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Voorwoord 

Het puntje op de i zetten, kost meer tijd dan het schrijven van het hele proefschrift. 

Hoewel het schrijven gedurende de laatste 9 maanden van de promotie neerkomt op 

slechts een Y2 woord per minuut, staat deze verhouding in geen enkele relatie met de 

stress van de laatste maanden, weken en dagen, die bij het afronden van de promotie 

onvermijdelijk is. Dit is echter een onontkoombaar feit, dat elke promovendus ondergaat 

en de laatste loodjes wegen het zwaarst is dan ook zeker van toepassing. Toch weegt dit 

niet op tegen de voldoening die er is, als het proefschrift eindelijk goedgekeurd wordt 

en naar de drukker kan. 

Het onderzoek dat in dit proefschrift beschreven wordt, is verricht aan de Technische 

Universiteit Eindhoven bij de vakgroep Meten en Regelen. In de eerste instantie ~il ik 

dan ook prof. Ton Backx, dr. Ad· Damen en dr. Siep Weiland bedanken, voor de 

stimulerende discussies en hun adviezen, die een zeer positieve uitwerking hebben 

gehad op het onderzoek en de uiteindelijke resultaten. Verder wil ik prof. Okko Bosgra, 

prof. Paul v.d. Bosch en prof. Bart De Moor graag bedanken, voor het doorlezen van de 
conceptversie van dit proefschrift. Zij hebben in belangrijke mate bijgedragen, om de 

laatste puntjes op de i te zetten. 

Het onderzoek zoals beschreven in dit proefschrift, maakte deel uit van een 

samenwerkingsverband met de universiteiten van Leuven (België), Leicester (Engeland) 

en Delft. De discussies tijdens de vele projectbijeenkomsten met de promovendi Peter 
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iv Voorwoord 

van Overschee, Ghassan Murrad, Richard Hakvoort en Erik van Bracht, vormden een 
belangrijke bron van inspiratie. In dit verband wil ik ook Jobert Ludlage van 
SETPOINT IPCOS bedanken, voor het aandragen van de praktijkproblemen, die 
uiteindelijk geresulteerd hebben in industrieel toepasbare technieken. 
De sfeer in een vakgroep is mede bepalend voor de motivatie en daarmee natuurlijk ook 
van invloed op een succesvolle afronding van een promotie. De prettige samenwerking 
en vele discussies met mijn kamergenoten Marc Keuiers en Robert-Jan Gorter en mijn 
collega AIO's Ton v.d. Boom, Leon Ariaans en Jozef Mazak, zijn belangrijk geweest bij 
het tot stand komen van dit proefschrift. De vele stagiaires en afstudeerders wil ik 
bedanken voor hun bijdrage in de verschillende deelproblemen. Het snelle oplossen van 
de vele computer problemen, verdient een woord van dank aan Udo Bartzke en Wim 
Beckers. Verder vormde het squashen met verschillende collegae, naast een gezellige 
avond uit, ook een ideale manier om even lekker uit te leven. 
Tenslotte wil ik mijn vriendin Henny bedanken, voor haar begrip gedurende de laatste 
maanden. Zij zorgde er voor dat de stress beperkt bleef, voor veel afwisseling en voor 
een veilige landing als mijn gedachten weer eens te ver afdwaalden. Een bijzonder 
woord van dank verdienen uiteindelijk mijn ouders. Zij zijn altijd mijn steun en 
toeverlaat geweest tijdens mijn nu bijna vijfentwintig jaar durende studieloopbaan. Met 
hun voortdurende stimulatie hebben zij mede de basis gelegd voor deze promotie. 

Eindhoven, 27 juni 1994 



Abstract 

ldentification procedures in the time domain are studied for multivariable systems whieh 
yield a model with uncertainty bounds on its parameters. This parametrie uneertainty 
ean either be stochastic or deterministic depending on the assumptions which have been 
made with respect to the noise disturbing the system, i.e. statistica! properties or 
bounded error characteristics. 
The classical prediefion error identification approach is briefly reviewed descrihing first 
the SISO model struetures and the (pseudo-) canonical extensions to the multivariable 
case. These multivariable model structures, however, are not very suitable for process 
identification in practice, especially in an industrial environment because of the structure 
uneertainty. Therefore a minimal polynomial model structure is adopted which spows 
interesting similarities with the SISO case. The model estimation is solved by non-linear 
least-squares optimization minimizing the sum-squared prediction errors where the tirst­
and second-order derivatives ean be eomputed analytically in a very efficient way. In. 
the classical approach the assumption is required that the process is contained in the 
defined model set in order to provide stochastic uncertainty bounds. In practice, 
however, only a low order process approximation is obtained. For the situation that the 
proeess is not eontained in the model set, an expression for the parameter covariance 
matrix is presenled taking the underrnodelling explicitly into account, which can be used 
to eompute stochastie uneertainty bounds on the parameters. 
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vi Abstract 

The bounded error identification or set estimation approach provides models with 
deterministic uncertainty on the model paramet~rs. The bounded error assumption on the 
noise (prediction error) disturbing the process is translated into constraints in the 
parameter space which define the feasible parameter set. To guarantee that a convex and 
connected parameter set (polytope) in the parameter space is defined, the constraints 

have to be linear in the model parameters. For models which are not linear in their 
parameters, a linear approximation is given. The parameter set bounded by a polytope 

cannot be described exactly for high-dimensional identification problems due to 
exploding computational complexity. Therefore, simpler although approximate 
descriptions are prefeered like ellipsoid or orthotopic bounding. The least conservative 
approximation of the parameter uncertainty set is obtained by ellipsoid-aligned 
orthotopic bounding which combines the advantages of both approaches. However, the 
application of this identification technique in practice is limited due to data outliers 
which violate the defined error bound. Furthermore, it is sensitive to 
overparametrization. Outliers may result from mistakes made during the acquisition and 
preprocessing of the data, but also from overoptimistic error bounds or unmodelled 
dynamics. To avoid that the parameter uncertainty set becomes empty, a robustification 
metbod for this identification approach is proposed where a reference model is used to 
detect data outliers in the constraints. The sensitivity to overparametrization results from 
the conservatism of the set estimation metbod itself and from the conservative 
approximation of the parameter uncertainty set which bas been defined to solve the 
identification problem. If the parameter uncertainties are very large, the corresponding 
central estimate provides no accurate description of the process. This conservatism can 
be reduced by fixing the most uncertain parameters which also reduces the uncertainty 
of the remaining parameters. These difficulties limit the application of the bounded error 
identification approach in practice, especially in an industrial environment. 
For conneetion with robust control design, the real parametrie uncertainty in the 
polynomial models is transformed into a linear fractional transformation representation. 
The uncertainty is represented in a block-diagonal form and the nomina! model together 
with the corresponding conneetion matrices (between the block-diagonal uncertainty and 
the nominal state-space model) are combined in an augmented state-space model. 
The proposed identification methods are tested on various case studies ranging from 
SISO laboratory processes to multivariable industrial production processes. In these case 
studies, the main attention is focused on the application of the two identification 
methods in practice and to illustrate their advantages and disadvantages. Comparing 
both methods, the prediction error approach is prefeered for the identification of 
processes in an industrial environment. 
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Introduetion 

Scope of this Thesis 

What's New 

Identification is a fascinating field of research and although a lot of work has been done 

in the past, many problems remain to be solved. But what is identification? 

ldentification can be described as the scientific discipline of constructing a mathematica! 

model of a dynamica! system from observations and prior knowledge [Lju87, Nor86, 

SS89]. Many questions are raised by this definition. Why modelling? Wha~ are 

dynamica! systems? What kind of observations and prior knowledge are used and finally 

how can these models be constructed? Important issues in identification when descrihing 
a process are complexity, accuracy, etc. 

1. 1 General Introduetion 

The aim of modelling is to describe the behaviour of a dynamica} system or process by 

discovering the relations between the observations to understand the mechanisms driving 
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the process. Dynamica! models used for control design, diagnosis, prediction, etc., have 
an extensive application area ranging from engineering, economics and medicine to 
ecology and agriculture. 
The model of a process describes the dynamica! behaviour in some way. In genera!, 
assumptions are made about the dynamica! system, the disturbances affecting the 
process, the type of models selected to describe the process and finally the criterion 
used in the identification procedure. Some important distinctions can be made which 
significantly influence the model and its application in practice. 

1. 1. 1 Dynamica/ Systems 

A dynamica! system can be described as depicted in Fig. 1.1 

Disturbances 

Inputs Outputs 
System 

Fig. 1.1 : Dynamica! system. 

The system is driven by external signals where the inputs y can be manipulated and the 
disturbances ~ can only be observed through their influence on the outputs ~· These 
veetors are time signals where each entry corresponds to a channel of the system. An 

essential property of dynamica! systems is that the outputs at any time instant depend on 
the past and not just on the present inputs. This is related to the memory structure of 
the system. Hence, the past behaviour of a dynamica! system influences the future as a 
result of the memory length and its initial conditions. Some main properties can be 
distinguished when descrihing a dynamica! system. 

• Causa/ vs. noncausal : The current behaviour of causal systerns does not depend 
on the future but only on current and past inforrnation which is always the case 
for physical systems. 

• Time-invariant vs. time-varying : A dynamica! system is time-invariant if its 
properties do not change with time. A tirne-varying systern, however, rnay be 
prefeered if the tirne-varying properties are relevant for the process description. 
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• Linear vs. nonlinear : Linear systems have a nice superposition property which 
simplifïes the mathematical analysis. Nevertheless, practical systems are in 
general nonlinear. 

• Continuous-time vs. discrete-time : For many physical systems it is natural to 
work with a continuous-time representation. Often, however, since measurements 
are only available at discrete time instants, discrete-time models are used for 
many applications, e.g. control design. 

• Single-input single-output vs. multi-input multi-output : The identification of 
SISO systems has been described extensively in many textbooks [Lju87, Nor86, 
SS89] and is very well known. Most practical systems however have a 
multivariable character for which the identification is much more complicated 
and less extensively explored. 

1.1.2 Disturbances 

Disturbances affecting the process will highly influence the rnadelling and therefore a 
priori assumptions on the noise are required in order to describe the process. 
Boundedness, stationarity, ergodicity, whiteness, Gaussianity, etc. are all properties 
which are used to characterize the noise together with the way the noise is assumed to 
affect the process. 

• Measurement noise : The sensors which measure the signals are subject to noise 
and drift. Information to characterize this type of noise can be obtained by 
separate sensor analysis or by specific experiment design. 

• Uncontrollable inputs : Signals which can be measured but not controlled by the 
user can be considered as disturbances. 

• Process noise : Disturbances affecting the process internally are in general 
difficult to handle because no information is available besides the measured .data. 

1.1.3 Models and Modelling 

The model of the dynamical system depicted in Fig. 1.1 should describe the behaviour 
of this process as accurately as possible within its intended use. The application of the 
model determines however, whether the internat behaviour ortheinput-output behaviour 
only should be described accurately and which measure can be used to define this 
accuracy. 
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• Input-output mGdels vs. state-space models : State-space models contain state 

variables as intermediaries for the description of the relationships among inputs 

and outputs. The dynamics can be expressed as first-order differential equations 
in the state variable. These models have natura! extensions to multivariable 

systems at the expense of more parameters compared to polynomial input-output 

models for which, however, the so called structure indices [HD88] in the 

multivariable canonical representation are difficult to estimate in practice. 

• Parametrie vs. nonparametrie : In nonparametrie models the dynamica! 

behaviour is directly specified by the measured value, e.g. impulse-response. The 

benefit of parametrie models are the relatively few parameters (parsimony) 

required to describe the dynamica! behaviour. 

• Time-domain vs. frequency-domain : Linear, time-invariant systems can either be 

described by differential equations in the time-domain or by transfer functions in 

the frequency domain. 

• Physical vs. black-box rnadelling : Physical models are often based on first 

principles and therefore difficult to construct with the advantage that the 

parameters have a direct and physical interpretation. On the other hand, black­

box models can be constructed relatively easily but with structure quantities that 

are not necessarily compatible with physical reality. 

1. 1.4 System ldentification 

In the area of system identification, different approaches can be chosen to model the 

process : 

• Deterministic vs. Stochastic : A variety of identification methods exist that range 

from treating the model coefficients as random variables and modeHing the 

errors in some detail to descrihing the uncertainty in the measurements and the 

model by bounds using no statistics at all. The resulting models are defined 

respectively stochastic, i.e. probabilistic in time, and deterrninistic, i.e. certain. 

This brief description of an immense variety in practical systems, disturbance and model 
properties together with different identification procedures clearly indicates the problem 

dependent character of modelling. It requires an "engineering approach" to obtain 

accurate and useful models. Within this variety, the construction of a model can roughly 

be divided in five phases : 

• The data : The input-output data is recorded during specifically designed 

identification experiments where it has been defined a priori which input signals 
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will be manipulated and which output signals have to be measured. The object of 
experiment design is to include as much as possible dynamica! information in 
the data within the physical constraints imposed by the process. The next step in 

practice is data preprocessing (detrending, peakshaving, delay correction and 
normalization) to obtain data which is suitable for identification. 

• The model set : The intended use of the model together with available a priori 
knowledge and engineering intuition and insight have to be invoked to select a 
set of candidate models and an error criterion to define the accuracy of the 

models. These most difficult choices in the identification procedure determine in 
fact the achievable performance of the model. 

• Parametrization : Within the selected model set, the parametrization involves 
issues like selecting a suitable model structure and an appropriate model order. 

• The optimization : The identification metbod based on optimization defines the 
construction of the best model within the parametrized model set based on the 
available data and the chosen criterion which is the most straightforward phase. 

• The model validation : The final judgment of the model quality is given in the 
model validation phase relating the model behaviour to the a priori knowledge, 

to observed data independent of the data set used for identification and to its 
intended use. 

1.1.5 Practicalities 

Although a nice description has been given of the various steps in identification, there 
are some severe limitations in practice which influence the maximum achievable 
performance of the model significantly : 

• System access : The amount of data available for system identification will be 
limited, e.g. bistorical records in economics or operating records in industrial 

processes. In bulk production the access to the system could be rather restricted 
because of economie reasons. 

• Available time : The duration of experiments in production processes depends 
strongly on its bandwidth which defines the time required to collect sufficient 
data ranging from milliseconds to days. So identification can be costly due to 
loss of production during experiments and data acquisition. 

• Sensors and actuators : The nomina) value, rate of change and smoothness of 
signals in the system to changes of setpoint inputs are limited by the input 
actuators and the system. The amplitude of a measured output response to 
setpoint inputs is normally limited by the process to ensure usabie products and 
by the output sensors which have a restricted measurement range. The sampling 
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rate may be limited by the data acquisition equipment or by the time needed to 

collect data. These constitute important aspects in identification. 

• Computing facilities : Although lack of computing power is not really a 

constraint anymore nowadays, on-line updating of the model as measurements 

are taken compared to off-line model optimization are still important and 

interesting issues. 

• Accuracy and effort : The effort to obtain more and more accurate models of 

production processes is certainly limited by the question of the additional 

product improverneut when controlling the system. Complexity of models 

increases as accuracy increases. Therefore, the economie benefit needs to be 

compared to the extra tools, experiment time and manpower (costs) required to 

achieve this goal. 

All these aspects show that no straightforward procedure can be given for identification 

of practical processes. Only basic tools can be provided to solve the problems in the 

various identification steps. The different choices, however, in experiment design, model 

set and error criterion selection, parametrization and model validation have to be made 

by the user and will be highly problem dependent 

Within this broad setup, a general model of a dynamica! system depicted in Fig 1.1 

relating the inputs !!., the measured outputs y and the disturbances ~ in time t, can be 

described by : 

M{~(t) ,y(t) ,]!(t) ,~(t), t) = Q (1.1) 

where ~ defines the parametrization of the model M. The modelling of dynamica! 

systems however is problem dependent, too complex and too diverse for a general 

treatment. More general identification procedures can only be given if the dynamica! 

system under study can be described by a restricted class of models, e.g. discrete, linear, 

and time-invariant. In this case the system description of Eq. 1.1 reduces to : 

[

y(k)l 
M{~) y(k) = Q 

~(k) 

'v'k (1.2) 

where the signals {y(k), y(k), ~(k)} at time instants k have been extracted in a linear, 

time-invariant way and M(ID defines now the model of the system which is somehow 

parametrized in ~- For example M(ID may be a polynomial model representation. 
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1.2 Motivation 

Many different types of processes can be found in industry which all require some sort 
of control to meet the product specifications. To control the dynamics of a process 

knowledge is needed about the dynamical behaviour. The construction of a model by 

means of physical, mechanica!, electrical and chemical laws and additional assumptions 
on the behaviour of the real process is often too complex for the process industry if not 

impossible. In general, this approach leads to very complex models with many unknown 
quantities which are difficult to estimate in practice. Therefore, these models are often 
of limited use for control design. On the other hand, black-box identification methods 

can be applied relatively easily to obtain accurate models which are suitable for control 
design. However, the parameters have no direct physical interpretation. Nevertheless, a 
better name for these identification techniques would be grey-box modeHing because 

often an extensive use of physical knowledge has been included during the various 

identification steps. 
A considerable amount of literature exists in this field [Lju87, Nor86, SS89, etc.] if the 

process is considered to be linear and time-invariant. This is not really a restrietion in 
practice since a lot of processes can be described sufficiently accurate by linear time­
invariant models, at least around an operating point. It should be noted, however, that 

most of these identification techniques are limited to SISO systems. For the purpose of 

analysis, the assumption is required that there exists a model which can describe the 
process exactly. In other words, it is assumed that the process is contained in the model 

set. This assumption is not valid in practice. Although a model may describe the 
physical system accurately, any model can at best be an approximation of the physical 
system. There is always some "uncertainty" present even when the underlying process 
would be essentially linear. In the last decade now, robust control theory bas been a 

major research activity [DGK89, PD93]. Developments in robust control theory are 
providing the engineer with the capability for systematically handling models with 
increasingly sophisticated uncertainty descriptions. This offers the possibility to include 
system uncertainty into the control design. 

1.2.1 Robust Control 

The general framework for robust control design (H= and JI-control) which is used in 
the literature is illustrated in Fig. 1.2. Any interconnection of inputs, commands, 

perturbations and a controller can be rearranged to match this figure. The exogenous 
input is a signal entering the system and is typically used to model disturbances, 
commands and noise. 1t is generally inadequate for control design to represent plant 
uncertainty only in the form of uncertain additive signals. The system model itself 
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typically has uncertainty which can have a significant impact on the system 
performance. This uncertainty is a consequence of unmodelled dynamics and parameter 
variations and is modelled as the perturbation 8 to the norninal augmented model Ma. 
This augmented model contains L'Ie basic process to be controlled and the 
interconnection structure which has been defined to meet the control design 
requirements. This includes design filters which define performance specifications as 
well as the sealing factors for normalized block-diagonal perturbations which define the 
robustness specifications. 
Note that the uncertainty modelled as 8 has an effect very different from that of the 
exogenous inputs on the performance of the system. Perturbations 8 can cause a 
nominally stabie system to become unstable which an external signal cannot do. 
At the heart of any theory about control are the assumptions made about the augmented 
model, the exogenous inputs and the perturbations, as well as the performance 
specifications on the outputs to be controlled. These assumptions delermine the 
frarnework for the identification procedure (model structure selection, a priori 
knowledge) and the analysis methods which can be applied to obtain conclusions about 
the performance of the system under controL 

A 
U ncertainties 

Ma 
Augmented 

Model 

K 

Controller 

Fig. 1.2 : General frarnework for robust controL 

Nowadays, the synthesis and analysis theories can handle a rich class of uncertainty 
descriptions. However, it is still up to the designer to model the system appropriately in 
this more complex framework. Robust control design leads to controllers that have 
guaranteed performance and stability robustness with respect to all merobers of a limited 
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model set. The inclusion of physically unrealistic models in the model set can make the 
design conservative or even impossible because these models might delermine the worst 
case system behaviour. To optimize the trade-off between necessary robustness and 
achievable performance the designer, therefore, requires a model set description which 
is as "tight" as possible, in that no physically unrealistic models are included, while 
descrihing all pertinent behaviours of the physical process. 

1.2.2 Uncertainties 

Many approaches can be taken to describe uncertainty associated with a multivariable 
model of a physical system. The uncertainty descriptions however, determine the trade­
off between achievable performance and robustness of the control design. If a physical 
system is not within the set of plants described by the nomina! and uncertainty models, 
the designed controller may cause instability or exhibit poor performance when 
implemenled to the physical system. However, if the uncertainty descriptions are overly 
conservative, plants may be included in the set which limit the performance of the 
closed-loop system. Therefore it must be emphasized that no matter how attractive an 
uncertainty description may seem from a practical point of view, it is only useful if it 
permits the derivation of "tight" conditions for robust control. 

Setpoint 

Inputs 

Fig. 1.3 : Modelling uncertainty and disturbances. 

Outputs 

Re al 

Outputs 
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Basically, two types of uncertainty descriptions can be considered "structured" and 
"unstructured" uncertainty. 

• Unstructured Uncertainty : The uncertainty is expressed in terms of a single 
perturbation. It is assumed that the dynamic behaviour of a process is not 
described by a single linear time-invariant model but by a family of these 
models. One way of parametrizing this family are "Gershgorin bands" [Mac89] 
composed of "Gershgorin circles" of specific radius at each frequency in the 
Nyquist plane. The bounds derived using unstructured uncertainty [vdB93] are 
often conservative from a practical point of view since the actual uncertainty can 
rarely be lumped into a single norm bounded perturbation without including 
many more possible plants than actually needed. The problem of addressing 
uncertainty is especially present in multivariable systems. Generally, it is 
important to model uncertainty as detailed as possible where it occurs and not 
necessarily where it is convenient mathematically. 

• Structured Uncertainty : The individual sourees of uncertainty are identified and 
represented directly and independently. This leads to an uncertainty description 
with multiple perturbations which is in general non-conservative from a practical 
point of view. These perturbations may correspond to uncertainty in the model 
parameters, uncertainty with respect to manipulated variables (input or actuator 
uncertainty) and output variables (measurement uncertainty) etc. A schematic 
example is depicted in Fig. 1.3 where the highly structured uncertainty Aa and L\, 
should be represented independently in a block diagonal uncertainty when 
modelling the complete systern. lncluding structure in the uncertainty description 
of the process will reduce the conservatism in the model set. 

Parametrized plant perturbation sets can be used to model several different types of 

plant variations : 

• Component tolerances (structured) : A controller K is to be designed for many 
more or less identical systerns, for example, a mechanica! system which consists 
of various components. The controller is designed on the basis of a nomina! 
system and the parameter variations represent the differences in the individual 
manufactured components. Designing a controller that robustly achieves the 
design specifications avoids the need and cost of tuning each manufactured 
control system or allows larger variations in the individual manufactured 
components which can reduce production costs. 

• Component drift or aging (structured) : A controller is designed fora system that 
is well modelled, but it is desired that the system should continue to work if the 
system to be controlled changes due to aging or drift in its components. This 
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avoids the need and cost of periodically re-tuning the control system. 
• Model parameter uncertainty (structured) : In a model developed from physical 

principles, a parametrized plant model set may represent physical parameters 
such as I~ngths, masses, or heat conduction coefficients, and the bounds are the 
minimum and maximum values that could be expected to occur. 

• Externally induced changes (unstructured) : The system to be controlled may be 
modelled as a linear time-invariant system that depends on an extemal operating 
condition, which changes slowly compared to the system dynamics, or is 
linearized around a specific operating point. If the variation range is not too 
large, designing a robust controller can avoid the need for a gain-scheduled or 
adaptive controller. 

Uncertainty in the process can also be modelled as frequency dependent errors in the 
frequency responses of its entries. Such process perturbation sets can be used to account 
for: 

• Model uncertainty (unstructured) : The plant transfer functions may inaccurately 
model the system to be controlled because of measurement or identification 
errors. For example, the transfer functions of the system to be controlled may 
have been measured at a finite number of frequencies with a limited accuracy. 

• Neglected dynamics (unstructured) : If a simple model of the system to be 
controlled is needed, system dynamics which could in principle be modelled, are 
intentionally neglected. For example, a model of a mechanica! system may be 

developed on the assumption that a drive train is rigid, an assumption that is 
good at low frequencies but poor at high frequencies. If the high frequency 
dynamics of this drive train could be accurately modelled or consistently 
measured, a more accurate and more complex model can be developed of the 
system to be controlled. However, it may be the case that these high frequency 
dynamics are very sensitive to minor physical variations in the system, like the 
ones that might be induced by temperature changes, hearing wear, load 
variations etc. In this case the drive train dynamics could be reasonably well 
modelled as an unknown transfer function that is close to one at low frequencies, 
and less close at high frequencies. 

