such, it provides the basis for identifying the systems type 

problems, which are essential for development of a holistic approach. The latter are 

addressed in the following chapter. 

2.3. EARLY-LATE DESIGN AND THE MODEL ENVIRONMENT 

Early design begins when a new possible activity is discovered or invented, usually 

a business opportunity, sometimes a social necessity (i. e. waste disposal). The significance 

of the formulation of an early model of a process with inherent "good potential" for the final 

control design, will be outlined in this section. Failure to do so, will result in an ill-defined 

model, which has inherent bad control properties, thus making the development of a control 

structure and control design very difficult or even impossible. 

The design of a process in an early stage involves as a fundamental stage the 

problem of conceptual modelling, which transforms requirements and objectives to sets of 

preliminary designs referred to here as conceptual process flowsheets. The procedure of 
forming such a model is illustrated in Figure (2.1): 
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CONCEPTUAL PROCESS FLOWSHEETS: FIRST MODELS 

Figure (2.1): Summary of Development of Conceptual Process Flowsheet 

The development of such models, in practice, is done generally by experienced 

engineers and leads to a family of conceptual process flowsheets, which are the first models 

available and are denoted by M; 
. 

The overall set of such models is denoted by 

,, 
i =1,2...... k}. The most important issue in this generation of process flowsheets is M fm? 

the identification of generic aspects, which may have some impact on other application 

domains, and simple ways of formulating such a conceptual family of models. Some 

research has been made in this area [Steph., 1], [Doug., 1] and this conceptual viewpoint 

will be examined closely later in this chapter. 

Another very important issue is to characterise mathematically the structure of the 

resulting conceptual process flowsheet models M; 
, 

in terms of the general interconnection 

rules and the associated graph, as well as the early description of subprocesses in terms of 

simple models. The resulting graph will contain the fundamental variables linked to the 

physical interconnection. As design progresses the dimensionality of physical 
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interconnection streams may change, as the model becomes more detailed. In this section, 

we focus on the models derived in the early stages of design and their properties. 

In the stages of early design, one can derive simple models of the process. As 

process and control design advances to later stages the process models become more 

complex and more precise. A mathematical model [Rijn., 2] corresponds to a part, or the 

whole system and it is linked to a goal-oriented process. The mathematical terms can be 

categorised as: 

0 Structure: The choice of variables and a notion of the existence of dependencies 

between them, as they may be specified by a digraph diagram or a Boolean matrix. 

0 Functions: The mathematical specification of the functional form of each 

dependency. 

0 Parameter Values: The values of all parameters in the functional forms are given. 

An ill-defined model is a description of the system that may be regarded as a 

precursor of, or a substitute for, a mathematical model. A model presented as being 

mathematical may be an ill-defined one because of lack of completeness or precision of the 

specification. When using such models it is not possible to find accurate values for the 

parameters during the stages of early design and some of the assumptions lead to an 

oversimplification of the model. As design progresses, the model is the subject of 

continuous evolution. During this progression, choices have to be made constantly, for 

example on different types of equipment, operation modes etc. For this purpose, the most 
likely alternatives have to be elaborated in sufficient detail to enable a decision to be made. 
Quite often the requirements specification is not sufficiently detailed to allow making a 

rational choice, in which case the requirements specification is provided with more detail, in 

order to help the decision-making process. It is very common, in chemical process practice, 

to make this decision in an informal way, primarily based on heuristics and industrial 

common practice. This decision making process is not restricted to the early stages of 
design, but applies to the whole design procedure. 

The alternative reasoning of waiting until the final stages of process design when 

more precise knowledge is available for finding the optimum operating conditions and then 
defining the control scheme is not advantageous at all. Common practice, as mentioned 
before,, shows a trend to choose control structures and instrumentation systems in a heuristic 

and qualitative way, mainly supported by an intuitive feel for process behaviour. There are 
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several reasons for an integrated approach of the process design and the control design. 

Firstly, the inherent control structural properties need to be considered thoroughly in the 

early stages of design. In these early stages there are more alternatives for structuring the 

process and process operability and controllability need to be carefully evaluated. If for 

example, many recycles are introduced then process operation is more susceptible to 

disturbances entering the process and may possess inherent instabilities. It is obvious, that at 

the last stages, when a very complicated model has been structured, intuition and common 

sense cannot be enough to drive the decision-making. Another important reason is that at the 

early stages, it is easier to identify plant section that can pose difficulties in the control and 

therefore need more attention than other parts of the plant that can be manipulated in a more 

straightforward way. Finally, the increasingly stricter safety and environmental regulations 

require a thorough analysis in the area of Hazard and Operability (HAZOP) studies. It is, 

therefore, easier to improve the quality of these studies by utilising a more integrated and 

systematic approach from an early stage. 

2.4. SYSTEM AND CONTROL DESIGN PROBLEMS IN THE INTEGRATED 

DESIGN OF CHEMICAL PROCESSES 

2.4.1. General Issues 

The leading trend for higher efficiency and performance in the operation of 

chemical process plants, while at the same time considering the need to comply with strict 

environmental restrictions, high quality requirements and improved safety operational 

conditions implies that the different aspects of process operations have to be considered in 

an integrated way. The increased requirements on performance of process plants necessitate 

their translation into the language of the different operational modes and finally into process 

design terms; in fact, strict requirements can be met provided that they have been considered 

at the early stages of process plant design. It is an important new trend that modem plants 

are composed of units with smaller size and medium capacities but with extensive use of 

recycles and increased degree of energy integration, which make the plant operation more 

sensitive to disturbances, and possibly lead to inherently unstable behaviour [Steph., 1], 

[Doug., 1], [Marlin, 1]. Consequently, a different approach needs to be proposed, in order to 

deal with processes that need to be safe, operated easily and cost efficient. This approach 

will take into account the traditional approach of separation and sequencing among the 
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activities of process design, process optimisation and economic appraisal, control analysis 

and design and overall process instrumentation. The need for integration of the design 

stages is considered together with the need to integrate the different aspects of global 

process operations. The need for flexibility in the mode of plan operations also generates 

additional requirements on the design of new plants, or the redesign of existing ones. 

The construction of control systems for a complete continuous process needs to 

address and satisfy a large variety of issues, such as: 

a) Regulation of the production and product quality. 

b) Satisfaction of environmental regulations. 

c) Provision of safe and desirable operations. 

d) Achievement of optimum economic operation. 

e) Reduction of utilities consumption. 

f) Improvement of flexibility. 

The diversity of high-level goals makes the process of designing control systems 

for complete plants a very cumbersome activity. Control Theory and Design is well 

developed for handling traditional control problems, but has not developed a concise and 

integrated methodology in order to handle the many issues of integrated process design and 

other operational issues. The operation of modern chemical plants is dominantly driven by 

the need for higher efficiency and performance. At the same time, restrictions such as 

environmental regulations, high quality requirements and safety operational conditions need 

to be satisfied. Considering that the general trend is to move to flexible plants that can 

operate in many modes, can satisfy a variety of products, demands and regulations, can 

move from one mode to another with the minimum effort and can be easily controlled at all 

modes, two key points can be made considering the design of these processes: 

a) The different aspects of operation modes have to be considered in an integrated 

manner rather than the traditional where the issues of design are considered separately 

and little exchange of information between the different operational modes exists. 

b) All- the operational requirements, however strict they are, can be satisfied provided 

that they have been considered already at the early stages of plant design. 
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The need for high efficiency and the requirement to satisfy increasingly strict 

economic objectives have led to very complex modem designs. These, frequently contradict 

with older traditions on which a lot of knowledge exists. Integrating both operational and 

design issues has been recently recognised, as one of the most significant technological 

challenges. This need has raised a number of new problems for study and provides major 

challenges in areas such as modelling, system and control methodologies, software design, 

economic appraisal etc. In this section we examine the approaches followed in the early-late 

design of Chemical processes connected with the overall control design problem. The 

design of a control scheme for a Chemical plant is a topic that has received a lot of attention 

and it is well developed [Maciej., 1], [Marlin, 1], [Doug., 1], [Steph., 1], [Ng & Steph., 1]. 

Traditionally, design was based around the assumption that the system model is fixed, i. e. it 

has a given set of inputs and outputs. Another basic assumption is that the structure of the 

controller is being assumed that it is given, as a certain way of coupling inputs and outputs. 

Additionally, the order of controller dynamics is being assumed that it is fixed. Hence, 

traditional process control design is essentially a problem of tuning the parameters of the 

given structure and possibly specifying the dynamic complexity of the controller, to satisfy 

certain control design objectives. Seeing the problem of selection of inputs, outputs, as well 

as the structuring of the controller and the selection of its dynamic complexity as part of the 

overall control design, is what we refer to as Total Control Design and it is a topic that has 

been addressed within the area of Process Control. So far, there has been no systematic 

methodology for tackling all the issues involved. 

Many industrial problems have been investigated in an effort to suggest a systematic 

method for synthesising control schemes for complete plants. The inability, generally, to 

address the problems in an integrated way can be attributed to some key elements of the 

chemical process plants: 

i) Chemical processes are generally, highly non-linear and multiple couplings among 

variables can be made. 

ii) The measurement and manipulation of process variables is limited to a relatively small 

number of variables. 

iii) The control objectives may not be clearly stated (or even known) at the beginning of 

the control system design. 

iv) Evaluation of the control system is based on a number of different objectives, such as: 
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" Safety 

" Reliability 

" Stability 

" Range of control 

" Ease of start-up and shutdown 

" Cost of the control system 

" Ease of operation of the system 

v) The process structure may need changes in order to improve control. 

vi) There may be considerable uncertainty in the prediction of process behaviour. 

One of the important subjects of chemical process control is to develop a dynamic 

structure of measured and manipulated variables so that certain processing objectives are 

satisfied. Difficulties arise because, in certain cases, a variable will be both manipulated and 

controlled (e. g., ratio control of input streams). This implies that the various feasible sets of 

controlled, measured and manipulated variables and the interconnecting structure cannot be 

selected independently but should be considered simultaneously. Additionally, the optimal 

operating conditions change as a function of the external disturbances. [Maar. & Rijn., 1] 

have demonstrated that the optimum operation of a plant switches discontinuously from one 

process constraint to another. Experience from industrial problems suggests that such 

operational policy is quite common and economically sound. It is clear though, that 

switching the operation of a plant from one given set of constraints to another implies a 

change in the plant's regulation structure. 

Within this context, a very important property that has to be taken into account is 

the ability of the system to move from one operating point to another, according to the 

economic feasibility of the move, in a smooth, safe and reliable way. This conflict can be 

resolved by systematically formulating the regulatory structure and simultaneously 

optimising the control structure. Additionally, if it is technically and economically feasible 

all the controlled variables will be measured. Otherwise, secondary measurements will be 

chosen, in conjunction with estimation techniques, to infer the value of the unmeasured 

control objectives. The estimator will be part of the structure interconnecting the 

measurements and the manipulated variables. The development of preliminary control 

structures, which are feasible from an engineering and system structure point of view and 
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based on simple models, takes place, followed by an evaluation where more detailed static 

or dynamic models are required. The complexity of the encountered physicochemical 

systems makes checks for interaction and effects of nonlinearity necessary. 

2.4.2. Process Controllability 

The design of a control system for a chemical plant is steered by the desire to 

maximise an objective, usually measured by terms of profit, generated by transforming raw 

materials into useful products, while satisfying product specifications, safety and 

operational constraints and environmental regulations. Each of these constraints needs 

special consideration. In order to satisfy the product specifications and the subsequent 

customer expectations, it is very important to meet very strict specifications regarding 

product quality and production rate. These facts have been the driving forces for the 

implementation of on-line, optimal control in the chemical industry. The process also has to 

be operated safely at all times, in order to protect the plant personnel and nearby 

communities. There are other constraints, which are often not associated directly with 

safety, that impose regulations in the operational use of the process equipment. Finally, 

there exist environmental constraints that require that the process should comply with air 

and water quality specifications and waste disposal: 

In the design of a process control system, it is common to view the process in terms 

of its input and output variables. Process outputs are usually associated with streams leaving 

the process or with measurements inside a process vessel, a subset of which are selected as 

variables to be controlled, i. e. controlled variables. Process inputs are those independent 

variables that affect the process and its outputs. These can be divided in two subgroups: 

manipulated or controlled variables, and those controlled by the external environment, i. e. 
disturbance variables. 

Generally, it is not always feasible to control all the output variables for three main 

reasons: 

1. It may not be possible or economical to measure all of the outputs, especially 

compositions. 

2. There may not be enough manipulated variables (degrees of freedom) to control all of 

, 
the outputs. 
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3. Potential control loops may be impractical because of slow dynamics, low sensitivity 

to the available manipulated variables or interactions with other control loops. 

In general, controlled variables are measured on-line and the measurements are 

used for feedback control. However, it is possible to control a process variable that is not 

measured by using a mathematical model of the process to calculate the value of the 

unmeasured controlled variable. 

As mentioned before, the criteria used in the selection of process flowsheets are 

usually driven by economics, with little consideration to the inherent transient behaviour of 

the final process. Once the detailed process flowsheet has been selected, a plant control 

system is to be implemented so that the process can achieve some desired closed-loop 

characteristics. The achievable closed-loop performance of the control system is closely 

associated with controller configuration, controller algorithm used, as well as the process 

that has been designed. It is widely acknowledged, in practice, that an improperly designed 

process with inherent hard dynamic characteristics can lead to a difficult control problem. 

The term controllability as used in process context, relates to the ability of the 

system to accomplish the dynamic transition between the operating states in an acceptable 

manner. [Zieg. & Nich., 1] first pointed out the relationship between process design and 

process controllability. There is a need to differentiate this overall notion of process 

controllability to the precise system theoretic notion of state controllability [Kalman, 1], 

output controllability [Chen, 1]. The quality of a closed-loop control system depends on: 

0 The control strategies applied. If the system is controlled by a fully multivariable 

controller or by some specific single-input, single-output pairings. , 
0 The controller algorithm used. The level of sophistication of the controller, as well as 

its tuning parameters. 

0 The modelability of the process. Whether a model can be developed for control 

purposes. 

" The process itself. The size and interconnection of units in the process. 

If the process is inherently hard to control, even employing the best control 

strategies, the most sophisticated controller algorithm and the most accurate process model, 

control performance may still be unsatisfactory. 
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2.4.3. Process Flexibility 

Additional issues arise with respect to this need for integration. The notions of 

plant flexibility, simultaneous design and redesign have to be addressed in the integrated 

plant design. In an era, where all chemical plants are market-driven and there is huge 

economic pressure, it is highly desirable for a process to be able to incorporate these 

notions, something that cannot be achieved by traditional control design. The flexibility of 

the process relates to the ability to produce a variety of products with a wide range of 

quality specifications and the ability to switch smoothly between the different operating 

regimes. Much research has been focused in this area, but mainly with scheduling as the 

main tool and there has not been any attempt to investigate it in an integrated manner with 

respect to control design. Simultaneous design relates to the notion of designing the control 

structure of the complete plant not for a fixed plant configuration but for a broader range of 

operation and possible configurations. This notion contradicts the industrial practice, where 

the complete plant is designed and physically constructed taking into account very little 

control considerations and then attempting to design the control structure. The notion of 

redesign corresponds to the capability to alter the control regime in order to respond to any 

possible changes concerning the operation of the process. Redesign is also contradictory to 

general practice since it cannot be easily applied if control properties have not been taken 

into account in the early stages of the design. Thus, it will be economically inefficient for a 

fitted control structure in a process to be redesigned, especially if the process possesses 

inherent difficult control properties. 

2.4.4. Overview of General Issues in Integration 

The need to interpret operational and design goals into the level of benefits 

(financial etc. ) of the industrial enterprise, is an additional driving force behind the 

integration effort; in fact, the need for integration has also been expressed at the business 

operational layer. Evidence for such needs is the emergence of topics in Engineering, 

Management Studies etc., known as Integrated Design and Operations, Concurrent 

Engineering etc., which deal with software and engineering aspects of the integration 

problem and most of the time are linked to the specifics of the application area. So far, there 

has been no systematic effort to establish links between the alternative mathematical 

modelling tools used in the problem of global process operations and there is no form of 
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system theory that allows the integration of concepts and model based properties. The lack 

of any significant progress in this area is mainly due to that the area is not well defined and 

there has been no effort to study and formulate the issues in a form that lead to the 

development of a generic, unifying methodology. By the nature of the problem, such a 

methodology has to be of the systems-type, since it has to deal with the many different 

operational and design aspects of the overall system. Identifying the requirements for the 

development of this methodological framework involves: 

i) Specification of the problem area. 

ii) Identification of the major issues in the problem area. 

iii) Evaluation of methodologies used in the study of the particular problem area. 

iv) Specification of the requirements for the generic methodology and characterisation of 

the possible building blocks. 

One of the aims of this chapter is to specify the requirements for integration of 

process operations and overall design for a complete plant. Many important emerging issues 

concerning the operation of chemical process plants, as described above, are unresolved 

with respect to a Control Theory and Design perspective. In this sense, it is important to 

identify the key elements of a systems and control approach that goes beyond the current 

state of development and the establishment of the basis for an integrated methodology. 

2.5. APPROACHES FOR PROCESS SYSTEMS SYNTHESIS 

2.5.1. Introduction: Classification of Methods 

This section provides an insight into the trends in chemical process design and the 

reasons that drive the need for an integrated methodology from an early stage, where control 
design has to evolve simultaneously with process design. The problem of synthesis of 

chemical processes is an issue that heavily depends on Chemical Engineering theory and 

practice. The structural implications of the development of the overall system structure in 

process synthesis, as well as the selection of control structures related to process synthesis 

will be examined here briefly. [Nish. et a1,1] have classified the techniques used for the 

systematic synthesis of entire chemical processes (including reactors, separators, energy- 

transfer equipment etc) into the following cases: 
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(i) Approaches without an initial structure. 

(ii) Structural parameter or integrated approaches. 

2.5.2. Approaches Without an Initial Structure 

A computer program called AIDES (Adaptive Initial Design Synthesiser) [Siir. et 

al, 1] has been developed, which utilises systematic heuristic procedures for process 

synthesis. AIDES performs the stream source/destination matching for the entire flowsheet 

in one step. It separately considers the flow of each species within the flowsheet, developing 

for each a scoring function, which rates each possible source stream/destination stream 

match. The scoring attempts to account for potential separation costs, which might result, if 

the match is made. After scoring matches for all species, the entire stream matching is done 

in a single "parallel" step by solving a linear program to optimise the sum of match scores. 

A procedure has been proposed for the synthesis of promising initial designs of chemical 

processing systems using the techniques employed for mechanical theorem proving. 

Underlying this method is the resolution principle, where the designer attempts to derive 

conflicts among a set of facts (premises and axioms of chemical processing systems) and the 

desired goals (desired feasible flowsheet). The procedure begins with the consideration of 

production goals (desired product streams) one at a time, and ends with a process flowsheet, 

which is feasible, in terms of mass and energy balances. The above are discussed in [Nist., 

1] in a more detailed way. Using a sequential depth-first procedure, the following structural 

rules have been developed: 

a) Use the compositionally most similar source process streams to generate product 

streams. 

b) Give first preference to by-product streams already generated. 

c) Reduce the mass load on separation sequences. Earlier work by many researchers, has 

been mainly aimed at the early stages of process development, to select the optimal 

equipment configuration to transform given raw material streams into desired product 

streams using a mixture of dynamic programming and branch and bound arguments. 
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2.5.3. Integrated Approaches 

These approaches can be divided into three subcategories. A more detailed 

description is given in [Nist., 1 ]: 

a) The analytic and algorithmic methods, which employ the necessary condition for the 

optimal system and then develop a specific algorithm on the basis of necessary 

conditions. 

b) The decomposition and/or transformation methods, which decompose or transform the 

synthesis problem into smaller problems so that the smaller problems are solved 

separately and their solution, co-ordinated in some way to assure the final solution of 

the individual problems, coincides with that of the overall problem. 

c) The direct application of optimisation techniques of non-linear programming. 

Necessary conditions have been derived for the optimal system using the structural 

parameter approach. An evolutionary search for the optimal structure (ESOS) was 

developed, starting from a simple feasible structure. 

Decomposition techniques may be one possible way to solve the structural 

parameter synthesis problem. To ease the difficulty of computations for structure 

optimisation problems, several authors have proposed decomposition techniques. A method, 

which has been used, is an infeasible two-level technique in conjunction with the structural 

parameter approach. Their method was applied to the synthesis problem of a simple 

reactor-separator synthesis problem. Stephanopoulos and Westerberg [Steph. & West., 1] 

has developed a two-level method, into which Hestene's method of multipliers was 

incorporated. A penalty term is used to guarantee the success of the method in the presence 

of functional non-convexities, often encountered in chemical process design. A feasible 

two-level method has been proposed in [Gov. & Pow., 1], which consists of the first-level 

and the second-level problem. Several authors have used non-linear optimisation techniques 

to solve various synthesis problems of chemical engineering interest. [Umeda et al, 1] used 

a direct search technique namely Box's Complex method to synthesise a chemical process 

system consisting of two reactors, two distillation columns and several heat exchangers. 

Process synthesis methodologies generate the process flowsheet and thus specify the first 

feasible set of control structure, based entirely on process synthesis criteria. In this sense, 

they provide the basis for the consideration of the overall control structure selection. 
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A widely accepted notion, concerning the performance of a control scheme, is that 

the choice of measured and manipulated variables employed in a control scheme can have a 

strong effect on the performance of it. Systematic methods to select the economically 

optimal control structure of a process, without designing the process controller, while 

maintaining good controllability characteristics, have been examined by a number of 

researchers. Examination of the effects of process dynamics on process economics and how 

changes in the control structure alter these economics have been examined. These studies 

have been limited to selecting economically optimal square regulatory feedback control 

structures for processes, whose operation is dominated by steady state aspects. In these 

studies much attention [Maar. & Rijn., 11, [Mor. & Steph., 1], [Prett & Garcia, 1], 

[Marlin et al., 1] has been focused on the role played by constraints in limiting the steady 

state performance of the plant. The presence of disturbances moves the actual behaviour of 

the plant from the optimum point. The main concern is to be able to keep the operation in a 

feasible region around and close to the nominal optimum point. On this point, the choice by 

the designer of the control scheme becomes very significant. Different control structures can 

possibly lead to the same end result, but with the difference in their dynamic behaviour and 

other inherent control structural properties. The major factor in the decision made by the 

designer is the economic objective function based on the system model; a trade-off between 

instrumentation costs and operating benefits has to be introduced in order to distinguish the 

best control structure. 

Traditionally, in the early design of control structures for chemical processes a 

nominal set of optimum operating points, subject to various equality and inequality 

constraints, is chosen. These constraints. correspond to any regulations concerning the plant, 

such as safety and environmental regulations, quality criteria etc. The values of the system 

corresponding to these points are the ones that optimise the control objective function of the 

plant. This objective function is formulated in economic terms, taking into account the 

operating costs, the cost of implementing and operating the control scheme, the gross return 

etc. The next important issue that arises is the use of an optimal steady state process design. 

The use of it usually results in plant operation on the operational constraints, something 

unrealistic in practice. The presence of disturbances in the process will cause a different 

dynamic behaviour of the system. These disturbances can be either of an economic nature, 

such as i. e. fluctuation in the prices of raw materials or of a purely chemical engineering 

nature, such as i. e. the inability to have raw materials that have, all the time, exactly the 

same composition. Thus, it is necessary to introduce a back off from the nominal optimum 
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point and thus move the steady state operating point sufficiently far into the feasible region. 

By this, we can assure that most possible disturbances will be adequately rejected when 

entering the process and no constraints are violated, especially those concerning the safety 

of the plant. It is obvious, that this deviation from the steady state nominal optimum will 

incur an economic penalty, since even when no disturbances are present the plant is not 

operating at the optimum. Many researchers, i. e. [Narr. et al, 1], [Narr., 1], [De Hen., 1 

[Loeb., 1] have investigated different types of plants using this type of analysis. It is also 

obvious that the economic performance will depend on the type of controller implemented. 

The area of economic appraisal is still in its early stages of development. Although the 

control structure plays an important role in the overall shaping of the design cost, the 

analysis should also take into account the overall process synthesis and optimisation. The 

fact that all aspects have to be considered together makes the problem of economic appraisal 

rather difficult. 

2.6. CLASSIFICATION OF PROCESS VARIABLES 

With a process we may associate a large number of variables, which may have a 

physical origin or may be of mathematical nature. For purposes of Control and Monitoring 

of the process, we have to classify the physical variables and here we consider procedures 

that have been developed within the process field. Newell and Lee [New. & Lee, 1] 

suggested qualitative criteria, in order to classify the process variables and assist the 

selection of controlled, manipulated and measured variables that are suitable for the early 

analysis in the design of a plantwide control system. 

2.6.1. Selection of Controlled Variables 

The consideration of plant and control objectives has led to a number of suggested 

guidelines for the selection of controlled variables from the available output variables: 

0 Select variables that are non-self-regulating. A non-self-regulating process is a 

process that is described by a state equation of the form x=f {x, u}, in which the state 

variable, x, does not appear in the function f {x, u} ; i. e., x=f Jul. As a result, changes 

in the input, u, affect the process output as a pure integrator. When the process is 
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unstable in open loop (that is, in the absence of feedback control), a change in the 

input causes the system to go unstable. These processes are in contrast to self- 

regulating processes, in which changes in the input cause the process to move to 

another stable steady state. Clearly, process outputs that are non-self-regulating must 

be selected as controlled variables. A common example is the liquid level in a storage 

vessel with a pump in the exit line. 

" Choose output variables that may exceed equipment and operating constraints 

without control. It - is obvious, that when safety and operational constraints are 

imposed, it is important to measure and control these outputs to comply with the 

constraints. Usually, such variables are temperatures, pressures and compositions. 

" Select output variables that are a direct measure of the product quality or that 

strongly affect it. This guideline helps the control system to ensure that the product 

specifications are regulated and met. Examples of variables that are a direct measure 

of the product quality are the composition and the refractive index, whereas those that 

strongly affect it are the temperature and pressure. 

" Choose output variables that seriously interact with other controlled variables. 

Plantwide control must handle the potential interactions in the process. Improved 

closed-loop performance is achieved by stabilising output variables that interact 

significantly with each other. The steam header pressure for a plant boiler that 

supplies several downstream units is an example of this type of output variable. 

" Choose output variables that have favourable dynamic and static characteristics. 

Ideally, there should be at least one manipulated variable that has a significant, direct 

and rapid effect on each controlled variable. 

These five guidelines should not be considered to be hard and fast rules. Also, for a 

particular application the guidelines may be inconsistent and thus result in a conflict. As an 

example of their use, an output variable such as temperature must be kept within limits 

(second guideline). Temperature could also affect other output variables (e. g., composition, 

pressure) and thus also should be selected according to the fourth guideline. If there were a 

conflict, the second guideline would be the overriding concern in this situation. 
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2.6.2. Selection of Manipulated Variables 

Based on the plant and control objectives, a number of guidelines have been 

proposed for the selection of manipulated variables from among the input variables: 

" Select inputs that have large effects on the controlled variables. For each control 

loop, select an input with as large a steady-state gain as possible and sufficient range 

to adjust the controlled variable. For example, when a distillation column operates 

with a large reflux ratio, it is much easier to control the level in the reflux drum using 

the reflux flow rate rather than using the distillate flow rate, since the reflux flow rate 

is five times larger. However, the effect of this choice on the product compositions 

must also be considered in making the final decision. 

" Choose inputs that rapidly affect the controlled variables. It is desirable for a 

manipulated variable to affect the corresponding controlled variable as quickly as 

possible. Thus, any time delays or time constants that are associated with the 

manipulated variable should be small relative to the dominant process time constant. 

" The manipulated variables should affect the controlled variables directly rather 

than indirectly. Compliance with this guideline usually results in a control loop with 

favourable static and dynamic characteristics. For example, when appropriate for the 

design of an exothermic reactor, it is preferable to inject a coolant directly rather than 

use a cooling jacket. 

Avoid recycling disturbances. It is preferable not to manipulate an inlet stream or a 

recycle stream, because disturbances tend to be propagated forward or recycled back 

to the process. This problem can be avoided by manipulating a utility stream to absorb 

disturbances or an exit stream that allows the disturbances to be passed downstream, 

provided that the exit stream changes do not upset downstream process units. 

These guidelines may be in conflict. For example, a comparison of the effects of 

two inputs on a single controlled variable may indicate that one has a larger steady-state 

gain but slower dynamics. In this situation, a trade-off between static and dynamic 

considerations must be made in selecting the appropriate manipulated variable from the two 

input candidates. 
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2.6.3. Selection of Measured Variables 

The safe and efficient operation of a processing plant is made possible by the on- 

line measurement of key process variables. It is obvious, that output variables that are used 

as controlled variables should be measured. Other output variables are also measured in 

order to provide additional information to the plant operators or for use in model-based 

control schemes such as supervisory control or inferential control. It is also desirable to 

measure selected input variables as well as output variables, since recorded measurements 

of manipulated inputs provide useful information for tuning controllers and troubleshooting 

control loops. Also, measurements of disturbance inputs can be used in feedforward control 

schemes. In choosing, which outputs to measure and in locating measurement points, both 

static and dynamic considerations are important. 

" Reliable, accurate measurements are essential for good control. There are plenty 

of examples in literature that show that inadequate measurements are a key contributor 

to poor control. Examples of poorly designed measurements include orifices with 

insufficient straight piping, saturated liquids that flash in the orifice etc. 

" Select measurement points that have an adequate degree of sensitivity. For 

example, in distillation columns a product composition is often controlled indirectly 

by regulating a temperature near the end of the column if an analyser is not available. 

However, for high purity separations the location of the temperature measurement 

point can be important. If a tray near the end of the column is selected, the tray 

temperature tends to be insensitive, since the tray composition can vary significantly 

even though the tray temperature changes very little. By contrast, if the temperature 

measurement point is moved closer to the feed tray, the temperature sensitivity is 

improved, but disturbances entering the column at the ends (e. g. condenser, reboiler) 

are not sensed as quickly. 

0 Select measurement points that minimise time delays and time constants. Large 

time delays and dynamic lags in the process limit the achievable closed-loop 

performance. These should be reduced, whenever possible, in the process design and 

the selection of measurements. 
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2.7. HIERARCHICAL APPROACH FOR DEVELOPMENT OF PLANT 

CONTROL STRATEGIES 

2.7.1. Hierarchy of Plant Representations 

A large-scale chemical plant is an ordered complex system. Simon [Simon, 1] 

stated that an ordered complex system "... is one that is made up of a large number of parts 

that interact in a non simple way. In such systems the whole is more than the sum of the 

parts,..., given the properties of the parts and the laws of their interaction, it is not a trivial 

matter to infer the properties of the whole". To make the control system design for a 

complex system more tractable, we can perform a change of representation on the process 

and transform it into a hierarchical system. A hierarchical system is one that is composed of 

interrelated subsystems, each'of the latter being hierarchical in structure until we reach some 

lowest level of elementary subsystem [Simon, 1]. In recent years, there has been a growing' 

recognition of the importance of various dynamics and control issues in the early plant 

design [Steph., 1], [Doug., 1]. Nowadays, plants are constructed in a very complex and 

highly integrated manner, in order to incorporate rising costs in energy and raw materials, 

strong competition in the market, stricter safety and pollution standards, tighter performance 

specifications and strong interactions between the processing units of the plant. Very 

significant, also, is the fact that if the flowsheet has been realised by ordering or placing any 

important processing units, the modifications proposed by a control scheme afterwards, may 

introduce high costs for rearranging or replacing them. All the above, highlight the 

importance of the interaction between process design and control. 

It has to be noted that judging alternative designs, only from an economic basis 

perspective, without taking into account dynamic performance criteria, can be problematic. 

It may lead to elimination of slightly less economical alternatives, which are easy to control, 

in favour of slightly more economical designs that may be extremely difficult to control. 

Thus, the decision making relating to alternative plant designs can not be solely based on 

steady-state economics, because the resulting plants are often difficult to control, resulting 

in products which do not satisfy their specifications, excessive use of energy and resources 

and associated profitability losses. The first step in realising in an integrated manner the 

control strategy for a process plant is to approach it in a hierarchical way. An approach for 

involving control strategies to plant design has been proposed by Ng and Stephanopoulos 

[Ng & Steph., 1]. This approach takes into consideration every aspect of the plant in an 
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order of ascending detail and is very useful, as it will be explained later in this chapter, for 

the creation of an early design model. The design of a plant control strategy is made more 

manageable if the plant is decomposed into a hierarchy of representations and the plant is 

viewed at different stages of abstraction. These plant representations are very similar to the 

ones used in the conceptual design of chemical plants, as proposed by Douglas [Doug., 1] 

and mentioned before. Beginning with an abstract viewpoint of the plant, the representation 

can be progressively refined into new viewpoints each of which contains an increasing level 

of details about the plant. It is obvious that every viewpoint corresponds to a particular 

range of characteristics of the plant. The example of an HDA plant can be used as a useful 

example to be decomposed into a hierarchy of plant representations, in order to illustrate the 

particulars of the proposed method. The hierarchy of the plant representations can be 

divided in four levels of increasing level of details: 

Level 1: Input-Output Representation of the Plant 

The input-output representation is the most abstract viewpoint of the, plant (Figure 

(2.2)). It represents in a unique way the overall scope of the plant, which is to produce the 

desired products by converting the feed streams and using the available utilities. In this 

manner, the control strategy is focused on the overall plant objectives and the economic 

aspect of the decision making that influence the interactions between the plant and the 

environment. Issues and objectives that are important in this level of representation include 

the overall material and energy balances of the process, the production rate and the quality 

control management of the plant. 

Fuel, Steam, 
Cooling Water Purge 

Make-up 
Stabilizer 
Overhead 

Hydrogen Input - Output 

Plant Product 

Toluene 
Diphenyl 

Figure (2.2): Level 1: Input-Output Plant 
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Level 2: Recycle Structure of the Plant 

At this next level, the main block created in the first level, the input-output block is 

decomposed into a number of sub-blocks by grouping the activities, which are dynamically 

similar to each other. In the example of the HDA plant, one block represents the generalised 

reaction unit and the other the generalised separation system (Figure 2.3). By using this 

decomposition the focus of the control strategy design is shifted to the effect of the 

variations of the recycle flows to the overall process. This level of representations can reveal 

many potential problems in the control of the plant. Lyuben [Lyuben, 11 has studied the 

dynamics and control of many recycle systems. In these systems, it has been shown that 

some particular combinations of control strategies can have undesirable effects in the 

closed-loop behaviour of the plant. An unsuitable decision regarding the control structure 

may create the "snowball effect" [Lyuben, 1]. By this term, the case of a small increase in 

the feed streams that causes an extremely large change in the recycle flows is described. 

Additionally, the same studies have shown that the behaviour of a recycle system depends 

strongly on the recycle loop gain and less strongly on the dynamics of the individual process 

units in the recycle loop, thus this effect is a steady-state phenomenon. This level 

representation supplies a way so these problems can be accommodated. 

Gas Recycle 

Make-up 
Hydrogen 

Toluene 

Figure (2.3): Level 2: Recycle Structure 
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Level 3: Refined Representation of the Plant 

At Level 3, the sub-blocks created in Level 2 are expanded in stages through a 

series of refined representations of the plant. The role of the process units is being 

systematically evaluated in these viewpoints. For example, at Level 3a (Figure (2.4a)), we 

can examine how the division of materials in the generalised phase-separation unit plays a 

role in the process. At Level 3b (Figure (2.4b)), we can take a closer look at the reaction 

section. At Level 3c (Figure (2.4c)), the interaction between the separation system and the 

rest of the plant is emphasised. As the representations become more refined, more details 

about the behaviour of the individual process units and the interaction between them 

become available. The issues and objectives, which are important to this level of 

representations, are the issues and objectives corresponding to the individual units. 

Gas Recycle 
Purge 

Fuel 

Generalised 
Steam, Water 

Make-up 
Phase 

Hydrogen 
Reaction 

Separation 

Toluene 

Stabilizer 

Overhead 
Separation Product 

biphenyl 

Toluene Recycle Steam, Water 

Figure (2.4a): Level 3a: Generalised Reaction - Expanded Separation 
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Figure (2.4b): Level 3b: Detailed Reaction - Generalised Separation System 
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Figure (2.4c): Level 3c: Detailed Reaction - Expanded Separation 
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Level 4: Detailed Representation of the Plant 

In this level of representation (Figure (2.5)), the individual unit-operations are the 

basic blocks in the representation. The analysis focuses on the effect of changes in the 

different processing units. The focus in this detailed level is localised in the process 

behaviour of each unit-operation. 

Gas 

Make-up Recycle 

Hydrogen I 

Toluene 

Compressor 

Feed-effluent 
heat exchanger 
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Methane I` 

Furnace 
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7F1ashL1a 
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aý 

Steam Steam Steam Diphenyl 
and Water and Water and Water 

Figure (2.5): Level 4: Detailed Reaction - Detailed Separation 

Purge 

Quench 

These four levels of representation of the plant can suitably address both the global 
(implicit) objectives and the local (explicit) objectives. At the most abstract level (Level 1), 
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the focus is on objectives which specify the overall process behaviour and those which deal 

with the interactions of the plant with the external environment. At the next level, the 

process objectives are being translated to the new level. In this manner, the objectives at a 

high level constrain the behaviour at a lower level. Consequently, consistency among the 

hierarchy of viewpoints is ensured. It is possible for new objectives to be7 observed at a later 

level as more details of the plant are being exposed. Objectives translated from Level 1 can 

be refined or spawned to reflect the added details in the new viewpoint. This procedure is 

then repeated for any subsequent level. Using this process, the focus of the design is 

systematically shifted from a global viewpoint to a more local one. Thus, the complexity of 

the design problem can be reduced and a plant control system can be generated, which 

accounts for both the peculiarity of the unit-operations and the desired global behaviour. 

The process in which the control tasks at each representation are generated is illustrated in 

Figure (2.6). 

Corporate Management Objectives of Plant Control 
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at Level 4 CONTROL TASKS 
Control Objectives 
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Figure (2.6): Generation of Control Tasks 
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A further step towards a more integrated consideration of the plant is discussed in 

the section below. 

2.7.2. Hierarchy and time-horizon of control tasks 

In the development of a plant control system, there is a range of process 

phenomena that need to be addressed. Although, a significant criterion of process control is 

the ability to initiate fast response of the system in order to accommodate any setpoint 

changes or the effect of any other process disturbance, it is only one out of several others. 

The ability to respond in a fast manner is only useful for controlling variables, which are 

dominant and are critical specifications in the process [Arbel et al, 11. On the other hand, 

slow response is introduced in the cases where modifications of the more long-range process 

behaviour are needed. The benefit of constructing the hierarchy of viewpoints is that the 

higher-frequency dynamics (or those effects which are important in the short time-horizon) 

involving the internal structure of the components have been separated from the lower- 

frequency dynamics (or those effects which are only important in the long time-horizon) 

involving interactions among component at the more abstract levels [Simon, 1]. Thus, the 

process phenomena have been divided according to their associated time-horizons, each of 

which is characterised only by one of the representations in the previously discussed 

hierarchy of plant viewpoints. 

At Level 1, the input-output model represents the longest time-scale of operation 

and the focus is on the slowest dynamics of the plant. Disturbances that have a low 

frequency variation, such as changes in the operating points or persistent exogenous process 

disturbances are considered important here. In this viewpoint, the long-term static feasibility 

of the process is evaluated. In this stage and in order to design a control system for a 

chemical process, it is important to consider how the different production levels are to be 

met, how the overall material and energy balances can be achieved, or how the operation at 

the cost optimal steady-state can be maintained. The control tasks that address these steady- 

state considerations and behaviour can be developed using the input-output plant. 

Level 2 represents a more refined representation of the plant. In this level, the 

characteristic time-scales of operation of the individual blocks are smaller than that of the 

overall process. The difference in time-scales between the Level 1 and Level 2 

representations could be of an order of magnitude. In this level, the disturbances that vary at 
higher frequencies become important. As we move down the hierarchy, the planning 
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horizon decreases in time and space. The viewpoints become more refined and each 

individual block represents yet shorter time-scales of operation. Within these more refined 

representations, it is possible to study how the individual units interact to bring about 

changes in the overall process and the control tasks that are required to ensure that these 

changes can be achieved smoothly. 

The more detailed level (Level 4) reveals the higher order dynamics of the overall 

process (such as inverse responses, capacitors in series). At this level, the dynamic 

operability of both the overall process and the individual processing units can be studied. 

This viewpoint also exposes how the high frequency external disturbances and changes of 

manipulated variables within the process affect the local process variables such as flow 

rates, compositions, temperatures, pressures or tank levels. Control strategies for direct 

process regulation can therefore be derived from this representation. The hierarchy of 

process representation provides a framework in which sets of consistent control tasks are 

displayed in viewpoints, which match their relevant time-scales. The frequency of the 

disturbances and the corresponding types of control tasks are shown in the following figure. 

Within this time resolution the disturbances of the system, have been partitioned according 

to their frequencies of variations. 

Frequency of Types of 
Disturbances Control Tasks 

Long Term Planning, Static 
Slowly Varying Feasibility, Materials and 

Disturbances Energy Balances 

-i- 

Tasks which supplement Faster 
Disturbances static feasibility and 

constrain dynamic 
operability 

Frequently 
Varying -º 

[Dynamic Operability, Direct 

Disturbances Process Regulation 

Figure (2.6): Hierarchical View of Control Tasks 
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In the same manner that the above procedure is proposed, a conceptual hierarchical 

approach of a process is discussed, that encompasses all the various viewpoints and 

approaches in a conceptual manner. 

2.8. CONCEPTUAL HIERARCHICAL APPROACH FOR DEVELOPMENT OF 

CONTROL STRUCTURES 

Fischer, Doherty and Douglas [Fisch. et al, 1] proposed a conceptual hierarchical 

approach to synthesise a control system for a complete process. The steps of this hierarchy 

are discussed below: 

I. Steady-state considerations. Identify and eliminate by process redesign hard control 

problems based on steady-state models (which are much simpler than the dynamic 

models), thus minimising the design effort. 

A. Identify the significant disturbances that affect the system and the locations in the 

process flowsheet, where they appear. In particular, specify (identify): 

1. Disturbances that affect the process constraints. 

2. Disturbances that affect the operating costs. 

3. Disturbances that do not have a significant effect on either of the above and thus 

they can be ignored and the problem may be simplified. 

B. Check that the manipulative variables available in the flowsheet are adequate (both 

in number and sensitivity) to be able to satisfy the process constraints and to 

optimise the operating variables over the complete range of the disturbances. 

Specifically: 

1. If the number of manipulative values is not adequate, then the process is not 

controllable, since all possible disturbances entering the process can not be 

rejected or compensated. 

2. In order to restore controllability, three possibilities are proposed: 

a. Modify the flowsheet to introduce more manipulative variables. 

b. Modify the equipment designs so that some constraints do not become active 

over the complete (reasonable) range of disturbances. 

c. Neglect the least important optimisation variables. 
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C. Check whether any equipment constraints are encountered that prevent the changes 

in the manipulative variables from satisfying the process constraints or optimising 

the operating variables over the complete (reasonable) range of the disturbances. In 

particular: 

1. If the process constraints cannot be satisfied, the constrained equipment must be 

overdesigned, to restore the operability of the process. 

2. If the process is operable when there are equipment constraints, the savings in 

operating costs by introducing equipment overdesign in order to remove 

equipment constraints might be economically justified. 

D. Use heuristics to select the controlled variables such that the steady-state behaviour 

of the process will be close to the optimum steady-state performance. 

E. Select pairings of the manipulative and controlled variables for single-loop 

controllers. This involves selection of criteria and procedures for evaluation of 

pairings. Such a methodology involves: 

1. Criteria based on: 

a. High sensitivities. 

b. Small dead times (the pair of the variables should be as physically close as 

possible within the plant). 

2. Evaluation of pairings using methodologies such as: 

a. Relative gain array. 

b. Singular value decomposition. 

3. Elimination of pairings with large interactions. 

4. Development of several alternative control systems. 

H. Normal dynamic response: For small perturbations and linear process dynamics, the 

analysis continues (is repeated) using dynamic models of a simple character. This 

process involves: 

A. Development of requirements to build dynamic models. This process includes 

particular tasks such as: 

1. All equipment capacities must be specified, i. e., the holdup in the tubes and the 

shells of each heat exchanger, the holdup on the trays in a distillation column, 

etc. 
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2. The sizes of reflux drums, column sumps, flash drums, intermediate storage 

vessels, etc., must be specified. 

B. Assumption of perfect level control in any unit where there are two-phase mixtures. 

C. Evaluation of the stability of the controlled and uncontrolled processes. 

D. Use linear dynamic models to evaluate the steady-state plant control systems 

having the fewest interactions. This involves the specific tasks: 

1. Use the difference between the total operating cost of the optimum steady-state 

control response and the dynamic response of the controlled plant as a 

performance measure to compare control system alternatives for an assumed 

pattern of disturbances and then, check the sensitivity of the results to the 

disturbance pattern. 

2. Evaluate the robustness of the control system. 

3. If the dynamic response is not satisfactory, then consider the problem of 

redesign that may involve: 

a. Change of the control system. 

b. Modification of the flowsheet. 

E. Design the level controllers and recheck the performance. 

III. Abnormal dynamic operation - Large perturbations and nonlinear dynamic response 

have special requirements for the control design. The important areas requiring 

attention are: 

A. Start-up and shutdown of the process. This involves development of: 

1. A flowsheet showing all intermediate storage, which is used as a starting point 
for the analysis. 

2. The generated flowsheet should be checked and modified to correspond to the 

start-up strategy of the plant. 

3. The control systems required for plant start-up and shutdown are different from 

the controls used for normal operation and have to be developed. 

B. Failures in the process have to be considered. This requires: 

1. A failure analysis of the flowsheet needs to be undertaken. 

2. Special control systems to handle failures might be needed. 

IV. Implementation of the control. Important questions which have to be answered are: 
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A. Should distributed control be used, and if yes, how? 

B. What kind of computer control - human interface is required? 

If the process can not be controlled, the start-up or shutdown is very difficult, or if 

the process becomes unsafe because of a failure in one or more equipment pieces, then it 

may be necessary to alter the flowsheet or even to abandon the project. Taking into account 

that flowsheet modifications are generally very expensive, it is desirable to identify any 

potential control problems as early as possible in the development of a design. It should be 

noted that the procedure described above could be undertaken as soon as a conceptual 

design has been completed and a proposed flowsheet is available. 

2.9. CONCEPTUAL DESIGN OF PLANTWIDE CONTROL 

Ng and Stephanopoulos [Ng & Steph., 1] suggests an alternative methodology for 

the conceptual design of plantwide control systems, which can be combined with the 

guidelines (proposed by Newell and Lee [New. & Lee, 1]) for the selection of the 

manipulated and controlled variables. This approach consists of the following steps: 

Step 1. Divide the process into separate subsystems. Each subsystem consists of one or 

more processing units with a common processing goal. Thus, for example, a subsystem 

containing a distillation column should also include its condenser and reboiler, and may 

include its feed preheater. 

Step 2. Determine the structural features of the control scheme. This involves defining 

the degrees of freedom and the number of controlled and manipulated variables for each 

subsystem. The computation of the degrees of freedom is based on the formula: 

NManipulated = NVariables - 
NExtemally Defined - 

NEquations 

Step 3. Determine all feasible loop configurations for each subsystem. This involves 

either using the qualitative guidelines mentioned before or using quantitative criteria, like 

the Relative Gain Array (RGA) etc. 

Step 4. Recombine the subsystems with their loop configurations. 
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Step 5. Eliminate conflicts among the control systems for the various subsystems. This 

step is necessary to resolve the overspecification of manipulated variables, resulting from 

having defined control configurations for each subsystem separately. When necessary, such 

conflicts are resolved by the elimination of superfluous loops. 

Step 6. Improve the control configuration generated in Step 5. By their nature, Steps 1-5 

generate decentralised control systems. In some situations, it is preferable to select pairings 

between the manipulated variables and the controlled variables taking into account the 

interactions between the subsystems. This can be accomplished using the quantitative 

analysis mentioned before. 

2.10. THE CONTROL STRUCTURE SELECTION 

The problem of control structure selection is within the overall area of development 

of control schemes for the overall plant, but it is different than the control design, since it is 

between Instrumentation and Control. This problem has been studied extensively in the area 

of Chemical Processes and a large variety of criteria and heuristics have been proposed and 

used; however there is up to now no systematic methodology for synthesising control 

structures for the complete plant. The main issues addressed here, can be considered to be 

part of the extended control design problem which consists of the following main parts: 

i) Selection of controlled and manipulated variables. 

ii) Selection of coupling of controlled and manipulated variables, as well as specification 

of controller dynamics. 

iii) Design of the control scheme, incorporating the coupling specified in (ii) with a 

variety of control performance objectives and criteria. 

So far, Control Design has addressed predominantly the area (iii) and has assumed 

that both the input-output structure and the coupling of variables have been previously 

decided. In the process control area, the issues in (ii) have been previously considered, but 

there is no systematic methodology emerging yet that covers all different aspects. Area (ii) 

has also been addressed within Control Theory and Design, but not as a design of 
decentralisation schemes. Part (i) has been considered extensively earlier in this chapter. 
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The need for an integrated design methodology implies that issues related to the 

design of input-output structures for processes have to be seen together with the selection of 

the control structure itself. The evolution of the control structure properties has to be 

monitored through the different design stages of the design, especially in the early stages of 

design and if possible be the driving force in the continuing evolution. Important problems 

that arise within the context of control structure selection are: 

0 Classification of the operating regimes (which include start-up, shut-down, 

emergencies and smooth transition from one operating condition to another) for which 

we require alternative solutions for (i), (ii), (iii) problem areas. 

0 Simultaneous, robust design of either of the (i), (ii), (iii) areas, when common 

solutions are feasible for groupings of operating points. 

0 When more than one grouping of operating regimes emerges, which implies 

switching, there is a need for an appropriate supervisory strategy for running 

effectively and safely such schemes. 

" Taking into account operational criteria (i. e. optimisation on plant level, total quality) in 

the design or redesign of sections of the process and evaluating the impact of local 

designs on the general performance indices referred to sections, or whole plant. 

2.11. CONCLUSIONS 

The fundamental issues of integrated design in the context of chemical processes 

have been considered and a number of approaches and methodologies, which aim at 

handling the fundamental issues have been considered. The area is mature as far as process 

based methodologies are concerned, but an overall system theoretic framework that may 

provide advanced methodologies based on generic modelling tools is missing. An attempt to 

extract and formulate system and control problems from such a problem environment is 

made in the following chapter, where the fundamentals of a generic approach, as originally 

conceived within the EPIC [Karc., 2], [Karc., 5] and SESDIP projects [Karc., 3], [Karc., 4] 

and further developed here is presented. 
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Chapter 3 

GLOBAL INSTRUMENTATION OF A PROCESS: 

A SYSTEMS AND CONTROL THEORY FRAMEWORK 

3.1. INTRODUCTION 

The overall design of large-scale industrial processes has as integral parts the 

following main stages: 

" Process Synthesis 

" Global Instrumentation 

" Total Control Design 

The first is dominated by the specifics of the particular domain, whereas the last 

involves the study of control problems on systems, which have been already shaped. We 

focus here on the subject of Global Instrumentation, which is seen as a major task that 

shapes the model on which control design is based. Control Design is considered in the 

current context as the area that provides the desirable features of the model on which design 

is performed. 

The instrumentation of a process, that is the selection of measurement variables 
(outputs) and actuation variables (inputs), has a "micro" (local), as well as a "macro" 

(global) aspect. The "micro" role of instrumentation has been well-developed [Fink. & 

Grat., 1] and deals with the problem of measurement, or implementation of action upon 

given physical variables; instrumentation theory and practice deals almost exclusively with 
the latter problems. The "macro" aspects [Karc., 8] of instrumentation stem from that 
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designing an instrumentation scheme for a given process (classification and selection of 

input and output variables) expresses the attempt of the "observer" (designer) to build 

bridges with the "internal mechanism" of the process in order to observe it and/or act upon 

it. What is considered as the final system, on which Control Systems Design is to be 

performed, is the object obtained by the interaction of the "internal mechanism" and the 

specification of the overall instrumentation scheme. Difficulties in control of the final 

system may be assessed in terms of certain structural characteristics of the final system 

model. These structural characteristics are formed through the various stages, which the 

design goes through; however, the process of formation of such structural characteristics, as 

well as the link between their types, values and nature to control problems is not yet well 

understood. The aim of this chapter is to examine the general issues arising in the selection 

of systems of actuation and measurement variables and then provide a system and control 

theory/design based framework for global instrumentation; this is achieved by examining a 

number of problems, associated with the selection of input, output schemes of a process and 

by highlighting their control theory and design context. From the systems viewpoint, global 

instrumentation is seen as a model structure shaping, design stage as far as the 

characteristics of the final model. Given that the structure of the model determines in a 

sense what can be achieved under compensation, global instrumentation is intimately linked 

to control design. The problems of control design and overall selection of input, output 

schemes for a process, referred to here as Global Process Instrumentation (GPI), are 

strongly interrelated and this has been specially recognised in the Process Control area, 

where issues of selection of input, output schemes have been considered within the area of 

control structure selection [Mor. et al, 2], [Gov. & Pow., 1], [Geor. & Fl., 1]. So far, 

however, there has been no systematic attempt to develop a unifying framework for 

selection of systems of measurement and actuation variables for processes, where the model 

structure shaping role of Global Instrumentation is the central feature. Our attempt here 

reflects the view that instrumentation and control cannot be seen as independent activities, 
but as interrelated tasks within an integrated methodology. Of course, Global 

Instrumentation has many more aspects, than the model structure shaping role considered 
here; it is believed that the system character of the problems addressed here has the potential 

to provide bridges with aspects such as traditional instrumentation ("micro aspects"), signal 

processing, communication (field bus technology), artificial intelligence (smart sensors) and 

neuro fuzzy modelling (soft sensors). This chapter contributes to the further development of 
the area by providing a classification of the fundamental system type problems arising in 
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GPI into four main clusters of problems of the Systems and Control Theory type. Such 

problems may be tackled with tools from the latter two areas and within a framework where 

system structure formation plays a predominant role. 

The problem of selection of input, output schemes for a process, is part of the 

overall design of the process, which is of cascade nature and has as main stages, Process 

Synthesis, Global Process instrumentation and Control System design. It has been argued 

[Karc., 8] that there is a correspondence between the successive design stage decisions of 

the cascade design process and the evaluation of structural characteristics of process models. 

Global Instrumentation plays a crucial role in the shaping of structural characteristics and it 

has the advantage that very frequently it has many degrees of freedom, which may be used 

for design purposes. The central characteristic of this approach is that we view GPI as a 

process of shaping further the inherited structure from the process synthesis stage; 

furthermore, the term structure is viewed here as a linear graph and as system invariants of 

the underlined model. The structural methodology adopted here centers around the study of 

four clusters of problems. These are [Karc., 7]: (i) Model Orientation Problems (MOP), (ii) 

Model Projection Problems (MPP), (iii) Model Expansion Problems (MEP), and (iv) Model 

Composition Problems (MCP). These problems belong to the general area of Control 

Theory and Design, but they have not been properly recognised and addressed there as 

model structure shaping problems. Their study is essential in the effort to develop 

conceptual and design tools for Global Process Instrumentation, which may supplement the 

application area dependent methods and heuristics. The chapter focuses on reviewing the 

issues, problems and the general methodology rather than discussing in detail each of the 

problems introduced. Each of the problems described is the subject of a separate 

investigation undertaken at the moment. The development of a systems based framework for 

GPI generates new requirements for developments in Systems and Control. These issues are 

discussed here and are issues for parallel activities in these fields. 

The chapter is organised as follows: In Section (2) we summarise the issues in the 

general field of Instrumentation and in Section (3) we examine the cascade nature of the 

Engineering Design and the general requirements for integration. The special characteristics 

of Global Instrumentation, and in particular its model shaping role are considered in Section 

(4). The nature and role of models in Global Instrumentation is discussed in Section (5). 

This provides the basis for the classification of the different types of the System and Control 

Problems of GPI presented in Section (6). Section (7) deals with the new control type 

requirements emerging from the classification of GPI problems, and finally Section (8) 
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provides a description of long-term issues and problems, which are integral parts of the 

overall problem area. 

3.2. GENERAL ASPECTS OF THE FIELD OF INSTRUMENTATION 

3.2.1. Classification of Issues 

The selection of the set of inputs and outputs in systems is a problem that is 

intimately linked to process modelling and has many aspects, which make it a clear 

multidisciplinary study area. In this section, we briefly examine the different aspects 

involved in the general problem and which are potential contributors into the development 

of an integrated methodology to Global Process Instrumentation. A diagram describing the 

overall area is given in Figure (3.1) below: 

PROCESS INSTRUMENTATION 

PHYSICAL VARIABLES 
INSTRUMENTATION 

SIGNAL L 
VPHYSICAL ARIABL EI 

II 
PROCESSING 

INFORMATION I 
PROCESSING 

SYSTEM 
1 INSTRUMENTATION 

MODEL GLOBAL 
IDENTIFICATION INFORMATION 

PROCESSING 

INTEGRATED 
PROCESS AND PROCESS 

CONTROL MODELLING & 

DESIGN INPUT, OUTPUT 
SELECTION 

SYSTEMS AND 
CONTROL THEORY 

DESIGN AREA 

LOCAL (MICRO) PROBLEMS GLOBAL (MACRO) PROBLEMS 

Figure (3.1): The area of Global Process Instrumentation 

Modern Instrumentation [Fink. & Grat., 11, is the integration of many different 

technologies. They range from the technology of information and knowledge processing 

systems to the engineering of sensors and actuators involving the advanced use of physical 
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and chemical effects and the application of optical, sonic and semiconductor device 

technology. The primary concern of this technology is the engineering of devices and 

systems to meet a need, or to exploit advances in enabling means. The overall area of 

Process Instrumentation is divided into two main categories representing complementary 

and mostly disjoint aspects of the overall field. These are: 

(i) Physical Variables Instrumentation 

(ii) System Instrumentation 

The first category deals with issues related to measurement and actuation of 

physical variables and this is what is traditionally recognised as Instrumentation. The 

emphasis is on the single physical variables and questions related on the effect of such 

actions on the overall system and shaping of its properties are not considered. It is for this 

reason that this area will be -referred to as "Physical-", "Micro-", or 

"Local-Instrumentation". The physical and chemical properties are central in the modelling 

of sensing and actuation devices. Such devices deal with information and signals and thus 

the overall area heavily relies on methodologies and tools from Signals, Information 

Processing and more recently Knowledge engineering (intelligent sensors etc. ) [Fink. & 

Grat., 1]. What we are concerned here is the second area, which is referred to as System 

Instrumentation, and deals with the classification of process variables and the definition of 

effective systems of process inputs, outputs from the many different alternatives on a given 

process. It is clear that Physical Instrumentation plays a crucial role in specifying and 

classifying the different alternatives. It is assumed however here, that the particular aspects 

of physical instrumentation are addressed after the classification and input, output structure 

are specified out of the given alternatives. The dominant feature in System Instrumentation 

is that we examine the effect of variable classification and input, output selection on the 

features, properties and quality of the resulting model. Thus, it is the shaping of system 

properties rather than our ability to measure, or act upon physical variables, which is the 

theme of the System Instrumentation area. Issues related to System Instrumentation have 

started to emerge in areas such as Process Control, Flexible Space Structures etc., but there 

has been no systematic effort so far to identify generic problems (application area 
independent) and develop a Systems and Control Theory/Design Methodology for this area. 
Even within the specific application areas the available results and techniques are partial and 

rather weak. 
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The development of a Systems and Control framework and approach for System 

Instrumentation has a unifying, integrating role for all other aspects of the topic. The overall 

area is clearly multidisciplinary and apart from the Physical Instrumentation issues, 

important additional aspects, which relate to the problem, are: 

(a) Model Identification 

(b) Global Information Processing 

(c) Process Modelling and Input-Output Selection 

It is because we address the overall system aspects, rather than the individual 

physical variables, that we may refer to System Instrumentation also as "Global" 

Instrumentation. The input-output selection in the context of system modelling is closely 

related to our tasks here and is briefly considered below. 

3.2.2. Process Modelling and Input-Output Selection 

The selection and classification of process variables is an integral part of the 

overall exercise and it is influenced by (a) the purpose, which the model is to serve, and (b) 

the boundaries of the system to be modelled. The purpose of the model clearly influences 

the choice of relevant variables to be included in the model, the detail and accuracy desired 

of the model and the procedures necessary to derive it. Given the purpose of the model, the 

next step is to specify the boundaries of the system, which is to be modelled. For example, 

we may be concerned with developing a mathematical model of an entire corporation, of a 

refinery or an integrated plant, of a processing system, of a unit process such as an 

individual heat exchanger, or we may desire a model of the flow pattern in the elbow joint 

of a pipe; each of these is an appropriate subject for modelling. The location of boundaries 

determines the particular variables, which must be taken into consideration, as well as their 

status as independent and dependent quantities in the model. The above two factors are 

instrumental in the overall classification of variables and are considered as external 

modelling factors in the classification process. 

From the point of view of control, the typical process can be looked upon as a 

multivariable system with a number of input and output variables. The inputs are the 

independent variables of the process; they may be considered as casual factors, in the sense 
that the dependent variables, the outputs may be considered as effects, or responses to 
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inputs. A diagram summarising the classification of variables is shown in Figure (3.2) 

[Savas, 1], where the independent and dependent variables are classified further into 

controlled-uncontrolled and performance-intermediate respectively. Such a classification is 

intimately related to the purpose and boundaries of the modelling exercise. The 

classification of process variables is discussed below: 

INDEPENDENT º UNCONTROLLED 

CONTROLLED PERFORMANCE 

INTERMEDIATE 4-- DEPENDENT 

Figure (3.2): Classification of Model Variables 

(a) Uncontrolled Variables: An uncontrolled variable, also called a disturbance, is a 

quantity which affects the process operation, but over which the operator has no direct 

control; its value is often determined by some known, or unknown agency external to 

the process boundary. Uncontrolled variables may be classified into five categories, 

those with (1) raw materials, (2) ambient conditions, (3) equipment condition, (4) 

economic factors and (5) loading effects. 

Raw material variables are an omnipresent source of process disturbances and affect 

virtually all processes. The particular disturbance variable or set of variables associated with 

raw materials express variations from nominal conditions and clearly depend on the 

application area. Such disturbances may be less severe if the material entering the process is 

an intermediate product derived from a prior process where some control action has been 

taken to smooth the effect of variations. Ambient conditions constitute a second major 

category of process upsets. Variables such as the temperature, humidity and sometimes 

pressure have frequently to be considered, since their nominal values may change. The 

changing state of equipment condition and materials is the third source of disturbances and 
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many of the more obscure disturbances originate here. Special modelling effort is needed to 

include such changes as appropriate variables in the model. Another class of disturbances 

may be termed economic, or managerial disturbances and they are associated with raw- 

material costs and product prices variations with time, as a result of which a different mode 

of process operation is required. Although very frequently the latter changes are modelled as 

disturbances, there is nowadays the tendency to view them as discrete event type inputs 

coming from process recipe setting area and thus hybrid modelling and control techniques 

emerge as important in this area. Finally it should be mentioned that the specification of 

modelling boundaries, turns a number of variables linked to the interconnection of the 

system to its environment, into loading disturbances; this implies that design on the given 

boundary system must try to compensate the effect of such variables. In a larger boundary 

model the nature of such variables changes. 

In reality, it is never possible even to identify all the disturbance variables of the 

process, let alone measure them. The best procedure is to include in the model the major 

disturbances, which afflict the process and ignore factors involving second-order effects. 

The latter approximation will render the minor disturbances indistinguishable from model 

errors and thus they may be handled by robust control methodology. Special disturbance 

rejection methodologies may then be used to handle the major process disturbances. 

(b) Controlled Variables: These are variables over which the operator can exercise 

control. Such variables may be classified as basic control variables and transformed 

control variables. The first are primary variables which the operator can handle. 

Usually, in analysing the process variables and formulating a model for control 

purposes, it is more convenient to think not in terms of the basic control variables, but 

rather in terms of a set of transformed control variables linked to some fundamental 

properties of the process. Clearly, the transformed independent controlled variables do 

not form a unique set, but depend on the preferences and approach of the designer. 

However, each model must be internally consistent and the number of transformed 

independent variables must be equal to the number of basic control variables. 

Given the past and present values of the independent variables, the dependent 

quantities are completely determined. Dependent variables enter the model for two reasons; 

either they are directly related to process performance or they arise as intermediate 

variables, which indirectly affect the operation of the process. Thus, we distinguish: 
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(c) Performance Variables: Performance variables are those which serve to evaluate 

directly the performance, or condition of the process. In practise, these are the 

variables, which the operator should constantly bear in mind while running the 

process. We may classify these variables into: 1) Economic variables, 2) Constrained 

variables. The first family includes those which provide a direct measure of the 

economic performance of the process. According to the nature of the process and the 

management policy, a number of such variables are specified. The second category, 

the constrained variables, includes quantities, which are restricted, or limited to a 

certain range of values. Constrained variables are further classified to physical and 

managerial types. Physical constraints are imposed principally by capacity, safety etc., 

considerations, whereas managerial constraints relate to policy decisions. In the latter 

family we distinguish those related to product quality and size of production. In 

general, these are many quality and quantity constraints on process and their nature is 

limited to the particular physical and operational characteristics of them. 

(d) Intermediate Variables: Intermediate dependent variables constitute the remainder 

of the pertinent process variables. They are not of direct, immediate, or explicit use in 

evaluating the performance and conditions of the process, in the sense that they do not 

have direct economic impact, nor are they explicitly constrained. Their role however 

may be significant in the overall control of the process, as well as the development of 

advanced schemes for evaluating key quality variables, which cannot be directly 

measured. 

3.3. THE CASCADE DESIGN NATURE OF ENGINEERING DESIGN 

3.3.1. Integrated Design and its Requirements 

The general problem of Global Instrumentation has a number of aspects, which are 

inherited by the fact that this activity is one of many stages in the overall design of the 

process. Some of the general features of this embedding are considered here. ' The dominant 

trend in the synthesis of large complex processes is the division of the problem into 

subproblems; then, each subproblem becomes the task of a group of specialists. The process 

synthesis/design is characterised in general by the following general steps [Shigley, 1]: 
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(1) Recognition of need, General objectives 

(2) Definition of problem, Specifications 

(3) Synthesis 

(4) Analysis and optimisation 

(5) Evaluation 

(6) Presentation 

Such a procedure is clearly iterative and it is the result of the technological 

complexity and possibly large-scale nature of the engineering task. The complexity of large 

engineering processes implies that a combination of different skills and expertise are 

required for the solution of the problem and this results in a division of labour. This is 

manifested by the existence of divisions in a modem engineering firm, each one of them 

dealing with the particular aspects of the overall problem. The process synthesis/design 

problem has a cascade nature with feedback loops between the various substages or blocks. 

The present aim is to investigate some important problems arising due to the cascade nature 

of design, which hinders the process of achieving the final task; this will demonstrate the 

need for a new design philosophy that may help to overcome the difficulties associated with 

the current practices. A representative diagram of the cascade procedure for the design 

process is given in Figure (3.3). 
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Figure (3.3): Cascade Design Process 

Objectives 
Specifications 

t+1 

The main inputs at every design stage are the special skills, body of knowledge, the 
local objectives and specification and the final result, model of the previous design stage. 
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Secondary inputs are provided by the exchange of information between the given stage and 

the other design stages, whenever they exist. The secondary inputs express the iterative, trial 

and error nature of the overall design process. In fact, this exchange of information is mostly 

empirical and decisions taken at previous stages are evaluated by means of simulations at 

the successive design stages. For most cases, there is no "a priori" knowledge of the 

implications of the decisions taken on stages..., (i-2), (i-1), on the nature of possible results 

that may be achieved at stages (i), (i+l),... without going through a complete design exercise 

at the successive local stage. Defining "a priori" a tight set of specifications for every local 

design stage is also difficult, since what is the best that may be achieved locally is not clear 

for the above mentioned reasons. 

The trial and error nature of the overall design procedure is time consuming, 

uneconomic and very frequently not possible, as far as major design alterations in the 

previous stages. Experience on similar nature designs, is always of immense value; 

however, it might create some inertia that hinders the testing of new ideas. For a large 

number of process designs, previous experience may not be highly relevant, since even 

changes on the size of a given process may lead to a drastic change in the original dynamics 

and thus may require an entirely new design and use of technology. The cascade design 

procedure is dynamic in the sense that what it is feasible to achieve at a given stage is 

influenced by the decisions taken at the previous design stages. It is thus a characteristic 

feature of the cascade design process that decisions taken at one stage, which may been seen 

as technically reasonable and economically sound according to local criteria, may not 

necessarily be good as far as the overall design process. This is due to the fact that the 

overall system tends to display behaviour that is not an aggregate of partial behaviours. 

3.3.2. Global Co-ordination in Integrated Design 

The problems associated with the cascade mode of design is the price which has to 

be paid by moving from the "artisan design mode" to the "modem design mode" dominated 

by division of the overall design to a cascade structure of Subdesigns. The characteristic of 

the "artisan design model" or "small scale integrated design" is that the designer has overall 

control and knowledge of the whole process; knowledge of the overall process may be 

empirical, or scientific, and it helps to overcome problems that may arise in the various 

substages of design by enabling the designer to foresee the impact of decisions taken at a 

time on the final design. The global empirical or scientific body of knowledge of the small- 
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scale designer, or craftsman (artisan) is indispensable; this holistic understanding of the 

overall design process will be referred to as global co-ordination knowledge [Karc., 7]. 

A global understanding by a single agent of the "cascade", or "modem design" of 

most of large-scale processes is missing. The main reasons for this are: (i) the high 

complexity of modern engineering designs, (ii) the need for use of highly specialised 

engineers (lacking most of the time a global understanding and view of the process) and, 

(iii) probably the most important of all, the fact that the simple empirical rules of the small 

scale designer cannot be readily extended to large scale complex designs. The lack of a 

global body of knowledge and rules for the overall design is due to the fact that knowledge 

of a whole process synthesis/design is not arrived at through the particular sciences, bodies 

of knowledge. Such knowledge has to be above the specialised features of the particular 

science, it must be general enough and detached from the particular characteristics of the 

subprocess under study, capable of accepting specification and design constraints in a 

unifying manner and organised in the form of a theory that would allow global and local co- 

ordination and direction of the overall process synthesis/design task. The holistic, global 

nature of such a theory indicates that it has to be system theoretic in character. We shall 

refer to such a theory as Global Co-ordination Theory (GCT). The present work aspires to 

contribute in the long term in the formulation and development of such a theory and 

associated methodologies for the design of new, or redesign of industrial processes. The 

process instrumentation is the area of special interest in this project. Areas such as process 

synthesis and integration of higher-level control activities with lower level ones may be also 

considered within this framework. The desirable, general characteristics of a co-ordination 

theory for the process synthesis/design procedure should include [Karc., 10]: 

(a) Ability to interpret tools, concepts, decisions, specifications, constraints and results 

associated with the particular discipline associated with a given design stage in an 

abstract language which may be shared by all design stages. This is necessary for the 

exchange of information between the various design stages. In particular, it is 

necessary to formalise the final result of a design in the form of a model that may be 

understood by all other stages of design. 

(b) Ability to evaluate the effects of local decisions (at a given stage) on the resulting 
local model of the particular design stage (local model evaluation property). 

(c) Ability to interpret the implications of the structure of local model (expressing the 

cumulative effect of local decisions at a design stage) on the range of possible 
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structural characteristics, compatible specifications, operability features and 

achievable limits of performance of following design stages. In more general terms, 

this implies ability to interpret local decision making in the context of global decisions 

and somehow predict their implications for the decision making of successive design 

stages. 

(d) Ability to formulate global criteria, which may be interpreted at the local level and 

then used for the evaluation of local decision making. This is necessary to enable the 

formation of a "good" sequence of local decisions, based on local, as well as global 

criteria. 

In diagrammatic terms we may illustrate the role of global co-ordination theory as 

in Figure (3.4): 

GLOBAL 
CO-ORDINATION 

THEORY AND 
METHODOLOGY 

Figure (3.4): Coordinated Cascade Design 
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The high level nature of Global Co-ordination Theory (GCT) implies that its 

language is that of the model, and thus it has to be of system theoretic character. The aim of 

GCT is to assist the designer in taking local decisions with local, as well as global criteria. 

Thus, the language of GCT has to be of some mathematical nature, which allows 

computations predicting the effect of local decisions on the resulting structure of models of 

successive design stages. 

3.3.3. Model Structure Evolution in Integrated Design 

In the following, the term design stage model is understood as the given purpose 

mathematical model, expressing our understanding of the interactive compositions of 

specifications, local and global criteria, and design decisions for all previous stages up to the 

one we consider. Such a model is used as an input to the next design stage, as shown in 

Figure (3.5) below, and demonstrates the dynamic nature of the cascade design process (past 

decisions affect the range of options for the present decision making). 

Ve 

Figure (3.5): Cascade Design and Model Evolution [Karc., 101 

A crucial importance, desirable feature of GCT is its predictive character; being 

able to interpret local decisions on the level of design stage model, which allow the 

classification of them into those having a structural impact on the model, and those having a 

parameter adjusting effect on the model. The first will be referred to as structural decisions, 

whereas the latter as parameter tuning decisions. Since structural decisions precondition the 
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characteristics of design models of the following design stages, they have a broad horizon 

and qualifying them is essential in the development of the predictive character of GCT. 

Parameter tuning decisions, on the other hand, may be altered by next design stages 

structural decisions and thus usually have a short horizon. However, understanding such 

decisions is essential, especially at the last design stage, when the exact values of the model 

parameters will determine the quantitative properties of the final mode. 

The formation of structural characteristics of the overall process is reminiscent of 

an evolution process [Karc., 10]. The first stage synthesis, acts as the parent gene and thus 

predetermines a possible range of central characteristics of the final process. Structural 

decisions on the successive design stages contribute to the gradual shaping of the final 

structural characteristics, however, within a range of possible options; such decisions 

correspond to the sequence of successive mutations. Structural properties evolve, but not in 

a simple additive, or multiplicative manner. An essential difference between gene evolution 

and process model evolution is that in the latter case it might be possible to go back and 

alter a previous stage design; very frequently, however, only minor modifications may be 

feasible. Ideally, we would like to have assigned certain desirable characteristics to the 

model of every single design stage and thus finally guarantee the shaping of a process with 

fine tuned properties. This requires perfect control of the model evolution process, which is 

not feasible. In fact, such a task requires immense resources in modelling. However, not all 

activities may be modelled with the required accuracy; furthermore, what is desirable as 

final design is impossible to predict at the beginning and thus to interpret it as partial 

prespecified objectives for each design stage. A feasible design philosophy, which may be 

adopted, is that of directing the model evolution process towards final designs that may 

possess desirable properties with high probability. This implies that in early design stages 

we have to make structural decisions that exclude undesirable properties. Naturally, 

whenever the possibility of assigning desirable properties arises, this should not be missed. 

The main effort of assigning the desirable properties to the final design is then left to the 

final design stage. The main role of GCT is thus to provide the concepts, tools and 

techniques that may direct the overall design along good branches of the model evolution 

tree. GCT has also an important role to play in the evolution of compatible specifications for 

the final design. It should be emphasised that understanding issues of composite structure 
formation and model evolution in cascade design are prerequisite to the development of 

methodologies for concurrent engineering [Pars. & Sull., 1]. The above methodological 
framework is specialised next to the engineering design stage of instrumentation. 
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3.4. GLOBAL INSTRUMENTATION WITHIN THE FIELD OF INTEGRATED 

DESIGN 

The specific role of the selection of measurement and actuation variables in the 

context of overall process design is examined in this section. This also serves to illustrate 

the general philosophical approach on integrated design. 

3.4.1. The Main Design Stages and the Need for Integration 

The selection of systems of actuation, sensor variables, referred to here as Global 

Instrumentation is part of three main engineering stages represented in Figure (3.6). The 

general features of the technological stages are briefly considered first, before we focus on 

the significance of Global Instrumentation. 

RECOGNITION 
STAGE (A) OF A NEED 

DEFINITION OF PROBLEM 
SPECIFICATIONS 

ENGINEERING CONSTRAINTS 

STAGE (B) 

SYNTHESIS OF 
SUBPROCESSES, MODELLING: 

STAGE (I) FLOWSHEETING, 
EVALUATION etc. 

PROCESS 
INSTRUMENTATION: 

STAGE (II) SELECTION OF SENSORS 
AND ACTUATORS 

CONTROL SYSTEMS 
DESIGN STAGE (111) 

EVALUATION I STAGE (C) 

PRESENTATION 
STAGE (D) DOCUMENTATION 

Figure (3.6): Simplified Form of Engineering Design Process [Karc., 10] 
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Our attention is focused on the purely technological nature stages of design, that is: 

STAGE (I): Process Synthesis 

STAGE (II): Process Instrumentation 

STAGE (III): Process Control. 

Each of the above stages operates under a set of, engineering specifications and 

constraints, which together with the economic constraints define the boundaries of the local 

decision making. Experience from building similar processes provides rules, guidelines of 

what you can do and what you should avoid. This body of knowledge is indispensable, but 

not sufficient for the fulfilment of the original task, that is deriving final designs with the 

minimal effort and economic cost and which have desirable performance characteristics. In 

fact, we may view this empirical knowledge and rules as an intermediate stage co-ordination 

layer with a rather short prediction horizon. GCT aims at enlarging the knowledge required 

for an improved process synthesis by introducing system and control based criteria, rules 

and techniques. 

The development of GCT for the above design stages is a very long-term task, 

which requires considerable effort. The raw material for such a theory may be found in the 

areas of Systems, Control Theory and Design, Information Theory etc., since they deal with 

the properties of system models. However, the problem of evolution of model structure 

through the successive design stages has not been considered before. Over specialisation 

and division of tasks in engineering enterprises has implied that process engineers have no 

understanding of the effect of their decisions on model structure shaping and control 

engineers have assumed that the system is already formed and have not examined the 

mechanisms of model structure formation. There is no understanding in any significant 

degree of the mechanisms of model structure formation in the early stages of design and this 

defines a new challenging problem. Building GCT is thus equivalent to introducing Control 

Theory and Design concepts and tools at early design stages. This is a new challenging role 

for Control Theory and Design, which has to develop within the framework of traditional 

process and instrumentation design concepts and methodologies. This latter aspect is an 

important additional dimension of the "conceptual framework" of GCT. A diagram 

summarising the overall structure of GCT is given below: 
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GLOBAL COORDINATION 
THEORY AND TOOLS 

HIGH LEVEL, 
MODEL BASED 
THEORY AND 
RULES 

SPECIFICATION SPECIFICATION SPECIFICATION 

-<-, PROCESS INSTRUMENTATION . 
CONTROL ý> 

THEORY&THEORYTHEORY& 
METHODOLOGYMETHODOLOGY. METHODOLOGY 

STAGE (I1I) STAGE (1)', STAGE (In 
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SYNTHESIS 

ýýj 

INSTRUMENTATION REGULATORY CONTROL 
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,.,.. 

INSTRUMENTATION 1 1', CONTROL 

.- . 
PRACTICE ", ......... PRACTICE PRACTICE, ' .. ".... ý 

MATE LEVEL 

EMPIRICAL EXCHANGE OF INFORMATION 

RULES 

Figure 3.71: General view of GCT 

3.4.2. Global Process Instrumentation and its Model Shaping Role 

The traditional role of instrumentation, referred to here as the "micro" role, is well 

developed and deals with the problem of measurements or implementation of action upon 

given physical variables [Fink. & Grat., 1]. This is closely related to the physics of the 

particular problem and issues related to signal processing are also crucial. The focus point in 

traditional instrumentation is the particular variable, whereas the effect, significance of such 

selection on the shaping of the overall process model is not considered. It has been noted 

[MacF. & Karc., 1], [Kouv. & MacF., 1], [Rosen. & Power, 1] that the selection of sensors 

and actuators (their location, as well as the way we measure, implement action) plays a 

decisive role in the formation of the characteristics of the final design and it is this role, 

which will be referred to as "macro" (global) role of instrumentation. 
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The internal process characteristics, dynamics (result of the process synthesis 

design stage) are essential, since they determine the progenitor basic characteristics of the 

final design; however, the manner we observe and try to act upon the variables of the 

progenitor system, determines the final characteristics of the system. The final system 

model is the product of interaction of the internal dynamics and its environment. The role of 

instrumentation (both micro and macro aspects) is in the building of bridges between the 

internal mechanism of the process and the system environment and a simple diagram 

illustrating this process is that of Fig. (3.8). 

INTERNAL DESCRIPTION 

space of space of 
CONTROL DISTURBANCE 

signals signals 

u jo , 

space of 
OBSERVABLE 

signals 

disturbance s map 
d 

actuator map q 

SYSTEM ENVIRONMENT 

sensor map 
h 

space of 

internal map f INTERNAL VARIABLES INTERNAL MECHANISM 

Figure (3.8): System Model Structure and Instrumentation Maps 

What the "observer" understands as a system is the set E =(Z, 2l V, f, q, h) of 

signal spaces and inter-relationships between them. Clearly, the properties of E express the 

cumulative effect of the composition of the f, q, h maps and thus their formation is affected 
by the selection of the actuator, sensor maps constructed by the "observer". The map f 

expresses the cumulative effect of process synthesis, whereas d expresses the linking of 
disturbances to internal dynamics. The maps q, h are those which may thus be considered 
here as design parameters in the shaping of characteristics of 1, viewed as an information 

processing device or object to be controlled. The "macro" aspects of instrumentation have to 
do with the design of the q, h maps using global criteria and techniques, stemming from the 
information processing, control capabilities of the resulting system. Clearly, the "macro" 
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aspects of instrumentation have to develop within the framework of constraints imposed by 

the traditional instrumentation practice. 

The main tasks involved in the development of concepts, methodology and tools 

for Global Instrumentation are: 

(i) Characterising the desirable and undesirable performance characteristics of the overall 

system and the limits of what best can be achieved under compensation. 

(ii) Relate the best achievable performance, or undesirable performance characteristics to 

the system model structural type characteristics and their values. 

(iii) Establishing the functional relations between model parameters and structural 

characteristics. 

(iv) Formulating and solving suitable structure formation problems. 

The overall problem which is considered is an attempt to shape the final 

characteristics of the process model that emerges from the process synthesis and process 

instrumentation stage, and thus make the final control design problems as simple as possible 

with natural consequences on costs, operability, safety etc. of the final process. The formation 

of structural characteristics of the overall process is reminiscent of an evolution process. In 

fact, each design stage starts with a model (parent gene) and decisions taken there contribute 

to the gradual shaping of the final structural characteristics, however, within a range of 

possible options; structural properties, characteristics, however, thus evolve, but not in a 

simple manner. The main objective is to drive the model evolution along paths avoiding the 

formation of undesirable structural characteristics and where possible to assign desirable ones. 

The main issues raised in (i) - (iv) may be discussed within the general area of Control Theory 

and Design (CTD); however, only (i) has been the main theme within CTD and to lesser 

extent (ii) (see for instance [Kailath, 1], [Maciej., 1] and references therein). The topics 

addressed in (iii), (iv) have been considered in the particular case of zero assignment [Kouv. 

& MacF., 1], [Rosen. & Power, 1], [Karc. & Gian., 1], whereas structural methodologies of 

the graph type have been deployed in the search for feasible control structures [Mor. & Steph., 

1], diagnosis of control difficulties in early design stages [Russ. & Perk., 1], classification of 
internal variables into input, outputs [Georg. & Fl., 1] etc. With the exception of the zero 

assignment, most of the other approaches deal with diagnostics, rather than try to define a 

synthesis methodology based on both aspects of structure (graph and parameter dependent 

invariants). 
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3.5. THE MODEL ENVIRONMENT OF GLOBAL INSTRUMENTATION 

The characteristics and nature of Global Instrumentation depend on the type of 

available possible models, used to describe the system; this is referred to as the "Model 

Environment" of the problem. Depending on the nature of the process and the modelling 

approach, which is used, we distinguish the following three classes of models: 

(i) Internal Models (Ims) 

(ii) External Models (Ems) 

(iii) Composite Models (Cms) 

(i) Internal Models: These are described in terms of ordinary nonlinear differential 

equations and if they are first order, they are called state space models (SSMs). The 

system dynamics of SSMs are represented by: 

x=r(x, u1 y=h(x) (3.1) 

where h, r are vector valued functions representing the sensors, composite internal, actuator 

maps respectively. In the case of linear systems, (3.1) becomes 

S(A, B, C) :x= Ax + Bu, y= Cx (3.2) 

and the nxn, nx£, mxn matrices A, B, C represent the internal, actuator, sensor maps 

respectively. If all physically possible variables, that may be acted upon and measured are 

included, then the model is referred to as extended SSM (ESSM). A more general family of 

internal models that frequently arise are the Implicit Systems [Lewis, 1], [Karc. & Kalog., 

2], which in the linear case may be represented as: 

F=G4 (3.3) 

where F, G are rxk matrices and 4 is a vector of all possible internal variables, where 

there is no distinction between controlled and measured variables. This description is close 

to the spirit of the behaviour based approach to systems [Will., 1]. 
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(ii) External models: If V, Z denote the spaces of all potential inputs, measurements, 

referred to as extended input, output spaces respectively and v, z are the 

corresponding p, q-dimensional vectors, then the internal map f is a vector values 

function f: `U -+ Z where z= f(y). For the case of linear, time invariant systems f is a 

convolution function, or it is represented by the qxp rational transfer function matrix 

F(s), for which: 

z(s) = F(s) v_(s) (3.4) 

Note that V, 
_Z 

denote the potential input, output spaces and not the effective ones, 

which are denoted by 'U, 2f and have corresponding dimensions £, m. If u, y are the 

effective input, output vectors, then the corresponding model is illustrated in Fig. (3.9) and 

is defined by 

y(s) = W(s) u(s) W(s) = H(s) f(S) Q(s) (3.5) 

where H(s), Q(s) are the transfer function matrix representations of the sensor, actuator maps 

respectively. We shall refer to the system models S(A): x=Ax, F(s), as internal - external- 

progenitor models respectively; in fact, S(A), F(s) act as parents for S(A, B, C), W(s) 

descriptions and (B, Q(s)), (C, H(s)) should be treated as design parameters in Global 

Instrumentation. 

/ Actuator Sensor 
space of map map 

CONTROL 
q h space of 

signals OBSERVABLE 

signals 
u space of 

EXTENDED space of v 
INPUT EXTENDED 

signals OUTPUT 
signals 

v Internal 
mechanism 

map 
f 

Figure (3.9): External Progenitor Models 
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(iii) Composite Models: A large process is always synthesised by connecting 

subprocesses and the two fundamental ingredients of the composite system model are: 

(a) The topology (graph) of system interconnections 
.Z and (b) The family ti of 

subsystem models which may be of any of the types discussed before. For simplicity 

we may assume that each subsystem is represented by a transfer function Gk(s), or by 

a state space model E (A, B, C, D). If :s= {E;, i=1,2,..., µ} is the set of subsystems, 

then the system defined as a direct sum of their input, state, output spaces 

respectively la = {E1;...; Eµ} is called the system aggregate. The interconnection rule 

3 (expressing the act of synthesis) applied on Ea defines a system: 

Ec= Ea *F= (Ei j =1,..., µ; F) (3.6) 

which is referred to as the composite system. Modelling composite systems involves 

specifying the subsystem model, in terms of the link vectors (input, output), describe the 

relationship between them and then'the overall interconnection rule F. The interconnection 

rule may be expressed as a vector graph, where the nodes are the subsystem inputs, outputs. 

Shaping composite systems depends heavily on the selection of subsystem inputs, outputs; 

although the general characteristics of the interconnection rule are defined by the process 

synthesis, the dimensionality of the vector transmittances depends on the degree of the 

subsystem modelling and the selection of subsystem inputs, outputs. The role of subsystem 

input, output selection in the shaping of the composite system properties is one of the 

fundamental problems of GPI. 

3.6. Variable Complexity Modelling and Early Design 

An issue that arises in the overall selection of input, output schemes is the use of 

models of different type and of variable dynamic complexity and accuracy at the different 

stages of design. Thus at very early stages, simple, graph type models may be used and 

progressively at the later stages simple, multiple lag, full order lines and finally non-linear 

models. This implies that the central issues in the selection of input, output schemes have to 

be addressed within the context of variable complexity modelling, implying use of graph, 

simple and progressively more complex and more detailed models. 
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Starting from a conceptual model E°, the evolution of the models, which preserve 

the generic structure of the interconnection rule, leads to the following nested set of models: 

E` = Eö C EI c2C E3 C 

Conceptual Model = Graph + First 
Graph + Conceptual Order models for 

representation of subprocess 
subprocesses 

Graph + Steady state models 
for subprocess 

..... C E C E 
k 

Graph + Nonlinear models 
for subprocess 

Graph + Full Linear model 
for subprocess 

Figure (3.10): Nested Set of Conceptual Models 

The model building process can proceed beyond the construction of E', which can 

be considered as the simplest nonlinear model that can be used for the evaluation of designs 

(through simulation). This nesting describes an evolution of the overall system model, 

which is due to the evolution of Dynamic Richness of the subsystem models and it is due to 

the time dimension (Early-Late) of the design process. 

If 3 denotes the Graph of E° and we denote by {7;, i = I,..., µ} the aggregate of the 

simple models of the a-stage, we can denote by I", the model defined as: 

ýa =* diag{E; :i =1,..., g}. Note that as model complexity for subsystems increases, we 

may also consider issues of dimensional expansion and/or evolutionary expansion of the 

corresponding graph. Instead of assuming a fixed 3 as above we may have that: 

Ma = za * diag{M; :i =1,..., µ}, where also the set {Za} is ordered in an evolutionary 

manner 
i. e. Z0 c 3, c 

. 
S2 C-- c 3k cs 

The above nesting expresses the progressive enrichment of the initial graph that 

may be due to either model detailed description of the physical interconnection streams 

(dimensional expansion of graph branches), or addition of new subprocesses (graph 

growth). Such changes express distinct forms of evolution in the overall model and raise 

important new issues in the context of systems that may be referred to as Evolutionary 

Systems (Graph evolution). The family of models generated by both local complexity 

evolution and possibly graph evolution may be represented as: 
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E' 

Er 

EVOLUTION OF 
MODELS IN 
EARLY DESIGN 

E, 

ý` 

Figure (3.11): Model Embedding Process 

A very important issue is to evaluate the mechanisms of this nesting from the 

modelling viewpoint by studying the effects of subsystem model complexity evolution and 

graph evolution of physical interconnections on corresponding system structure and 

properties. This problem can be approached by being split into two stages. Firstly, a 

procedure for simplification of description of subsystem models is adopted, by using model 

reduction and other simplification techniques, while we preserve the graph structure as 

constant. The latter implies a fixed input, output structure for the subsystems. Secondly, we 

fix the subsystem models and examine the graph variability. By adopting the input-output 

model and preserving the interconnection graph structure, we may define descriptions using 

simplifications for each of the subsystem models. This way, we can generate for each of the 

(a) subsystem the sequences of models: 

öC Ej C EZ C jj C ..... C Ek C Ek+t C lk+2 C """"" 

where E; is the linear steady state model, Eö is a simplification of E, 
, 

EZ is first order 

dynamics, V, the nonlinear model with simple Voltera description, Ek+2 the nonlinear 

model with double Voltera description etc. 

Finally, a very important point is the reversibility of the Model Complexity 

Evolution and the Model Simplification Approach, as shown in Figure (3.12). Model 

Evolution and Model Reduction may become completely reverse processes, if we use fixed 

input, output subsystem structures and interconnection graphs. This will be referred to as 
Duality between Model Reduction and Model Complexity Evolution. 
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MODEL REDUCTION 
MATHEMATICALLY 

DRIVEN PROCESS 

oQ............. Q............. 
Approximation order (complexity parameterisation) 

MODEL COMPLEXITY EVOLUTION 
PHYSICALLY 

10 
DRIVEN PROCESS 

13 
11 

............. ............. Eo 
10 Depends on the stage of the design process 

FIGURE (3.12): Comparison of Model Reduction and Model Complexity Evolution 

3.7. Fundamental System and Control Problems in Global Instrumentation 

In general, we may view instrumentation as the body of knowledge and techniques 

that allows the selection of input, output schemes for a given process and with certain 

objectives, criteria. In view of the crucial role, which input/output (i/o) structures play in 

control and signal processing, a refined classification of the issues involved in the i/o 

selection is essential. We may classify the issues, problems as follows [Karc., 10]: 

(i) Model Orientation Problems (MOP) 

(ii) Model Projection Problems (MPP) 

(iii) Model Composition Problems (MCP) 

(iv) Model Expansion Problems (MEP) 

The above classification is primarily based on the nature of issues, which are 

involved rather than the tools needed for their study. A brief discussion of the main issues 

involved in each of the above clusters of problems is given below: 

3.7.1. Model Orientation Problems 

The general problem of the classification of system variables as inputs and outputs 

is referred to as model orientation. In many systems, the orientation is not known, or that 
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depending on the use of the system the orientation changes. Questions such as, when is a set 

of variables implied, or not anticipated by another, or when is it free, have to be answered, if 

model orientation criteria based on the nature of the process are to be derived; the specific 

use of the system may provide additional model orientation criteria. It may happen, that the 

above two types of criteria do not provide a unique solution to model orientation; note that 

for each alternative orientation we have a different i/o model and thus criteria based on the 

resulting model characteristics have to be used for the final evaluation, selection. Problems 

of this type have been recently realised [Karc., 8] and their solution, as far as techniques are 

concerned, is in its early stages. The need for nonoriented models [Karc. & Hayt., 11, [Apl., 

1], [Will., 1] has been realised for many years; however, they have been seen more as 

unifying descriptions, rather than as objects on which we pose structure assignment 

problems by selection of input, output variables. In practice, the problem of model 

orientation is in constrained form, since certain variables have been already assigned the 

role of input, or output; for the sake of simplicity of the presentation we consider here the 

general free problem, where all internal variables are free, as far as becoming either input, 

or outputs. 

We consider implicit descriptions of state space type (3.3) or more generally 

autoregressive forms of the type 

H(p) ý=0, H(p) E ßv"µ [p] (3.7) 

Descriptions of the type (3.3), (3.7) naturally arise in many practical situations 

[Apl., 1]; the vectors 4, C are referred to as implicit vectors and contain all variables of 

importance to the structure of the system without making a distinction between control, 

observation, internal dynamic variables and without making any assumption on their 

independence. Although the study of dynamics may be carried out on implicit nonoriented 

forms [Karc. & Hayt., 1], [Apl., 1], [Will., 1], when it comes to observing, controlling, or 

trying to connect the process as part of a composite structure, this classification is essential. 

The free version of MOP is defined as follows: 

Definition (3.1): Given the matrix pencil implicit model of equation (3.3) define a 

transformation Q: 4= Q4, Q E 93"'`9I Q I# 0, such that (3.3) is equivalent to: 
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pE -A-B 
X(t) 0 

-C 0 u(t) - Y(t) 
(3.8) 

and where xE 91" 
,uE 

91 
,yE 

91` 
. 
The system S(E, A, B, C) is called an orientation of the 

(pF-G) and E(F, G) denotes the family of all such systems. 

Given the polynomial implicit model of equation (3.7) define a transformation 

R(p): 4=R(p) ý R(p)E9µ"µ[p], IR(p)I =c#O such as (3.7) is equivalent to: 

T(p) U(p) w(t) 0 

- V(P) W(P) U(t) - Y(t) 
(3.9) 

t 

and =[w`u`, y`I , where x r= 91' 
,u re 9t, ye 91' and µ=v+ £+ m. The system 

described by the system matrix [Rosen., 1] in equation (3.9) is called (v, £, m)-Rosenbrock 

orientation and will be denoted by 
. 
C(T, U, V, W) and the family of such models will be 

denoted by E(H). 

The families E(F, G) or E(H) contain more than one solution. Such solutions may be 

classified according to the invariant structural characteristics of the corresponding 

orientation, as well as the input, output type properties of the resulting oriented model. 

Furthermore, we might have a variety of solutions due to the variability of the number of 

inputs, outputs we specify, as well as the selection of alternative sets. For the case of 

polynomial implicit descriptions, the current definition of orientation is based on 

equivalence that preserves only the smooth space of solutions of the original and oriented 

model. Alternative orientation problems may also be defined, which preserve also impulsive 

behaviour. An important issue in selecting oriented models is the issue of model minimality 

[Kuij. & Schum., 1], [Bon. & Mal., 1] that is equivalent to selecting a minimal number of 
internal variables. Issues of minimality, as well as assignment of desirable structural 

characteristics are important criteria which have to be used in the parameterisation of the 

E(F, G) or E(H) families. The different issues of MOP described above have not been 

addressed before as design problems. Whenever orientation issues have emerged, they have 

been tackled using rules and heuristics dependent on the particular application. The main 
issues on which the model based approach for MOP is based are: 
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a) Exploit the underlying structure of the implicit non-oriented model to define families 

of oriented solutions of given input, output dimension. 

b) Define the conditions for the selection of the orientation, which are needed to 

guarantee properties for the oriented system such as: minimality, causality, 

controllability, observability, invertibility etc. 

c) Use the analysis on parameter redundancy to develop an approach for selection of 

independent variables as an alternative to the graph approach. 

The study of MOP in the context of the implicit state-space description will be 

considered again in a following chapter. 

3.7.2. Model Projection Problems 

For many systems the number of potential control variables and potential 

measurements, which ideally may be used can become very large. In an ideal design, 

unconstrained by resources and effort all possible inputs and outputs should be used; 

economic and technical reasons, however, force us frequently to select a subset of the 

potential inputs, outputs as effective, operational inputs, outputs. Engineering specifications 

and past experience with similar designs provide some guidance in how to select the 

effective £ 
-inputs and effective m-outputs, but they do not specify a solution uniquely. 

Developing criteria and , 
techniques for selection of an effective input, output scheme, as 

projections of the extended input, output vectors respectively, is what we call Model 

Projection Problems (MPP). This problem has always to be discussed within the framework 

of engineering specification and constraints. For linear systems, where orientation has 

already been decided, and represented by an external progenitor model (IU, Z, () (or aqxp 

rational matrix F(s)) the MPP is equivalent to selecting the sensor, actuator maps h, g (or m 

x q, px2 rational matrices H(s), Q(s), m <_ q, 15 p) such that the transfer function: 

W(s) = H(s)F(s)Q(s) (3.10) 

has certain desirable properties. Clearly, the problem as stated above is in the form of a 

generalised two parameter Model Matching. The design parameters H(s), Q(s) may be 

assumed in the first instance to be constant; in the case, where they are considered as 

dynamic, their order is not free, since they represent the dynamics of sensors and actuators. 
The overall MPP involves reduction of the input, output variables and the resulting model 
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has structural features, which evolve from the progenitor model. The nature of desirable 

properties of the reduced model W(s) depends on its use and the properties of the F(s) 

model. Some of the key issues in the selection of the effective sets of inputs, outputs, or the 

maps q, h are: 

(i) Define the lowest bounds for the number of effective inputs, output, which are needed 

for certain control scheme, or family of alternative control schemes. 

(ii) Define the best location of effective inputs, outputs, as well as the structure of 

actuator, sensor maps, which may guarantee structural controllability, and 

observability and other graph-related structural properties. 

(iii) Evaluation of effect of selection of a given sensor, actuation scheme on the formation 

of parameter dependent structural characteristics, that is the resulting system 

invariants. 

(iv) Evaluation of effect of a selected input, output scheme on the features of the resulting 

performance indicators, which characterise the different aspects of control quality of 

the resulting model. 

The above sets of questions, as well as their order, express an underlying structural 

philosophy that system properties stem from the problem dimensionality, underlying graph 

structure, system invariants and they are finally measured by the characteristics of the 

property indicators. Each one of the above issues defines a cluster of MPPs, which are 

briefly described below [Karc., 10]: 

(a) Dimensional MPPs (D-MPP): Such problems are defined on any type of progenitor 

models and aim at using conditions, for generic solvability of control problems, or 

generic system properties to define the least required numbers of effective inputs, 

outputs needed to guarantee certain structural properties. Early results [Karc., 9] are 

based on indicators, such as the Segre index to define certain bounds of effective 

inputs, outputs. The desire to guarantee solvability of control problems such as pole 

assignment, stabilisation etc. with different control schemes introduces alternative 

criteria, which also involve the McMillan degree and the control complexity. The 

latter requires the development of methodologies for robust McMillan degree 

identification on early process design models. In terms of the two-parameter scheme 

associated with MPP, the overall objective here is to determine the least number of 

columns of Q and number of rows of H matrices. 
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(b) Graph Structural MPPs (GS-MPP): On early process design models of the graph 

type (state space formulation) or structured transfer function type there is frequently 

the need to define a subset from all possible inputs, outputs of the progenitor model, 

or appropriate structural combinations of them. The criteria for such selection stem 

from that we would like to guarantee structural properties such as controllability, 

observability, disturbance rejection etc. Issues related to robustness under fault 

conditions may be also used as criteria here. In terms of the two parameter scheme 

associated with MPP, the problem here is to expand the results of D-MPP by defining 

the simplest required Boolean structure of the Q and H matrices. 

(c) Invariant Structural MPPs (IS-MPP): On linear progenitor models of the transfer 

function, or state space type, the study of effect of selection of Q, H matrices may 

proceed (after some preliminary study of D-MPP GS-MPP) to the specification of 

numerical values for the Q and H matrices. The selection of constant Q, or H matrices 

leads to new models where the invariant structure is obtained by appropriate 

transformation of the progenitor model invariant structure. The transformation of one 

set of invariants to another is a challenging problem not fully understood; certain 

results in relationship to decoupling have been established in [Lois., 1], whereas in 

[Karc. & D. Vaf., 1] it has been shown that one-sided MPPs are equivalent to 

generalised cover problems of geometric theory. A special case of IS-MPP is the zero 

assignment by squaring down [Kouv. & MacF., 11, [Karc. & Gian., 1]; a two 

parameter version of squaring down (design of both Q and H) such that the resulting 

transfer function W(s) is square and has a given zero structure is discussed in [Karc. & 

Lev., 1]. The family of IS-MPP is rich, even when Q, H are constant matrices. The 

overall philosophy is to design Q, H such that the resulting model has a given 

desirable invariant structure or avoids having undesirable structural characteristics. 

Two different classes of problems within this category will be considered elsewhere. 

(d) Performance Optimisation - MPPs (PO-MPPs): For a linear progenitor model F(s), 

an alternative family of MPPs may be defined to that of IS-MPP type, where system 

structure is assigned. We may pose problems where we avoid the formation of certain 

undesirable structural characteristics (such as right half plane zeros, high order infinite 

zeros etc) and at the same time optimise the values of certain key indicators, such as 

singular value properties of controllability, observability Grammians, condition 

number, singular values of resulting transfer function etc. Within this class we may 

also consider the problems where the selection of Q, H aim at minimising some form 
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of uncertainty of the progenitor model. The overall approach here is to utilise the 

degrees of freedom in Q, H matrices, which exist when avoidance of structural 

features rather than assignment of them is the central objective, to optimise certain key 

performance, or control structure indicator. Such problems are of the optimisation 

type and it seems that techniques from H- co optimisation are relevant here. Such 

issues are not considered in this thesis. 

Although the above four classes of problems have been stated as independent, they 

are highly interrelated and in practice, mixed forms of them have to be addressed. 

3.7.3. Model Composition Problems 

The area of Composite Systems is one of the important aspects of Large Scale 

Systems Theory. The composite nature of the problem implies that the system is formed as a 

synthesis of subprocesses according to some interconnection rule, frequently referred to as 

process flowsheet (layout) and which acts as a progenitor of the underlined graph (derived 

when we specify the subprocess models). It is the composite nature that makes the overall 

process model, not an amorphous input-output model, but one reflecting the nature of 

subprocesses and the process flowsheet. The latter provides the first of the two aspects of 

the model system structure, the second being those referred to as structural invariants. The 

study of relationships between subprocesses and overall processes on the level of models 

and system properties has been an area of interest for many application areas. The way 

subprocesses enter the composite structure, in terms of interconnecting local variables 

(subsystem connecting inputs, outputs and effective control inputs and measured outputs) 

affects drastically the overall properties of the composite system. Most of the previous work 

[Saeks & DeC., 1], [Vid., 1] deal with the study of properties of composite systems without 

seeing the interconnection scheme and the selection of local input, output structure as design 

parameters. A first attempt to link model composition to feedback was made in [Cal. & 

Des., 1] and subsequently developed in [Karc., 9]. Problems connected to the local input, 

output structure selection are referred to as Model Composition Problems (MCP). A general 

scheme that addresses interconnection rules and local selection of inputs, outputs 

simultaneously and which treats both issues, as an equivalent control problem will be 

presented later in this thesis. The overall emphasis is to address issues of subsystem input, 

output selection, which are linked to the given interconnection rule. 
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3.7.4. Model Expansion Problems 

Measurement and actuation of a process is closely linked to modelling of the 

process. In fact, defining input test signals and selecting appropriate measurements is an 

integral part of the identification, modelling exercise. Defining appropriate input, output 

schemes, as well as excitation signals for model identification, or additional inputs, outputs, 

which may be used for reconstructing unmeasured internal variables, lead to an 

enhancement of the existing model. These problems are of the opposite nature to those 

described before, where progenitor model information was used as the starting point of 

MOP, MPP and MCP investigations. By Model Expansion Problem (MOP), we mean any 

problem where by additional actuation, measurement we aim at enhancing the properties of 

a given model, or reconstruct unmeasured internal variables. Question related to the nature 

of test signals, or properties of the measured signals are also important here, on top of more 

general questions related to the structure of the I/O scheme; the latter gives a distinct signal 

processing flavour to MEP. Some distinct problem areas are: 

(a) Additional Measurements for Estimation of Variables: Frequently in process 

control some important variables are not available for measurement. Secondary 

measurements have to be selected and used in conjunction with estimations to infer 

the value of unmeasurable variables. The proper selection of secondary measurements 

is a task of paramount importance for the synthesis of control schemes. The various 

aspects for the problem are discussed within the area of state estimation 
(deterministic, of stochastic); this area is well developed and a good account may be 

found in [Astrom, 1], [Shigley, 1]. 

(b) Input, Output schemes for System Identification: The selection of input test signals 

and output measurements is an integral part of the setting up of model identification 

experiments. In fact, the identified model is always a function of the way the system is 

excited and observed, i. e., of the way the system is embedded in its experimental 

environment. Most of the work so far has concentrated on SISO identification 

techniques and on the effect of test signal characteristics on the identification aspects- 

of the model [Eykh., 1]. The study of effect of location of the group of excitation 

signals and corresponding group of extracted measurements on the identification 

problem has not been properly examined so far and its proper study is long overdue. 
Issues such as how and whether additional signals and extracted measurements may 
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enhance the scope and accuracy of identifiable models are important. Within the same 

category we may include methods for Fault Detection and Fault Isolation (FDI) 

referred to as functionally-redundant schemes [Patton et al, 1], which are based on the 

design and optimal placement of sensor systems for FDI purposes. 

3.8. CONTROL THEORY AND DESIGN REQUIREMENTS 

Control Theory (CT) is the backbone of Control Systems Design (CSD) since it 

provides the conceptual framework (concepts and tools) as well as the algorithms on which 

CSD philosophies strategies and techniques are based. CT and CSD are well developed 

especially in the context of linear systems, however, the development of CT has been almost 

entirely based on the assumption that the system model is given and fixed. There are few 

examples, where the fixed structure of the model is disputed, such as, the zero assignment 

problem (selection of output matrix, or squaring down compensator with zero assignment 

criteria) [Kouv. & MacF., 1], [Rosen. & Power, 1], [Karc. & Gian., 1]. Despite the fact that 

the formation of structure has not been properly addressed within CT, the basic concepts, 

tools and techniques needed for GI originate within CT. In fact, the need for development of 

GI, defines new tasks, or emphasises the role of existing areas of CT. These are: 

(i) Control Quality Criteria: Characterisation of shapes, or values of Property 

Indicators (PI) [Maciej., 1] and System Invariants (SI) [Kailath, 1], which may ease, 

or make difficult the Control Synthesis Design Problem. Integral parts of this task are: 

(a) Establishment of links between the limits in compensation of the various PIs and the 

relevant SIs. 

(b) Further development of the solvability conditions of control synthesis problems, in 

terms of SIs and PIs. 

The above problems are expected to lead to a classification of desirable or 

undesirable values of SIs and PIs (parameterisation issues) and are essential inputs for the 

following task. 

(ii) Structure Synthesis Problems: Development of a methodology for shaping the 

instrumentation maps q, h with control based criteria. Crucial aspects of this task are: 
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(a) Understanding the mechanisms of formation of values of PIs and SIs as functions of 

the model parameters. 

(b) Derivation of techniques for designing of q, h maps such that we avoid the formation 

of undesirable properties in the model and if possible we assign desirable model 

characteristics. 

Clearly, such techniques should operate within the constraints, specifications and 

traditional instrumentation practices. The task in (ii b) is rather new for CT and arises mainly 

from the new role of CT as an intervention tool in GI. The tasks (i a), (i b), (ii a) are 

traditional CT task and a lot of results may be found in the Control literature, but not always 

in a suitable and accessible form. The area of work described in (i a) is still in its early stages 

of development. CT is the body of concepts, tools and techniques, which deals with the 

qualitative, quantitative properties of a system model and the methods for solving a variety of 

control problems. The nature of CT, clearly depends on the type of model, which is used to 

describe the system. Linear System Theory is the most developed and thus the first effort to 

develop GI has to be based on it. Issues related to model uncertainty, are integral parts of the 

overall study and have to be addressed also within the same framework. 

3.9. CONCLUSIONS 

The results from the applications area of process systems have provided the 

motivation for the definition of a number of important system and control theory problems 

which are generic and thus independent from the given application area. The emphasis here is 

on the system theoretic aspects of Global Instrumentation. In the following chapters we 

consider a number of generic Systems and Control problems, which have been specified in 

this chapter. The role of Control Theory is crucial in the study of generalised systems design 

problems, which will be considered, the following chapter provides a basis for such studies by 

reviewing the fundamentals of Control Theory, which will be used as the enabling instrument 

in these challenging tasks. 
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Chapter 4 

SYSTEM PROPERTIES, PROPERTY INDICATORS AND SYSTEM 

INVARIANTS: THE BACKBONE OF THE STRUCTURAL APPROACH TO 

INTEGRATED SYSTEM DESIGN 

4.1. INTRODUCTION 

The problem of addressing the design of all fundamental stages of large 

engineering processes, such as the chemical processes, is multidisciplinary and has a clear 

complex nature. Complexity is a consequence of the multidisciplinarity, the large dimension 

of processes, the cascade-evolutionary nature of the design process, the early-late design 

evolution of requirements, the uncertainty due to not well clearly specified goals, model 

uncertainty and uncertainty in the design environment (disturbances). The dominant trend in 

the development of methodology and approaches for integrated design is to specialise the 

study within a specific discipline and rely on the particulars of the sector and the process 
dependent heuristics in answering some of the fundamental challenging questions. The 

essence of the work in this thesis is to demonstrate that a systems and control theory based 

framework has a significant role to play in the development of a conceptual and design 

framework for tackling problems of overall systems design. This chapter aims at examining 
the fundamentals of the systems theory based framework, and thus underpins the 
developments in the following chapters. The following review is based on the results of the 
SESDIP project ([Karc., 3], [Kart., 4], [Karc., 7]). 

Control Theory, is the backbone of Control Systems Design and involves: 

i. Study of systems properties 
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ii. Classification of systems 

iii. Characterisation of solvability conditions of control problems 

iv. Synthesis methods for control problems 

The above four aspects are central to the development of design strategies and 

techniques, since they provide the tools for analysis and development of compensation 

techniques. Control Theory is model dependent and the richest part of it is that dealing with 

linear, time invariant, finite dimensional systems. Such simple models seem to be 

appropriate for the Early Process Design (EPD) environment, where there is neither the 

scope, nor the possibility for detailed modelling. In the final design stage (control systems 

design) more elaborate models, taking into account effects of nonlinearities, delays etc., 

have to be used. 

The central theme in every science is the classification of objects, which are under 

study. Control Theory studies the system models and the classification of systems into 

various families is achieved using a variety of criteria. It is the aim of this chapter to 

examine the criteria that allow such a classification. The key concepts are those of property 

indicators and system invariants. Property indicators express the state, the value of a certain 

system property, which, however, may change under compensation. System invariants on 

the other hand are functions, defined on the model, which remain the same under certain 

types of transformations; thus, they characterise- not only a single model but a whole family 

(equivalence class). It is because of the latter property that invariants emerge as constraints 

in the shaping of property indicators under compensation. 

The problem of classification, parameterisation of system models according to 

system invariants may seem to be of academic interest only. However, invariants express 

the system's potential for achieving certain type of performance and thus, if we are aiming 

at selecting systems structures with "good" potential for control and operability, it is 

essential to understand their role in control design (relationships to property indicators), as 

well as the mechanisms of their formation during EPD and in particular global 
instrumentation (GI). The classification of system models to those with "good" (desirable) 

and those with "bad" (undesirable) control characteristics is an ongoing research topic in 

Control Theory, far from the stage of full development, even for simple models. The study 

of mechanisms of formation of certain control characteristics is a topic which has been 

partially addressed before in [Rosen. & Power, 1], [Kouv. & MacF., 1] [Karc. & Gian., 1] 

and it is a major research area that requires special attention. Our aim here is to examine 
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systematically the most relevant of the background theory linked to the structural 

methodology that is used in this thesis and thus provide the means for their transformation 

as intervention tools in both Control Design and development of methodologies for Global 

Instrumentation. The work here builds upon the results of the ESPRIT project SESDIP 

[Karc., 7]. The chapter is structured as follows: In section 2, a rather general definition and 

classification of system properties, property indicators and system invariants is given. The 

different system properties and indicators are examined in section 3, whereas system 

invariants are discussed in section 4. Finally, in section 5, a first evaluation of the different 

concepts and tools, as far as their relevance to GI and control systems design is presented. 

4.2. SYSTEM PROPERTIES, PROPERTY INDICATORS AND INVARIANTS: 

GENERAL ISSUES 

4.2.1. System Properties and Property Indicators: Definitions and Classification 

In this section we introduce the notions of system properties, property indicators 

and systems invariants in more precise mathematical terms and on a given family of models 

. 
Nt, which are not made precise in the first instance. The motivation behind this is to provide 

a framework for discussion of such concepts in an environment of variable nature and 

variable complexity models, such as those emerging in both integrated design and global 

process operations. Let � t, be the family of system models (internal or external): At will be 

referred to as the model set. By a we shall denote the set of all possible attributes 

(characteristics), that may be associated with every model Me At, and shall be referred to as 

the model attributes set. We denote by :Ba general set with elements, numbers, graphical 

statements, criteria etc., called the criteria set. 

Definition (4.1): A system property is a function p: At-* a. If p(M) is the image of At 

under p, then a p-property test is a function g: P(Al) -+ 53 and the composition fX -* J3 

defined by f0gop will be called a p-property indicator. 

0 
We may illustrate diagrammatically the above definition as shown in Figure (4.1). In 

simple terms, a property indicator is a function defined on the system model and whose 

values characterise the property. Depending on whether the model is internal, or external, 
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the property will be referred to as internal or external respectively. If the attribute associated 

with the property expresses a qualitative property of dynamic behaviour of the system, 

which may be defined on a general family of models, then it will be called qualitative 

(examples of such properties are stability, controllability, existence of periodic motions 

etc. ). The criteria set for such properties are of a binary nature (the model has, or does not 

have the property). If the attribute associated with the property has a quantitative character, 

that is numerical values are involved in its definition then it will be called quantitative. For 

such properties the criteria set is not of a binary nature but it may contain a range of values, 

which express a "degree" of possessness of the property by the model. 

A further classification of properties is in terms of the notions of genericity and 

robustness. If At is a family of models characterised by a common fixed structure (for 

instance a given linear graph), but with otherwise arbitrary parameters, then with every 

model ME. 't we may associate a parameter vector a(M) in the parameter space RN. A 

property is called generic, if it holds true for almost all Me K; otherwise, the subset . 
M' of 

At for which the property does not hold true have parameter vectors a(M) which belong to a 

proper variety V of the parameter space RN, ([Wonham, 1], [Hirsch & Smale, 1]. The 

property that is valid on a proper variety of RN is called non generic. For the set of nxn real 
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matrices, the property of having distinct eigenvalues is generic, whereas having repeated 

eigenvalues is a nongeneric property. A property that holds true not only for an MC=M, but 

for some neighbourhood 2(M) of models around At is called well posed. If the 

neighbourhood of models 2(M) is large, the property is called robust, otherwise nonrobust. 

Robustness, is thus connected to the size of permitted perturbations on the nominal model 

parameters before the property, that holds true on the nominal model, is violated. A generic 

property may also be referred to as structural. A property depending on the internal 

mechanism model will be called prime and if it depends on the interaction of internal 

mechanism and environment it will be called composite (internal stability is a simple 

property, but controllability is a composite property). A property indicator that is used for 

assessing a single property will be called simple; if many different properties are assessed 

through the same indicator, then it will be called multiple. If a property indicator is an 

explicit, implicit function of the model parameters, then the indicator will be called explicit, 

implicit respectively (the controllability matrix is an explicit indicator for controllability, the 

Nyquist diagrams are implicit indicators for closed-loop stability). For a given property we 

may use two alternative indicators; such indicators used for evaluation of the same property 

are called equivalent (the controllability matrix and the controllability pencils are equivalent 

indicators, as far as assessing controllability). The above classification of properties and 

indicators is important, since it is related to the problem of shaping models in EPD. Generic 

properties are important in an environment of "ill defined" EPD models. Explicit indicators 

are easier to shape in EPD, than implicit indicators. Prime indicators are shaped in the 

Process synthesis stage, whereas composite indicators (properties) are the result of 

interaction of process synthesis and instrumentation stages. Internal properties, (indicators) 

have a more explicit relationship to model parameters, than external properties (indicators). 

4.2.2. System Invariants: Definitions and Classification 

The compensation theory of linear systems aims at producing new systems with 

desirable set of properties. Both representation and compensation theory of linear systems, 

deals with families of models, which are interrelated by certain types of transformations 

(representation, or compensator type). The classification of properties of such families is 

thus essential in understanding what is the backbone of system (essential structure that is not 

affected by the transformations) and what are the limitations of given compensation scheme, 
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which is deployed to alter certain undesirable properties of a system. The classification of 

families of models for a given system is intimately related to the notions of equivalence, 

invariants and canonical forms. Some general definitions and classification issues for 

invariants are examined next. Let . 
dti be a family of linear models, E an equivalence relation 

defined on At, E(M) the equivalence class of ME �Vt and let At /E be quotient set or orbit 

(set of all equivalence classes). We may define [MacL. & Bir., 1]: 

Definition (4.2): Let 
. 
Nt be a model family, 9a set, E an equivalence relation defined on X. 

(i) A function f: At-->. 7 is called an invariant of E, when M1EM2 implies f(M1) = f(M2). 

f is called a complete invariant for E, when f(M1) = f(M2) implies M1EM2. 

(ii) A set of invariants {f;: f;: M --+ Ii, i=1,2,..., k} is a complete set of E on � t, if the map 
k 

f defined by: f: �Yt -> x 9; :M --* f (M) 0 {fl (M),.., fk (M)} is a complete invariant 

for E on . 
The complete set of invariants is called independent, if there is no subset, 

which is also complete. 

0 
Note that a complete invariant defines an one-to-one correspondence between 

E(. M) equivalence classes and image of f in 3. The notion of independence is essential in the 

minimal parameterisation of E(�YE) by invariants. An important issue for system 

identification and control analysis is that of canonical form for E(. Nt). If f: At --* x 3; is a i=1 

complete and independent invariant for E on tilt, by specialising the invariant f such that its 

image C is in At, we define a canonical element, or a canonical form. 

Definition (4.3): A set of canonical forms, e, for C equivalence an . M,, is a subset of A such 

that for every ME 
. 
Nt there exists a unique CeC for which MEC. 

Canonical forms are uniquely defined elements of At, which have the simplest 

possible structure (least number of parameters) and which describe the invariant in the 
language of the model (in terms of a simple model). Canonical forms, are often used as 
analysis tools and describe the simplest possible type of model that may be defined under 
the set of transformations defining the equivalence relation. The set of canonical forms 
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provides a system of canonical distinct representatives of 4L / E. The diagram in Fig. (4.2) 

illustrates the notion of canonical form. 

Figure (4.2): Canonical forms 

The classification of invariants to internal / external, simple / composite, explicit / 

implicit is the same to that given for properties. An invariant will be called global, if it takes 

nontrivial values for all Me At, otherwise, if it takes nontrivial values only on a proper 

variety of the model parameter space RN, it will be called local. The value of a global 

invariant will be called generic, if it is constant for almost all ME At. That is the models for 

which the value may differ from the constant is a proper variety of RN; such values will be 

called non generic. neric. An invariant of representation transformations will be referred to as a 

representation invariant, whereas those of compensation transformations will be called a 

compensation invariant. An invariant will be called strong, or weak, if it is preserved, or not 

preserved under more general types of transformation. The above terminology will be 

clarified with the concrete examples that will be presented in the following sections. 

4.3. SYSTEM PROPERTIES AND PROPERTY INDICATORS 

4.3.1. Introduction 

In this section we shall examine some of the fundamental properties of a linear system 

model (internal, or external) which are essential in understanding the dynamic behaviour 

and performance characteristics of control systems. 
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4.3.2. Fundamental concepts and properties for state space descriptions 

We consider a linear system described by the state-space or by the transfer function 

model: 

1X_=Ax+Bu, AERýxn, BERM, p(B) =p 
S(A, B, C, D) =y= Cx+Du, CE Rmxl, DE RrXP 

(4.1) 

G(s) = C(sI - A)-' B+D=N, (s)D, (s)-' = D, (Si' N, (s) (4.2) 

where N, (s), Nl (s) E RmXP [s], Dr (s) E R' "[s], DI (s) E R' [s] characterise right, left 

coprime MFDs and coprimeness assumption implies that the matrices: 

rT 
(S) = Drrs) ,7 

(s) = LNr (s), D¬ (s)] (4.3) 

have no zeros (full rank for all s r= e). By a state trajectory we shall mean the solution of 

(la) obtained for a given pair of initial condition x(O) and input u(t); the resulting output y(t) 

(defined by (4.1b)) will be referred to as output trajectory. The basic concepts of poles and 

zeros are considered first. 