• High frequency parasiiic dynamics (structured/unstructured) : The model of a 
system may become less accurate at high frequencies because of unknown or 
unmodelled · parasitic dynamics. Moreover these parasitic dynamics may change 
with time or other physical dynamics. Consequently, they cannot be confidently 
modelled (e.g. elastic modes). 
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Uncertainty should not necessarily be described as rigorous or accurate as possible. 
Rather, an "engineering approach" should be taken to describe the uncertainty only as 

rigorous as necessary. This means, for example, that some sourees of uncertainty 
(occurring in different places in the system) should be lumped into an "unstructured" 

perturbation, if this does not result in too much conservatism. This leads to a practical 

uncertainty description : some sourees of uncertainty are described in a "structured" 

manner (e.g. parametrie uncertainty), while the rest (usually uncertain high-frequency 
dynarnics) are lumped into a single unstructured perturbation. This can be compared to 
deterrnining the model order in standard identification techniques. The important 
question then is whether or not the improvement in the fit to the observed data is 
significant when the model order is increased. 

Example 

To emphasize the conservatism which can occur in descrihing model uncertainty, the 

uncertainty of an actuator model [SDM87] will be used as an example. The actuator can 
be represented exactly as a system consisting of a single pole and a delay. So a 
norninal model can be defined as : 

p 
k e -jro9 

1 + j (l)'t 
(1.3) 

For the structured actuator model set, the values of the gain, the pole position and the 
delay are assumed to be known within certain bounds : 

(1.4) 

where si is a constant sealing factor and ~\ is the normalized real-valued perturbation, 

oi e [-1,1]. 
The following unstructured multiplicative output uncertainty description of the actuator 

transfer function (Eq. 1.3) is adopted : 

(1.5) 

where the set P describes all p1ants, P is the norninal plant, W is a frequency dependent 
output uncertainty weight which should be taken as a stabie and lninimum . phase 

rational transfer and crmax indicates the maximum singular value. The parametrie 
uncertainty can then be represented as a single complex block ~ while the 

corresponding stable, minimum phase and rational frequency weight W should fulfil the 

requirement : 
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I W I ~ sup 
(1.6) 

o k ,80 ,8, 

The following values of the actuator parameters have been taken : k = I , sk = 0.2, 

8 = 0.75, s9 = 0.25, 1: = 2, s1 = 0.5. If the delay is approximated by a Padé 

approximation the weight function W will become unstable. The unstable pole can be 

removed by multiplication by the appropriate allpass function . Using the bounds in 

Eq. 1.4 and a second order Padé approximation gives : 

p 0.5s 2 - 2.67s + 7.11 w 0.6s 3 +41.73s 2 + 100.26s+ 17.07 

s 3 + 16.67s 2 + 138.66s+85.33 
( 1.7) 

The Nyquist plot of this uncertain actuator model is depicted in Fig. 1.4. The shaded 

area in this figure indicates the conservatism in the Nyquist plane for a single frequency 

(ro = 0.5 rad/s) between the true structured uncertainty due to the parametrie uncertainty 

{ k , e, t ) and the multiplicative unstructured approximation (Eq. 1.7). The conservatism 

is due to physically unrealistic models. This simple example illustrates the importance 

of including available physical knowledge. 

Nyquist Plot of Unc. Actuator Model 
0.5 ,----.,---,----.,-----, 

~ 0 
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Fig. 1.4 : Conservatism in uncertainty approximation. 
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Much of recent work on robust control is based on assumptions about uncertamtles 

around the nomina! model which are quite different from the type of information that is 

classically available about an identified process. A robust control model consisting of a 

nomina! and an uncertainty model is more complex than the standard linear system 

transfer function model which has been generaled from experimental input-output data, 

because the structure of the uncertainty as well as bounds on its size must be specified. 

The gap between a priori known descriptions of model uncertainties or model errors on 

which robust control theory is built and the failure of identification theory to deliver 

accurate uncertainty bounds of unmodelled dynamics and parametrie variations, show 

the need for a better understanding of the interaction between both theories. This 

includes the development of new identification techniques which are capable of 

delivering accurate a priori knowledge needed for robust controL 

1.3 Problem Statement 

Over the past years a start has been made to close the gap between identification and 

control design. Identification for robust control has become a very active research area 

aiming at the identification of models with error bounds suitable for robust control 

design [SD94]. As discussed before, the identification of a robust control model is more 

complex than finding standard linear system transfer functions because the structure of 

the uncertainty as well as bounds on its size must be specified. An engineer wishing to 

model a physical system within this framework is immediately faced with some 

problems : 

How to first select the system structure (e.g. specify the inputs, outputs and 

connections of the robust control framework which are necessary and/or 

available to solve the control design problem). 

How to specify bounds on the perturbations, characterize inputs by weighting 

filters and specify meaningful weightings for the output sets in order to meet the 

control design requirements. 

Therefore, an identification methodology is required such that, given a priori (physical) 

knowledge, input-output experiments and some explicit assumptions on the system, the 

methodology gives a class of rnadeis with the disturbances defined in some class of 

specified uncertainties (see Fig. 1.2) which wil! lead to satisfactory control design. 

Several methods have been developed to derive unstructured model error bounds either 

using a stochastic approach [GS90, Gev91, Zhu89] or a deterministic approach assuming 

bounded noise in the time domain [WL91, HJN91] or bounded noise in the frequency 

domain [LV AS91, GK92, vdB93]. Set es tirnation methods provide structured uncertainty 



1.3 Problem Statement 15 

bounds in the form of parametrie uncertainty based on a deterministic approach with 

bounded noise in the time domain [Mil89, WPL90] . Note that classica! identification 

techniques also provide structured parametrie uncertainty information in a stochastic 

setting (Cramér-Rao bound, Fisher Information matrix), although various restrictive 

assumptions have to be satisfied (Gaussian distributed white noise with zero mean, 

uncorrelated with the input, process in the model set and the number of data samples 

tends to infinity) which are often violated in practice. 

All these methods have different starting points, advantages, drawbacks and limitations, 

but they all require that the process is linear and time-invariant in order to solve the 

identification problem. This is not really a restrietion in practice since a lot of processes 

can be described accurately by linear time-invariant models, at least around an operating 

point. Moreover, the immense variety in systems and models is too large for a general 

treatment of the identification problem, as stated in the general introduction. Therefore, 

the type of processes as well as the type of models which will be considered has to be 
restricted. The type of models which wiJl be used to describe the linear, time-invariant 

dynamical systems, has been restricted to polynomial input-output models. These type 

of models are well known in the field of identification and provide sufficient flexibility 

in order to describe different possible systems. 

For any given data set, a priori knowledge and a selected identification criterion, a large 

set of polynomial models can represent the dynamical system which is not falsified by 

the available information. The measure of suitability of these models will depend 

strongly on the design performance objectives. Given any input-output data, it is 

possible to attribute the discrepancies between a nomina! model and the observed 

behaviour, for example, entirely to additive output noise or entirely to unstructured 

perturbations. In this context ambiguity enters easily the description due to uncertainty 

about the uncertainty. While the goal of good experiment design should be to reduce 

this ambiguity in the modeHing process by identifying the individual sourees of 

uncertainty and repcesenting them directly, it is practically not possible to remove it 

entirely. Although it has been emphasized to include as much as possible a priori 

knowledge, this information must be available or has to be extracted from the physical 

system in some way. Since for industrial processes this specific information is usually 

not available, additional experiments have to be performed to obtain the required 

knowledge. In practice, however, this is often very difficult due to limited process 

access and available time. Therefore, in the case that no or not all required structure and 

uncertainty information can be obtained, necessarily the remaining uncertainty has to be 

lumped together. 

In industrial applications, an important aspect is the required computing time. Although 

the computing power has been increased significantly the last few years, the required 

time to obtain an accurate model of the physical system by using an identification 

methodology has to be restricted to become industrially applicable. Due to economie 
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reasons, the introduetion of new techniques depends strongly on the required computing 

time and the resulting benefit compared to existing techniques. 

Combining all these aspects, the following problem statement can be formulated : 

General Problem Statement 

The development of industrially applicable identi.fication techniques 

for multivariable systems resulting in models which are suitable 

for the design of robustly performing control systems. 

Taking the large variety in dynamica! systems, disturbances, models, system 

identification and practicalities into account as described in this introduction, restrictions 

have to be imposed on this general problem statement in order to limit the area of 

research. Although in general processes are nonlinear, accurate approximations can be 

obtained by linear models descrihing the process around an operating point. Further, it 

will be assumed that the systems under consideration can be described as time-invariant, 

which is valid for a wide range of processes in industry. Combined with the fact that 

measurements are often only available at discrete time instants, the identification of 

dynamica! systems in this thesis will be restricted to discrete, linear and time-invariant 

models. The identification will be performed in the time domain since the data is 

directly available in this form from the experiments and no transformations have to be 

performed to apply for example identification in the frequency domain. As model 

structure, a polynomial model representation will be adopted because of its simple and 

direct representation of dynamica! systems in the time domain. 

In identification for robust control design, the model uncertainty description is of crucial 

importance, especially for multivariable systems. The bounds derived using unstructured 

uncertainty are often conservative frorn a practical point of view since the actual 

uncertainty can rarely be combined into a single norm bounded perturbation without 

including many physically unrealistic models. Using structured uncertainty, i.e. model 

uncertainty as detailed as possible where it occurs, will reduce the conservatism. In 

polynomial models, the model uncertainty can be included as structured parametrie 

uncertainty. This parametrie uncertainty can either be stochastic or deterministic. Both 

approaches to obtain these types of parametrie uncertainty wil! be compared. 

The attention is especially focused on solving the multivariable identification problem 

and the circumstances under which reliable models and error bounds can be obtained. lt 

should be noted that the uncertainty due to disturbances affecting the process, 
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measurement noise and the uncertainty due to approximate rnadelling in practice, wil! 

be lumped tagether into parametrie uncertainty of the identified model. Although it 

would be better to separate these sourees of uncertainty as discussed before, in general 

this goal cannot be realized because of limited a priori inforrnation, limited system 

access for additional experiments, etc. 

Lineacity plays a crucial role in the stochastic and deterministic identification 

approaches which will be described in this thesis. The processes which can be modelled 

have been restricted to linear systems. Lineacity in this context for the system setup 

depicted in Fig. 1.1, can be described as the linear mapping from the input and the 

disturbance samples {y(k),~(k)} to the output samples y(k) for a given parameter vector 

fi (see Fig. 1.5a), i.e. {.!!(k),g,(k)} ~ y(k). In the deterministic identification 

approach, it will additionally be required that the roodels are linear in their parameters. 

This type of lineacity can be described as the linear mapping from the parameter vector 

fi to the disturbance samples ~(k) for a given data set {JJ.(k),y(k)} (see Fig. 1.5b ), i.e. 
ft {J!(k)~(k)l g,(k). Note that basically a linear model can be nonlinear in its 

parameters, while a model which is linear in its parameters can describe nonlinear 

system behaviour. 

-: ----+1:1 ~ 
y .. _!!_~·I •.• 

Fig. 1.5 : Lineacity ; a) Linear model {.!!(k),g,(k)l ~ y(k) , b) Linear in 
the model parameters ft {J!(k~(k)l g,(k). 

1.4 Scope of this Thesis 

This thesis consists basically of three parts (Fig. 1.6) : identification of multivariable 

systems resulting in polynomial models with parametrie uncertainty (A), the 

transformation of these models into representations which are suitab1e for robust control 

design (B), and the application of the developed identification techniques to various 

systems (C). The symbols, abbreviations and notational conventions used throughout 

this thesis are defined in the glossary. 
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Chapter 1 

Conclusions 
and Remarks 

Chapter 7 

Fig. 1.6 : Scope of this thesis. 

Chapter 2 : Minimal Polynomial Parameter Estimation 

Introduetion 

In Chapter 2 the classica! identification approach is described briefly. It is based on 

statistical assumptions of the noise disturbing the process. The standard polynomial 

model identification of SISO systems based on prediction error minirnization is 

reviewed tagether with the basic problems related to extending this identification 

methad to multivariable systems. An extended minimal polynomial mede! representation 
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is introduced for multivariable systems which explores the advantage of predietien error 

minimization and avoids the problem of structure identification. Appendix B provides a 

detailed description of the solution to this minimal polynomial identification problem. 

The covariance matrix of the parameter estimates can be approximated without the 

assumption that the process should be contained in the model set, as described in 

Appendix C. This quality measure of the estimated model can be used to determine 

confidence intervals of the corresponding parameters in a stochastic setting. 

Chapter 3 : Bounded Error ldentification 

A pure deterrninistic approach based on a bounded error description of the uncertainty is 

described in Chapter 3 for SISO systems. The corresponding feasible parameter set is 

convex and conneeled if the polynornial models can be described as linear in their 

parameters. In this case the set is bounded by linear constraints. For models nonlinear in 

their parameters, e.g. output-error models, the parameter uncertainty set is in general 

non-convex and non-connected. However, linearization of the bounds descrihing the 

parameter uncertainty set can overcome this problem thereby avoiding excessive 

computational complexity but at the expense of introducing conservatism. Although the 

parameter uncertainty set is bounded now by linear constraints, exact computation of the 

feasible parameter set is only possible for systems which can be described by a few 

parameters. To further reduce the computational complexity, approximate descriptions of 

the parameter uncertainty set have to be used to determine the parameter bounds. For 

practical applications, however, special precautions are necessary because these set 

estimators are not robust against outliers, i.e. data points which are not consistent with 

the specified assumptions. The extension to multivariable models together with the 

various parameter uncertainty descriptions of the feasible parameter set is presented in 

Appendix D. 

Chapter 4 : Robust Control Models 

A minimal polynornial model representation has been used to describe multivariable 

dynamical systems. For robust control design, however, state-space models are required. 

Once a polynornial model with parametrie uncertainty has been obtained, the 

corresponding state-space representation can be derived relating the identification 

metbod to the robust control framework. This is subject of discussion in Chapter 4. 

Chapter 5 : Parsimonification 

When applying identification to multivariable processes, the number of parameters 

which are required to describe the system grows rapidly, especially for increasing 
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number of inputs and outputs. For robust control design, however, the number of 

uncertain parameters should be restricted. In Chapter 5 the attention is focused on 

reducing the number of uncertain parameters by Jumping the uncertainty together into a 

manageable amount of parameters. 

Chapter 6 : Case Studies 

Chapter 6 covers the evaluation of the developed identification techniques. For single­

input single-output systems a watervessel Iabaratory process and a fed-batch 

fermentation process for yeast production have been used as test cases. Since 

identification becomes more complex for multivariable systems, a simulation model of a 

distillation column gives a better understanding of the relation between signal-to-noise 

ratios, model complexity and parameter uncertainty. For testing the identification 

techniques in a multivariable industrial environment, the methods have been applied to a 

glass tube production process. The necessary preprocessing of the practical data is 

described in Appendix A. 

Chapter 7 : Conclusions and Remarks 

Finally, conclusions and remarks are given in Chapter 7. Several identification 

techniques have been extended and applied in practice based on statistica! or bounded 

error assumptions of the disturbances. The corresponding parametrie uncertainty 

description wil! therefore have either a stochastic or a deterministic character. The 

circumstances, however, under which reliable identification results can be obtained for 

each of the applied methods, is an important issue. 

1.5 What's New 

Anticipating on the chapters to come, a few statements wil! be given which describe the 

new elements in this thesis work : 

The minimal polynomial output-error model structure for multivariable systems 

which has been introduced in [Bac87], is extended to the general family of 

prediction error models [Lju87]. This multivariable model structure shows 

interesting similarities with the SISO case. The outstanding performance of the 

identification algorithms compared to existing implementations using (pseudo-) 

canonical model structures, is illustrated by industrial case studies. 
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• To provide a quality measure of the model (Cramér-Rao bound), it is a 
fundamental requirement in current prediction error identification that the process 
is contained in the model set. This requirement is relieved in the present work. If 
the process is not contained in the model set, which is always the case in 
practice, an estimation of the parameter covariance matrix is presented which can 
be used to compute stochastic uncertainty bounds on the parameters. 

• The basic idea of bounded error identification is that the process behaviour can 
be described by a model set where the data does not conflict the bounded error 
assumption. It will be shown that for application of this identification technique 
in practice, proper precautions as described in this thesis are required to avoid an 
empty or unbounded parameter uncertainty set. 

• Parameters in black-box models are treated as independent variables. ModeHing 
the dynamics of a process, several parameters can contribute to the same 
inputfoutput behaviour. However, related parameters in the polynomial model 
will increase the corresponding parametrie uncertainty. Therefore, 
parsimonification in the number of free parameters is required. This is realized, 
counter intuitively, by fixing the most uncertain parameters. This paradoxical 
approach ensures that the dynamica! inputfoutput behaviour of the model set is 
least affected and that the uncertainty in the remaining free parameters reduced. 

In the context of Parametrie Uncertainty in System Identification, all these aspects will 
be treated in the following chapters and compared to existing techniques which have 
been described in the literature. 
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2.2 
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Minimal Polynomial 
Parameter Estimation 

General Model Structure 
Model Parametrization 

2.3 

2.4 

Parameter Estimation 
Asymptotic Properties 

The system identification problem is to estimate a model of a system based on observed 
input-output data. In genera!, it is impossible and often even undesirable to obtain an 
exact mathematica! description of the properties and the behaviour of a real system. The 
reason is that such a description leads to very complex mathematica! structures. Taldng 
this consideration into account, the problem of system identification is primarily an 
approximate modelling problem on the basis of experimental data. Therefore, it will be 
of major importance to specify in which way the identification procedure affects the 
final estimate. 
Confining the identification problem to discrete, linear, time-invariant systems described 
by polynomial models in the time-domain as motivated in Chapter 1, approximate 
modeHing can roughly be defined as specifying a modelling error or model residual, 
obtained by performing specific model dependent operations on the experimental data, 
being a measure of the misfit between the model and the data and making this residual 
"small" in some sense, e.g. by minimizing with respect to the model a eertaio scalar 
measure of the residual. The choice of this model residual and this scalar measure 

23 
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should reflect the important aspects of the system to be approximated and the intended 
goal of the modeL 

A comprehensive treatment of prediction error methods which denote a wide class of 
identification methods, like equation-error, output-error, etc., is given in [Lju87, SS89]. 
An extensive amount of literature exists in this field, although most of it is focused on 
scalar systems. The extension to the multivariable case is often regarded as difficult, 
because1 unlike the scalar case, additional freedom in the choice of model structures and 
ffiinimization criteria increases the complexity of the identification problem. Other 
important aspects that influence the selection of model structures are : 

• Flexibility : A model structure sbould be selected whicb can describe the 
dynamica! behaviour of a process accurately and is suitable for its purpose, for 
example control design. Both the number of free parameters and the way they 
enter into the model are important. Increasing flexibility with respect to tbe 
model structure, however, results in increasing complexity of the model 
representation. 

• Parsimony : The process description should be parsimonious meaning that tbe 
model should contain the smallest number of free · paramèters required to 
describe the system adequately, thereby realizing a minimal parametrization. 

• Algorithm complexity : Identification methods, like e.g. a prediction error 
method, can be applied to a variety of model parametrizations. However, the 
form of the selected structure can considerably influence the required amount of 
computation. 

• Criterion function : The asymptotic properties of prediction error metbod 
estimates depend crucially on the criterion function. The existence of local as 
well as non-unique global minima is highly dependent on the selected model 
structure. 

The class of roodels to describe dynamica! systems which will be considered in this 
thesis, has been restricted to discrete, linear and time-invariant representations. The 
general model structure which has been adopted to describe the input-output behaviour 
of a dynamica! system consists of a separate process and noise model and will be 
presented in Section 2.1. In this structure, all disturbances are lumped together under the 
assumption that they can be modelled as a white noise sequence which is filtered by 
some noise dynamics and affects the process output in an additive way. More specific 
polynomial structures of the process and the noise part can be specified descrihing 
various types of models. A brief review of these polynomial structures, their 
parametrizations for the scalar predietien error metbod and the straightforward extension 
to tbe multivariable case are given in Section 2.2. In order to obtain useful algorithms 
for approximate modeHing of industrial processes, a specific model structure has been 
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selected for the multivariable case : the minimal polynomial representation. This 
minimal polynomial model structure shows large similarities with the SISO case which 
is very well known from literature. The model structure definition has been reduced to 
an order selection problem in contractietion to the difficult estimation of structure 
indices which are required for multivariable (pseudo-) canonical polynomial models. In 
addition, less parameters have to be estimated. Further, a reduction of freedom in the 
minimal polynomial parametrization will be discussed to simplify the computational 
complexity without loss of generality together with some assumptions to solve the 
multivariable identification problem which motivates the selection of this specific model 
structure. The solution to the identification problem, the parameter optimization 
resulting from minimizing the prediction error for this model structure, is subject of 
discussion in Section 2.3. It will be shown that modelling multivariable systems using 
this minimal polynomial representation instead of the (pseudo-) canonical forms which 
have been proposed in literature, makes the prediction error approach a feasible metbod 
for identification of industrial processes. Finally, the asymptotic properties will be 

discussed in Section 2.4 where the Cramér-Rao inequality is briefly reviewed indicating 
a lower bound for the varianee of the parameter estimate. In literature the assumption is 
required that the process is contained in the model set in order to apply this inequality 
for the computation of stochastic parameter bounds. In general, however, this 
assumption can never be realized in practice due to the low order approximation of the 
real process. This underrnodelling will be taken into account resulting in an estimation 
of the parameter covariance matrix which can be used to compute stochastic parameter 
uncertainties. 

2.1 General Model Structure 

Under the assumption that the dynarnical system consists of process as well as noise 
dynarnics, the general forrn of the corresponding model structure is defined by : 

M(!i) y(k) [i g(k)z-k]Y.(k) +[i h(k)z-k] g,(k) 
k;Q k;Q (2.1) 

where the noise disturbing the process satisfies : E { g,1(k) g,~(s) } = J\ ök,s· Further, 
~(k) is a ny-dimensional output at time instant k, y(k) a nu-dimensional input and '(k) a 
ny-dimensional sequence of independent random variables with zero mean value which 
is referred to as white noise. The filters in Eq. 2.1, G(z-1,!!) and H(z·1,.fl), represent 
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(nyxnu)- and (nyxny)-dimensional bounded impulse responses of infinite length 
descrihing stabie systems. The argument z- 1 denotes the backward shift operator, so 
z- 1u(k) = u(k-1), etc. When restricting the filters G(z-1,fD and H(z-1,ft) to a finite 
numher of taps, they can he described hy rational transfer functions in z-1. The model of 
Eq. 2.1 is depicted in Fig. 2.1. 

Fig. 2.1 : Block diagram of general model structure. 

2.1. 1 General Model Uniqueness 

For analysis purposes, general uniqueness considerations of the roodels used for 
identification are often introduced. This concerns the prohlem of adequately and 
uniquely descrihing or representing a given system within a certain model structure. 
Therefore some assumptions on the true system are required, but the application of 
identification techniques is not dependent on the validity of such assumptions. Assume 
that the true system st is linear, discrete, time-invariant, and that the disturbances have 
rational speetral density. Then it can be described as : 

A ö (2.2) 
t k,s 

Introducing the set : 

The set et consists of those parameter veetors ft for which the model M gives a perfect 
description of the true system st : 

• The set et may be empty, which is referred to as underparametrization. 
• The set e1 consists of one element ftt which is called the true parameter vector. 
• The set et may consist of several elements which is called overparametrization. 
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Note that in practice underparametrization will always be the case since the model set 

can never be large enough to capture the real system as pointed out in the introduetion 

of this chapter. That is, approximate modelling is the best one can hope for. 

2.1.2 Prediefion Error 

The filters G(z-1 ,.{!) and H(z-1 ,.{!) as well as the noise covariance matrix A(f!) are 

functions of the parameter vector f! that ranges over a subset epe of R06
, where ne is 

the dimension of f! : 

e E e c R06 
- pe 

(2.4) 

This set is given by : 

8 = { e I G(z - 1 ,f!) , H(z -1 ,!;!) and H - 1(z- \.!;!) are asymptotically 
pe - (2.5) 

stabie , H(O,_!!) =I , A(_!!) is nonnegative definite } 

Under the assumption that f! E epe and also that the input y(k) and the noise ~(s) are 

uncorrelated for k < s, which holds if the system operates in open loop or in closed-loop 

with no direct feedthrough, the one-step-ahead prediction y(kl.!;!) and the corresponding 

prediction error ~(k,f!) are denoted by : 

y(kl_!!) 

~(k,_!!) y(k)- y(kl_!!) 
(2.6) 

H-1(z-1,.!;!) [y(k)-G(z-1,_!!) y(k)] 

Note that the assumption H(O,f!) = I and hence H-1(0,.{!) = I, means that the predietor 

y(kl_!!) depends not on y(k) but only on previous output values (i.e. y(k-1), y(k-2) ... ). 

Further, f! is restricted to those values for which the model as well as the predietor are 

asymptotically stable. 

Before applying prediction error identification, the following choices have to be made : 

• Model Parametrization : This concerns the parametrization of G(z- 1 ,.{!), H(z- 1 ,.{!) 

and A(f!) as functions of f! and is subject of discussion in Section 2.2. 

• Identification Criterion : This concerns the scalar measure of the prediction 

errors. This criterion wil! be minimized with respect to f! to choose the "best" 

predietor in the selected model structure which is described in Section 2.3. 
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2.2 Model Parametrization 

The most immediate way of parametrizing the filters G(z- 1 ,ft) and H(z-1 ,fi) is to 

represent them as rational functions and let the parameters be the numerator and 
denominator coefficients. In this section various ways of carrying out such 
parametrizations will be described. The general farnily of model structures for scalar 

systems will be reviewed briefly and an extension of this farnily to multivariable 

systems is described. Parameter identifiability problems due to the non-unique 
parametrization of these multivariable systems will be discussed resulting in the 
selection of the minimal polynornial model structure. 

2.2. 1 Scalar Model Structures 

For single-input single-output (SISO) systems, the general family of model structures for 
prediction error methods, introduced in [Lju87], is described by : 

u(k) + C(z -I) Ç(k) 
D(z -l) 

where the polynornials are defined as : 

A(z -I) 

B(z - 1) 

C(z -1) 

D(z -I) 

F(z -1) 

1 -1 -na 
+ al z + ... + RnaZ 

b b -1 b -nb+l 
I+ 2Z + ··· + nbz 

1 -1 -nc +c1z + ... +c0cz 

1 + d z -I + + d z -nd 
l ··· nd 

1 f -1 f -nf 
+ 1 Z + ··· + nfz 

resulting in the following parameter vector !i : 

ft = [ al··· Rna bl ··· bnb Ct ... ene dt··· ~d f, ... fnf ]T 

(2.7) 

(2.8) 

(2.9) 

To ensure a unique model representation, the polynomials F(z-1) and D(z-1) should have 

no common roots. Possible additional delays of nk samples from the input u(k) to the 
output y(k) have not been included for ease of notation. However, this constitutes no 
lirnitation, since u(k) can always be replaced by a shifted value u(k-nk+ 1), where nk > 0 
denotes the delay. Note that the degrees of freedom for delay correction in a 
multivariable system are lirnited (see Section A.3). 
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2.2.2 Multivariab/e Model Structures 

The extension to multivariablè model structures is often regarded as difficult. There 

exists an extensive literature conceming this generalization. Representation techniques 

for multivariable transfer functions are more involved because, unlike the scalar case, 

there is no unique choice of system representation. lt can be easily shown that different 

multivariable models can represent the sarne input-output behaviour. The model 

structure must therefore be restricted to make it uniquely identifiable. 

General Polynomial Form 

A straightforward extension of Eq. 2.7 to the multivariable case is defined by : 

(2.10) 

where A(z-1), B(z-1), C(z-1), D(z-1) and F(z-1) are polynomial matrices with dimension 

(nyxny), (nyxnu), (nyxny), (nyxny) and (nyxny) respectively : 

A(z - 1) 

B(z - 1) 

C(z -1) 

D(z -I) 

F(z - 1) 

I A -1 A -na 
+ tZ + ... +"'naZ 

B + B z - 1 + + B z -nb+I 1 2 ... nb 

I C -1 C -nc 
+ 1 z + •·· + ncz 

I D -1 D -nd 
+ 1 Z + ... + ndz 

I F -1 F -nf 
+ 1 z + ··· + nfz 

defining the parameter matrix analog to Eq. 2.9 as : 

e = [ A1···Ana Bt···Bnb CJ···Cnc DI···Dnd F1 ... Fnf f 

(2.11) 

(2.12) 

Further, the degree indices, i.e. na, nb, etc., of the polynomial matrices, i.e. A(z-1), 

B(z-1
), etc., are now matrices of the sarne dirneusion where every entry indicates the 

degree of the corresponding scalar polynomial in the polynomial matrix, as shown for 
F(z-1) as example : 

Fu(z-1) F12(z-1) ... F1ny(z -I) 

F(z -l) 
Fzt(z-1) Fzz(z -1) ... Fzny(z -I) 

I + F z -1 + + F z -nf (2.13) 
I ··· nf 

Fnyl(z -I) Fnyz(Z -I) ... F nynyCz- I) 

where 
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-1 "' f -1 -nf. F .. (z ) = u .. + .. 1 z + ... + f:. f z 'J 
IJ IJ Ij, IJ,Oij { 

ou = 1 

a .. = o 
Ij 

if i= j 

if i:;t j 

(2.14) 

Table 2.1 describes some common black-box models as special cases of the general 

form presented in Eq. 2.8. The factorization in terms of two polynomials as indicated in 

Table 2.1 for the process and the noise model, is also called (left) matrix fraction 

description (MFD). A detailed treatment of such descriptions can be found in [Kai80]. 

Note that the scalar case is of course included in this description. 

Table 2.1 : Some common models. 

Polynomials Model name G(z-1.!!) H(z-1 ,1!) 

B FIR (finite impulse response) B I 

A,B ARX (equation-error) A-1B KI 

A,B,C ARMAX K 1B A-'c 

B,F OE (output-error) p-IB I 

B,F,C,D BJ (Box-Jenkins) p-lB o-•c 

To have a unique representation of a given MIMO process and to achleve parameter 

identifiability, some structure conditions should be imposed on the multivariable model. 

Several techniques have been proposed to represent multivariable systems in a uniquely 

identifiable way as an extension to the scalar case : 

• Canonical structure realization [Gui75, HD88]. 

• Pseudo-canonical or overlapping parametrizations [GL78, GW84, vOL82]. 

• Diagonal structure realization [GL78, ZBE91]. 

• Minimal polynomial parametrization [HK65, Bac87]. 

Brief comments on these structures will be given in the following subsections. 

Canon/cal Form 

The structure of a canonical process representation is determined by a set of "structural 

invariants" (e.g. the Kronecker indices) which defines the model uniquely. The selection 

procedure results in a minimum number of parameters to be estimated. The 

disadvantage of using canonical representations of this form is that the estimatîon of 

these indices is very critica! if not impossible and the parameter estimates are not 
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consistent if the indices have been wrongly estimated. That is, the model cannot 
describe the input-output behaviour of the process. 

Pseudo-canon/cal Form 

The advantage of overlapping parametrizations is that less structural indices have to be 
determined at the expense of a few additional parameters to be estimated. A large set of 
canonical structures can be described in a single overlapping model structure. The 
structure for overlapping parametrizations where the different columns are given 

different orders (i.e. nfij = n~ , 'v'i) is discussed in [GL78, GW84]. The additional 
conditions on the polynomial matrices which are required to realize identifiability for 
the multivariable structures given in Table 2.1 are described in [Lju87, App. 4A]. 

A more detailed overview of conditions and properties of these canonical and pseudo­
canonical model representations is described in [Jan88]. The conditions to achieve 
parameter identifiability for these (pseudo-) canonical model structures, e.g. by selecting 
Kronecker indices, are difficult probieros in practice and therefore other model 

structures are preferred. 

Diagonal Form 

Another natural way to realize the multivariable case is described in [ZBE9l]. lt is 
assumed that the ny-dimensional white noise vector ~(k) has mutually independent 

entties which results in a covariance matrix : 

A(~) 

0 

0 

· .. 
2 

... 0")' 
'>ny 

(2.15) 

where crt is the varianee of ~1(k). This imposes no restrietion since a diagonal A@) 
can always be realized by a suitable transformation of the noise model. The assumption 
that the output disturbances are mutually independent implies that A(z-1), C(z-1) and 
D(z-1) are diagonal matrices. Further, to obtain a unique representation of a given 

multivariable process, F(z-1
) is also assumed to be diagonal. The diagonalization of 

these matrices decomposes the mutivariable process into ny MISO (multi-input single­
output) sub-processes where the ith sub-process is defined as : 

(2.16) 

Although no structure indices have to be estimated for this diagonal form, it is preferred 
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to identify the process in a true multivariable form. 

Minimal Polynomial Form 

A voiding the estimation of structural indices and deriving a true multivariable 
description of the process can be obtained by introducing the minimal polynomial model 
structure which was first proposed by [HK65] and successfully applied in practice by 
[Bac87]. The basic idea of introducing this model structure is that a dynamica! system 
has a true multivariable character containing common modes which can be controlled by 
all inputs and can be observed through all outputs. The size of the minimal polynomial 
model set to describe dynamica! systems is large compared to the model set of 
(pseudo-) canonical models with a given order and structure. In the set of minimal 
polynomial models of a given degree, several canonical model sets of the same order 
with different structures are contained. As shown in [Bac87] the minimal polynomial 
model set of degree r contains models of order n, where n ~ r.min(ny,nu), at the 
expense of multiplicity of poles. This multiplicity of poles results from the property of 
the minimal polynomial that its roots are all distinct eigenvalues of the model with 
multiplicity one only. In genera!, the order of the model and the degree of the minimal 
polynomial are different. The relation between the order of a system in minimal state­
space representation n defined by its characteristic polynomial and the degree of the 
minimal polynomial r is : n = r.min(ny,nu), resulting in a multiplicity of min(ny,nu) for 
all poles. 
Generalizing this minimal polynomial model structure to the general model structure 
depicted in Fig. 2.1 and assuming that the entries of the noise vector ~(k) are mutually 
independent, the polynomial matrices of Bq. 2.11 reduce to scalar (minima!) 
polynomials A(z-1), D(z-1) and F(z-1), a full polynomial matrix B(z-1) and a diagonal 

polynomial matrix C(z-1), bothof dimeosion (nyxny) : 

( 1 + al z -1 + ... + ~a z -na ) I ny 

b b -1 b -nbij+1 
ij,!+ ij,2z + ... + ij,nbi.iz 

1 -1 + -ncii 
+ cii,l z + ... cii,nciiz 

(2.17) 

1 + d Z - 1 + + d z -nd 1 ... nd 

1 + f z - 1 + + f z -nf I ... nf 

where the parameter vector ft contains again all polynomial coefficients of Bq. 2.17 : 
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at··· ana bltt··· bil nb b121··· bnynu nb ' ' 11 ' ' nynu (2.18) 

Note that prediction error estimation of dynamica! systems when adopting the diagorral 

model form of [ZBE91] presented in Eq. 2.16, can be computed using this minimal 

polynomial model structure by identifying every output separately. 

This minimal polynomial model structure provides a true multivariable description of a 

dynamica! system with a unique representation. The corresponding predietor y(k I !V and 

prediction error .!<_(k,.ID can be easily derived by substituting Eq. 2.17 into Eq. 2.6 

resulting in : 

y(ki~J = D(z-1)C-1(z-1) B(z-t) .!!(k)+[I-D(z-1)C-1(z-1)A(z-1)] y(k) 
F(zC1

) 
(2.19) 

D(z-t)c-t(z-1) I A(z-1)y(k)- B(z-1) .!!(k) I 
F(z - 1) 

Although the diagonalization of the noise polynomial matrix C(z-1) results from the 

assumption that the white noise vector ~(k) consists of mutually independent entries, it 

simplifies the calculation of the prediction error .!<_(k,ID and the parameter estimation, 

which is subject of discussion in Section 2.3, significantly. According to Eq. 2.19 
polynomial matrix inversion, C 1(z-1) = adj{C(z-1)}/det{C(z-1)}, is required to calculate 

the predictor. For a full polynomial matrix C(z-1), this can become very complicated 

with exploding computational complexity especially for increasing number of outputs. 
However, when C(z-1) is restricted to have diagorral entries only, the polynomial matrix 

inversion becomes very simple, C\z-1) = diag{l!C 11(z-1) ... 1/CnynyCz-1)}. The inversion 

reduces to a simple scalar operation applied to the diagorral entries Cii(z-1). This also 

provides the possibility to compute analytically the first- and second-order deri'-:atives 

which are required for parameter optimization (see Section 2.3.4 and Appendix B). 

The advantages of this minimal polynomial model structure are various and can be 

summarized as follows : 

• No estimation of structural indices required. 

• The structure of the parameter vector is uniquely identifiable for the 

multivariable case. 

• 

• 

The number of parameters to be estimated is generally lower compared to 

(pseudo-) canonical model structures. 

Stabie predictions y(ki~J for fi E epe (Eq. 2.5) can be easily guaranteed because 
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the corresponding polynomials F(z-1) and Cii(z-1) are scalars. 
• Restricting C(z-1

) to have diagonal entries only, reduces the computational 

complexity for the parameter estimation and the prediction error significantly 
(see Section 2.3). 

• Initia! estimates for the parameter optimization can be derived similar to the 
scalar case because of the minimal polynomial model structure (see 
Section 2.3.3). 

Of course, there are also some disadvantages : 

• The diagonalization of C(z-1) reduces the degrees of freedom and eliminates in 
fact the true multivariable character of the noise model. 

• The corresponding state-space representation will have a multiplicity of the poles 
corresponding to min(ny,nu) as described in [Bac87] and an additional model 
reduction is required to get rid of this high order representation. 

2.3 Parameter Estimation 

In the previous section the structure and pararnetrization of multivariable models have 
been discussed. There is another important aspect in parameter estimation : the criterion 
which will be minimized with respect to !! to choose the "best" predietor in the selected 
model structure. In contractietion to SISO identification problems, the selection of an 
identification criterion for multivariable systems is more involved. 

2.3.1 ldentification Criterion 

The criterion which maps the sequence of preilietion errors into a scalar can be chosen 
in many ways. Define the sample covariance matrix as : 

N 

L s:_(k,ft) .Ë. T(k,ft) (2.20) 
k = n+l 

where N denotes the lengthof the data set and n the number of data samples which are 
required for initialization (see Section B.2). For scalar systems, ~(k,!Z) (Eq. 2.6) is a 

scalar and so is Re<ID which can then be taken directly as a criterion to be minimized. 
In the multivariable case, Re(!!) is a positive definite matrix. Then the criterion V(Re) is 
a scalar-valued function defined on the set of positive definite matrices Re(ID. Some 
possible choices of V(Re) are : 
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• 

• 
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V(Re) = det(ReOD) , which corresponds to the Maximum Likelibood metbod if 
the process is contained in the model set for Gaussian distributed disturbances. 

V(Re) = tr (A-t(_!!) Re(!!)) , which has some nicefeatures from a computational 

point of view, but requires sealing of the data with the inverse of the covariance 

matrix. 

Proofs of these assertions with respect to the various identification criteria are given in 

[SS89, Section 7.5]. Since tbe covariance matrix A(!l) of the prediction error is very 

seldom known in practice, selecting the trace as scalar valued identification criterion 

seems not very useful in practical situations. However, an accurate estimate of ACID can 

be derived from a high-order ARX model, because for sufficiently high-order as the 

number of data samples N tends to infinity, an ARX model is capable of approximating 

any linear system arbitrarily well [Lju85, ZBE91]. This provides the possibility to scale 

the data correctly in advance (see Appendix A, Section A.4). Because 

tr(A- 1(_!!)Re(!!)) requires less calculations for evaluation of tbe loss-function 

compared to det(Re<!D) and for the sealing only a least-squares problem has to be 

solved, the trace criterion will be used for multivariable system identification. 

Under the assumption that the elements of the white noise vector ~(k) are mutually 

independent and if the data is properly scaled in advance, the covariance matrix reduces 

to: 

A(_!!) 

0 
2 ... cr~ 
'>ny 

2 ny 
= crç I 

(2.21) 

2 . 2 2 2 
where crç defines the varianee of ~(k) because of crç, "'crç

2 
= ... = crçn . Consequently, 

the identification criterion for multivariable system becomes : Y 

N 

2 crç (N-n) 
.E ~ T (k,!D Ë(k,!D 

k=n+t 

(2.22) 

Furtherrnore, the minimal polynomial structure definition for multivariable systems 

introduces a special column format for the prediction error : 

Ëcol (_!!) (2.23) 

where the subscript col in e001(~.f!) indicates a column vector forrned by stacking the 

columns of tbe prediction error matrix E(!}) on top of each other. The new index ~ has 

been introduced because the Ncol ny.(N-n) elements of S<c01(!}) do not correspond 
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anymore with the time instauts k (see Eq. 2.22). A more detailed description of this 
minimal polynomial prediction error is given in Appendix B, Minimal Polynomial 
Identification. Multiplying the identification criterion V(RJ in Eq. 2.22 by a constant 
factor illustrates the large similarity with the SISO case : 

_I_ eT (9) e (9) 
N -col - -col -

col 

(2.24) 

which is frequently called the loss-function. When minimizing the preilietion errors, this 

loss-function Ve<ft) will converge to its minimum value a~ which is identical to the 
minimum value of the SISO identification criterion. Therefore, V e<ft) has been selected 
as multivariable prediction error identification criterion. 
A disadvantage of the identification criterion as defined in Eq. 2.24, is its relative high 
sensitivity to large preilietion errors which can result from outliers in the data. To limit 
the influence of bad data using robust estimation techniques, the prediction error can be 
filtered first through a stabie linear filter L(z-1) : 

(2.25) 

instead of using the prediction error ~(k,ft) directly. The corresponiling criterion function 
V e (!!) can be influenced by prefiltering the preilietion error ~(k,ft). The relative 
importance of specific frequency regions can be enhanced or suppressed with a proper 
choice of L(z-1). The parameter estimate ~ can now be deterrnined as· the argument 
corresponiling with the (global) minimum value of the loss-function V ë(ft) : 

(2.26) 

Although the identification criterion has been defined, the selection of a specific model 
structure, i.e. one of the models described in Table 2.1 or a combination of them, and 

the model parametrization are still open probierus which will now be treated. 

2.3.2 Order Selection 

The structure and parametrization of the models described in Section 2.2 provide 
sufficient flexibility to identify a wide range of dynamical systems. This flexibility, 
however, introduces probierus as well. The choice of a typical model structure (see 
Table 2.1) is determined by the type of process to be identified and the purpose of the 
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model, e.g. control design. The selection of a model structure which is most suitable to 
describe the process under study accurately, is basedon experience for which no general 

selection rules cao be given. 

Furthermore, the parametrization of the process model G(z-1 .~) and the noise model 

H(z-1 .~) is a major problem in practice. Under the assumption that G(z-1 .~) and 

H(z-1,~) are fully parametrized, i.e. proper transfer functions in the polynomial model 

representation, the parametrization problem reduces to the order selection of the process 
model G(z-1,.e) and the noise model H(z- 1 ,~). These orders correspond to the degrees of 

the minimal polynomials. 

The order selection rules in classica! identification are based on comparison of models 

with increasing order. When the model structure is expanded so that more parameters 

are included in the parameter vector, the minimal value of the loss-function Ve® 

naturally decreases since new degrees of freedom have been added to the optimization 
problem, or, in other words, the set over which the optimization is done has been 

enlarged. The comparison of model orders cao then be interpreted as a test for a 
significant decrease in the minimal values of the loss-function associated with the 

(nested) model orders. Classica! selection criteria are Akaike's information criterion 

(AIC) and the final prediction error criterion (FPE) [Lju87] : 

AIC = Nc01 log V e(~) + 2ne 

FPE 

1+~ 
Nco1 

1-~ 
Nco1 

(2.27) 

which define a trade-off between a decreasing loss-function Veffi) and an increasing 

number of parameters ne for Nc01 = ny(N-n) data samples. The minimal value of the 

selection criteria defines then the optima! order. A major disadvantage of this approach 

is the time consuming and computational complex procedure since the selection criteria 
have to be computed for all orders until the criterion value increases. In addition, no 

clear distinction cao be made between the order of the process and noise model. This 
seems not very useful in practice. 

An alternative approach has been proposed in [Bac87] where a FIR model has been 

used to construct a Hankel matrix of Markov parameters. If the process is contained in 

the model set and no noise disturbs the data, the singular values of this Hankel matrix 

obtained by singular value decomposition will become zero if the process order is 

exceeded. The last nonzero singular value defines then the order of the minimal 
polynomial. In practice, however, all singular values wilL be larger than zero due to the 
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noise present on the estimated Markov parameters. A significant decrease of the singular 

values indicates then the order of the model. This approach can be extended to order 

estimation of the process model G(z-1 ,fr) as well as the noise model H(z-1 ,fr). In fact, 

any model of the process, e.g. FIR or high-order equation-error model, which 

approximates the process accurately, can be used to compute the Markov parameters 

and to construct the Hankel matrix. Of course, models which can be computed easily 

are preterred to reduce the required computation time for this order selection. 

Suppose an accurate polynomial model of sufficiently high order has been estimated and 

that the corresponding state-space representations are given by : 

A 0(!!) ! 0(k) + B00D !:!(k) 

C0 (!!) ! 0(k) + D 0 (!!) !:!(k) 

AH(.!;!) !ik) + BH(!!) f,(k) 

CH(Q) !H(k) + DH(,!!) f,(k) 

(2.28) 

for the process model G(z-1.ID and the noise model H(z'1,ID respectively. The Markov 

parameters of the process model for example, can be obtained from : 

based on the equivalence relation : 

m 

y 0 (k) = .E Mo,i !!.(k -i) 
i:O 

i= 0 
(2.29) 

i>O 

m (2.30) 
Co C.!!J Aom (!!) !o(O) + L Co(,!!) Ab-I(!!) Ba(!!) !:!(k- i) 

i :l 

under the assumption that the initia! states of the process are equal to zero. To 

determine the degree of the minimal polynomial the number of independent block 

rows/columns of the largest possible Hankel matrix has to be found. The Markov 

parameters can be written in column vector form to find an appropriate estimate of this 

degree which is defined by the dependendes of the column vectors. The Hankel matrix 

built from the Markov parameters in column form can be constructed according to : 
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col(M0 ,1) col(M0 ,2) ... col(M0 J) 

col(M0 ,2) col(M0 ,3 ) ... col(MGJ+l) (2.31) 

· .. 

col(Ma) col(MG,i+l) ... col(MG,i+j-l) 

where 

The column vector of the Markov parameters is formed by stacking the columns of the 
Markov matrix (Eq. 2.26) on top of each other. 
The singular value decomposition of the block Hankel matrix can be written as : 

(2.33) 

where u0 is an orthogonal matrix containing the left singular vectors, s0 a diagonal 

matrix containing the singular valnes sG,i and V G an orthogonal matrix containing the 
right singular vectors. Because all singular veetors are orthogonal, each singular value 
defines a weighting factor in the direction of the corresponding singular vector. A 
singular value which is almost equal to zero indicates redundant information. The order 
of the minimal polynomial is selected from the number of singular valnes which differ 

significantly from zero. 
Although this approach of order selection reduces the amount of computations 

significantly, the correctness of the orders for the process and the noise model should 
always be verified afterwards. 

2.3.3 Initia/ Estimates 

After selecting a specific model structure and order, the parameter vector .(! has to be 
estimated. In the special case where ~(kJ!) depends Iinearly on .(!, the minimization of 
the loss-function V e<ID (Eq. 2.24) can be done analytically. In most cases however, the 
minimum of Ve<ID cannot be found analytically. For such cases the minimization must 
be performed using numerical search routines. There is an extensive literature on such 
numerical problems, see [Lue73, GMW81, Sca85]. A typical property of this numerical 
minimization is that convergence will be achieved. Note however, that the parameter 
optimization can converge to a local minimum of the loss-function V eC!l). To find the 
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global solution, there is usually no other way than to start the iterative minimization 
routine at different feasible initia! values and compare the results. Due to the possible 
occurrence of undesired local minima of the criterion, it is worthwhile to spend some 
effort on prcliminary estimation procedures to produce good initia! values for the 
minimization. 

Results to obtain initial estirnates available for the scalar black-box structure (Eq. 2.8) 

can be used as well for the minimal polynomial model structure (Eq. 2.17) because of 
the large similarity between the scalar and the selected multivariable case. The 

discussion bere will be restricted to the approach based on estimating high-order ARX 
models of the system and applied to the model structures described in Table 2.1. 
Suppose the true system is defined by Eq. 2.3 and an ARX model structure : 

(2.34) 

of order h is used where h defines the order of the minimal polynomial ~(z- 1 ) in a 
fully parametrized model. Then it can be shown, see [Lju85, ZBE91], that if the number 

of data samples and the model order tend to infinity (N >> h), then the polynomial model 
(Äh, Bh) will converge to the true system in the following sense : 

uniforrnly in ro as N » h -t oo (2.35) 

This means that a high-order ARX model is capable of approximating any linear system 
arbitrarily well. For an ARX model in the proposed general prediction model set the 

loss-function Vel]) is a quadratic function of the parameters ft which guarantees that 
there is only one minimum, the global minimum. It is of course desirabie to reduce this 
high-order model to a lower order model within the structures described in Table 2.1. 
However, the high-order model (Eq. 2.34) yields a first indication of the maximal 
achievable performance while also the sealing of the data can be verified to eosure 

equal weighting of the prediction errors during the parameter optimization (see 
Appendix. A4, Data Decimation and Sealing). 
Before descrihing a procedure to obtain initia! parameter estimates for several model 
structures, define the following signals : 
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B < -1) 
h z u(k) 

Àh(z -1) - (2.36) 

Àh(z - 1) y(k) - Bh(z - 1) g(k) 

where yh(k) denotes the simulated output and ~h(k)"' f,(k) the prediction error of the 
high-order ARX model. 

The proposed procedures to obtain appropriate initial estimates for the various model 
structures are then as follows : 

• ARMAX model : Use the following model structure : 

to estimate the polynornials A, B and C. Since ~h (k) is a known sequence, this 
model has an ARX structure with ny additional inputs, and consequently the 
estirnates can be deterrnined by the least-squares method [MF82]. 