(a) Eigenvalues, Poles and Eigenframes 

Classical control design techniques are based on the concepts of poles and zeros of 

a rational function. Dynamically, poles are associated with "resonance" phenomena 

(explosion of the gain) and zeros with "antiresonance" phenomena (vanishing of the gain). 

In this sense, they are dual concepts and this type of duality carries over to their dynamic 

characterisation (in terms of trajectories having certain properties) 

Definition (4.41: The set of eigenvalues of the matrix A (roots of the characteristic 

polynomial) will be called the system internal poles, or s stem eigenvalues, whereas the 

roots of the pole polynomial of G(s), defined by the Smith-Macmillan form of G(s), will be 

called external poles, or simply system poles. 

0 
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With every eigenvalue ? of A, we have two eigenvalue-eigenvector problems: 

Au =Au, v`A= Zv`, v' u =I (4.4) 

where u is a right - and vt a left-ei aenvector. The triple (A, u, v`) is called a system mode. 

If q5(A) is the set of distinct eigenvalues then the structure of Ae ¢(A) is defined by 

Segre characteristic, S(ß, )0{vii E q} that is the dimensions of X-Jordan blocks in the Jordan 

form of A. Alternatively, p(2) is defined by the set of degrees of the (s4)" type ed of the 

Smith form of sI� -A, 
E 

v, Ap is called the algebraic multiplicity and q the geometric 

multiplicity of X. System poles are defined through the Smith McMillan form of G(s) and 

have a structure which is defined similarly by the ed associated with a given pole X (these 

are defined by factorising the elementary pole polynomials p, (s) ). The poles may be 

computed independently from the Smith McMillan form as described below: 

Result (4.1) IMacF. & Karc., 11: The pole polynomial p(s) and G(s) may be computed as 

the least common multiple, of all order minors of G(s). 

0 
Result (4.2) [Kailath, 11: The pole polynomial p(s) = ID, (s)I = ID, (s)I, where D1(s), Di (s) 

are right, left denominators to coprime MFDs. 

D 

If .JS, 
JG are the sets of internal, external poles, then .I Gc . 

1$ and for a generic 

system JG=JS. Internal poles are defined entirely by the internal mechanism map A, 

whereas external poles are generally a subset of the internal poles. The instrumentation 

maps acts as "selectors" of the subset. This issue is connected to controllability and 

observability of the system. If Sm = ö[p(s)] (a(. ) denotes degree of polynomials) is the 

McMillan degree of G(s), then 5,,, defines the minimal dimension of state space models 

which have G(s) as transfer function. The eigenvalues with their corresponding structure (as 

well as the poles) are primary response indicators. The role of eigenframes is important in 

sensitivity analysis [Wilk., 1] and thus plays a key role in the design of robust state space 
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schemes. For physical internal variables, the eigenframe is also an indicator for transient 

behaviour. The notion of normal eigenframe seems to be crucial for the latter properties. 

Result (4.3) [Gant., 11: QE e" is normal, iff Q has a complete orthonormal system of 

eigenvectors, i. e. the eigenvalue - eigenvector decomposition of Q is Q=WA W` 
,A= 

diag{,, 1,.., Xm} and Wa unitary matrix. 

0 

Result (4.4) [Wilk., 11: If Q is normal with Xj eigenvalues and Q(I+0) is a perturbed matrix 

with % eigenvalues, then the % eigenvalues are in discs around X; 
, which are defined by: 

I'-2, I<-IA, I"IIrII2 s IIQII2"IIiII2 (4.5) 

U 
The insensitivity of spectrum of a normal matrix is relevant for both state space 

analysis and frequency domain method (Nyquist theory). Although normal matrices have 

nice spectral properties, they constitute a relatively small set among general matrices. For 

each normal matrix, there is a whole neighbourhood of approximately normal matrices. 

Measuring the departure from normality of a matrix, or the skewness of eigenframes is also 

important, in the context of frequency response indicators. 

Remark (4.1): A measure of skewness of the eigenframe of A provides an indicator of 

sensitivity of eigenvalues to perturbations of the elements of A. If the eigenframe is close to 

an orthogonal frame the eigenvalues are insensitive to parameter variations. It should be 

also stressed that the concept of normality makes sense in physical variable models on 

which constraints on the variables may be defined, and variations of the model parameters 

have a physical origin. 

0 
Eigenvalues and poles may be dynamically characterised by zero input rectilinear 

motions problems [MacF. & Karc., 1]. That is for a zero input and appropriate initial 

condition, the state and output are rectilinear trajectories (simple exponential), where the 
frequency is defined by the eigenvalue and the initial condition is defined by the 

corresponding eigenvector. This problem is illustrated by the following diagram and has 

motivated together with the classical pole zero duality the dynamic characterisation of zeros. 
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x(0) = 

u(t) =0 y(t) =Cues` 
s_ 10 

x(t)=ue" 

Figure (3): Zero input problem 

(b) Zeros and Zero directions 

X(o) = XZ 

u(t)=uZe' y(t)=0 
S 

x(t)=x. en 

Figure (4): Zero output problem 

The study of simple rectilinear motions of the type xes`, s r= C is central in the 

understanding of propagation of more general signals. The generation of rectilinear motions 

is characterised by the following results. 

Result (4.5) IMacF. & Karc., 11: For all so E C, there exist rectilinear motions of the type 

u(t) =u e' at , x(t) =x e-1-1, y(t) = yes-' t >_ 0, iff: 

-B x(s0I - A)xo = Buo 
4.6 

1s01-A ]) 

-C Duyy= Cxa + Duo 

U 

The first of conditions (4.6) defines a generalised eigenvalue-eigenvector problem 

for (so, xa, uo)and (so, xo) are potential closed-loop eigenvalue, eigenvectors under a state 

feedback satisfying Lxo = u.. Result (4.5) describes the "Simple Frequency Transmission 

Problem" and a special case of this is the "Transmission Blocking Problem" defined below. 

Result 4.61 (MacF. & Karc.. 11: Let m_p and assume p (G(s)) = p. Necessary and 

sufficient condition for the block of the rectilinear transmission of a frequency zE C at the 

system output (y(t)= 0, all tz 0) is that 

1zl-A -B xx Z= 0a P(z) Z= 0 (4.7) 
-C -D u2 

lu: ] 

B 
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Definition (4.5): The set of frequencies zE C, Zp, for which P(z) loses rank below its normal 

rank, are defined as internal transmission zeros and the vectors xZ, u as state, input-zero 

directions. 

U 

The set of zeros may be defined as the roots of the invariant factors of the Smith 

form of P(s). A simpler method for computing the zeros is: 

Result (4.7) W arc. & Kouv., 11: If D=O, then the set of zeros is defined as the finite 

eigenvalues of the zero pencil Z(s) = sNM-NAM where N, M are left, right annihilators of 

B, C matrices. 

U 
Remark (4.2): The zeros are byproducts of the selection of actuators and sensors (selection 

of B and C matrices) and they are formed at the instrumentation stage of the process design. 

They express the overall interaction of the A, B, C matrices. 

0 
Definition (4.6) [Rosen., 11: 'The set of zeros of the elementary zero, polynomials Ei(s) of 

the Smith-McMillan form of G(s), Zg are defined as the external transmission zeros and z(s) 

= IIE; (s) is defined as the external zero polynomial. 

U 

Result (4.8) [MacF. & Kare., 11: Let p(s) be the pole polynomial of G(s) (computed as in 

Result (4.1). The zero polynomial z(s) may be computed as the greatest common divisor of 

the numerators of all maximal order minors of G(s), which have been previously adjusted to 

have p(s) as common denominator. 

U 

Result (4.9) [Kailath, 11: If N1(s), Ni(s) are any right, left numerators of comprime MFDs 

of G(s), then the external transmission zeros of G(s) are the same as the zeros of N1(s), 

N1 (s) (defined by the corresponding Smith forms). 

-0 
The set of external transmission zeros ZG is a subset of the internal zeros Z. p and for 

a generic system the two sets coincide. 
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(c) Zeros at infinity 

A general linear system (not necessarily proper) may have poles and zeros at oo, 

which indicate that elements of G(s) tend to oo, and thus G(oo) loses rank. For proper 

systems (which are of interest here) we have no poles at infinity, but possibly zeros at 

infinity. According to the system description which is used we may have different 

definitions for zeros at infinity. Dynamically, infinite zeros are associated with the blocking 

of impulsive inputs. A number of algebraic definitions are given below. 

Definition (4.7) Ward. et al, 11, [Dion & Com., fl: If diag {s h1: q, > 0} is the essential 

part of the Smith McMillan form of s=oo of a proper G(s), then the numbers qi, q; >0 are 

defined as the orders of external infinite zeros, or as the orders of transfer function infinite 

zeros. 

Definition (4.8) Ware. & Hayt., 11, [Mal., 11: For a state space model with associated 

system matrix pencil P(s), and if strictly proper, with a zero pencil Z(s), we define as: 

(i) Divisors at infinity, the set of i-ed of P(s) and as restricted divisors at infinity, the set 

of i-ed of Z(s). 

(ii) Orders of internal infinite zeros, the orders of infinite zeros of the Smith-McMillan 

form at o0 of P(s). 

0 
The relationships between the different definitions of zeros at infinity is discussed 

in [Karc. & Hayt., 1] and this issue will be re-examined in the section on invariants. The 

most frequently used definition is that based on transfer function. An alternative definition 

of infinite zeros has emerged in the Root-Locus Analysis [Kouv. & Shaked, 1]. This is 

related to the complex analysis treatment of the problem of infinite zeros and is discussed in 

[Smith, 1]. Generically the two sets coincide. 

(d) Internal, External and Total Stability 

For linear time invariant systems the notions of stability, which are more frequently 

used are defined below (i. e. [Chen, 1]). We consider stability of equilibrium points, whereas 
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stability of motion is always reduced to the previous case. Note that the origin (x=0) is 

always an equilibrium point for S(A, B, C, D) models. 

Definition (4.9): The state space model S(A, B, C, D) will be called: 

(i) Internally stable in the sense of Lyapunov (LIS), if for any initial x(O) the zero input 

response (free motion, u(t)=O) remains bounded for all t>_0. 

(ii) Asymptotically internally stable, if for any initial state x(0) the zero input response 

remains bounded for all t >_ 0 and tends to zero as t->co . 
This property will be 

referred to in short as internal stability (IS). 

(iii) Bounded Input Bounded Output (BIBO) stable, if for any bounded input the zero state 

output response (x(O)=O) is bounded. 

(iv) Totally stable (TS) if for any initial state x(O) and any bounded input u(t), the output, 

as well as all state variables are bounded. 

0 
The notion of BIBO stability refers to the transfer function description and may 

also be called as external stability. A number of criteria for the above properties, based on 

eigenvalues and poles are summarised below [Chen, 1]. 

Result (4.10): Consider the system S(A, B, C, D) with G(s) transfer function and let 

(A, = a, +jü),, isn}, {pj = ä-j+jioj, jsv} be the sets of eigenvalues, poles 

respectively. The system is: 

(i) Lyapunov internally stable, iff Q, <_ 0 for all iEn, and those with Q, =0 have a 

simple structure (algebraic multiplicity is equal to the geometric multiplicity). 

(ii) Asymptotically internally stable, iff a, > 0, all i en. 

(iii) BIBO stable, iff Qj <0 for all iEv. 

(iv) Totally stable, if it is Lyapunov internally stable and BIBO stable. 

0 
Note that IS implies BIBO-S and thus TS. 131130 stability does not always imply 

IS, since transfer function and state space are not always equivalent. If the two 
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representations are equivalent (when system is both controllable and observable), then 

BIBO-stability is equivalent to IS and thus TS. 

Remark (4.3): Eigenvalues and poles are indicators of stability. Equivalent tests for 

stability, without computing the eigenvalues, poles are defined on the characteristic, pole 

polynomial by the Routh-Hurwitz conditions and equivalent tests. 

U 

(e) Controllability, Observability 

Some of the most fundamental concepts characterising the coupling of internal 

mechanism to its environment are those of controllability and observability [Kalman, 1]. 

These concepts dominate control theory and they are defined below. 

Definition (4.10) [Kalman, 11: Consider the state space mode S(A, B, C, D) and let 1% be its 

state space (RN). Then the system is called: 

(i) State controllable, or simple controllable, if there exists a finite time 15 O, such that for 

initial state x(0) eX and any xi EX, there exists an input (u(t)), defined on [0, T] that 

'will transfer x(O) to xl at time T ((T) =2i1). Otherwise, is called uncontrollable. 

(ii) State observable, or simple observable, if there exists a finite time T>O, such that for 

initial state x(0), the knowledge of the input u(t) and output over the time interval [0, 

T] suffices to determine the state x(0); otherwise, the system is called unobservable. 

(iii) Output controllable, if for any output vector yl there exists 'I'>0 and an input u(t) 
defined over [0, T] that transfers the output y(0)=0 to y(T)=y1. Furthermore, if it is 

output controllable and the output can be steered over any interval of time on a 

preassigned curve, it will be called output function controllable. 

0 

Result (4.11) (Controllability, Observabili criteria): The state space model S(A, B, C, D) 

with n, m, p number of states, outputs, inputs is: 

(a) State controllable, iff either of the following equivalent conditions hold true: 

(i) All rows of eA' B are linearly independent on [0 00] over CN. 

(ii) All rows of (sI-A)'1 B are linearly independent over CN. 
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(iii) The controllability Grammian W,, & LT 
e"BB`eA'`dr is nonsingular for any T '>O. 

(iv) The nx(np) controllability matrix QrA [B, AB,..., A""1 B] has rank n. 

(v) The controllability pencil, Pa(s) E [sI-A, -B] has rank n for all sEC, or 

equivalently it has no f-ed. 

(vi) The restricted controllability pencil, Rc(s) 0 sN-NA (N is a left annihilator of B) 

has rank n for all s c= C, or equivalently, it has no f-ed. 

(b) State observable, iff either of the following equivalent conditions hold true: 

(i) All columns of CeAt are linearly independent on [0 0o] over CN. 

(ii) All columns of C(sI-A)'1 are linearly independent over CN. 

T 

(iii) The observability Grammian Wo 0f eAtsC`Ce 4Tdr is nonsingular for any T>O. 

0 

(iv) The (nm)xn observability matrix, Qo = [Ct, At Ct,, (At)"'1 Ct]t has rank n. 

(v) The observability pencil, Po(s)= [sI-At, -Ct]t has rank n for all sr=C, or 

equivalently, it has no f-ed. 

(vi) The restricted observability pencil, R0(s)=sM-AM (M is a right annihilator of 

C), has rank n for all seC, or equivalently, it has no f-ed. 

(c) Output controllable, iff either of the equivalent conditions hold true: 

(i) All rows of G(s) are linearly independent over C. 

(ii) The matrix Q0 = [D, CB, CAB,..., CA ' B] has rank m. 

(d) Output function controllable, iff rank of G(s) is equal to m, over R(s). 

0 
The above tests define equivalent indicators for the controllability, observability 

properties and demonstrate that both properties express the interaction of internal 

mechanism with the environment represented by the inputs, outputs. Thus controllability, 

observability properties are shaped at the instrumentation stage of the process design. 

Remark (4.4): A generic system is always state controllable and observable. Thus, if all 

parameters in S(A, B, C, D) with fixed dimensions, are free the cases of uncontrollability, 

unobservability are nongeneric. Note however, that because of the process interconnections, 
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we frequently deal with S(A, B, C, D) families with a fixed underlined graph and it is then the 

graph that determines the controllability, observability properties. These graph based 

notions of controllability, observability are referred to as "structural" and are essential in the 

selection stage of process input, outputs. These issues are also examined elsewhere in this 

thesis. 

U 

Remark (4.5): Controllability and observability tests are based on the notions of rank of 

matrices, which generically is full. The degree of nonsingularity, singularity, measured by 

the smallest singular value, or the condition number is important indicators of "how well" 

the system is controllable, observable. 

0 
The questions of controllability and observability may be equivalently interpreted 

as questions of controlling, or observing the system eigenvalues. Using the Jordan 

decomposition of state equations (A is in Jordan canonical form) alternative tests for 

controllability, observability may be stated and they may be found, for example, in [Chen, 

1]. Some important implications of these tests are: 

Result (4.12): Let q be the maximal geometric multiplicity of the eigenvalues of A and let E 

be the family of n, m, p fixed dimension systems, having the same q, but with otherwise 

arbitrary parameters. 

(i) Necessary condition for every S(A, B, C, D) eE to the controllable and observable is 

that p >_ q and m ; ->q respectively. 

(ii) Every system in E for which p<q, m<q is uncontrollable, unobservable respectively. 

0 
Note that the value of q is frequently a property that may be inferred from the 

structure (graph) of the process and the nature of subprocesses and thus q may serve as a 

prime indicator on the necessary minimum number of inputs and outputs. The concepts of 

controllability, observability are essential in the establishment of the relationships between 

internal and external descriptions. This is illustrated by the following result [Kalman, 1]. 
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Result (4.13): For the system S(A, B, C, D), there is a coordinate transformation x'=Ux such 

that the corresponding state space description S'(A', B', C', D') has the form known as 

Kalman decomposition i. e. 

X 
co A' A' A' A' lz is la x ca B' co ro 

zt 0 A' A23 0 X B 
Co - Co + Co 

'C zo'0] x' + Du (4.8) u, y= [0, C' 
co t 00 Ag 0 t ' 0 , z . o x 

f-- 000 A' 0 z 
Co x Co 

where x'Cj, x'Co , x'- , x'_ý are controllable-unobservable, controllable-observable, 

uncontrollable-observable and uncontrollable-unobservable states. Furthermore, 

S(A, B, C, D) and S'(A', B', C', D') have the same transfer function 

G(s) = Cco(sI-A'co)-'B, 
o+D. 

El 
Remark (4.6): The transfer function and the state space descriptions are completely 

equivalent, iff the system is both controllable and observable. The McMillan degree SM(G) 

defines the dimension of the observable and controllable subsystems of any realisation 

(S, (A, B, C, D)) model of G(s). The transfer function represents only the controllable and 

observable subsystem, but not in general the whole S(A, B, C, D) system. 

U 
Definition (4.11): The system S(A, B, C, D) will be called: 

(i) Stabilisable, if the unstable eigenspace of A is contained in the controllable subspace 

of the system. 

(ii) Detectable, if the unobservable subspace of the system is contained in the stable 

eigenspace A. 

0 
Result (4.14): The systems S(A, B, C, D) is: 

(i) Stabilisable, iff its uncontrollable eigenvalues (in the modal sense) are stable. 
(ii) Detectable, iff its unobservable eigenvalues (in the modal sense) are stable. 

0 
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If the system is both stabilisable and detectable, then the transfer function may be 

used for feedback design, but not otherwise. The uncontrollable, unobservable, 

uncontrollable and unobservable eigenvalues are also referred to as input - output, input- 

output decouplin zeros eros (idz, odz, i-odz) [Rosen., 1] and the corresponding sets, including 

multiplicities, will be denoted by ZID, ZOD, ZIOD respectively. These sets are computed by the 

following property [Rosen., 1], [Karc. & MacB., 1]. 

Result (4.15): (i) 

(i) ZID is defined by the roots of the f-ed of Pc(s) = [sI-A, -B] , sN-NA. 

(ii) ZOD is defined by the roots of f-ed of Po(s)= [sI-A`-C`]t, or equivalently, Ro(s)=sM- 

AM. 

(iii) ZIIOD = ZID n ZOD" 

U 

Remark (4.7): The system is stabilizable and detectable iff the f-ed of Pa(s) (or Re(s)) and 

Po(s) (or R0(s)) are stable. 

0 

Output controllability is only concerned with getting to a y(T) = y; final value, but 

nothing in the definition states that the output will stay at the y(t) = yl value, or track a 

specified function c(t). Output function controllability addresses this property, but the 

required u(t) might contain impulses. Output function controllability with a smooth input 

u(t) will be referred to as smooth output controllability. 

Result (4.16) [Skel., 11: For the system S(A, B, C, D) we have: 

(i) The system cannot smoothly track an output function c(t) with more than n-1 

independent derivatives. 

(ii) The system can track smoothly the vector function c(t) up to its first r: 5n-1 

derivatives, if c(t) is sufficiently smooth to have r derivatives and the matrix M, has 

rank (r+1)m, where 
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D0 """ 00 

CB D """ 00 

Mr = (4.9) 

CA'-1B CA'-ZB "" CB D 

0 

Note that for strictly proper system (D=0) the above conditions can never be 

satisfied. In this case c(t) cannot be matched exactly, but if p(M, )= rm, then tracking occurs 

with a constant offset (y(t) - c(t) = constant). The above conditions reveal that M, is an 

open-loop tracking indicator, that tracking properties are functions of n and they are linked 

with the structure at infinity of transfer functions [Karc., & Hayt., 1]. A similar class of 

problems deals with disturbances. A typical internal type disturbance model is obtained by 

expanding S(A, B, C, D) as: 

x= Ax+Bu+Ew 
S(A, B, E, C, D): ---- (4.10) 

y=Cu+Du 

where w(=-Rd, EER"d are the disturbance-vector and disturbance matrix respectively (the 

rest of dimensions are as before). By output disturbability we shall mean the same as in 

Definition (4.10) part (iii), except that the "input" w(t) is considered now to be a 

"disturbance". This allows the definition of the following property: The system totally 

rejects the disturbance, or that we have complete disturbance rejection, if y(t) is governed by 

its undisturbed response regardless of the disturbance w(t). 

Result (4.17) [Skel., 11: For an arbitrary disturbance w(t) we have complete disturbance 

rejection iff Qdi[CE, CAE,..., CA'-'E]= 0. 

0 

The open-loop tracking and complete disturbance rejection are idealised (exact) 

problems. In most of the applications we are interested in satisfying the above properties in 

the closed-loop (using feedback) and in an approximate sense. It is worth pointing out here 

that the matrix Qd may be used as a disturbance localisation indicator, in the sense that if 

IIQd112 is very small and the system is BIBO stable from w(t), then the effect of disturbance 

on the total response is small for all bounded disturbances. The controllability, observability 
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indicators Qc WC, Qo, Wo may be used for systems having "physical internal variables" as 

indicators of relative controllability and observability. For systems, however, where the 

states have no concrete physical meaning the magnitudes for neither II QII, II We II nor 

IIQOII, I1Woll have meaning in an absolute sense. We may always, however, normalise a 

controllable and observable system such that is "equally" controllable and observable in 

some sense. By defying an appropriate coordinator transformation the controllability and 

observability Grammians may become equal and diagonal, so that each state variable is 

equally controllable and observable. Such description is frequently referred to as balanced 

realisation [Moore, 1]. 

Controllability, observability are concepts essential for state feedback design. Two 

more indicators, playing a key role in state space design are the Controllability, 

Observability-Plucker matrices, P(A, B), P(A, C) [Karc. & Gian., 2] defined as follows: 

A, -B])=e;, (s)P(A, B), P(A, B): (n+1)x 
n+p 

(4.11a) 
n 

C', 
[sIB] 

= P(A, C)e (s), P(A, C): 
n+m 

x(n+l) 
-++ n 

(4.11 b) 

when e(s) = [1,2,..., s°]' and Cp(. ) denotes the p-th compound [Marcus & Minc, 1]. In terms 

of P(A, B), P(A, C), we have: 

Result (4.18) [Karc. & Gian, 21: The system is controllable, iff P(A, B) has full rank and 

observable, iff P(A, C) has full rank. 

0 

4.3.3. Singular Value and Polar decomposition of transfer function matrices 

The most important indicator of system performance in the frequency domain for 

the Control Design Configuration is provided by the singular value decomposition (SVD) 

and the polar decomposition of transfer function matrices. The linear system G(s) E R(s)mxx 

is a matrix-valued function of the complex variable s. If we evaluate G(s) at each sEC then 

the G(jco) we may define the SVD and polar decomposition as summarised below [MacF. 

& Scot, 1]. 
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The Singular Value Decomposition: Let G (j a) E Cm'", c i, 
iEr the singular values of G, 

Q, >_.. > o >_ 0,17 = diag {Qý 
,.., Q, } (r =p if m >_ p and r=m of m:: 9 p), then G is expressed as: 

G= YFU * (4.12) 

(i) If m>p: then YEC"'x", F ERPXP, 
U EC", Y*Y=Ip, U*U=Ip=UU' 

(ii) If m5p: then YE Cmxm' FE R', UE C"ýý, Y*Y = I. = YY*, U*U = I. 

The above decomposition is known as the singular value Decomposition (SVD), Y, 

U are referred to as output, input singular-vector frame matrices and Z the principal Rain 

matrix. 

U 
The Polar Decomposition: Let GOG(jw) ¬C°'xp and consider this SVD of G as in (4.12). 

Then G may be expressed as: 

G= (YEY*)(YU*) = M, (D =(YU*)(UEU*)= (DM, (4.13) 

where cD, M1, M, are referred to as Phase, Left, Right-modulus matrices, and the above as 

polar decomposition. If G is square, YU* is unitary and its characteristic decomposition is 

expressed by: 

YU *= (D = POP*, 0= diag {e'B', i =1,2,... } (4.14) 

where P is unitary and the set of angles O are defined as principle phases. 

0 

For details on those two decompositions see [MacF. & Post., 1] and references 

therein. Since G(s) is analytic, the plots of singular values are continuous functions [Hung & 

MacF., 1], which will be denoted by a, (jco) and called the principal gain functions. For the 

case m=p, the principal phases are also functions of jco, will be denoted by ©; (jc)) and 

called principal phases. The plots of a, (jco) defined the multivariable amplitude Bode 

diagrams. An important concept in analysis and design, which is related to the SVD of G(s) 
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is that of vector gain. Thus, if y(s) = G(s) u(s), s jw then one may define the vector gain of 

G(s) for input u(s) as gain: GI u" 
k(s)II2'II (s)1I2 where 11 12 denotes the standard Euclidean 

norm. If, Q(j to) , Q(j a) denote the minimal and maximal singular values of G(j co ), then: 

! Z(jw) :5 
Ilx 0)1I1k(jwIl :5 Q(jo ), for all u(jw) (4.15) 

The above property is known as Min-Max Theorem and indicates that the 

important indicator for performance are the plots of v(ja. ), Q(jw), for every w and all other 

gains are sandwiched between those two plots. - The plots 
. 
(jw), Q(jro) are called prima 

gain plots and a typical illustration is shown below. 

gain 

Co 

Figure (4.4): Typical primary gain plots 

For every s= ja 
, 

crow) defines JIG(jCo)ll 
2, the 2-norm of G(jw) and 

c(ja)) = a(jw)16(jcu) the condition number of G(jco). c(jco) is an indicator of the 

relative spread of the gain at the corresponding frequency. Principal gain decompositions, or 

the primary gain plots are performance indicators for Control Design and they provide 

specific criteria for tracking, disturbance rejection, robust stability etc. Note that the gains 

defined by the characteristic gain decomposition are special types of vector gain. Some 

interesting relationships between characteristic gain loci and principal gain, phases are 

summarised below [Post. et al, 1]. 
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Result (4.19): Let G(jco) E C"", g, (jw), iEm be the characteristic gains Q(jco), cow) the 

primary gains and 0(j w), B(j co) the minimum, maximum principal phases. Then 

(i) Q(jw): 5 g, (jw)<_ v(jw),, all i=1,..., m 

(ii) If the principal phases have a spread of less than it radians, then 

B(jw)<_ arg {g1 (jw)} <_ B(jw), all i =1,... m 

U 

Using a combination of principal gains and phases a Nyquist type indicator for 

robust stability may be developed based on ideas of gain and phase margin [Post. et al, 1]. 

Characteristic gains, despite their useful role in closed-loop stability analysis, do not always 

give an adequate description of the gain behaviour of an operator. If a transfer function is 

normal, the characteristic gains completely define the principal gains and phases. If the 

transfer function is approximately normal, then also the Nyquist diagrams may be used to 

describe the system performance. Indicators measuring the "departure from normality" are 

essential not only for assessing when Nyquist provides a good indicator for performance, 

but also for robustness of performance analysis. Such indicators express the skewness of 

vector frames and are based on the Schur Triangular Decomposition, Grammian etc. 

4.4. SYSTEM INVARIANTS 

4.4.1. Introduction 

On a given system we may apply different types of transformations, some of them 

corresponding to a change of representation and some others having a compensator, or 
feedback interpretation. The theory of system invariants is important for control theory and 
design since they describe structural characteristics, which remain unaffected under the 

transformations. Their importance for EPD is due to that for certain types of them it might 
be possible to assign desirable values by EPD decisions. Here we try to summarise the basic 

invariants and where possible indicate their significance. This section is structured as 
follows: We first discuss the effect of transformations on the fundamental system properties 

and then we discuss the theory of invariants for state space models and finally for transfer 

101 



Chanter 4 System Properties and System Invariants: The Backbone of the Structural Approach to 
Integrated System Design 

function models. The topic on system invariants and canonical forms is quite extensive. 

Here we attempt to summarise the basic aspects of the theory. 

4.4.2. System transformations and Fundamental system properties 

On a state space model S(A, B, C, D) we may apply coordinate and feedback 

transformations thus we consider the following cases: 

(a) System properties under coordinate transformations. 

(b) Systems properties under coordinate transformations and feedback. 

Coordinate transformations are of the type x=Q x' y' = Ty, La =R u', where Q, T, 

R are square nonsingular matrices. The effect of these transformations on system properties 

is summarised below. 

Result (4.20): If Q, T, R are state, output, input coordinate transformations, then: 

(i) The characteristic polynomial q (A) =JAI - Al, the eigenvalues and associated Segre 

characteristics, are invariants under all (Q, T, R) transformations. 

(ii) The controllability, observability; stabilisability, detectability, output function 

controllability are invariants under all (Q, T, R) transformations. 

(iii) The transfer function matrix and Markov parameters are invariant under all Q 

transformations. 

0 
Thus, the fundamental characteristics of the free motion, as well as stability 

properties, controllability properties may be inferred from any model obtained from 

S(A, B, C, D) and Q transformations. The eigenvectors, however, are functions of Q and their 

description changes with the changing of Q. The eigenframe is important, when we deal 

with a coordinate frame characterising physical states. Under the feedback transformations 

L, K, F expressing state, output feedback and output injection respectively, we have: 

Result (4.21): If L, K, F denote state feedback, output feedback and output injection 

matrices respectively, then: 
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(i) Controllability and stabilisability are invariant under all L, K. 

(ii) Controllability is invariant under all F, iff the system has no zeros. For any system, 

controllability is invariant under a generic F. 

(iii) If the system is stabilisable then stabilisability is invariant under all F iff the system 

has no right half plane zeros. For any stabilisable system, stabilisability is invariant 

under a generic F. 

(iv) Observability and detectability are invariants under all F, K. 

(v) Observability is invariant under all L iff the system has no zeros. For any system, 

observability is invariant under a generic L. 

(vi) If the system is detectable, then detectability is invariant under all L, iff the system has 

no right half plane zeros. For any detectable system, detectability is invariant under a 

generic L. 

9 

The presence of finite zeros implies that for certain families of output injection we 

lose controllability and for certain families of state feedback we lose observability [Shaked 

& Karc., 1]. The presence of right half plane zeros has corresponding implications to loss of 

stabilizability, detectability under certain families of output injections, output feedback 

correspondingly. More general types of transformations, which preserve the transfer 

function and certain properties of PMDs are discussed in [Rosen., 1]. The notion of 

coordinate transformations for state space models has its equivalent in the transfer function 

matrix concept, which is that of unimodular matrices. According to what sort of fractional 

description we consider G(s) we have the 9i-unimodular matrices, `U(m, 9C), where m 

denotes the dimension of the square matrix with elements from 9C(JC is R[s], Rpr(s) or 

RP(s)) and if QE 2l(m, 9C), then IQJ a unit of X. The role of coordinate transformations in the 

system representation is emphasised by the following results. 

Result (4.22): Let G(s) ER pr"(s) . 
Then, 

(i) [Kalman, 1] The minimal state space models Si, i=1,2 have the same transfer 

function G(s), iff they are related by a state coordinate transformation. 

(ii) [Kailath, 1] The left, right 9C-coprime MFD pairs (Ali, B11), (B21, A20, i=1,2, ('7C is 

R[s], Rpr(s), or Rp(s)) have the same transfer function G(s), iff 
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[A12, B121 =L [All, B11], L EU(m, 3O, 
B22 

= 
[J421 

21 R, R EU(p, 90 (4.16) 
[A22 

U 

Remark (4.8): State feedback and output injection affect the closed-loop eigenvalues, but 

never shift them to infinity if their norm is bounded. Bounded norm output feedback, 

however, may result in a not well posed feedback system, which corresponds to the fact that 

certain eigenvalues may become arbitrarily large. Similarly, use of state, output derivative 

feedback may shift some of the eigenvalues to infinity, i. e., the resulting system may 

become singular. 

U 
4.4.3. State space invariants 

On state space models we may apply different types of representation, 

compensation transformations and thus a variety of invariants and canonical forms are 

defined. Summarising the most fundamental types of state space invariants, is the aim of 

this section. Central to the definition and computation of most of the invariants is the theory 

of Kronecker invariants (and associated canonical form) of matrix pencils [Gant., 1]. The 

most general types of transformations that may be applied on the S(A, B, C, D) system are 

those defined by Q, T, R state, output, input coordinate transformations, state feedback L 

and output injection F. Based on the Q, T, R, L, F transformation we may define the 

following ordered sets of transformations. 

Ae 
ä(k= { ̀ Sik: 3Ek= (Q, T, R; L, F)}, X' = {. B : 3E'e = Q, R; L)}, 311 A {H ̀ e : Hß = (Q, T; F)} (4.17a) 

AnS 

3Eý _ {, G:. = (Q, T, R; O, O) = (Q, T, R)}, 3E' = {. ý£ : 3E'ß = (Q, O, R) = (Q, R)} (4.17b) 

Aoe 
X" A {JU: A' = (Q, T, O) = (Q, T)}, X'= {X': 3E' = (Q, O, O) = (Q)} (4.17c) C= CCCC 

These transformations form groups (under a standard composition rule) Mk, Siß 
, 

N' will be referred to as the Kronecker. Right-, Left-Brunovsky groups and Jt 
", 

3E 
c 

3iß 

as general-input-state-, state-output-, state-co-ordinate groups respectively. The action of 

these groups on the system may be expressed as action on pencils associated with the 

corresponding type of system, which is considered. Thus, 
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(i) Action of . 71k, 3E,, on S'(A, B, C, D) is defined by: 

sl - A' -B 
L 

Q-' 

-C -D =0 

F sl-A -B Q0 

T -C -D LR 
(4.18a) 

(ii) Action of 3E B, 3E" on S (A, B) is defined by: 

[sI-A, -B] = Q" [sI-A, -B] 
0 

LR 

(iii) Action of MB 
,% on S(A, C) is defined by: 

sl - A'e Q-' F sl-A Q [-cj[o 
T -C 

(iv) Action of 3E 3 on S(A) is defined by: sI-A' 0 Q"1(sI-A)Q 

(4.18b) 

(4.18c) 

0 

We consider next the types of invariants and canonical forms that may be defined 

on state space models under the different groups. 

(I) Invariants and canonical forms under co-ordinate transformations 

(a) State coordinate transformations on S(A) 

For the system S(A): 
.z= 

Ax, co-ordinate transformations are known also as 

similarity transformations. The structure of eigenvalues defines the invariants and canonical 

form [Gant., 1]. 

Result (4.23): If 4. (A) is the root range of A, and S(A, X) = {vi5... Svy} is the Segre 

characteristic for every kc=4(A), then the set {4(A); S(A, %), all kE4(A)} is a complete 

invariant for similarity equivalence on S(A). If J k(%)0 %Ik + Hk is a typical kxk X -Jordan 
block, then the corresponding canonical form is the Jordan canonical form 
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J(A) = diag {...; J(X) ;... }, J(X) = diag (J, 1(%); ..., J vq(X, )} (4.19) 

9 
The invariants and canonical form may be computed algebraically by use of the 

Smith form of sI-A (Computation of set of eds), or by alternative means based on sequences 

of numbers [Karc., 2]. The maximum of the geometric multiplicities of eigenvalues is 

denoted by p and referred to as the Segre index. If v(%) is the maximal value in S(A,? ), then 

n=E v(k) defines the degree of the minimal polynomial of A. Alternative canonical forms, 

such as those of the companion type may be found in [Gant., 1]. 

Remark (4.9): The similarity invariants define the nature of elementary motions of S(A) 

and characterise stability properties. For eigenvalues on the imaginary axis it is essential to 

compute the corresponding Segre characteristic since this defines the difference between 

Lyapunov stability and instability. The Segre index p (max of q for all eigenvalues) defines 

the minimum number of inputs, outputs that are needed for controllability, observability, 

when inputs and outputs are selected. 

0 
(b) State, input coordinate transformations on S(A, B) 

Throughout this section we assume that S(A, B) has n states, p inputs and p(B)=p. 

For the pair (A, B) we define the sequence of matrices, Qc, k= [B, AB...... AKB], k=0,1,2.... 

where Qc,,, 
_i 

A Q, is the controllability matrix and p (Qc, k) <p (Qc, k+1)" 

Definition (4.12) IKailath, 11: The smallest integer µ for which p (Qc, k) =P (Qc, 
µ+v) 

is 

defined as the controllability intex of S(A, B). If we assume that the linearly independent 

columns of Q; in order from left to right here have been found and rearrange these 

independent columns as {bl, Abl,...... Aµ"'bl....... hp Abl...... A"'°''bp} then set of indices {µ;, 

i r= p} are called the controllability indices to S(A, B). 

0 

Some important properties of these indices are summarised by the following result 
[Kailath, 1], [Chen, 1], [Karc. & MacB., 1]. Note µ; >_1, for all i=1,2,.... and the zero value 

appears, only when p(B) <p (which is not considered here). 
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Result (4.24): For the set 9c = {µi, iep} of controllability indices of S(A, B) we have: 

(i) The controllability index µ= max {µ1, µ2,...., µ, ) 

(ii) If n is the degree of the minimal polynomial of A, then nip SµS min(n, n-p+l) <_ n-p+l 

(iii) tI+µ2+.... +pp <n and equality holds iff the system is controllable. Furthermore, 

E 
ft, 4n,, is the dimension of the controllable space of the systems and n-nc defines the 

i1 - 

total number of uncontrollable modes. 

(iv) The controllability indices are invariant under state, input coordinate transformations 

and state feedback. 

(v) The set J. is the same with the set of column minimal indices of the pencil Pt(s) _ [sI- 

A, -B]. 

(vi) The set 9, = {µ;, iep}defines the set of column minimal indices {µ; }of the pencil 

Re(s)=sN-NA by the rule ; ul = pi-1, i=1,2,... p. 

(vii) If G(s) = N(s) D(s)-1 is any R[s] - right coprime MFD with D(s) column reduced and 

S(A, B, C) is a minimal realization of G(s) (assume G(s) strictly proper), then the 

column degrees of D(s) define the controllability indices of S(A, B). 

U 
Remark (4.10): The set of controllability indices and the set of fed of Ps(s) pencil are 

invariant under S' group, but they are not complete, that is, more invariants are needed to 

define a complete set. 

0 
Defining a complete set of invariants for S(A, B) under 3E' 

, 
31c groups is related 

to the theory of the Popov canonical form [Kailath, l]. The Popov canonical form 

[Popov, l ], is a unique form under similarity for S(A, B) and contains all additional 

information about the new invariants, which are now a set of real numbers. 

(c) State-Output Coordinate transformations on S(A, C) 

Note that the definitions and results presented for (A, B) pairs have their equivalents 
for the case of (A, C) by using "transposed duality" arguments, that is (At, C) is first seen as 

a state, input pair and by transposition and use of the changes: controllability t+ 
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observability, right MFD, H input H output etc. all definitions and results may be stated 

for state, output pairs (A, C). The set of observability indices is denoted by 9o = {0;, i 'E m), 

where in is the number of outputs and 0 denotes the observability index which now satisfies 

the inequality in (4.20), where n is the degree of the minimal polynomial. 

<_ 0: 5 minn, n-m+1) <_ n-m+l (4.20) 
m 

(d) State Coordinate transformations of (A, B, C) 

For systems S(A, B, C), the theory of invariants and canonical forms is richer than 

that of S(A, B), S(A, C) systems, since both aspects of the above two subsystems are 

involved. The sets of controllability, observability indices, are invariants, as well as the sets 

of input, output decoupling zeros and finite, infinite zeros. Note that the additional 

invariants, which will be defined under the Kronecher group 3Ek, are also invariant under 

R' since 3E' is a subgroup of 5t k. The canonical forms, which have been defined in the 

literature do not always demonstrate the structure of all of these invariants. If Q is a 

transformation that brings (A, B), to the Popov form (A,, B, ) defined before, then the output 

C6=CQ is uniquely defined and (A,, B,, Cc) is an input based canonical form. Similarly, if Q 

is a transformation that brings (A, C) to the corresponding Popov form (Ao, Co), then Bo=Q"B 

is uniquely defined and (Ao, Bo, Co) is an output based canonical form. The Popov canonical 

forms (Ac, B,, Q, (Ao, Bo, Co) are related to the realization of transfer function based on 

canonical right, left MFDs, that is those which are in a "echelon type form" [Kailath, 1]. 

Alternative canonical forms, based on the ideas of balancing the controllability and 

observability Grammians have been defined [Ober & McF., 1] such forms are more robust 

model parameter uncertainties and play a key role in model reduction. The canonical forms 

and invariants under co-ordinate transformations are important in system parametrisation, 

identification and model reduction. 

(II) Invariants and Canonical forms under co-ordinate transformations and feedback 

The transformations 3E8 
31 B 51 , 7k contain as subgroups the . 

'J 
, 

310', 34 thus, a 

number of the co-ordinate transformations invariants are not preserved under the more 

general groups, which are considered now. 
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(a) Coordinate transformations and state feedback on S(AB) 

Under the action of 3EB group (input, state co-ordinate transformations and state 

feedback) on S(A, B) systems, we obtain an equivalence class of systems Eb(A, B) referred to 

as the Brunovski orbit of S(A, B). If 3, ={pi, ie p} are the set of controllability indices, or 

equivalently cmi of P(s) and DID = {(s-2. i) z' 
, 1%E C, i=1...... k} is the set of fed of Pa(s) 

(defining the structure of input decoupling zeros) then we may summarise the properties of 

EB(A, B) as follows [Brun., 1], [Kalman, 2], [Karc. & MacB., 1]: 

Result (4.25): For the Brunovski orbit EB(A, B) the following hold true: 

(i) The sets 9c, DID are complete and independent invariants of EB(A, B) 

(ii) There is a uniquely defined canonical form, the generalised Brunovsky form, 

S(AB, BB), which in pencil form is described by 

sl-Ar I0ý -BB 
PB(S)s1-AB, -BßI _----- (4.21) 

0I sl - AID I0 

A 

where AID= diag {J 
=, 

(Xi), i=1.... k}, J,, (A,; ) is the Jordan block associated with (s-? i) r' 
, 

Ae 
A, =diag {Hj: J=µ1...... µP}, Hj is the jxj standard nilpotent matrix and B. = bl-diag {wj, j=µ1, 

....., 
µP}, Wj= [0,.. 0,1]tERJ. 

0 

S(AC, BC) is the controllable subsystems and if S(A, B) is controllable, then sI-AID is 

not present in (4.23). Controllability indices and the structure and values of decoupling 

zeros are the only invariants under OB, 

Remark (4.11): Controllability indices are essential for identification and study of control 

theory problems such as: assignment of Jordan forms by state feedback [Rosen., 2], 

structure and parametrisation of controllability subspaces [Wonham, 1] etc. It seems, that 

the most relevant for our present work is the value of the controllability index µ. 

U 
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(b) Co-ordinate transformation and output injection on S(A, C) 

The results in the previous section have their duals for the Brunovski orbit EB(A, C), 

obtained from S(A, C) under Jt B. The essence of the duality is that defined by transposition. 

The set of observability indices J. and set of fed of Po(s), DOD, defining the structure of 

output decoupling zeros are complete invariants and the corresponding canonical form, is 

obtained from (AB, BB) by transposition [Karc. & MacB., 1]. 

(c) Co-ordinate transformations, state feedback and output injection on S(A, B, C, D): 

Kronecker invariants and canonical form 

For the S(A, B, C, D) state space model with transfer function G(s), (n: states, 

l: inputs, m: outputs) the action of the Kronecker group -WK on S produces an equivalence 

class Ek(A, B, C, D). The natural tool to represent S(A, B, C, D) is the system matrix pencil P(s) 

((n+m)x(n+p)) 

I-A -B sl-C 

-D 
P(s) (4.22) 

We assume p(P(s))=r, p(G(s))= p (Over R(s)) and p([C, D]) = m, p([Bt, Dt])=p. The 

pencil P(s) is characterised by Kronecker invariants [Gant., 1], which are defined below. 

Definition (4.13): For the system S(A, B, C, D), described by P(s) we define: 

(i) 1 Z0 {(s-z; ) _' 
, 

ie r) the set of fed, which define the finite zero structure of 

S(A, B, C, D); the number nf= zl is called the finite zero order of the system. 
i=1 

(ii) D, O0 {s9': 1=qI=... =gs<q8+1 5...: 5qa} the set of i-ed, which define the infinite zero 

structure of S(A, B, C, D); i-ed of the s type are called linear infinite zero divisors 

(lizd) and those of the sq q>1, are called nonlinear infinite zero divisors (n-l. zd). The 

s 
number n. 

0 
(q; -1) is defined as the infinite zero order of the system. 

i=1 
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(iii) 91 = {C j: 0<ci5... <_sv}, Si = {n;: 0<1ii<... <rit} are the sets of cmi, rmi respectively of 

P(s) and they are called the right-, left- indices of the system. The numbers 

nr 0EE;, n, A 
ME 

i are called the rat left-order respectively of the system. 

0 

Remark (4.12): The finite and infinite zero structure is characterised in physical terms by 

the frequency transmission problem. The right, left indices are associated with the blocking 

of families of signals, which are not necessarily of the simple exponential type [Karc. & 

Kouv., 1 ]. 

U 

The importance of the DZ, 17., Sr, 91 sets defined on S(A, B, C, D) is described below 

[Morse, 1 ], [Thorp, I], [Karc. & MacB., I] 

Result (4.26): For the Kronecker orbit £t(A, B, C, D) the following hold true: 

(i) The set {DZ; 1`ý, ý; 9r; 31} defined on S(A, B, C, D) is a complete and independent 

invariant. 

(ii) There is a uniquely defined canonical form, the Kronecker canonical form 

S(Ak, Bk, Ck, Dk), which is pencil form is described by: 

sI - A6 0 0 0 -B, 0 0 

0 sl- 0 0 0 0 0 

sl - AK - BK 
0 0 sI -A� 0 '0 

-B� 0 

PK (s) 
C - 

0-- 0- 
- ------ 

A 
----- 

0 0 0 (4.23) 
x K - --a 0 0 0 1 0 0 - 

- 

0 0 C. 0 0 0 0 

0 0 0 0 0 0 -1a 

where: AE = diag{Aj: j=cj,..., s �}, rar x il,, All = diag{Aj: j=711,..., rit}, r)ixrii ; A. = diag 

{AA: j=f;,..., ff-z, f q;. 1, i=S+l,..., a}, nxn. ; Af = diag {Jt; (z; ): i(-=7c), ? jf x 11 f; where Jti(z; ) are 

Jordan blocks characterising (s-z; ) _' 
, 

Aj 0 Hj, is the jxj standard nilpotent matrix and 
A 

C, l= 
bl. diag [v j: J= T11, ..., l1t}, 7t x r1i ; C. A bl. diag {v j: (a-S) x rl,,, ) 
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AO 

B, =bl. diag {wj: -n. x(ß-S) ; BE = bl. diag rlrxv ; where 

v [1,0,... 0], 1xj and wj = [0,..., 0,1]t is ajxl vector. 

(iii) If r, p are the ranks of P(s), G(s) respectively, then the following relationships hold 

true amongst the numbers of the invariants. 

(a) r= n+p, v=1-p, t= m-p, n=nf+ n. + nr + ni 

(b) a=pand8=p(D) 

(c) There are zero cmi, zero rmi, iff [B`, Dt]`, [C, D] are rank deficient respectively 

(iv) If Gk(S) is the Smith form at s=oo of G(s) [Vard. et al, 1], then the transfer function 

matrix of S(Ak, Bk, Ck, Dk) is: 

Gk(S) = Ck(SI-Ak)'1 Bk+Dk = 
Moo(s) °°_° 

, 
M', ý(s) = diag [styl 

...., slý (4.24) 
Ot, 

a 1 
ýr. 

p 

0 
The above summary of results demonstrates the structure of state-space models 

under the most general types of transformations that may be applied to them. The 

importance of the result is that it establishes the numbers, and relationships between 

different invariants, which enter into the solvability condition of many control problems. 

Remark (4.13): The number of divisors at infinity of P(s) is equal to the rank of G(s). There 

exists a number of linear divisors at infinity equal to the rank of D; for strictly proper 

systems, all divisors at infinity are nonlinear, i. e. qi z 2. The orders of infinite zeros are 

defined by f; = q; - 1, when qi are the degrees of nonlinear divisors at infinity. The f; define 

the generic asymptotic root locus pattern and terminal Nyquist phases. If p(D) = p(G(s)), 

then G(s) has no infinite zeros, or equivalently all q; 's are equal to 1. For strictly proper, 

square systems with p=m=p, all orders of infinite zeros of G(s), f;, are equal to 1, iff p(CB) 

=m =p; higher order of infinite zeros emerge when p(CB) <m=p. 

0 
Remark (4.14): The Kronecker form S(Ak, Bk, Ck, Dk, ) is maximally uncontrollable and 
unobservable and the dimension of the minimal system is defined by the infinite zero order. 

112 



Chapter 4 System Properties and System Invariants: The Backbone of the Structural Approach to 
Integrated System Design 

State feedback and output injection are equivalent to post-, pre-multiplication of transfer 

function by Rpr(s) unimodular matrices, the special element' of 3Ek that reduce S to its 

Kronecker form, is equivalent to a pair of Rpr(s) unimodular matrices which reduce G(s) to 

its Smith form at s=oo of G(s). 

0 

Remark (4.15): For right regular systems (p = p), nr =0 (no right indices) and for left 

regular systems (p = m), n1 =0 (no left indices). For left-right regular systems (p = in = p) 

(square nondegenerate systems), nr =nl =0 and of + nc = n, which shows that total number 

of finite and infinite zeros is equal to the dimension of the state space. For such systems, the 

total number of finite zeros satisfies the conditions: 

(i) Dý 0: n!: 5n and nf = n, iff p(D) =m=p 

(ii) D=0: nfS n-m = n-p and equality holds, iff p(CB) =m=p 

For strictly proper square systems, the number n-m=n-p defines an upper 

bound on the total number of finite zeros. 

0 

The right and left indices are related to problems such as squaring down, model 

matching etc. Their relationships to transfer function invariants will be discussed later. 

Remark (4.16): The finite zeros of P(s) and Z(s) (zero pencil) are the same. If q;, iEr are 

the degrees of divisors at s=co, with q; z3 of P(s), then the degrees of restricted zero divisors 

of Z(s) are q; -2, iE ir. 

El 
4.4.4. Transfer function invariants 

With a transfer function matrix G(s)ER(s)"P we may always associate the 3C- 

coprime MFDs, G= A71 B1= B2 A21, where J is R[s], Rpr(s), or Rn(s) and with them we 

associate the left-, right-MFD matrices. 
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T, = [Al, B1] E �ýnix(r+p)' T, 

[. 
L2 

E Jý(m+P)xP 

z 

(4.25) 

On G(s), T19T, we may apply different types of transformations which are based 

on the ring 9C which is used to describe fractionally a rational function. The 9C-unimodular 

matrices define these transformations and the basic tools are those defined by the Smith, 

Smith-McMillan forms, as well as those of Hermite, Hermite-McMillan forms. The results 

are summarised next and their significance for the structure of linear systems is also 

discussed. Throughout this section it is assumed that p(G) = r<_ min (m, £) and that X is any 

Euclidean ring such that R (s) may be expressed as the field of fractions of X. For control 

theory applications 3C is R [s], Rpr(s), Rp(s), or Ra(s) (rational functions which have no 

poles at s= 0). 

(a) Smith McMillan forms over X 

If L, R are 3C unimodular matrices (LEU(m, X), REU(t, 3)), then the natural 

equivalence Ek is defined by pre-, post-multiplication of G by L, R and: LGR is the general 

element of the orbit (equivalence class) Ek (G). If GE3Cm ), a canonical form and invariants 

is defined by the Smith-McMillan form over 9C [Kailath, 1], [Vard. & Karc., 1], [yard. et al, 

1]. 

Result (27): The orbit Ek (G) is characterised by a canonical form MKS, the Smith McMillan 

form over 3C, where: 

M*G Ior 
r 

M, K =-- mI It 
olo': 

i- r -º 4 p-r -º 

M*KG = diag {Ei, / Wi, iE r} (4.26) 

where (ej, Wj, ) are SC coprime, they are uniquely defined (modulo SC units) and satisfy the 

divisibility properties: E1 I s21..... I F42 XVr I yfr-i I ....... 
I yJt. The E;, y;,, ier, are the elementary 9C 

-zero-pole, -pole-functions of G and together with r define & complete and independent set 

of invariants under Ek equivalence. 

0 
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Remark (4.17): The Smith-McMillan form over the different rings 3R reveals the following 

information about the system: 

(i) For 3=R [s] indicates the zero, pole structure of G over C. The polynomials e1, yr; 

define the finite zeros, poles of G and ä (f Iw; ) the finite McMillan degree SM of G. 

This canonical form does not reveal any information about the structure of G at s= oo. 

(ii) For 3c = RP(s), 9= S2U{oo} indicates the zero, pole structure of G over 0. The proper 

and SZ-stable functions E;, yr; define the zeros, poles of G in the region 9 and thus 

characterise infinite zero, pole structure, as well as S2-nonminimum phase, f2- 

instability structure of G. This canonical form does not reveal anything about the 

structure of G in the region S2° (the complement of ) with respect to Q. 

(iii) For 9C = Rpr(s) indicates the zero, pole structure of G at infinity only, but nothing 

about the structure of G over C. The e j, yf; are then proper rational functions of the 

type (1/s)Q, q>_0 indicating the orders of infinite zeros, poles of G. 

(iv) For. = Ro(s) indicates the zero, pole structure of G at s=0 only, but nothing about the 

structure of G over C-{O}, or s=oo. The s;, yr; are polynomials of the type s", p>_0, 

indicating zero, pole type of G at s=0. 

0 
Smith-McMillan forms reveal the basic pole zero structure over different subsets of 

Cu {co}; the standard tool for analysis is the form over R[s], whereas that over Rn(s) is 

essential for studies of stabilisation in the generalised S2-sense. The Smith-McMillan forms 

over Rpr(s), or Ro(s) are local, since the reveal the structure at {co}, or {0} respectively; the 

first is important for characterisation of properness and infinity zero structure, whereas the 

second is essential for the study of steady-state-tracking disturbance rejections. 

(b) Smith forms over K 

If Gc JC'P, then the Smith-McMillan form is reduced to the 3C -Smith form, which 
is defined as in (4.29b) with the only difference that all the yr's are 1; that is the G has no 

poles over 9C, but only possibly zeros. Smith forms are essential tools for 9C-coprimeness 

tests and thus they are involved in the characterisation of irreducible 9C-MFDs, as well as 

solvability of matrix equations over X. 
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(c) Rational vector spaces and transfer function matrix invariants 

Under Ek type of equivalence the column, row spaces of a transfer function change. 

A richer set of invariants, which is directly related to pre-, post-compensation of transfer 

functions, is defined under left-, or right JC-unimodular equivalence. If GER(s)m' 
, 

LE U(m, 9C), RE U(. e 
, 
JC), where U(. e, 9C) denotes the .£ 

linear group over 9C, then G and 

G' =GR are X -right equivalent, and is denoted by GE`gc G' 
, and G and G" = LG are 9C-left 

equivalent, and is denoted by GE ̀ 9C G"; the corresponding equivalence classes, orbits are 

denoted by E'K (G), E ̀ K (G). 

Definition (4.14): Let GER(s) mxP, p(G) = r5 min(m, p) and let G=A7'1B1 = B2A21 be g i- 

coprime left, right MFDs (5C=R[s], Rp(s), Rpr(s)). With the given G we define: 

(i) %, G A col. spr(s) {G}, X, G 0 row. sp IR(S){G} as the R(s)-column-, row-vector space of 

G respectively and Nr, G 0 �V1{G}, At 
t, G= At 

I 
{G} as the Rs -ri ht-, left-null space of 

G correspondingly. 

(ii) 2jI, G 0 row. sp R(s) {T1}, 2J, G A colsp IR(s) {Tr} as the R(s -composite-left-, right- 

space of G respectively, where Ti, T, are defined by (4.25). 

(iii) �Ytkc, 0 0 col. spk {B2}, Aer, G Orowspk{BI} as the 3C column-, row- module of G 

respectively and s 
Po' 0 rowsp k {T. }, ". kG A colspk{T} as the % -composite-left-. 

right-module of G correspondingly. 

(iv) . 
4iKc, G is the set of all xE Vm vectors which are in X 

,G and 4LKr, o is the set of all 

yE X' vectors such that ytEZ, G. 

0 

For any rational transfer function matrix the following general invariants may be 

established [Kailath, 1], [yard. & Karc., 1], [Rosen., 1]: 

Result (4.28): For all rings J: R[s], RP(s), Rpr(s) the following properties hold true: 

- i) Z, o, N t, G are invariants of Ek (G) and -%, o, , 
Nir0 G are invariants of Ek(G); these 

properties also hold true for x=R(s). 

ii) For all JC-MFDs, not necessarily coprime, ̀  
t, G is invariant for the left MFDs and IJG 

is invariant for the right MFDs. 
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iii) . 
Mk C, G is invariant of CK(G) and )JILKr, G is invariant of C ̀K (G). 

iv) g Kt, 
G, 5 kr, 

G, are complete invariants for all left, right K-coprime MFDs respectively. 

v) . 
M*Kc, G, . IU r, G are maximal K-modules which have the following properties: 

(a) If p(G) =p, G may be factorised as: G =Br ZrDr-1, Bre X"P, Zr, Dr E P'P where 

(B, Zr, D1) is 9C-right coprime, Bi is 3C-right-irreducible and col. spK(BI)=Mc, c ; 

furthermore, M', G 
is invariant for any GQ, Q EU(p, R(s)) 

(b) If p(G) = m, G may be factorised as: G= D11 Z, B,, BE Jrtmxp, Z,, D, E 3'% mxm' 

where (D, e, Z1 B f) is. -left coprime, Bi is JC-left-irreducible and row SPK (B Q) = 

Mc, G* 
furthermore, Mc, 

G 
* is invariant for any PG, PEU(m, R(s)). 

U 

The above summary of results clearly indicates that the theory of transfer function 

invariants is related to the theory of invariants of rational vector spaces and 9C-modules 

contained in them [Forney, 1], [Kailath, 1], [yard. & Karc., 2]. This theory is quite rich and 

becomes rather concrete, in terms of the theory of minimal bases [Forney, 1], [Vard. & 

Karc., 2] or equivalent by using tools from exterior algebra [Karc. & Gian., 1]. For the case 

X=R[s], some useful interpretations of the above mathematical result are as follows: 

Remark (4.18): 

(i) Pre-, post-compensation of G by a square full rank rational compensator leaves 

invariant the rational vector spaces Z, o, Xc, G respectively; thus, X, o, Xc, G are not 

spaces characterising a single transfer function, but a family of transfer functions. 

(ii) The rational vector spaces Zf i, G, 2J, G characterise all left-, right- MFDs of G and thus 

are common to all state space models that have a common transfer function; these 

spaces are "personal" spaces of G. The modules 91, G, 9,, G (defined for 9C = R[s] 

characterise all left-, right- R[s] coprime MFDs and thus they are invariants of all 

minimal realisations of G. 

(iii) The modules . 
Me 

, G', At for = Rpr(S), R(s) define invariants under post-, pre- 

multiplication respectively by proper, proper and stable square rational transfer 

functions. 

0 

For a rational vector space X, tE W(s), with dimt = p, the theory of invariants, 

based on the polynomial interpretation, has three alternative directions. 
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(i) Minimal degree R[s] - bases 

(ii) R[s] - Hermite forms 

(iii) Plucker Matrices 

and they are defined below for the general X and then specialised to the rational vector 

spaces associated with a transfer function G. 

Definition (4.15): Let X(s)ER[s]"p be a polynomial basis matrix of X, i. e. p(X)=p, 

col. splR(s) {X}=X, and let X(s) _ [..., xi(s)... ], x; (s) ER"[s], a[x; (s)] A S;, iEp 

(i) [Forney, 1] a(s) will be called an RLl-minimal basis (R[s]-MB) if it is right 

irreducible (no finite zeros) and column reduced (full rank high column coefficient 

matrix). It is called an ordered -R[s]-MB if S; : 55; +j, Vie p. The set 9,, A {S;, 

iep: 8;: 55; +1 } is called the Forney dynamical indices (FDI) of X(s) and S. =ES, the 

Forney dynamical order (FDO) of X(s). 

(ii) [Karc. & Gian., 1] The polynomial multivector g(x) A xl(s)A.... Axp(s) =CP(X) ER[s]'', 

v =(n ), is defined as an R[s]-Grassmann representative (R[s]-GR) of X. If X(s) is 
p 

right irreducible, then g(X) is called a canonical R[s]-GR. If g(X) is canonical and 

a[g(X)] 0 S, then it may be expressed in terms of: Ps the Plucker matrix of X as: g(X) 

= Pses(s), e6(s) = [l, s,..., s8] t, P8¬R'"(s+i). 

U 
Result (4.29) [Forney, 11: For any rational vector space ; the following hold true: 

(i) All R[s]-MBs of % define the same R[s]-module M*, which is a maximal Noetherian 

module. 

(ii) All ordered -R[s]-MB have the same set 3X of FDIs and thus 3x and 8F are invariants 

of -%. 

(iii) There exists a uniquely defined R[s]-MB, the echelon type basis, the elements of 

which uniquely characterise t. 

(iv) If X(s) ER(s)" is any rational basis of X, then it maybe factorised as: 
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X(s) = N(s) Z (s) D(s) "1 (4.27) 

where N(s) is an R[s]-MB, Z(s), D(s) are pxp polynomial matrices defining the finite zeros, 

poles respectively of X(s). 

U 
For a transfer function matrix G, GE Rp, (s) mxp, with p(G) = min(m, p), we have the 

rational vector spaces X, G, r, G, Nr, G, jVl, G, as well as 7j,, G and *, G. The Forney dynamic 

indices and Forney order of these subspaces will be denoted by 3(a)), SF(a)), where a is 

the corresponding space. Some additional properties are given below [Kailath, 1] 

Result (4.30): For the family of rational vector spaces associated with the transfer function 

matrix G, GERp1(s)m"P p (G) = min(m, p), we have the following properties: 

(i) 9(2J 1, G) defines the observability indices and J(4JG) the controllability indices of any 

realization of G; furthermore, 8r(2j, G) = 8F(2j 
t, G) = SM(G), the McMillan degree of 

G. 

(ii) If m>p, then �Vr, G =0, SF (-Xc, G) = 8F(. Nt, G), and 3(Z, G) = {0, 
.., 

0}, that is 3, is an 

R[s] - MB of 
, G. 

(iii) If m<p, then .N1, G = 0, SF(Z, G) = SF(�Vr, G) and 9(-&, G) = {0,..., 0}, that is 3m is an R[s] 

- MB of , G. 

(iv) If m= p, X 
t, G = 0, . 

Nr, G = 0,9(Z, G) = {0,..., 0}, 9(%,, G) = {0,.., 0}, that is 9m is an 

R[s]-MB of xc, G and 661, G- 

0 
The nontrivial set 9(X,, 0), when map, or J(Z, 0), when m<_p, will be referred to as 

external dynamical indices (EDI) of G and are invariants under square full rank post-, pre- 

compensation. These indices are important in the study of compensation, as well as squaring 

down of systems. An alternative, complete set of transfer function invariants, which is 

useful in the study of DAP problems is defined below [Karc. & Gian., 2]: 

Result (4.19): For any rational vector space X the following properties hold true: 

(i) If g (X1), g (X2) are any two R[s] -GRs, of X, then g (X 1) = g(X2)c , where cU R(s). 
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(ii) A canonical R[s]-GR is coprime (has no zeros) and uniquely characterises X 

(modules cc: R, c#0); furthermore, 8[9(X)] = SF (X). 

(iii) A Plucker matrix is a complete invariant (modules c(=-R, c#0) of-%. 

0 

A canonical -R[s]-GR, or equivalently a Plucker matrix is a complete invariant of 

AX and in this sense is equivalent to the echelon type minimal basis of X. For a given G, the 

corresponding Plucker matrices, are defined below [Karc. & Gian., 3]: 

Remark (4.20): 

m 
(i) If m>p, P, (G) is the 

Px 
(SF, c + 1) Plucker matrix of -&, G, where SF, 

r ° ASF( 
, c); 

the Plucker matrix of Z, o is Pr (G) = 1. 

(ii) If m<p, Pr(G) is the (SF, 
r + 1) xp is the Plucker matrix of X, o, where 8F, 

r, 68F 
P) 

(-,., G), the Plucker matrix of X,, o is P, (G) = 1. 

(iii) If m=p, Pr(G) = 1, P, (G) = 1, are the Plucker matrices of Z, o, X, o. 

(iv) P(T t 
), P(T, ) are the n+l xm 

+p mpp, 
x (n+l) Plucker matrices of 4j 

1, c, 2,1, g 

respectively, where n =Sm (G). 

0 

Plucker matrices associated with the basic matrix pencils may also be defined, as it 

has been shown in the previous section. The matrices Pc(G), Pj(G) are essential in the study 

of zero assignment problems by "squaring down", whereas P(T ), P(Tr) are crucial in the 

study of pole assignment by constant, or dynamic output feedback. 

(d) Hermite, Hermite-McMillan forms and invariants 

With a transfer function matrix we associate rational vector spaces, as well as SC- 

modules. The notions of 9C-right-, -left-equivalence defined before is intimately related to 

compensation theory under special types of compensators; thus, if 9C-Rpr(s), or RP(s), then 

the corresponding equivalence classes are systems obtained under proper, proper and stable 
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pre-, or post compensation. The theory of right-, -left- equivalence produces types of 

invariants based on the modules contained in a rational vector space. We distinguish: 

(i) Transfer functions (matrices) with elements from a given ring X. 

(ii) Transfer functions (matrices) with elements rational functions, i. e. fractions of the 

elements of X. 

The first case is related to the theory of Hermite forms, whereas the second to the 

case of Hermite-McMillan forms. In the following, by J£ we mean either of the cases R(s), 

Rpr(S), Rp(s)" 

(i) Hermite forms: We consider matrices G(=-X" p, assume p(G) =m (m5 p) and 

consider the case of 9C-left equivalence, Elk. The case of SC-right equivalence, as well 

as the case where p(G) < min (m, p) may be found in the references [Marcus & Minc. 

1]. 

Result 4.311: For a matrix G with the above properties there exists LeU(m, 9C) such that 

LG=, J"x =0... 

0 """ 

0 x ... x ... a{ ... x E- 1 

0 0 ... ... x ... x E- 2 

0 0 ... 0 """ x """ x E- m 
t t t 
ni n2 n. 

(4.28) 

where 3t I"KO is called the 3C-Hermite row form of G and its elements associated with the p; 

rows im and yj columns, jp satisfy the conditions: 

(a) `d i c= m, the p; row has a leading nonzero 9C-monic element hin; (leading entry) such 

that 1: 5nl<n2 <... <nm<_ n 

(b) diEm, then 

(i) If hini=1, hn1=0, Vj<i. 

(ii) If hini : P- 1,0 [hini] <0 [hini], V j<i s. t. hjn1 ý 0. 
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(c) `d'yj row s. t. j<nl is zero. 

(d) dye s. t. n; <j<ni+i with iEm -1, then the last m-i entries of yj are zero. 

U 

The Hermite forms 3E is unique (module diagonal scaling by units) and its 

elements define a complete set of invariants of EI k(G). 

A similar result may be stated for x-right equivalence and the corresponding C- 

Hermite column form of G is denoted by MXG. The set of indices g= n; iE m} are defined 

as Hermite indices (row or column) and they are also invariants. 

(ii) Hermite McMillan forms: For a general rational matrix G ER(s)" of full rank we 

may define canonical forms under 9C-left, right-equivalence as follows: Let every 

element of G be expressed as coprime fraction of elements of JC and let d be the least 

common multiple of the denominator of the elements of G. Then we may write: 

G=dN, NE 9C°"' 
. 

If JfN is the 9C-row-Hermite form of N we may write: 

Nk =LN, LE U(m, 9C) and thus 

gil, k 
=ý .` 

Nk 
=LG (4.29) 

is defined as the 9C-row-Hermite-McMillan form of G, where in S( 'k all possible 

numerator-denominator cancellations are assumed to have been carried out. 

Result (4.32): The 9C-row-Hermite-Macmillan form of G, Jýk is a complete invariant of 

E (G) 

0 
Note that the structure of StJ is similar to that of 9C-row-Hermite form, i. e. "upper 

staircase", but its elements are rational functions. The corresponding structure and result for 

the K-row-Hermite-Macmillan form is similar. Some of the invariants of transfer functions 

under, left, -right K-equivalence are summarised below [yard. & Karc., 2] 
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Result (4.21): Let G eRpr(s)m and assume that p (G) =p (m >: p). 

(i) The set of Forney dynamical indices 9(ß, G) and Forney order 8F of ,G 
are invariants 

of Ck(G) for all 9C of the type R[s], Rpr(s), Rp(s). 

(ii) The set of finite zeros and poles of G, together with their corresponding multiplicities 

are invariants of CK(G) for 3C=R[s]; the infinite zeros, poles are not necessarily 

invariant under this equivalence. 

(iii) The set of infinite zeros and poles of G, together with their corresponding 

multiplicities are invariants of CK(G) for 9C=Rp, (s); the finite zeros, poles are not 

necessarily invariant under this equivalence. 

(iv) The set of zeros and poles of G, together with their corresponding multiplicities, in 

P=nU{ oo } are invariants of CK(G) for 3f=RP(s); the poles and zeros of G in S2° (the 

complement of S2 with respect to C) are not necessarily invariant under this 

equivalence 

(v) If Sm, SF, zoo, Zf are the McMillan degree, Forney order of 
, o, total numbers of 

infinite, finite zeros of G, then 8M =zoo + zf + SF. 

0 

The last relationship indicates that under all types of compensation which preserve 

SF, the difference between McMillan degree and total number of zeros remains constant. 

Since for square systems SF = 0, this also indicates that for square systems, the McMillan 

degree is equal to the total number of zeros. The Forney order plays a crucial role under 

squaring down [Karc. & Gian., 1], since it indicates the total number of newly created zeros. 

4.5. CONCLUSIONS: EVALUATION AND EMERGING ISSUES 

The aim of this chapter was to provide a unifying detailed review of the 

fundamental linear system properties, property indicators and invariants, which emerge as 

tools for control design and have the potential to develop also as important instruments for 

intervention in Global Instrumentation (GI) and Early Process Design (EPD) in general. The 

review of concepts and results did not aspire to cover everything and a number of criteria 

and indicators for which testing is not easy with the current computational means have been 

neglected. The emphasis so far has been on the structural aspects, as these are expressed in 

terms of invariants. The role of graph structural dimension has not been examined and there 
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is a need for study of the related properties in a setup where the interconnection graph 

explicitly appears in the model. However, this area is beyond the scope of the thesis. The 

major systems and control type issues that emerge from the requirements of the overall 

integrated design structural framework are briefly summarised below: 

(i) Relationships between Invariants and Property Indicators: The relationship 

between structural aspects such as invariants and property indicators are not well 

understood for the majority of them. Thus, which are the "good" and which are the 

"bad" values of invariants, as well as the way structure imposes limitations on the 

compensation of property indicators is an open area of research for control theory and 

design. As new results are produced they will have to be integrated in the overall 

framework. There is rich control theory literature, but the field is by no means closed. 

(ii) Model parameters and Invariant Structure: The functional relationships between 

system model parameters (the design tools in EPD) and invariants are not always 

simple and explicit which imposes severe difficulties in developing systematic 

" procedures for assigning values for all invariants, and thus shaping appropriately the 

property indicators. There is a number of properties evaluated by criteria simply 

determined by model parameters; however invariants have in general more complex 

links to model parameters. The general issues of specifying the functional 

relationships for implicit invariants and indicators is still open in Control Theory. 

(iii) Graph Structure, Invariants and Indicators: The general theory as developed so 

far, does not take into account the fact that most systems have an underlying graph 

structure which imposes constraints on the types of the system invariant that may 

exist, their possible values and thus in turn the nature of design indicators. The 

existing theory on generic system properties (examined in a subsequent chapter) 

assumes the system with no special structure, whereas graph theory has mainly 

focused on assessing properties, rather than the induced types and values of invariants 

stemming from a given graph. Once more, this area is still in its early stages of 

development as a topic of control theory. 

(iv) System Structure and Control Design: The system structure, as expressed in terms 

of the graph and the structural invariants has been the backbone of the synthesis 

methodologies, but they have not been systematically used in the development of 
design methodologies. The overall view of the relationship between the model 

parameters, graph structure, invariants and performance indicators is illustrated in 
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Figure (4.4) and this provides the background to a global design methodology that 

exploits the system structure. The integration of structural analysis to design, is long 

overdue and the areas where some urgent steps are needed are in the development of 

structural diagnostics for selection of type of the control scheme, nature of the 

dynamics, centralised versus decentralised, as well as development of design 

methodologies based on the structural approaches. Certain aspects of this structural 

framework are considered in following chapters. 

(v) Problem Dimensionality: Analysis and design methodologies of the control area are 

well developed for reasonable dimension systems, but problems start to'arise when we 

deal with large composite systems. The difficulties are not only due to computations 

and related problems, but also arise in the conceptual design level. Issues of 

partitioning the design problem, sequencing of the design of partitioned problems and 

design of decentralisation control schemes are not well developed; especially the first 

two are based on experience, and heuristics. Graph theory makes a useful contribution 

in problems such as evaluation of some properties on large systems, problem 

decomposition and selection of decentralisation, but it has to combine the method to 

lead sharper results. Furthermore, graph methodology relies on the state space 

formulation, which imposes a number of limitations. Problem decomposition and 

sequencing of design are much more complex problems and the requirements of 

global process operations have a very significant impact on the adopted solutions. 

(vi) Sensitivity and Robustness Issues: The structural framework assumes models, which 

are well defined, and relies on the evaluation of the types and values of invariants. 

Issues of sensitivity of the type-values of invariants under model uncertainty are 

crucial for the framework to develop as an effective diagnostics and design tool. 

Although there exist studies on the generic values and type of invariants, the 

sensitivity and robustness issues, especially under structured uncertainty, have not 

being properly considered. Developments in this area also depend on developments 

with the area (ii) above. 

(vii) Variable Complexity Modelling: In the framework of EPD we may have to deal 

with models of variable conceptual and dynamic complexity. Development of a theory 

for assessing the evolution of system properties and types/values of structural 

characteristics, in a nesting of progressively more complex models, is an open area. 

This is crucial for the development of diagnostics for EPD. The area is linked to 
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, 
robustness studies, but it has a much richer content since we move within different 

types of families of system models. 
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Figure (4.4): A Structural Genetic View of System Model Behaviour 
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(viii) Model Interface Issues: The need for integrating into control design requirements 

coming from the operational layers, as well as the implementation of designs through 

computer schemes introduce new challenges for control theory and design which have 

to do with mixed models, mixed signals and alternative time scale operations. The 

area of hybrid systems emerges as a dynamic area for handling interface problems in 

the global operational mode. 

(ix) Generalised Synthesis in Integrated Design: Development of methodologies for 

Global Instrumentation and possible tools that may assist in process synthesis is a 

major challenge. The formation of the interconnection graph for composite systems 

may be addressed as a complex design problem, where apart from particular area 

practices, the formation of system properties may be taken as an objective. Similarly, 

proceeding from diagnostics to systematic design methodologies using the new 

control theory and design tools, advocated above, is also a major challenge. The 

overall philosophy in the above two areas is the control of the structure evolution 

mechanism through those design stages, aiming at assignment of desirable features, 

where possible, or at least avoidance of undesirable features. An overall philosophy 

for the challenging problems of integrated or global system design that exploits the 

structural methodology considered here is summarised in Figure (4.5). In this figure, 

the generation of alternatives and their structural evaluation leads successively in the 

selection of the "best" solution amongst a number of possible alternatives and by 

developing a genetic selection approach. 

(x) Computational Issues: The area of computations is central for the development of 

CAD that can accompany the above developments. The algebraic and geometric 

methodologies of the structural framework have special requirements, which have not 

being addressed properly before. Computing algebraic invariants and transformation 

of geometric conditions into testable criteria is a major challenge. Numerical issues 

related to algebraic computations on inaccurate engineering models, the optimal 

merging of symbolic and numerical computations and issues of computational 

complexity, especially for graph type computations are essential. Current CAD 

packages deal mainly with property, design indicators and rarely use elaborate 

computations for assessing system structural characteristics. The development of the 

different aspects of algebraic computations is crucial for the overall development of 

the topic. 
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Figure (4.5): Genetic Model Evolution and Selection in Cascade Design 

The existing body of control theory and design provides a basis for starting to 

consider the issues of system structure and properties formation though the overall design or 

redesign of process. It is however essential to address also, all issues stated above, if we are 

to move in the future towards integrated methodologies. Although linear theory provides the 

basis, we should progressively move to the exploitation of the results of the nonlinear 

theory, although such results are not yet in a suitable form for exploitation. 
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Chapter 5 

MODEL ORIENTATION ISSUES IN EARLY DESIGN: 

A STATE SPACE APPROACH 

5.1. INTRODUCTION 

An integral part of the overall modelling problem for systems is the definition of 

process variables and their subsequent classification into control variables (inputs), command 

variables (outputs) and other internal variables. Heuristics linked to the specific domain of 

applications, or methodologies such as graph analysis, Lagrangian methodology etc. may be 

used in specific cases for handling issues of nonredundancy in representations and classification 

of variables. A natural system description that makes no distinction as far as the role of process 

variables and their dependence, or independence is for the linear case the matrix pencil model 

(first order differential descriptions), or the general polynomial, or autoregressive model. In this 

chapter, the focus is on implicit, or matrix pencil models, which characterise the behaviour of 

all unclassified process variables into inputs, outputs and internal variables. This is referred to 

as Model Orientation Problem (MOP) and its solutions are systems of the standard state space 

type, classified as General Singular, Singular and Regular systems. Investigating the conditions 

under which the MOP is solvable, as well as the characterisation of the structural properties of 

these solutions and the classification of the emerging solutions are the main topics considered 

here. 

Amongst the solutions to MOP are regular type linear systems of the S(A, B, C, D) type; 

these are not always suitable for control design since they may be characterised by input, output 
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structure redundancy and they may be degenerate. Defining subsystems of S(A, B, C, D) by 

reducing the number of inputs, outputs such that the reduced systems S'(A, B', C', D') are well 

conditioned, as far as nondegeneracy, input, output regularity and minimality (controllability 

and observability), is a problem referred to as Well Conditioning Problem [Karc. & Vaf., 1] 

(WCP). This problem is considered in a subsequent chapter in the case where the inputs, 

outputs are physical variables and thus input, output reduction implies selection of subsets of 

such variables. This corresponds to selection of submatrices of the original transfer function, 

which have certain input, output cardinality and desirable properties. 

The problems considered here are integral parts of "early design" of processes [Rijn., 

1], [Karc., 1] and are considered in the context of linear systems using results based on the 

algebraic structure of systems and in particular the Kronecker structure of matrix pencils [Gant., 

1]. The emphasis here is on the characterisation of the desirable properties and the definition of 

a framework within which the design problems are addressed. 

5.2. STATEMENT OF THE PROBLEM 

Physical modelling based on description of basic elements and use of interconnection 

topology may be used for large families of systems. If all important variables are included and 

there is no effort to guarantee their minimality, and classify them into inputs, internal variables, 

the emerging descriptions are referred to as iimplicit [Apl. 1], [Lewis, 1] and in the case of first 

order linear differential descriptions they correspond to the matrix pencil or generalised 

autonomous description [Karc. & Hayt., 1]: 

S(F, G): Fp4=G4, F, GERT`° (5.1) 

where p is the differentiation, or shift operator and 4 is the vector of all problem variables. The 

natural operator associated with such descriptions is the matrix pencil sF -G and thus, the 

study of such descriptions relies on the structure of sF -G. For control, as well as handling 

issues of creating composite structures, it is important to classify the variables in ý into internal 
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variables, or states x, assignable, or control variables y, and measurement, or dependent 

variables y. This is expressed in terms of the transformation: 

=Qý, where 
[x', 

u', y' 
it r 

and Q'»<°, IQI #0 (5.2) 

Q will be called an orientation transformation (OT) and if the original variables in ý are 

physical and it is desired to preserve them, then Q has to be of the permutation type and will be 

called physical OT. For first order linear descriptions the most general form of oriented models 

is the general singular (GS) description: 

S(E, A, B, C, D): Ep x= A x+B u, y, = C x+D u (5.3) 

where E, AE 91°X", Be 92`Xp, CE 91"", De Jl"P 
, where r=m+Q, v=n+p+m, and in 

general a? n. In the case where a=n, S will be called singular and if a=n and IEI # 0, 

then the description will be called regular and it is equivalent to the standard state space 

description: 

S(A, B, C, D): px=Ax+Bj, y=Cx+Du (5.4) 

Defining an OT Q (general or physical) such that S(F, G) is reduced to S(E, A, B, C, D) 

or S(A, B, C, D) forms is termed model orientation problem (MOP) and it is considered here. Part 

of this study is to determine the conditions under which S(F, G) may be reduced to the GS, 

singular or regular descriptions. In this paper the general case of OT is considered, rather than 

the more restricted case of physical OT. 

Regular descriptions S(A, B, C, D) defined as solutions of MOP may not have good 

properties as far as control design; in fact, they may have degenerate transfer functions and be 

characterised by input, output structure degeneracy. Defining subsystems of S(A, B, C, D) by 

reduction of the input, output structure such that the reduced system S(A, B', C', D') has 

desirable properties is referred to as input-output structure reduction problem (I-ORP) and 
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includes problems such as the squaring down [Karc. & Gian. 1]. When the resulting model has 

physical input, output variables and it is desired to preserve them, then the I-ORP takes the 

special form, where only aa set of existing inputs and a8 set of existing outputs is used, 

which leads to an Sa, ß = S(A, Ba, CQ, Dap) subsystem with corresponding transfer function 

Haß (s). The objective here is to select the a, 6 sets such that the resulting Sa, ß , 
Ha, Q 

(s) is 

well structured as far as certain properties, which may include input, output regularity, 

nondegeneracy, minimality etc. Such a problem will be referred to, in short, as well 

conditioning by input-output reduction (WCP) and is considered in a subsequent chapter. Note 

that in a transfer function matrix setup, WCP is equivalent to defining submatrices of H(s) by 

eliminating certain columns and rows and which have desirable properties. An integral part of 

this problem is the parameterisation of the maximal input, output cardinality solutions [Karc. & 

Vaf., 1]. The problem of Model Orientation is considered as an initial step. in the development 

of oriented early models and is considered first. 

5.3. THE MODEL ORIENTATION PROBLEM: CHARACTERISATION OF 

SOLUTIONS 

Consider the matrix pencil description S(F, G) of Equation (5.1) with an associated 

matrix pencil sF -G of ixv dimensions. For such a pencil the general theory of Strict 

Equivalence suggests that the corresponding equivalence class is characterised by a set of 

invariants known as Kronecker invariants. We assume sF-G to be general and thus have the 

following Kronecker invariants [Gant., 1]: 

D1= {(s-Ai)', l E O: YT, = nf} 

(q': qt>_... >_gNZ1, q,, +t=... =qo+s=1, q, =ný, } 

r=t 
f 

Iý ={ill . ill ý... ý171 X1977, =... =nl+g =09 171 =nrI 
!. 1 

V 

lei :, cl V, C,,., v+h= n, ) 
1=1 

(5.5) 
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where DD, D. denote the set of finite (fed), infinite elementary divisors (ied), I, is the set of 

row minimal indices (rmi) and I, the set of column minimal indices (cmi). Note that S is the 

number of linear ied, g is the number of zero rmi and h the number of zero cmi. The above set 

of invariants completely characterises the Kronecker canonical form sF, - GK of sF -G, 

which is defined under strict equivalence. That is there exists a pair 

(R, Q) :R r= 91"', IRI # 0, QE fl"X°, IQI ; -- 0 such that: 

sFK-GK=R(sF-G)Q=block -diag{Og,,;.. sHq(5.6) 

where sHq - Iq characterises sq 
, with Hq the qxq nillpotent matrix, JT (. %) is the Jordan form 

associated with (S-AY, L& (s) 
= s[I,, I, ] characterises E>0, and 

Ln(s)= s[I, 7,0]' -[0,1, x]' corresponds to i>0. 

The problem considered here is the characterisation of the types of oriented models 

which may be derived from S(F, G), as well as the development of the methodology that can be 

used for finding such solutions. It is first noted that: 

Remark (5.1): If RES V<T, IRI # 0, then the space of solutions (smooth and distributions) of 

S(F, G) and S(RF, RG) are the same. 

0 

The above suggests that left transformations do not affect the solution space and thus 

may be used to simplify the original description S(F, G). 

Proposition 5.11: If sF -G has g zero rmi, then there exists RE 91 x', IRI #0 such that: 

F', G' 
R[F, G]= p (5.7) 

and the solutions of S(F, G) and S(F', G') are identical. 
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Proof: The presence of g zero rmi implies that there exist g independent vectors v, such that 

v,. ' [F, G] = 0ý 
, clearly N, [F, GI has dimensions exactly g and thus there is R that reduces [F, G] 

to the form (5.7). 

0 

An S(F, G) system with zero rmi will be called reducible; otherwise, it will be called 

irreducible. Proposition (5.1) implies that we can always assume it to be an irreducible form 

and this is assumed in the following. The existence of solutions to MOP is considered next. 

Lemma (5.1) (Karc. 6]: Consider the irreducible system S(F, G) with Kronecker invariants as 

described in (5.5). There always exist a strict equivalence pair (R, Q) such that: 

R(sF-G)Q=sF'-G' (5.8a) 

r------ I ------ I 

sI-Af 
------- 

--- 
0ý 

' ýsH I' I0 00 

where: sF* - G* =0 sI -A, -B 
[ILIIIII] 

- (5.8b) 
sl-A, ii 0 

-------0---------------I C----- ,i 
Qn 

i Ö i, 
------------------- ý----------! ----! -------------------- 

I 

rsE'-A'; -B'; 0 

0; 0 ; la (5.8c) 

where Af is nfxnf and it is characterised by Df, sH� -I is n� x n. and 

sH� -I = block - diag{sHq, - I, q, > 1), A, is n, x n, and corresponds to all e, > 0, B., is 

n, xv and full rank, A, is n, x n, and corresponds to all i>0 and C, is 1xn, and has full 

rank. 

0 
The above Lemma is now used to establish the following main result: 
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Theorem (5.1): Consider the irreducible system S(F, G): 

S(F, G): F pý =Gý, F, GE 91rxv (5.9a) 

where the associated pencil sF -G is assumed to have a general structure as described in (5.5). 

There always exists an RE 91"', IRI # 0, and a transformation Qe 91'x°, IQI # 0, such that: 

x' 
ý=Qý =Q R(pF-G)Q=pF'-G' (5.9b) 
--y 

which reduces S(F, G) to the equivalent oriented description: 

rxr 
S(F', G'): (pF'-G') '= pErC_ Ar 

-- 

ýr 

'I u' =0 (5.9c) 

a yr 

where pE' - A' is a nonsquare of dimensions (n' + I) x n', n' =nf+n,, + n, + n, , 
B' is 

(n'+l)x(v+h), C' is 5xn' and D' is Sx(v+h). 

Proof: By Lemma (5.1) the form (5.8c) is established and thus exists (R, Q) such that: 

F-G u= -------ý--- u= 0 (P ýº º pEº - Aº ý- Bº ýýx Rº 

x' º 
E'-A''x 

which also leads to: R(pF-G)Q' u' 
p 

----º--__ _ý_ uº 
00'0' 

la 
0 
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or 
pE -A-B0 

u' =o and by setting y= C'x + D'u the result is 

-C -D Ia 
C'xý+D'uº 

established. The dimensionality of matrices follows from Lemma (5.1). 

0 
The above result establishes the existence of a general singular system as the solution 

to MOP. Furthermore, the construction of such transformation is intimately linked to derivation 

of Kronecker canonical forms, which is behind the construction of the form sF' - G' of (5.8b). 

Theorem (5.1) together with Lemma (5.1) establish a relationship between the Kronecker 

structure of pF -G and the nature of solutions of MOP and this is described by the following 

corollaries. Any solution of MOP corresponds to the derivation of a system with inputs, outputs 

and thus provides a realisation of the original implicit (pencil form); such solutions will be 

referred to as oriented realisations of S(F, G). 

Corollary (5.1): Any irreducible system S(F, G) has an oriented realisation 

S(E', A', B', C, D') which has the following properties: 

(i) For any oriented realisation we have that: 

(a) The number of linear ied 8 defines the number of outputs implied by the implicit 

description and characterise linear relations amongst the implicit variables. 

(b) The total number of cmi v+h defines. the number of inputs, that is the number of 

variables that can be arbitrarily assigned amongst the implicit variables. 

(ii) S(E', A', B', C', D') is general singular, if and only if the set of Kronecker invariants 

contains nonzero rmi. 

(iii) S(E', A', B', C', D') is singular, if and only if the set of Kronecker invariants has no 

nonzero rmi and contains nonlinear ied. 

(iv) S(E', A', B', C', D') is regular, if and only if the set of Kronecker invariants has no 

nonzero rmi and no nonlinear ied. 
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Proof: 

(i) By inspection of (5.8b), it follows that E', A' are nonsquare if and only if C, #0, which 

however holds true if and only if the pencil has nonzero rmi. Given that C, follows by 

permutation of the elements of the Kronecker form, the block Cr cannot be eliminated 

by either column, or row transformations. 

(ii) From part (i) the pencil must not have nonzero rmi and thus the resulting sE' - A' is 

square. Note that E' is then singular if and only if there is the sH� -I block, which is 

part of the Kronecker form and exists if and only if the original pencil has nonlinear ied. 

(iii) From parts (i) and (ii) the result follows immediately. 

U 

The presence of nonzero rmi in the pencil pF -G implies that oriented realisations are 

of the nonsquare, or general singular type. Regarding the original description S(F, G) this has 

some additional implications on redundancy of the representation. We first note that for 

general singular representations the dynamic part is described by the pencil [pE' 
- A', -B'], 

where pE' - A' is nonsquare. A standard representation of this pencil (defined in a nonunique 

manner by column permutations) is the pencil [ 
pE" - A", -B"] , where [pE" 

- A"] is square. 

Clearly, standard representations may be extended to the S(F', G') description of (9c), (by using 

similar column permutations and partitioning). A standard representation will be called normal, 

if pE" - A" is a regular pencil (I pE" - A"I #0) . 
The existence of standard and normal 

realisations is established by the following result. 

Proposition (5.1): Consider a general irreducible system S(F, G). The following properties 

hold true: 

(i) Every general singular oriented realisation leads to standard realisations 

S(E", A", B", C", D") by permutation of the components of the implicit vector, that is: 
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rx" pE"-A" -B" 0 
S(Fly, G"); 

-CIF -D" 1 
u" =0 (5.10) 

a y� 

(ii) If pF-G has nonzero rmi, then any oriented realisation S(F', G') of S(F, G) has every 

standard representation S(F", G") with pE" - A" singular. 

(iii) There exist normal realisations of order n", if and only if pF-G has nonzero rmi. 

Proof: The oriented realisation is general singular if only if sF - G, or sF' - G' has nonzero 

rmi. The existence of a nonzero rmi i implies that there exists v(s) such that: 

v(s)` ýsF' 
- G') = 0, with ök(s)] =i>0. 

"EASY]" PES- 
The above implies [_I (s) 

- C� 

Aý'p 

- 

B', 

I0=0 
and thus v_2 (s) = 0r and 

D'18 

hence v ,' 
(s)[pE' - A', -B'] = 0' and [pE' 

- A', -B'] has also a rmi q. Given that a normal 

representation is obtained from the previous pencil with column permutations the result 

follows. 

U 

The above property clearly suggests that general singular representations cannot be 

used for working out transfer functions. This is due to the fact that there is some redundancy in 

the components of x' vector and this does not allow the derivation of transfer functions. 

Removing the redundancy is essential for obtaining transfer functions and is considered below: 

Corollary (5.2): Let S(F', G') be a general singular oriented realisation of S(F, B). The 

following properties hold true: 

(i) There always exist n, independent linear relations amongst the coordinates of the 

original vector ý. 

(ii) The space of solutions of S(F', G') is given by the set of n, linear relations and the 

solutions of a reduced system defined below: 
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S(F, G): pE-A 

-C 

X 
-B0 u' =0 
-D' Ia (5.11) 

where z is a vector of dimension nj+n., + n, , u, y' are as before and with the associated 

pencil pF -G having the same Kronecker invariants with pF -G except the set of rmi. 

(iii) The realisation S(E, A, B, C, D) is normal. 

Proof: Starting from (5.9c), where [pE' 
- A', -B'] has the form described by (5.8b), we may 

partition x= 
[z', it I where z` corresponds to p1- A, and z' is the part associated with 

Af 
, 
H., A, matrices. Then, (9c) is equivalent to the following equations: 

pl -Af I00 

rpH 
-1ý 10 oll 0x 

L-- `° ---' ------ I u' =0 (5.12) 
PI -A -B, 0 

-1-ý -----4-- y - 

p1-A, 
Cr . =O (5.13) 

Note that (5.13) is obtained by row permutation of blocks associated with nonzero rmi 

and thus (5.13) is equivalent to solution of 1 sets of equations of the type: 
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p0... 0 

-1 p0v, 
0 -1 0 v2 

=0 (5.14) 

00... p v� 

00... -1 

which has a unique solution v, = v2 = ... = vn = 0. Thus, (a. 2) has a solution z=0, and (5.12) 

describes the dynamic part of the system equations. It is clear from its construction that the 

pencil defining (5.12), ie. 

pl-Af 0000 

pF -G=0 pH. -I000= 
[p2 

- A, -Bl (5.15) 

00 pI-A, -BB 0 

has the same Kronecker invariants with pF -G, except the linear ied (corresponding to Ia ) 

and the nonzero rmi. Furthermore, the corresponding realisation given by (5.12) is singular, and 

not general singular. The n, dimensional zero vector z=0 implies the existence of nr linear 

and independent relations amongst the coordinates of ý. In fact, if Q is the orientation 

transform, then 

zzQ, 

0 

=Q --> '=Qý= 
Qz 

-ý -ý 
Q3 

A 

UvQ, -i L 

(5.16) 

from which 
Q2 

= 0. This implies that z=0 is equivalent to n, relationships implied from 
A 

Qz=O. 

U 
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The proof of the above result is constructive and indicates how the set of n, linear 

relations is derived from the orientation transformation, as well as a suggested procedure to 

construct any reduced systems S(F, G) that expresses the dynamic solutions. The singular 

system S(E, A, B) defined by [pE - A, -B] will be called a reduced realisation of S(F, G) and 

its properties are described below. 

Corollary (5.3): For any S(E, A, B) reduced realisation of S(F, G), the following hold true: 

(i) The pencil [ pE - A, -B] has as Kronecker invariants the set of fed, nonlinear ied and 

cmi of S(F, G). 

(ii) The number of inputs is given by the number of cmi v+h of S(F, G). Furthermore, h 

expresses the order of redundancy of the input structure i. e. number of dependent inputs. 

(iii) The system S(E, A; B) is controllable, if and only if S(F, G) has no fed and ied. 

Furthermore, the system is regular if and only S(F, G) has no ied. 

Proof: Part (i) follows from the proof of Corollary (5.2). The number of inputs is defined by 

the number of arbitrarily assignable variables in the original pencil form. Only the blocks 

associated with nonzero cmi introduce independent arbitrarily assignable functions as indicated 

below for an E cmi block. 

p -1 0 
... 

00 
x` 

0p -1 ... 
00 

X2 

. =0 
ru, 

which is equivalent to the standard controllable representation: 

(5.17) 
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0 
XI 

PIE - HE _0 us 

xe 1 

(5.18) 

and this completes the existence of v independent and dynamically significant inputs. The 

existence of h zero cmi indicates arbitrarily assignable functions, which however are not 

affecting the dynamic behaviour and are linked to the zero column block in B' of (5.8b), or 

dependency of columns of B with h right nullity. 

The controllability, uncontrollability properties readily follow from the standard 

results for singular systems. 

0 

The analysis here provides a solution to MOT for general autonomous description 

S(F, G), a characterisation of the type of resulting oriented realisations and a procedure to 

construct them based on Kronecker form transformations. So far, no constraint has been 

imposed on the orientation transformation and the derivation of the different types of oriented 

realisation is based on the use of Kronecker canonical form, that is the reduction of the system 

to the Kronecker form and then use of permutation transformations. The proof of the results is 

constructive and thus algorithms may be developed which follow the steps of the proofs. 

In the case where the variables in the implicit vector are physical variables, Q is 

constrained and some special transformations are required which retain the physical nature of 

independent variables in the implicit vector ý. The general Kronecker theory cannot be used in 

this case and there is a need to use transformations of strict equivalence on the left and 

permutations on the right. This is an important area, which is still open (as far as theory of 

matrix pencils). 

5.4. CONCLUSIONS 

The problem of model orientation (MOP) that is linked to early modelling of processes 
has been considered within the setup of state space descriptions. The general case of strict 

142 



Chapter 5 Model Orientation Issues in Early Design: A State Space Approach 

equivalence transformations is considered here. The derivation of the different forms of 

oriented realisations is based on the Kronecker canonical form reduction and the proof of the 

results is of constructive nature, which permits the development of algorithmic procedures. For 

implicit models with physical variables, preservation of the physical nature of variables implies 

that the orientation transformation has to be of the permutation type and this requires some 

restricted form of strict equivalence of matrix pencils, where we have a general transformation 

of strict equivalence on the left and permutations on the right. The study of such equivalence is 

essential before we consider the physical variables version of MOP. This is an open problem 

for future research. 

It is worth pointing out that the solutions of MOP considered here are not necessarily 

system models with good features and properties for control design. In fact, such models may 

be degenerate, have redundancy in the input, output structure and may have large input, output 

dimensions, which are not suitable for control design. Working out smaller models with good 

control characteristics is an important problem and it is considered in the following chapter. 

This is referred to as well conditioning by input - output reduction. 

In this chapter MOP has been considered within a state space setup. However, the first 

progenitor model may be of the autoregressive (general polynomial matrix type). This case 

requires tools from the general polynomial matrix theory (rather than Kronecker form) and it is 

an issue for further research. 

143 



Chapter 6 

WELL CONDITIONING OF 

EARLY PROCESS MODELS 



Chanter 6 Well Conditioninn of Early Process Models 

Chapter 6 

WELL CONDITIONING OF EARLY PROCESS MODELS 

6.1. INTRODUCTION 

The derivation of models that can be used for early design stages studies of 

processes requires the use of the process flowsheet (system interconnection graph), the 

availability of simple models describing the fundamental dynamics of subprocesses and the 

selection of control (input) and measurement (output) variables. Before commencing the 

investigation of the properties of the resulting model it is useful to include all possible 

inputs and outputs; at a later stage we can then determine the effective subsets of inputs, 

outputs using different controllability, operability criteria. Such models corresponding to all 

possible inputs and all possible outputs will be referred to as progenitor models [Karc., 1]. 

Progenitor models are derived on the basis that possible inputs, outputs are selected using 

heuristics, physical arguments and thus the resulting transfer function may be of large 

dimensions and possibly not well behaved. The essential feature of such models is that the 

input, output variables are physical variables, on which specifications may be imposed, and 

that this transfer function contains as parts all possible (smaller dimension) transfer 

functions that may be used in actual design. Transfer functions corresponding to subsets of 

the potential input and output sets are referred to as effective models and are submatrices of 

the progenitor transfer function. Different families of effective models may be defined by 

fixing the cardinality of the input, output effective sets or by requiring that the input, output 

sets contain certain fixed physical variable sets. Characterising such families of models, in 

terms of a range of important properties, is an important part of the process controllability 

studies. 
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This chapter deals with a specific problem within the general area of selecting 

effective models, when criteria, such as the nondegeneracy of the effective transfer function, 

the nonredundancy of the instrumentation schemes (independence of selected sensors and 

actuators) and the controllability and observability of the resulting system are used. 

Nondegeneracy is a fundamental property for the effective model, since it is linked to the 

output function controllability [Rosen., 1], and thus to the solvability of a number of control 

problems. Conditions for the characterisation of system degeneracy and redundancy of the 

input, output structure of the system are derived in terms of the state space parameters; these 

conditions also indicate the criteria required to guarantee nondegeneracy and input, output 

scheme nonredundancy. For the cases of proper and strictly proper progenitor models 

simple and quite broad sufficient conditions of the rank type are given, which guarantee 

nondegeneracy and nonredundancy. The characterisation of the controllability and 

observability properties is performed here using the McMillan degree and the associated 

properties of Hankel matrices [Ants. & Mich., 1]. Such approach is faster and more suitable 

for selecting effective models. The selection of maximal dimension effective models, which 

have all of the previous properties, is then tackled by deploying a procedure that defines the 

"most orthogonal basis" [Mitr. & Karc., 1] for a given set of vectors, without transforming 

the data of the set. The approach suggested here leads to a parameterisation of all maximal 

dimension effective models, which are nondegenerate and input, output nonredundant. The 

elements of this set may then be used for the selection of models having additional desirable 

properties, such as avoiding high order infinite zeros. Amongst the additional properties 

that may be considered are those of avoiding nonminimum phase properties of the resulting 

models, as well as more general criteria expressing overall control for control design and 
known as "process controllability" [Morari, 1]. The work here is considered as a first stage 

in the process of selection of "good" early stage design models. 

This chapter is structured as follows: In Section 2, the problem is introduced as part 

of the early systems design and the objectives of the work are described. In Section 3, we 

deal with the problem of Input, Output Redundancy and establish their links to system 
degeneracy. In Section 4, a type of degeneracy is examined, which is not linked to input, 

output redundancy, but it is a property of the internal model structure of the system. 
Sufficient conditions for avoiding this type of degeneracy, also, guarantee the absence of 
infinite zeros for the resulting model. In Section 5, we deal with the characterisation of the 

family of controllable and observable effective models based on the characterisation of 
McMillan degree of Hankel matrices. In Section 6, the results of the previous sections are 
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used to parameterise and select maximal cardinality well-conditioned models (as far as 

degeneracy, input, output redundancy, controllability and observability). Finally, in Section 

7, the conclusions of this chapter are presented. 

6.2. STATEMENT OF THE PROBLEM 

The development of models, which may be used for evaluation of alternatives is an 

integral part of the Early Process Design of process plants [Rijn. 1]. Such models are usually 

developed for the entire plant, are based on the selected process flowsheet (interconnection 

graph) and involve the use of simple models of the subprocesses) As such, they have a large 

dimension and their final structure is determined when the control structure is decided. 

The selection of control structures is a topic that has attracted a lot of interest 

within the process control area ([Mor. & Steph., 1], [Gov. & Pow., 1], [Georg. & Fl., 1], 

[Skog. & Postl., 1] [Rijn., 1], [Karc., 10] and references there in). This problem involves a 

number of key subproblems [Karc., 10], which are: 

(i) The classification of process variables into potential inputs, outputs and referred to as 
Model Orientation Problem (MOP). 

(ii) Specification of effective sets of inputs, outputs on an oriented model and referred to 

as Model Projection Problem (MPP). 

(iii) Deciding on the way we couple effective inputs and outputs for control design 

purposes and referred to as Input - Output Coupling Problem (I-O. C. P. ). Most of the 

attention so far has been focused on I-O. C. P., when heuristics and diagnostic 

indicators have been used. 

For the first two problems, less attention has been given, especially from the 

Control Theory viewpoint; with the exception of the work in [Mor. & Steph., 1], [Geo. & 

Floud., 1], [Karc., 2], [Karc. & Gian., 11 on some specific problems. In this chapter we are 

concerned with the selection of the effective sets of inputs and outputs of a system, in order 
to satisfy certain criteria for the resulting transfer function, such as the system 

nondegeneracy, the nonredundancy of the input, output scheme and controllability, 

observability of the resulting model. Such problems belong to the MPP family. 

We assume, that a linearised model of the system is given, for which the 

classification of system variables (implicit variables) into systems and outputs has been 

146 



Chapter 6 Well Conditioning of Early Process Models 

already decided. At the early stages of design it is desirable to include as inputs, all possible 

variables that can be used as variables to be controlled and measured; these inputs, outputs 

are referred to as potential sets. The model that corresponds to the potential inputs, outputs 

provides the basis for deriving all subsequent models based on effective input, output sets 

and it is thus referred to as the progenitor model. The characteristic of the progenitor model 

is that all inputs and outputs are physical variables that can be acted upon and measured. 

Given that the classification of internal variables into inputs, outputs has been done mainly 

with physical, process based criteria, a progenitor model may not be well-behaving. That is 

the transfer function may be degenerate and there is redundancy in the input, output 

schemes and a number of other fundamental properties may not have good values (i. e. 

condition number etc. ). Note that a progenitor model represents all our knowledge about the 

system at a given stage of early design and the McMillan degree of the progenitor transfer 

function represents the natural order n of the system. 

System models, which are degenerate, are not good for subsequent design since 

they do not satisfy the basic condition of the output function controllability. It is thus 

desirable to select subsets of the potential inputs and outputs (by elimination of some 

elements of the potential sets), such that the resulting transfer function is "well- 

conditioned" in some sense. Amongst the basic criteria we can use are the properties of 

nondegeneracy, controllability and observability of the system model and nonredundancy of 

the input and output scheme. Any submodel that satisfies the above three properties and has 

maximal cardinality for the input and output set will be called a normal progenitor model; 

clearly, a system may have more than one such models. The problem we consider also here 

is the parameterisation and systematic construction (by avoiding listing and testing of all 

possible submodels) of the family of normal progenitor models. 

Assume that the progenitor model is described by the minimal state space 

equations: 

x=Ax+Bu , 
AEg{nxn, BE9Inxr 

y=Cx+Du , 
CE,, gxn, DE,, gxr 

(6.1) 

with a corresponding transfer function H(s) =C (s I- A)" B+DE 919 Xr (s) and let 

p =rank,, (, ) {H(s)} be the normal rank of H(s). Clearly pS min (q, r) and whenever strict 
inequality holds, then the system is called degenerate; when equality holds the system is 

called nondeQenerate. The significance of p is described below [Rosen., 1]. 
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Remark (6.1): p defines the maximal number of output variables that may be controlled 

independently (output function controllability criterion). Furthermore, p defines the minimal 

number of independent inputs required to control p outputs. 

0 

Definition (6.1): For the system S(A, B, C, D) for which r, q <_ n, we define the numbers: 

DB 

-r. =rank <_r, 
D 

r1=rank 
fC, DJ<_q (6.2) 

If rr < r, (ti< < q) the system will be said to have input (out pul) redundancy; 

otherwise, i. e. if Tr =r (ti, = q), then it will be said to be regular. 

0 
Regularity of the model is clearly equivalent to nonredundancy of both sensor and 

actuator schemes and it is desirable property, which however may not hold on a progenitor 

model. The problem we consider here is described below: 

PROBLEM: Given the progenitor model described by H(s) or with S(A, B, C, D), define: 

(i) A maximal cardinality subset of the potential input and output sets such as that the 

resulting transfer function is nondegenerate, has the maximal possible normal rank 

and it is also regular. 

(ii) Amongst the solutions of (i), determine whether there exist solutions, which have 

McMillan degree equal to that of H(s). 

(iii) Parameterise all solutions with the properties described above. 

0 
The solution of problem (i) will be referred to as well-conditioning of Progenitor 

models and part (ii) describes the property that the resulting model is both controllable and 

observable. Note that controllability and observability are notions defined on S'(A, B', C', D') 

where A corresponds to the minimal realisation of H(s). The latter problem will be referred 

to as normal conditioning of Progenitor Models. The existence of such solutions, as well as 

the parameterisation of them (when such solutions exist) will be examined here. Within the 

same classes of problems we may also consider more relaxed cases such as stabilisability 

and detectability ' [Kailath, 1] and more detailed model properties such as absence of 

nonminimum phase properties, avoidance of high order infinite zeros etc. More general 
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properties referred to as "process controllability" [Moran, 1] may be used for subsequent 

evaluations. The overall problem under consideration is the study of properties of the 

submatrices of the rational transfer function matrix H(s) obtained by elimination of certain 

sets of columns, rows. Of special interest is the definition of those submatrices H'(s), which 

preserve certain properties of H(s), but avoid certain undesirable properties. The study of 

well-conditioning is considered first. 

6.3. INPUT, OUTPUT REDUNDANCY AND SYSTEM DEGENERACY 

The notion of redundancy of the input, output map of the progenitor model is 

linked to some type of redundancy of the resulting model and it is the topic of this section. 

This form of degeneracy will be referred to simply as simple, to distinguish it from an 

alternative form of degeneracy characterised by properties of the internal mechanism and 

referred to as strong. The latter is examined in the following section. 

The unifying thing between redundancy and degeneracy is that they both relate to 

properties of kernels of transfer function, or matrix pencil models. The state space 

description S(A, B, C, D, ) may be represented in the s-domain as: 

sI-A -B x(s) Ho 
= 

I-A -B 

-C-D Y(s) -Y (S) ' 
P(s) 

-C -D 
(6.3) 

where P(s) E (n+Jx(n+r)(s) is the Rosenbrock System Matrix pencil [Rosen., 1]. 

Definition (6.2): For the system described by S(A, B, C, D), we shall denote by 
A0 

Zr =, N, {P (s)}, Ze =. N1(P (s)} the right, left null spaces of P(s). Then, 

(i) A pair of polynomial vectors x(s) E'Jt" [s], u[(s] E Tr (s) will be said to be a right pair 

and the composite vector c(s) = [x(s)`, u(s)` ]a right vector, if 

P(s) C(s) =4 (6.4) 

(ii) A pair of polynomial vectors y(s) e 9V' [s], v(s) e 9V' [s] will be said to be a left pair 

and the composite vector 4(s)` =[y(s)t, y(s)t] a left vector, if 
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4(S)` P(S) =0 (6.5) 

0 
For a right (left) pair t(s) we define by ö [g(s)] its degree. An interesting property 

of the degree is described below [War. & Eck., 1]: 

Remark (6.2): For any right pair (x(s), u(s)), left pair (y(s), v_(s)) we have that: 

a [YS)] =a [X(s)] + 1, a [v(s)] =a [y(s)] +i (6.6) 

0 
Furthermore, all right pairs (x(s), u(s)) with a [g(s)] = 0, we have x(s) =0 and 

u(s) =! I E 91'. Similarly, for all left pairs (y(s), v(s)) with ö [ý(s)] = 0, we have y(s) =0 

and v(s) =ve qj4 
. 

The above leads to the following interpretation of the significance of 

right, left constant vectors [Gant., 1]: 

Proposition (6.1): For the system S(A, B, C, D) the following holds true: 

(a) There exists a right constant vector c= [Q', u]' #0 if and only if 

[B] 
u=0, u#0 a rank 

[B] 
<r (6.7) 

DD 

(b) There exists a left constant vector 4` =[2', v']' #0', if and only if 

v`[C, D] =0`, v_` #0 a rank{[C, D]}<q (6.8) 

0 
The above readily follows from the definition and clearly establishes the presence 

of input, or output redundancy as equivalent to the existence of constant, right, or left 

vectors correspondingly. In the following we shall denote by: 

ti = dim . 
N, {P(s) }, 0= dim 

. 
NV {P(s) } 

(6.9) 

The following result establishes some interesting properties of 11,0 numbers. 

Proposition (6.2): For the system S(A, B, C, D), let ti = rank,, (, ) 
{P(s)} 

and p= rank9, (s) 
{H(s)}. 

Then the following properties hold true: 
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(i) t=n+p, where n is the number of states. 

(ii) ii =dim . IV, {P(s)} =dim . 
N, {H(s)} =r-p (6.10) 

e 
0 =dim Al {P(s)} =dim . 

N1{H(s)} =q-p (6.11) 

Proof- 

(i) Note that: 

p, (sý- 
In 0 sln -A -B I, (sI-A)' B- sIn -A 0 

(6.12) 
C(sI-Aj' Iq -C -D 0 Ir 0 -C(s1, -Aý B+D 

Thus P'(s) and P(s) are equivalent and, thus, i= rank,., (, ){P(s)} = rank,, (, ){P'(s)} = 

=n+rankm(s) {H(s)}=n+p 

(ii) From the above we have: ri =r+n-i=r+n- (n + p) =r-p =dim .N 
{H(s)}, 

9=q+n-ti=q+n-(n+p)=q-p=dim. N, {H(s) 

A direct consequence of the above lemma is: 

Proposition (6.3): The system is degenerate, if and only if: 

T =rank,, (, ) 
{P(s)} < min (n + r, n+ q) 

0 

(6.13) 

Proof: 

(i) If q? r and the system is not input regular, then . 
N, {P(s)} # {0} and thus i< n+r 

which implies degeneracy. The q<_ r case follows similarly. 

(ii) From part (i) it follows that i< n+r, i< n+q and thus r< min (n+r, n+q) and this 

implies degeneracy. 

(iii) Consider the case qzr and Ti < r, then - i, > -r and q-T, >q-r. This condition 

implies that there exists a set of q-i, linearly independent vectors {v_;, i =1,....., q- it } 

such that: 

v; [CD]_ot 

The above is equivalent to: 

(6.14) 
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[ot. tI[SI-A I]=Q (6.15) 
-C D 

and thus also to: 

rtýj 
10 v J 

sl -A -B I� (sI - A)'' B 
_0 

(6.16) 
, ; 

_C -D 0I r 

or, 

[ott][SIn-A 0 
(6.17) 

-C- H(s) 

or, 

v_; H(s) = 0` (6.18) 

Since there are q- t1 constant independent vectors in . N, {H(s)), it follows: 

dim. NV{H(s)}=q-pzq-i, >q-r (6.19) 

and thus: 

p<randp<q, i. e. p<min(r, q) (6.20) 

That is, we can use either P(s) or H(s) for characterisation of the property. 

Furthermore, degeneracy implies that both null spaces of P(s) or H(s) are nontrivial and 

degeneracy is equivalent to that possibly only one of the two null spaces is nontrivial 

(# {0} ). 

Remark (6.3): The property of degeneracy is linked to the loss of output (input) function 

controllability [Rosen., 1], [Ants. & Mich., 1] since the existence of a right inverse of H(s) 

is necessary and sufficient condition for output function controllability. Thus, 

. 
N, {P(s)} 

= 0, or . 
NV {H(s)} 

=0 are conditions for output function controllability of the 

corresponding model. 

Some relationships between degeneracy and input, output loss of regularity are 
described below: 
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Proposition (6.4): For the system S(A, B, C, D) the following properties hold true: 

(i) If q >_ r (q 5 r) and the system is not input (output) regular, then it is degenerate. 

(ii) If a system is not input and not output regular, then it is degenerate. 

(iii) Let i, = rank [C, Dl i,, = rank 
[B` D]. Then, 

(a) If q >_ r and r<<r, the system is degenerate. 

(b) If q<_ r and rr < q, then the system is degenerate. 

U 

For the pencil P(s), the right, left null spaces JVr {P(s)}, 
, 
Nt {P(s)} are characterised 

by a set of column, row minimal indices (cmi, rmi) [Gant., 1], which also here may be 

referred to as light, left indices of P(s) [Forney, 1]. Such sets are denoted by 

1PC = {s; : i=l 
.......... ij= n- p} ,I p' ={ µj: j =1.......... A =q- p} and may have tr zero cmi and 

tl zero rmi; in fact, 

tr=r - rank 
[p 

t, =q-rank 
{[C, D] }=q- r <_q-p 

(6.21a) 

(6.22b) 

The numbers tr, t, which characterise 0- cmi, 0- rmi respectively, express the 

order of input, output redundancy and will be referred to as input-, output - redundancy 

index correspondingly. The use of tr, t1 indices provides some additional insight on 

redundancy and leads to the following remarks. 

Remark (6.4): The numbers it = rank {[B`, D`]} and tii = rank {[C, D]} provide bounds for 

p =rank,, (,, ) 
{H(s)} and in particular 

p5 min (ir, ic ) 

The case of p= min (i1, 'r t) 
implies: 

(6.23) 

(a) If Tr = min (T,, te), then all indices in Ipc are zero, or the set is empty; in particular, if 

r>t, then all cmi are zero and if r= ir, then IP' is empty and the system is 

nondegenerate. 
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(b) If i1= min (i1, ti i 
), then all indices in 1, ' are zero, or the set is empty; in particular, if 

q >, r , then all indices in IP` are zero and if q=i, then I pr 
is empty and the system 

is nondegenerate. 

(c) If p= ti, = ti ' and at least one of r, q is equal to p, then clearly we have nondegeneracy 

and redundancy for the index that is greater than p. If r, q>p, then we have both 

degeneracy and input, output degeneracy. 

0 
The case where tr =r-p (t =q- p) is referred to as total input - (output-1 

irregularity. When at least one such condition holds true, this implies that degeneracy of the 

transfer function may be removed by eliminating redundancy in the corresponding part of 

the instrumentation map. The results in this section show that there is link between input, 

output redundancy and system degeneracy. The type of system degeneracy inferred from the 

input, output redundancy will be called simple. Another type of degeneracy that may exist 

even under input and output regularity is considered next; this is linked to properties of the 

internal mechanism and shall be referred to as strong de eneracy. 

6.4. STRONG SYSTEM DEGENERACY 

In the previous section, issues of degeneracy and input, output redundancy were 

examined, which are linked to zero values of cmi, rmi. Here we will consider the case of 

nonzero indices. We shall denote by Z, 
_ 

. N, {P(s)}, Z, 
_ 

, N, {P(s)} and ti, = rank [C, D], 

it = rank 
[B`, D']. The study of strong degeneracy is an issue that is linked in a certain way 

to the characterisation of infinite zeros. Such links will become explicit. The sets of indices 

Ip°, J, r associated with Zr, Z, respectively may contain nonzero indices and this is 

characterised by the following result. 

Proposition (6.5): For any system S(A, B, C, D) with r inputs, q outputs, transfer function 

H(s) and p= rank,, (, ) 
{H(s)} the following properties hold true: 

(a) The numbers p, i,, ii, r, q satisfy the conditions: 

p5Tr 5r and PStt Sq (6.24) 
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(b) The system has it -p nonzero cmi, if and only if 

P <T, <r (6.25) 

and all such indices are nonzero, if T, - =r 

(c) The system has i, -p nonzero rmi, if and only if 

p< ti t : 5q (6.26) 

and all such indices are nonzero, if ti ,=q. 

Proof. 

(a) By (6.21 a), (6.21 b) and the fact that rr <r and ii S q, part (a) readily follows. 

(b) The number of nonzero cmi is n- tr = Tr -p and such indices exist only when n- tr = 

tir-p >0. In the case where it =r then clearly tr = 0. Part (c) follows along similar lines. 

0 

In the following, we consider the case where qZr and we shall assume that (6.25) 

holds true, i. e. we have at least one nonzero cmi. This implies that there exists a right pair 

x(s), u(s), where: 

x(s) = Xo +s Xl ....... + Sk. 
l 

Xk-1 (6.27) 

Ü(s) = Uo +S U1 ....... + Sk-l Uk-1 (6.28) 

such that: 

(sI - A) x(s) =B u(s) 

C x(s) +D u(s) =0 
(6.29) 

The above lead to the following result: 

Proposition (6.6): The system S(A, B, C, D) with q; -> r and p<r has a right index with value 

k, at most if and only if there exists a set of vectors {a, ui,..., Uk, Uk ý O} 
such that the 

following conditions are satisfied: 
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AkB Ak-'B Ak-2B ... 
A2B AB B ilk 

CAk-'B CAk-2B CAk-3B ... 
CAB CB D uk-1 

CAk-2B CAk-3B CAk-4B ... 
CB D 0 uk-2 

0 (6.30) 

CAB CB D 
... 

0 0 0 1! 2 
CB D 0 

... 
0 0 0 ul 

D 0 0 
... 

0 0 0 uo 

Proof: Substituting the expressions of x(s), u(s) from (6.27), (6.28) into (6.29), we have: 

(sI-A)(XO +SXI +... +s' 
1 

Xk_i)=B(LlO +su +... +S" Llk) 

C (x +sx1 +... +s ' 
Xk-l)+D(u0 +SU1 +... +S' Uk)=0 

By equating coefficients of equal powers, it follows that: 

Xk-1 =B Uk 

X k-2 =AB Uk +B Uk-1 
(6.31) 

Xp=A"B! 1k+Ak-2BUk-, +... +ABU2+BU, (6.32) 
O=Ak BUk +Ak_1 BUk-, +... +A2 BU2 +ABu, +Buo 

CXp+Duo=O=CAk-1 BUk+CAk-Z Buk-1+... +CABu2+CBu1+Duo 

CX1+DU, =O=CAk-2 Buk+CAW Buk-Z+... +CABu3+CBu2+Du1 
(6.33) 

CXk-1 +Duk-1 =O=CBuk +DUk-1 

DUk=0 

By combining the above the result follows. 

0 

The above condition may now be used to derive conditions for non-degeneracy of 

transfer functions and thus also procedures for redesign of the system to guarantee non- 

degeneracy. For the given system, we define the following set of matrices: 

AB 
_B 

A2B AB B 

M-B, M = CB D M2= 
CAB CB D 

DD0 CB D0 

000 
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AkB A"B 
.. 

AB B 
-- 

Ck 
------------- -- 

A"'B CAk. 2B 
... 

CB D 

CAk-2B CAk-3B 
... 

D0 
AB. B 

M= ----__ (6.34) 
Nk 

CAB CB 
... 

00 

CB D 
... 

00 

D0... 00 

In terms of the above matrices, we may state some tests for nondegeneracy as 

shown below. We first note: 

Lemma (6.1): If q >_ r, then the maximal possible value of right index of P(s) is: 

(i) IfD# 0 andrank(D)=S, then&, n. =n-q+2S-1. 