• OE model : For the output error model structure, a modified Steiglitz-McBride 
metbod [SM65] has been adopted. This iterative scheme : 

is based on successive data filtering, 

i= 1 ,2, ... (2.39) 

and least-squares estimation for determining B(q) and F(q) : 

(2.40) 

The iteration is initialized by applying Eq. 2.34 first for y~(k) = yh(k). Note that 
in contractietion to the original method and other references [Lju87, SS89], the 
simulated output of the high-order model yh(k) has been used instead of the 
measured output ~(k). In practice, this approach converges to a more accurate 
initia! estimate because the output data yh(k) is generated by a linear 
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(simulation) process and contains no noise where the measured data .)::(k) in 
practice often is corrupted with a lot of noise or even with spikes and 
nonlinearities. Although in general no convergence to a minimum point of the 
output error loss-function can be guaranteed, this approach gives a sufficiently 
accurate initialization estimate for output error optirnization. 

• BI model : For the Box-Jenkins model structure the initia! estimates of the 
process and the noise dynarnics will be derived separately. The process model : 

(2.41) 

can be initialized using the Steiglitz-McBride iteration described for the output 
error model structure resulting in { Ê ( z -l), F ( z -l ) } . To deterrnine the noise 

dynarnics, an estimate of the noise sequence can be constructed according to : 

!(k) = y(k) (2.42) 

This noise can then be regarded as a measured signa! for which an ARMA 
model can be deterrnined in a separate step. One approach is to apply a high­
order AR model to v j(k) and forrn estimates of the innovations êi(k). The 
polynomials D(z-1) and C(z-1) can then be estimated with the standard least­
squares metbod from the ARX model : 

(2.43) 

with y(k) as output and ~(k) as input. 

The methods to obtain initia! estimates for parameter optirnization which have been 
described briefly and only for the most common model structures are sirnilar to the 
scalar case. Other approaches to derive initia! estimates for general model structures can 
be found in the literature. 

2.3.4 Numerical Min/mization 

After selecting a correct model structure and order, the parameters can be estimated by 
minimizing the prediction error using the initia! estimate as starting value. A commonly 
used approach is basedon Newton algorithms [Lue73, GMW8l, Sca85] using values of 
the function V e(fl.) to be minimized, of its gradient V 0 V e<ID• and of its Hessian 
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2 
Vee V e(!!) 

(2.44) 

Here Ve and V~e denote respectively the first- and second-order derivatives with 
respect to !!, Qi indicates the ith iteration estimate in the optimization and ai is a 

variabie step length which is often necessary in practice. The positive constant can be 

determined so that an maximal decrease in the value of V e<ID is obtained : 

(2.45) 

Straightforward differentiation of the loss-function V e<ID with respect to ft results in the 

following gradient expression : 

(2.46) 

Differentiating of Eq. 2.46 again with respect to ft gives the Hessian matrix : 

(2.47) 

In most literature it is assumed that the prediction error ec01(fJ!) is white and therefore 

the second-order derivative of the prediction error V~e ecol (@.!).) will be independent of 
ec01(~J!) making the second term in Eq. 2.47 zero. This approximation of the Hessian 
matrix V~e V e(!!) is then by construction guaranteed to be positive definite resulting in 
a decreasing loss-function at every iteration if ai is appropriately chosen. Although the 
amount of computations reduces significantly since only the first order derivatives of the 
prediction error Va ec01(@,ft) need to be evaluated, a white prediction error ec01(fJ!) is 
hard to realize in practice and the results will be less accurate when ignoring the second 
derivative term completely. However, when taking the second order derivative of the 
preilietion error V~ ec01 (f,_lt) into account, proper precautions are necessary because 
the Hessian matrix might become non positive definite in a point far from the optimum 
resulting in an incorrect search direction and no convergence of the parameter estimate. 
In Appendix B descrihing the Minimal Polynomial Identification in more detail, it is 
shown that the first- and second-order derivatives of the prediction error for the minimal 

polynomial model structure can be computed analytically in an efficient way by simply 
filtering the data sequences by polynornial transfer functions. The predietor y(kl!!) 

(Eq. 2.18) is reformulated into a pseudo-linear regression form and expressions of the 
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gradient V 6 V eOl) together with the Hessian V~a V e<!D are given in matrix notation. 
The parameter vector !! can then be optimized by iteratively calculating the derivatives 
and solving a least-squares problem until convergence is achieved. 

2.4 Asymptotic Properties 

In analyzing the asymptotic properties of the identified models, determined by Eq. 2.26, 

the limit properties of the loss-function V effi) will be described as the number of data 
samples (N) tends to infinity. In the following, ft denotes the parameter estimate which 
minimizes the loss-function V effi). 

For the theoretica! analysis the following basic assumptions are made in standard 
literature : 

1) The data { u(k), y(k)} are stationary processes. 

2) The input is persistently exciting. 

3) The Hessian V~a V e(ft) is nonsingular at least locally around the 
minimum value of V eCQ). 

4) The filters G(z·1 ,!!), the process model, and H(z-1 ,!!), the noise model, are 

smooth (differentiable) functions of the parameter vector f!. 
5) The set E>t consists of precisely one element flr· 

The assumptions 1-4 are fairly weak and can be mostly satisfied in practice. However, 
as stated before, the last assumption can never be fulfilled in practice. This, because in 
practice no perfect description of the system can be obtained. Hence, in general the true 
model set et is empty. Despite the fact that assumption 5 is always violated in practice, 
most results in standard literature are based on this assumption. For comparison and to 
emphasize the consequences for the asymptotic properties of the estimates, the results 

for both situations : 

will be described. 

2.4.1 Convergence 

When N tencts to infinity, the sample covariance matrix (Eq. 2.20) converges to the 
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corresponding expected values. Since the scalar-valued function V(~) is assumed to he 

continuous, it follows that the loss-function : 

(2.48) 

where 

(2.49) 

It has been shown in [Lju78] that the convergence is uniform on compact (i.e. closed 
and bounded) sets in the parameter space. For a uniform convergence, it follows that !! 
converges toa minimum point of VeJ!!) denoted by ~* : 

!! ~ !!* t. arg min Ve (!!) 
!!,e epe ~ 

(2.50) 

Note that for this convergence result it is not required that the model structure has to he 

large enough to cover the true system. Consequently the estimate !! converges to the 

best possible approximation of the system within the selected model set Spe· The 
approximation is in fact the most reasonable. The parameter vector ~* is by definition 

such that the prediction error ~(k,~) bas a varianee as small as possible. 

2.4.2 Consistency 

Formally, the consistency property of the estimates implies that asymptotically with 
probability 1 the true system is identified. Parameter identifiability, or consistency of !!. 
can only be guaranteed when assumption 5 is satisfied which is never the case in 

practice. In general for the situation of underparametrization, no consistency results are 
known. 
Only when the true system is given by Eq. 2.2 and under the assumptions that the 
model structure is independently parametrized : 

and that there exists a parameter vector ~ such that the process model can be described 
exactly within the model set : 

(2.52) 

it can be shown [SS89] that ~; ~· In other words, a perfect description of the process 
dynamics Gt(z-1

) can he obtained even though the true noise dynamics Ht(z-1) may not 
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be adequately parametrized. Output-error and Box-Jenkins models are special cases 

where these assumptions are applicable. 

Note however, in general Eq. 2.52 is not satisfied in practice because process and noise 

dynamics can hardly be separated. For practical problems, it is simply not known 

whether dynamica! behaviour belongs to the process or the noise system. 

2.4.3 Asymptotic Distribution 

For the practical situation where the system is more complex than the model structure, 

it follows from the asymptotic properties that the parameter estimates will converge to a 

minimum value of the loss-function as defined in Eq. 2.50. An interesting analysis is to 

study how fast these asymptotic properties can be obtained. 

Complete knowledge of the parameter vector ft is present in its probability density 

function. However, no explicit expressions for this function can be found for a finite 

number of data samples. Instead, it can be shown [Lju87, SS89] that the asymptotic 

probability density function of (ft -!! *) converges to a Gaussian distribution according 

to : 

(2.53) 

where 

To evaluate the parameter covariance matrix Cov(~J it is necessary to use the 

properties of the data as well as the model structure. Knowing this asymptotic 

distribution, conclusions can be drawn on the accuracy of the parameter estimates, for 

example confidence intervals concerning the estimated parameters can specify the 

distance to the real parameters. 

Under the assumption that the set et consists precisely of one element~ and that the 

prediction error ~(k.BJ is white, the asymptotic covariance matrix for the multivariable 

case is given by [SS89] : 

Cov(!!
1

) = [E{V9 ~T(k,!! 1 ) VReV(Re) V!~(k,!! 1)}r 1 * 

[E{V9 ~T(k,!! 1 )) VR.V(Re) A VR.V(Re) V!~(k,!! 1 )}] * (2.55) 

[ E {Va~ T(k,!!
1
) V Re V(Re) V! ~(k,!! 1 )} r 1 

which reduces for the minimal polynomial model structure to : 
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(2.56) 

when tak:ing Eq. 2.24 into account. This expression of the parameter covariance matrix, 
however, cannot be evaluated in practice because : 

• Contrary to the assumption et= f4 = .e_*, approximate modelling in practice 
(underparametrization) results in et= 0. 

• Contrary to the assumption that ~.(k,ft) is white, a white prediction error can 
often not be realized for industrial processes. The prediction error ~(k,ft) is in 
general correlated up to time t-o where li indicates the correlation depth which is 
problem dependent Further, the whiteness depends also on the accuracy of ft 
with respect to f!.. 

• The expected value E{.) cannot be calculated because only one manifestation of 
a stochastically assumed variabie is available. 

In addition, evaluating Cov(f!*) (Eq. 2.56) at ft gives trivially Cov(ft) = 0, since 

V e V e(ft) = 0, which is a useless estimate. Therefore, the question is how to calculate 
the best possible approximation of the parameter covariance matrix in practice. Assume 
now that the prediction error s;.(k,S) is decomposed in a parameter dependent term, 
~(k,ID, due to the underrnodelling and a white noise term, ~(k), affecting the true 
system: 

~(k,!!) = g_(k,!!) + .S,(k) (2.57) 

Further, assume that the elements of the white noise sequence ~(k) are mutually 
independent and that the input/output data has been scaled properly in advance to satisfy 
Eq. 2.21. Under these conditions the asymptotic parameter covariance matrix can be 
rewritten as : 

4 
Ncol 

L VeEcol<~.!!*) v!ecol(f,!!*) 
l=l 

[ VeeVE(!!*) rl 

(2.58) 

* 

where Vif!*) defines the contribution of the term ~(kJ!*) in the loss-function V e<f!*) 
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(see Section C.l). This expression of the parameter covariance matrix Cov(fi*) can be 
approximated in practice as follows : 

* 

(2.59) 

The main difference between the expressions of the parameter covariance matrix for 
both situations, exact (Eq. 2.56) and undermodelling (Eq. 2.59), is basically the 
evaluation of the second-order derivative for the prediction error V~a e001(~.ft). Note 
also the large sirnilarity for the covariance matrix expression between the scalar [SS89, 
Section 7 .5] and the multivariable case using the minimal polynomial model structure 
when exact modelling is considered. A detailed explanation and the proof of Eq. 2.59 
can be found in Section C.l, Co varianee Approximation. 
When consictering the situation of exact modelling, i.e. et = { at } , and realizing a white 
prediction error with Gaussian distribution, i.e. satisfying the assumptions 1-5 described 
in the introduetion of this section, a well known result is that the lower bound on the 
covariance matrix is given by the Cramér-Rao inequality : 

(2.60) 

The equality in Eq. 2.60 holds if the data has been properly scaled in advance with the 
~rue inverse covariance matrix Aï1 resulting in Eq. 2.56 for the minimal polynornial 
m~del structure. This is a nice theoretica! result, but system identification in practice 
cal\, be described in general as approximate modeHing because the estimated model is 
always a low order approximation of the real process. Therefore, the Cramér-Rao bound 
is in principle not valid. However, the parameter covariance matrix as defined in 
Eq. 2.59 provides a reasonable approximation. This expression can be considered as a 
modified Cramér-Rao bound in the situation that the process is not contained in the 
model set taking the fact of undermodelling explicitly into account. Therefore, 



2.4 Asymptotic Properties 49 

confidence intervals based on Cov(~) can still be used to derive bounds on the 
parameters in this stochastic setting. 

2.4.4 Confidence Intervals 

In spite of the fact that there exists no true parameter vector for practical identification 

problems, i.e. e, = 0, the parameter estimate ~ converges to the best possible 
approximation denoted by .e.* and the asymptotic probability density function of 
(~ !!_*) converges toa Gaussian distribution as given in Eq. 2.53. 
Finally remark, that if a random vector U has a Gaussian distribution : 

n_ e N (O,Cov) (2.61) 

then the scalar : 

zll = n_ T Cov -1 U (2.62) 

has a x2-distribution with dim(U) = ne degrees of freedom, 

(2.63) 

From Eq. 2.55 and 2.56, the condusion can be drawn that : 

(2.64) 

This implies that z6 converges in distribution to the x2(n9)-distribution as Ncol tends to 
infinity. Using either x2-tables or direct computation of the x2-distribution as described 
in Section C.2, confidence intervals for z9 can be derived which correspond to 
confidence ellipsaids for ~. 
The bounds of the parameters derived in this stochastic setting will be compared to the 
deterministic approach described in Chapter 3. In this comparison of stochastic and 
deterministic parameter uncertainty, the main attention will be focused on the estimated 
uncertainty bounds which will be obtained under various noise conditions for several 

types of models. 

Although the prediction error identification is well known from literature, a major 
contribution in this section is the proposed minimal polynomial model structure for 
multivariable systems. The motivation for this model structure is that the complex and 
high interaction of dynamics in industrial processes makes the estimation of structural 
indices for (pseudo-) canonkal models very difficult due to the structural uncertainty. 
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The parameter estimation when using multivariable (pseudo-) canonical models suffers 
from the fundamental difficulty that for this structure no convergence can be achieved 
for the nonlinear multivariable prediction error rninirnization problem. This problem is 
avoided by adopting the minimal polynomial model structure which results therefore in 
a very effective identification algorithm for multivariable systems. 
Further, a modified Cramér-Rao bound is derived for which the assumption that the 
process must be contained in the model set can be relieved. The fact that every model is 
only a low order approximation of the real process is explicitly taken into account. The 

conesponding parameter uncertainty bounds provide a quality measure of the identified 
model in a stochastic setting. 
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Comparison of Stochastic and 

Deterrninistic Uncertainty 

In classical identification methods a dynarnical model of a process is estimated using 

measuted data and usually stochastic assumptions on the noise corrupting the data. The 

noise is statistically modelled by an at least partially known or specified distribution. 

This approach has been discussed in Chapter 2 for multivariable systems using minimal 

polynornial models. However, there are many situations where the main contributiqn to 

the error may not be of a random nature and therefore cannot be suitably described by 

random noise. Por example, the industrial process from which the data is collected may 

be very complex so that only simplified models can be used in the identification 

procedure. Then, the residuals of the estimated model have a component due to 

deterrninistic structural errors, i.e. unmodelled dynarnics, which may lead to 

unsatisfaetory results when treating them as purely random variables. 

An alternative approach, initiated by Witsenhausen and Schweppe [Sch68, Sch73, 

Wit68], is baSed on a much simpler representation of the prediction error which defines 

the misfit between the data and the model due to noise disturbing the process, 

51 
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undermodelling etc. The unknown but bounded error assumption is used in the sense 
that each error sample of output i, is known to be bounded by a given value : 

V'k,i (3.1) 

Frequently, the I .. -norm is adopted to simplify this noise bound : 

(3.2) 

Motivation for this kind of error approach is the fact that, in many practical cases, the 
unknown but bounded error assumption is closer to the actually available inforrnation 
on, for example, measurement noise, truncation, round-off errors etc. In this context the 
identification procedure consists of finding the complete set of all admissible parameter 
values which is consistent with the measurements, the model and the error description. 
A general overview can be found in [Mil89, WPL90]. 
To obtain generally useful algorithms for parameter set modelling of multivariable 
systems, the identification will be restricted to models parametrized by linear difference 
equations with their coefficients defined as parameters. This is subject of discussion in 
Section 3.1. For models which are 1inear in their parameters, the feasible parameter 
region is described by a set of linear inequalities, which define a convex set in the 
parameter space with possibly very complicated bounds. lt is therefore convenient to 
look for simpter although approximate descriptions like ellipsoidal or orthotopic 
bounding. As extension to the set estimation methods which have been described in the 
literature, it will be shown that for ellipsoidal bonnding repeated processing of the set of 
inequalities is required to obtain convergence to the final ellipsoid of for example 
minimum volume. Furthermore, it will be motivated that the most accurate 
approximation of the parameter uncertainty set can be obtained by combining the 
features of ellipsoidal and orthotopic bounding resulting in ellipsoid-aligned orthotopic 
bounding. The different bounding types of the feasible parameter set are described in 
Section 3.2. For practical applications of bounded error identification, it should be noted 
that set estimators are not robust to outliers, i.e. data values which are not consistent 
with the specified assumptions. Such outliers may result from mistakes made during the 
acquisition and preprocessing of the data, but also from overoptimistic error bounds or 
unmodelled dynarnics. As described in the introduction, this is always the case in 
practice and therefore bounded error identification will result in an empty parameter set 
if no proper precautions are taken. This problem, despite its severe consequences, is 
hardly mentioned or even not recognized in the literature. One way to circumvent an 
empty parameter set due to data Outliers is outlined in Section 3.3. Finally, an extensive 
example is treated in Section 3.4, where the parameter uncertainty obtained by both 
stochastic and deterministic identification is compared under various noise conditions 
for different types of models. In this comparison of stochastic and deterministic 
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parameter uncertainty the main attention will be focused on the estimated uncertainty 

bounds and the consequences for these bounds if theoretica! assumptions are violated. 

For simplicity of notation, only the SISO case will be described in this chapter. The 

extension to multivariable systems using the minimal polynomial model structure 

introduced in Chapter 2 is described in Appendix D, Parametrie Uncertainty 

Descriptions. 

3.1 Model Restrictions 

As mentioned in Chapter l, a general model representation of a SISO dynamica! system 
relating the input, the measured output and the disturbances in discrete time, can be 

described by : 

M(!!.y(k),u(k),~(k),k) = 0 V'k (3.3) 

Under the assumption that the process is contained in the model set, the predietien error 

e(k,ID which describes the misfit between the data and the model of a dynamica! 

system: 

e(k,!!) !à y(k)- 9(kl!!) (3.4) 

is an estimate of the noise ~(k) disturbing the process (see Eq. 2.57) for a specific 

parameter vector .a. When now the unknown but bounQed error formulation is adopted 

(Eq. 3.1 and Eq. 3.2), the parameter uncertainty set e, containing all the parameter 

values which are not falsified by the data, the process and the error model (Eq. 3.3), is 

defined by: 

e = {!! E Rna I M(!!.y(k),u(k),e(k,!!),k) = 0 ' I e(k,!!) I ::;; oe } (3.5) 

If there exists a true parameter vector .f4, i.e. the process is contained in the model set, 
and e(k,flt) satisfies the bounded error assumption (Eq 3.1 and Eq. 3.2), then the 

parameter uncertainty set e contains flt. 

In the unknown but bounded error identification approach, estirnating the parameter 

uncertainty set e (Eq. 3.5) for time-invariant systems and adopting the setup as depicted 

in Fig. 1.1 where the disturbances Ç(k) are modelled by the predietien error e(k,ID, 

basically two types of models can be distinguished : 

• Nonlinear in the parameters ; given the data { u(k),y(k)}, the mapping 

from the parameters !l to the predietien error e(k,ID is nonlinear. 
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• Linear in the parameters ; the model can be described as a linear 
mapping from the parameter vector f! to the prediction error e(k,!!) for a 
given data set {u(k),y(k)}, i.e. ~ {u(k)4(k)l e(k,!!), or, in other words, 

the model is affine in fi. 

Table 3.1 : Linear vs. nonlinear parameter models. 

Quantity 

Parameter Uncertainty 
Set 9. 

Boundary of 9 in 
parameterspace .e.n°. 
Central estimate fic 
(centre of minimum 
and maximum value). 

Linear in fi 

Convex polytope. 

(ne-l )-dimensionallinear 

hyperplanes. 
It exists, is unique and 
belongs to the parameter 
uncertainty set e. 

Nonlinear in fi 

Set that in general can be 
non-convex and non­

con.nected. 
Hypersurfaces of any 
complex forrn. 
It may not be unique and 

may not belong to the 
parameter uncertainty set 
e. 

The consequences of these model types for the bounded error identification are quite 
significant and have been summarized in Table 3.1 (see [BBC88]). To illustrate the 
main differences between the linear and the nonlinear parameter models in bounded 
error identification, two simple examples have been selected. 

Example 

Suppose the true dynamica! systems are defined by : 

• Linear in .fi: 

• Nonlinear in fi 

M = y(k) + k e1 - e2 + ~(k) = o 
=> y(kl!!) = k e 1 + 62 
M = y(k) + k e1 - 82 + 1.5 sin ( 1.2 81 + 2 k ) + Ç(k) = 0 

=> y(kl!!) = -k el + 6z - 1.5 sin ( 1.2 el + 2 k) 

where only the sine term has been incorporated for the nonlinear case. These 

expressions have been evaluated at time instants k E { 1, 2} for the measured values 
y(k) =: { 2, -1}. Further, assume that measurement noise Ç(k) additive to the output of 
the true system disturbs the data which is bounded by 111;11~ ~ 1. When the process is in 
the model set, the prediction error satisfies : I e(k,!!) I= I y(k)- y(ki.!D I~ oe= 1. The 
corresponding boundaries derived from : 
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Linear in ft : 1 ~ - 91 + 92 ~ 3 

-2 ~ - 2 e1 + e2 ~ o 
• Nonlinear in ft : 1 ~ - e1 + e2 - 1.5 sin ( 1.2 e1 + 2 ) ~ 3 

-2 ~ - 2 el + e2- 1.5 sin ( 1.2 el + 4 ) ~ 0 

have been depicted in Fig 3.1 for bath models, linear and nonlinear in the parameters 

respectively. The shaded areas in bath figures define the parameter uncertainty sets e. 
These examples show clearly the advantages of the linear in the parameter model 

description. The parameter uncertainty set e is convex and conneeled due to the linear 

constraints which define the boundary. This also guarantees that the centre value .!1ç 
which is defined as the centre of the extreme values, i.e. minimum and maximum value, 

is an element of the parameter uncertainty set e. All these advantages will be lost 

whenever the model is nonlinear in its parameters. 

Linear in fi Nonlinear in fi 
lO 10 

8 8 

6 6 
e2 e2 

4 4 

2 2 

2 4 6 8 10 2 4 6 8 10 
el el 

Fig. 3.1 : Parameter uncertainty sets e ; a) Linear in ft, b) Nonlinear in!!. 

Most models used in practice are based on difference equations which are nonlinear in 

their parameters. For nonlinear parameter models the hyperplanes of the Iinear case are 

replaced by more general hypersurfaces, as shown in Fig. 3.1. The major probierus of 

these nonlinear parameter models are that the careesponding parameter uncertainty sets 

ei are non-convex and possibly non-connected . Several approaches have been proposed 

to describe these parameter uncertainty sets ei. When there are up to three parameters 

and an analytica! expression for the model is available, the hypersurfaces limiting the 

feasible parameter region can be drawn and visualized to see which observations define 
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the parameter uncertainty sets [Nor86]. Other approaches [Smi83, WPL86] use global 

optirnization methods based on random search to construct the boundary of the 

parameter uncertainty sets. Projections onto one- or two-dimensional spaces are 

computed and a systernatic scan of the projection space is performed. 

Whenever the hypersurfaces can be described as explicit polynornial functions of 

positive parameters, the bounded error identification problem can be solved by 

signomial programrning [MV89]. When .fi cannot be assumed to be positive, a suitable 

transformation of the parameter space can be performed to obtain positive parameters. 

These signomial probierus are in general non-convex and may thus exhibit local 

solutions. However, iterative algorithms exist which can evaluate at each iteration the 

lower and upper bounds of the sets which are guaranteed to converge monotonically to 

the global solution [Fal73, Eck80]. Thus the metbod provides orthotopic (box) bounds 

evaluating the extremes of the parameter uncertainty sets. 

All these methods however, suffer from exploding computational complexity for 

increasing dimensionality which motivates the interest in looking for less detailed but 

more easily computable approximations of the feasible parameter regions. The most 

interesting solution to the nonlinear bounded error identification problem is to linearize 

the model around some value of the parameters to obtain linear hyperplanes. Using this 

approach, the advantages of the linear case are obtained again in the form of a convex 

and conneeled parameter uncertainty set e. A simple example of an error-in-variables 

model will be used to illustrate this linearization. 

Example 

u 

.) 

1 + fl z 

Fig. 3.2 : Errors-in-variables model. 