(ii) IfD=0, thenc�,. =n-q-1. 

Proof: 

(i) If D#0 and rank (D) = S, there exists a pair of transformations QE qj ', RE 91', 

IQI, IRI #0 such that: 

1In 0 sI-A -B I� 0_ sI-A 
0Q -C -D 0R -QC 

where: 

QDR 
00 

]=D'QC=CIBR=B' 

-BR 

-QDR 
=Q'P(S)R'=P'(s) 

By partitioning C', B' according to the partitioning of D', we have: 

sI-A -BS ; B'r, S 
sE-A " -B P'(s)= -C8 -IS ;0= ---; ý7-+--- (6.35) 

cl -C o 

The zero structure of P'(s) [Karc. & Kouv., 1] is defined by the zero pencil 

Z(s) = sNEM - NAM, where N is a (n -r+ 2µ) x (n + S) left annihilator of 9 and M is a 
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(n + S) x (n -q+ 28) right annihilator of Clearly, Z(s) has dimension (n -r+ 2µ) x (n - 

q+ 28) and n-r+ 2µ ?n-q+ 28. For such a pencil the maximal possible value of a right 

index is when cm. +1=n-q+ 28, i. e. smallest of the two dimensions; this follows by 

inspection of the possible structure of the Kronecker form of Z(s) [Gant., 1]. Part (ii) 

follows from Part (i) for 8=0. 

0 

Theorem (6.11: For the system S(A, B, C, D) with q >_ r, the following properties hold true: 

(i) If D has full rank, then the system has no right indices of any value and it is thus non- 

degenerate. 

(ii) If D#0 and rank (D) =S<r, then the system is non-degenerate, if and only if the 

matrix Ma is full rank, where ß=n-q+ 28 -1. 

Proof: 

(i) From Proposition (6.6), it follows that if rank (D) = r, then from equation (6.30) we 

have that D uk =0' Clearly, this implies uk =0 and this in turn (from (6.30)) yields 

Du k_, = 0; again we have u k-1 =0 and by obvious induction, uk =0 for all k=0,1, 

2,.... It is now clear that since there is no u(s) and thus no x(s) satisfying (6.31), the 

system is non-degenerate. 

(ii) By condition (6.34) if there is a right index c< ti then ME has a right kernel and from 

the structure of Mk for Vkzc we shall also have 
. 
N, {M. }# {0} 

. 
Since i is the 

maximal possible value of a right index, if 
.N, 

{Mt }= {0}, then also for `d kzi 

, 
N, {Mk}= {0}, since otherwise we are led to a contradiction (existence of a right index 

greater than r ). This completes the proof. 

0 

The above results for the case of strictly proper systems have the following form. 

First, define the matrices: 

AZBABi B 
_ 10= [BIM, = 

ICB ö 
M2 = CAB CB 0,... 

AB, _ --------- 4- 

CB 00 

158 



Chanter 6 Well Condifioninj of Early Process Models 

AkB 

CAk4B 

CAk-ZB 
..., 

Mk 

CAB 

CB 

A2B 

CAB 

CB 

0 

0 

AB1B 
-----I-- 

CB; O 

'0 kB 
...... 

A2B AB IB 0 
-------- ---------- ý-- (6.36) 

Nk ;0 

00 

00 

Theorem (6.1) leads to the following corollary: 

Corollary 6.1): For the system S(A, B, C) with q >_ r, the following properties hold true: 

(i) If CB is full rank, then the system has no right indices and the system is non- 

degenerate. 

(ii) The system with CB rank deficient is non-degenerate, if and only if the matrix M_., is 

full rank, where i'=n-q-1. 

Proof: 

(i) Clearly, we have that there exists a 0-right index if the matrix 
[B`, 0] ̀ or equivalently 

B looses rank. However, if rank (CB) = r, then it is necessary that rank (B) = r, 

because, otherwise 3 v: v# 0 and B y= 0 -* CB v= 0 and this leads to a contradiction. 

Thus, there is no 0-right index. Following similar arguments to those in the proof of 

the Theorem, it follows that there is no other index of any value k. 

(ii) Part (ii) follows along similar lines. 

0 

The results in this section provide criteria for a type of degeneracy, and thus loss of 

output function controllability, which depends on the models, inner structure and will be 

referred to as strong degeneracy. The distinction between the simple and strong type is the 

nature of associated indices, that is zero and non-zero respectively. Note that the 

characterisation of this type of degeneracy is based on the right nullity properties of 

matrices Mk, Mk 
, which have as integral parts the matrices Nk, Nk introduced by the 

partitioning of Mk, Mk as indicated by (6.31), (6.36). These matrices are of the Toeplitz 

type and their right nullity properties are linked to the characterisation of state space infinite 

zeros of the system [Karc. & Hayt., 1]. The state space characterisation of infinite zeros of a 
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system S(A, B, C, D) (based on the notion of infinite elementary divisors of the associated 

system matrix P(s)) leads to a result that shows the links between strong degeneracy and 

infinite zeros. 

Let us denote the following sequence of matrices for the system S(A, B, C, D): 

D00... 00 

0 
CB D000 

rD_ Qo = `DI Q, - CB D 
Qk = CAB CB D00 

CAk IB CAk-'B 
... 

CB D 

and for the strictly proper case the sequence: 

CB 0 
... 

0 

_r 
1 CB 0 CAB CB 00 

Q1=LCB1Q2= ,....... 
Qk= 

CAB CB 
CAk-IB CAk-2B 

... 
CB 

(6.37) 

(6.3 8) 

If we denote by y; = %(Q; ), y; 
=% rQ; ) 

the right nullities of the above matrices, then 

we have the following characterisation of infinite zeros: 

Theorem (6.2): Assume that S(A, B, C, D) is nondegenerate and let H(s) be the 

corresponding transfer function. Then, 

(i) The sequence J,, = {Yo, Yj, """, Yk, """} 
is a Piecewise Arithmetic Progression [Vard. & 

Karc., 1 ], that satisfies the relationship: 

2Yi z Y; -I 
+ Y1+i i=0,1'... Y_, =0 (6.39a) 

and the singular points, defined by those i for which: 

6= 2y-y1... 1-y11 > 0, i=0,1,2,.... (6.39b) 

characterise the degrees of infinite elementary divisors (ied) of P(s) and S; denotes 

their corresponding multiplicity. 
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(ii) If fr1 
,i=1,2,... t, 

I is the set of ied of P(s), then the orders of infinite zeros of H(s) 

are defined by the nontrivial elements (; 60) of the set 
{e11 

: q; = q; -1, 

Proof: For nondegenerate systems, the systems matrix pencil P(s) is right regular and thus: 

P(s) - 
sI-A -B1 

-s 
I 0]_[A B 

_sF-G 
-C -D 00CD 

The infinite elementary divisors (ied) are characterised by the properties of the 

right nullities of the following sequence of Toeplitz matrices defined on the pair (F, G) 

[yard. & Karc., I], [Karc. & Hayt., I]: 

F0... 00 

F0 
GF... 00 1' 

F 
......, 

Too _ (6.41) 
GF 

00... F. 0 

00... GF 

D 

If we denote by rlk=rlr(TC) the right nullities of the Tk,, matrices and by 

(6.40) 

A 

yi =ijr(Q; 
), then we have the following relationships: For k=1, t1ý(T,, 

)= 
r=m; For k=2 we 

have: 

I 0; 0 

=[F 
0 0_0; 0 

T°° 
GFA BSI 

C D; 0 

oI fi 0 o: o 
O 

equivalent 
0I0 110 

_ 
TZ 

0_0_D4,0 

0000; 0 

(6.42) 

and thus: 

1l, 
(T. 2)=ij, kT. 

ý=iI, (Q. )+r=%(D)+r=112 
=Yo+r (6.43) 

For the general Tý 
, 

by using elementary column and row operations it is readily 

shown that for k>2 we have that T, may be reduced to the following equivalent matrix: 
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IýI 

0 
'II 

__ , 
D 

Tk 
=0 

0= 
Iýi0 (6.44) 

CB D 
... 

0 
---ý---- 0 I 

Qk-2 

k-3 k-4 D CA B CA B 
... -------------- l--------------0 

and thus: 

11ý(Tr)= r1r 
(Tc)= 

Tlr(Qk"2)+ r= 112 = Yk. 2 +r (6.45) 

0 
Clearly, ' [yard. & Karc., 1], {1k} is a piecewise arithmetic progression and thus 

also the {y; } sequence. The singular points of the {lk}, or sequences define the degrees 

of ied of P(s). The relationship between degrees of ied and orders of infinite zeros of H(s) 

(part (ii)) is a known result established in [Karc. & Kalog., 1]. 

Remark (6.5): The sufficient conditions for avoiding strong degeneracy, i. e. D full 

rank (proper systems), CB full rank (strictly proper systems) imply that the sequence J. is 

{0} for the proper case or J. = 
{rk, k =1,2,.... 

}, i. e. arithmetic progression for the strictly 

proper case. In either case the transfer function H(s) has no infinite zeros (in the algebraic 

sense). 

0 
The above suggests that the sufficient conditions for avoiding nondegeneracy i. e. 

D, or CB full rank, have the additional property that they force the corresponding transfer 

function not to have infinite zeros. Such systems have the advantage that they can be 

controlled in a relatively simple way. 

6.5. NORMAL CONDITIONING OF PROGENITOR MODELS 

Given the progenitor model described by the transfer function matrix 

H(s) E'Ji9X'(s) and with a McMillan degree n, there is always a minimal realisation 

S(A, B, C, D). It is this model which represents our entire knowledge for the system. By 
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deleting a subset a of inputs and a subset ß of the outputs we obtain a resulting system 

S(A, Ba, Cß, Da, p); this model may be well conditioned (nondegenerate and input, output 

regular), but it may not necessarily be controllable and observable. Clearly, the standard 

tests for controllability and observability on all possible system representations 

S(A, Ba, Cß, Da, p) may be used, but the procedure is rather cumbersome. Here we shall use 

alternative tests based on the McMillan degree, which may combine with the conditions for 

nondegeneracy in a more natural way. We note first the following standard results from 

linear systems [Ants. & Mich., 1], [Kailath, 1]. 

Lemma (6.2): Let H(s) be transfer function and S(A, B, C, D) be a realisation of H(s). 

S(A, B, C, D) is a minimal realisation of H(s), if the McMillan degree of H(s) is: 

SM (H) = Of IsI 
-AI 

1. 

Using the above result we note the following: 
0 

Proposition (6.6): Let H(s) be a transfer function, S(A, B, C, D) the corresponding minimal 

system and H«ß(s) be the submatrix defined from H(s) by eliminating the a set of inputs and 

0 set of outputs. If S(A, BQ, Cp, D,, p) is the resulting system, then it is minimal if and only if 

SM(H) = SM(Haß) 
. 

Proof: The subsystem S(A, Ba,, Cp, DQp) has dimension of its state space equal to SM(H) 
. 

If 

the corresponding transfer function Haß(s) has SM(Haß)<SM(H), then clearly it is not 

minimal. If SM (Hai) 
= 6M (H), then Lemma (6.2) is established. 

0 
The result follows directly from Lemma (6.2) and the construction of Ha, p(s), or 

S(A, Ba, Cp, Dap). We now consider the state space characterisation of the McMillan degree, 

which is established as shown below. Let us consider the Laurent series expression of H(s) 

[Ants. & Mich., 1], i. e. 

H(s)=Ho+II(s)=Ho+H1"s''+H2"s'2+H3"s'3+.... (6.46) 

where H(s) is the strictly proper part and the qx r real matrices Ho, Hi,... are the Markov 

parameters where: 
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Ho = D, H; = CA'-'B, i =1,2,..... (6.47) 

The Hankel matrix MH(izj) of order (ij) corresponding to the Markov parameter 

sequence H1, H29.... is defined as the iq x jr matrix given by: 

H, H2 
...... 

Hj 

o H2 H3 
...... 

H; 
+l MH(i, j»= 

Hi Hi, l ...... 
H; 

+; -l 

(6.48) 

Lemma (6.3) [Ants. & Mich., 11: The McMillan degree of the transfer function H(s) is the 

rank of MH(v, v), where v is the degree of the least common denominator of the entries of 

H(s). 

0 

By computing the least common multiple (lcm) of the entries of H(s), say dH (s), 

then v= a{dH(s)}. Using the Markov parameters (CB, CAB,.... ) we may define the matrix: 

CB CAB 
...... 

CAv-'B 

zv 
M1, (v. v)o =MH - 

CAB CAB 
...... 

CAB 
(6.49) 

CAv-'B CAVB 
...... 

CA2V-'B 

Clearly, rank{MH}= SM(H) and a searching procedure for the submatrices Hq(s) 

with the same McMillan degree with H(s) can be defined as indicated below: 

Definition (6.31: Let {CB, CAB,..., CAkB,... } be the Markov parameters associated with the 

H(s) progenitor model, a= be a set of indices characterising inputs of the 

(1,2,..., r} set and be a set of indices characterising outputs of the (1,2,..., q) 

set. We shall denote by CpAkBa the submatrix of CAkB obtained by eliminating the a set of 

columns and ß set of rows of CAkB. We define as the MHgp Hankel submatrix of M; the 

matrix: 
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CßBa CßABa ...... 
C, A"-'Ba 

M" _ 
CßABa CpA2Ba 

...... 
CDA"Ba 

(6.50) 
Hqp 

CDAv-'Ba C, A"Ba 
...... 

CPA2v-1Ba 

0 

Using the matrices MH0. 
ß 

we may now state the following result. 

Corollary (6.2): Let S(A, B, C, D) be a minimal realisation of H(s) and S(A, B,,, Cp, Da, p) the 

subsystem obtained by deleting the a set of inputs and ß set of outputs. The subsystem 

S(A, BQ, Cp, Da, p) is both controllable and observable, if and only if 

rank 
(MH) 

= rank(MHgß (6.51) 

0 

The above result readily follows from Proposition (6.6) and Lemma (6.3). This 

result may be used to formulate the basis for a searching method for controllable and 

observable subsystems of H(s). 

Remark (6.6): For strictly proper transfer functions H(s), a search for maximal rank M,, 
q, 

submatrices of MH which is based on a full rank CpBa, guarantees nondegeneracy, no 

infinite zeros and minimality (controllability and observability) of the resulting subsystem. 

0 

6.6. WELL CONDITIONING OF TRANSFER FUNCTIONS: SELECTION 

PROCEDURES AND PARAMETERISATIONS 

The results in the previous sections provide criteria for selecting subsystems of 

H(s), or P(s) which satisfy the input, output regularity requirements and the conditions for 

non-degeneracy. Although, input, output redundancy may imply degeneracy, input, output 

regularity does not guarantee non-degeneracy. Guaranteeing non-degeneracy may be 

achieved by using the sufficient conditions based on the D, CB matrices, or testing 

selections using the full rank tests based on M, M.,, matrices. Note that conditions based on 

M, Mt, are not easy to use for making initial selections, which are made using input, 
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output regularity as a selection criterion. Two different strategies for model selection can be 

made: 

(I) Direct Method: Selection based on sufficient conditions. 

(II) Indirect Method: Selection based on input, output regularity and search for 

nondegeneracy. 

6.6.1. DIRECT METHOD FOR WELL-CONDITIONING 

We assume that q >_ r and that the S(A, B, C, D) model is degenerate. If the system is 

proper, D#0, then degeneracy implies that D is rank deficient and if the system is strictly 

proper, then necessarily CB has to be rank deficient. 

Remark (6.71: If the system S(A, B, C, D) with qzr is degenerate, a redesign procedure 

leading to with 5 full rank guarantees the creation of a system which is non- 

degenerate and has full rank input and output structure. 

U 

Remark (6.8): If the system S(A, B, C) with q >_ r is degenerate, a redesign procedure 

leading to S (A, B, C) with CB full rank guarantees the creation of a system which is non- 

degenerate and has full rank input and output structure. 

0 

The meaning of redesign of D, or CB is that we aim to define a maximal subset of 

the columns of D, or CB that guarantee the maximal full rank property. This procedure is 

clearly sufficient, but not necessary and leads to a system of smaller dimensions, as far as 

input, output structure is concerned. Note that we would like to achieve this selection 

without transforming the matrices D, CB, since it is desirable to keep the physical variables 

involved in the original model. This leads to the following definition. The redesign problem 

clearly, becomes trivial, if general input, output coordinate transformations are used. The 

problem under study here is important only when we want to retain the original set of 

physical variables. In the following we shall use the definition: 
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Definition (6.4): Let T=[t,, t2,..., tr]E911, q>_r with rank(T)=p<min(q, r). Any p- 

subset of the set 
{; 

,iE r} of columns that is linearly independent is said to form a natural 

basis for the space colsp {T}. If the set {t;, iE r} is normalised 
1It; II =1, iE r}, every natural 

basis has a measure of orthogonality ß and thus every natural basis t1 } may be 

referred to as a a-natural basis. The natural basis with the highest degree of orthogonality 

will be called a proper basis of colsp (T). 

0 
The selection of a proper basis for a set of vectors has been previously addressed in 

algebraic computations [Mitr. & Karc., 1] as a problem of selection of "best uncorrupted 

base" and an algorithm for achieving this has been introduced. In the above definition an 

important ingredient is the notion of orthogonality of the set. This may be introduced using 

the notion of the Grammian [Gant., 1] or condition numbers. The former is used here. 

Definition (6.5) [Gant., 11: Let X1 , x2,..., xm be vectors E 91'. The matrix defined by: 

(Xlf? {1ý \XifX2ý ... 
(? 

' mý 

ýJ = 

X2,20 OX2' X2), 
... 

(X2, Xm) 

\Km9 K]) ( 
m' 

X21 
""" 

( 
m, 

Xm) 

(6.52) 

where (, ) denotes inner product, is called the Gram matrix of the vectors XI 9x29..., xm and 

the determinant Gm =G (X 1Ix2'... ' 2 im) = IGI is called their Grammian. 

0 

Note [Gant., 1] that the vectors xxm are linearly independent, if and only 

if their Grammian is nonzero; in general, we have that IGI z0 and the following property 

holds true (Hadamard's inequality): 

G (X1, X2)..., Xm) :! ý G(Xi) 
" 

G(X2) 
"... " 

G(Xm 
(6.53) 

Note that G(x; ) = Ilx; 112 and if the vectors are of unit length (i. e. 

Ii 112 =1, i=1,2,..., m), then 

0SG iXý X2 ý..., xm) <_ 1 (6.54) 
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Remark (6.9): An alternative test for closeness to normality of a normalised selected set 

with a basis matrix A, can be based on the condition number of the corresponding matrix. In 

fact, the deviation from unity of the 11.112 condition number is a measure of proximity to 

orthogonality. This number measures the elongation of the hyperlipsoid associated with A 

i. e. 
{Ax: 11x1I2 =1}. 

U 

We will use the Grammian as the criterion for selection of natural bases with 

degree of orthogonality greater than a given number a (0 <a <_ I). A procedure for such 

selection will be described later on and will be referred to as natural basis selection. The set 

of all natural bases with orthogonality a: a <_ a <_ 1 will be called the L} 
- set of natural 

bases. We may now summarise the selection procedure as follows: 

DIRECT METHOD FOR WELL-CONDITIONING 

E J39x` 
, 

Let T= [t, 
,t2,., ir]q >_ r be a matrix that may represent D, or CB, 

p= rank {T} and assume all its columns to be normalised (i. e. Ilt; II =1). The selection of the 

well-conditioned model involves: 

STEP (1): Select an acceptable order of orthogonality a, and using the natural basis 

selection we define {ß} 
- set of matrices 

{Fa 
: T. = 

[t;, 
, t,, ,..., t i, 

] 
E'l II such that the 

corresponding set has orthogonality degree azcy. 

STEP 2: For every set of indices a= (il, i2,..., iP) associated with the {a}- set of matrices 

{Ta}, define the subsystems having as inputs those 

corresponding to the set a= ('19'2 
,..., 

i, ) of indices defined before. This procedure leads to 

a set of systems {Ha (s), a} for which Da, or CBa is a matrix with orthogonality order 

at least a. 

0 

The above procedure produces submodels, which are always non-degenerate and 

are input, output regular. However, it may lead to systems with unnecessarily small numbers 

of inputs (outputs), if rank of D, CB are small. The second approach aims at avoiding such 

problems. 
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6.6.2. INDIRECT METHOD FOR WELL-CONDITIONING 

The second approach is based on the selection and parameterisation of all subsets 

of inputs and outputs for which input and output regularity is guaranteed and then testing for 

non-degeneracy using the tests derived before. Once we rely on the selection of natural 

bases for selecting the suitable input, output sets of variables. For the progenitor model 

S(A, B, C, D) we denote by: 

t 
91 

F=D= [f1, f 
Z,..., 

f 
r]E 

J3(a+°)xr, G= [C, D]= E Jlgx(n+r) (6.55) 

c gq 

and let rank (F) =ir5r, rank (G) =i1Sq and rank 9, (s) 
{H(s) }=p. Without loss of 

generality we may also assume that the columns of F and the rows of G are normalised. 

Definition (6.5): For the matrices F, G we shall denote by: 

(F) =6' 
{Fß 

: Fß= f;,,.., fi Egi(q+n)xt,, ß=Jt, ) 

°`t, x(n+r) 11 
(6.56) 

{G}= Gr : Gr =91 ,Y 

the set of all submatrices of F, G which correspond to the natural bases of F, G respectively. 

The subsets of {F}, {G}, which have a degree of orthogonality greater or equal to some 

value L}, will be denoted by {F}a, {G}a correspondingly. The set of sequences defined by: 

OF 
ý {v ß: ß no 

= 
{d y: y= (1,,... 

s 
1Tý )} (6.57) 

characterising the natural bases of F, G will be referred to as the characteristics of F, G 

respectively. For every ßE S2 
F and ye SZ 

ý we shall denote by S ß. r 
(A, B, C, D) the 

subsystem of S(A, B, C, D) corresponding to the (3 set of inputs and y set of outputs. 

0 

Remark (6.11): For proper systems S(A, B, C, D), D# 0, the subsystem S,,, (A, B, C, D) that 

corresponds to some 0E S2 
F and ye fl G is not necessarily input and output regular. This 
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The above indicates that progenitor models may be classified as shown below: 

implies that the process of selecting sets ßEnF and yE S2 G to guarantee input and output 

regularity are not always independent. In fact, although we can always make the system 

input regular with cardinality i1, or output regular with cardinality r,, achieving both may 

not be possible. 

Definition (6.6): Given a system S(A, B, C, D) we say that: 

9 

(i) It is input-output independent, if an selection of the maximal Tr number of 

independent inputs does not affect the selection of the maximal number r, of 

independent outputs and vice versa; otherwise, it is called input-output dependent. 

(ii) It is called input-output regularisable, if for at least a0e SZF there is ayE 92 G such that 

the subsystem S ß, Y 
(A, B, C, D) is input, output regular; otherwise, it is called input- 

output non-regularisable. 

0 

The above notions are important in the construction of well conditioned systems 

are examined below: 

Proposition (6.8): The system S(A, B, C, D) is input-output independent if the following 

conditions holds true: 

rank [C, D] = rank [C] 

rank [B`, D`]=rank [B`] 

(6.58) 

(6.59) 

Proof: If rank [C, D] = rank [C], then any selection ßE SZF produces some Dp submatrix 

and rank [C, Dß] = rank [C, D]. Thus, any choice of yE S2,, based on the properties of rank 

of C leads to system Sp, r that is input, output regular. 

0 

Remark (6.11): A strictly proper system S(A, B, C, D) is always an input-output independent 

system. Furthermore, any input-output independent system is' always input-output 

regularisable. 

0 
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An input-output dependent system, may, or may not be input-output regularisable. 

The selection of the maximal number of inputs, outputs in order to guarantee input and 

output regularity is more complicated and requires a searching method that will be described 

below. We first note: 

Remark 6.121: For any progenitor model S(A, B, C, D) the maximal number of inputs and 

outputs required to guarantee input and output regularity is ir, ii respectively. These values 

can always be achieved for input-output independent systems, but not necessarily for the 

case of input-output dependent, where they act as upper bounds. 

0 
The problem of determining the maximal values of cardinality of inputs, outputs, as 

well as the parameterisation of the corresponding family of systems is considered below in 

an algorithmic manner. The overall family of such systems will be denoted by (f) and every 

subfamily, with (r', q') input, output cardinality (which is input-output regular) will be 

denoted by (f) 
r q, . 

(f) will be referred to as the input-output regular family and can always 

be partitioned as a union of subsets with different indices (r', q). 

Searching Algorithm for determining the input-output regular family <P> 

Consider the progenitor model S(A, B, C, D) and let 

it =rank [B`, D` ]=r, i, =rank [C, D] =q and assume for the sake of simplicity of 

presentation that r<4. Defining (f) and the corresponding indices (r', q') involves the 

following: 

CASE (I): Input - Output Independent Systems 

For this case the maximal cardinality is (, q) and the family of (f }r 
q systems is 

constructed as: 

Maximal Cardinality Family: Consider the sets of indices flF = {3 
= O1,..., i? )}, 

nG = 
{y 

= (1,14)). If Bp, C1, Dß, 
ß, 

denote the submatrices corresponding to these indices 
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then for `d ßE nF and VyE SZG the subsystem S(A, Bp, CT, Dp, 7, ) is a maximal cardinality 

(F, q) input-output regular subsystem. - 

CASE (II): Input - Output Dependent Systems 

For this case the search involves a number of steps: 

STEP (1): For all ßE SZ F 
define the submatrices Dp corresponding to the set ß of columns, 

qp = rank [C, Dp], and let: 

q, =max{gß, `dßEc2F} (6.60) 

(a) q, =q: Then the search stops and the maximal number of inputs, outputs that 

guarantee regularity is (, q) and the system is input-output regularisable. For this 

case the parameterisation of the family is done as follows: 

Maximal Cardinality Family: Let 11 be the subset of sequences of Q for which qß =q. 

For every such ßEU we shall denote by {y(ß)} all sequences in f)G, which correspond to 

natural bases of G row space. Thus, we define the set of sequences 

0G {((3, 
y) bßE S2F and ye y{ ß}} and for all 

(ß, 
y) e fl F ,G 

the maximal cardinality (r, q) 

regular family is defined by S(A, Ba, C7, Dp, 
y). 

(b) q, <q: Then the system is not input, output regularisable and (r, q, ) is a maximal 

number of inputs solution. The corresponding family of solutions with (-r, q, <q) 

cardinality is constructed as before. 

If a reduced input cardinality and increased output cardinality is desirable, then we 

proceed to the following step. 

STEP (Q: For the matrix F, define all sets of i -1 independent vectors of the columns of F 

(lexicographically ordered), denote this set by {F} 1 and let the corresponding indices be: 

nF =4 :P =00-J74)) (6.61) 
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For the set W repeat STEP (1) and this leads to a new solution pair (r 
-1, q2 ) 

where q2 >_ ql. The construction of the corresponding family of subsystems follows along the 

lines described in STEP (1). 

The above algorithmic procedure defines the maximal cardinality for input, output 

regularity, as well as producing a parameterisation of (f), 
', 

family, as well as families with 

orders less than (r-, -q-). We can now proceed to the description of the overall methodology 

for well-conditioning using the Indirect Method. 

Indirect Method for Well-conditioning 

For the system S(A, B, C, D) we define the maximal cardinality pair (, q) for 

which input, output regularity is guaranteed and let (f), 
q 

be the corresponding family of 

input, output regular models parameterised by pairs of sequences (. y) 6 S2 
F, G with 

The general element of this family is denoted by 

Sß 
YS 

(A, Bß, C1, Dß, 
7 
). For each Sp,, we proceed with testing as follows: 

STEP (1): If Dp, 7 #0 and rank (Dp,, ) = min (-r, -q) or Dßy=0 
and rank (C 

rB ß) = min (, q) 
, 

then system is degenerate and the search stops. 

STEP 2: If Dp, r #0 and rank (Dp,, ) < min (r, q) 
, or Dpr=0 and 

rank (C1, Bß) <min (-r, q), then test for full rank of the Toeplitz matrix, or respectively 

Toeplitz matrix M,.. If MT, M,. are full rank, then the system is nondegenerate and the 

search stops. Otherwise, the system is degenerate and we proceed to the testing of another 

Sp,, subsystem. 

STEP M: If all elements of (f), 
', 

have been tested for degeneracy and there is no element, 

which is nondegenerate, repeat the analysis of Steps (1), (2) for the smaller order family 

(f ) 
_ý q etc. The overall procedure always leads to a nondegenerate system. 

0 
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The system of, q) -maximal cardinality subsystems, which are input-output 

regular and nondegenerate, will be denoted by (f) ° r, q and tP FG will denote the 

corresponding pairs of (ß, y) sequences. 

6.6.3. SELECTION OF NATURAL BASES 

The analysis presented so far is based on selection of all possible natural bases and 

frequently that subset that satisfies certain orthogonality conditions. The construction of 

such bases is considered here. Let T= L11 
9t2,. -., t jr eR aX` 

,q >_ r with rank (T) = p, p< min 

(q, r). The set of all natural bases from the set {t I9 12 ,..., ir 
)may be constructed as follows: 

Construction of Natural Bases 

Let C,, (T) e `9ýx`Pý denote the p- th compound matrix of T [Marcus & Minc, 1] 

and let CO = 
[i1, i21 

... lip 
]E Qp, be the sequences characterising the columns of Cp (T), i. e. 

t;, n ... A tip (6.62) 

where t 
.n=t;, n ... A t;, denotes exterior product of the corresponding vectors. If T p,, 

denotes the subset of Qp, r that corresponds to nonzero vectors t, n, then any set 

lip : tQ, A# 01 is a natural basis. This produces a parameterisation of all such bases in 

terms of the sequences of ` p, r. 

Selection of Natural Bases with Given Orthogonality 

The set Tp,, of sequences of Qp, r parameterises all proper bases. However, different 

bases may have different orthogonality properties. Without loss of generality we may 

assume that the columns of T are normalised, i. e. Ilt; 11 =1, `d i c: r. If we use the value of the 

Grammian as the measure of orthogonality, a classification of the natural bases may be 

achieved using the following result: 

Proposition (6.8): Let T= hl, t2,..., tr] E 91q-', Ilt; II =1, Vi E r, p= rank (T) <_ min(r, q) and let: 
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G=G (tI,..., tr)= T` TE g2rxr (6.63) 

be the Gram matrix of the vectors Lt, 
,t2,..., tr} and let 

(r Xr 

Co (G) = Cp (Tc T) E 
lPý v= °ýýý (6.64) 

be the p- compound of G. The diagonal elements c;; correspond to all sequences 

CO = 
(il,..., iP )E QP, 

r and represent Ilt. All. In particular: 

a) c;; = 0, if tw A= 0, i. e. t1 } dependent. 

b) c;; > 0, if t. A# 0, i. e. {t;. ,..., tp } is a natural basis. 

c) The element with the maximal value c* corresponds to a sequence co i') E ̀ I' Pr 

which characterises the most orthogonal natural basis of T. 

0 
The above result readily follows from the definition of the Grammian and the 

interpretation of the Binet - Cauchy Theorem. Clearly by inspection of all the 
r diagonal 
P 

elements of Cp (G) we can order all natural bases according to degree of orthogonality. 

6.7. CONCLUSIONS 

The problem of selecting subsystems of a progenitor model S(A, B, C, D), or H(s), 

which have maximal input and output cardinality, are input-output regular and are 

nondegenerate has been considered in detail. We have given criteria for the presence of 

input, output redundancy and system degeneracy, and developed procedures for how we can 

avoid such properties. The results lead to parameterisation of all subsystems, which are 

input-output regular and nondegenerate and have maximal cardinality (, 'q) 
, and leads to 

the family (f) ° -F, q . 
Every system in (f )° -f, q has -j-inputs and 4-outputs and it is 

parameterised by a set of sequences (ß, y) E `Y FG 
defining the subsets of inputs and outputs 

that have to be considered. Every element S(A, Bp, CT, Dp, 
y) E (f)°i 

,q 
does not necessarily 

have a structure that is desirable, as far as other properties are concerned. In fact, Sp,, may 
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be either uncontrollable, and/or unobservable and other properties may not hold true. This 

family (f)°-f, 4 may then be used as the starting point for additional investigations and 

conditions based on properties of Hankel matrices are given which also guarantee 

controllability and observability for the resulting system. An additional advantage of the 

current procedure is that the sufficient conditions for avoiding strong degeneracy also lead 

to systems which have no infinite zeros and thus to models with a simple structure. 

Searching for conditions, which lead to systems with minimum phase characteristics, as 

well as making the search for minimal subsystems more systematic are problems for future 

research. 
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Chapter 7 

THE FORMATION OF COMPOSITE SYSTEMS AND THE ROLE OF 

INPUTS AND OUTPUTS 

7.1. INTRODUCTION 

The area of Composite Systems is one of the important aspects of Large Scale 

Systems Theory. The composite nature of the problem implies that the system is formed as a 

synthesis of subprocesses according to some interconnection rule, frequently referred to as 

process flowsheet (layout) and which acts as a progenitor of the underlined graph (derived 

when we specify the subprocess models). It is the composite nature that makes the overall 

process model, not an amorphous input-output model, but one reflecting the nature of 

subprocesses and the process flowsheet. The latter provides the first of the two aspects of 

the model system structure, the second being those referred to as structural invariants. The 

study of relationships between subprocesses and overall processes on the level of models 

and system properties has been an area of interest for many application areas. The way 

subprocesses enter the composite structure, in terms of interconnecting local variables 

(subsystem connecting inputs, outputs and effective control inputs and measured outputs) 

affects drastically the overall properties of the composite system. Most of the previous work 

[Saeks & DeC., 1], [Vid., 1] deal with the study of properties of composite systems without 

seeing the interconnection scheme and the selection of local input, output structure as design 

parameters. A first attempt to link model composition to feedback was made in [Call. & 

Des., 1] and subsequently developed in [Kart., 9]. Problems connected to the local input, 

output structure selection are referred to as Model Composition Problems (MCP). A general 

scheme that addresses interconnection rules and local selection of inputs, outputs 
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simultaneously and which treats both issues as an equivalent control problem will be 

presented later in this thesis. The overall emphasis is to address issues of subsystem input, 

output selection, which are linked to the given interconnection rule. 

In this chapter, we will extend recent results on the feedback interpretation of the 

creation of composite systems [Karc., 10] by developing the notion of completeness of the 

representation and developing further tests, which may characterise issues of deviation from 

completeness. The role of selection of subsets of inputs and outputs in structures, which are 

partially fixed, is considered here by examining some boundary cases corresponding to the 

total loss of variables at the subsystem level. The general case is shown to be equivalent to a 

generalised input, output squaring down [Karc. & Gian., 2] for which the exterior algebra 

framework may be deployed. 

7.2. PROBLEM, DEFINITIONS AND BACKGROUND 

Composite systems are synthesised by connecting subprocesses (subsystems) 

according to rules, which are expressing an interconnection topology and, frequently, these 

rules are expressed by graphs. In recent years, [Cal. & Des., 1], [Karc., 9], [Will., 1], there 

has been some re-emergence of interest in understanding the evolution of properties of the 

composite systems. Our approach, here, follows the framework and objectives set up in 

[Karc., 9] and [Karc., 10] and aims at developing an understanding of the evolution of 

system properties as a function of: 

(i) Properties of the subprocesses. 

(ii) Properties of the interconnection graph. 

(iii) Local selection of inputs and outputs (subsystem level). 

It is a further objective to develop a representation that will allow the 

understanding of evolution of system properties in the following additional cases: 

(a) Evolution from early to late stages. 

(b) Variable complexity of modelling of physical streams. 

The above two problems are linked to the study of operability in Early - Late 

Design of chemical processes, where there is interest in evaluating system properties on the 
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basis of a given stage model and predict such properties on following stage models, when 

the topology remains the same, but more detailed subprocess models are used. The work, 

here, is based entirely on linear models of the state-space, transfer function, or MFD type of 

representation. 

We have seen in Chapter 5 that the implicit description of a system (state-space 

matrix pencil or polynomial - autoregressive) is natural, as far as describing the process 

itself, with no reference to its environment and makes no classification of implicit variables 

into inputs, outputs and internal variables. However, when interactions with a certain 

environment are considered, then an orientation is introduced and it is primarily defined by 

the nature and properties of the environment. Such an orientation will be referred to as a 

natural orientation and its main characteristics are introduced in the following diagram: 

System Input System Output 

Causes: eS Influences: z 

dimension: {p} dimension: {m} 

State Vector: x 

dimension: {n} 

Figure (7.1 a): System and its input-output structure 

The above figure implies, a certain causality, in the sense that certain internal 

variables (represented by rates of internal variables) are affected by external causes and 

internal variables themselves influence events and behaviour outside the system variables 

and, thus, become causes for other events external to the system. This leads to the following 

extended definition of system inputs and outputs, which will be used in the subsequent 

developments. 

The vector e expresses all variables or combinations of internal variables, which 

are, influenced by external to the system causes and it will be called input causes vector. 

The vector z expresses all internal variables or combinations of them, which affect or act as 

causes for events outside the system and it will be called output influences vector. 

Note that e is assumed to be p-dimensional and includes variables, which are 
independently assigned (usual inputs) and variables with specific behaviour determined by 

external influences due to interactions with other systems (other system influences), or of 

the noise, disturbance type. We may express e as: 

Causes: e Influences: z 

dimension: {p} dimension: {m} 

State Vector: x 

dimension: {n} 

Figure (7.1 a): System and its input-output structure 
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w(u, d, f) (7.1 a) 

where u denotes the vector of independently assignable inputs (normal control inputs), d is 

the vector of possible disturbances and f is a vector expressing influences from subsystems. 

For the linear case, we may express (7.1 a) as: 

e= Lu+Td+f = u+f (7.1b) 

where LE RP"', TE RPX° and fe RP 
. 

In the following, we shall restrict ourselves to the 

case, where there are no disturbances (i. e. d= 0) and that f is generated by different 

subsystem influences. Similarly, if z is the m-dimensional vector of system output 

influences, then the vectors of measurements w and command variables y (to be 

controlled), may be expressed as: 

y=p(z)ER9, w=i(z)ERQ, q, v5m (7.2a) 

and for the linear, non-dynamic case, we may express them, as: 

y=Kz, KERQx", w=Pz, PER"' (7.2b) 

The above discussion suggests that the system may be viewed in a more explicit 
form as: 

U 

d 

X 

Figure 7.1b): System and its detailed input-output structure 

Y 

W 

The system defined by the triple (S, z i, z) is referred to as a progenitor s, em and 

will be assumed to be of the regular state-space type and will be denoted by: 
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x=Ax+Be 
S(A, B, C, D) : 

z= Cx+De 
(7.3) 

Its transfer function matrix G(s) E Rm (s) 
, will also be referred to as pro genito 

transfer function. 

Remark (7.1): The progenitor system S(A, B, C, D) is defined on the basis of general input 

causes and system output influences and it is not the system that can be used necessarily for 

control design. It is the physical nature of the process that is manifested by the system, with 

its natural flows, that defines the properties and structure of the associated models. The 

definition of such a system implies some ability, knowledge of how the system may be 

embedded in its environment. 

U 

Given that the embedding of a system in its environment is defined by physical, 

operational considerations, the resulting system S(A, B, C, D) or its transfer function may not 

be well conditioned. In fact, S may be singular, uncontrollable, unobservable, degenerate 

etc. In the following, we shall assume that the resulting system is of regular state-space type. 

Clearly, systems and transfer functions from the inputs u and command outputs y, may be 

defined using the primary model introduced by the progenitor system. 

Definition (7.1): Consider a set {}= {S; (A;, B;, C;, D; ), i =1,2,..., µ of linear progenitor 

systems, such that: 

S1(A1, B1, C;, D1) 
x; = Aix. + Be, 

(7.4) 
z; = C; x; + D; e; 

with transfer functions G; (s) E Rm' "(s) 
. 
The system defined by: 

Z 
sa(Aa'B8'Ca'De)' e 

": Ceaae (7.5a) 
_a aX _a + De 2a 

where xa = 
[1tý... 

ýXJc, ea = 
[21 `,.... eµ', 

`, 
Z8 = 

Ilzitztit 

(7.5b) 
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Aa = bl - diag 
{A;, 

iE µl, Ba = bl - diag 
{B;, 

iE gj 
(7.5c) 

Ca = bl - diag C;, ie µj, D. = bl - diag 
{D;, 

iEµ} 
J 

is called the aggregate of {E} and the transfer function matrix is: 

Ga(s) = bl-diag 
{G1(s). 

iEµ (7.5d) 

Let us denote the space of all values of the aggregate vectors ea, ze by ý, Za 

respectively and denote by ýa the composite vector ca = 
[at, 

at]t and 
Z the corresponding 

space. Any function 5: 

s: z. -> 
Z. (7.6a) 

defines an action on Sa aggregate system, denoted by *, i. e. 

Sa *s= Sc (7.6b) 

9 is then called an interconnection rule and Sc is defined as the composite system of S. 

induced by 9. In the following, we shall consider different composition rules defined on 

aggregate systems. A large class of important rules are those where the function of 

composition is defined on a restricted domain and co-domain, i. e.: 

9: Z. Ea (7.7a) 

and thus the action * on Sa is defined by: 

Sa *s= Sc (7.7b) 

The above composition rule is referred to as feeding interconnection rule and its 

properties will be considered in some detail here. Before we examine this interesting class 
of interconnections, we consider some basic interconnection 

schemes. 
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7.3. BASIC INTERCONNECTIONS SCHEMES AND TOPOLOGIES 

.A process is always synthesised by connecting subprocesses (subsystems). The 

aim, here, is to investigate the links between the structural aspects of the subsystems and the 

interconnection graph. This problem is of immense importance, especially in the early 

stages of designing systems by interconnecting subprocesses, since it has important 

implications on the synthesis of composite structures with desirable control structure 

characteristics. Some basic assumptions in dealing with composite systems, represented by 

transfer function matrices or by minimal state-space descriptions are summarised below: 

(i) There is no loading effect in any connection of two subsystems; that is, the transfer 

function of each subsystem remains unchanged after the connection [Chen, 1]. 

(ii) A system is represented by its transfer function matrix (that is, it is controllable and 

observable), or more generally, the system is stabilisable and detectable [Wonham, 1]. 

It will, also, be assumed that the transfer functions are rational and proper. 

Note that the assumption that the subsystems are completely characterised by their 

transfer functions does not imply that the composite systems are completely characterised 

by their transfer functions. We consider proper systems S; (A;, B;, C;, D; ) 
, with transfer 

function matrices Gi (s) = C; (sI 
- A; )-' B; + D;, i=1,2,.... An interconnected system 

consisting of a number of subsystems Si, will be denoted by S.. The composite system will 

be called well formed, if all closed-loop transfer functions are well-defined and well posed 

if all closed-loop transfer functions are well defined and proper [Cal. & Des., 1]. The basic 

interconnection schemes are shown below: 

Cascade Connection: For this scheme e2 = z, and it implies a feeding interconnection rule: 

e eý z2 z 
Si S2 

z1 2 

Figure (7.2]: Cascade or Tandem Connection 

Parallel Connection: For this scheme e=e, = e2 and thus it belongs to the general class of 
interconnection rules and implies dependence on variables. 
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.............................................................. ti 
e=e' zº 

Si 

e+z 

S2 
z2 

e= e2 

5 ............................................................... 

Figure (7.3): Parallel Connection 

Feedback Connection: For this scheme e2 = zl, ut = e-zZ, as it is of the feeding 

interconnection type. It will be shown that a large class of rules may be characterised in 

terms of this scheme. 

.............................................................. ti 

e+ el 
S ?iz 

i 

S2 

Z-2 e2 
ti 
............................................................... 

Figure (7.4): Feedback Connection 

The composite systems described above are defined by the composite state-space 

descriptions and whether the composite transfer functions describe these systems depends 

on the relationships between poles and zeros of the subsystems [Rosen., 2], [Chen, 1] etc. 

Note that the above connections are well posed under the following conditions: 

(a) Cascade connection: Always. 

(b) Parallel connection: If G, (s) # -G2 (s) 
. 

(c) Feedback connection: If (I + Gl (oo)G2 (oo) 
= (I + D, D2I * 0- 

For two systems Si, S2, which are completely characterised by their proper transfer 

function matrices Gl(s), G2(s), any composite well posed connection of S, and S2 is 

completely characterised by its composite transfer matrix G12(s), if and only if [Chen, 1]: 

bm(G12(S))= 8 
m(G1(S))+8m(G2(S)) (7.8) 
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For the different types of connections described above, the latter condition for the 

representation of the composite system by its composite transfer function matrix may 

become more explicit as conditions for coprimeness of the polynomial matrices defined by 

the R[s]-irreducible MFDs of GI(s) and GZ(s) (see [Chen, 1], [Kailath, 1] etc. ). For the 

simple case of single-input, single-output (SISO) systems Si, which are completely 

characterised by their proper rational functions g; (s), i=1,2, we have the following: 

(a) The tandem connection of systems Sl and S2 is completely characterised by 

912 (s) = 92(S) g1(s) , 
if and only if there is no pole-zero cancellation between g, (s) and 

g2(s)" 

(b) The parallel connection of systems S, and S2 is completely characterised by 

912(S) = 92 (s) + 91 (S) 
, 
if and only if gl (s) and g2 (s) do not have any pole in common. 

(c) The feedback connection of systems Sl and S2 is completely characterised by 

g12 (s) = 
(1 + g1(s) g2 (s))-' gl(s) , 

if and only if there is no pole of g2 (s) cancelled by 

any zero of g, (s) 
. 

The problem of representation of composite systems by their composite transfer 

function is always related to controllability and observability of the composite system. The 

interconnection configurations of Figures (7.2)-(7.4) do not always have these two 

properties. Controllability and observability of a system always depend on the selection of 

the inputs and outputs. An enlarged feedback configuration, denoted in Figure (7.5), has 

always the property of controllability and observability for the composite input vector 

[u1tu2t]t 
and output vector 

[1t2t}t 
and will be called the complete feedback 

configuration. ation. Such configuration is used in the discussion of the general control design 

problem and it is well posed if II + G, (oo)G2 (oo) #0 . 
For such a configuration: 

............................................................... 

ul + eI 
Si 

zl Z, 

S i 
e2 + u2 92Z-2 

............ .... ..................................... 

Figure (7.51: Complete Feedback Configuration 
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zl(s) 
= H(s) u1(s) 

where H(s) = 
Ii Gz(s) 1-1 

[2(s)j 
[112 

(s) -G, (s) I, 
(7.9) 

and H(s) exists under the well possedness assumption and it is known as error transfer 

function (other transfer functions may also be defined). If S; 2 denotes the composite state- 

space equations and assume that G; (s) are complete representations of Si, then H(s) 

completely describes the S; 
Z composite system [Chen, 1], [Vid., 1]. 

7.4. THE GENERAL CONFIGURATION OF COMPOSITE SYSTEMS 

We now consider a general representation for composite systems that has been 

introduced in [Cal. & Des., 1] and further developed in [Karc., 10]. The aim is to develop 

this scheme further and explore the role of selection of local inputs, outputs on the overall 

system properties. The representation, which is described here, is referred to as canonical 

composite representation (CCR) [Karc., 10] and it is based on a number of general 

assumptions, which are described next. We consider a family of systems 

{E} _ 
{Sk, k =1,..., µ with transfer functions for the subsystems Gk (s), Gk(s) e RPýx" (s). 

The interconnection rule 5, which is considered here, is based on the following 

assumptions [Karc., 10]: 

Local Well Connectedness Assumptions (LWCA): The physical linking of a subsystem 

Sk to the rest of the subsystems implies that there is a connecting input vector ek, having as 

coordinates all variables connected directly to at least one subsystem output or external 

variable (manipulated or disturbance) and a connecting output vector zk , with coordinates 

all variables, which feed at least one of the subsystems or measured variables. Considering 

linear systems, we assume that the transfer functions: ek -> zk are well defined, that is: 

?k (S)= Gk (s) ek (S), k =1,2,..., µ (7.10) 

and that the subsystems transfer functions Gk (s) are proper. These assumptions are referred 

to as Local Well Connectedness and Gk (s) is the k-th connecting transfer function. 
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Furthermore, if Gk(s) represents a minimal system (controllability from ek and 

observability from zk ), then the system satisfies the Local Well Formedness Assumption 

(LWFA). The system represented by the transfer function matrix: 

Ga (s) = bl - diag {Gk (s), k =1,2,... µ} (7.11) 

is the system aggregate and it is denoted by Sa (Sk, kE [t). 

Local Well Structured Assumption (LWSA): For every subsystem, we shall denote by 

ilk , yk the effective input and output vector, that is the vector of assignable input variables 

and measured-command variables respectively. We shall assume that yk is a subvector of 

zk , 
in the sense that 

yk = KkZk, Kk E RQ, Xmk, qk "5 Mk (7.12a) 

and that Uk is a reduced vector of ek, in the sense that 

ek = 
Lkik + fk 

='Uk +fk5 Lk r= RPkxrk, rk :: 5 Pk (7.12b) 

where fk is some vector of dependent variables and the coordinates in Uk are 

independently assignable (control or disturbance) variables. This assumption is referred to 

as Local Well Structured Assumption. 

Global Well Formedness Assumption (GWFA): Consider the aggregate system Sa 

(Sk, kE µ) that satisfies the Local Well Formedness and Local Well Structured 

Assumptions. The composite system S, (S.; F) will be called Globally Well Formed, if the 

interconnection rule F: z, x zl ... x zµ --3 e, x ... x eµ represented by the diagram below: 
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uk 
{rk 1 

Kk yk 
lqk 

1 

Lk 
sk 

ek PkJ 
G, (s) Zk {mk) 

11t 

Fk, 
9 Zi 

Fei Zi 

FkJ? i 
z; 

Figure (7.6): Composition Assumptions 

satisfies the assumptions: 

(i) Its output is the subsystem vector z= 
[gj%... 

lz, -` 

(ii) Its inputs ek are expressed by: 

µ 

ek = Fký zi + Pk (7.12c) 
i=1 

where Fk,; are real matrices and IN are external vectors. We may assume that whatever 

interactions between the local vectors zk and its inputs are already taken into account and, 

thus, we may write the condition (7.12c) as: 

ek = Fkj Zi -}- Pk (7.12d) 
i=1, i: k 

If the above is assumed, then the globally well formed system will be referred to as normal. 

c 
(iii) The transfer function from ve ee = 

[e' 

..... ej' is defined and it is 

proper. 

0 

If we define ze = zl`,..., zµ` , then (7.12c) may be expressed as: 
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ei Fii Fie 
... 

F1µ zi vh 

22 
_ 

F21 F22 
... 

F2µ z2 
+ 

122 
or ea =F za + Da (7.13a) 

eµ Fµ1 FýQ 
... 

Fµµ Zµ 'Uµ 

In the case, where the interconnection is normal, then F has the following structure: 

0 F12 
... ... 

FIµ 

F21 0 F23 
... 

FZu 

F= (7.13b) 

Fµ1 F, 2 ... ... 
0 

The matrix F is "structured", in the sense that it has blocks of zeros in certain 

locations, indicating the topology of the connectivities. F will be called the interconnection 

matrix of the composite system. Given that 

z, (s) = G. (s) ea (s) and ea (s) =FG. (s) ea (s) + va (s) 

or (I 
-F Ga(s))2a(s) = va(s) 

(7.14a) 

(7.14b) 

The third of the assumptions of GWF structure implies that II - FGa (s)I #0. Under 

this assumption, (7.14a) and (7.14b) imply: 

e, (s) = 
(I 

-F Ga (s))-'v_, (s) (7.15a) 

and za(S) = G, (s)(I -F Ga (s))-'va (s) (7.15b) 

and, thus, the transfer function of the composite system, from va --> Za , 
is: 

HA(S) = Ga(S)(I-F G. (S))-' (7.16) 

It is clear that the interconnection topology is represented by the structured matrix 

F and the composite system is the result of the action of the output feedback F on the 

aggregate system. Assuming that at each subsystem, we have the presence of a control local 

vector u; and local measurement y, , 
then 
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=L; u;, ieµ, y, =K; z;, iE. (7.17a) 

=L 
tlt 

Pa 
rvi s 

Uµt 
It, 

Ua 
fr 

uµtIt sya- 
LY 

_, 
c,..., yµ 1 

(7.17b) 

and thus: Pa = Leua, L. = bl-diag {L,,..., Lµ}, ya = Kaza, K. = bl-diag {Kt,..., Kµ} 

(7.17c) 

and we have the following representation of the composite structure: 

u 
Lý 0 

v+ e 
Si 0zK, 0Y 

0+0 Sµ 0 Kµ 

.: INPUT S; AGGREGATE 9C: INPUT 
STRUCTURE STRUCTURE 

9 

S, (S,; 3; 
. 
C; SC): COMPOSITE SYSTEM 

INTERCONNECTIONS 

Figure (7.7): Equivalent Feedback Configuration of Composite Systems [Karc., 10] 

It is clear that the interconnection graph acts as feedback and the selection of 

effective inputs, outputs is represented as input, output constant compensators and the 

composite transfer function from u8 -> ya is given by: 

(7.18) He(s) = KaHc(s)La = KaGa(s)(I-FG$(s))-1 L. 

It is clear, that the above expresses a decentralised Model Projection Problem 

(MPP) (as defined in Chapter 3), of a special type, with a progenitor transfer function 

, 
(s). 

. 
An important special case of the above configuration is defined by considering the H, 

properties of the vectors vk in (7.12c), i. e. ek = 
±Fkj 

z; + 1-2k . 
Note that the number of 

independent variables Pk in ek determines the local inputs in the k-th subsystem and this 

has to do with the physics of the particular problem. The number of independent variables 

rk in vk determines the effective number of local inputs and this leads to the following 

characterisation. 
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Completeness Assumption [Karc., 10]: The well formed composite system will be said to 

be complete, if the following two further conditions hold true: 

(i) Every effective subsystem output yk, k =1,2,..., p. satisfies the condition yk = Qk zk, 

where Qk is square and invertible, i. e. Qk E Rmrxmk, IQkI * 

(ii) Every external subsystem vector vk, k =1,2,..., µ has as many independent 

coordinates as the dimension of ek input vector, i. e. ek = Rk 
_vk 

with Rk square and 

invertible, i. e. Rk E RPON, IRkI ý 0. Under these conditions the vectors vk and yk 

will be called full. 

9 

The completeness assumption implies that to every interconnection input, output 

there corresponds a same dimension control vector, output vector with the same number of 

independent variables to those of the interconnecting input, output respectively. As a result 

of completeness the composite and the aggregate are output feedback and input, output co- 

ordinate transformation equivalent and, thus, they have the same basic structural 

characteristics. The composite configuration established here is referred to as Canonical 

Composite Representation and issues of Global Instrumentation may be discussed within 

this configuration as system and feedback design problems. Guaranteeing the validity of the 

above assumptions is both a matter of modelling and selection of input, output schemes. In 

fact, each assumption is linked to a problem and these problems are considered next. 

(i) Local Well Formedness Problem (LWFP): The properties of well connectedness 

and well formedness at subsystem level are closely linked to the design of individual 

subprocesses. Given that the way subprocesses are connected is defined by their 

nature, it seems that deviation from such assumptions may be handled for most cases 

simply by redesign. There are, however, cases, such as electric networks, where the 

potential input, output connecting sets are larger than the effective ones. This provides 

the possibility of addressing issues of design for well formedness based on a 

combination of MOP and MPP methodologies. 

(ii) Local Well Structuring Problem (LWSP): The essence of Local Well Structuring is 

that we have to identify the effective connecting inputs, outputs ek, zk respectively 
(based on the modelling of interconnections), the potential control variables and 
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outputs uk , yk respectively, and we have to guarantee that Equations (7.12a), (7.12b) 

hold. It may be, frequently, the case that yk is not a subvector of zk and that Pk is not 

related to ek . 
In this case, it is always possible to expand the vectors ek, zk to ek, 

Zk vectors, such that (7.12a), (7.12b) are satisfied. The latter implies rechecking of 

the LWFA and appropriate modifications of the Gk (s) transfer function. Problems, 

once more, rely on modelling, as well as on the prediction of requirements, as far as 

what are the needed inputs, outputs on the final model. When such problems are 

considered, the input, output vectors vk 91 yk are treated as potential vectors and leave 

the final design of effective vectors to an MPP. 

(iii) Global Well Formedness Problem (GWFP): Under the assumption that LWFP, 

LWSP have been solved, the Global Well Formedness Problem is essentially a 

modelling problem, since it requires definition of FkJ matrices and, thus, F, such that 

{I-FGa(s)} is nori-singular. When there is flexibility in the design of F, the objective 

may be extended in designing F, such that the progenitor model Hg(s) is stable, and 

that in addition it has a number of other desirable properties. The current framework 

provides the means for the potential use of feedback control design concepts in the 

areas of process synthesis. 

(iv) Decentralised Model Projection Problems (DMPP): The general configuration of 

Figure (7.7) clearly suggests that the final selection of inputs, outputs is reduced to an 

MPP, where L and K are block diagonal. This problem is, then, addressed on the 
A 

progenitor model H, (s) with the different criteria described for MPPs and with the 

additional requirement that La, K, are block diagonal. 

Example (7.1): Consider the composite system shown in Figure (7.8), where the 

subsystems are represented by the regular state-space models S; 
, 

having as corresponding 

transfer functions G1 (s), i=1,2,3. 

The LWF assumption implies that the transfer functions 

z; (s) = G; (s) ei (s), i =1,2,3 (7.19a) 
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are defined and are proper. The LWF assumption implies that the systems defined as 

S;, i=1,2,3 are minimal state-space descriptions and thus they are defined by their G; (s) 

transfer functions. The aggregate transfer function is then defined by: 

Z, (s) G, (s) 00e, (s) 

z2(s) =0 GZ(s) 0 e2(s) 

z3(s) 00 G3(s) e3(s) 

v_z 

Z3 

Figure (7.8): Composite System 

For the scheme, we have the relationships: 

eI =-z3+ _� 
e2 =Z1+z3+1)2, e3 =z2+v_3 

(7.19b) 

113 

(7.19c) 

where v, , v_2 , 123 are externally generated vectors with dimensions the same as those of u,, 

u2, u3 respectively. The representation of the interconnection is then defined by: 

e1 00 -I z, v, 00 -I 

e2 =I0I z2 + v_2 , 
F= I0I (7.19d) 

e3 
- 
00 

-- 
Z1 U3 010 

The GWF assumption implies that the matrix 

I0 G3 

1-FGa(s) _ -G, I -G3 (7.19e) 

0 -G2 I 

is non-singular or R(s), i. e. II 
- FGa (s)I *0. Under the latter assumption the composite 

transfer function exists and 
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H, (s) = Ge(s){I-FGa(s)y' (7.19f) 

The transfer function is proper if G; (s), i=1,2,3 are proper and II 
- FG(oo)I # 0. 

The completeness assumption for this system, means the following: 

(i) The measurable outputs are yl = Zl, y2 = Z2 , 
y3 = Z3 

, or coordinate transformations 

of y1, y2, y3 respectively. 

(ii) The vectors v, 9 vZ 9 v3 have independent variables equal to their dimensionality, i. e. 

all elements in them are independent. 

D 

7.5. PROPERTIES OF THE GENERAL COMPLETE COMPOSITE SYSTEM 

The above representation of composite systems (as a feedback configuration) has 

important implications for the present work: 

(i) It provides a systematic method for representing composite systems (with implications 

on the transition from process configurations to process transfer functions). 

(ii) It allows the formulation of the process synthesis problem (interconnection of 

subprocesses) as a feedback design problem. 

The GWF assumption is equivalent to the existence of a proper rational composite 
A 

transfer function H, (s) . The existence of a rational HAg (s) is equivalent to that 

II FGa(s)I #0, whereas the properness is expressed by the following condition [Vid., 1]: 

Proposition (7.1): If Ga(s) is strictly proper, then H, (s) is always proper. If Ge(s) is a 

proper transfer function, then the composite configuration described by Ha(s) transfer 

function is proper if and only if 

II - FGa (oo)l = 11 - Ge (oo)FI #0 (7.20) 

A composition rule, which guarantees properness, also guarantees the existence of 
A 

transfer function Hi(s), but not vice versa. Schemes resulting in proper composite transfer 

functions are referred to as well posed. Under the GWF assumptions, the composite system 
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is defined and it is equivalent to an output feedback scheme applied on the aggregate 

system. By assuming completeness, the system may be represented in the simplified form of 

Figure (7.9), as shown below: 

.................................................................... ti 

u 
_v 

? Z- Y 
Ge (s) 

F 

..................................................................... 

Figure (7.9): Interconnected System S, under the Completeness Assumption 

Lack of completeness implies some decentralised input, output squaring down, as 

this is described by Equation (7.18) and Figure (7.7). In the following section, firstly, we 

shall consider properties of the complete representation and then of the non-complete 

representation. A number of properties relating the aggregate and the complete composite 

system are considered next. 

7.5.1. Well Formedness of Complete Composite Systems 

We consider a complete composite system, which is well posed and with 

subsystems described by state-space equations as: 

S' (A'' Bi' C'' D') 
x; = Aix; +B; e; 

z; = C; Ni + D; e; 
i =1,2,..., k (7.21a) 

where the aggregate vectors are: 

el xl z1 v_ý 
e2 M2 Z2 v_2 

- X= ?_, v (7.21b) 

ek xk zk vk 

and thus the aggregate system is described by: 

195 



Chapter 7 The Formation of Composite Systems and the Role of Inputs and Outputs 

x1 Al 0 
... 