The errors-in-variables model depicted in Fig. 3.2 is nonlinear in its parameters : 

_e = [ b 1 f1 ]T. In this simple example it will be shown how linearized constraints can 

be derived descrihing the parameter uncertainty set 8 in the parameter space. Suppose 

the true dynamica! system is defined by : 

(3.6) 
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where the measured data is obtained according to : 

(3 .7) 

and the measurement noise satisfies the bounded error conditions : 

(3 .8) 

The linear inequalities which define the boundary of the parameter uncertainty set e can 

be deterrnined by deriving bounds on each of the components of Eq. 3.6. Because of the 

bounded error conditions, every true output sample is limited by : 

(3 .9) 

For unknown parameters, this lower and upper bound can be adopted as follows : 

(3.10) 

resulting in : 

(3 .11) 

where sgn( .) denotes the sign function of its argument. Changing the sign : 

results then in bounds for the second term on the right hand side of Eq. 3.6. Similarly, 

bounds can be derived for the first term : 

l ~ b1 [u(k-1)-sgn(b1)öu(k-1)] 
b1 u

1
(k-l) 

s b1 [ u(k-l)+sgn(b 1)öu(k-1)] 

(3.13) 

Substituting now Eq. 3.9, 3.12 and 3.13 into Eq. 3.6 results in the following bounds for 

the parameter uncertainty set e : 
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Hl [ <!>(k,~) + L'1<!>(k,!!) l ~ ~ y(k)-~\(k) (3.14) 

H:z. [ <!>(k.~)- L'1<!>(k,~) l ~ ~ y(k) + Öy(k) 

where 

<!>(k,~) [ u ( k - 1) -y ( k -1) l 
L'1<!>(k,~) [ sgn(bl) ou(k-1) sgn(f1)öy(k-1)] (3.15) 

~ [bi fl ]T 

Note that the sign of all parameters must be known in order to construct these 

constraints. For this specific example only the sign information of the parameters is 

needed. In the more general case, however, the regression vector in the constraints of 

Eq. 3.14 becomes a function of ft. Further, these linearized conditions for the boundary 

of the parameter uncertainty set e are necessary but not sufficient. Conservatism is 

introduced by the fact that due to a sign change of the parameters the corresponding 

bounds, öu<k) and/or öyCk) in Eq. 3.15, change in sign as wel!. This is physically 

unrealistic because the sign of this measurement noise at a certain time instant k is fixed 

and cannot change within time. Therefore, more freedom is allowed in the uncertainty 

than physically can occur resulting in only necessary conditions. 

The type of models which can be described in a linear regression form wil! be reviewed 

briefly where the transformation of the models nonlinear in their parameters to a 

pseudo-linear regression form will be described in more detail. The bounding constraints 

{H1,H2 } of Eq. 3.14 will be extended to more general models. Whenever a model is 

linear in the parameters, the data regression vector <!>(k,ft) will become independent of 

the parameters ft and the bounding regression vector L'1<!>(k,ft) will reduce to zero. For 

roodels which are nonlinear in their parameters, an approximation is necessary resulting 

in a pseudo-linear regression form. Depending on the term L'1<l>(k,ft), the bounding 

constraints {H1,H2 } will represent parallel or non-parallel hyperplanes in the parameter 

space respectively. All parameter values ft which satisfy these conditions are considered 

as feasible solutions of the identification problem and define the parameter set e. Note 

that by linearization of models which are nonlinear in !heir parameters, conservatism has 

been introduced extending the feasible parameter set e with physically unrealistic 

models. In the trade-off between complex but accurate parameter uncertainty sets in the 

general case and the conservatism added by linearization of nonlinear models resulting 

in easy computable parameter bounds, the latter approach has been selected to derive 

deterministic parameter uncertainty bounds. 
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General prediction error models : 

Let : 

A(z -1) y(k) = B(z -1) u(k) + C(z -1) /;(k) 
F(z -1) D(z -I) 

w(k.!D = B(z -
1
) u(k) 

F(z -I) 

v(k,!!) = A(z - 1) y(k)- w(k.!!) 
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(3.16) 

(3.17) 

Then, the predietien error e(k,ft) for this general model representation which 

describes the noise sequence /;(k) based on the data { u(k),y(k)} for a specific 

parameter vector .e.. is defined by : 

D( -1) 
e(k,8) = _z_ v(k,8) 

- C(z-1) -
(3.18) 

This general predietien error model can be rewritten in the following pseudo­

linear regression forrn (App. B.3) : 

(3 .19) 

a b c d f t- parameters 

where I) 

<l>yCk) [ -y(k-1) ... -y(k-na) ] 

<l>u(k) [ u(k) ... u(k-nb+1)] 

<l>e(k,!!_) [ e(k -1,!!_) ... e(k- nc,!!) ] (3.20) 

<l>y(k,!!_) [ -v(k -1,!!) .. . -v(k- nd,!!_) ] 

<l>w(k,!!_) [ -w(k-1,!!) ... -w(k-nf.!!)] 

which is clearly parameter dependent To construct the constraints { H 1,H2 } 

which describe the parameter uncertainty set e, lower and upper bounds for the 

data { u(k),y(k)}, the predietien error e(k,.fi) and the auxiliary variables 

I) k indicates a row in the regression matrix <l>(ft) (see Eq. B.l7). In the multivariable case 

the time index k is replaced by e indicating time as wel! as channels. 
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( w(k,ft),v(k,.!l)} must be determined. To achieve this, the following procedure is 

required : 

I) Suppose an initia! parameter uncertainty set 0° is available which has 

been determined from a priori information. 

2) For all parameters ft E 0° c R"9, lower and upper bounds of all variables, 

i.e. u(k), y(k), e(k,ft), v(k,ft) and w(k,ft) must be computed, for example 

by simulating these data sequences for all elements of 0°. The 

corresponding lower and upper bounds, e.g. wmin(k) and wmax(k) : 

w min(k) min w(k ,_!!) 
'v'.!l. E e• 

wmax(k) = max w(k,_!!) 
'v'.!l. E e• 

(3 .21) 

can then be used to compute a centre value w c(k) and the data 

uncertainty 8w(k) according to : 

V2 ( wmax(k) + wmin(k) ) 

V2 ( wmax(k) - wmin(k) ) 
\ik (3.22) 

In the bounded error identification context, the constraints ( H1 ,H2 } 

descrihing the boundary of the feasible parameter set based on these 

centre values and uncertainty information, are then defined by : 

[ <J>yCk) <l>u(k) <l>e(k,_!!) <j>y(k,_!!) <l>w(k,_!!) J 
(3.23) 

[ Ll<J>yCk) Ll<J>u(k) Ll<J>e(k,_!!) Ll<j>y(k,_!!) Ll<J>w(k,_!!) J 

where the regression vector <j>(k,ft) is defined sirnilar to Eq. 3.20 thereby 

replacing the various data samples, e.g. w(k-1 ,ft), by the corresponding 

eentee values, e.g. wc(k-1), and: 

Ll<J>yCk) 

tl<J>u(k) 

tl<J>e(k,_!!) 

t.<j>y(k,_!!) 

tl<J>w(k,_!!) 

[ 0 ... 0] 

[ 0 ... 0] 

[ sgn(c 1)8e(k-l) ... sgn(c 0c)8e(k-nc) J . 

[ sgn(d 1 )Öv(k-1) ... sgn(dnctH>v(k-nd) J 

[ sgn(f1 )8w(k -1) ... sgn(f0 r)8w(k- nf) J 

(3 .24) 
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3) Compute for the constraints defined in Eq. 3.14 using the regression 

matrices in Eq. 3.23, a new parameter uncertainty set e1 ç 8°. 

4) Repeat step 2) and 3) until no significant reduction of the parameter 

uncertainty set can be obtained anymore, i.e. eï+l "' eï. 

Besides the rather complex procedure to compute the parameter uncertainty set 8 
logether with the centre values and uncertainty bounds (Eq. 3.22) for all data variables 

over all time instants, this approach may yield very pessimistic parameter bounds and is 

therefore not recommended. For special cases of the general model structure (Eq. 3.16), 

this iterative procedure can be avoided. 

Equation-error models : 

(3 .25) 

This type of models is essentially linear in the parameters and can therefore be 

rewritten in a straightforward way into a linear regression form where the 

regression vector is defined by : 

(3.26) 

Output-error models : 

B( -1) 
y(k) = _z_ u(k) + l;(k) 

F(z - I) 
(3.27) 

The approximation of the nonlinear part F(z-1) [CG88] has already been 

illustrated for the error-in-variables model in the preliminary example. For 

output-error models, wc(k,_fi) and Öw(k) are equivalent to y(k) and Öe(k), 

respectively, which yields a pair of pseudo-linear bounds modifying the 
regression vector into : 

[ $u(k) $yCk) ] 
(3.28) 

[ ó.$u(k) ó.$w(k,Q) ] 

ARMAX models : 

A(z - 1) y(k) B(z - 1) u(k) + C(z - I) l;(k) (3.29) 
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Similar to the Iinearization of the error-in-variables model, an approximation of 

the boundary can be derived. Assuming a prediction error e(k,~) with zero mean 

for which ec(k) reduces to zero and a known bound Öe(k), the pseudo-Iinear 

regression vector for ARMAX models can be modified into : 

<Parmax(k) 

ó.<l>armax(k,Q) 

Errors-in-variables models : 

Yt (k) 

y(k) 

[ <!>y(k) <l>u(k) 0 ... 0 ] 

[ ó.<J>y(k) ó.<j>u(k) ó.<J>e(k,!!) ] 

b1 u1(k-1) - f 1 y1(k-1) 

y l ( k) + çy ( k) 

(3.30) 

(3.31) 

The boundary of these models (see Fig. 3.2) has been derived in the preliminary 

example and can be generalized for higher order models by the following 

regression veetors : 

<l>eiv(k) 

ó.<J>eiy(k,~) 

[ <PuCk) <1>/k) l 
[ sgn(b1) Öu(k) ... sgn(bnb) Öu(k- nb + I) ó.<!>w(k) ] 

where Öw(k) in ó.<!>w(k,_!i) is equivalent with 8y(k) in Eq. 3.8. 

(3 .32) 

Due to the Iinearization of models which are nonlinear in their parameters, the signs of 

the corresponding parameters must be known. The parameter uncertainty set 8 can then 

be evaluated from a priori knowledge or from classica! identification techniques 

assuming that the estimated parameters are elements of the feasible set and that the 

corresponding signs will be fixed to either positive or negative va!ues. Whenever a 

priori information about the signs of the parameters is not available, 2q identification 

problems have to be solved, where q defines the number of parameters for which the 

sign must be known, evaluating all possible parameter combinations in order to find the 

parameter uncertainty set 8 . Because of the exploding computational complexity for an 

increasing number of parameters, this latter approach is nol recomrnended. 

3.2 Outer Parameter Bounding 

Applying bounded error identification to obtain complete and least conservative 

parameter bounds, requires a tight outer bound description of the parameter uncertainty 
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set 0 . To ensure that all parameters wilt be identified which are consistent with the 

measurements, the model and the error description, i.e. the complete set, an outer bound 

approach is required. This outer parameter bounding should of course be as accurate as 

possible to reduce the conservatism when approximating the parameter uncertainty set 

0 . Outer bound approximations often turn out to be rather pessimistic descriptions of the 

parameter uncertainty set 0. It may therefore seem of interest to compute maximal inner 

bounds for 0. Such inner bounds may provide a useful indication of the tightness of the 

approximate outer bounds. However, simulation examples have shown that these inner 

bounds often shrink quickly to zero due the approximation which is involved when 

computing the inner bounds. 

Whenever the models are linear in their parameters or can be approximated by a 

pseudo-linear regression form as described in the previous section, the complete least 

conservative parameter uncertainty set 0 consists of a convex and conneeled set which 

is bounded by linear hyperplanes in the parameter space [BBC88]. Note however, that 

in this bounded error identification approach conservatism is introduced, i.e. 0 might 

contain physically unrealistic models; due to the fact that all constraints { H1,H2 ) are 

processed independentJy without taking the relation between each equation at time 

instant k into account. 

In this section several techniques wil! be reviewed to describe or approximate this ideal 

parameter uncertainty set 0 thereby emphasizing the exchange between accuracy and 

complexity in computing time. To visualize the several outer boonding techniques : 

Exact (ideal) polytope bounding (0) 

Ellipsoidal bounding (0e) 

Orthotopic bounding (0
0

) 

• Ellipsoid-aligned orthotopic bounding (0eo) 

a convex region for a two-dimensional example together with all outer parameter 

bounding descriptions has been shown in. Fig. 3.3. 

3.2. 1 Exact Polytope Bounding 

Several algorithms exist to derive an exact description of the parameter uncertainty set 

0 based on work of [MRTT53]. Two basic algorithms, exact polytope updating [Mo89] 

and exact cone updating [PLW88], which update the feasible set recursively show large 

similarities. As wil! be shown later, the exact bounding technique becomes inapplicable 

for high dimensional problems. Therefore, only the basic procedure of exact polytope 

updating wil! be described here. A more detailed description of the algorithm can be 

found in Appendix D. 
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0 

Fig. 3.3 : Parameter set estimation ; !deal 8 (shaded area) ; Best possible 

set for given linear constraints, Orthotope 8
0 

(dotted), Ellipse 8e (dashed), 

Ellipsoid-aligned orthotope 8eo (solid). 

The parameter uncertainty set 8 (Fig. 3.3) can be represented by its vertices and its 

edges. When a new constraint is processed, the intersectien with the existing polytope is 

computed. The new vertices can be computed from the intersectien of the new 

eenstraint and the edges of the existing polytope. Old vertices outside the new polytope 

will be eliminaled and the edges must be updated. For the updating of the vertex set 

Mvs• the adjacent vertices and the neighbouring eenstraint hyperplanes of Mvs must be 

identified. In exact polytope updating, the vertex-vertex adjacency list and the vertex­

plane adjacency list are kept and updated as part of the polytope updating procedure 

whenever a new eenstraint is added to the set. An initia! polytope 8° must be specified 

before updating can start. If there is no a priori information about the parameter 

uncertainty set, 8° can be of any polytope shape as long as its boundary does not 

influence the resulting feasible parameter set. 

A great disadvantage of exact polytope updating however is its exploding computational 

complexity for increasing number of parameters which makes this approach inapplicable 

in practice for multivariable systems. This becomes obvious when an example is 

considered where an initia! polytope 8° is for example defined as a rectangular box 

consisting of 2°6 vertices (1024 vertices for n8 = 10) which increases when updating 

the polytope. This has been visualized in Fig. 3.4 where the number of vertices versus 

an increasing amount of constraints is shown for simulation examples ranging from two 

to five dimensional parameter sets. When a sufficiently large number of constraints has 

been processed, saturation in the number of parameters becomes visible, i.e. the number 
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of new vertices added to the vertex-list is approximately equal to the number of old 

vertices which have been eliminated. The dips in Fig. 3.4 indicate that more vertices 

have been eliminated than added when updating the vertex list. The final number of 

vertices, however, is highly problem dependent In this specific example, the logarithmic 

scale in Fig. 3.4 indicates approximately an exponential increase in the number of 

vertices as a function of n8. In this case the updating of the vertex-vertex and vertex­

plane adjacency lists becomes very slow (days of computing time) and the resulting 

matrices cannot be handled anymore for a large number of parameters. Therefore 

approximate parameter set descriptions are aften preferred. 
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Fig. 3.4 : Exploding complexity of exact polytope updating for output-error 

models with uniform distributed noise ; # Parameters : 2 (solid), 3 (dashed), 

4 (dash-dot) and 5 (dotted). 

3.2.2 Ellipsoidal Bounding 

This approach is based on a recursive construction of ellipsoidal sets [Sch68, FH82] 

enclosing the parameter uncertainty set e (Eq. 3.5). lt is numerically simple and . 

computationally fast. In its original form, two parallel hyperplanes {H1,H2 ) are required 

to update the ellipsoid. This implies that the term ~(j>(k,ft) in Eq. 3.14 should be zero, 

which is only valid for equation-error models. 

Let Ek-l be a bounding ellipsoid obtained from the first (k-1) entries of the data vector : 
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where ~~-I defines the centre of Ek-1 and [Pk-l r 1 a matrix specifying its orientation and 

size (Pk-l is symmetrical positive definite). Let Sk be the region which is defined by 

two parallel hyperplanes in the parameter space associated with the new measurement 

y(k) : 

el 

Fig. 3.5 : Ellipsoidal bounding. 

(3.34) 

Ek is now defined as the minimal volume ellipsoid containing the intersection of Ek-1 

and Sk (Fig . 3.5), i.e. Ek-1 n Sk c Ek. The volume is proportional to the determinant of 

pk _ This ellipsoidal approximation of 8 yields the smallest possible ellipsoidal parameter 

set Ge. Another family of ellipsoids is defined by the minimal trace . of pk [FH82, 

AFA91] . This approach minimizes the sum of the parameter uncertainties which results 

in an ellipsoidal parameter set ee with minimal axes. 

For models, however, where the parameter uncertainty set 8 is described by linearized 

constraints (e.g. output-error models), the parameter space in Eq. 3.14 defines a 

subspace limited by two non-parallel hyperplanes {H1,H2 }. In this case, parallel 

hyperplanes have to be constructed, before ellipsoidal bounding cao be applied. In 

[CG90] a two step algorithm is proposed by constructing hyperplanes tangent to Ek-1 

and parallel to the hyperplanes {H1,H2 } to approximate Ek from the parameterspace sk 

and the ellipsoid Ek-1. An ellipsoid of significant smaller volume cao be obtained 

however, by constructing parallel hyperplanes through the intersection points of Ek-1 

and {H1,H2 } as has been proposed in [Fal92] . A more detailed description of this 

approach is given in Appendix D.3 (compare Fig. D.2 and Fig. D.4). This new approach 

ensures that the parallel hyperplanes which have been constructed for the intersection of 

the parameterspace sk and the ellipsoid Ek-1, are as tight as possible. 

The approach of tangent hyperplanes (TH) makes the parameter uncertainty interval 
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unnecessarily large if no a priori knowledge of the parameter uncertainty set e is 

available, so the initia! ellipsoid P0 has to be chosen large. Using intersecting 

hyperplanes (IH), a significant reduction of the parameter uncertainty intervals can be 

achieved especially for short data sequences as shown in Fig. 3.6 for a simpte 

simulation example. 
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Fig. 3.6 : Parameter range f1 for intersecting (solid) and tangent (dashed) 

hyperplanes ; A 2°d order output error model, x(k) = 1.5 x(k-1)- 0.7 x(k-2) + 
u(k-1) + 0.5 u(k-2), y(k) = x(k) + Ç(k), has been simulated using a PRBN 

sequence of N = 1023 data samples as input signa!, u(k) E [ -1, 1], with uniform 

distributed noise IÇ(k)l :::; 0.1 . 

In order to obtain a final ellipsoid of minimal volume, all constraints have to be 

processed repeatedly. This is required because ellipsoidal bounding computes recursively 

a conservative approximation of the parameter uncertainty set e. Therefore, the .result 

becomes dependent of the initialization and the order in which the constraints are 

processed. Sequentia! processing of all constraints where the ellipsoid of the previous 

iteration step is used as new initia! condition, will decrease this dependence. 

When minimizing the volume V E of the ellipsoid, there holds : 

(3.35) 

lt has been shown in [FH82, VN91] that the parameter uncertainty set e converges to a 

single parameter vector~ if the number of data samples tends to infinity, provided that 

the noise sequence is at sufficiently many time instants close to the specified noise 

bounds. 
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The advantage of this method is the recursive and easy computable approximation ee of 

the parameter uncertainty set 8 tagether with the ability to detect a possible orientation 

in the parameter space. The disadvantage, on the other hand, is that the resulting 

parameter set ee can be rather conservative compared to the actual parameter 

uncertainty set e. 

3.2.3 Orthotopic Bounding 

An alternative description of the parameter uncertainty set e can be obtained by 

orthotopic (box) bounding based on linear programming. This characterization competes 

with ellipsoidal bounding in terms of the number of parameters required to approximate 

the set 8 and the computational complexity. For the ellipsoidal bounding ne parameters 

are needed for the centre of the ellipsoid, i.e . .fic, and \r2n8(n8+ 1) for the orientation and 

size of the ellipsoid, i.e. P. For the orthotopic bounding just a minimum and a 

maximum value are required for each parameter leading to a total of 2n8 parameters. 

The parameter set 8
0 

is consequently defined by : 

1... ne} (3.36) 

where 

(3.37) 

and 

(3.38) 

Thus, the computation of the orthotopic bounding (Eq. 3.38) requires the solution to 

2n8 linear programming problems each with 2(N-n) linear inequalities, i.e. the 

constraints Hi defined in Eq. 3.14, where N indicates the length of the data set and n 

denotes the number of samples required for initialization. Fig. 3.7 shows clearly that 

only a small set of constraints define the extreme parameter values, emin,i and emax,i 

respectively. In these vertices of the parameter uncertainty set e, the inequalities 

{H1,H2 } which define the boundary, become equalities. This set of equality constraints 

is called the active set of the parameter vector fr. Since equality constraints are easier 

to treat than inequalities which suffer from the fundamental difficulty that the active set 

is unknown, is a motivation to use active set methods [GMW91] to solve the linear 

programming problem. The presence of linear equality constraints actually reduces the 

dimensionality in which the optimization occurs. The idea of active set methods is to 

treat inequality constraints by developing a prediction (working set) of the constraints 

active in the solution. This can be achieved by optimizing the objective function along 
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the boundary of the parameter uncertainty set e. The working set may change at each 

iteration and constraints in the working set are (temporarily) treated as equality 

constraints during a given iteration. The solution to the problem can now be derived in 

two steps. First an initia! feasible solution together with the corresponding initia! 

working set has to be derived. The final solution can then be found by solving the 2n9 

Iinear programming problems (Eq. 3.38) for the constraints defined in Eq. 3.14 using 

the initia! solution. A more detailed description is given in Appendix D.4 or can be 

found in various textbooks on optirnization [GMW81, GMW91]. 
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Fig. 3.7 : Parameter space 8 ; Constraints of x(k) =- 0.7 x(k-1 ) + 1.5 u(k), 

y(k) = x(k) + Ç(k), which has been simu1ated using a PRBN sequence of N = 1023 

data samples as input signa!, u(k) E [-1,1] and uniformly distributed noise 

IÇ(k)l::; 0.1. The true parameter vector f4 = [0.7,1.S]T and the extreme values emin,i 

and emax.i of the orthotopic parameter set eo are indicated by x and 0 respectively. 

Although the extreme points (Eq. 3.38) in orthotopic bounding can be computed exactly 

(Fig. 3.7), it is obvious that whenever the orientation of the parameter uncertainty set e · 
is not aligned with the coordinate axis, the parameter set 8

0 
(Fig. 3.3) can become very 

conservati ve. 

3.2.4 Ellipsoid-aligned Orthotopic Bounding 

Consiclering the conservatism which can result when the parameter uncertainty set e is 
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approximated by ellipsoidal or orthotopic outer bounding descriptions, the objective of 

this method is to obtain an orthotope of minimal volume enclosing 8, where the 

orthotope may rotate in all directions to obtain this minimality. Explicit calculation with 

volume minimization as criterion [Kee92], however, wil! become an unsolvable problem 

because of exploding computational complexity for an increasing number of parameters. 

An implicit solution where the advantages of both the ellipsoidal and the orthotopic 

· bounding metbod are combined is proposed in [Mo89]. The ellipsoidal bounding 

algorithm is used as a preprocessing tool to obtain the orientation of the parameter 

uncertainty set 8. The new parameter bounds can then be computed by solving the 

following linear programrning problems : 

"t min, i = min U*~ ft. 
~Ee 

(3.39) 

Then I= uT_e defines a new orthonormal basis derived from [Pkr 1. This approach can 

reduce the parameter set significantly (compare 8
0 

and 8eo in Fig. 3.3). Note, however, 

that there is no guarantee that the resulting orthotope is the smallest one enclosing the 

exact parameter uncertainty set 8. This is due to the fact that the final ellipsoid 

enclosing 8 depends highly on the initia! ellipsoid P0 and the order in which the 

constraints (Eq. 3.14) are processed. 

Therefore this approach has to be modified where a further improvement is proposed in 

[FD93] which reduces the initialization and constraint dependency by repeated 

ellipsoidal bounding. Suppose sequentia! processing of the constraints results in 

ellipsoidal matrices P u and P v respectively, where the result of the previous iteration 

step has been used as new initia] conditions. Orthonormal ellipsoid-aligned bases, U and 

V can be found by singular value decomposition of the inverse of the corresponding 

ellipsoidal matrices Pu and Pv. The columns U*i and V*i of these orthonormal bases are 

ordered according to decreasing singular values. The angles Xi between these bases can 

therefore be derived from COS(Xi) = uri v*i• The stop criterion for iteratively processing 
the constraints then becomes : 

(3.40) 

where x= diag(UTV), i.e. the diagonal terms of uTy placed in a vector x, and 'tol' is a 

user defined toleranee margin which defines an upper bound for the maximum angular 

change between these bases. Proceeding in this way ensures that no change in basis 

occurs when processing the constraints again which defines therefore an optima! basis 

for orthotopic bounding. The resulting ellipsoid-aligned orthotope will then be of 

minimum volume. 
An alternative approach to obtain a basis for aligned orthotopic bounding is classica! 

identification. For the general minimal polynomial model structure which has been 
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described extensively in Appendix B, a nomina! model can be computed using 

prediction error minimization. The corresponding parameter covariance matrix for which 

an approximation has been derived in Appendix C, defines a quality measure of the 

parameter estimates. This positive definite covariance matrix describes, similar as pk in 

ellipsoidal bounding, the orientation and the stochastic parameter uncertainty (see 

Section 2.4) in the parameter space and can therefore be used to deterrnine a basis for 

orthotopic bounding. 

3.3 Data Outliers 

Parameter set estimation methods are based on the assumption that the process is 

consistent with the presumed error bounds and model structure. However, in practice 

this assumption wiJl often be violated due to data outliers. Such outliers may result from 

mistakes introduced during the acquisition and the preprocessing of the data, or 

alternatively, from overoptimistic upper bounds of the disturbances or unmodelled 

dynamics. Proper precautions are necessary to obtain a non-empty parameter set 8. This 

problem cannot be solved by just increasing the model order because this approach 

results in unnecessarily high model orders. Alternatively, increasing the error bounds 

until 8 becomes non-empty will result in identifiability problems. 

The outliers considered in this section consist of a relative smal] amplitude compared to 

the amplitude of the data ilself. Severe outhers which are clearly visible in the data can 

be eliminaled by proper data preprocessing (Appendix A). For each time instant k, 

Eq. 3.14 defines a feasible subset ek of the parameter space which is compatible with 

the data for the presumed error bounds and model structure. Suppose now that a 

parameter vector ft E Rne has been selected. Then, by definition a constraint is called 

violating with respect to ft if ft ~ ek, i.e. the model is not compatible with the 

constraint. 

Outlier Minimal Number Estimator (OMNE) provides a solution for this problem which 

has been proposed in [LWG87]. OMNE consistsof two steps assuming that 8 = 0 : 

• The first step is used to obtain a model which is violaled by a minimum 

number of constraints. Parameter veetors ft are selected by global 

optimization using random search. For each ft. the number of violating 

constraints is determined and that parameter vector is seiected which 

violates the least number of constraints. 

• The second step aims at exploring the boundary of the conesponding 

parameter set when skipping the violating constraints. 

A disadvantage of this method is that there is no guarantee to find the optima] solution 



72 Bounded Error ldentification 

due to the global optimization procedure of the first step. The basic idea in this 

approach is that the model, i.e. ft. is violated by some constraints. 

An alternative methad wil! be proposed based on the idea that some constraints wrongly 

vialate the model, e.g. due to outliers in the data. Assume now that an initia! model is 

available, for example obtained by prediction error identification, which defines an 

element ftref of the parameter uncertainty set 8. It is then possible to apply data 

correction for detected violating constraints instead of just skipping these constraints. 

Basically, this method consists of three steps : 

• 
• 

Select a parameter vector ~ef· 

Construct the constraints {H1,H2 } of Eq. 3.14 for all k . 

A eenstraint is violating, if this eenstraint makes ~ef invalid. All 

vialating constraints which have been detected wil! be modified by data 

correction. 

First an extended parameter and eenstraint set is defined by : 

Vk (3.41) 

where <)l(k.~ef) and M(k.~ef) are defined according to Eq. 3.14 for ft= ~ef· The 

distance between the left hand side of Eq. 3.41 and 0 is a measure for the allowed 

parameter variations. In this context, a constraint violates the reference model ftref if the 

inequalities of Eq. 3.41 become larger than zero. Depending on the selected model 

structure, e.g. the general prediction error models or special cases like the output-error 

model, the error-in-variables model etc., it can be concluded from Eq. 3.14 that several 

measured (input and/or output) data samples can be modified to correct a vialating 

constraint, i.e. to enforce the validation of Eq. 3.41 with modified data. Denote such a 

measured data sample by x, i.e. some u(k) or y(k) being an entry of a vialating 

eenstraint in Eq. 3.41, then this vialating constraint can be rewritten as : 

x E { u(k) , y(k) } (3.42) 

where both aj and ~~ contain the remaining data samples and the parameters ~ef· In 

fact, the function of known and unknown variables has been interchanged for this data 

correction compared to the identification procedure, i.e. all parameters which have to be 

identified are now assumed to be known (~ef) and a single data sample wil! become a 
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free variabie where the measured value is considered as a data outlier. Then x can be 

each data sample involved in a vialating constraint. Each particular x, however, appears 

in more constraints and consequently the index i ranges over all constraints in which x 

appears. The corrected sample xcor minimizes the maximum value of the constraint 

expression (ajx-~j). So, compute by linear programming : 

(3.43) 

where xcor is the argument x of the minimization of Eq. 3.43. If this minimum is less 

than zero, the obtained corrected value xcor is a candidate for correction. Next all 

possible choices for x may be processed in this way (i.e. all possible corrupted data 

samples involved in the vialating constraint). Finally, that particular corrected xcor 

which leaves the parameter space least affected should be selected. Each possible 

corrected xcor• however, appears in a different set of constraints. Therefore, the union of 

all sets is taken and consequently that corrected xcor• which leads to the least maximum 

of Eq. 3.41 in this full set, is selected. 

Example 

A simple example will be considered to illustrate this data correction procedure in more 

detail. Suppose a first order output-error model with bounded noise has been selected : 

y(k) 
b -1 

I z 
---..,.. u(k) + Ç(k) 
1 +f1 z - 1 

e(k,!!) = y(k)- y(k I!!) :::; Ö e 

Constructing the extended constraint set according to Eq. 3.41 gives : 

time regression veetors index 

j y(k-1)-Öe -u(k-2) y(k-2)- sgn(f1)öe l 
k- 1 

- y(k- 1) - Öe u(k-2) - y(k-2)- sgn(f1)öe 2 

j y(k)- 8e - u(k - 1) y(k-1)- sgn(f1)8e 3 
k 

-y(k)- Öe u(k -1) -y(k -1)- sgn(f1)8e 4 

j y(k+ l) - 8e -u(k) y(k)- sgn(f1)8e 5 
k + 1 

- y(k+l) - Öe u(k) - y(k) - sgn(f1) 8 e 6 

indicates clear1y that whenever the data is corrupted with outliers, several 

(3.44) 

(3.45) 

constraints 
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will be affected modifying thereby the parameter uncertainty set 8. Suppose now that a 

reference estimate ftref is available (e.g. obtained by classica! identification techniques) 

and that the third constraint violates this ftref· Then either y(k) or y(k-1) violates the 

bounded error assumption. Therefore consicter the following : 

y(k) 

JJ violates 

o.~(k) y(k)- p~(k) > 0 

y(k -1) 

JJ violales 

o.~(k-1) y(k-1)- p~(k-l) > 0 

JJ optimize JJ optimize 

min max ( o.y(k) y(k) - pY(k) ) 
y(k) j J J J = 3 ... 6 

min max ( o.y(k-l) y(k-1)-py<k-l) ). 
y(k- 1) j J J J = I .. 4 

JJ correction 

Y cor(k) 

JJ correction 

Ycor(k-1) 

where for example o.](k) and P](k) for j = 3 ... 6 are defined by : 

y(k) 
0.3 enew,l 

p~(k) 
= [ Öe u(k -1) -y(k-)+sgn(fl)Öe] ~new 

y(k) 
0.4 enew,l 

p~(k) 
= [ -Öe u(k-1) -y(k-)- sgn(fl) Öe ] ~new 

y(k) 
0.5 = enew,3 p~(k) = ( -y(k +I)+ Öe u(k) sgn(fl) Öe ] ~new 

y(k) 
= enew,3 pY<kJ = r -y(k+ I)- o u(k) -sgn(fl) Öe ] ~new 0.6 6 L e 

After correction of the possible data outliers, y(k) and y(k -I), resulting in y co/k) and 

Ycor(k-1) respectively, the "optima!" correction can be selected by computing the 

maximum of Eq. 3.41 over all constraints which have been considered during the data 

correction, i.e. j = I ... 6, for each of the corrected data samples. The minimum of these 

maximum values defines then the optima! data correction which leaves the parameter 

uncertainty set 8 most unaffected. 

An advantage of this procedure is that vialating constraints are eliminated by real data 

correction. A disadvantage however is that it highly depends on ~ef· Nevertheless, 

straightforward analysis using simulation examples shows that for decreasing error 

bounds and correct ~ef• i.e. the true parameter vector ~ in the simulation examples, 

single data outliers converge to the true data sample. Once all outliers have been 

corrected, standard set estimation methods can again be used to delermine the parameter 

uncertainty set 8. 

Theoretically it is possible that correction of only one data outlier does not yield a 

solution. i.e. correction of a vialating eenstraint with respect to ~ef for a specified error 
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bound. In this case more outhers close in time have to be considered. The proposed 

metbod of data correction, however, becomes then unsuitable because of an exploding 

amount of possible data combinations which qualify for correction when the number of 

outliers increases. 

Nevertheless, all constraints containing data samples of the violating constraint have to 

be considered whenever a violating constraint is detected with respect to .firef for a 

specified error bound, either in the data correction or when simply skipping constraints. 

This is necessary, since a data outlier appearing in a non-violaring constraint may 

modify the parameter uncertainty set 8 significantly resulting in an incorrect estimate of 

the central parameter values and the corresponding error bounds. 

3.4 Comparison of Stochastic and Deterministic Uncertainty 

Data outhers in bounded error identification can influence the estimate significantly in 

contractietion to classica! identification where a single outlier wiJl hardly change the 

estimate due to the averaging effect of the predierion error minimization. When using 

practical data in bounded error identification, the effect of violating error bounds can 

never be excluded completely since the error bound should be as tight as possible to 

obtain the smallest possible parameter uncertainty set. From a theoretica! point of view 

a guaranteed upper bound is required while from a practical point of view the error 

bound should not be determined by outliers . Even when proper precautions are taken, 

notall outliers may be detected . Consequently, the final estimate may be influenced. 

Fig. 3.8 : Simulation examples ; a) Equation-error model, b) Output-error model. 

To ensure that the set estimation approach with an upper bound characterization of the 

error describes the process accurately resulting in parameter sets that are not too 

conservative, the error should preferably have an approximately uniform distribution so 

that errors at the edge of the distribution have a fair chance to occur, as these give most 

information. In classical prediction error identification, however, the noise is often 
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assumed to be normal distributed. For comparison of stochastic and deterministic 

parameter uncertainty, simp Ie simulation examples will be used to illustrate the main 

consequences under various conditions. These conditions range from an equation-error 

model with uniformly distributed noise (optima! conditions for bounded error 

identification) to an output-error model with normally distributed noise for increasing 

number of data samples (optima! conditions for prediction error identification). The two 

different types of models, equation-error and output-error model respectively with 

nomina! parmeter values : a1 = f1 = -0.7, b1 = 1.5, are depicted in Fig. 3.8. 
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Fig. 3.9 : Uniformly and normally distributed white noise sequences for 

N = 1000 data samples tagether with their distribution. The dashed lines 

indicate the corresponding noise bounds, öe, 2cr and 3cr, which have been 

selected for bounded error identification. 
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A uniformly distributed white noise sequence has been used as input signa!, 

u(k) E [-1,1]. In all simu1ation examples, uniform1y as well as normally distributed 

white noise /;(k) has been applied. The signal-to-noise ratio in y(k) is approximately 20 

dB. To achieve the asymptotic properties of the prediction error identification approach, 

it is required that the number of data samples N tencts to infinity. However, in practice 

this cannot be realized. Therefore, to observe the differences in parametrie uncertainty 

for a realistic length of the data set and an almost infinite number of data samples, the 

simulation examples have been performed for N = 1000 and N = 10000 data samples. 

The uniformly and normally distributed white noise sequences for N = 1000 data 

samples logether with their distribution have been depicted in Fig. 3.9. 

The parametrie uncertainties have been computed for various simulation conditions : 

• Prediction error and bounded error identification. 

• Equation-error and output-error model structure. 

• Uniformly and normally distributed noise. 

1000 and 10000 data samples. 

Note that from a theoretica! point of view not all combinations of these simulation 

conditions will provide correct parametrie uncertainty bounds. In particular, prediction 

error estimation has been defined in a setting where the noise distribution must be 

continuously differentiable, which is not the case for uniformly distributed noise. 

Therefore, the corresponding stochastic parametrie uncertainties should be treated with 

care. On the other hand, when applying bounded error identification to systems with 

normally distributed noise, the !=-norm bound of the noise becomes infinity large when 

the number of data samples tencts to infinity. To obtain parameter uncertainties that are 

not too conservative, the upper bound oe of the noise should be approximated in this 

case by either a 2cr or 3cr bound. The corresponding parameter bounds, however, must 

be treated with care, because the final parameter uncertainty set might be smaller than 

the true set due to undetected data outliers. Nevertheless, comparing the results of these 

extreme simulation examples will help to evaluate the reliability of the parameter 

bounds obtained by different identification methods under various conditions. This 

exercise is motivated by the fact that when applying these methods in practice, where in 

general the theoretica! assumptions cannot always be satisfied, it should be known how 

violating theoretica! assumptions affect the computed parameter uncertainty set 8. 

The parametrie uncertainty obtained by prediction error and bounded error identification 

for uniform as well as normal distributed noise with 1000 and 10000 data samples have 

been depicted in Fig. 3.10, 3.11 3.12 and 3.13 respectively. Classica! prediction error 

identification has been applied to all simulation examples. For these estimates (indicated 

by 'o'), confidence ellipsaids (solid lines) have been computed using the modified 

Cramér-Rao bound (see App. C) which correspond to lcr, 2cr and 3cr uncertainty 
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interva1s, or, in other words, 68%, 95% and 99.7% confidence respective1y. In the 

simu1ation examp1es with uniformly distributed noise, the deterrninistic parameter 

uncertainty has been derived according to several approaches discussed in Section 3.2, 

i.e. exact (dashed polytope 8), ellipsoid (dashed ellipsoid ee with central estimate '*') 

and ellipsoid-aligned orthotopic (dashed box eeo with central estimate '+') parameter 

bounding. The upper bound Öe of the normal distributed noise, required for bounded 

error identification, has been approximated by 2cr and 3cr bounds, as depicted in 

Fig. 3.9. The parameter estimates obtained by predietien error identification have been 

used to detect and eliminale vialating constraints in the bounded error context. The 

various outer bound descriptions are indicated by dashed and dash-dotted figures for the 

Öe = 2cr and the Öe = 3cr bounds respectively. 

Equation-error models with uniformly distributed noise fit perfectly in the bounded error 

context. Fig. 3.!0 shows the accuracy of the corresponding set estimates which clearly 

outperfarm the prediction error results. For an increasing number of data samples the 

deterrninistic uncertainty sets decrease rapidly in contrast with the stochastic uncertainty 

ellipsaids which decrease approximately with {N . 
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Fig. 3.10 : Equation-error model with uniform1y distributed noise for 

N = 1000 and N = 10000 data samples. Solid ellipsaids with centre 'o' 

indicate stochastic parametrie uncertainty with 68%, 95% and 99.7% 

confidence. The dashed polytope (8), dashed ellipsoid (Ge with central 

estimate '*') and dashed ellipsoid-aligned orthotopic (8eo with central 

estimate '+') indicate the deterrninistic outer bound descriptions . 

For output-error models the parametrie uncertainty set 8 can only be approximated 
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thereby introducing conservatism (compare the deterministic uncertainty sets of 

Fig. 3.10 and Fig. 3.11). The conservatism introduced by this approximation is quite 

significant. In this case the prediction error approach with confidence ellipsaids seems 

to be more accurate. 
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fl fl 

Fig. 3.11 : Output-error model with uniformly distributed noise for 

N = 1000 and N = 10000 data samples. Solid ellipsaids with centre 1

0' 

indicate stochastic parametrie uncertainty with 68%, 95% and 99.7% 

confidence. The dashed polytope (8), dashed ellipsoid (8e with central 

estimate '*') and dashed ellipsoid-aligned orthotopic (8eo with central 

estimate '+') indicate the deterministic outer bound descriptions. 

In identification problems with normally distributed noise, the selection of the noise 

bound is a difficult problem. To avoid unnecessary large parameter sets, this noise 

bound has to be approximated as accurate as possible, e.g. by selecting 8e = 2a or 

8e = 30" noise bounds. This approximation, however, wil! also result in vialating 

constraints which have to be eliminaled to avoid an empty parameter set. Because the 

prediction error estimates have been used to eliminale these vialating constraints, it 

cannot be guaranteed that the true parameter vector ft1 wil! be an element of the 

parameter uncertainty set 8. This is clearly visible in the equation-error example with 

normally distributed noise which is shown in Fig. 3.12. Notall data outliers, Ç(k) > 2a, 

with respect to the 8e = 20" bound have been detected in the form of vialating 

constraints, which decreases the parameter uncertainty set 8 more than actually is 

allowed because the true parameter vector ~ is not included anymore. Because 8e = 3CJ 
is quite conservative as upper bound approximation of the noise, the stochastic 
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confidence ellipsaids and the parameter sets obtained by öe = 2cr have been depicted in 

a separate picture. For normally distributed noise in the equation-error approach, the 

parameter uncertainty sets obtained by the öe = 3cr noise bound are much larger than 

the confidence ellipsaids obtained by predietien error estimation, where on the other 

hand the parameter sets obtained by a öe = 2cr noise bound are significantly smaller. 
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Fig. 3.12 Equation-error model with norrnally distributed noise for 

N = 1000 and N = 10000 data samples. Solid ellipsoids with centre 'o' 

indicate stochastic parametrie uncertainty with 68%, 95% and 99.7% 

confidence. The dashed polytope (0), dasbed ellipsoid (0e with central 

estimate '*') and dashed ellipsoid-aligned orthotopic (0
00 

with central 

estimate '+') indicate the deterministic outer bound descriptions for öe = 2cr. 

Similar, the dash-dotted polytope, ellipsoid and ellipsoid-aligned orthotope 

describe the deterministic parameter bounds for öe = 3a. 
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Fig. 3.13 : Output-error model with normally distributed noise for N = 1000 

and N = 10000 data samples. Solid ellipsoids with centre 'o' indicate 

stochastic parametrie uncertainty with 68%, 95% and 99.7% confidence. The 

dashed polytope (8), dashed ellipsoid (Ge with central estimate '*') and 

dashed ellipsoid-aligned orthotopic (8eo with central estimate '+') indicate the 

deterministic outer bound descriptions for oe = 2cr. Similar, the dash-dotted 

polytope, ellipsoid and ellipsoid-aligned orthotope describe the deterministic 

parameter bounds for oe = 3cr. 
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Output-error models with normally distributed noise fit perfectly in the prediction error 

context. Fig 3.13 shows clearly the accuracy of the estimates, especially for N = 10000 

data samples for which the conditions to realize the asymptotic properties of prediction 

error identification are almost satisfied. However, when applying bounded error 
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identification, conservatism is introduced twice, resulting in very conservative parameter 

sets. First of all , the noise bound has to be approximated, similar to the equation-error 

example. Secondly, the linearization of the output-error model in order to obtain linear 

constraints descrihing the parameter uncertainty set e in the parameter space, introduces 

additional conservatism (see Fig. 3.13 for 8e = 3cr, dash-dotted polytope). 

These examples point out the problems which can occur when applying bounded error 

identification to different types of models under various noise conditions. In practice the 

error wil! neither have a typical normal nor uniform distribution . This shows clearly that 

a balance has to be found between the chosen upper bound, the number of violating 

constraints and the conservatism of the resulting parameter set. Further, these examples 

show clearly that the ellipsoid-aligned orthotope is the most accurate approximation of 

the parameter uncertainty set e compared to the ellipsoidal outer bound description . In 

all simuiatien examples the set ee is much larger than the set eeo· The number of 

violating constraints which can be expected should roughly correspond with the error 

bound which has been defined, i.e. 5% and 0.3% violating constraints for a 2cr and 3cr 

bound respectively. In practice, however, Iess violating constraints are often detected 

due to the conservative description of the parameter uncertainty set e by linearized 

constraints . A significant difference between the expected and the detected number of 

violating constraints indicates that the estimated parameter uncertainty bounds might be 

smaller than actually allowed. 

The stochastic confidence intervals are based on the asymptotic properties of prediction 

error identification when the number of data samples N tencts to infinity. This cannot be 

realized in practice. The problem raises the question for which amount of data samples 

these asymptotic properties can approximately be obtained. The simuiatien examples 

indicate that a 2cr confidence ellipsoid is required to contain the true parameter vector 

ft1 for N = 1000 samples, where for N = 10000 data samples a lcr confidence ellipsoid 

is sufficient. In these examples, the stochastic parameter bounds obtained by predietien 

error estimation seem to provide accurate uncertainty sets . Therefore, these results may 

be used as an indication of the conservatism often introduced in bounded error 

identification. Whenever the parameter uncertainty bounds obtained by both 

identification methods, stochastic as wel! as deterministic, contain approximately the 

same set of feasible models, the identification results can be considered as reliable. For 

major differences, however, the violating theoretica! assumptions and their consequences 

for the parameter uncertainty set e should be analyzed in more detail. 

It has been illustrated in this chapter that ellipsoid-aligned orthotopic beunding provides 

the least conservative approximation of the parameter uncertainty set 8. Further, the 

predietien error method can be used as initialization for this bounded error approach. 

The nomina! model then defines a reference model to deleet violating constraints and 

the stochastic parameter bounds can be used as comparison for the deterministic bounds. 
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Structured Uncertainty 

No mathematica! model can exactly describe a physical process. Some uncertainty is 

always present, both in the environment of the process, e.g. it is not known in advance 

which disturbances and noise signals will affect the process, and in the behaviour of the 

process, e.g. the models of the process obtained either by physical modeHing or by 

using identification methods are not perfect. In this chapter a brief overview of general 

uncertainty descriptions will be given. The attention, however, is especially focus~d on 

the inclusion of parametrie uncertainties in robust control design which can be obtained 

by using the identification methods described in the Chapters 2 and 3 resulting in 

stochastic and deterministic parametrie uncertainty respectively. 

Methods for designing robust controllers which take explicitly the discrepancies between 

the model and the real process into account, range from root locus techniques, controller 

design with a high stability margin to feedback design in the presence of unknown but 

bounded uncertainties. An overview can be found for example in [Lun88]. Recent 

developments in modern feedback control design like H~ and structured singular value 

(~) robust control, provide the possibility to include bounded uncertainty in the control 

83 



84 Robust Control Models 

design process to achieve guaranteed robustness with respect to stability and 

performance of the closect-loop system. Because a diverse range of uncertainties can be 

handled quantitatively in H~ and fl control design, the attention in this chapter wil! 

deliberately be restricted to these methods. 

In this context, a control system is robust with respect to stability if it remains stabie in 

the presence of model uncertainty. Likewise, it is said to be robust with respect to 

performance if its behaviour is satisfactory under the influence of uncertain disturbances 

and model uncertainty. The basic ideas of robust control design and the relation to 

identification wil! be explained by consictering the control structure depicted in Fig. 4.1. 

d 

r + y 

m 

Fig. 4.1 : Control system. 

For this system , the fundamental input-output relation is given by : 

y = sct + [I-s]r- [I-s]m (4.1) 

where S = [I + GK r 1 is the sensitivity function, or alternatively : 

y = [I-T]ct + Tr- Tm (4.2) 

where T = SGK is the complimentary sensitivity function. In genera!, the objective in a 

control system is to make some output, say y, behave in a desired way by manipulating 

some control input, say u. A simple objective might be to keep y smal!, i.e. a regulator 

problem, or to keep y-r small for a reference or command signa! r, i.e. a tracking 

problem. In addition, there might be the constraint of keeping u itself smal! as well, 

because it might be constrained, e.g. the flow rate through a valve has a maximum 

value, or it might be too expensive to use a large input. So, the performance of a 

closect-loop system can be specified in different ways. In the case of exact modelling, 

the nomina! performance corresponds to the performance of the closect-loop system 

under the assumption that the controller K stahilizes the system. 
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These nomina! models can be obtained for example by the traditional approach to 

system identification with a stochastic problem formulation . This has led to fairly wel! 

developed theory of system identification and identification algorithms. The issue of 

obtaining bounds on the corresponding model error has not been a point of research. In 

modern robust control, however, the starting point for control system analysis and 

design is a nomina! model and (norm) bounds on the model uncertainty . The intensive 

work that is presently going on in the general area of identification in conneetion with 

robust control fincts its origin in the understanding that there is a wide gap between the 

assumptions on which robust control design is built and the tools and results that 

classica! identification theory is able to deliver. Robust control theory requires a priori 

hard bounds on the model error, whereas classica! identification theory delivers at best 

soft bounds. 

Despite the debate which identification method can be used best in practice, the main 

attention should be focused on the combination of identification and robust control 

design to achieve the requirements in an industrial environment. Control engineers in 

industry have to deal with constrained optimization problems to obtain the "best" 

possible performance with guaranteed stability under hard physical constraints such as 

actuator or sensor saturation, limitations on feedback due to plant uncertainty, time 

delays, etc . To emphasize the difficulties which can arise from all these conflicting 

constraints and objectives, some closed-loop requirements wil! be summarized for the 

control system depicted in Fig. 4. I which illustrates these difficulties even for a simple 

example. 