0 x, B1 0 
... 

0 el 
xZ 0 A2 x2 0 B2 e2 

x_k 0 0 
... 

Ak x_k 0 0 
... 

Bk 
-2k 

=ic -A x =B =e 

or x= Ax+Be 

zl 

where e= 
vZ 

+F 
ZZ 

-Pk 
Zk 

where F is a matrix expressing interconnections. Furthermore, 

zi C1 0 
... 

0 xl D, 0 
... 

0 e, 

z2 0 C2 x_Z 0 D2 e2 

z_k 0 0 Ck 
_k 

0 0 Dk 
_k -z =C =x =D =e 

or z= Cx + De 

Thus, the composite system becomes: 

Ax+Be 

z=Cx+De 

and e=v+Fz 

(7.21c) 

(7.21d) 

(7.21e) 

(7.21 f) 

(7.22a) 

(7.22b) 

(7.22c) 

where F is a matrix expressing interconnections. From the above, (i. e. (7.22a) and (7.21c)), 

we have e= v+Fz = v+F(Cx+De) or 

e= v+FCx+FDe or 
(I-F)e 

= v+FCx (7.22d) 
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Assuming that the feedback configuration is well formed, i. e. 
II 

- F51# 0, then we 

may define: 

A= 
(I 

- FD)-i (7.22e) 

From (7.22d) and (7.22e), we get: e= Ai) + OFCx (7.22f) 

and thus x= Ax + Be = Ax + BAu + BAFCx or 
rA 

+ BOFC)x + BAv (7.23a) 

and z= Cx + De = Cx + DOv + D, &FCx or z= 
(I 

+ BOF) CX+ DOv (7.23b) 

We may summarise the above analysis as follows: 

Proposition (7.2): The composite system state equations of the well posed complete system 

are given by: 

Ov is = 
(X+Fý)+E 

z=(I+BOF)Cx+DOv 
(7.24) 

where A= 
(I 

- FD) . 1, II 
- FDI #0 and A, B, C, D are the state-space parameters describing 

the aggregate model. 

0 

Remark (7.2): If every subsystem is strictly proper, then 5=0 and 
IFDI 

=1 and, thus, 

for all composition rules, the configuration is well formed. 

0 
Remark (7.3): For a generic aggregate system S. and a generic interconnection rule F, the 

well formedness assumption is true. 

0 

7.5.2. The Composite System Pole Polynomial of a Complete Configuration 

The composite system pole polynomial of a well-formed system is defined by: 
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9. (s) =I sI -A- BAFC I (7.25) 

and it is clear that OF =F acts as an output feedback rule that, in general, changes the 

location of the composite system poles from those of the aggregate system. Important issues 

to be considered are: 

(i) The effect of the interconnection rule on generating stable composite system 

behaviour from stable or unstable aggregate behaviours. 

(ii) Characterisation of interconnecting structures that generate composite unstable 

behaviours from stable aggregate behaviours. 

(iii) Characterisation of interconnecting structures that preserve certain parts of the 

aggregate dynamics. 

The first two issues may be considered within the decentralised pole assignment, 

whereas the last is equivalent to the characterisation of fixed modes under decentralisation. 

An alternative way of studying these problems is to consider the return difference of the 

composite configuration of Figure (7.9) defined by: 

R(s) =I- FGa (s) (7.26) 

If every subsystem is represented by a right coprime MFD, i. e. G; (s) = N, (s) D; (s)-', 

i =1,2,.., k, then R(s) may be expressed as: 

R(s) = 
[diag {D; (s)) -F diag {N; (s)}} [diag {D; (s)}} -1 = D, (s) - D. (s)-1 (7.27a) 

where: 
Da (s) = diag {D; (s), i =1,.., k}- F diag {N; (s), i =1,..., k} 
D. (s) = diag {D; (s), i =1,..., k} (7.27b) 

and thus the composite transfer function H(s), may be expressed as: 

Hý (s) = diag {N; (s), i =1,..., k} D, (s)'' (7.27c) 
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Theorem (7.1): If for the subsystems the MFDs G; (s) = N; (s) Di(s)-', i=1,2,.., k are 

coprime, then the MFD in (7.27c) for the complete composite system H(s) is also coprime. 

Furthermore, 

(i) The composite system pole polynomial is given by 

cps(s) = ID, (s)I =I diag {D; (s)}-F diag {N; (s)} I (7.28) 

(ii) The zeros of the composite systems are given as the union of the zeros of the 

subsystems. 

Proof: The MFD in (7.27c) has denominator Da(s) with degree equal to the McMillan 

degree of the composite system, which as an output feedback system equivalent to the 

aggregate must be equal to the sum of McMillan degrees of the subsystems. Thus, since the 

degree of the denominator is equal to the McMillan degree, the MFD is coprime. 

0 
The above expression of the composite system pole polynomial is more general 

than that of (7.25), since it does not rely on the assumption of well posedness of the 

configuration. The MFD based expression for cpa(s) allows the study of the three classes of 

problems previously defined. Using the Binet - Cauchy Theorem [Marcus & Minc, 1], we 

can deploy the exterior algebra framework [Karc. & Gian., 1] for the study of spa(s), that is 

ID, (s)I = Cp 1 
[I, F] Ip 

J[cujag 
1D1(s)1 

drag [Ni (s)I (7.29) 

We may define: 

diag {D. (s)} k 
F=I+F, T: (s)= 

IdiW 

{N; l 

il 

i=1 
p' (7.30a) 

and thus: 9, (s) = Cp(F) Cp(T: (s)) 
(7.30b) 
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The latter expression provides the means for studying the shaping of the composite 

system pole polynomial using the exterior algebra framework [Karc. & Gian., 1]. In fact, if 

fA=c (F), 
tý(s)n = CP(Tý (s))->cpc(s) = 

(? 
A, tC(s) n} (7.30c) 

where by aA we denote the corresponding exterior products [Marcus & Minc, 1]. Of 

course, the problem here is not the design of F as an arbitrary output feedback, since F is 

defined by the natural topology of the interconnections. However, Equation (7.30c), may be 

used for a computation of cp, (s) in a systematic way, but also to study problems of redesign 

of interconnection by a minor alteration of its structure. This problem is defined below: 

Redesign Problem: Given a composite system S. 
, 
(SB; F) that has an undesirable pole 

polynomial, redesign F by minor alterations to improve the properties of the modified 

composite system. 

0 
Alterations can be described in terms of a matrix F, such that the resulting matrix 

of composition is: 

F=F+F' (7.31 a) 

This problem may, then, be expressed as a pole assignment by output feedback, since 

(p. (s) =I diag {D; (s)}- F diag {N; (s)}- F' diag {N; (s)} 1 (7.31 b) 

and by defining D. (s) = diag {D; (s)} -F diag (Ni (s) then 

9, (s) =( Da (s) - F' diag {N; (s)} 1 (7.31 c) 

which is within the pole assignment by output feedback framework. It should be noted, 
however, that F is a structured matrix with a topology very close to that of F. 

An important problem that is associated with characterising the nature of F 

composition is the presence of fixed modes between the aggregate and the composite 

system. The study of fixed modes is established by the following result. 
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Theorem (7.2): Let S. (S.; F) be a composite system described by subsystems with coprime 

MFDs G; (s) = Ni (s) D; (s)-', i =1,.., k and a composition rule F. The fixed modes between 

the aggregate and the composite system are defined by the zeros of the Smith form of 

Q(s) _ 
Fdiag(Ni(s)ll_ [ 

7- *j - 
FN8(s) 

(7.32) 
diag {D1(s)T Da(s) 

Proof: If there are fixed modes between the aggregate and the composite system, then the 

MFD of the return difference R(s) in (7.27a) is not coprime and the fixed modes emerge as 

zeros of the Smith form of the matrix 

diag {D; (s)}- F diag (Ni (sill 
, 

--- =Q (s) (7.33a) 
diag {D; (s)T 

However, there exists a unimodular matrix, such that: 

-I diag {D; (s)} 
=F 

diag {N" (s)} 

0Q 
(s) 

1-äfa79-(5-i(s), 
(7.33b) 

and this establishes the necessity. Sufficiency is obvious. 

D 

The above result provides a simple test for determining the fixed dynamics of the 

composition process and this is demonstrated by the following example. 

Example (7.2): Consider the composite system shown below: 

Z1* 1 122 92 41 12-3 

z3 v, 
+ 

el 
ý,, 

+ 
e2 

S2 
+ 

e3 IS3 T 

Figure (7.10): Composite System 

For the above system, the subsystems are described by: 

S, --> G; (s) = Ni (s) D; (s)'', i=1,.., 3, which are coprime MFDs and the composite rule is: 
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el vi II0 Z1 

e= e2 = v2 - -1 00 z2 =v- Fz. The Q(s) matrix defining the fixed modes is: 

e3 v3 0 -1 0 z3 

II0 N1(s) 00 

-I 000 N2(s) 0 

Q(s) -0 
-I 0-0-0- N3(s) 

----- -----= ---- D, (s) 00 

0 D2 (s) 0 

00 D3(S) 

The above is equivalent by left equivalence to 

o00 
N, (s) 00 

D, (s)--- 00 
---------- = Q'(s) or 0 NZ (s) 0 

0 DAS) 0 
---------------- 00 DAS) 

N, (s) N2(s) 0 

-N1(s) 00 

0 -N2(s) 0 
- -- -------------- 

0 D2(s) 0 

00 D3(s) 

I00 

000 
Q'l(S) 

- 
Q"(s) =0I 

---0 

0__0__ 0 

00 D3 (S) 

The equivalence of Q'(s) to Q"(s) follows from the coprimeness (right) of 
(N, (s), D, (s)) and (N2 (s), D2 (s)) 

. 
Thus, the poles of S3 system are fixed between the 

aggregate and the composite system. 

D 
7.5.3. Structural Properties of the Complete Composite Configuration 

The fact that for complete configurations the interconnection rule acts as an output 
feedback has a number of implications as far as structural system properties are concerned. 
We first note: 

Remark (7.4): Any constant output feedback law is a special case of a state feedback and a 

special case of output injection. 

0 

As a result of the above observation and the structural properties under state 
feedback and output injection (see Chapter 4), we have the following properties: 
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. 
(Sa; F) be a complete composite system where the subsystems are Theorem (7.3): Let S, 

described by the state space descriptions S; (A;, B;, C;, D), i=1,2,..., k. For any 

interconnection rule F, the following properties hold true: 

(i) Controllability properties, as they are expressed by controllability indices and input- 

decoupling elementary divisors, are the same for the aggregate and the composite 

system. 

(ii) Observability properties, as they are expressed by observability indices and output- 

decoupling elementary divisors, are the same for the aggregate and the composite 

system. 

(iii) The zero structure, as this is defined by the Kronecker invariants of the system matrix 

pencil, is the same for the aggregate and the composite system. 

0 
The above result is a direct consequence of the observation that the interconnection 

rule for composite complete structures is equivalent to an output feedback. This together 

with the classical Kronecker Theory ([Morse, 1], [Thorp, 1], [Karc. & MacB., 1]) 

establishes the result. A direct consequence of the above result is the equivalence of 

structural properties of complete composite systems to those of the aggregate, as described 

below: 

Corollary (7.11: Let S, 
, 
(Sa; F) be a complete composite system where S; (A;, B1, C;, D; ), 

'i=1,2,..., k are the subsystems. The following properties hold true: 

(i) Sc(S.; F) is controllable (stabilisable), if and only if, all pairs (A;, B; ), i =1,2,..., k 

are controllable (stabilisable). 

(ii) Sc(S.; F) is observable (detectable), if and only if, all pairs (A;, C; ), i =1,2,..., k are 

observable (detectable). 

(iii) Sc(Sa; F) is input-output controllable (functionally controllable), if and only if, all 

subsystems S; (A;, B;, C;, D; ), i=1,2,..., k are input- output controllable (functionally 

controllable). 

(iv) Sc(Sa; F) is nondegenerate, if and only if, every subsystem S; (Ai, B;, Ci, D; ) is 

nondegenerate. 

0 
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Corollary (7.2): Let Sc (Sa; F) be a complete composite system where S; (A;, B;, C;, D; ) 
, 

i=1,2,..., k are the subsystems. The following properties hold true: 

(i) The invariant zeros of Sc (SB; F), finite and infinite, are defined as the union of the 

corresponding sets of zeros of all subsystems S; (A;, B;, C;, D; ) 
,i=1,2,..., 

1,2,..., k. 

(ii) The right (left) Kronecker indices of the system matrix of S, are given as the union of 

the right (left) Kronecker indices of all subsystems S; (A;, B;, C;, D; ), i=1,2,..., k. 

(iii) The controllability (observability) indices and input (output) decoupling elementary 

divisors of S. are given as the union of the corresponding controllability 

(observability) indices and input (output) decoupling elementary divisors of all 

subsystems S; (A;, B;, C;, D; ), i=1,2,..., k. 

0 
The above demonstrate that completeness is the idealistic assumption that permits 

the transferring of the structural properties from the subsystem level to the composite 

system. Some further implications of the above results are: 

Corollary (7.3): For the complete composite system Sc(Sa; F) with subsystems 

Si (A;, B;, C;, D) 
, we have the properties: 

(i) The dimension of the controllable subspace is equal to the sum of the dimensions of 

the controllable subspaces of the subsystems defined by the (A;, B) pairs. 

(ii) The dimension of the unobservable subspace is equal to the sum of the dimensions of 

the unobservable subspaces of the subsystems defined by the (A1, C; ) pairs. 

(iii) The Sc(Sa; F) state-space representation is minimal, if and only if all S; (A1, Bj, C;, D1) 

representations are minimal. 

0 
The significance of the completeness assumption is that properties of the 

subsystems are transferred by aggregation to the composite structure irrespective of the 

nature of F. the implications of deviating from completeness are considered next. 
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7.6. DEVIATING FROM COMPLETENESS AND SYSTEM PROPERTIES 

The essence of the completeness assumption is that the number of independent 

control variables for every subsystem is equal to the dimension of subsystem input causes 

(dimension of e; local vector) and the number of 'independent measurements for the 

subsystems is equal to the dimension of local output influences (dimension of z; local 

vector). The dimensionality of e; , z; depends on the nature of the specific system and, in 

general, the dimensionality of independent inputs (control) and outputs (measurements) is 

less than the ideal dimensions implied by the completeness assumption. Some of the effects 

of deviating from completeness on the resulting system properties are considered here. A 

framework is introduced for studying specific cases and a number of results corresponding 

to certain representative cases expressing deviation from completeness are considered. 

Assuming that the complete system is well-formed and that the subsystems are 

described by Si (A;, B;, C;, D) 
,i=1,2,..., 

k, then the complete composite system has the 

following description (see (7.24)): 

(A+BOFC) 
x+BOv 

(i+F)+bOv 

(7.34a) 

(7.34b) 

where 0= 
(I 

- FD)4, II 
- Fi #0 and A, B, C, D are the aggregate state-space parameters. 

The corresponding transfer function is expressed as: 

A 

z(s) = H, (S) v(s) (7.35) 

H, (S) = Ga(s)(I-FGa(s))-1 = (I-Ga(s) F)-'Ga(S) (7.36) 

or in a coprime MFD representation as: 

I It (s) = diag {N; (s)} D' (s)-' = N'(s)Dc (s)-' 

Dý (s) = diag {D; (s)}- F diag {N(s)}= Dä (s) -F Nä (s) 
(7.37a) 

Hc (s) = Dt (s)-' diag {Ni'(s)} 
= D, ' (s)'' N, (s) 

(7.37b) 
(s) = diag {D; (s)}- diag {N; (s)} F=D; (s) - Nä (s) F . 

37b) 
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where G(s) = N; (s) D; (s)-' = D; (s)-' N; ̀ (s) are coprime MFDs for the subsystems. From 

Theorem (7.1), the MFDs in (7.37a), (7.37b) are respectively right, left coprime. The 

relationship between input causes - control variables and output influences - measurements 

is described by: 

v; = Li 11i, L. E RP'xr', p; >_ r;, iek (7.38a) 

yý = K; z;, K; E Rix"', q. <_ m;, iek (7.3 8b) 

and the transfer function between aggregate inputs and aggregate outputs is expressed by: 

A 

He(s) = KaHc(s)La, K. = diag{K;, ie k}, L. = diag{L;, ic k} (7.39a) 

A 

Completeness implies that Hi(s) and H, 
, 
(s) are equivalent by constant input, 

output coordinate transformations of the decentralisation type. Loss of completeness implies 

A that at least for a subsystem p; > r; or q; < m; and, thus, He (s) and H, (s) are no longer 

equivalent in the above sense. Loss of completeness may frequently occur due to the nature 

of the e; , z; variables (not being able to define independent control actions equal to the 

dimension of e; and not being able to measure as many independent variables as the 

dimension of z; ). The complete internal system described by Sc (Se; F) or 
H, (s) acts as a 

"progenitor" model for all systems defined for ui, y,, sets and the overall problem of 

shaping properties by selection of (L;, K1) local pairs is a form of a generalised squaring 

down [Karc. & Gian., 2]. In the following, we shall examine some special cases, which 

correspond to extreme cases, where there is total loss of local control variables or 

measurement variables. The general case of input-output squaring down is not considered 

here but may approached within the exterior algebra framework of the squaring down 

problem [Karc. & Gian., 2]. 

7.6.1. Controllability Properties under Total Loss of Subsystem Control Inputs 

Consider a complete composite system and assume that, for a fixed i subsystem, all 

the external inputs are not used (i. e. this occurs when interconnection elements are dynamic 

and no assignable input is available for them). In this case, the corresponding subsystem has 

as inputs, those coming from the interconnections only and it does not possess the 
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completeness property. The composite system description with total loss of subsystem 

inputs is described by Equations (7.34a), (7.34b). Without loss of generality, we may 

assume that all subsystems are strictly proper, which implies that D=0 and, thus, 0=1. 

Under this assumption, the system isdescribed by: 

z=(A+BFC)x+lip, z=Cx (7.40) 

Assuming that all local inputs are controlled independently with the exception of 

those of the i-th subsystem for which there are no controls, then from U, we get au control 

vector of the type: 

U" = U"ý... 
ýui-1ý0 ýui+Ir.. ýUk ý 

Ui =vi 

and this implies that the first of Equations (7.40), may be reduced to: 

rA+BFC)X+Biui, 
ui = Ui,..., Ui-I; Ui+1,..., Uk, 

t 

B1 0 
... ... 

0 

0 

Bi_1 0 

Bi 00 

0 Bi+1 

0 
... ... 

0 Bk 

(7.41 a) 

(7.41b) 

(7.41c) 

i. e. 
B; is obtained from B by deleting the i-th column block. We may define the left 

NN 

annihilator of B; 
5, 

N; by solving N; B; =0. It is obvious, that 

N, 0 
... ... 

0 BI 0 
... ... 

0 

00 

" 
Ni-1 B; 

-i 
0 

Ind 00 
=0 

N. 
+1 0 Bi+1 

00 

0 
... ... 

0 Nk 0 
... ... 0 Bk- 

=Ni 
oB1 

(7.42a) 

207 



Chapter 7 The Formation of Composite Systems and the Role of Inputs and Outputs 

and, thus, the corresponding input restriction pencil is: 

NNý 

R; (s) = sN; -N; 
(A+BFC 

= sN; -N; A-NN ; BFC (7.42b) 

The controllability properties are investigated by examining the above pencil, 

where: 

sN, -NA, 0 
... 

0 

0 

sN; 
_, -N; -, 

A. 
-, sN; - N; A= 

sI-A; 
0 

0 
... ... sNk -NkAk 

(7.42c) 

The problem of computing R, (s) is, thus, reduced to the computation of N; BFC. 

Note that 

0 
Fi 

i 
F12 

... 
Fli 

... 
Fik 

0 

Ni ß=0... 0 B. 0 
... 

0, F= F;, F;, F;; F; k 

Fk, Fk2 
... 

F1 
... 

Fkk 
0 

and thus 

o0 

00 
BFC = B; F; 1 ... 

B; F;; 
... B; F; k C=B; F; 

1C1 ... B; F;; C; 
... B; FkCk 

00 

00 

(7.43a) 

(7.43b) 

The above, together with (7.42c) lead to the explicit form for the restricted input- 

state pencil that characterises the controllability properties. 

9 
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Proposition (7.2): The controllability properties of the incomplete system corresponding to 

the total loss of the i-th subsystem local inputs are determined by the rank properties of the 

pencil: 

sNl -N1A1 0 
... ... 

0 

0 

Ri(s) = -B; Fi1C1 
... -B; Fii_1Ci_l sI-Ai -B; FiiC; 

... -BiFikCk (7.44) 

0 
0 

... ... 
0 sNk -NkAk 

U 

The above result may be generalised for every i and extended to any combination 

of indices i, j etc. The expression for R. (s) may be used for: 

(i) Studying the effect of the structure F on the loss of controllability, when total loss of 

subsystem inputs occur, as well as the location of the formed input decoupling zeros. 

(ii) Distinguish the phenomena depending on the parameters of subsystems S. (A;, B; 
, 
C; ) 

and those depending only on the F structure. 

It should be pointed out that the loss of external inputs results in a pencil R1(s), 

whose Kronecker structure is no longer expressed as a direct sum of the Kronecker 

structures of the subsystems. The role of matrix F, expressing the interconnections, is crucial 

in determining the composite system properties. 

7.6.2. Observability Properties under Total Loss of Subsystem outputs 

We consider a composite system and we shall examine the case where all the i-th 

subsystem outputs are not measured. The composite system description is given by (7.34a), 

(7.34b) and for the strictly proper case by (7.40). For the sake of simplicity, we consider the 

strictly proper case. Under the assumption that the i-th subsystem influences are not 

measured, then the resulting output vector is: 

t ti2 
ittt y=iý... ý 

Z! 1 ,..., 
Zk 

, 
Zi = 

.i (7.45a) 
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and the corresponding reduced vector z; = z; ,..., z; _l; z; +,,..., zk 
j 

has an associated matrix C; 

defined by deleting the i-th row block from C: 

C, 0 
... ... 

0 

0 

Ci 
_ 

Co-I 

0C 
(7.45b) 

0 

0 
... ... 

0 Ck 

i. e. the block containing C; has been deleted. We may define the right annihilator of C; 
, 

yN 

M; by solving the equation CII I; = 0. It is obvious, that 

Cl 0 
... ... 

0 
M, 0 

... 

00. 

C. 
-1 

00 
M1 

1 

00C; 
+, 

0 

0 ... ... 
0 Ck 

p_0... 
=C; 

and thus the corresponding restriction pencil is: 

T; (s) = sMi -(A+BFC)M; = sM; -AM; -BFCM; 

imi =0 
M41 

0 

... 0 Mk 

=M; 

(7.45c) 

(7.46a) 

The observability properties are investigated by examining the above pencil, where 

sM, - A, M, 0 
... 

0 

SM; 
_, -A; aM14 sM, -AM; _ 

0 
... 

... 0 

sI-A; 

0 

... sMk -AkM 

(7.46b) 

The problem of computing Ti (s) is, thus, reduced to the computation of N; BFC . 
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0 
" 

Fi 
i 

0 

CMI =0... 0 C; 0 
... 

0, F= F;, 

0 

Fkl 

0 

and thus 

Fie 
... 

Fli 
... 

Fl 

Fi, F� FFk 

Fk2 
... 

Fk; 
... 

Fkk 

Fi1C1 B1F1 Ci 

BFCMI =B0... 0 F;; C; 0 
... 

00... 0 B. F. C. 0 
... 

0 

Floc; BkFwC; 

(7.46c) 

(7.46d) 

From the above, we have the form of the state-output restricted pencil T; (s) and 

this leads to the following result. 

Proposition (7.3): The observability properties of the incomplete system corresponding to 

the total loss of the i-th subsystem local outputs are determined by the rank properties of the 

pencil: 

sM, - A1M1 

0 

T; (s)= 

0 

0 -B1FliCi 

- B; 
-1FI-IJC; 

sI - A; - B; F;; C; 

... -BkFwC; 

0 
0 SMk 

-AkMk 

(7.47) 

The above expression can be generalised for every i and extended to any 

combination of indices i, j etc. The expression for T; (s) may be used for: 

(iii) Studying the effect of the structure F on the loss of observability, when total loss of 

subsystem outputs occur, as well as the location of the formed output decoupling 

zeros. 

(iv) Distinguish the phenomena depending on the parameters of subsystems S; (A;, B1, C; ) 

and those depending only on the F structure. 
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It should be pointed out that the loss of outputs results in a pencil T; (s) 
, whose 

Kronecker structure is no longer expressed as a direct sum of the Kronecker structures of the 

subsystems. The role of matrix F, expressing the interconnections, is crucial in determining 

the composite system properties. 

7.6.3. The Zero Structure under Total Loss of Subsystem Inputs, Outputs 

Consider a complete composite system and assume that all the i-th subsystem 

external inputs are not used (i. e. this occurs when interconnection elements are dynamic and 

no assignable input is available for them). In this case, the corresponding subsystem has as 

inputs, those coming from the interconnections only. The zero pencil of the composite 

system is described by: 

NN 

sN; M -N; AM= 

sNl - N1A, 

0 

- B; F;, C, 

0 

0 ... 

... -B; Fjý 
, 
C; 

_, sI-A; -B; F;; C; 

M, ... 
0 sN, M, -N1A, M, 

x M; _ 

0 
... 

Mk 0 

where Ni has been defined by Equation (7.42a). 

sM; - A; M; 

... 0 

BIFIkCk X 
0 

0 SNk -NkAk 

... 
0 

SNkMk -NkAkMk 

(7.48) 

Remark 7.5): The above pencil may be generalised for every i and extended to any 

combination of indices i, j etc. 

0 

The above matrix may be used to study the location of the zeros when total loss of 
subsystem inputs occurs. It should be pointed out that loss of external inputs, results in a 

zero pencil, whose Kronecker structure is again expressed as a direct sum of the Kronecker 

structures originating from the subsystems. The role of matrix F, expressing the 
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interconnections, is not crucial in determining the zero properties of the composite system. 

In connection, with the above statement, we have the following theorem. 

Theorem (7.4): The observability structure of the i-th subsystem, for which we have lost all 

its inputs, as defined by the corresponding state-output pencil, enters into the zero structure 

of the composite system. 

U 
By observability structure, we mean the structure of the output decoupling zeros 

and rmi of the state-output pencil. Next, we investigate the zero properties of the composite 

system under the loss of subsystem outputs. Consider a complete composite system and 

assume that all the i-th subsystem outputs are not measured. The zero pencil of the 

composite system is: 

NN 

sN; M-N; AM= 

sM, -AIM, 0 -B1F1; C; 
... 

0 
N, 

... 
00 

-N 
-B; -, 

F; 
-, jC; 

- 
sI-A; -B; F;; C; 

0 
... 

Nk 
0 

0 
... -BkF, iCi 0 sMk -AkMk 

sN, M, - N, A, M, 

0 
... 

sN; - N; A; 

sNkMk -NkAkMk 
(7.49) 

Remark (7.6): The above pencil may be generalised for every i and extended to any 

combination of indices i, j etc. 

0 
The above leads to a dual result to that of Theorem (7.4) that corresponds to total 

loss of subsystem outputs occurs that characterises the resulting zero structure. 

Theorem (7.5): The controllability structure of the i-th subsystem, for which we have lost 

all its outputs, enters into the zero structure of the composite system. 

0 
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By controllability structure, we mean the structure defined by the input decoupling 

zeros and cmi of the state-output pencil. 

Theorem (7.6): Internal dynamics of the i-th subsystem, as defined by the eigenvalues and 

Segre characteristics of the corresponding subsystem, become part of the zero structure of 

the composite system under the total loss of input and output corresponding to the i-th 

subsystem. 

0 

7.6.4. Example of Total Loss of Subsystem Inputs, Outputs 

Consider the complete composite system of Example (7.1), where the subsystems 

are strictly proper and are represented by Si (A;, B;, C) 
,i=1,2,3, as shown below: 

v_2 = u2 

121 
I S2(G2) 

ZZ = yz 

ýZl -yl , 
ý+ 

e+ 
S3(G3) 3 

k4 

Zg = y3 + 

Figure (7.11): Complete Composite System 

Lb = u3 

For this system, the aggregate state equations and the equations of the composite 

system are described, as shown below: 

xý Al 0 0 xl B, 00 el 

x2 = 0 A2 0 x2 +0 B2 0 I1Q21 
(3 0 0 A3 23 0 0 B3 e, 

X, C, 0 0 x, 
(7.50a) 

y2, = 0 C2 0l 2I 
y3 

J L- 
0 0 C3 x3 

el u, 00 -I yl 

where: e2 1 = 11 1+1 I0I y2 , 
i. e. e=u+ Fy (7.50b) 

e3 u, 010 y3 
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and thus the composite state matrix A, =A+ BFC and the composite system equations are: 

A, 0- B1C3 xt B1 00 lrul 
x2 I= B2C1 A2 - B2C3 x2 1+ 0 B2 0 u2 

LX3 0 B3C2 A3 x3 00 B3 U3 

yl C1 00 xl 

y2 =0 C2 0 II2I 
300 

C3 x3 

We consider, next, the restriction pencils of the composite system. In this example, 

three different cases are considered. First, the full input - full output case is given. For each 

subsystem, we associate the input-state restriction pencil, the state-output restriction pencil 

and the zero pencil, as shown below: 

S, (A,, B,, CI) -ý sN, -N, A,, sM, -A, M,, sN, M, -N1A1M1 
S2(A2, B2, C2)-*sN2 -N2A2, sM2 -AZM2, sN2M2 -N2A2M2 (7.51) 
S3(A3, B3, C3) 

-ý sN3 -N3A3, sM3 -A3M3, sN3M3 -N3A3M3 

where Ni and M; are the left and right annihilators of B; and C;, respectively, for i=1,2,3. 

Next, we consider the case where total loss of subsystem input structure has occurred, 

Assume that u, =0 (without loss of generality). This leads to the following reduced 

composite system description: 

xl Al 0 -B1C3 xl B, 00 0- 

S(2 = B2C1 A2 -B2C3 x2 +0 B2 0 u2 (7.52a) 

X3 0 B32 A3 X3 00 B3 u3 

A, 0 -B1C3 XI 00I00 

or B2C, A2 -B2C3 x2 1+1 B2 0Z and Nl =0 N2 0 (7.52b) 
[im 

0 B3C2 A3 x3 Lo B3 3 Lo 0 N3 

To investigate the controllability properties when there is total loss of subsystem 
input, we may define the input-state restriction pencil, as follows: 
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I0 

sN, - NIA =0 N2 

00 

sI-A, 

=0 
0 

0 sI-A, 0 -B1C3 
0 B2C1 sI-A2 -B2C3 = 

N3 0 B3C2 sI - A3 

0 -B1C3 
sN2-N2A2 0 

0 sN3-N3A3 

(7.52c) 

Equation (7.52c) shows that the loss of inputs of one of the subsystems results 

possibly in the presence of finite elementary divisors in the input-state restriction pencil. 

Therefore, the system may become uncontrollable. However, in general, the latter property 

depends on diagonal matrices such as the - B1C3 matrix. To demonstrate that the properties 

of controllability depend on the interconnection graph, we observe that the pencil 

R(s) = sN, - NA in (7.52d) is strictly equivalent by permutation of blocks to: 

NZAZ-, 0, :-I 
------ ---------- sN A 

iC3 
? -N R'(s) 

0 sI-A1 -B ? 
-? -ý-- (7.52d) 

0 sN3 -N3A3 
0 R(s) 

The above suggests that part of the controllability structure, that is, the one 

connected with the 2 °d subsystem, is part of the controllability structure of the resulting 

system. The rest of the properties depend on the structure of the reduced pencil R(s). In this 

case, part of the controllability properties of the subsystem are transferred to the composite 

system 

0 

Remark (7.7): Total loss of input channels for any of the three subsystems may result in 

structural uncontrollability. This, however, is a property entirely dependent on the system 

graph and the location of the deviation from completeness. 

0 
Consider the case, where only the first and second outputs are measured (without 

loss of generality). The reduced composite system description is given by: 

A, 0- B1C3 B, 00 
Cý 00 

B2C1 A2 - B2C3 +0 B2 0 u, y= 
0C0x 

(7.53a) 
0 B3C2 A3 00 B3 z 

216 



Chanter 7 The Formation of Composite Systems and the Role of Inputs and Outputs 

M, 00 

and a right annihilator M1 is given by: M, =0 M2 0 (7.53b) 

00I 

To investigate the observability properties, when there is loss of output, we define 

the state-output restriction pencil as: 

sI - A, 
N 

sMl - AM, = B2C1 

0 

sM1 -J 

=0 
0 

0 -B1C3 

sI-A2 -B2C3 

-B3C2 sI - A3 

L1M1 0 

sM2 - A21 

0 

Mi0 0 

0 M2 0= 

000 
(7.53c) 

- B1C3 

/12 -B2C3 

sI-A3 

Equation (7.53c) shows that the loss of output of one of the subsystems may result 

in the presence of finite elementary divisors in the state-output restriction pencil. Therefore, 

the system may become unobservable. However, the latter property depends on the 

B, C3, BZC3 matrices. Note that the observability properties of the first subsystem (expressed 

in terms of sM, - AIM, ) are transferred to the observability properties of the composite 

system. 

Remark (7.8): Loss of outputs of one of the subsystems may result in system 

unobservability. 

0 
There are cases where two or more inputs/outputs are lost, in which case the 

procedure for solving the problem is more complex. The above example demonstrates that 

when there is total loss of inputs or outputs, then the interconnection structure plays a 

crucial role in defining the controllability, observability properties of the resulting system. 

The characterisation of the resulting structural properties then depends on the properties of 

the interconnection graph, manifested in the structure of the matrix F. Although, we have 

considered cases of total loss of inputs, outputs at subsystem loss, the approach may be 

extended to partial losses, i. e. more generic forms of deviation s from completeness. Such 

cases may be treated as cases of squaring down [Karc. & Gian., 2] at subsystems inputs 

and/or outputs, but then analysis becomes much more complicated. 
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7.7. CONCLUSIONS 

The representation of composite systems has been considered and this has led to a 

general configuration where physical input causes and external physical influences lead to 

the definition of the notion of completeness for composite configurations. Composition 

emerges as output feedback on the complete configuration, whereas loss of completeness 

appears as input, output decentralised squaring down. Some general results, that are linked 

to the total loss of inputs, outputs at subsystem level, are derived, which indicate how parts 

of the Kronecker structure are affected by the loss of inputs, outputs. The matrix pencil 

framework used for studying controllability, observability and zero structure of systems 

under total loss of inputs, outputs is natural and allows the study of effects of specific 

interconnection graphs on such properties. The general case of loss of completeness at 

subsystem level may be studied by the exterior algebra framework of the squaring down 

problem [Karc. & Gian., 2]. 
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Chapter 8 

IDENTIFICATION OF STRUCTURAL CHARACTERISTICS IN EARLY 

PROCESS MODELLING 

8.1. INTRODUCTION 

The evaluation of early design models is an integral part of the process 

controllability, observability and operability studies. Such an evaluation aims at predicting 

characteristics, features of the full model at early stages with simple indicators. The basic 

methodology, we adopt here, is the evaluation of properties of the model by exploiting the 

underlining structure. Systems and Control Theory has predicted a lot of results which link 

structure to system properties and this defines the classical algebraic [Kailath, 1], [Rosen., 

1], geometric [Wonham, 1], [Will., 1], algebrogeometric approaches [Brock. & Byr., 1], 

[Karc. & Gian., 1] etc. Structural approaches are linked to the theory of invariants and to the 

classification of values and types of such invariants according to the conditioning for the 

presence or absence of certain system properties. The characteristic of early process models 

is their simplicity and their endemic uncertainty, as far as the exact values of the parameters 

are concerned. For models with uncertainty in the parameters, there are a number of 

important issues to consider which are linked to the evaluation of structural properties. 

These include issues such as: 

(i) Classification of system properties to generic, non-generic for systems with no known 

interconnection graph topology and parameter uncertainty. 

(ii) Identification of structural characteristics on models with certain structure and 

parameter uncertainty. 
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In fact, models defined by certain general parameters, such as numbers of inputs, 

states, outputs but no other specification of parameters may be referred to as generic (with 

the parameter class). Models, which however have some additional features fixed, such as 

interconnection graph fixed, dominant dynamics of subsystems fixed etc., but with 

uncertainty in the remaining parameters, will be referred to as structured. Both generic and 

structured uncertain models are very important for evaluation of early process models. In 

this chapter, we are concerned with: 

(a) Classification of unstructured and uncertain generic system properties. 

(b) Evaluation of two important structural characteristics of structured uncertain transfer 

function models: the generic values of infinite zeros and the evaluation of the generic 

value of the McMillan degree. 

The latter problem is referred to as "Structural Identification Problem" [Karc. et al, 

2]. The results here extend those in [Karc. et al, 2] and provide an implementation of a 

theoretical algorithm [yard. et al, 1] for evaluation of the infinite zero structure. 

8.2. GENERICITY. SYSTEM PROPERTIES AND GENERIC VALUES OF 

SYSTEM INVARIANTS 

8.2.1. Introduction: The Genericity Assumption 

This section reviews the concept of genericity, as this is used in the context of state 

space models, and examines the generic, nongeneric nature of the fundamental system 

properties and key structural characteristics, the system invariants. The results of the review 
provide an important input to the problems of structure assignment, or structure formation 

avoidance in Global Instrumentation and have to be seen together with those on the generic 

solvability of families of control problems. This information may provide the basis for a 

library on model features and characteristics, which in the future should be seen as part of 

advanced design packages. The results here deal with unstructured models (no assumptions 

on any underlined graph) and provide useful input to the overall parameterisation of system 

problems when the genericity property holds true. 

Since we are interested in the process design at the early stages, it seems to be 

appropriate to consider simple models as linear time invariant and finite dimensional. These 
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may be parameterised by quadruples (A, B, C, D) (modulo coordinate transformations). The 

study of systems, their classification and finally the characterisation of solvability 

conditions is based upon them. As it will be presented later, the system properties may be 

expressed in terms of tests based on the quadruple (A, B, C, D) describing the system. These 

tests however, when the system is of the large-scale type, are computationally expensive and 

have numerical problems. It is thus worth developing simple tests (rules of thumb), based on 

very rough characteristics of the systems that allow the testing of a property (roughly 

initially) without resorting to the full test. This is where the notion of genericity plays an 

important role. A system property is generic when it does not occur only in a negligible 

subset of the set of systems (i. e. the set of all quadruples (A, B, C, D)), or in other words 

when it occurs on a system taken randomly. Genericity depends on what we consider as set 

of systems of interest. This may be the set of all systems of p-inputs, m-outputs and n-states, 

or a subset of it, where A is fixed, or a subset of it, such that (A, B, C, D) has a certain graph 

structure. 

To make the idea of genericity precise, we borrow some terminology from 

algebraic geometry. Consider polynomials cp(ý,,..., ý) with coefficients in R. A variety 

Vc RN is defined to be the locus of common zeros of a finite number of polynomials 

(Pis-..., (Pk :V= 
{P 

e RN : qj (P,.... 
, 
PN) = 0, ie k} 

. 
For example, one can prove [Wonham, I], 

[Hirst & Smale, 1], that the set of all (A, B, C, D) of fixed dimensions modulo coordinate 

state transformations is a variety. 

A property II on V is merely a function II :V -+ 
10,11, where II (P) 

=1 (or 0) 

holds (or fails) at P. Let V be a proper variety, we shall say that H is a generic relative to V. 

provided II(P) =0 only for points PEVcV where V' is a proper subvariety of V; and 

that II is generic provided such a V' exists. If H is generic, we sometimes write H =1(g). 

As V is a locus of zeros of polynomials in V, the subset of V such that the property is not 

true is a negligible set (measure zero). 

From this point onwards, when the term state space generic system is used, it will 
describe the underlining set of systems, which has p-inputs, m-outputs and n-states without 
assuming any special structure on (A, B, C, D). An alternative form of genericity may be 

defined on transfer function models. In fact, by fixing the number of inputs and outputs and 
leaving the elements in the matrix free (SISO transfer functions with arbitrary dynamics), 

we have the set of unstructured generic transfer functions; such transfer functions are very 

general models and their McMillan degree may be unbounded. Subsets of this general sets 
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are those where the McMillan degree is bounded and those where the elements of the 

transfer function have fixed dominant dynamics (due to modelling assumptions on the 

subsystems) but otherwise free elements. The first subset is referred to as Bounded 

McMillan degree generic transfer functions and the second as Dynamically Structured 

generic transfer functions. Both classes of models of the transfer function type are important 

for early process studies. The latter will be used for the study of the generic McMillan 

degree. 

8.2.2. Genericity, Invariants and Properties 

In this section, some of the most fundamental properties of linear system models 

will be examined, which are essential in understanding the dynamic behaviour of 

performance characteristics of control systems and their generic properties will be 

summarised.. A detailed account of the topic may be found in [Karc., 11]. By generic 

properties or values, we mean the properties - values on the general element of the set under 

consideration. For the different set of invariants, their properties as far as genericity results 

may be summarised as shown below [Karc., 11]: 

(i) Eigenvalues, Poles and Eigenvectors 

Genericity Properties: a) The eigenvectors can have any value; the only restriction is that 

the product of left and right eigenvectors is identity, b) The poles can have any value in the 

complex plane. Generically, the poles can get distinct values and the generic Segre 

characteristic of every pole contains only one element i. e. the geometric multiplicity of 

every pole is one. 

Remark (8.1): Repeated poles may emerge in many physical systems due to the nature of 

system dynamics and the underlined graph. Such models are topologically or dynamically 

structured. 

0 

(ii) Finite Zeros and Zero Directions 

Genericity Properties: a) The presence of zeros is generic only on systems which are 

square. b) For square systems there is nothing we can say on the distribution of zeros on the 

complex plane and for their associated zero directions; the zeros are generically distinct and 
their number is n-m, that is all zeros are generically finite. c) Given that zeros are defined on 
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both the state space and transfer function, the generic values of the two sets are the same 

(due to that generically the model is both controllable and observable). d) A generic 

nonsquare system has no zeros and a generic square system has no infinite zeros. 

(iii) Infinite zeros 

Genericity Properties: If G(s) is a transfer function of a system of p-inputs and m-outputs, 

then if G(s) is proper generic it has no infinite zeros. If m=p and if G(s) is strictly proper, 

we have m first order infinite zeros (P(s) m second order infinite zeros), whereas if G(s) is 

proper we have no infinite zeros. 

Remark (8.2): For generic transfer function models, which are affected by dynamic or 

topological structuring, we may get values for orders of infinite zeros, which are different 

than the general generic properties above. 

(iv) Stability of Linear Systems 
0 

Genericity Properties: The notion of stability for linear systems depends on root 

distribution on a certain area of the complex plane. The sets of stable or unstable 

polynomials are both sets of infinite measure. Thus stability, instability can not be 

associated with genericity. The equivalence, however, of internal, external stability is a 

generic property, since controllability and observability are generic properties for a system. 

(ý) Controllability, Observability. Minimality 

Genericity Properties: The controllability and observability properties of a system depend 

on the rank of a matrix and therefore, they depend polynomially on the system. This 

together with the fact that we can always find controllable and observable systems proves 

that these properties are generic. In fact, uncontrollability (existence of input decoupling 

zeros) and unobservability (existence of output decoupling zeros) are problems equivalent to 

the existence of a nontrivial greatest common divisor of a set of appropriate polynomials; 

thus, uncontrollability - unobservability are non-generic properties. 

Remark (8.3): For systems, which are structured by an interconnection graph and where 
inputs, outputs are selected with some physical criteria (not randomly), uncontrollability and 

unobservability may become a generic property within this family of structured models. 
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This necessitates the differentiation between the standard controllability, observability 

notions and those depending on graph, which are referred to as structural [Rijn., 1]. 

8.2.3. Generic Values of Invariants 
D 

On a given system, we may apply different types of transformations, some of them 

corresponding to a change of representation and some others having a compensation or 

feedback interpretation. The theory of system invariants is important for Control Theory and 

Design since it describes structural characteristics, which remain unaffected under the 

transformation and thus are indirectly related to the limits of compensation. Their 

importance for the design at the early stages is that for certain types of them, it might be 

possible to assign desirable values by early design decisions or avoid the formation of 

undesirable ones. This may precondition the presence of desirable properties or exclude the 

fonnation of undesirable ones. Here, we examine the generic values that invariants may take 

when they generically exist. A more detailed account on the topic is in [Karc., 11]. 

(i) Segre Characteristic and Segre Index 

For a given matrix AE Rnx. and with eigenvalues {), j 
}, the Segre index is the 

maximal of all cardinalities of the Segre characteristic sets (maximum geometric 

multiplicity of all eigenvalues of A). 

Generic Values: As a generic A has distinct eigenvalues the Segre characteristic 

generically is equal to { 1). The Segre index is generically equal to 1. 

Role to Control Problems: The geometric multiplicity plays an important role on the 

controllability properties of the eigenvalue. In fact, if this multiplicity is greater than the 

number of inputs (outputs), then the eigenvalue is uncontrollable (unobservable). The 

importance of the Segre index lies in the fact that if it exceeds the number of inputs p, then 

the system is uncontrollable. 

Remark (8.4): For structured systems by a graph of interconnections or dynamically 

generic models, the Segre index may be different than the generic value of 1. For such 

cases, its computation is important for defining the minimal required number of inputs and 

outputs, which may precondition controllability and observability. 

0 
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(ii) Controllability, Observabili Indices 

The controllability indices {cI, C2,..., cp) is the set of column minimal indices of the 

pencil 
[sI-A, B], whereas the observability indices (dl, d2,..., dm) is the set of all row 

minimal indices of the pencil [sI - At, C']'. 

Im 

Generic Values: Although, they can take any value that satisfies n=c; _ d; 
, when 

. =1 . -1 

the system is controllable and observable, the generic values of these indices are [Wonham, 

1]: 

contr. ind. _ 
c,..., c c+l,..., c+l 

, obs. ind. = 
d,..., d d+l,..., d+l 

11 , p- rl rl m- r2 r2 

where c=n ri =n- pc, d =[n , r2 =n- and and ["] denotes integer part. 
Pm 

Role to Control Problems: These indices play an important role to many problems; the 

more important of these being: 

a) Assignment of invariant factors via state feedback where the invariant factors Vi must 

rr 

satisfy: degi 
+l-; 

5Ec;, r =1,2,..., p. 
i-t i=1 

b) Arbitrary pole placement via static output feedback [Lev. & Karc., 1], where there 

must exist a controllability index such that: 
1.2pý]5 

c; 5m. 

(iii) Essential orders 

The essential orders qj of a system are defined to be the least integer 

k r= 0,1,..., n -1 such that c; AkB # 0, where c; denote the rows of C. 

Generic Values: They can take values for 0 to n-1; however, they'are generically equal to 0 

as CB has generically nonzero rows. 
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Role to Control Problems: The essential orders play a role in the decoupling problem 

where the matrix formed by the c; A"'B must be nonsingular. 

(iv) Infinite zeros 

For the generic values of infinite zeros, we have the properties: 

Generic Values: If G(s) is a transfer function of a system of p-inputs and m-outputs with 

p# in, then if G(s) is proper generic it has no infinite zeros. If in =p and G(s) is strictly 

proper, we have in first order infinite zeros, whereas if G(s) is proper, we have no infinite 

zeros. 

Role to Control Problems [Desc. & Dion, 1], [Mal. & Kuc., 1]: The infinite zeros play a 

crucial role to the exact model matching problem and as a result to the (open loop) 

disturbance rejection problem. As a matter of fact, the equation T1X = T2 has a proper 

solution X (Ti, T2 matrices are proper), if and only if [TT 
-T2] and T1 have the same 

infinite zero structure. If Tl is square, then for generic Tl and T2, the model matching 

problem does not have a proper solution. A second problem, where the infinite zeros have a 

central role is the problem of decoupling. The system (C, A, B) is decouplable if and only if 

the infinite zero orders of (C, A, B) are respectively equal to the infinite zero orders of the 

subsystems (c;, A, B), where c; is the i-th row of C. 

(v) Forney Dynamical Order and Forney Indices of Transfer Functions 

The Forney invariants of a rational vector space are the Echelon invariants of a 

minimal polynomial basis of this space. The Forney dynamical order of a transfer function 

is the polynomial degree of the ' minimal basis of the rational vector space spanned by the 

columns (or rows) of the transfer function. The Forney indices are the indices of the 

minimal polynomial basis spanning this space. 

Generic Values: The Forney index can take any value from zero to n, whereas the indices 

can take any value 61'52'... 
9 
8P : 

±8,: 
5 n. However, for a generic proper system the values 

of the Forney indices are the generic values of controllability indices, whereas, in the strictly 

proper case, they are the generic values of the controllability indices minus one. 
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Role to Control Problems: The value of the Forney order and indices play an important 

role in the zero assignment problem via squaring down. The number of assignable zeros is 

generically equal to the Forney order and arbitrary zero assignment may be achieved 

generically if and only if m(m - p) >_ 8. 

8.2.4. Summary 

The system properties and structural aspects related to invariants have been 

reviewed for the family of generic systems, for which, we make the assumption that there is 

no underlined graph structure. The results on generic values of invariants and generic 

system properties together with those dealing with the generic solvability conditions are 

prime inputs to the problems of structure assignment or structural features avoidance. The 

work here has been restricted to fundamental system properties and invariants and they 

provide the basis of a library on system characteristics and properties, which in the future is 

envisaged as an indispensable complement to design. The case of unstructured systems (no 

underlying graph) was examined here, since generic properties on given graph composite 

systems is an area still in its early stages. The list of invariants considered here are by no 

means exhausted. Some additional results on the generic rank properties of the Plucker 

matrices (entering in the solvability of pole - zero assignment problems) are discussed in 

[Karc., 11]. 

8.3. GENERIC PROPERTIES OF TRANSFER FUNCTIONS AT INFINITY 

8.3.1. Pole - Zero Structure at Infinity and Valuations 

The poles and zeros of a system at s= oo are important in the sense that they 

provide the information on the system behaviour at s= co [Kailath, 1], [Vard. et at, 1]. 

There are several problems why it is important to keep track of the behaviour at s= oo . 
Poles at s= oo characterise nonproper systems (or systems with differentiators), as may arise 

in constructing inverse systems, while the zeros at co are important, for example, in studying 

the asymptotic behaviour of multivariable root loci, decoupling etc. For scalar systems with 

n poles and m zeros, m>n, m of the closed-loop poles will converge to the n-m zeros at 
infinity under high gain. A similar conclusion can be made for multivariable systems. The 

definitions given for the poles and the zeros over R[s] do not extend to s= oo , as it can be 
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shown that the R[s]-unimodular matrices used to transform N(s) into the Smith form, can 

have both poles and zeros at oo. So by unimodular transformations, the information at s= o0 

will be destroyed. It is important to observe that the pole - zero information of the system is 

preserved for any finite frequency when under R[s]-unimodular transformations but not 

always the structure at infinity. If we make the bilinear transformation: 

a%+b 
S_ 

ca, +d 
(8.1) 

where c#0 and ad - be :#0, which will merely transform the complex s plane into itself, 

then this transformation will move the point at s= oo to the point Xd. The Smith- 
c 

McMillan form for H(k) will accurately reflect the behaviour of H(k) at all points except 

those at s= oo . 
In particular, the Smith-McMillan structure at X= -A will accurately 

c 

reflect that of H(s) at s= oo . 
If the constants a, b, c, d are chosen as a=d=0, b=c=I, 

then s= and with the substitution s= 
I, 

the pole-zero information at s= oo can be 

studied at %=0. 

An alternative way of calculating the pole-zero structure of a system both at finite 

and infinite frequencies is to use the valuation method [Kailath, 1], [yard. et al, 1], which 

characterises the Smith-McMillan form directly. Define for a scalar rational function g(s) 

the discrete valuation at s= oo by: 

v� (g) = -the oo valuation of g(s) = denominator degree - numerator degree (SCALAR CASE) 

the algebraically smallest of valuations at s= o0 of all the ixi minors of H(s) 

(MATRIX CASE) 

The Smith-McMillan form at s= co is defined by: 

M�(s) 

where: 

(8.2) 
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Ql 
(00) 

= výý), U2 
(co) 

= výGo - výOý,... (8.3) 

For transfer functions which have fixed number of inputs and outputs, but contain 

uncertain elements, the computation of the generic infinite structure is an important problem 

and it is considered next. 

8.3.2. Computation of Infinite Zero Structure for Generic Transfer Function Models 

The family of unstructured generic models in the frequency domain is defined 

formally, as shown below: 

Definition (8.1): For transfer function models G(s), where G(s) is proper, it is assumed that 

the number of inputs (p), outputs (m) are fixed, but the g; )(s) elements of G(s) are generic 

proper rational functions. The family of systems is denoted by 
Pr 

(p, m) . 

0 
Then for generic systems in the family EP. (p, m) , we have the following result: 

Theorem (8.1): [Karc. & Kouv., 1] For generic systems of the YPr(p, m) family, the 

following properties hold true: 

. The generic element of Ep, (p, m) has no infinite zeros. If the system is strictly 

proper, then the generic system of I: 
P, 

(p, m) has min {m, p} number of first order 

infinite zeros. 

" If m*p, the generic system has no finite zeros. If m=p, the generic proper system 

has n finite zeros and the generic strictly proper system has n-m finite zeros, where 

n is the McMillan degree of G(s). 

0 
We consider a family of systems described in the frequency domain with a fixed 

structure. A system H(s) is structured when it has fixed order of numerators and 
denominators in each placement of H(s). We may illustrate this as: 
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A, 2A2 Al A3 

H(s) = A3 A2 A1A2A3 

0 A4 A, 

(8.4) 

where A;, i =1,2,3,4 are dynamic models in the frequency domain whose orders are fixed 

while the coefficients in both the denominator and the numerator may take arbitrary values. 

We define the valuation at infinity as: 

u� 
(h; 

j) = u' (H) = The element - wise valuation of H(s) = 
[uj 

00 
.0 

where 
[u]= 

v' (h; j), 
i =1,..., m, j =1,..., p . 

Note that for scalar rational functions, u' are 00 
00 CO 

expressed as differences between denominator and numerator polynomial degrees and thus 

are given by the roll-off rate of the Bode magnitude plot. Hence, the roll-off rate defines the 

structure at infinity for the scalar case. This idea may be generalised to the matrix case 

under certain genericity assumptions and may thus provide a simple way for finding the 

generic Smith-McMillan form at infinity of a rational matrix representing an uncertain early 

model. To show this, let H(s) E RP"(s) and HAI 2ý;. 
'k 

be the k-th order minor composed of 

rows i1, i2,..., ik and columns j,, j2,..., jk of T(s). Then: 

1 
H"ý2..... ýk = 2(- 1}``(h; 

, 
h; 

,..., 
h; j1, j2"""", Jk Ipl 2P2 kpk (8.5) 

where p19p29..., pk is a permutation of j,, j2,..., jk and the sum is taken over all possible 

permutations (the exponent It is the number of transpositions required to go from the natural 

order jl, j2,..., jk to p,, p29... 9pk . 
Taking valuations of both sides of (7.5) yields: 

k 

v 
JHW21 

... I 'I, 
}z 

min(i) 
(hh. ht. h. ý }= 

mini ýu (hi 
, 
p, Ptý xPxý"""ý ýtPt 00 4Pt 

[=1 
(8.6) 

For the construction of the Smith-McMillan form at infinity, we require the 

valuation of all order minors, i. e. 

v ý; ý =ý (H) = min{v, ý 
JH1 

J2. `: ; ik 
}} 

Z min 
(f 

u. 
(hi, 

p. (8.7) 
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where the minima are taken over all indices 1: 5 i, < ... < ik 5p, 15 j, < ... < jk 5 m. Clearly, 

v, (tu) are the asymptotic roll-off rates of the individual entries of the rational matrix. 

Before the v. (t; j) can be used to find the u(k)(H), we have to establish the conditions under 

which equality holds in (8.7). This is given by the following Lemma [yard. et al, 1]: 

Lemma (8.1): Given two rational functions t1(s) and t2 (s) 
, then if v� (t, (s)) * v� (t2 (s)) 

v� (ti (s)+ t2 (s)) 
= min (u. 

� 
(t, (s)), v� (t2 (s))} (8.8) 

Proof: Let t; (s) = 
d' (s) 

,i =1,2 where n; (s) and d; (s) are polynomials, then 

ti (S) + t2(s) = 
n, (s) d2(S)+n2 (s) d, (s) 

d, (s) di(s) 
(8.11) 

since v�(t1(s))9'-v, o(t2(s)), we have that deg(nl(s))+deg(d2(s))#deg(n2(s))+deg(d, (s)), 

therefore: 

v� 
(t, (s) + t2 (s)) = deg(d, (s))+ deg(d2 (s))- max[{deg(n, (s)) + deg(d2 (s))}, 

{deg(n2 (s)) - deg(d, (s))}] = min{S(t, (s)), 8 (t 
2 
(s))} 

0 
This Lemma shows that if there is only one least valuation product term 

Zv�(h;, 
p, 

in (8.7), then equality holds in (8.7). If there are more than one least valuation 
1-1 

product term, however, cancellations may occur during the formation of the least valuation 

minor of a given order k. Almost any small perturbation to the transfer function matrix will 

remove these valuation-increasing cancellations and decrease the order of some of the 

infinite zeros and generate finite ones. In the general case, therefore, equality holds in (8.7) 

even if there is more than one least valuation product term in this expression. This leads to 

the following result: 
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Proposition (8.1): Given two generic rational functions f(s), g(s) with valuations a= v�(f) 

and 0= v� (g) respectively, then 

v�(f"g)=u (f)+v�(g) and v�(f±g)=min{v�(f), v. (g)} (8.12) 

0 
It is thus clear that the computation of the generic Smith-McMillan form at infinity 

may be simplified by using a representation of the valuations of elements and computations 

based on integer matrices. 

Remark (8.5): A structured transfer function matrix H(s) E R"P(s) can be transformed into 

an integer matrix v� (H) of the same dimension whose entries are the valuations of the 

corresponding entries in the structured transfer function matrix. 

D 
The computation of valuations for generic transfer functions may be considerably 

reduced by using the following definition: 

Definition (8.2): Given an integer matrix HE ZmXP, then the value of valuation of every 

element is its valuation order. A path is a sequence of m elements selected from the matrix 

with no two elements from the same column or from the same row. The length of a path is 

the number of non-zero elements in the path. The valuation weight of the path is defined as 

the sum of the orders of the elements in the path. The minimal weight of all the independent 

paths of length i of the matrix is denoted by I'vm (H) 
. 

0 
The above notions can be defined for the integer matrix u (H) as proposed before. 

We can now establish the following result concerning the valuation of H(s) at infinity: 

Proposition (8.2): The ixi -th order valuation of the generic structured H(s) at infinity is 

equivalent to the minimal weight of length i in matrix v. (H). 

Proof: If the minimal weight of any independent paths with length i is ti, we have to prove 

that there exists an ixi order minor in H(s) such that the valuation of this minor at infinity 
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is t,. Construct an ixi order minor by taking the minor just containing the minimum 

weight path. Then the order of the minor will be ixi and by employing Proposition (7.1), 

the result is established. 

0 
Example (8.1): Consider the system defined by equation (8.4). If we assume that the 

components in the transfer function are of the form: 

A= all A az, s2 +a22s+a23 A __ 
a3, s+a32 A= a41 

' s2 +b�s+b, 2 
'Z b21s4 +b22s3+ b23s+b24 '3 b3, s+b32 '4 s2 +b41s+b42 

then the element-wise valuation of the matrix H(s) is given as: 

620 

v� (H) =044 

0o 24 

The generic valuation of 1x1 minors of the matrix H(s) at infinity is the minimum 

along all the entries or u (H) = 0. The minimal weight paths of the 2x2 minors: 

6 2 6 0 2 0 0 4 4 4 0 4 6 2 6 0 2 0 [ ] 

' 

[ ] 

, 

[ 

' 0 4 0 4 4 4 o0 2 2 4 ao 4 00 2 o0 4 ' 2 4 

are 2,0,4,2,6,4,8,10,2 respectively. So the generic valuation of the 2x2 minors at 

infinity is 0, i. e. u(2) (H) =0. The generic valuation of the 3x3 matrix at infinity is the 

minimum weight path of u. (H) which is 2, so u(ao')(H) = 2. Finally, we have: 0,1)(H) = 0, 

u(, ý) (H) = 0, uC3ý (H) =2 and therefore the rational matrix generically has one zero of order 2 

at infinity and no generic poles. 

0 
Remark (8.6): Assuming that the normal rank of the matrix H(s) is r, because we consider 

only the proper system, the difference between the total number of zeros and the total 

number of poles at infinity is given by the minimal weight of all the independent paths with 

a length r. 

0 
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Remark (8.7): From the above definition and analysis, it is clear that the number of generic 

poles and zeros at infinity remains unchanged as long as the element-wise valuation of the 

rational matrix is the same, because then all the minors of all orders will be the same. In 

fact, this happens when the valuations of the elements A. are fixed. 

0 

Remark (8.8): In order to find the minimal weight of all the independent paths, the methods 

proposed in Section 8.3.2 for finding the maximal weight of all the independent paths can be 

adapted. The only change needed is to mark the minimum weight path instead of the 

maximum weight path. 