• Disturbance rejection (d ~ y) : keep the sensitivity function S as smal! as 

possible, i.e. omax[(I+GKr 1J smal!. 

Measurement noise rejection (m ~ y) : keep the complimentary sensitivity 

function Tas smal! as possible, i.e. omax[HI+GKr 1J smal!. This conflicts 

with the disturbance rejection. 

Tracking of a reference signa! r : keep omin[HI+GKr 1] "' I. and 

omax[I-(I+GKr 1J "' I. This coincides with the disturbance rejection but 

conflicts with the measurement noise rejection. 

• Minimization of the control energy u : keep omax(K) as small as possible. 

This wil! conflict with the disturbance rejection and the reference 

tracking. 

The goal in robust control design is now to realize a robustly performing closed-loop 

system taking model uncertainty into account and defining the trade-offs in control 

constraints and objectives by weighting filters in the frequency domain. In this way, the 

importance of eertaio constraints and/or objectives in specific frequency ranges cao be 

enhanced or suppressed (see for example [DFB94, FDB92]). A more detailed overview 
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of the conditions and requirements for robust control design of uncertain systems can be 

found in several textbooks [Mac89, MZ89, DFf92] and tutorial papers [DGKF89, 

PD93]. A general framewerk to represent uncertain systems for robust control has been 

depicted in Fig. 1.2. The augmenled model Ma represents the model of the process to be 

controlled and Ll is an uncertainty block belonging to some class Ll of norm bounded 

transfer functions. Further, Ma contains the structure and the weighting functions that 

reflect how the uncertainty affects the system. With Ma partitioned in the obvious way, 

there holds that : 

(4.3) 

where Ll E t:. denotes the class of uncertain transfer functions of interest. The 

uncertainty block Ll has been included in an upper loop, resulting in an upper linear 

fractional transformation (LFf) form. This representation is depicted in Fig. 4.2 where 

the augmented model Ma has been partitioned according to the defined inputs and 

outputs. This LFf representation of uncertain systems for robust control design indicates 

that identification should provide models in the form of .TuCMa,L'l) as defined in Eq. 4.3. 

Fig. 4.2 : Upper LFf. 

The advantage of using linear fractional transformation representations of the model 

structure is that series, parallel and feedback connections result in new LFf's with a 

block-diagonal uncertainty structure [LTBS92]. The complete model set is defined by 

.TuCMa,L'l) with Ll E t:. and the nomina) model is defined by .TuCMa,O). 

The general representation of structured and unstructured uncertainties which can be 

included in the theory of 11-control [Doy82] will be discussed briefly in Sectien 4.1. 

When consictering unmodelled dynamics, the perturbation Ll is unstructured and can be 

handled by H~-control design [DGKF89). In Sectien 4.2 several approaches to model 

unstructured uncertainty wiJl be described shortly. The main attention however, wiJl be 

focused on the description of real parametrie uncertainty. This type of uncertainty is 

obtained from polynomial identification methods, either as stochastic or as deterrninistic 

parameter uncertainty (see Chapter 2 and Chapter 3). In Sectien 4.3, a general LFf 
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description for parametrie uncertainty modeHing will be briefly reviewed. The extraction 

of this parametrie model uncertainty into the LFr representation of Fig. 4.2 is based on 

a state-space representation of the model. Therefore, a state-space realization of the 

polynomial models will be derived. If the state-space realization of the process part 

contains no direct-feedthrough term, general expressions can be provided to obtain LFr 

representations for both the process and the noise model which have been estimated in 

minimal polynomial form. These expressions can only be derived if the parameters enter 

the state-space representation in a linear way. If nonlinear combinations of the 

parameters appear in the state-space representation, the LFr realization becomes highly 

problem dependent and no general expressions can be derived. 

4. 1 General 8/ock-diagona/ Uncertainty 

Since in practice uncertainty includes parameter vanat10ns in the model representation 

as well as unmodelled dynamics, in general both real and complex uncertainties have to 

be taken into account. This will be formalized as follows : 

A scalar real-valued bounded perturbation órn consists of real numbers ör which 

are bounded in magnitude by some real number Er E R+ : 

(4.4) 

The normalized set is : 

Bórn ={ Ör lör E [-1 ,+1]} (4.5) 

A scalar complex-valued bounded perturbation ócn consists of complex numbers 

Öc which are bounded in magnitude by some real number Er E R+ : 

(4.6) 

The normalized set is : 

(4.7) 

A complex-valued norm bounded perturbation matrix ócm consists of frequency 

dependent complex matrices óc which have a point wise norm-bound Ec(Cû) E R+, 

i.e. for which crm
3
/óc) ::; Ec(Cû). Precisely, 
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(4.8) 

where crmax denotes the maximum singular value. The normalized set with a 

uniform upper bound function is : 

(4.9) 

The complete uncertainty matrix t"l. consists of real and complex-valued entries, as 

defined in the following general block structure. Given three non-negative integers mr, 

me and mf, define a vector K of length mK := mr+mc+mf as : 

(4.10) 

where each entry is a non-negative integer. The associated block-diagonal uncertainty 

t"l.b is then defined by the set : 

(4.11) 

for i = l ... Kmr , j = Kmr+l ... Kmr+mc and k = Kmr+mc+l ... ~r+mc+mf , where oj E t"l.rn 

(real parametrie uncertainty), i = l ... mr, OT E /',.en (complex parametrie uncertainty), 

i= mr+l ... mr+mc and t"l.i E t"l.cm (unmodelled dynamics), i= mr+mc+l ... mK. The 

normalized block-diagonal uncertainty set is denoted as Bt"l.b with of E Bt"l.rn, or E Bt"l.cn 

and t"l.i E Bt"l.cm· The structural parameters mr, me, mf and K define the uncertainty 

structure information (real/complex, repeatedness). 

Note that for analysis and synthesis purposes, the structured singular value (!l) approach 

cannot handle yet all types of uncertainties as described in the general block-diagonal 

uncertainty t"l.. For complex uncertainties (mr = 0), algorithms exist which can compute 

an upper bound for 11· For simple, low dimensional uncertainty problems (no scalar 

bleeks, me = 0, and only full matrix bleeks, mf :::; 3) the upper bound can be computed 

exactly in contrast to more complex analysis and synthesis problems containing 

unstructured complex matrix uncertainty combined with structured complex and real 

parametrie uncertainty, where only approximations of the upper bound can be computed. 

Especially the computation of 11 with real perturbations is a major problem. It has been 

shown [BKST89] that these so called real 11 problems can be discontinuous in the 

problem data which increases the computational difficulties significantly. lt has been 

shown that the computation of 11 with real perturbations suffers from exploding 

computational complexity which has not been solved yet. This probably requires a more 

practical approach for all problems which arise in engineering applications. A more 

detailed overview with respect to the computation of 11 can be found in [PD93]. 
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4.2 Unstructured Uncertainty 

Classical-feedback design deals with the problem of process uncertainty by prescrihing 

stability margins, by means of specified gain or phase margin. These margins are based 

on a rather crude model of the uncertainty present in the process. In addition, to 

maintain stability, only the phase margin at the cross-over frequency is considered. 

Using unstructured uncertainty in robust control design a much broader frequency range, 

not only the cross-over frequency but the whole frequency range which is of interest for 

control design, can be included in the uncertainty model. Such a description of 

uncertainty is unstructured in the sense that the magnitude of possible perturbations is 

bounded, but the sourees of the perturbations to specific elements of the process are not 

specified. 

The model error ~ can be considered as the unknown transfer function which indicates 

the difference between the true process M1 and the model M. The model error can be 

included in a LFf using various structures. The most common model error structures 

are presenled briefly in Table 4.1. A more detailed description is given in [vdB93a] 

where more references can be found. 

Of course many other configurations are possible, but the model error structures which 

have been reviewed briefly are the most common model error descriptions for 

unstructured uncertainties used in the literature and extensions to other configurations 

are straightforward. 

4.3 Structured Uncertainties 

The use of unstructured uncertainty descriptions generally leads to compensator designs 

which are unnecessarily conservative, because they have to perform satisfactorily even 

for perturbations which will never occur in practice. Therefore, whenever knowledge is 

available about the structure of the uncertainty, this information should be used in the 

robust control design to reduce the conservatism instead of Jumping uncertainty 

together. Of course, it is not always possible to assign uncertainty to its source, i.e. 

measurement noise, unmodelled dynamics etc., but including uncertainty structure will 

generally decrease the conservatism. 

For the polynomial models identified in Chapter 2 (stochastic parameter uncertainty) 

and Chapter 3 (deterministic parameter uncertainty), the uncertainty is structured in the 

sense that the coefficients of the polynomial models are not known exactly but can vary 

within a certain interval. These coefficients will be denoted by ei assuming that the real 

value ei can vary between emin,i and emax,i : 
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Table 4.1 : Overview of model error structures. 

Model error structure 

Additive model error Lla : 

M1 =M+Lla , LlaE Llcm 

Ma,tt = 0, Ma,t2 =I, 

Ma,2l = I, Ma,22 = M. 

Multiplicative input model error Llmi : 

Mt = M ( I + Llmi ) Llmi E Llcm 

Ma,ll = 0, Ma,t2 =I, 

Ma,2l = M, Ma,22 = M. 

Multiplicative output model error Llmo : 

Mt = ( I + ~o ) M Llmo E Llcm 

Ma,ll = 0, Ma,l2 = M, 

Ma,2l =I, Ma,22 = M. 

Inverse muit. output model error Ll;mo : 

Mt = ( I- Llimo rt M Ll;mo E Llcm 

Ma,ll =I, Ma,l2 = M, 

Ma,2l = I, Ma,22 = M. 

Left coprime factor model error Lllcf : 

M1 = c P + Llp r 1 c Q + LlQ ) • 

Lllcf = [ LlQ -Llp ] E Llcm 
where Llp = P(P and LlQ = Q(Q define 

the coprime factors for the model : M = 

p-lQ and the true process : M1 = P;1Qt' 

Ma,! I= [ 0 p-l ]T, Ma,l2 = [I M ]T, 

Ma,2l = p-l • Ma,22 = M. 

Block diagram 
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( 4.12) 

for which the following values are defined : 

( 4.13) 

resulting in : 

(4.14) 

This polynomial model representation with parametrie uncertainty sets will be 

transformed into a LFf representation where the parametrie uncertainty is described in a 

block-diagonal form. 

4.3. 1 General LFT Description tor Parametrie Uncertainty 

For the general LFf description with parametrie uncertainty, the following state-space 

representation is considered : 

[~(k+1)1 [~(k)l 
y(k) = MssC~D g(k) 

( 4.15) 

which can be rewritten as : 

( 4.16) 

when including the parameter uncertainty sets, where Me(~) contains the nomina! 

centre values of the parameters and MsC.se) the parametrie uncertainty. 

To obtain a linear fractional transformation by extracting .1, a new input vector JJ.2(k) 

and a new output vector y2(k) will be defined which depend on the structure of .1 

(Eq. 4.11) and how the individual en tri es affect the nomina! model. The output y2(k) is 

then fed back to the input JJ.2(k) through a diagonal uncertainty block .1 which contains 

the real parametrie uncertainty (Ö~ ... S~1) . Furthermore, conneetion matrices B2C.se). 

C2C.se), D 12Cse), D21 C.S.O) and D22C.se) must be defined which contain information on 

how the nomina! model Me~) is affected by the uncertainty ~r. 
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!_(k+1) Ac(!!c) B c(!!c) 82C~e) !_(k) 

y(k) Cc(!!c) Dc(!!c) D12C~e) .!:!.(k) 

Yik) C2C~e) D21C~e) D22(~e) .!:!.2(k) (4.17) 

.!!ik) ~ Yi k) 

where 

~ = diag { o~I,,o;I2 , ... ,o~1 Im} (4.18) 

and nt defines the number of parameters in G(z-1 • .6.) or H(z-1,.6.). This setup to realize a 

LFf has been visua1ized in Fig. 4 .3. 

-- ---------------- ------ ---------------------• 

Fig. 4.3 : LFf for parametrie uncertainty modelling. 

Rewriting Eq. 4.17 as : 
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[
_!(k+1)1 

y(k) 

and closing the loop around 11 yields for Eq. 4.19 : 

93 

(4.19) 

which must be equivalent to Eq. 4.16. Therefore, finding a linear fractional 

transformation description requires finding a salution to : 

(4.21) 

It has been shown in [L TBS92] that a salution to the problem of transfonning a state­

space model with parametrie uncertainty into a LFT exists, if the state-space matrices 

can be given as real rational transfer functions in the parameters. A realization 

algorithm based on the properties of the interconnection of LFT's, i.e. series, parallel 

and feedback connections of LFT's result in a new LFT, is proposed to solve Eq. 4.21. 

A LFT is constructed for all individual terms in the uncertain state-space matrices 

{ A0~), B0~), C0(~), D0~) } , which are then combined by series, parallel or 

feedback connections resulting in a complete description of all uncertain entries 

specified in M
55

(ft) in the form of LFT's. Combining then all LFT's of the state-space 

matrices in M0~) and rearranging all uncertainties into the real-valued repeated scalar 

block structure results in a high dimensional uncertainty block ~ where possibly the 

individual repeated blocks can be replaced by smaller blocks to reduce the dirneusion of 

11. Minimality with respect to the dirneusion of 11 of the obtained LFT cannot be 

guaranteed for the general case in which the parameters enter the state-space matrices in 

any polynomial way. 

However, if the parameters enter the state-space matrices in a linear way, the term 

D22(~) becomes zero. In this case it has been shown in [Ter90] that the LFT 

realization problem of Eq. 4.21 reduces to : 
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where the smallest ~ for which a solution exists has dimeosion : 

nt 

L rank ( M0 (s8q) ) 
q =I 

(4.22) 

(4.23) 

The LFf realization of the polynomial models obtained by system identification, can 

now be divided into two steps : 

Conversion of the polynomial model into a state-space representation. 

• Obtaining a linear fractional transformation. 

4.3.2 State-space Realization of Po/ynomia/ Models 

Several approaches can be selected to convert proper minimal polynomial models into 

state-space representations [Kai80]. To illustrate this conversion the following SISO 

process model will be considered : 

(4.24) 

Two typical state-space representations are the controller and the observer canonical 

form which have the following form for the model G(z- 1 ,ft} defined in Eg. 4.24 : 

- f, - f2 I 

M co( S) 
A co(!!) 8 co(!!_) 0 I 0 (4.25) 

ss -
C co(!!) D co(!!_) -- - - +-

b2 - b1 r, b3- b, f2 I b1 

- r, b2 - b, f, 

M ob(S) 
A ob(!!_) 8 ob(!!) - f2 0 b3 - b, f2 (4.26) 

ss -
C ob(!!) D ob(!!_) - + 

0 I b, 
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where Aob(ft) = (Aco(ft)]T, Bob(ft) = [Cco(ft)l, cob(ft) = [Bco(ft)]T, 0 ob(ft) = 0 co(.e). 

For multivariable systems which have been modelled using a minimal polynomial 

structure, the smallest possible state-space rea!ization corresponds to n.min(ny,nu) for 

order n of the minimal polynomial [Bac87]. Therefore, a controller canonical form 

should be constructed for ny ~ nu and an observer canonical farm otherwise. The 

multiplicity of the poles due to the minimal polynomial description corresponds then to 

nu and ny respectively. The multivariable state-space realization M~~(ft) or M~~c.e_) of 

minimal polynomial rnadeis corresponds in fact to connecting the state-space matrices 

of SIMO models [M~~(ft)l *j for all inputs j or MISO rnadeis [M~~(ft)li• for all outputs i. 

For each of these SIMO state-space realizations in controller canonical form, there holds 

for the corresponding state matrices that A~g(ft) = A;~c.e_) which will be denoted as 

A co(.(i). Similar, the input matrix can be denoted by Bcoc.e_) because of s ;g(ft) = s;~(ft) . 

For each of the MISO state-space rea!izations in observer canonica! form, the state and 

output matrix will be denoted by A ob(ft) and C0b(ft) respectively, because of 

Ag~(ft) = A~~(ft) and cg~(ft) = C~~(ft). This results in the state-space representations 
defined in Eq. 4.27 and Eq. 4.28. 

The state-space realization of a noise model H(z· 1.ft) can be performed identically to the 

realization of G(z· 1 .ft). Note, however, that the resulting state-space rea!ization will have 

a controller canonical diagonal form for the minimal polynomial structure defined in 

Eq. 2.17. The diagonal form results from the fact that the noise model can have 

diagonal entries only and a controller canonical form has been realized because the 

noise models have an equal number of inputs and outputs (ny = nl;). 

A co(!)_) 0 0 B co(!)_) 0 0 

0 A co(!!) 0 B co(!)_) 

0 0 

0 0 A co(!!) I 0 0 B co(!!) 

M co( 9) + (4.27) 
ss -

C C0(9) c~~(!!) co D co(9) D co(9) co 
ll - ... cl nu<!!) ll - 12 - . .. D l nu(!!) 

C co(9) 
2 1 -

cco(9) 
22 -

Dco(9) 
21 -

D co( 9) 
22 -

co co co co 
cnyl(!!) ... cnynu<!!) 0 nyl(!!) . .. Dnynu(!)_) 
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A ob(!!) 0 0 B ob( 8) s 0 \e) ob 
11 - 12 - ... BI nu(!!) 

0 A ob(!!) B ob( 8) 
21 -

B ob( 8) 
22 -

0 

0 0 A ob(!!) I ob ob 8 nyl (!!) ... Bnynu(!!) 

M 
0
\8) + (4.28) 

ss -

C ob(!!) 0 0 D ob(S) D ob(S) ob 
11 - 12 - ... Dl nu(!!) 

0 C ob(!!) D 
0 \s) 21 -

D ob(S) 
22 -

0 

0 0 C ob(!!) ob ob 0 nyl(!!) ... Dnynu(!!) 

Consictering now the state-space realization of minimal polynomial models, Eq. 4.25 and 

Eq. 4.26 show that the parameters enter the state-space matrices linearly except the term 

b1 representing the direct feedthrough term from input to output. For process models 

G(z- 1 ,.[) this direct feedthrough term can be eliminated by demanding that the models 

should contain at least one sample delay. This is not really a restrietion in practice since 

physical systems show a strictly proper behaviour, i.e. b1 = 0 in discrete process 

models. Therefore, no direct feedthrough term will appear in the model and the 

identified parameters enter the state-space matrices in a linear way. For noise models 

H(z-1 ,.[) the LFT realization is always linear since the first coefficient of the Cii(z- 1) 

polynomial has been defined to be one (Eq. 2.17) and consequently the parameters enter 

the state-space matrices in a linear way. 

4.3.3 LFT Realization of Polynomial Process and Noise Models 

In this section general expressions wiJl be derived for the LFT realization of the 

polynomial process model G(z-l,_fr) and noise model H(z-1 ,_fr) . A simple example is used 

to illustrate the general LFT realization. 

Suppose a 2-input 2-output multivariable process has been modelled as a 2"d order 

minimal polynomial Box-Jenkins model with I sample delay . The state- space 

representation M~~(fl) of the process model G(z-1 ,.[) is then defined by a nomina! part : 
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- fl - f2 0 0 0 

I 0 0 0 0 0 

0 0 - fl - fz 0 

Mee\~) 0 0 0 I 0 0 (4.29) 

+- -
bll ,2 bll,3 bl2,2 bl2,3 I 0 0 

b21,2 b21,3 b22,2 b22,3 0 0 

and an uncertain part : 

- sr ö~ - sr ö~ 0 0 0 
I I 2 2 

0 0 0 0 0 

0 0 - sf ö~ - sr ö~ 0 
I I 2 2 

Mt(~9 ) 0 0 0 0 0 (4.30) 

-l- --
I 

Ör 
sb11 .2 b11.2 

s Ör 
bll,3 bll,3 

Ör 
Sb 12,2 b 12.2 

Ör 
sbl2.3 b12.J 0 0 

S Ör 
b21 .2 b21,2 

Ör 
sb21.3 b21.J 

Ör 
sb22.2 b22.2 

S Ör 
b22,3 b22,3 0 0 

To solve the LFf realization defined in Eq. 4.22, the minimal dirneusion of the 

uncertainty block ~ can be determined according to Eq. 4.23 : 

rank (M0e
0

(sb. )) 
IJ ,q 

V i ,j ,q 
(4.31) 

rank (M0e
0

(srq)) 2 Vq 

resulting in : 

A salution for the conneetion matrices of the controller canonical LFf realization can 

be found by solving the equivalence of Eq. 4.22 : 
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B co 
G,2 

co 
DG,I2 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

- -- ---- -

1 I 

0 0 0 

I 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 0 0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

-I 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

-I 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

-I 

0 

0 

0 

0 

0 

Robust Control Models 

0 

0 

-I 

0 

0 

0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

(4.33) 

(4.34) 

Note that this solution is only one possible LFf realization for this example because 

there are more degrees of freedom to construct the conneetion matrices 

{82(~), C2(~), 012(~), D21 (~)} than equivalence relations which have been defined 

in Eg. 4.22. For example, interchanging the 1 's in Eg. 4.33 with the sealing factors ~ in 

Eg. 4.34 indicates already various alternative realizations. 

General expressions for LFf realizations of a polynomial process model G(z-1 .ID and 

noise model H(z- 1 ,ID can be derived in a sirnilar way : 
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• Controller canonical LFf realization of process model G(z- 1,ft) : 

In general the dimeosion of the uncertainty block ~ for a minimal polynomial 

process model G(z- 1 ,ID of order n : 

~~o =diag{ob , ... ,ob ,ob , ... ,ob , ... ,ob ,f1I"u, .. . , fnl"u} (4.35) 
11.2 ll,nb 12,2 I nu,nb nynu,nb 

where nb = n+ I, which can be transformed into a state-space representation with 

linear parameters is given by : 

A co 
nuG n.nu.ny 

b - parameters 

+ n.nu (4.36) 

f - parameters 

The conneetion matrices for the general case can be constructed according to : 

B co = [ o<n.nuxn.nu.ny) _1(Ixnu) 01 nu 01 (nxl)] 
G,2 

D co = [ I ny ®I (Ixn.nu) o<nyxn.nu) ] 
G,I2 

diag(ib ) 
I x 

diag (ib ) 
ny x 

(4.37) 

(4.38) 

(4.39) 

(4.40) 

where ® denotes the Kronecker matrix product, Opxq, 1 pxq and Ipxq de fine zero, 

one and identity matrices respectively of dimeosion pxq, and 

ib = [Sb . , ... ,Sb . ,Sb. , ... ,Sb. ]T 
ix 11.2 tl.nb t2.2 1nu.nb 

(4.41) 
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Observer canonical LFT realization of process model G(z- 1,ft) : 

Similar to a controller canonical LFT, an observer canonicaJ LFT realization can 

be constructed. To show, however, the same similarity between controller and 

observer conneetion matrices when realizing a LFT that exists between controller 

and observer state-space matrices (compare Eq. 4.25 and Eq. 4.26), the order of 

the b-parameters in the uncertainty block has been changed to : 

~~b=diag{öb , ... ,8b ,8b , ... ,8b , ... ,8b , f1I "Y, .. , f
0

I ny} (4.42) 
11.2 ll,nb 21.2 nyl.nb nynu ,nb 

with dimension : 

A ob 
nuG n.nu.ny 

b - parameters 

+ n.ny (4.43) 

f - parameters 

This change in order of the b-parameters results from the fact that the order in 

which the inputs and outputs are processed to construct multivariable controller 

and observer canonical state-space matrices respectively from minimal 

polynomial models, bas been interchanged. 

The corresponding conneetion matrices for observer canonical state-space 

realizations are given by : 

where 

ny [o<Oxl)l ny [o<n-lxl)ll. sr I ® , ... , sr I ® 
I I (nx I) n I (I x I) 

C ob 
G,2 

ob 
DG,21 

o<n.nu.nyxn.ny) l 

_1(nyxi)®I ny®I(Ixn) 

[ 

I nu ® I (n.nyx I) l 

o<n.nyxnu) 

(4.44) 

(4.45) 

(4.46) 

(4.47) 
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Sb = [Sb , ... ,Sb ,Sb , ... ,Sb ]T 
- xi li. 2 li , nb 2i,2 nyi,nb 

(4.48) 

Comparing now Eq. 4.37 to 4.40 and Eq. 4.44 to 4.47, the similarity objective 

between controller and observer conneetion matrices has clearly been realized : 

Bz0 = [CZbJT, DT~ = [D~~]T, Cz0(~) = [B~b(~)]T, Dz? = [D?~JT when thereby 

interchanging the indices of the b-parameters and the number of inputs and 

outputs, nu and ny respectively. 