U 
8.3.3. The Computation of the Generic Infinite Structure and the Bode Diagrams 

Given the generic transfer function H(s) e R"I (s) 
, 
(note that H(s) may be given in 

terms of the frequency plots of its elements) the plotting of Bode diagrams of its elements 

provides a matrix u� (H) with elements the valuations of the individual elements h;. (s) 

defined by the roll-off rates. The matrix u, (H) will be referred to as the asymptotic Bode 

representation of H(s). The computation of the Smith-McMillan form at infinity of the 

generic H(s) is based on the following algorithmic procedure, derived from the results in 

[yard. et al, 1]: 

Algorithm for Generic Structure at Infinity 

Given the matrix v�(H), constructed from the asymptotic roll-off rates of the Bode 

diagrams h; j(s) of H(s), we compute the Smith-McMillan form at infinity as indicated 

below. We first denote by '' (H) EZ the least valuation among the valuations of all minors 

of H(s) of order j, jep, where p is the normal rank of H(s), where v°, (H) =0. 

Ste 1: Compute for all iEp the u. O(H) generic values of the i-th order valuation as the 

minimal weight of length i in the matrix u«, (H), I';, 
e 

(H) = u;, (H). 

Step Q: Define the generic invariant functions: 

234 



Chapter 8 Identification of Structural Characteristics in Early Process Modellind 

il(s) = svmcIývmcýn, i2(s) = svmcHn Umcýný..., in(s) = s"., ý"°°" v° (11) =0 (8.11) 

Step (3): The generic Smith-McMillan structure at infinity is then defined by: 

iag{i, (s), i2(s),..., iP(s)} 0 diag SQ, Sq=,..., S9t; 
1,., 1'ý0 

s- (8.12) 
0 -------------------S- --- 

= 
0 j0 

where the orders of generic infinite poles (defined for nonproper systems) are given by the 

set {ql,..., qk } and the orders of generic infinite zeros are given by the set 
{qk+l,..., 4p) 

I where 

q; >O and q, >O. 

0 
To illustrate the above procedure consider the following example [yard. et al, 1]: 

Example (8.2): Let H(s) be defined by: 

1S3 SZ 

H(S) `S+l)z 
S+I 

S+2 11 

SZ +0.25+1 S3 (s+2)z 

For this transfer function the asymptotic Bode representation is obtained from the 

plots: 

At es Iasi :; 

te 
reel:; le., i 

. 
01 

0E10 100 

, 18E-03 

;. 10E-20 . 
8j. 

t. 10, .0 

t0 
3. t ß 

t te., 100,, '.,. ' . 01.; 

. 31 
:, . OEy'! 0 3: l E-03 

. 18 1: 0E-03 

. 03 S. 0Ej1S 

. 01 
. 0E-20 EIL 

Figure (8.1): Bode Magnitude Array for Example (8.2) 
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výýHý 
12 

-3 -1] 
32 

Using the algorithm procedure, the generic values of u; 0 
(H), are: 

v;, (H)=-3, uoo(H)=min{2+3,1-3,2+2,1-1,2-3,3-1}=-2 

and thus: 

i'! Sl = Sv0. 
(H -. 

'" 
= S0-(-3) = S3 9 12 (S) = S°o()-Ul" =S 

3-ý-Z) 
= S-1 

lJ 

and the generic Smith-McMillan form at infinity is: 

s300 
Sti(S) -010 

s 

The advantages of the algorithm for large dimension problems is demonstrated by 

the following example: 

Example (8.3): Consider a7x5 transfer function matrix H(s) defined by: 

H(s) = 

s2+1 
1 s3+2 0.2 s-3 
s4 s2 +0.5s+2 1+5s s+7 

2s 
(S+1)2 s3 

5 2 
(s+3)2 s-4 2s+7 

s+2 4s2 +3 1 (s-2)3 1 

s3 -2s2 +5s-7 s+4 (2s-3)2 s (s+2)2 

s+l 
s3 -2s+3 

s4 +6s2 -3 s+1 

s-2 s-4 
3 

s 
S 

0.5 s-1 s 
s2 +1 4 

1+4s 2s2 +s ss -2s° +3s3 -4s2 +5s-6 
s 

1 2 s-5 
2s+3 s2 +3 

s+l lOs+l s 
2 s 0.7 

2 s 
1 

s2 s+2 1+3s S3 +2S-S 

For the above transfer function matrix, the valuation matrix -a (H) is: 
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-2 4 -1 1 0 

1 -2 -3 1 1 

2 -1 2 -2 2 

vý, (H) = 0 -3 -3 2 -1 
1 1 4 -2 -4 
1 1 0 -1 -2 
2 0 1 -2 3 

Using the algorithm procedure, the generic values u' (H) (for i =1,..., 5) are: 

(H) = -14 (H) = -7, v Co 
(H) _ 10, v, 4, (H) _ -12, v Co 

and thus: 

il (s) = Svýý vmý 
= SO- -4) = S4 

, 
12 (S) = SUmn-U. 

" 
= S4-J-1) = S3 

3, 
Vs) 

= Svmoi}v<I» =S 
7-(-10) 

= S3 
, 

i4 /Sý = Svm(ý vm(ý = 5-1ý-(-12) = S2' 15 (S) = Sv. 
0 U1 (M 

= 5-12-(-14) =s2 

and the generic Smith-McMillan form at infinity is: 

S4 O O O O 

O S3 O O O 

O O S3 O O 

SU(5) = 0 0 0 Sz 0 

0 0 0 0 S2 

O O O O O 

0 0 0 0 0 

The algorithm used here is based on finding weights of paths of different order and 

this is reduced to properties of integer matrices. This topic is similar to that considered in 

the next chapter and the role of integer matrices will be further explored there. The results 

given in the following section apply also here with the obvious necessary changes (min 

instead of max). 
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8.4. STRUCTURAL IDENTIFICATION OF THE GENERIC McMILLAN DEGREE 

OF A TRANSFER FUNCTION MATRIX 

8.4.1. Introduction 

The McMillan degree of a transfer function model is one of the most important 

structural characteristics and plays an important role in deciding the quality of a system 

model, as far as allowing solvability of certain control problems. In this section, the problem 

of identifying the generic McMillan degree of a rational matrix is considered. The transfer 

function matrices of interest for early process design studies are those referred to as 

"Structured Transfer Functions" (STF) matrices and have certain elements fixed to zero, 

some elements being constant and other elements expressing the simple dynamics of the 

subsystem models used. It is also assumed that although the general rule for interconnecting 

the subprocesses is known, the exact nature of the underlying interconnection graph 

(dependent on the knowledge of the actual McMillan degree of subprocesses) is not known. 

For the family of STF matrices the problem of determining the generic McMillan degree is 

considered using genericity arguments and an optimisation procedure based on path 

properties on non-negative integer matrices. The problem considered here is another of the 

problems of the area of Structural Identification, where the evaluation of structural 

characteristics on structured models is under investigation with robust computation 

methods. Once more, the overall approach adopted here is based on properties of non- 

negative integer matrices and the problem is reduced to an optimal path problem. The 

proposed solution is of special interest to large-scale early models, where the use of the 

approaches applicable for small dimension exact models is not appropriate. Note that the 

solution of the problem considered here is of similar nature to the one previously considered 

for the infinite structure and relies on properties of integer matrices. 

In this section, the generic McMillan degree of a rational matrix is investigated. 

From the definition, the McMillan degree of a rational matrix can be calculated from the 

orders of the denominators of the matrix in Smith-McMillan form. So algorithms can be 

designed to first transform the rational matrix into Smith-McMillan form by using 

unimodular transformations and then find the sum of the orders of the denominators. This 

method is impractical in terms of computations to obtain the Smith-McMillan degree. An 

alternative has been suggested by MacFarlane and Karcanias [MacF. & Karc., 1], that is to 

obtain the pole polynomial as the least common multiple of the minors of all orders. The 
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order of this least common multiple gives the McMillan degree. This method may also be 

used for the computation of the generic form of the Smith-McMillan form, as well as the 

unstable McMillan degree. This method does not require the transformation of the rational 

matrix into Smith-McMillan form and computationally is more practical, faster and exploits 

the parameter uncertainty. 

In the early design stages, the exact values of the parameters in the elements of the 

transfer functions are not known exactly. Yet, it is desirable to have some knowledge on the 

McMillan degree since it indicates the complexity of the system. Given the structure of the 

transfer function matrix and the type of the non-zero entries of the matrix, the evaluation of 

the McMillan degree of such systems will be termed as generic evaluation of the McMillan 

degree and the McMillan degree will be termed as generic McMillan degree of the given 

structured uncertain model. The poles and zeros of a system provide important information 

in the study of the multivariable root-locus design, system properties at infinity etc. When 

the parameters of the system are not given exactly, we also wish to calculate the generic 

degree of the poles and zeros at infinity. A robust early estimation of the value of the 

McMillan degree is essential for conditioning the solvability of many early design problems, 

such as selection of minimal required number of inputs, outputs irrespective of the values of 

model parameters. 

8.4.2. Generic Structured Transfer Function Matrices 

It is worth pointing out that the models at the early design stage provide only some 

structural information about the system. The structural information includes the fixed poles 
in the transfer function matrix, the orders of the non-zero entries of the matrix and some 

repeated patterns due to specific dynamic units, which are modelled with certain known 

dynamic complexity. But, otherwise, the values of the parameters of the transfer functions 

are not known exactly. Assume that all the entries of the transfer function are proper rational 

functions. For a system of dimensions mxp, a structured overall transfer function matrix 

H(s) is H(s) E RP, p[s] 
. 

The notion of structured transfer function matrices of variable 

complexity is demonstrated by the following examples. 

Example (8.4): Consider the system of Figure (8.2), which can be represented by the 

aggregated model as in Figure (8.3), where the three subsystems are described by: 
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yl = G, " el, y2 = G2 " e2, y, = G3 " e3 
� 

II + 

Figure (8.2): A General System 

Figure (8.3): Aggregated Model 

For the aggregated model, we have: 

e=u-Fy, y= G(s) (I + FG(s))-' u 

TTTTTTTrTTT 
and where U= ii' 2, u3 ,y= y1, 

-2 -3 ,e= e1 , e2, e3 jT 

G1(s) 000I 

G(s) = G2 (s) 
, 

F= -1 0I 

0 G3(s) 0 -I 0 

(8.13) 

y 

(8.14) 

The matrix F represents the interconnections, while matrix G(s) represents the 

dynamics of the aggregated system. Assume that the subsystems are all of dimension 2x2: 

I1 G, (s) _ 
(s+1)(s+5)(s+10) 

1 

(s + 2)(s + 5)(s + 10) 

6 
(s + 1)(s + 2)(s + 5)(s + 10) 

1 
(s + 1)(s + 2)(s + 5)(s + 10) J 
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2.5 
0 

0.12(s-1) s 

G2(s) = s+l G3(s) _ 
(s+1)(s+2) (s+1)(s+2) 

0 
0.75 6 s-2 

s+2 (s+1)(s+2) (s+1)(s+2) 

Following the procedure in the previous section, the structure of the aggregate 

system can be modelled by the Boolean and steady-state models as: 

1 1 0 0 0 0 0.02 0.06 0 0 0 0 

1 1 0 0 0 0 0.01 0.01 0 0 0 0 

0 0 1 0 0 0 0 0 2.5 0 0 0 
_ G' _ ' 

G. 
0 0 0 1 0 0 0 0 0 0.375 0 0 

0 0 0 0 1 1 0 0 0 0 -0.06 0 

0 0 0 0 1 1 0 0 0 0 3.0 -1 

and if we model the system by taking only the dominant pole, then we have: 

G1 = 

0.02 0.06 
0 0 0 0 

s+l s+l 
0.01 0.01 

0 0 0 0 
s+2 s+l 

2.5 
0 0 0 0 0 

i S 
0.375 

0 0 0 0 0 
s+2 

0 0 0 0 -0.06(s-1) s 

s+1 s+l 
0 0 0 0 

3.0 s-2 

s+l s+2 

The above models Gs, Go, G1 are approximations of the aggregate transfer function 

model G(s). The resulting composite system has an overall transfer function defined by: 

H=G(I+FG)'' (8.15) 

Note that: 

I0 G3 X1 X2 X3 

(I+FG) = -G, I G3 and (I+FG)'l = X4 X5 X6 (8.16) 
0 -G2 I X7 X8 X9 
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where: 

Xl =I- G3G2 (G, G3G2 + G3G2 + I)-' G,, X2 =-G3(GZG, G3+G2G3+I)-' G2 

X3 =-G3(G2G1G3+G2G3+I)-', X4 =(G1G3G2+G3G2+I)-' G1 

X5 = G2'(G2G1G3 + G2G3 +I)-'G2, X6 = G2'{(GZG, G3 +GZG3 +I)'' -I) (8.17) 

X7 = G2(G1G3G2 + G3G2 +I)-'G1, Xg = (G2G, G3 + G2G3 +I)-'G2 

X9 = (G2G1G3 + G2G3 +I)"' 

and thus the composite transfer function has the form: 

G, 00 X, X2 X3 H, H2 H3 

H= 0 G2 0 X4 X5 X6 = H4 H5 H6 (8.18) 

00 G3 X, X8 X9 H7 H$ H9 

where H, # 0, i =1,2,..., 9. Note that the aggregate dynamics and topology, represented by F, 

are not easily identified by the values of H;. 

0 

A composite system, such as the one represented by the above example, which 

does not allow identification of interconnections and aggregate dynamics from its transfer 

function H(s) will be called full. Not all of the composite systems have this property and this 

is demonstrated by the following example. 

Example (8.5): Consider the aggregate system of Example (8.4), but with an 

interconnection matrix: 

I0 -I I+G, 0 -G3 
F= 0I0 and (I + FG) =0 I+G2 0 (8.19) 

01 -1- 0 G2 I-G3 

and thus 

X1 X2 X3 

(I+FG)-' = X4 X5 X6 

X7 Xg X9 
(8.20a) 
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where the elements of the matrix are defined by: 

XI =(I+G1)-', X2 =-(I+G1)-1G3(I-G3)_'G2(I+G2)-', X3 =(I+G1)-'G3(I-G3)-', 

X4 =0, X5 =(I+G2)-', X6 =0, X7 =0, X8 =-(I-G3)-'G2(I+G2)-', X9 =(I-G3)' 

and thus 

H, H2 H3 

H=G(I+FG)-' =0 H5 0 

0 H8 H9 

(8.20b) 

(8.20c) 

By comparison of (8.19) and (8.20b), we see that part of the topology of 

interconnections is preserved in the overall transfer function as fixed blocks of zeros and 

thus the topology is partly reflected in the structuring of the transfer function. By inspection 

of (8.20b), it is also clear that part of the aggregate dynamics is also reflected in the 

composite system, but not in a straightforward manner. 

Transfer functions with fixed blocks of zeros, representing part of the 

interconnection topology, will be referred to as topologically structured transfer functions. 

The first example demonstrates that not all interconnection topologies are reflected, even 

partly, on the transfer function. 

Example (8.6): Consider the aggregate system of the previous examples with the 

interconnection topology of the cascade type as shown in Figure (8.4), for which: 

v_Z vz 

ul = v_, y1 112 y2 
+ u3 Yl 

GI(s) G2(S) G3(S) 
I P-- 

Y, YZ 

Figure (8.4): Cascade interconnection 

Glu1 Glvl 

y2 = G2112 = G2122 +y1 _ 
y3 G3u3 G3 223 +Yz 
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1G, 00v, 000G, 00y 
1 

=0 G2 0 22 -I 000 G2 0 y2 

L00 G3 U3 0 -I 0--0 0 G, y 
(8.21) 

-3 

Ae 

=G =F 

and the composite transfer function is defined by: 

y=Hv, where H(s) = G(s) (I + FG(s))-'v (8.22) 

The composite transfer function has the form: 

I00G, 00 

(I+FG) = -G, I0 and H= G2G, G2 0 (8.23) 

0 -G2 I G3G2G1 G3G2 G3 

Note that once more, part of the interconnection structure is preserved, as well as 

the open loop dynamics, as they are expressed by the poles of the individual transfer 

functions. 

Consider now the modified structure that involves some feedback. and is described 

in Figure (8.5) for which: 

Figure (8.5): Cascade Composition with Partial Feedback 

u, v, K, yl + K2 y2 v, Kl K2 0 y1 

u=uZ =vz -y, -U2--r 00y 
U3 v3 -y2 113 0 

-I 
0 y3 
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y, Gl 00 ul 

y2 =0 G2 0 u2 (8.24a) 

y3 00 G3 u3 

and thus 

u= u- FGu> u= G (I + FG)-' u and y= H u= G (I + FG)-l u (8.24b) 

We may now compute (I + FG)-1. In fact, 

I+K, G, K2G2 0 X1 X2 0 

(I+FG) = -G, I0 and (I+FG)-' = X4 XS 0 (8.24c) 

0 -G2 I X7 X8 I 

with 

X, =(I+K, G, +K2G2G, )-', X2 =-(I+K, G, +K2GZG, )''K2G2 

X4 = G, (I+K, GI +K2G2G, )-', X5 = I-G, (I+K, G, +K2G2G, )"'K2G2 (8.24d) 

X7 = GZG, (I+K, G, +K2GZG, )-', X8 = G2 -G2G, (I+K1G1 +K2G2Gi)"'K2G2 

from which the overall transfer function becomes: 

G1X, G1X2 0 

H= G2X4 G2X5 0 (8.24e) 

G3X7 G3X8 G3 

and this indicates once more that part of the fixed zero structure is preserved, as well as the 

presence of some of the subsystem dynamics. 

0 
The above examples indicate that the composite systems may be modelled in terms 

of the subsystem models {G, (s), G2 (s), G3 (s)} and the interconnection structure matrix F. 

Such models are referred to as Internal Progenitor Models (IPM) [Karc. 8, ] and frequently 
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lead to "structured" transfer function matrices for the composite system (when the 

subsystem models are fixed). A structured transfer function matrix is a transfer function 

with certain elements fixed to zero, some elements being constant and other elements 

expressing the simple dynamics of the subsystems. The transfer function of a composite 

system for which the underlined interconnection matrix F is not known or not explicitly 

stated, is called an External Progenitor Model (EPM) [Karc. 8, ] and the only evidence in the 

interconnection structure is that provided by the structured nature of the overall transfer 

function. Structured transfer function matrices frequently arise as models in the Early 

Process Design Stages and some of their basic problems associated with their structural 

characteristics will be considered here. It will be assumed throughout the following, that the 

transfer function is given but the underlined matrix F is not known. It will be further 

assumed that the transfer function matrices, which are considered, have apart from the fixed 

zeros and the fixed dominant dynamics, elements with uncertain or generic values. Such 

transfer functions will be referred to as Generic Structured Transfer Function Matrices 

(GSTF). The examples and the genericity assumptions for the non-fixed elements imply that 

for such transfer functions, we have the following properties: 

(i) Fixed zeros may appear in certain locations. 

(ii) Known or unknown origin, and thus class dynamics, may appear in a repeated way 

throughout the transfer function. 

(iii) Generic and non-repeated elements may appear, but with known dynamic order. 

The fixed zeros emergence is the result of topology and has been demonstrated by 

the examples, as well as the appearance of open-loop dynamics in a repeated way in the 

overall transfer function. From the examples (see nature of (8.20b), (8.24d)), it is also clear 

that open-loop known transfer functions generate, even under gain uncertainty, families of 

transfer functions of known dynamic origin. There also exist elements in the overall transfer 

function, which are generated in a random way (due to parameter uncertainty in 

interconnections or gain uncertainty in numerator dynamics of the aggregate system). The 

above properties can be explored in identifying important concepts, such as the McMillan 

degree of generic structured transfer function matrices and it is considered next. 
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8.4.3. The Computation of Generic McMillan Degree for the Class of GSTF Matrices 

For small dimension GSTF matrices the standard procedures for computing the 

value of the McMillan degree may be applied. For large dimension problems, however, we 

need methods, which explore the basic properties of GSTF matrices and thus lead to 

efficient ways for computing the generic McMillan degree. In this section, we consider the 

properties of GSTF and show that such problems have a discrete algebraic flavour based on 

the properties of integer matrices. To motivate the subsequent analysis, we consider an 

example of a3x3 structured proper rational transfer function matrix H(s): 

A2 2 A2 Al A3 

H(s) = A3 AZ A1A2A3 
i A, A4 A, 

(8.25) 

where the elements A;, i=1,.., 4 are repeated patterns representing, for instance, constant 

terms, the first or second order dynamics: 

_ 
cl 

= 
cgs+b3 A' 

s+alAZ s2+b, s+b2'... 
(8.26) 

where the a;, b; are fixed and the c; are constants which take generic values. By using 

partial fraction expansion, we can decompose the transfer function matrix as: 

A, A2 A, 

H(s) = A3 A2 

A, A4 

A; A, 0 

=00A, 
A, 0 A, 

H, (s) 

A3 

A, A2A3 = 
A2 

A2 0000 A3 000 

+0 A2 A2 + A3 0 A3 +000 
0000000 A4 0 

J 

H2(S) H3(S) H41(s) 

(8.27) 

and the matrices Hi(s) will be called simple structured matrices. In general, we define the 

structured and simple structured matrices as: 
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Definition (8.3): A simple structured matrix is a structured transfer function matrix where 

all its elements are of one of the following types: A. = 
C. 

or A2 
2 
c;, s + c; o 

, where 
s+a; s +b; ls+b; o 

the poles are fixed but the numerator constants are taking generic values. 

U 

A structured transfer function matrix can always be decomposed into a set of 

simple structured transfer function matrices by use of partial fraction expansion method for 

each of the dynamic terms. 

Remark (8.9): If are the fixed pole locations of a structured transfer function, 

then H(s) may always be expressed as: 

H(s) = H1(s)+H, (s)+... +HP(s) (8.28) 

where H; (s) are simple structured transfer functions, corresponding to A,; fixed pole. 

0 
For the structured transfer function matrices, we define: 

Definition (8.4): The generic McMillan degree of the structured transfer function 

H(s) E RP, p[s] is the McMillan degree when the gain parameters of the entries take generic 

values. 

0 

Remark (8.10): In the computation of any minor of a generic rational matrix, there is no 

pole zero cancellation occurring. 

0 
By the above definition, Remark (8.10) and the definition of McMillan degree 

based on the minors [MacF. & Karc., I], we have the result: 

Theorem (8.2): The generic McMillan degree of the structured transfer function matrix 

H(s) E RPM P[s] is equal to the sum of the generic McMillan degrees of the simple structure 

matrices Hi (s), H2 (s),.... That is, if 8, (Hi) denotes the generic McMillan degree of a 

simple structured transfer function H;, then 
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Sgm(H)=Sgm(HI)+8gm(H2)+... 
. 

(8.29) 

Proof: Without loss of generality, we assume that H, (s) and Hi(s) are two simple 

structured transfer function matrices of H(s), which are associated with the fundamental 

dynamics A; =1 and A, =s+, X; t), J. 
We prove that if the generic McMillan 

s 

degrees of the matrices H; (s) 
, 

Hi (s) are 8. (H; ) 
, 

Sg� (H j) , then the contributions of the 

terms A; =+ and Aj =s+ towards the generic McMillan degree of the structured 
s 

transfer function H(s) are exactly Sg,,, (H; ) and Sg,,, (H) 
. 

Because the generic McMillan degrees of the matrices H; (s) and H, (s) are 

Sg� (Hi) and 6 
g,,, 

(H; ) 
, the least common multiples of all minors of the matrices Hi(s) and 

Hi(s) are .a 
(HIS and 

ß 

ýý, i) , 
respectively. Under the genericity assumption, 

there will be no pole-zero cancellations among the constituent parts in the determinants of 

the minors. Therefore, the terms in the least common multiple of all minors of the matrix 

H(s) due to terms A; =1 and A; =1 are of the forms a/g 
and 

S+Xi si (s+%; ) ýc . 

(S+71 
jH, 

respectively, i. e. the contributions towards the generic McMillan degree of the 

structured transfer function matrix due to the fundamental dynamics A; =s+ and 
i 

A; =1 are Ssm(H) and Sgm(H; ), respectively. This proves the result. 
s+?,; 

0 

Remark (8.11): The evaluation of the generic McMillan degree of a structured transfer 
function matrix is reduced to finding the generic McMillan degrees of the simple structured 
matrices H; (s) obtained by the partial fraction decomposition. 

0 

In the following, the methods of computing the generic McMillan degree of the 

simple structured transfer function matrices are examined. Firstly, we define the concepts of 

order, path and weight. 
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Definition (8.5): Given a simple structured matrix H1(s) E RP, "[s] 
, m:: 9 p, the McMillan 

order of an entry in the matrix is the pole multiplicity of the i-th fundamental dynamics. A 

path is a sequence of in elements selected from the matrix with no two elements from the 

same column or the same row. The length of a path is the number of non-zero elements in 

the path. The McMillan weight of a path is defined to be the sum of the orders of the 

elements in the path. The maximal weight of all the independent paths of the matrix is 

denoted by FM (H) 
. 

D 
Remark (8.12): The constant terms of the structured transfer function matrix do not 

contribute to the McMillan weight. From the definition of the generic McMillan degree, the 

constant terms do not contribute to the generic McMillan degree. So the constant terms are 

equivalent to fixed zero elements, as far as the computation of the weight is concerned. 

0 

Remark (8.13): A path with the maximal weight does not necessarily have to be the longest 

path, as displayed by the following simple structured matrix: 

H(s) = AZ 0 

For this matrix, there are two paths: h, 
1 -* h12 with length I and weight 4, 

h12 - h21 with length 2 and weight 3. 

0 

In the following, we study the simple structured matrices Hi(s). Because, only, the 

non-zero dynamic elements need to be considered, and the non-zero entries represent the 

same dynamic unit with different orders, for simplicity of notation, we use the orders of the 

dynamics of the entries only. For example, in (8.27) the matrix Hl (s) is simplified as: 

Ai A2 A, A3 210 

H(s) = A3 A2 A, A2A3 -* I, =001 
A, A4 A; 102 

(8.30) 

In general, a map can be defined between a simple structured matrix II 
j 
(s) and an 

integer matrix I., such that the entries of the integer matrix correspond to the orders of the 
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entries in Hi(s). This representation will be referred to as natural mapping of a simple 

structured matrix. Note that all definitions relating to order, path, length, weight can be 

transferred from simple structured matrices to integer matrices of the same dimension. The 

partial fraction decomposition of (8.27), clearly, suggests that with any generic structured 

transfer function H(s) with fixed dynamics A= {X;, ),; E C}, we may always associate the 

simple structured matrices {H, 
1(s)} 

and thus a corresponding set of integer matrices {I,, ). 

Concerning the relationship between the generic McMillan degree and the weight of paths, 

we have the following result. 

Corollary (8.1): The generic McMillan degree of the simple structured matrix H; (s) is 

equal to the maximal weight, that is Sg,,, (H) = I'(H) 
. 

Proof: For a given simple structured matrix Hi(s) with a maximal weight I'M(H; (s)), we 

prove that the order of the least common multiple of all the minors of all orders of the 

matrix H; (s) is generically TM (H; (s)) and so is the generic McMillan degree. Without loss 

of generality, we assume A; =1 
s+ %j 

Firstly, we prove that B.. (111) z I'M (HI). Assume 
ý,; 

that the length of a maximum weight path is Ir. From the definition of path, it is clear that 

there exists a minor of order Ir x lr , which contains this path. The denominator of the 

determinant of the minor is generically (s+),; )r(H') because there is no cancellation involved 

under the genericity assumption, therefore, the order of the least common multiple of all 

minors is greater or equal to Fm (H; ) 
. 

Secondly, we prove that if Ssm (H; ) > TM (H; ) 
, then 

there exists an independent path whose weight co satisfies co' > F(HI). If 

Ssm (H) > Fm (H), then there must exist at least a minor whose denominator has an order 

exactly Sgm(H; ). Since there is no cancellation among the terms of the constituent parts to 

the minor, there exists a set of elements selected from different rows and columns whose 

product is in the form as 
ýHýý . 

In other words, there exists a path, which has a weight (s+),; ) "^ 

co * and co = Sg,,, (H; ) > I'M (H, ) 
. 

This contradicts the assumption that FM (H ) is the 

maximal weight. So we have S,, (H) = FM (Hi). 

0 
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The establishment of the relationship between generic McMillan degree and integer 

matrices allows the translation of such problems to equivalent searching problems on 

integer matrices. A number of techniques are considered next, which are based on properties 

of integer matrices. Some interesting background notation and results are considered first. 

8.4.4. Representations, Irreducibility, Weight and Complexity of Natural Matrices 

Let AE N"P 
, where N is the set of non-negative integers. Without loss of 

generality, we may assume m >_ p. The matrix A may be expressed as: 

E Nm, iEp (8.31) 

For every column a; , we define as its content, the ordered set of distinct values of 

the numbers in a; , as: 

W0={S,; > 82i > ... > 6a(i)i > 0}, where S,; is the weight of the i-th column. Using this 

notation, we may represent matrix A as shown below: 

+... +A 

Sµ, 

Sp2 
0 

A=A, 
Su 

p 

+Az 

SZ, 

822 
0 

0S0S0 (8.32) 
,p ZP S<<P 

AAA 
_A, =A2 =0µ 

where µ= max{a(i), i e p}, the matrices A,, A2,..., Aµ are mxp Boolean matrices (i. e. 

having only 0,1 elements) and in the 0, matrices 8jk take the k-th value from 2l(a, ) and if 

k>(; (j) 
, then we set 8 

jk = 0. We shall refer to the decomposition in (8.32) as the weighted 

Boolean representation of A; the matrices A; are referred to as the Boolean coefficients and 

Ai as order matrices. 

Equation (8.32), may be also written as: 
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L1 

'&Z A= [A,, A2,..., Aµ] -- (8.33) 

and <A> is referred to as a weighted Boolean representation. Every column of <A> is 

Boolean and it characterised by an index Ski, where Ski is the i-th value of the Ok matrix. It 

is clear that relation (8.33) establishes an isomorphism between the matrices of Nm and 

the Boolean matrices. We illustrate this description, in terms of an example. 

Example (8.7): Consider the matrix: 

223 

426 

A= 110 =[I'2'31 
230 

015 

Clearly, 'U(a; )={4>2>1}, 'U(4j)={3>2>1}, U(a1)={6>5>3} and we can express A as: 

000110001 

10140010200001 

A= 0003+0002+110 

01006100050000 

000001010 

and the a-Boolean representation is: 

0 0 01 1 0i0 0 1- 

1 0 10 1 00 0 0 

<A>= 0 0 00 0 01 1 0 

0 1 01 0 00 0 0 

0 0 01 0 0 110 1 0 

4 3 62 2 51 1 3 

0 
1= A1A1 +A202 +A3i3 

3 

An alternative equivalent representation of A, which also defines an isomorphism 

between natural and Boolean matrices is defined below: 
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611 812 SIP 

A= 
[aýl, 

aýZ,.., ala(1)J= 

SZ' 822 

= 

SZP 

(8.34) +k219a22,.., a2(r(2)1 +. +[ap�ap2,, apa(P)] 

A-0- 
= A, 

Sý1)1 
= AZ 

5cr(2)2 
= Ap 

ýbý MSZ ASP 

or that 

rAj, 

'ýV 
A =..., AP] (8.35) 

{A} 0 
."S 

e0 

and {A} will be referred to as the b-weighted Boolean representation. Every column of {A} 

is Boolean and it is characterised by a value in 2l(a; ) and the index i. Clearly, this 

alternative representation, also, introduces an isomorphism between N"P and Boolean 

matrices and shall be used subsequently in our analysis. 

Example (8.7) (cont. ): The b-Boolean representation of the matrix of Example (8.7) is: 

010010001 

100401031006 

A= 001 2+ 001 2+ 0005 

010110010003 

000 ýS 001 °=S2 01O j'&8-3 

and thus the b-Boolean representation is: 

0 1 0; 0 1 0; 0 0 1 

1 0 00 1 0; 10 0 

{A} =0 0 10 0 100 0= 
rA19A22Aý31 

0 1 01 0 00 0 0 

0 0 00 0 1 i0 1 0- 

t 
4 

t 
2 

tt 
13 

t 
2 

ttt 
165 

t 
3 

0 
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It should be noted that the b-representation is more economical, since the a- 

representation may contain also some zero columns. In the following, both representations 

will be used. 

A matrix AE NrxP is called column irreducible, if the matrix A, of the weighted 

Boolean representation, referred to, also, as high coefficient matrix, has full structural rank; 

otherwise, the matrix is called column reducible. The set of indices { 
11, 

S12,..., S1P} is 

referred to as the set of column weight or column degrees and the number S(A)=S = 
±5,; 

is called. the complexity of A. The irreducible, reducible classification of natural matrices 

has the following implications. 

Remark (8.14): From the definition of the weight of the matrix, we have that the 

complexity of A is always an upper bound for the weight y(A) = y, i. e. y: 5 S. 

0 

Theorem (8.3): Let AE N"P, m -: z p and assume the representation defined by (8.34). The 

following properties hold true: 

(i) If A is irreducible, then its weight y(A) =y is equal to the complexity S(A) = 8, i. e. 

. _ý 

(ii) If A is reducible, then y(A) S 8. Furthermore, if CL {Hk 
: Hk E N"xQq <p denotes 

the set of all matrices of A made up from subsets of its columns such that Hk is 

column irreducible, then 

a=max{S(Hk), VHk EA}<_y(A)<S 

Proof: 

(8.36) 

(i) If A is irreducible, i. e. A, has full structural rank, then this implies the existence of a 

path that contains the maximal column values 61i, i r: p and y= 
±5,; 

. 

(ii) If A is reducible, this implies that there exists no path of length p that passes through 

the values { ö1 
,iEp}. A maximal weight path has, thus, to be found amongst those 
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based on a subset of { S,;, i Ep}, say 5,;,,..., 6l, 
µ , 

whereas the rest of the path 

corresponds to elements where the values 5;,, <<5, Jv and thus 

y<6. The rest of the proof follows from the above arguments. In fact, by 

considering all possible column irreducible submatrices, we define lower bounds for 

y(A) and thus the maximal of all of them defines also a lower bound for y(A). 

0 

We shall refer to the number a, introduced above, as the index of A. 

Example (8.8): For the matrix A of Example (8.7), we have: 

000 
101 
000 
010 
000 
TTT 
436 

and its rank is clearly 2, i. e. the matrix is reducible and thus y(A) <4+3+6= 13. The set a 

for the matrix A is: 

2 2 3 2 2 2 3 

4 2 6 4 2 2 6 

a={1, 1, 0, 1 1, 1 0) 

2 3 0 2 3 3 0 

0 1 5 0 1 1 5 
T T T T T T t 
4 3 6 4 3 3 6 

and thus the index of the matrix A is defined as: a= max (4,3,6,4 + 3,3 + 6} =9 and thus, 

the weight satisfies the inequality 9: 5, y(A) < 13. 

0 
The search for the exact value of the weight y(A) is now based on the 

interpretation of the definition of y(A), which may be summarised as follows: 
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Remark (8.15): Let us assume that a path that gives the weight y(A) is associated with 

columns of the set {1,2,... 3} and that y(A) = y1j, +y2i2 +... +yP; 
p . 

Clearly, 

y1j, e 21(1, ),..., y1; 
µ 

E 21(; 
p) 

and the Boolean matrix, which is defined as the submatrix of 

{A} that corresponds to indices 
(yij, 

i2j2,..., 'yj) has full structur al rank. The search for the 

A 

value of y(A) is thus reduced to finding a submatrix A of {A}, which has the properties: 

NNNA 

(i) Only one column is selected from each of the blocks 1'2'"""'PP to form A. 

(ii) The resulting matrix A has full structural rank. 

(iii) The complexity of the matrix A is maximal. 

0 

An alternative interpretation of A is given below. 

Remark (8.16): For a matrix AE N"', in zp with column contents 

WAO = 
181i 

> 62i > ... > 6, 
K; ); > 01, iEp, the weight of A is defined as a sum 

y(A) = y,; 
l 
+y2i2 +... +ywµ, t <_ p, such that each yk; 

t 
takes value from only one `1(ai). In 

addition, we have: 

(i) The set of Boolean vectors of {A) corresponding to ykik, keg is structurally 

independent. 

(ii) The sum in y(A) takes a maximal value. 

0 

Clearly, Remark (8.16) is a restatement of Remark (8.15), but it is in a form that 

indicates the basics of a new algorithm that leads to the computation of y(A) in an efficient 

way. This is described in the following section. 

8.4.5. A New Algorithm for Determining the Weight of Natural Matrices 

Consider the matrix AE NmxP smý!: p , assume that its columns are ordered to 

descending weight and form the table of the column contents, i. e. 

257 



Chapter 8 Identification of Structural Characteristics in Early Process Mode//ink 

COL(l) 

----- 

col. (2) 

------- 
...... 

C01. (p) 

----------- - 611 812 
...... 

51P 

821 522 82p 

sca 
q, 

SQ(2)2 
...... 

8Cr(P)F 

Table of column contents 

where 811 >_ 812 >_ ... ', 2: 8, 
p. 

The search for the weight y(A) involves the following steps: 

STEP : (Preliminary Step) 

Define the b-Boolean representation of the matrix A, as shown in (8.36) and test 

column irreducibility by finding the structural rank of the high coefficient matrix. 

(a) If A is column irreducible, then y(A) = 
±Si; 

=8 and the search stops. 

A 
(b) If A is reducible, then y(A) <8 and compute the index of A, denoted by a(A) =a (as 

described in Theorem (8.3)). The search for y(A) then continues and involves the 

following major steps: 

STEP II : (Generation of Fundamental Sequences) 

The objective of this step is to generate the set of all p-term sequences 
(x,, 

x2,..., xp), such that x; e U(a; ), iep. This set may be generated from the Table of 

Column Contents and the objective is to order it according to descending complexity 8 of 
P 

the sequence, where 8= Lx; 
.A procedure to generate this step involves the following: 

i-I 

(a) The first sequence is (6l1,512,..., SIP ). 

(b) Consider all sequences 
(511,..., 81k_1, yk,..., 81p) obtained from by keeping p- 

1 elements fixed and by substituting the k-th element 81k by Yk e {82k31.. 
) 
5)k} 

. 

c Consider all sequences 
(S ) () il, """ýYk9"""9YcI"""ySiP , obtained from by keeping 

any p-2 elements fixed and by substituting the 81k and 61c elements by 
(Yk' 

Y[) E {82k,.., 8)k} x {ö2l,.., öcKc)c} 
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(d) The general step is to keep any p-µ elements of 
(81�512,..., S, 

P) 
fixed at their position 

and substitute the non-fixed elements 61kby elements (yk, YV"""ýYV) 

obtained from the sequences (yk, y1,..., yV) E 
{S2k,.., 

5)k}x 
{ä2,,.., 

5c(, 
), 

}x {52V,.., 
5 

CKV)V}. 

(e) The above procedure terminates with the definition of the element 
(821,822,... 

182p). 
If 

a is the reduced complexity of A and a> 821 + 822 +... + 82p 
, then the procedure 

terminates, since all further combinations lead to smaller values for the weight of the 

resulting paths. If a< SZ, +522 +... +82p P we repeat steps (a) to (e), by starting now 

from the sequence 82, +622 +... +62p . 
The set of sequences generated as above, will be 

denoted by l2(A) and will be called the set of fundamental sequences of A. 

STEP (III): (Ordering of Fundamental Sequences) 

The set of sequences G2(A) generated, as above, is now ordered in descending 
A 

complexity and the resulting set is denoted by &(A). 

STEP I: (Complexity and Index of Fundamental Sequences) 

Let {A) be the b-Boolean representation of A, i. e. {A} = 
[X,, 

A2,..., Apl. Every 

column of A, is a Boolean vector, which is "graded", i. e. corresponds to a value of 2l(a1) 

and it is, thus, denoted by a; (x; ), x; E ̀ It (a) 
. 

For every q= 
(xl, 

x2,..., xp) E G2(A), there 

corresponds a p-set of Boolean vectors defining a matrix 

A(q)=J 1al(xi),..., aP(x, )l 1, a1(x; ) e A; (8.37) 

where S(q) = x, is the complexity of q, as well as A(q) 
ý_ 

, and a(A(q)) = ß(q) is the index 

of A(q) evaluated, as indicated by part (ii) of Theorem (8.3). If A(q) is column irreducible, 

then, ß(q) = 6(q), otherwise (column reducible) a(q) < 6(q). A sequence for which 

ß(q) = 8(q) will be called irreducible; otherwise (ß(q) < 8(q)), it will be called reducible. 
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STEP : (Searching Algorithm) 

Theorem (8.4): Given a matrix Ae Nm <p 
, then from the ordered set of fundamental 

sequences &(A), 

(2(A)=1qi > qz z... zg1 ßq1.,, z... 
_ 

8(g1)ý: S(qi+i)I (8.38) 

the weight y(A) =y is determined by a procedure based on 8(q; ) and a(q; ) relationships: 

(i) Starting from ql , then: 

(a) If ß(q1)=8(q, 
), i. e. q, is irreducible, then procedure terminates and 

y(A) = o(qj) = 6(q1)= S(A). 

(b) If a(q, )<S(q, ), i. e. q, is reducible, then: 

(1) If ß(qß)>_ 6(q2), the procedure terminates and y(A) = ß(q1). 

(2) If ß(q, ) < 6(q2), continue the search to q2. Furthermore, the search is 

restricted to those q;, for which 8(q; )>a(ql). 

(ii) The general step is carried out for the sequence q; , 
for which 

S(qj) > max{o(qi),..., a(g1-1)I . 
Then, 

(a) If a(q; )=S(q; ), i. e. q; is irreducible, the procedure terminates and 

Y(A)=a(qi)=S(qi)" 

(b) If a(q; )<S(q; ), i. e. q; is reducible, then: 

(1) If max{a(q, 
),..., 

a(q; )} z 6(q1 
1), the procedure terminates and 

7(A) = max{a(gi),..., a(qj)}" 

(2) If max{a(q, ),..., a(q; )} < 8(q,., ), continue the search to q; +, . 
Furthermore, 

the search may continue up to that qj, for which 

max{a(q, ),..., a(gi)} < S(qj). 
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Proof: 

(i) Note that irreducibility of q, implies that y(A) = a(q, )= S(ql). If a(q, )<S(q, ), then if 

o(q) _ 
S(q2), the procedure stops and there is no need to carry on with the 

investigation of q2, since any search based on q2, q3 etc, will give rise to 

a(q; 
)S8(q; )<_8(q2) and, thus, a(q, 

)_a(q; ), ̀ di. If a(q1)<8(q2), then the search 

continues, with a searching horizon, being only those q;, for which 8(q; )>a(q, ). 

(ii) The general step is proved along similar lines. Thus, if 8(q; ) > max{a(q, ),..., a(q; 
_, 
)} 

, 

then irreducibility of q;, i. e. a(q; )=S(q; ), implies that the procedure terminates, since 

for any qj, j =i+1,..., a(q; )= 8(q; )_ S(qj); 
-> a(q, 

). Similarly, the procedure terminates 

when max{a(q, ),..., a(q; )}>_ 8(q; 
+, 

), since for any j= i+l,..., 

max{a(ql),..., a(q; )} >_ S(q; 
+, 

) z S(q j)>_ a(q j) and thus there is no need for further 

search. The search continues when max{a(g1),..., a(q1)}<S(q; +1); 
however, the value 

max{a(gl),..., (F(q; )) provides an improved prediction for the maximum number of 

sequences q;, which has to be considered in order to determine the value of 7(A). 

0 
The above result provides a systematic procedure that leads to the value of 'y(A) in 

a very small number of steps. The above procedure uses the minimal possible number of 

steps since it is based on ordering and exploits fully the property of irreducibility, which is 

behind the determination of y(A) . 

Example (8.9): For the matrix A of Example (8.7), we have the following b-Boolean 

representation of the column ordered matrix A' (re-ordering of columns of A). 

3 2 2 0 0 1; 0 1 
1 

0; 0 1 0 

6 4 2 1 0 010 
1 

00 1 0 

A'= 0 1 1 ---{A'}= 0 0 00 0 10 0 1 

0 2 3 0 0 00 1 01 0 0 
5 0 1 0 1 010 0 010 0 1 

T T T T T TTT TT T T 
6 4 3 6 5 342 13 2 1 

The Table of Column Contents is, then: 

261 



Chanter 8 Identification of Structural Characteristics in Early Process Modellinif 

col. (1) col. (2) col. (3) 

643 

522 

311 

The application of the searching algorithm is demonstrated below, step by step. 

STEP (I): (Preliminary Step) 

Note that S(A) = S(A) =6+4+3 =13 and by Example (8.7) ß(A) = a(A) =9 and 

thus, 9 <_ y(A) < 13. 

STEP I: (Generation of Fundamental Sequences) 

We define the set of fundamental sequences, as detailed below: 

(1) (6,4,3 )- >8=1 3 

(2) (6,4, x) --> (6,4,2) --> 8 =12 

(6,4,1 )8=1 1 

(6, x, 3) --ý (6,2,3) -ý S =11 

-x (6,1,3) -+ý =10 
(x, 4,3) -+ (5,4,3) --* 6 =12 

--ý (3,4,3) --ý 8 =10 

(3) (6, x, x) --> (6,2,2) --+ 5 =10 

-+(6,2,1)-*8=9 

-4 (6,2,2) -4 5=9 

-x(6,1,1)--->8=8 
(x, 4, x) --* (5,4,2) -* 8 =11 

--x (5,4,1) -* 6 =10 

-x(3,4,2) -*8 =9 

-x (3,4,1) -* 8=8 

(x, x, 3) -* (5,2,3) --) 5 =10 
(5,1,3)59 

(3,2,3) 8=8 

-x(3,1,3)--8 =7 

(4) (5,2,2) -- 6=9 
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and there is no need to consider any more sequences, since the resulting complexity is less 

than 9. 

STEP (III) (Ordering of Fundamental Sequences) 

We consider, only those sequences for which 8 >_ 9 and we order them, as: 

(13.1) : (6,4,3) 

(12.1) : (6,4,2) 

(12.2) : (5,4,3) 

(11.1) : (6,4,1) 

(11.2) : (6,2,3) 

(11.3) : (5,4,2) 

(10.1) : (6,1,3) 

(10.2) : (3,4,3) 

(10.3) : (6,2,2) 

(10.4) : (5,4,1) 

(10.5) : (5,2,3) 

(9.1) : (6,2,1) 

(9.2) : (6,1,2) 

(9.3): (3,4,2) 

(9.4) : (5,1,3) 

(9.5): (5,2,2) 

STEPS (III) & (IV): (Indices of Sequences and Search) 

For each of the above sequences, we compute the index a and then use the 

searching based on Theorem (8.4). 

(12.1): (6,4,2) --ý 6=12, a=8 

(12.2) : (5,4,3) -ý 8 =12, ß =12 

Given that (5,4,3) is irreducible, the search terminates here and y(A) = 12. 

Remark (8.17): The speed, with which y(A) was determined, suggests that for sequences 

with high complexity, it is worth computing their index immediately, before we proceed to 
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the computation of the whole set of sequences and order them. This may speed up more the 

convergence of the algorithm to the true value of y(A) . 

U 

8.5. SUMMARY 

In this chapter, some important system properties have been examined, which have 

been considered on uncertain and structured transfer functions. Genericity arguments have 

been used to reduce the computational complexity of the exact computations. The work is of 

special interest to large dimension transfer functions, where the complexity and 

computational cost of the exact computations is high. The work here, has been focused on 

the generic infinite zero structure and the generic McMillan degree. Other types of 

invariants, of significance for the structuring of early process models, such as minimal 

indices, may be also examined within the same framework, that is computations on integer 

matrices. These issues, however, are for future research. 

The computation of the McMillan degree of a structured transfer function matrix 

has been considered here, using the properties of column irreducibility of natural (integer) 

matrices. This algorithm avoids the general searching methods suggested in [Karc. et al, 2] 

and determines the optimal solutions in a small number of steps. The problem of the generic 
McMillan degree computation seems to be equivalent to a "maximum matching flow 

problem" [Gon. & Min., 1] for which alternative solutions exist. The comparison of this 

new, algebra based, framework to the standard, graph theory based, methods is a subject for 

future research. 
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Chapter 9 

THE PROBLEM OF CONTROL STRUCTURE SELECTION: TRANSFER 

FUNCTION METHODS 

9.1. INTRODUCTION 

The problem of selection of inputs, outputs and subsequently, of a control structure 

is an important activity within the overall design of a process and it is characterised by 

many different aspects. It is an activity of complex character and has not been properly 

addressed so far as an integration issue within the area of process and control design. The 

aim of this chapter is to introduce an overall framework on the control structure selection, 

review the process-based methodologies of the interaction analysis type and provide the 

basis for the development of relevant software. The software and its evaluation in terms of 

examples will be presented in the next chapter. As such, this chapter provides a bridge 

between the traditional interaction measures and the general problem of selecting control 

schemes. 

The overall problem of control structure selection is in the boundaries between 

Global Instrumentation and Control Design. In fact, it involves issues related to the 

structuring of the controller and as such, deals with the selection of effective sets of inputs, 

outputs involved in the control action, deciding on the nature of the coupling of such 

variables (centralised or decentralised) and determining the type and order of controller 

dynamics within a given structure. Aspects of the general problem (model orientation and 

well conditioning of the model) have already considered before. Thus, here we present the 

overall picture and then specialise to process based methodologies of the interaction type. 

These methodologies are based on heuristics and simple diagnostics and they are relevant 

265 



Chanter 9 The Problem of Control Structure Selection: Transfer Function Methods 

for problems where the number of inputs and outputs is small. The emphasis here is on 

frequency domain diagnostics and indicators. Developing software for this mature area of 

interaction analysis allows the testing of ideas on real life examples and thus, helps to 

understand the limitations of traditional techniques. The main bulk of the work here is only 

a part of the overall picture. A framework for an integrated methodology is presented at the 

end and this provides a roadmap for the area. 

9.2. THE GENERAL PROBLEM OF CONTROL STRUCTURE SELECTION 

Classical Control Design is a problem defined on a system with well defined input, 

output structure, specified structure of the controller both in terms of coupling of input- 

output variables and type and order of dynamics. These types of assumptions are issues that 

have been decided prior to control design and they are at the boundaries between Global 

Instrumentation and Control. These problems are referred to in short as Control Structure 

Selection and it is a composite activity that involves the following specific clusters of 

problems: 

a) Classification of variables, definition of orientation of the model and development of 

the progenitor model. 

b) Definition of effective sets of inputs, outputs for Control Design and Process 

Monitoring. 

c) Structuring of the feedback coupling of the control scheme and designing its 

decentralisation. 

d) Deciding on the type and order of dynamics in the structured controller. 

The above ordering is quite natural and in each of these families we have a number 

of problems that may be addressed at the early or late stages of the design and for systems 

with large or small scale dimensions. The current effort is based on transfer function type 

models and the emphasis is on small dimension problems. 

The classification of variables is a problem that is not always solved using physical 
modelling arguments. Very frequently it may lead to progenitor models which are not well 
defined. The specific issues involved in the selection of a well defined progenitor model and 

the . procedure that can be used to define a well behaved model have been considered in 

Chapter 5 for the case of state space implicit descriptions. The structuring of an effective 
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input, output structure has been considered in Chapter 6, where the well conditioning of 

models to guarantee certain desirable properties has also been discussed. Having decided the 

required input, output structure of the feedback scheme, the issue that has to be decided is 

that of the structure of the feedback scheme, i. e. centralised versus decentralised, and if 

decentralised, then the exact nature of decentralisation; the latter involves the partitioning 

and pairing, as well as the order of dynamics for the particular channels. The design of 

decentralisation is a problem that has been only partially addresses and has as integral parts 

the following subproblems [Karc. et al, 1]: 

(c.! ) Graph methodologies for structured state space models. 

(c. 2) Genericity and structural methodologies for selection of decentralisation. 

(c. 3) Diagnostics based on property indicators. 

(c. 4) Interaction analysis and diagnostics. 

The class of Graph Methodologies is particularly useful for Large Scale Systems 

with an explicit knowledge of the process interconnection structure. Work in this area is 

based on state-space models and exploits the underlying structure. Properties such as 

structural controllability, observability, decomposition of the overall system [Siljak, 1] are 
important criteria. For generic models with a nonexplicit underlying structure, results on 

generic solvability of control problems may provide criteria for selection of decentralisation 

[Lev. & Karc., 1], [Lev. & Karc., 2]. Within the third class, we have a number of 

methodologies aiming for structures which avoid the emergence of fixed modes and almost 
fixed modes [Lev. & Karc., 3], [Lev. & Karc., 4] and thus well conditioning. The classes of 

problems (c. 2), (c. 3) may be applied for both state space and transfer function descriptions 

and are relevant for both small and large scale systems. 

The interaction analysis and related diagnostics is a well developed body of 

techniques which has provided so far the bulk of techniques used especially in the process 

area. The diagnostics are based on heuristics and certain property indicators. The input, 

output dimensionality of the systems where such techniques are used has to be rather small. 
The methodology and diagnostics are based on the use of simple models. The dominant 

current approach is to screen alternatives based on the diagnostics. This mature area is 

reviewed first and then software is produced to transform it to a design tool. A MATLAII 

toolbox, that realises the various tests provides the means for testing the methodology on 

real life systems and thus evaluates them, will be presented in the next chapter. The 
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development of an approach for integration of the various approaches is given at the end of 

this chapter 

9.3. INTERACTION ANALYSIS: A REVIEW OF METHODOLOGIES 

9.3.1. Introduction and Definitions 

The design of the structure of a controller, as expressed by the coupling of pairs of 

subvectors of inputs and outputs has been a problem that has been recognised in the process 

control area for a number of years as a design problem that requires its own diagnostics and 

property indicators. For a system represented by an input-output, transfer function model 

G(s) with p inputs and m outputs, the problem of control structure selection may be 

expressed in the following way: 

Control Structure Selection: For the given system, represented by G(s), Control Structure 

Selection involves the following: 

(i) Generate all possible partitions 9={ ux} of the input vector and all possible 

partitions of the output vector go ={ yN} with variable dimensionality of the 

corresponding vectors u,, yN. 

(ii) Generate all possible compatible pairings from the set of partitions 21,3'o, i. e. 

II ={d: ýc = {(u; 
ý, 

uýý),..., (u; 
, u. )} }. Every compatible pairing II defines a P -ýP 

structured controller K. E 91"', or Ku (s) 4 91(s)"', where structuring implies that 

the controller has elements which are fixed zeros, irrespective of whether the other 

elements are constant or dynamic. 

(iii) Evaluate the performance of every controller Kn corresponding to compatible pairing 

it using some appropriate criteria, diagnostic tests and select the best. 

The above process may involve clarification of best solutions for every class of 

pairings, where the class is defined by the dimensionality of the input, output vectors 

involved; the meaning of the class of controllers is a measure of their complexity and thus 

solutions may be classified according to their complexity and performance. The above 
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process classifies the different possible solutions and it has a combinatorial character that 

makes it rather difficult to use when the dimensionality of the input and output vectors is 

large. As such the methods considered here are suitable for small dimensionality problems, 

where generating all possible pairings is not an awesome problem. 

The class of structured controllers produced by the above process contains the 

decentralised solutions. The resulting scheme may be represented as shown below: 

Ul Yi 

Ui G(s) yi 

Up yp 

K ul 

Ui 

up 

yl 

yl 

yp 

The major approaches for control structure selection based on criteria measuring 

the degree of coupling between the different partitions are referred to as interaction methods 

and are considered next. 

9.3.2. Relative Gain Array (RGA) 

The most widely known and used interaction analysis method is the Relative Gain 

Array (RGA), which was proposed by Bristol [Bris., 11. This method focuses to a desirable 

feature of the process, which is to have the effective process gain remain invariant, 

regardless of the other control loops. It utilises the ratio of the process gain by a given 

controller with all other loops open over the process gain by a given controller with all other 

loops closed. Thus, each element 7, j in the matrix A is a measure of the relative gain 

between controlled variable y; and manipulated variable uj , and the only information 
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needed for the estimation of the Relative Gain Array is the steady state gain matrix u, . 
We 

consider the open loop sensitivity of a controller: 

1a? 'i (9.1) 5Zj 

Ukk*J 

and the closed loop sensitivity of the controller: 

1ayi (9.2) 
ou 

i Ykksi 

where uk, k*j 
indicates all controllers except uj are held constant. Thus, the elements of the 

RGA will be expressed as: 

ei 

_j 
ur, kxj 

ý,,, 

ý 

(9.3) 

Yý, kxi 

Bristol recommended two guidelines for the selection of the controller pairing: 

1. Pair the controlled and manipulated variables in such a way that the corresponding 

relative gains are positive and as close to one as possible. 

2. Avoid the pairing of controlled and manipulated variables that yield negative relative 

gains, because such pairings indicate, either an unstable system, or an inverse 

responding system. 

This particular method takes into account only steady-state information of the 

process, ignoring any dynamic considerations, such as very large time delays or time 

constants, that are an important factor in the selection of the pairs of controlled and 

manipulated variables. In conclusion, the RGA provides two important items of 
information; firstly, it provides a measure of the process interactions, and secondly, it 
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supplies a recommendation concerning the most effective pairing of controlled and 

manipulated variables. 

9.3.3. Niederlinski Stability Theorem 

Useful information regarding the stability of a proposed multi-loop control system 

can be acquired by a theorem originally developed by Niederlinski [Nied., 1] and later 

corrected by Grosdidier et al [Grosd. et al, 1] 
. 
This theorem is based on three assumptions: 

" If GP; j(s), 
denotes the (ij) element of the process transfer function GP(s), then each 

GP; j(s) must be proper, rational and stable. 

" Each of the n feedback controllers in the multi-loop control system contains integral 

action. 

0 Each individual control loop is stable when any of the other n-1 loops are opened. 

If the proposed system satisfies the above assumptions then, the closed-loop system 

is unstable if: 

IKI 
<0 n 

flk;; 
(9.4) 

where K is the steady-state gain matrix of the system, with corresponding elements k; i and 

IKI denotes the determinant of K. 

This theorem provides a sufficient but not necessary condition for instability. If the 
inequality is satisfied, then the closed-loop system is unstable. In the case where the 

inequality does not hold, then the closed-loop system may or may not be stable, depending 

on the numerical values of the controller settings. McAvoy [McAvoy, 11 reports several 

examples where apparently reasonable RGA pairings result in unstable closed-loop systems. 
Thus, it is important to consider the process dynamics and also check to ensure that a 

proposed pairing does not satisfy the inequality in Equation (9.4). 
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9.3.4. Dynamic Relative Gain Array (DRGA) 

Several researchers, Tung and Edgar [Tung & Edgar, 1], McAvoy [McAvoy, 1], 

Grosdidier and Morari [Grosd. & Mor., 1] etc. have suggested alternatives and extensions to 

Bristol's Relative Gain Array, in order to the dynamic features of the process. Several 

extensions, which include dynamic effects, have been proposed. The dynamic relative gain 

array proposed by Tung and Edgar [Tung & Edgar, I] is used more widely. 

Assuming that the system is controllable and observable and employing a state- 

space model of the process, it can be shown that the resulting Dynamic Relative Gain Array 

will be given by: 

ul U2 ... um 

Y, a,, s a, 2(s) ... aim(s) 

Y2 a2, (s) a22(s) ... a2m(s) (9.5) 

Y. aml(s) am2(s) ... amm(s) 

where: 

Gij(s)rji 
31 

i =1,2,..., m 

s j=1,2, "ß", m 

where G1 (s), I'sj are the elements of the C(sI - A)' B matrix and the 
[c(_ 

Ay-' Bra matrix 

respectively. 

Having presented a frequency domain version of the dynamic RGA, a time domain 

interpretation can easily be defined. Such a procedure finally leads us to the following 

result: 

U ... um 

1 
"1 'Y1 ý1 

yl 
au, Öul 

... 
ÖUm Öul 

u Y u 

. 

y 
(9.7) 

ým ým 

... 

(OYm l e 

Y 
m auf 

°1 y 
aum 

L 
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Thus, a very similar matrix, to the Relative Gain Array matrix, is produced, taking 

into account any dynamic considerations. Tung and Edgar propose that a proper control 

structure can be selected by finding the dominant terms in the dynamic relative gain array. 

The elements of the dynamic relative gain array having large absolute values indicate the 

recommended feedback loops. It is possible that different loop pairings are recommended at 

low and high frequencies. The use of a multivariable controller could be beneficial in such 

cases. Because this interpretation is based on gains only, one should analyse the effect of 

delays separately. 

9.3.5. Performance - Relative Gain Matrix (P-RGA) 

The notion of the D-RGA has already been presented and its use as a screening tool 

for alternative control structures has been shown. Even though the RGA as discussed before 

has many interesting properties, it can not address the multitude of problems that arise in 

interaction analysis. 

The RGA matrix, as already defined, has some interesting algebraic properties 

([Grosd. et al., 1]): 

(a) It is scaling independent. Mathematically, A(D, GD2) = AG where D, and D2 are 

diagonal matrices. 

(b) All row and column sums are equal to one. 

(c) Any permutation of rows or columns in G results in the same permutation in the RGA. 

(d) If G(s) is triangular (and hence also if it is diagonal), A(G) = 1. 

(e) Relative perturbations in elements of G and in its inverse are related by 

d[G-1]ii/[G-1Iji =-),; jdg11/gq . 

An inadequacy of the RGA is that it, as property (d) outlines, even though 

interaction may not pose a problem, significant one-way coupling may exist. To overcome 

this problem, the performance relative gain array (P-RGA) can be introduced 

[Hoed. & Skog., 1]. The PRGA-matrix is defined as: 

P(s) = 
G(s)Gs 

(9.8) 
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where G(s) is the matrix consisting of only the diagonal elements of G(s), i. e. 

G= diag{g;; }. The matrix P was originally introduced at steady-state by [Grosd., 1] in order 

to understand the effect of directions under decentralised control. The elements of P are 

given by: 

Pu = gi" (s)[G-' = 
1"-(-S) %ji (S) 
gi1 (S) 

(9.9) 

Note that on one hand the diagonal elements of the RGA and the PRGA are 

identical, but on the other hand the PRGA does not have all the algebraic properties of the 

RGA. PRGA must be recomputed whenever G is rearranged, whereas RGA only needs to 

be rearranged in the same way as G. PRGA is independent of input scaling, that is P(GD2) 

= P(G), but it depends on output scaling. This is reasonable since performance is defined in 

terms of the magnitude of the outputs. 

The measures above may be extended to non-square systems by introducing the 

pseudoinverse. However, the usefulness of the measures, at least for analysing decentralised 

control, then seems to be limited. 

9.3.6. Block Relative Gain (BRG) 

Because of its many useful properties, the RGA has gained large applicability in 

the engineering world. However, at the same time, its original development as a scalar and 
its presentation in a single array, unnecessarily limited its applicability exclusively to SISO 

control loops. By formulating and extending the relative gain concept and its properties 

from a scalar to a matrix, a more powerful synthesis framework is formed, that can address 

a broader class of control problems, such as the synthesis of decentralised control structures 

that are not restricted to SISO control loops. This new concept is referred to as Block 

Relative Gain. 

Control system synthesis starts with a given set of measurements, y, and 

manipulated variables, u. The input-output model y(s) = G(s) u(s) is usually assumed to be 

the one to describe the plant dynamics, with the transfer function matrix G(s) considered to 
be square. In decentralised plant control, different subsets of outputs are assigned to 
different subsets of inputs and each such assignment forms a subsystem G;;. In classical 
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feedback terms this implies that output measurements of an individual subsystem will affect 

the manipulated inputs of that subsystem only via its own control law. Alternative 

subsystems and, thus, decentralised control structures can be systematically generated by 

partitioning G(s) into blocks of different dimensions and also due to alternative ways of 

assigning inputs and outputs to the blocks, figure (9.2). 

ui 

21345... N 

1 x x 

4 x x 

2 X x x 

5 X x x 

3 X x x 

N Ix I 
Figure (9.2): Partitioning of G(s) into blocks of different dimensions. 

Note that in this type of partitioning, subsystems are viewed as aggregates of 

control loops and not as groups of process units. Thus, block partitioning of G(s) may not 

necessarily correspond to a particular process decomposition and the resulting decentralised 

control system does not have to be compatible with any arrangement of subsystems of 

process unit operations. However, this does not preclude the possibility of specifying the 

process decomposition first and then structuring the decentralised control systems within the 

boundaries of the individual process subsystems. In some cases, this may eliminate the 

synthesis of undesirable decentralised control structures right from the beginning and reduce 

the potential combinatorial problems encountered in the block partitioning procedure. 

To better understand the concept of BRG, one has to consider a square (n x n) 

transfer function matrix G(s), partitioned as follows (the s is dropped, for convenience): 

n n-m 

G= 
GIS 4 G12 m' 

with 
Y' 

_G 
u' [G21 

; GZZ n-m y2 J Lu2 (9.10) 
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The plant is to be controlled by a decentralised control structure in which the first 

m outputs yl are interconnected with the first in inputs u, and the last n-m outputs y2 are 

interconnected with the last n-m inputs u2. The corresponding feedback configuration is 

shown in figure 9.3. The controller K and the filter F are given by: 

m n-m m n-m 

K 
Kl-' o" m F= 

m) 9.11 
0; KZ n-m' 0; FZ n-m 

+P 
-I u rý Y 

Figure 9.3: Decentralised feedback system 

The following relations hold: 

y= Gu and u= G''y (assuming G-' exists) (9.12) 

Then, if G22 is nonsingular, 

aY, 
=([G'11 

)1 
=G�-G, ZG; 

G2, (9.13) 
c1 

u2ý, Fý 1 u2=O, F, ý, F2-O 

where 
[G-] 

II 
is the first mx m block of G-': 

G1 

[G-1]121 

21 
[G-1122 (9.14) 

According to equation (9.13), G1, denotes the block gain between y, and u, when 

all the loops are open, i. e. F=0. Similarly, QG''] 
�r' is the block gain between y, and u, 

when the first m loops are open, i. e. F, =0 and the last n-m loops are closed, i. e., F2 = 0, 

and under perfect control, i. e., y2 =0. 
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The in-dimensional Block Relative Gain (left and right) can then be defined as: 

BRGe = G� . 
[G-'j» (9.15) 

1 uz=0, F-0 1 u2=OA-0, F2-0 

"Gll (9.16) BRG, _0 [&11LQFO] = 
uz=O, F, =O, F0 

Note that in the case of one-dimensional BRG, left and right BRG's become 

identical (since G11 is scalar) and reduce to the classical Bristol's RGA. In the case of 

n-dimensional BRG, BRG, = BRG, = I. The significance of the BRG in relation to the 

closed-loop performance can be derived from a study of the following three cases: 

Case 1: F, = 0, F2 =0 (no feedback) 

Case 2: Fl = 0, F2 =I (feedback of the last n-m outputs to the last n-m inputs). 

Case 3: F! = 0, F2 =0 (feedback of the first m [last n- m] outputs to the first m [last n- m] 

inputs, respectively). 

From the results (the extensive calculations can be found in [Manous. et al, 1], the 

answer to the important question about the significance of the relative gain for the 

performance of the closed-loop system can be derived. That is that the closed-loop 

performance of the mxm block under consideration, when the other n-m outputs are 

under perfect control, is a continuous function of BRG, 
. When BRG, = I, which implies 

BRG, =I, the closed-loop performance of the mxm block is as if this block was isolated 

from the rest of the plant and operating under the influence only of its own control law. This 

makes it clear what kind of information one should expect from BRG and in what sense it 

can be considered as a measure of interaction. 

9.3.7. Dynamic Block Relative Gain (D-BRG) 

When defining the block relative gain and deriving its relation to the closed-loop 

performance, the usual assumption of perfect control for the plant outputs has been made. 
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This assumption always holds at zero frequency (i. e., at steady state) by the use of integral 

control action. However, it may not hold for all the frequencies especially when non- 

minimum phase and/or strictly proper blocks are present. For such cases, the assumption of 

perfect control over the whole frequency range can be relaxed, [Manous. et al, 1]. If one 

wished to investigate interactions over the whole frequency range, BRG could be extended 

to a Dynamic-BRG and become a frequency-dependent interaction measure, that need not 

be modified, if there are no right half-plane transmission zeros in the complementary 

subsystem, which is supposed to work under perfect control. On the other hand, when RHP 

zeros exist, one either evaluates the equations at steady state only or, if interested in all the 

frequencies, one can use an appropriately modified D-BRG as given in [Manous. et al, I]. 

BRG, as it was previously defined, is related to the first m outputs and m inputs of 

the plant. As a result, it will depend on how the n outputs and n inputs are ordered in G(s). 

Since the number of all possible rearrangements of n objects is n!, n outputs and n inputs 

can be ordered in (n! )"(n! )possible combinations. Calculating an m-dimensional BRG for 

each such combination would result to a total of (n! y BRG computations, which would be 

an enormous task for large n's. In order to resolve this combinatorial problem, certain 

theorems were presented [Manous. et al, 1]. The results were the following: 

0 BRG1 (BRGr) is not affected by the ordering of the last n-m inputs and n-m 

outputs and the ordering of the first m inputs (outputs). Furthermore, for all G's that 

contain the same first in inputs and m outputs but different arrangements, the 

corresponding BRG's turn out to be trivial rearrangements of each other. 
Consequently, they can be considered equivalent. Thus for an m-dimensional 

subsystem containing a unique group of inputs and outputs, only one of the equivalent 
BRG's needs to be examined. This means that for an n-dimensional system, the 

number of calculations for an n-dimensional BRG drops from (n! )2 to 
(n). (n) 

Mm 

which is a significant reduction for large systems. 

. BRGt (BRG, ) does not depend on the scaling of the last n-m inputs and outputs 

and the first m inputs (outputs), but it does depend on the scaling of the first m outputs 
(inputs). However, if the first m outputs (inputs) are all scaled in the same way, then 

BRGt (BRG, ) is not affected at all. 
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" The diagonal elements of BRG's are well defined i. e. they remain on the diagonal but 

not necessarily at the same locations when G is trivially rearranged. This implies that, 

for all the BRGs corresponding to a particular group of m inputs and outputs, the 

designer needs to examine only m diagonal terms. 

" The well-known property of the RGA that elements of each row and each column add 

to 1, also applies to BRGs. This is a direct consequence of the previous result and also 

of the fact that the n-dimensional BRG is the identity matrix. 

The aim of the DBRG is to provide an acceptable block partitioning of the plant 

matrix G(s). Such a task is considered to be accomplished if all the BRG's of different 

dimensions corresponding to the diagonal blocks of different dimensions G;; (s) 's, are close 

to an identity matrix. To quantify this closeness and define the set of viable BRG's, the 

following procedure is necessary: 

Let B(1, e) denote a neighbourhood in the complex plane with centre at (1,0) and 

radius c= c(co). Then we say that a BRG is viable (i. e. close to identity) if its diagonal 

elements and eigenvalues belong to neighbourhoods B(1, E, ) and B(1, c2), respectively, for 

all frequencies co. The selection process is the following: 

First consider the highest degree of decentralisation - i. e. 1x1 block partitioning of 

G- that would yield a total of N SISO assignments (or pairings). For this, all the 

one-dimensional BRGs are first evaluated at s=0. Among the viable ones, those which 

establish a 1-1 correspondence between the plant's inputs and outputs, are selected. If such 

alternatives do not exist, then there is no acceptable partitioning using 1-1 blocks only. In 

that case, assignment is not complete and one proceeds with two-dimensional BRGs. In case 

there exists an acceptable 1-1 block partitioning for s=0 but viability and/or acceptance 

are violated at frequencies other than co = 0, the study of two-dimensional BRGs is again 

necessary. 

The next step in the process is the study of two-dimensional BRGs. We first study 

only BRG, s. The BRG, s, whose diagonal elements are not close to 1, are screened out 

first. Among the remaining BRG, s, only those with eigenvalues close to I are retained 

since these are the BRGI s that are close to the identity matrix. Since the eigenvalues of 

BRG, and BRG1 are the same, a detailed study of BRG, s is deemed unnecessary, in case 

the eigenvalues of BRG, are close to 1. If this is not the case, the diagonal elements of 
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BRG, s should be calculated from the RGA and their closeness to one should be examined 

as a final screening criterion. 

The diagonal terms of all the two-dimensional BRG, s are the elements of the 

column vectors that result from every possible addition of two columns of the RGA. Thus if 

one of these column vectors has p>2 elements within B(1, c1) this implies that there exist 

only 
%2! 

(p - 2)'] two-dimensional BRG, s that should be further considered. Among these 

BRG, s, those with eigenvalues outside B(1, c2) are rejected. The remaining BRG, s are 

the two-dimensional viable BRG¬ s for s=0 and for one of the column vectors discussed 

above. The screening process is repeated for all the possible column vectors and for all 

frequencies other than co =0 and ultimately gives all viable two-dimensional BRG, s. 

Searching for an acceptable partitioning over the sets of both two- and 

one-dimensional viable BRG¬ s is the next step. If one is found, the procedure concludes; 

otherwise it continues with the study of BRG, s of higher dimension, in the same manner, 

until a solution is achieved. The process is guaranteed to conclude since, in the worst case, it 

will lead to a centralised full control structure that corresponds to an n-dimensional BRG. It 

should be mentioned that E, (w) 
, c2 (CO) are free parameters through which the designer can 

affect the screening process and establish what an acceptable degree of interaction is. 

Having presented the procedure, one can easily understand the advantages of the 

DBRG. Different block partitioning of input and output sets leads to alternative 

decentralised control structures, among which the best are selected by the systematic 

screening procedure that utilises various important properties of BRG. These properties 

effectively reduce the combinatorial problems and make the analysis of large-scale systems 

feasible. 

9.3.8. Scaled Gain Matrix (SGM) 

This method was first proposed by [Liesl., 1]. The method aims to provide a control 

system designer useful information on interactions in a form that is easy to interpret. It is 

based on the scaling of input and output variables. Although a large gain between an input 

and an output indicates strong interaction, the process gain matrix can not be directly used 
for interaction analysis, because it depends on the scaling of input and output variables. In 

this method the input and output variables are resealed, so that in the new gain matrix, 
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corresponding to the rescaled variables, the elements are directly comparable with each 

other. 

Consider an mxn process transfer function matrix G(s). The basic idea behind the 

method is to scale input and output variables in such a way that the average gain in each row 

and column of the process model is one at a given frequency. This is achieved using the 

following iterative procedure: 

Sten 1 Calculate the gain matrix at the desired frequency co*, 
IG(jco)'l This is the first 

estimate of the scaled gain matrix T, i. e. for k =1 set 

" =I g,; (iw )ý (9.17) 

Step 2 Scale the rows of 'Pk in such a way that in each row the average value of the 

elements is equal to one. 

Vk ij k+1_n 
ij n 

k 
IVij 

j=1 

(9.18) 

Step 3 Scale the columns of 1fk+' in such a way that in each column the average value of 

the elements is equal to one. 

k+1 

k+2 _ 
M. W;; 

(9.19) V-m 

k+1 

vii 
j=1 

Step 4 Stop if the changes between `P' and `Pk+2 are sufficiently small. Otherwise set 

k E-- k+2 and go to step 2. 

The procedure converges towards the scaled gain matrix (SGM) that is unique for 

each matrix. In the Scaled Gain Matrix, the average value of the elements in each row and 

column is one. The interpretation of this interaction matrix is simple: values larger than one 

indicate strong interaction and values smaller than one indicate weak interaction. The largest 
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elements in T then indicate the inputs and outputs, which should be connected in the 

feedback controller. The SGM, unlike the RGA, can be used even when the number of 

inputs and outputs differ. The SGM is also applicable to the analysis of dynamic effects 

without any special extensions. The SGM is a method for finding possible control structure 

candidates. Stability and performance constraints imposed by these control structures have 

to be analysed using alternative measures. 

9.3.9. Disturbance Cost and Disturbance Condition Number 

The quality assessment of the controllability and resiliency of a process has generated 

considerable interest. The term resiliency, as used in this text, was introduced by 'Moran 

[Moran, 1], and later Perkins [Perk., 1] presented an approach for the simultaneous design 

of processes and their control systems that addresses plantwide controllability directly. In 

the context of disturbance rejection the notion of adequate disturbance resiliency means the 

ability to reject disturbances entering the process quickly enough to meet performance 

specifications. 

The notion of resiliency, as explained above, has lead to the proposition of two 

methods that are used to measure this property. Assuming a linearised model of the process, 

the open loop response of the outputs is expressed in terms of the variations of the inputs 

and disturbances: 

y(s) = P(s) u(s) + Pd (s) a(s) (9.20) 

Lewin [Lewin, 1], suggested the norm of the actuator response, ju{s}j2, as a 

quantitative measure of the control effort needed in order to reject a given disturbance 

vector. This norm is called the Disturbance Cost: 

IIu(S)II2 = 
IIP-1(s) 

Pd (s) d(s) 112 
(9.21) 

Skogestad and Morari [Skog. & Mor., 1], introduced a normalised measure similar 
to the Disturbance Cost, the Disturbance Condition Number: 
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P 

IIE-(s) d'(S)IIZ 
- 

'Cd P {-} - lid'(S)IIz 0 (9.22) 

which depends only on the direction of the disturbance d(s) and not its magnitude and the 

maximum singular value of P, a(P) = maxi ), i 
{PT P} 

, where X,; are the eigenvalues of PT P. 

These two methods provide indications for the settling time for the disturbance rejection and 

the limitations, which depend on actuator constraints. 

9.3.10. Closed Loop Disturbance Gain 

Another method that provides diagnostics for disturbances that are difficult to 

reject was proposed by Hovd and Skogestad [Hovd & Skog., 1]. The Closed Loop 

Disturbance Gain (CLDG) can be defined as: 

0= {8 
kJ=G diag 

(S) - G-' (S) ' Gdist (S) (9.23) 

where Gd; 
ag(s) 

is a matrix containing only the diagonal transfer functions of G(s) and 

Gdist (s) is the matrix of the disturbances of transfer functions having a very similar form as 

the one of equation (9.17). 

The components of the CLDG matrix correspond to the influence of any 

disturbance to every output. The higher the value of any component of the CLDG matrix 

Sjk, the more difficult is the rejection of the corresponding disturbance k from output j. It is 

also important to note that the evaluation of the CLDG is scaling dependent, since it 

depends on the expected magnitude of the disturbances and outputs and it has to be re- 

evaluated for every possible combination of control pairings. 

It is obvious that it is crucial that the variables are scaled properly. In general, the 

variables should be scaled to be within the interval -1 to 1, that is their desired or expected 

magnitudes should be normalised to be less than 1. For the case of the CLDG, which 

depends on scaling of the inputs u and the disturbances z, recommended scaling for inputs is 

that an input u; of magnitude 1 should correspond to the allowable input signal and for 

disturbances that a disturbance zk of magnitude' l should correspond to the largest expected 

disturbance. 
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9.3.11. Morari Index of Controllability 

For this method, it is important to define the notion of the Decentralised Integral 

Controllability. A plant G (corresponding to a particular pairing) is Decentralised Integral 

Controllable (DIC) if it is possible to design a diagonal controller for the plant, which has 

the following properties: 

> It has integral action (no offset for tracking) 

¢ It yields stable individual loops 

¢ It is such that the system remains stable when all the loops are closed simultaneously 

> It has the property that each loop gain may be reduced independently with a factor 

ej (0 <_ e, <_ 1) without introducing instability 

It has to be noted that DIC is a property of the plant and the particular control 

structure (pairing) chosen. 

Another method that investigates whether a possible variable pairing will produce 

an unwanted dynamic behaviour and therefore' a plant which is not Decentralised Integral 

Controllable is implied, is the Morari Index of Controllability (MIC) [Skog. & Mor., 2]. The 

Morari Index of Controllability is defined as: 

MIC = Re{Xe{ '((0))} (9.24) 

where G+(0) is the plant steady-state matrix with the signs adjusted so that all the diagonal 

elements have positive signs. Pairing which have negative MIC should be avoided. Another 

variant of the above method is the one, which eliminates the pairings for which: 

Re{a, (E(0))} < -1 (9.25) 

where matrix E is used in the interaction measures derived by Grosdidier and Morari 

[Grosd. & Mor., 1] and is given by: 

E=(G-Gdiag)"Gä 
g (9.26) 
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where matrices G and Gdiag are the same as in (9.23). This method is actually equivalent as 

to eliminate pairings that have eigenvalues of the "Jacobi iteration matrix" greater than one 

[Mij. et al, 1]. 

An interesting point regarding the investigation of cases of pairings that produce a 

plant, which is not Decentralised Integral Controllable as shown in the above two methods 

is that they can be thought of as special cases of a more general method, which eliminates 

pairings for which there exists a matrix K (which is diagonal with positive entries), such: 

Re{ X(G+(0) " K) j< 0 (9.27) 

These two methods are not necessary and sufficient conditions for a plant to be 

DIC. This means that if a plant fails to satisfy the conditions set by these two methods it is 

not DIC, but there may be plants that pass the tests, but still turn out not to be DIC. 

9.3.12. Singular Value Analysis (SVD) 

Singular Value Decomposition (SVD) is a promising analytical technique, used to 

solve important control problems, such as the evaluation of the robustness of a proposed 

control scheme and the determination of the optimal multi-loop control configuration. This 

method can provide a powerful and computationally efficient tool for analysing matrix 

systems [Fors. et al, 1] and it is the basis for many diagnostics for control system design. 

A systematic approach to the synthesis of regulatory process control structure can 
be formulated. The analysis can be performed over the frequency range that is of practical 
importance for the particular process, so that both static and dynamic aspects can be 

considered. An additional important feature of the SVD strategy is its ability to identify 

modelling aspects, such as model mismatch, which affect the performance of the resulting 

process control structure. Also, the strategy can show whether or not a structural decoupler 

will be effective in minimising interactions between loops. A compensator can be designed 

for the range of frequencies most likely to affect the process. Since we are primarily 
interested in the control structure, rather than in the actual controller design, the analysis is 

based on the open loop transfer function. The approach provides insights into important 

closed loop system properties: stability [Post. et al., 1], sensitivity [Weber & Bros., 1], and 
invertibility [Mor., 2]. 

The application of the SVD to the mx n transfer function matrix G(s) leads to: 

285 



Chapter 9 The Problem of Control Structure Selection: Transfer Function Methods 

G(s) = Z(s)A(s)AT(s) (9.28) 

D(s) ;0 
A(s)= p 

----º-- ,p =rank G(s) <_ min(m, n) 
where: 00m-p (9.29) 

p n-p 

O(s) is a diagonal matrix whose entries are the singular values of G(s). This 

decomposition implies that (m 
- p) measurements and (n 

- p) manipulated variables can be 

deleted without altering the input-output accessibility and manipulability of the system. 

However, a preliminary system analysis should include all the input and output variables. 

Suppose a, (s), a2 (s), 
""", ap (s) are distinct singular values of G (s), then Z(s) can be 

partitioned as Z(s) = 
[z, (sz2 (s)" 

" ": zP (szP+, (s), 
""", zm (s)ý, and V (s) can be partitioned as 

V(s)=[v1(s)v2(s)""": vp(s)Vp+l(s), """, vo(s)l, where z; (s) and vi(s) (for i=1,..., p) are the 

singular decomposition vectors which correspond to the i-th singular value and z, (s) and 

vi(s) (for j=p+l,..., n) are the remaining decomposition vectors which correspond to the 

zero singular values. Thus, a singular value decomposition of the matrix G(s) defines an 

input space spanned by a set of orthonormal basis vectors {v, (s)}, and a gain space defined 

by the set of singular values {a; (s)}l 
. 

Furthermore, a one-to-one correspondence is 

established between these spaces as it is illustrated in Figure (9.4): 

Y 

INPUT INPUT SCALING OUTPUT 
ROTATION ROTATION 

OUTPUT 

"(jw) V*(jw) A(jw» Z(jw) Y(jW) 

Figure (9.4): Geometric interpretation of the SVD [Lau et at., 1] 
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It is now possible to interpret the transfer function matrix geometrically. An input 

vector in the direction of vT (s) propagates through the input space, is scaled by the gain 

ß; (s), and reappears in the output direction z; (s). From the above, it is easy to express G(s) 

in terms of the singular values: 

y(S)= ß; 
(s)z (s) v; 

(S) u(s) (9.30) 

By expanding y(s) and u(s) in the standard basis vectors 
lek }kI 

and 
jej" } 

I, 

where the superscripts refer to the vector dimension, we finally obtain: 

Yk (S) = 

jal(s)tuJ(s)(W(s), 
Ekj) 

i=1 j=1 

(9.31) 

where 
(W; (s), EkJ) - 

(eTzL(s))(vT(s)e? ). The product (W; (s), EkJ) may be interpreted 

geometrically as a measure of the alignment of the singular decomposition vectors z, (s) and 

vT(s) to the standard basis vectors in the appropriate space, as is illustrated in figure (9.5): 

eZ } vi 
93 

i 
i 

GAIN 

of ---y vi 

INPUT SPACE 

"I 

OUTPUT SPACE 

Figure (9.5): Pictorial representation of alignments between singular value vectors and 

standard basis vectors for a 3-input x 2-input system. 

Another important matrix property is the Condition Number: 

CN =' 
r 

(9.32) 

where al and a, are the largest and smallest nonzero singular value of the steady-state gain 

matrix. The Condition Number is a positive number that provides a measure of how ill- 
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conditioned the gain matrix is and additional information on how sensitive is the matrix to 

variations of its elements. Thus, processes, which have poorly conditioned gain matrices, 

require excessive control action, by changing the manipulated variables in order to affect the 

controlled variables. 

Singular values of the transfer function matrix may be used to evaluate stability 

margins for multi-input-multi-output (MIMO) systems in the same manner as the amplitude 

ratio is used in single-input/single-output (S1SO) systems [Doyle & Stein, 1]. However, no 

measure of interaction or systematic search procedure is considered. As illustrated in a 

previous part, Morari [Morari, 2] used the SVD to quantify the control performance 

attainable in a process and interpreted implementability and sensitivity of the plant, 

concepts, which quantify the resiliency of the plant, in terms of the norms of the transfer 

function operator. It is interesting that two problems, at opposite ends of the hierarchy in 

process design and control structure synthesis, emerge closely related after the appropriate 

analysis. In addition, the SVD strategy can be used to identify modelling aspects, such as 

model mismatch, which affect the performance of the resulting control structure. 

9.3.13. Structured Singular Value 

An approach, which provides a sufficient condition for having a Decentralised 

Integral Controllable plant, is given in terms of the structured singular value µ of E 

(equation (9.26)) [Doyle & Stein, 1]. The structured singular value provides a generalisation 

of the singular value a and the spectral radius p and can be defined by: 

µ(M)-ß = min(a(i\)/det(I - MM= 0 for structured A) (9.33) 

This measure is used to get necessary and sufficient conditions for robust stability 

and robust performance. According to the conditions for a plant to be DIC [Grosd. & Mor., 

1], the following rule results: 

µ(E(0)) <1 
I 

where it should be noted that: p(E) 5 µ(E) S p(IEI) 

(9.34) 
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and we therefore have that the eigenvalues of E(O) should always be greater than -1 (as 

dictated by equation (9.25)) and their magnitude p(E(O)) be preferably less than 1 (as 

proposed by equations (9.33) and (9.34)). The generalisation of DIC follows since the use of 

µ(E) allows the individual loops to be different and therefore can be independently 

designed. 

9.3.14. Discussion 

From all the mentioned methods and tests that have been developed, which belong 

to the area of Interaction Analysis and are used to decide the pairings that are to be made in 

the control structure, it is obvious that necessary conditions for Decentralised Integral 

Control (DIC) are of particular interest. A violation of any of these tests implies that DIC is 

not possible and the corresponding pairing may be eliminated. For most process plants the 

majority of the alternatives may be eliminated using such conditions. 

The main reason for problems encountered with decentralised controllers are the 

interactions caused by the off-diagonal elements in a given plant G. If these elements are 

"small" then the corresponding interactions are weak and decentralised control is simple. If 

the interactions are large, then it might happen that the sign of the plant gain between a 

specific plant input and output changes sign as other loops are closed. Integral control, 

which is known to depend on knowing the plant gain, is then not possible. All of the 

conditions that were presented are therefore in terms of avoiding pairings where the plant 

gain may change sign as other loops are changed. It is stressed here that this discussion is 

concerned only with tests that use steady state data. 

The Relative Gain Array (RGA) has the important advantage that it is very simple 

to compute and does not have to be recomputed to investigate alternative pairings. This is 

because a permutation of the rows or columns in the plant G, corresponding to a change in 

pairings, results in the same permutation in the RGA (Bris., 1). Consequently, one should 

always start by eliminating pairings according to what is proposed by the evaluation of the 

RGA. The rest of the conditions and tests can subsequently be used to make the final 

decision over the control structure of the process. In general, interaction type methodologies 

rely on testing alternative pairings. For large dimension problems such methodologies are 

linked to a combinatorial explosion (huge number of tests). Most of these tests have also 

been modified in order to take into account the dynamic effects of the interaction between 

the possible pairings of the control structure. 
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All the methods and tests discussed in this chapter will be implemented in the 

developed software. The implementation will be discussed in Chapter 10. 

9.4. AN INTEGRATED APPROACH TO CONTROL STRUCTURE SELECTION 

Interaction analysis is a methodology that is suitable for small dimension problems 

and thus relevant for issues addressed at the subsystem level. The overall selection of 

control structure for models, which have been already formed and are well conditioned, is 

an area involving many more steps and an approach that can be used as described below 

[Karc. et al, 1]: 

Ste (1): Use knowledge on the process, geographical location of process units and 

operational requirements to define a first appraisal of options as far as centralisation versus 

decentralisation. 

This step aims to take into account the particulars of the application area and 

nature of the problem. This knowledge is indispensable and it is part of the overall problem 

specification. What is expected at this stage, is the development of the first structuring of the 

schemes in terms of superblocks, which may require some further structuring subsequently. 

It is worth mentioning that the requirements of the overall problem decomposition based 

either on performance optimisation (operational) or subproblem design, have to be taken 

into account here. This area is dominated by the process dependent specifics, heuristics but 

there is also a need for work which has to be based on the systematic study of the problem 

decomposition (operational and design aspects). This area of work may be considered as a 

part of the control structure selection on a whole plant. 

Step (2): Use results on the generic solvability of decentralised control problems to produce 

a first parameterisation of alternatives. 

The study of decentralised control problems has produced some results 

characterising generic solvability, which leads to parameterisation of possible partitions of 

input, output channels, which permit solvability of these control problems. These results 

depend on structural characteristics such as the McMillan degree and numbers of input, 

outputs, infinite zero structure etc. This topic has been considered in Chapter 7. This 

analysis is the first of the analytical steps in the evaluation of the alternative schemes. 
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Step 3: Use of graph analysis methodology and the concept of structural fixed modes for 

evaluation of alternatives defined by the previous step. 

For systems which have an explicit graph structure, a procedure for evaluating 

alternatives based on the exclusion of structural fixed modes may be used as a first 

structural methodology that uses the most basic structural aspect, the system graph. It is 

clear that the results have to exploit deeper structural characteristics based on the graph 

rather than those of the previous step. In parallel to this activity we have a step that aims at 

reducing the overall dimensionality of the problem by decomposing the large problem to 

smaller ones. 

Ste (4): Develop methodologies for decomposing a large dimension design problem to 

smaller problems. 

The decomposition of the process is not dictated by any computational 

considerations but is an integral part of the design strategy. Process decomposition reveals 

the aggregates of unit operations and chemical reactors, which must be centrally controlled. 

Note that the process decomposition can be directed towards developing the independently 

controlled groups of units, in terms of regulation or optimisation. Both criteria can be 

applied to the same process simultaneously and nearly independently. Although this may 

sound contradictory, process decomposition for regulatory purposes will be feasible within 

the bounds of the groups established from the process decomposition for optimising control 

purposes. To split a process into subprocesses, which are optimised separately, one must be 

able to decompose the overall objective function linearly, and one part of it must be 

associated with every subsystem. The minimal size of a subsystem is usually dictated by 

that restriction. For optimisation, the magnitude of the subproblems has to be balanced 

against the effort to coordinate solutions. In addition, the solution should not be too 

sensitive to the exact satisfaction of the interconnection constraints. Otherwise, the required 

co-ordination algorithm needs to be involved as well. 

Step (5): Use of interaction analysis diagnostics based on steady state models or simple 

dynamic models, in order to evaluate the alternatives produced at the previous stage. 
Progressing from graph models to decomposed systems using small steady state or 

simple dynamic models, we may use the large number of diagnostics of the RGA, BRGA 

type to evaluate further the options specified by the previous step. After this stage we may 

progress to further evaluation, which is described in the next step. 
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Step (6): Use of advanced structure selection diagnostics based on linear dynamic models 

and parameter dependent structural characteristics. 

At this stage, we proceed with the evaluation of the available options using linear 

models and parameter dependent properties such as fixed modes (non structural), almost 

fixed modes under various dynamic modes, properties of the rank of decentralised Plucker 

matrices, strong instability and minimum phase phenomena etc. The exterior algebra 

diagnostics, which include a large number of tests, used in this step are described in [Lev. & 

Karc, 4]. Within this family the Decentralised Markov parameters [Lev. & Karc., 2] are first 

used, since the computations involved are relatively simple and then we proceed to the more 

complex algebra tests. In all these studies we use as a test the avoidance of the formation of 

undesirable characteristics (fixed, almost fixed modes, loss of rank of Plucker matrices) or 

preconditioning of properties (full rank of Plucker matrices). In fact, the decentralised 

Markov parameter test also provides the means to modify the centralised input, output 

structure in order to guarantee certain properties. 

Step (7): Use of diagnostics based on performance indicators to evaluate the alternative 

decentralisation schemes, which have specified in the previous step, on a full dynamic linear 

model. 

Having exhausted all structural methodologies and tests to reduce the set of options 

(necessary conditions have been mostly used), we now use computationally intensive 

methodologies such as singular value analysis, structural singular values, properties of 

balanced realisations, energy requirements for coupling etc. Such criteria are described in 

the section on interaction analysis. A state space based methodology exploring measures of 

system properties for evaluation of alternatives is given in [Nankoo, 1]. The methodology is 

based on the use of simple models first and then progressively moves to more detailed 

models and more detailed structural criteria. The current emphasis in the approach is the 

screening of the bad choices and then the final selection is made according to performance 

dependent criteria and multiobjective optimisation. A procedure for sorting out various 

criteria can be based on specifying the structure firstly and then use optimisation for the fine 

tuning of the parameters. 
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9.5. CONCLUSIONS 

The problem of control structure selection has been considered from the transfer 

function viewpoint and using the traditional techniques, which have been developed within 

the process control area and referred to in short as interaction analysis. The development of 

software, as presented in the next chapter, has enabled the testing of these methods and has 

revealed the need for extending the framework by integrating it with procedures that allow 

the selection of inputs, outputs and well conditioned progenitor models, as well as 

techniques that allow the handling of structured, large scale problems and state space 

approaches which exploit measures of presence of system properties and formation of 

structural characteristics. 

An attempt has been made to develop an overall approach that allows the 

consideration of the different dimensions of the problem. This approach is based on 

exploiting the underlying system structure, going progressively from unstructured model 

diagnostics, to graph structure based results, to model parameter dependent invariants and 

finally performance indicators. This structural methodology reflects the overall structural 

philosophy and it is quite logical for the overall problem. In fact, starting with a large 

number of options, we first use simple theory and criteria and progressively, by reducing the 

set of options, we start using more detailed and meaningful criteria, which however are 

associated with more computationally intensive procedures. What we have provided so far 

is an overall methodology and in the various steps, new, as well as known results are used. 

There are many areas, which need development if we are to move to an integrated and 

substantial structure selection diagnostics framework. Generating the different alternatives 
in a systematic and not ad hoc manner, sorting out the multiobjective decision problem of 

alternative criteria and finally moving for evaluation to design are open challenges in the 

future. So far we have relied on the structural approach, which is quite meaningful at early 

stages and for sorting out many options. At the later stages, there is a need to develop 

optimisation methodologies for tuning parameters within a given selected structure. This is 

also an important area for future research, where tools from the II� optimisation 

methodology, may combine with the structural approaches to provide powerful hybrid 

methodologies. 
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Chapter 10 

SOFTWARE DEVELOPMENT AND DESIGN EXAMPLES 

10.1. INTRODUCTION 

In the first part of this chapter, the various methodologies, presented in Chapter 9, 

are implemented in a control structure selection toolbox. This toolbox can be used to assist 

the design of a control structure selection or, for the case of an existing structure, to help 

draw conclusions about the behaviour of the system and provide insights about a possible 

restructuring of the control scheme. Several examples are used to illustrate the different 

indicators used. 

The second part consists of a numerical example, which illustrates the method, 

proposed in Chapter 6, for the well conditioning of a degenerate system. 

10.2. INTERACTION ANALYSIS TOOLBOX 

The toolbox was developed using MATLAB 5.3, Release 11 (MATLAB is a 

registered trademark of The Math Works Inc. ). Part of this program was developed in [Nist., 

1] for previous versions of MATLAB. All the developed programs are included in the 

companion disk of this thesis. By typing in the command prompt of MATLAB "mmenu", 

the user is presented with the main screen of the program (Figure 10.1), which includes all 

the possible options available. 
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Figure (10.1): Main User Interface 

The user needs to insert the system of his choice either in state-space form or as a 

transfer function, as well as the frequency range. The interaction indicators that are included 

are the following: RGA, D-RGA, PRGA, D-PRGA, SGM, D-SGM, BRG, D-BRG, SVD, 

DIC 

Indicators 1,3,5 and 7 correspond to static systems (frequency w=0), whereas, 2, 

4,6,8 to dynamic systems (range of frequency needed). The SVD button (Figure 10.2) and 

the DIC button (Figure 10.3) provide the user with more choices: 

Sio" Values 
l 

Condition Nuber 
I 

misdwwwt on* 

ALL-3 Dial iosb *I 
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Figure (10.2): SVD Analysis 
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Figure (10.3): DIC Checking 
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SVD Analysis provides the singular values of the system, the condition number and 

the misalignment angle. MIC Checking evaluates the following properties, which have been 

described in Chapter 9: 

1. CLDG 

2. D-CLDG 

3. Eigenvalues of the Error Matrix 

4. Moran Index of Controllability (MIC) 

5. Structured Singular Value (SSV) 

6. Dynamic Structured Singular Value (D_SSV) 

10.3. EXAMPLE OF TWO CSTRs 

The example used is that of a sequence of two continuous stirred reactor tanks 

(CSTR) used for a highly exothermic liquid phase reaction. The model is described in more 

detail in [Pros., 1]. A flowsheet of the process is given in Figure (10.4). 

The linearised state-space description of the model is given in [Mor. et al, 1]. 

k=Ax+Bu 

y=Cx+Du 

where matrices A, B, C, D have the following numerical forms: 

(10.1) 
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A=I 

B=I 

-163.98 0 0 0 50.345 50.345 0 0 

30.238 -91.003 24.335 24.335 0 0 0 0 

0.08928 0.31251 0.83744 0 0 0 0.03441 0 

17.383 24.335 68.998 -117.67 0 0 0 0 

0 0 0 0.63636 0.13264 0 0 0.047315 

50.345 0 0 0 108.75 -209.44 0 0 

0 0 -3986.2 0 0 0 -60.557 0 

0 0 0 0 -743.85 0 0 -24.464 

2784 0 0 0 

-740.81 1110.6 0 0 

-2.1874 -5.2062 0 0 

-425.86 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 -1073.5 0 

0 0 0 - 427.73 

0.20408 0.71430 0 0 0 0 0 0 -4.997 -11.9 0 0 

0 0 1 0 0 0 0 0 0 0 0 0 
_ C 'D_ 0 0 0 1 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 

The above model was examined with the software developed and the results are 

presented next. 

1 0.3.1. RGA 

RGA is the most widely used interaction measure. The results for the Two-CSTR 

model are presented in the following table: 

0.0006 0.9995 -9.9659 1.0412 

-0.5333 0.0001 1.5333 -2.1510 RGA = 1.6241 0.0004 -0.5332 -0-0913 

- 0.0914 0.0001 0.0001 1.0913 

According to Niederlinski stability theorem, this system is stable. 
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The highlighted values are the ones that appear most promising for pairing and so 

the proposed pairings are: I -* 3,2 -+ 1,3 -* 2,4 -+ 4. It is obvious, though, that for 

inputs 2 and 3 the proposed pairing gives a value not very close to 1 and that indicates 

strong interactions between the pairs. Also, output 1 gives a very good value, close to 1, for 

input 4, but this choice has to be discarded because, then, input would have no other 

possible pairing. However, the application of the Niederlinski stability theorem suggests 

that the system is stable. 

10.3.2. D-RGA 

The D-RGA is an extension of the RGA that incorporates the dynamic behaviour of 

the system. The frequency range is taken to be between 0.001 and 10 radsec. The result for 

the proposed pairings is: 

'Dr. 4c, ß 

fl 

Figure (10.51: D-RGA Results 

It should be noted that the user can plot any possible pairing and these four are the 

ones corresponding to the ones proposed by the RGA. The results, here, show that for inputs 

2 and 3 the interactions are rather high for low frequencies, but settle down as the frequency 

increases. 

1 0.3.3. PRGA 

The results for the P-RGA are: 
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0.0006 0.9990 - 9.5509 1.2944 

0.0001 0.0001 1.5342 - 2.1365 
P-RGA = 1.6197 0.0035 -0.5332 -0.0916 

- 0.004 0.0001 -0.0053 1.1004 

The results are similar to those produced by the RGA and the proposed pairings 

(highlighted in the above table) remain the same. The advantage of the P-RGA against the 

RGA is the fact that it is independent of input scaling. This can be very helpful, especially in 

cases where the transfer function needs to be rearranged, during the design process. 

10.3.4. D-PRGA 

The dynamical version of the above indicator and for the same frequency range 

gives the result shown in Figure (10.6). The plot is again similar to the one produced by the 

D-RGA. 

0 

10.3.5. SGM 
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Figure (10.6): D-PRGA Results 

In this method, the inputs and outputs are rescaled, so that the average value of the 

elements in each row and column is one. Thus, the elements can be directly compared to 

each other. The result for the given system is: 
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0.0286 3.8540 0.0064 0.0099 

1.2679 0.0381 2.2927 0.4350 
5GM = 

2.0039 0.0799 1.2607 0.6876 

0.6995 0.0279 0.4401 2.8674 

The elements of the SGM matrix provide useful information. Values larger than I 

indicate strong interaction and values smaller than 1 indicate weak interaction. Then, the 

largest elements indicate which inputs and outputs should be paired. The highlighted 

elements are the ones that are the largest and correspond to the same pairing scheme 

proposed according to the RGA. It has to be noted that there exist other significant 

interactions between other inputs and outputs, i. e. the pairs (1,2) and (3,3). 

10.3.6. D-SGM 

The D-SGM is an extension of the SGM, as it provides the dynamic behaviour over 

a given frequency range. First, all possible pairings are plotted (for a4 x4 system, the 

possible combinations of pairs are 16). 

C 
Ö 

43 

- 1-, 

S-2 

1.1 
2-1 

2-3 
2H 

31 
32 

3-a 
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4-2 

4-3 
4-4 

Figure (10.7): D-SGM Results for all Possible Pairings 

From this plot, we can deduct useful information about the behaviour of' all the 

pairings. As the frequency becomes higher, the effect of the proposed pairings on the 

interaction becomes stronger. On the other hand, the pairings, which from the static SGM 

were identified as possible candidates (pairings (1,2) and (3,3)) appear to be losing their 

strength and will not interact between them as much. The plot for the proposed pairing is: 
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Figure (10.8): D-SGM Results for Proposed Structure 

From this graph, it is clearer, that the interactions for pairs (3,2), (1,3) and (4,4) 

become stronger as the frequency goes up, whereas, the interaction for the pair (2,1) seems 

rather unaffected in the frequency range. 

1 0.3.7. BRG 

The BRG method extends the RGA method, as it was explained in Section 9.3.6 

[Man. et al, 1]. Firstly, we consider the highest degree of decentralisation, i. e. IxI block 

partitioning of G, which yields a total of 4 SISO pairings. In this manner, all the one- 

dimensional BRGs are evaluated. The one dimensional BRGs are shown below in the RGA 

form 

One-dimensional BRGs 

Ui 
1234 

1 0.0006 0.9995 -9.9659 1.0412 
2 -0.5333 0.0001 1.5333 -2.1510 
3 1.6241 0.0004 -0.5332 -0.0913 
4 -0.0914 0.0001 0.0001 1.0913 

Depending on the desired value for the error step, we can either accept some values 

or not. In this case, though, we have several that are very close to 1, i. e. value corresponding 
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to pair (2.1). If we do not accept any, we continue with the next step. The two-dimensional 

BRGs are available when all possible additions of two columns of the above RGA are 

performed. The result is: 

Two-dimensional BRG 

Ui 
1+2 1+3 1+4 2+3 2+4 3+4 

1 1.0055 -9.9653 1.0418 -8.9664 2.0407 -8.9247 
2 -0.05332 1.0000 -2.6843 -1.5334 -2.1509 -0.6177 
3 1.6245 1.0909 1.5328 -0.5328 -0.0909 -0.6245 
4 -0.0913 -0.0913 1.0000 0.0002 1.0914 1.0914 

The highlighted elements are the most promising. In general, we would have to 

continue examining the three-dimensional BRGs etc. In our case, we have elements very 

close to one. We will have to relax the restriction of the error step very much, i. e. 0.8 in 

order to achieve a 3-1 system, which means that for this value the system can be split into 

one 3x3 MIMO system and one 1x1 SISO system. 

10.3.8. D-BRG 

In the example, used in this case, there were elements in the one dimensional URIi 

that were very close to 1. So the Dynamical version of the BRG method does not provide 

any additional useful information. 

10.3.9. SVD Analysis 

The Singular Value Decomposition Analysis contains three different system 

properties. The singular values of the system, the condition number and the misalignment 

angle of the system as a function of the frequency, the same frequency range has been used. 
The results for these three properties are: 
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Figure (10.9): Singular Values 
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The graphical representation of the singular values is very similar to the Bode plot 

of the system. Therefore, it is expected for them to remain constant in low frequencies and 

decrease linearly, as the frequency becomes higher. 
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Figure (10.10): Condition Number 

From the graph corresponding to the behaviour of the condition number as a 

function of the frequency, it can be seen that it increases as we move to higher frequencies. 

Consequently, the sensitivity of the system increases at higher frequencies. 
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Figure (10.11): Misalignment Angle 

From the plot of the misalignment angle, it can be seen that, although, it goes up 

slowly as the frequency goes higher, it still keeps low values (i. e. values <15°). This means 

that the system has a natural loop structure and there is no need to introduce any 

compensators, in order to reduce the interactions within the system. 

10.4. EXAMPLE OF LV-DISTILLATION 

For the illustration of the final part of the Interaction Analysis Toolbox, a different 

example will be used. The indicators that are included in the DIC Checking are used for 

systems that have known disturbances entering the process and correspond to the ability of 

the system to cope with them. 

The example that will be used is that of a distillation column, controlled with the 

LV-configuration. The column data are given by [Skog. & Mor., 1] and the state-space 

description of the system in [Hovd & Skog., 1]. The transfer function matrices 

G(s) and Gd(s) can be calculated from the formulae: 

G(s)=C(sI-A)-'B+D 

Gd(s)=C(sI-A)'Bd+Dd 

where the state-space matrices are: 
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- 5.161e-; 

0 

A= 0 

0 

0 

- 6.296e ' 

5.481 e-3 

B=3.041 e-3 

-1.856e-2 

-1.229e-' 

- 7.223 

-8.913 

o 0 0 0 
-7.366e2 0 0 0 

0 -1.829e-' 0 0 

0 0 - 4.620e-' 9.895e-' 

0 0 -9.895e-' -4.620e-' 

6.236e-2 

-1.719e-2 

-1.078e-2 , 
Bd 

-1.393e-2 

- 5.608e-3 

-9.364e-; -1.333e -2 

1.960e-2 8.018e-3 

3.266e-3 - 2.116e-2 

- 2.827e-2 5.319e-3 

- 6.784e-` 2.719e-3 

-5.170 3.836 -1.633e-' 
4.728 9.876 8.425 

00 1.121 
, 

D_Dd = 
2.186 00 

For the above system, the DIC Checking part of the software is used and the results 

are presented next. 

10.4.1. CLDG 

The steady-state effect of the two disturbances is: 

1.7660 19.6484 
Gd(0) L15.6974 21.2712 

Both disturbances have large magnitudes and seem to be difficult to reject. The 

pairing that will be examined is that of output 1-disturbance 1 and the steady-state ('I. l)G 

for the system is: 

CLDG =[-44.2477 
0.6730 

65.2039 11.3567 

From the CLDG, it can be seen that disturbance 2 has a very small effect oil output 

I at steady-state. Similarly, the effect of disturbance 2 on output 2 is not that large if 

compared with effect of disturbance I to both outputs. Thus, the designer will have a 
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problem of rejecting disturbance 1, no matter what the pairing will be, since it affects both 

outputs very strongly. 

10.4.2. D-CLDG 

The dynamic behaviour of the CLDG as a function of the frequency can be seen in 

the following graph: 

oynamc CLDG 

C 

S 
Q 

- 1-1 
1-2 
2-1 
Tß, 2 

Figure (10.12): D-CLDG of the System 

From the graph, it can be seen that the effect of both disturbances on both outputs 

decreases rapidly for higher frequencies. The problem of rejecting disturbance I still 

remains, since the range of frequencies might not be always available in real life operating. 

10.4.3. Eigenvalues of Error Matrix 

The program can also evaluate the eigenvalues of the Error Matrix (see section 

9.3.11). The result is: 

Eigenvalues of Error Matrix = 0.9861 

- 0.9861 

306 

Fir I" 



Chanter 10 Software Development and Deslrn Examples 

The pairing is accepted since the real part of the eigenvalues of the Error Matrix is 

less than -1. 

10.4.4. MIC 

The next test performed on the system, is that of the Morari Index of 

Controllability. The result returned by the program is: 

MIC = 1.3575 

195.8628 

According to section 9.3.11, the proposed pairing can be accepted since MIC is 

greater than 1. 

It has to be noted that since both these tests accept the proposed pairings (i. e. the 

pairings on the main diagonal, (1,1) and (2,2)), the plant may be Decentralised Integral 

Controllable (see section 9.3.11). 

10.4.5. SSV 

A further indicator for the stability and the performance of the process is the 

Structured Singular Value. The result for the given plant is: 

SSV = 0.9861 

This satisfies the conditions for a plant to be Decentralised Integral Controllable 

[Grosd. & Mor., 1], since the value is less than one. The final indicator used is the Dynamic 

version of the static SSV. 

10.4.6. D-SSV 

The Dynamic Structured Singular Value tracks the change of the structurcd 

singular value as a function of the frequency. The graph yielded for this method is: 
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Figure (10.13): D-SSV Results 

This graph reinforces the indication obtained from the static version of the SSV. 

The value of the Structured Singular Value stays less than I for the complete frequency 

range. This result, together with the eigenvalues of the error matrix and the MIC, enables us 

to conclude that the pairing used leads to decentralised integral controllability and the 

system will not be affected by model uncertainties. 

10.5. Well Conditioning Example 

Consider the system described by the state-space matrices: 

0 1.5 0 0 0 0 0 0 0 1 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0.5 0 0 0 0 0 0 0.5 0 0 

A= 0 0 0 0 2 -1.5 0 0 0 
, 

B= 0 2 0 0 

0 0 0 0 2 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 -1 0 0 0 0 1 0 

0 0 0 0 0 0 0 2 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 1 
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1 0.5 0 0 0 0 1 2 0 0 2 0 1 

C= 0 0 -1 0.5 0 0 -1 0 0 
, 

D= 0 1.5 1 -1 
0 0 0 0 1 -0.5 0 0 1 0 1 1 0 

and the corresponding transfer function is: 

s+l 2 
1 s 1 

s2_3 s+l s-2 

H(s) -1 
3s-1 s 

-1 
s 2s-1 s+l 

s2+1 1 
0 

s2 -2s+3 
1 

s 

The system has 9 states (n = 9), 4 inputs (r = 4) and 3 outputs (q = 3), by using 

the same notation as in Chapter 6, where the Well Conditioning algorithm was described. 

Firstly, we evaluate the rank of the transfer function matrix H(s). This is achieved by giving 

arbitrary values to the Laplace transform s and evaluating the rank of the resulting 

numerical matrix. In this case the rank of the H(s) is p=2. It is clear that p< min(q, r) , and 

the system is degenerate. Since the rank is 2, then 2 is the maximal number of output 

variables that may be controlled independently. Furthermore, 2 is the minimal number of 

independent inputs required to control 2 outputs [Rosen., 1]. The next step is to find the 

numbers: 

D JB 
=rank D 

=4, ti, =rank 
f [C, D]}=3 

Since it =4=r, then the system is input regular. Also, T1= 3=q and the system 

is output regular. The Rosenbrock, System Matrix Pencil has rank: T=n+p=9+2 =11. 

Also, the dimensions of the right and the left null spaces of P(s) are found to be: 

r)=dim N, {P(s)} =r-p =4-2=2, O=dimN, {P(s)} =q-p=3-2=1, We can recheck 

the degeneracy of the system, using Condition (6.13): r= rank (, ) 
{P(s)) < min (n + r, n+ q) , 

which holds true since 'r =11 < min(9 + 4,9 + 3) = 12. 

309 



Chapter 10 Software Development and Design Examples 

The right and left null spaces of the Rosenbrock System Matrix Pencil P(s) are 

characterised by a set of column, row indices [Gantm., 1], which also may be referred to as 

right, left indices of P(s) [Forney, 1]. Such sets are denoted by I4 = (c1 :i =1,..., rl =n -p), 

1r ={ µj: j =1,..., 0=q-p} and may have tr zero cmi and t1 zero rmi; in fact, 

t, =r-rank{[B`, D`]`}=r-Tr=4-4=0, to=q-rank{[C, D]}=q-t1=3-3=0 
. 

The numbers tr and t 1, express the order of input, output redundancy respectively. 

In our case, as we proved earlier, they are zero since our system is input and output regular. 

So the system has only nonzero cmi and rmi. So the system was shown to be degenerate and 

input, output regular. Along the same lines, strong degeneracy can be examined. 

10.6. Conclusions 

Having gone through all the proposed interaction indicators for the given example, 

the possibilities of selecting a control structure can be evaluated. The methods provide 

insights in different aspects of the behaviour of the process, either static or dynamic. 

For the first example, the first indication for the possible pairings between inputs 

and outputs was given by the RGA. The decision over the pairings was, then, reinforced 

with the dynamic version of the RGA, which showed that in the given frequency range and 

especially for higher frequencies the pairs chosen remained suitable. The Performance-RGA 

and its dynamic version (D-PRGA) did not provide any further information but could prove 

useful if there where scaling matters regarding the inputs and outputs of the transfer 

function. The SGM introduced some concerns regarding the effect of strong interactions 

between other inputs and outputs than the ones chosen to be paired. These concerns were 

relaxed by the results of the D-SGM, which showed that the effect of the other interactions 

diminishes for higher frequencies and stop presenting problems for the selected control 

structure. The BRG and D-BRG methods provide a different viewing of the problem. They 

investigate the alternatives of taking the control structure as a 3-1 system (i. e. one 3x3 

MIMO and one 1x1 SISO system) instead of the initial 4x4 MIMO system. Finally, the 
SVD analysis provided further results that strengthen the decision over the pairings. The 

condition number shows that for the proposed structure the sensitivity of the system 
increases for higher frequencies. The misalignment angle retains low values for the desired 
bandwidth and so there is no need for any compensators to be introduced. 
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These indicators provide insights for the possible pairings between inputs and 

outputs. In more complex systems they can not provide conclusive results to assist the 

decision over the selection of the control structure. In this example, all the. indicators were 

pointing at the same control structure. The designer would be in a very difficult position 

when getting conflicting results from different indicators since there is not a way of 

weighting one over another. In such cases, the designer will have to use the indicators that 

match his specific process using other means, i. e. heuristic rules etc. Similarly, especially 

when deciding the control structure of a plant after it has been designed, the designer may 

be restricted by physical aspects of the process, economics etc. and have to discard 

favourable pairings that are being proposed by the indicators for less favourable ones. 

After going through the methodologies for the second example, the proposed 

pairing seems adequate to reject the disturbances that enter the process. It leads to plant, 

which is Decentralised Integral Controllable and for the given frequency range can 

successfully cope with the disturbance rejection. Furthermore, for higher frequencies the 

other interactions become insignificant. 

For complex systems of much higher dimension, the interaction analysis has to 

become part of a more general philosophy, which according to dimensionality selects the 

most appropriate methodology. Such an approach has been described in Chapter 6. The 

availability of alternative tests requires some appropriate means for selecting choices of 

coupling for problems where conflicting results may arise. This may be achieved by 

introducing composite indices where the different indicators are weighted and decision is 

finally reduced to an optimisation problem. 

The criteria for the presence of input, output redundancy and system degeneracy 

have been illustrated here in detail. The importance of the proposed method is that with 
basic matrix calculations, one can identify the inputs, outputs that can be eliminated from 

the progenitor model, in order to create a nondegenerate system. The conditions that lead to 

systems with desired characteristics, as well as making the search for minimal subsystems 

more systematic are problems for future research. 

For large dimension models the algebraic computations involved require special 
algorithms, which take into account dimensionality of the problem and lead to efficient 

results. Some of the approaches developed in the structural identification part of this thesis 

are of relevance here. Developing software in this area also requires use of symbolic 

computations, appropriately used for certain types of computations. 
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Chapter 11 

CONCLUSIONS 

This thesis has dealt with the study of a number of system and control theory-type 

problems that emerge in the effort to develop a systems and control theory framework for 

the integrated design of the early stages of chemical processes. Central to this attempt is the 

recognition that many issues referred to as process controllability, operability, process 

synthesis and control structure selection have not been considered from the system theory 

viewpoint in a systematic way. The framework, within which the work has developed, has 

been based on the following important observations: 

" Early design of chemical processes starts with simple models for subprocesses and a 

structuring selection of the process flowsheet, which has to be evaluated with its 

potential to accept control design solutions and guarantee optimality. 

0 Evaluation of the quality of such arrangements is based on economic criteria and some 

design indicators but not assessed by the powerful tools of the control theory. 

" Early process models are not necessarily well structured, as far as their potential to 

accept control solutions is concerned, and they have potential for improvement by 

modification of the input, output structure and possibly the structuring of the process 

flowsheet. Such models may be having subdominant dynamics reflecting the nature of 

subprocesses, are of large dimensions and are characterised by parameter uncertainty. 

0 Control structure selection has been based on criteria valid for small dimension 

problems, some of them are heuristics and the problem area lacks a unifying 

methodology, which can be used at different stages of the life cycle of design and 

which is relevant for problems with variable dimension. 
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The underlying philosophy behind the current research is that models evolve 

through the life cycle of design and that having a methodology to intervene in such 

evolution is essential. Furthermore, this evolution has two alternative dimensions: 

(i) Model structure evolution from process synthesis, selection of inputs, outputs and 

specification of control structure. 

(ii) Early-late design stages evolution of models, which is associated with an evolution of 

complexity from the early stages to the late stages, when full models are required. 

Control theory has been viewed from a different perspective than the traditional. In 

fact, system structure expressed by invariants and system graph are now viewed as 

indicators of the quality of the resulting system rather than the tools, which provide the basis 

for control design. Thus, new control theoretic problems emerge, which are based on the 

shaping of such indicators, as the result of the early system design stages. Problems of 

structure evolution and performance indicators shaping are central to this alternative 

consideration of the key control theoretic notions. 

The thesis has made contributions in the development of the system theoretic 

framework for integrated design by developing results in the following areas: 

" Further development of the system aspects of the global instrumentation framework. 

" Formulation and development of solutions for the state-space version of the model 

orientation problem. 

" Development of the theory for the well structuring of large dimension early stage 

models by reduction of the set of potential inputs, outputs and parameterisation of 

such solutions. 

0 Development of diagnostics for the McMillan degree and the infinite zero structure for 

large-scale early models by exploiting model uncertainty and gencricity and using 

properties of integer matrices. The results provide tools for evaluating alternative 

selections at early stages based on structural criteria. 

" The representation of composite structures based on physical interconnection streams 

and the completeness assumption provides a novel set-up for examining process 

synthesis. This enables traditional control theoretical tools and methodologies, such as 

the pole assignment by output feedback theory, to be used in this new set-up. The 
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representation of lack of completeness as decentralised input, output squaring down 

links the local selection of inputs, outputs to the general squaring down, for which the 

exterior algebraic framework [Karc. & Gian., 1] is relevant and can be used. 

" Control structure selection has been examined from the traditional process control 

viewpoint, which is relevant for small dimension problems (inputs, outputs 

dimensionality) and software has been developed in the form of a small MATLAB 

toolbox. An integrated framework for the life cycle of control structure selection has 

been specified but this area requires considerable further work. 

The work in this thesis has specified a large number of open issues within the area 

of integrated design. A few have been considered here but many more remain open. 

Amongst those, which deserve further investigation are: 

(a) The problem of well conditioning of early'models requires further work in the areas 

of: 

" Use of additional structural characteristics for the evaluation of early models and, 

especially, in the area of structured state-space models. This area will involve the use 

of theoretic tools and graph-based structural properties. 

" Development of computational procedures for large-scale models taking advantage of 

structured, sparse matrix properties. 

(b) Model orientation has been considered in a state-space set-up. Extensions are needed 
for the case of autoregressive models based on polynomial descriptions, as well as 

establishing explicit parameterisation of the oriented families. Using such families, we 

can impose additional conditions coming from the physics of the problem. 

(c) The structural identification problem has been considered for the McMillan degree 

and the infinite zero structure. Extension of the work is required in the areas of: 

" Structural identification of minimal indices using genericity and the special structure 

of Toeplitz matrices. 

" Use of graph techniques for the development of the optimal solutions of the 

optimisation problems defined on integer matrices. 
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(d) The control structure selection is an area that requires extensions to handle issues of 

flexibility in the design. Furthermore, the current framework requires development 

using multi-objective optimisation to sort out conflicts between the alternative criteria. 

Further work is needed to embed interaction analysis indicators within a richer design 

framework as that described at the end of Chapter 9. 

(e) The area of transforming process synthesis to a standard control design is challenging 

and requires additional work in the following areas: 

" Development of the generalised input, output decentralisation squaring down using 

exterior algebra and algebraic geometry tools. 

0 Use of graph-based structural properties for evaluation of alternative composition 

schemes. 

" Study of evolution of system properties within the framework of a fixed graph but 

with variability in the complexity of subsystem models, as we move from the early to 

the late design stages. 

The above provide a sample of research problems, which emerge as extensions of 

the framework and the results of this thesis. The investigation of such issues, will contribute 

to a more developed framework, supported by results for the early design of processes. 
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