• Controller canonical LFT realization of noise model H(z- 1 ,.[) : 

This LFf realization of the noise model H(z- 1 ,.ID is almost the same as for the 

process model G(z-1 ,,ID. Only less c-pararneters are involved due to the 

diagonalization of the polynomial matrix C(z- 1) and the ct-parameters of the 

minimal polynomial appear in more entries of M~~<ID but without increasing the 

rank of M0co ( sd ) . Therefore, the sarne multiplicity is maintained compared to 
q 

fq (Eq. 4.29) resulting in : 

(4.49) 

which has dimension : n~~o = 2.n.ny . Note that the state-space realization of the 

noise model H(z- 1 ,!l,) is always square, i.e. ns = ny. 

The corresponding conneetion matrices are given by : 

where 

B co = [ o <n.ny xn.ny) _ 1(t x ny)®I ny ®I(nxl)] 
H,2 

diag (ie) 

sdl I ny ® [ o<lxO) I (lxn) ] 

s I ny ® [ o<l x n-1) I (lx I) ] 
dn 

D co = o<nt>x ny) 
H,21 

(4.50) 

(4 .51) 

(4.52) 

(4.53) 
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S = [ Sc , ... , Sc , Sc , .. . , Sc ]T ( 4.54) 
-c 11.1 ll ,n 22.1 nyny.n 

It has been shown that LFT realizations of the minimal polynomial process rnadeis 

G(z- 1 ,ft) and the minimal polynomial noise rnadeis H(z- 1 ,ft) can be easily obtained 

imposing only a slight restrietion on the process models, i.e. na direct feedthrough. 

Whenever other type of rnadeis than Box-Jenkins are selected, e.g. ARMAX, the 

polynomials F(z- 1) and D(z- 1) are of course replaced by A(z- 1). Note however, that for 

rnadeis with combined A(z- 1) and F(z- 1) polynomials the LFT cannot be realized using 

the proposed methad because the parameters enter the state-space matrices as 

multiplications. 

The same linear approach for the LFT construction can be foliowed if coordinate 

transformation is involved as for example in ellipsoid-aligned orthotopic bounding (see 

Section 3.2.4). If no direct feed-through term is included in the process model, the 

parameter uncertainty in the ellipsoid-aligned coordinate system can still be extracted in 

a linear way from the state-space realization to construct a LFT representation. As a 

consequence, the dimension of the uncertainty block ö. (Eq. 4.18) will increase because 

of increasing rank of the uncertainty matrix M0(s~) (Eq. 4.23) . 

In genera!, as long as the parameters enter the state-space matrices in a linear way, the 

LFT can be constructed fairly easy. However, when the state-space entries contain 

nonlinear parameter combinations, the multiplicity of the scalar uncertainty blocks for 

the parameters is not known in advance and matrix inversion is required because 

0 22 :;:. 0 (Eq. 4.21) which makes the LFT construction very complicated and highly 

problem dependent In this case a general salution cannot be given and the LFT 

realization has to be solved for every problem separately. 

This approach of first constructing a state-space representation of the polynomial rnadeis 

and then extracting the parametrie uncertainty into ö. has been selected because realizing 

LFT representations from state-space rnadeis with parametrie uncertainty is very well 

from literature. Of course, it is possible to extract the parametrie uncertainty directly 

from the polynomial models and to derive afterwards a state-space representation of the 

augmenled model Ma. The dimension of the corresponding state-space model, however, 

will be significantly higher than n.min(ny,nu) of the controller/observer canonical state­

space representation and therefore this direct LFT realization has not been included in 

this chapter. 

For multivariable systems of increasing order the dimension of ö. can become rather 

large due to the rapidly growing number of parameters. However, it will be shown in 

Chapter 5 and 6 that the dimension of ö. can be reduced by fixing the parameters which 

have the least contribution to the input/output behaviour, to predefined values with no 

uncertainty . 



5.1 Deterministic Parameter 

Uncertainty 

5 

Parsimonification 

5.2 

5.3 

Stochastic Parameter Uncertainty 

Parameter Uncertainty Reduction 

Many problems can occur when applying set estimation techniques in practice. In 

principle, it is assumed that the process is contained in the model set and that a 

guaranteed upper bound of the noise disturbing the process, e.g. the 1~-norm of the 

predietien error, is known. Bath conditions however, are hard to realize in practice. First 

of all, in practice the process is never in the model set because a low order, accurate but 

approximate model is preferred for control design resulting in undermodel!ing of the 

process. Secondly, upper bounds of the noise cannot be guaranteed because in general 

this noise does nat meet the assumptions on the probability distributions, e.g. a uniform 

distribution for bounded error identification (see Chapter 3). In addition, outliers in the 

data set, introduced during data acquisition or data preprocessing, tagether with the 

onderrnadelling would require a severe overestimation of the noise bounds for the 

computation of guaranteed upper bounds. Clearly, this results in very conservative 

(wide) bounds on the parameters. However, to obtain useful rnadeis far robust control 

design, the (parameter) baunds on the rnadeis have to be as tight as possible sa that 

minimal conservatism is introduced to realize closed-laap systems with acceptable 

103 
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performance. It cannot be expected that for a model with very conservative bounds a 

robust controller can be designed achieving reasanabie performance. 

Therefore, conservatism in parameter uncertainty has to be reduced as much as possible. 

In Section 5.1, various sourees of conservatism in bounded error identification wiJl be 

discussed. Most of these sources, like noise bound, linear eenstraint approximation and 

parameter uncertainty set approximation result from the defined salution to the 

identification problem. Another souree of conservatism is the interdependence of 

parameters. Mutual relations between the parameters in the polynomial models, 

however, are not taken into account. The interdependence of parameters results from the 

fact that several parameters can describe the same dynamica! inputfoutput behaviour. It 

wil! be shown that for interdependent parameters in the polynomial models which are 

treated as independent variables, the corresponding parameter uncertainty will increase. 

This type of conservatism can be reduced by fixing parameters to predefined values 

which will be illustrated in Section 5.1. Although the consequences of this increased 

parameter uncertainty due to interdependent parameters are more severe for bounded 

error identification, this effect also appears in prediction error identification. This 

method, however, is less sensitive for this type of conservatism compared to bounded 

error identification. This provides the possibility, however, as will be shown in 

Section 5.2, to determine the correlations between the parameters in the stochastic 

setting and select an order in which parameters can be fixed in the bounded error 

approach. Finally, this interplay between predietien en bounded error identification to 

reduce the conservatism in the parameter bounds wiJl be described in Section 5.3. 

5. 1 Deterministic Parameter Uncertainty 

In bounded error identification or set estimation several effects can be distinguished 

which increase the conservatism on the parameter bounds (see Section 3.4). This 

conservatism results from several choices which have been made (see Chapter 3) to 

solve the identification problem. The most important sourees will be described briefly : 

Noise Bound : Frequently, a 1=-bound will be used in set estimation to obtain 

guaranteed parameter estimates. Accurate results without introducing too much 

conservatism, however, can only be obtained if the noise has a uniform 

distribution. In practice, this is only the case for very specific examples (see 

[BBC88] where the error in the ND converter of a digital voltmeter is 

considered). It has been shown in Section 3.4 that whenever the noise has a 

normal distribution, 1=-bounds on the prediction error give conservative results. 

For normally distributed noise, 2cr or 3cr bounds should be used to obtain 

reasanabie results. 



5.1 Deterministic Parameter Uncertainty 105 

In practice, the noise will neither have a pure uniform distribution nor a pure 

normal distribution. Then, the noise bounds should be defined without 

introducing too much conservatism (e.g. a 2cr bound). For this specific choice, it 

is known that not all noise samples will be within the selected bound resulting in 

an empty parameter set if no proper precautions are taken. An empty parameter 

set can be avoided by eliminating all constraints that vialate a reference model, 

as described in Section 3.3. 

• Linear Constraint Approximation : The parameter uncertainty set is guaranteed 

convex and conneeled if the constraints are linear in the parameters (see 

Fig. 3.1). For these type of models the constraints (n8-l dimensional linear 

hyperplanes) in bounded error identification are necessary and sufficient (e.g. EE 

models). In other type of rnadeis (e.g. OE, EIV rnadeis etc.), however, the 

parameters appear in a nonlinear form in the model representation. To avoid the 

problem of non-convex and possibly non-conneeled parameter uncertainty sets, 

the constraints need to be Jinearized. As described in Section 3.1, however, these 

linearized constraints are only necessary conditions, but not sufficient. This 

linearization to obtain convex and conneeled parameter uncertainty sets 

introduces conservatism because the sufficient conditions are not satisfied. This 

additionaJ conservatism has been visualized in the example of Section 3.4, where 

EE and OE rnadeis are considered for uniforrnly distributed noise. 

• Parameter Uncertainty Set Approximation : Several methods have been proposed 

in Section 3.2 to describe the parameter uncertainty set : 

Exact polytope updating. 

• Ellipsoidal parameter bounding. 

• Orthotopic parameter bounding 

• Ellipsoid-aligned orthotopic parameter bounding. 

Of all these methods, only the exact po!ytope updating describes the parameter 

uncertainty set exactly. However, this methad can only be applied to low 

dimensionaJ identification problems. For higher dimensional problems, the 

exploding computational complexity makes this methad useless for multivariable 

identification in practice. Consequently, approximate parameter ur.certainty set 

descriptions are prefeered based on ellipsoidal, orthotopic or combined bounding 

techniques which compete with respect to computational complexity and 

accuracy in the approximation of the parameter . uncertainty set. Of all 

approximate methods, the ellipsoid-aligned orthotopic parameter bounding adds 

the least conservatism at the cost of additional computational effort when 
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computing repeatedly the ellipsoidal and the corresponding ellipsoid-aligned 

orthotopic parameter uncertainty set. 

• Parameter Relation : In a noisy environment with a lirnited number of data 

samples the identified parameters will be interdependent. This relation can result 

from the fact that in the chosen model structure a functional relationship between 

the parameters delermines the dynamica! input-output behaviour. This 

interdependence of parameters is not taken into account because the parameters 

in a black-box model are treated as independent variables. Clearly related 

parameters can be an indication for overparametrization in the black-box model. 

This wiJl increase the parameter uncertainty bounds and therefore the 

conservatism of the resulting model set when applying bounded error 

identification techniques. Parsimonification of parameters, i.e. sparsity in the 

number of parameters to be estimated, is required to reduce this conservatism. 

The amount of conservatism introduced by set eslimation as described before results 

from the various steps in the identification procedure. Incorporating a priori knowledge 

such as noise bounds, model structures (linear constraint approximation) and the choice 

of identiftcation (parameter uncertainty set approximation) and evaluation (parameter 

correlation) methods wiJl be highly problem dependent 

When applying set estimation, the linear constraint metbod and parameter uncertainty 

set approximation have been introduced to solve the identification problem. The 

conservatism introduced in these two steps has to be taken for granted. The basis for 

accurate set estimation is unifonnly distributed noise disturbing the process. In genera!, 

this is not the case in practice, but using the actual 1~-bound wiJl give useless parameter 

estimates. This conservatism can be reduced significantly by defining a 2cr bouild as 

upper bound, but this alternative metbod requires a reference model to avoid an empty 

parameter set. It should be noted however, that because not all noise samples wil! be 

covered by a 2cr bound, the parameter uncertainty set might not contain the true model 

(see Section 3.4). 

The results of bounded error identification depend highly on the signal-to-noise ratio. 

For industrial processes, this ranges approximately from I 0 to 20 dB. This low signal­

to-noise ratio allows that even a low order model is not falsified by the measured data. 

So, in genera!, parameter set estimation tends to favour lower order models compared to 

classica! prediction error identification. This is especially true for small signal-to-noise 

ratios. The reduced parameter identifiability in set estimation with decreasing signal-to­

noise ratio results in a less accurate dynamica! description of the process. However, the 

unmodelled dynamics might be relevant for control design. 

As indicated in Chapter 3, a reference model is required in practice to detect data 

outliers. This model can be obtained for example by classica! identification methods. As 
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an alternative to model order reduction, the parameter uncertainty can be considered 

component wise. The uncertainty of several parameters is combined by fixing the 

related parameters except one in a group to the parameter values of the reference model. 

The idea of this approach is that no relevant dynamica! information is lost but at the 

same time the dimension of the set estimation problem is reduced because less 

parameters are taken into account. In this way, the uncertainty present in the data is 

combined and translated into less free parameters. The value of the parameters which 

have been fixed is not set to zero, because fixing parameters in a polynomial to zero 

can change the roots significantly and thereby also the dynamica! behaviour compared 

to the reference model. 

The parameters which will be difficult to estimate and are therefore most uncertain, 

should be fixed to their reference value. This approach may seem counter intuitive. The 

idea, however, is that these parameters have the least contribution to the input/output 

behaviour and if such a parameter has been fixed to an incorrect value, the dynamica! 

behaviour of the model will hardly be affected. On the other hand, if a parameter for 

which the input/output behaviour is very sensitive, is fixed to an incorrect value, the 

dynamica! behaviour of the model will be influenced significantly. 

This uncertainty reduction by fixing parameters has been illustrated in Fig. 5.1. The 

uncertainty of two highly related parameters can become very large. The uncertainty of 

62 is even larger than 100%. However, if this parameter is fixed, i.e. 82 = 0, the 

uncertainty 81 in the other parameter 6 1 reduces significantly. 

Fig. 5.1 : Reducing uncertainty in two highly related parameters by 

fixing one of the parameters. The shaded area indicates the parameter 

uncertainty set e. 

5.2 Stochastic Parameter Uncertainty 

This effect of increased parameter uncertainty due to interdependent parameters is also 

of influence in predietien error identification. In this stochastic setting, the varianee of 
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the parameters wilt increase if several parameters contribute to the same inputJoutput 

behaviour. However, because the predietien error identification methad is less sensitive 

to this type of conservatism compared to the bounded error identification, the parameter 

covariance matrix can be used to select the most correlated parameters. 

The order in which the parameters should be fixed depends on the relative correlation 

between the parameters. This can be derived from the estimated parameter covariance 

matrix when applying predietien error identification. The parameter covariance matrix is 

a symmetrie positive definite matrix of dimension n8 where the diagonal entries 

describe the parameter varianee and the off-diagonal elements indicate the parameter 

correlation. Wilenever the parameters are independent the corresponding off-diagonal 

entry wil! be zero. An ordering of the correlations among the parameters can be 

established by computing the corresponding correlation coefficients [MS88]. The 

correlation coefficient p for two random variables x1 and x2 is defined by : 

p - 1 ~ p ~ 1 (5.1) 

where a 1 and a2 are the standard deviations of x1 and x2 respectively. The normalized 

parameter covariance matrix is defined as follows : 

Cov .. (ê) 
IJ - (5.2) 

and the absolute values of the en tri es in every column of Cov n (.~.) are summed : 

I ne 
Ps,j = - L I Covn,i/~J I 

n8 i =I 

(5.3) 

Note that Cov n ("~) equals I for all diagonal en tri es. The decreasing order of these 

summed parameter correlations (~) indicates a decreasing dependenee of one parameter 

to the other parameters. This will be translated into the order of the parameters which 

will be given a fixed value in the parameter uncertainty reduction procedure. Following 

this approach the parameter uncertainty can be reduced which results in a decrease of 

the conservatism introduced by interdependent parameters. An alternative to the I-norm 

in Eq. 5.3 is for example the maximum value or 1~-norm in every column of Cov n (~). 

5.3 Parameter Uncertainty Reduction 

In genera!, when applying identification methods, almast unobservable parameters in a 
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model will be eliminated. In set estimation, however, parameters which are almast 

unobservable wiJl be given a fixed value, for example obtained by classica! 

identification methods, because their estimate is unreliable. This paradoxical approach 

implies that uncertainty in fixed parameters is eliminaled and therefore the uncertainty 

in the other parameters reduces as welt. 

This effect of reduced parameter identifiability in set estimation for data with low 

signal-to-noise ratios and the proposed parameter uncertainty reduction approach will be 

illustrated by a simulation example. The true system in this simulation example is 

defined by the following OE-model : 

M(!!) : y(k) lz-'+O.Sz-2 u(k)+/;(k) 

I -1.5z- 1 +0.7z-2 
(5.4) 

As input signal u(k), a PRBN sequence has been applied ( u(k) E [ -1, I] V k and 

N = I 023 samples ) to simulate the output signa! y(k) ( cry = 4.343 ). To illustrate the 

reduced parameter identifiability in set estimation, a uniform white noise sequence 

( crç = 4.343e-l ) has been generated realizing a signal-to-noise ratio of 20 dB . A 

uniform distribution of the noise has been chosen to provide a guaranteed upper bound 

of the noise, 11 l;(k) 11~ = 8.025e-l . Therefore, the only conservatism introduced in this 

example will be the linear constraint approximation of the output error model and a 

possible parameter correlation induced by the identification procedure. 

0.6 
Delay Estimation Order Selection 
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Fig. 5.2 : a) Delay Estimation using input-output correlation with 95% confidence 
interval (dashed lines) ; b) Order Selection. 

Given now the input and distuebed output data only, delay estimation and classica] 
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prediction error identification can be applied to determine the model structure. The 

normalized correlation in Fig. 5.2a indicates a delay of one sample, since a clear 

correlation outside the 95% confidence interval starts at time lag one. Taking this delay 

into account. several models have been estimated for increasing model order for which 

the corresponding loss-function (sum of squared prediction errors, see Section 2.3.1) is 

depicted in Fig. 5.2b. As could be expected for this simulation example, the order 

selection indicates a second order modeL 

The identificalion results obtained from prediction error estimation, the parameter 

estimate ~ logether with a 3o uncertainty bound (corresponding to 99.7 % confidence) 

derived from the estimated parameter covariance matrix Cov(~), are presenled in 

Table 5. 1. For comparison with set estimation, the results obtained by orthotopic 

parameter bounding, the central estimate ~ and the parameter uncertainty 88, are 

presenled as wel!. 

Table 5.1 : Comparison of PE and OPB estimation. 

PE ( o 0 E = 4.336e-1 ) OPB ( o 0 E = 5.26Ie-1 ) 

ftt ~ 3o (%) ~ 8a (%) 

LOOOe+O 1.005e+Ü 4.75 1.027e+O 43.50 

5.000e-l 5.010e-l 13.08 5.22le-1 108.56 

-1.500e+O -1.498e+O 0.67 -1.515e+O 12.40 

7.000e-l 6.984e-l 1.17 7.136e-1 30.08 

The comparison of the prediction error estimation and the orthotopic parameter 

bounding in Table 5.1, shows clearly the reduced parameter identifiabilility of set 

estimation for low signal-to-noise ratios. However, in practice the signal-to-noise ratio is 

often even worse and 20 dB SNR for industrial processes is in many cases the best one 

cao hope for. To determine now the order in which the parameters should be fixed, the 

parameter covariance matrix has been estimated : 

1.43e-l -1.67e-l -1.02e-2 4.48e-3 

Cov(~) 
- 1.67e-l 2.69e-l 2.86e-2 -1.82e-2 

-1.02e-2 2.86e-2 6.28e-3 -4.88e-3 

(5.5) 

4.48e-3 - 1.82e-2 -4.88e-3 4.18e-3 

which can be norrnalized according to Eq. 5.2 : 
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-8.52e-1 -3.40e-1 l.83e-l 

Covn(~) 
-8.52e-l 6.96e-1 -5.42e-l (5 .6) 

-3.40e-1 6.96e-1 -9.53e-l 

l.83e-l -5.42e-l -9.53e-l 

These results obtained by prediction error estimation indicate a clear correlation between 

the parameters, especially between the "b" and between the "f' parameters ( -8.52e-l and 

-9.53e-l respectively) . The corresponding parameter correlation values (Eq. 5.3) are 

given by : 

Q =[ 5.94e-l 7.73e-l 7.47e-l 6.70e-I] 
s 

(5 .7) 

which results in : 2, 3, 4 and I respectively as the order of the parameter components to 

be fixed. In addition, an uncertainty ó9 of more than 100% for 82 in Table 5. I 

computed by orthotopic parameter bounding indicates already that this parameter should 

be fixed because of its reduced identifiability. The resuits of orthotopic parameter 

bounding for fixing l (82) and 2 (82 & 83) parameters respectively according to derived 

order are presented in Table 5.2. 

Table 5.2 : Fixing parameters for OPB estimation. 

OPB 1 ( cr0 E = 8.014e-l ) OPB; ( cr0 E = 4.378e-l ) 

~ ~ óe (%) ~ óe (%) 

I.OOOe+O l.017e+0 42.73 9.997e-I 1.80 
5.000e-l 5.010e-1 0 5.010e-l 0 

-l.500e+0 -1.543e+O 9.73 -1.498e+0 0 
7.000e-1 7.269e-1 21.21 6.961e-l 0.63 

I) Parameter 92 has been fix ed. 

2) Parameters 82 and 83 have been fixed. 

*) Violating constraints have been detected (9.79%) and eliminaled (25.76%). 

The parameter uncertainty reduction obtained by fixing the most correlated parameters 

is substantially. The parameter 82 is fixed to its prediction estimate because this is the 

most reliable information of 82 that is available. This reduces the parameter uncertainty 

in the other parameters only a few percent, but is a clear indication for the conservatism 



112 Parsimonification 

present in the original set estimation problem (OPB estimation in Table 5.1) due to the 

linear eenstraint approximation of the OE-model and the interdependence of the 

parameters. The corresponding central estimate which has been computed from the 

extreme parameter values according to Eq. 3.37, however, differs significantly from the 

true system parameters resulting in a rather poor performance of the nomina! model 

(compare the simulated output error, cr0 E = 8.014e-l, with the original noise, 

crE = 4.343e-l ). 

Fixing the parameters 82 and 83, reduces the parameter uncertainty significantly and 

provides an accurate nomina! model ( cr0 E = 4.378e- I ). It should be noted however 

that vialating constraints with respect to the prediction error estimate ~ have been 

detected and all constraints containing the same data samples have been eliminaled to 

avoid an empty parameter set. This indicates that the resulting parameter uncertainty set 

is smaller than actually allowed, i.e. the parameter uncertainty set does not contain the 

true model : .et (I; e. 
Of course, it can be argued that this approach of parameter uncertainty reduction forces 

the central estimate f!c in set estimation towards the estimate ~ obtained by predietien 

error estimation which is then considered as the "true" system. However, it is the only 

way to reduce the conservatism induced by set estimation as described in this thesis to 

obtain reasonable estimates. The main problem in bounded error identification is the 

worst case approach, taking no averaging effect into account together with the several 

approximations in the set estimation. The parameter uncertainty set is determined only 

by a few constraints neglecting the information present in the other constraints . Because 

only the extreme parameter values are determined, the corresponding central estimate f!c 
can differ significantly from the prediction error estimate ~ and is therefore of limited 

use when the bounds are relatively large. Bounded error models in set estimation with 

an accurate nomina! model can only be obtained whenever the parameter uncertainty is 

smal!. This requires in general a high signal-to-noise ratio which can often not be 

realized in practice. 

The ultimate goal in identification for robust control is to provide models with minimal 

model uncertainty. A conservative model uncertainty description will include physically 

unrealistic models in the model set. However, all elements of the model set have to be 

taken into account when designing a robust controller with guaranteed stability and 

performance. Of course, this will decrease the maximum achievable performance. 

Therefore, the conservatism has to be reduces as much as possible. The proposed 

method in this chapter, i.e. fixing interdependent parameters, can reduce the 

conservatism in the parameter uncertainty as will be illustrated in the case studies of 

Chapter 6. 



6.1 

6.2 

A W atervessel Labaratory 

Process 

A Fed-batch Fermentation 

Process 

6.3 

6.4 

6 

Case Studies 

A Distillation Column Simulation 

Process 

A Glass Tube Production Process 

In this chapter, the prediction and bounded error identification methods which have been 

described in Chapter 2 and 3 respectively, are applied to various processes ranging from 

a SISO Iabaratory process to a multivariable industrial production process. The 

processes are described as detailed as necessary to provide a basic understanding of the 

dynamic behaviour of these processes. The experiment design and the data 

preprocessing (Appendix A) are described briefly where it is relevant for the 

identification methods. The main attention wil! be focused on the performance of the 

identification methods in terms of the accuracy of the resulting models and the 

computational complexity of the algorithms. 
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6. 1 A Watervessel Labaratory process 

The watervessel process is a Iabaratory process which is used for practical trammg 

purposes. This SISO process consists of three vessels which have been placed above 

each other. A rollerpump with rotation speed detector pumps the water from a supply 

vessel into the top vessel after which it flows via the middle one into the lowest vessel 

as shown in Fig. 6.1. The taps in the interconnection parts between the vessels act as 

flow resistances. 

The water flow is the system input while the height of the water column in the lower 

vessel is the system output. The water flow which is used as model input cannot be 

measured directly in an accurate way without expensive sensors. The rotation speed of 

the rollerpump, however, can be measured easily and is a sufficiently accurate 

indication of the water flow. The height of the water column is measured by a level 

sensor consisting of two parallel plates at a constant distance which are isolated from 

each other. An AC-voltage is applied to the plates. The impedance between the plates is 

inversely proportional to the water level. So a constant AC-voltage on these plates will 

result in an AC-current, which is proportional to the water level. This smoothly 

nonlinear SISO process can be approximated by a linear model by studying the dynamic 

behaviour around an eperating point. 

Lower 
Vessel ..__ _ __._, 

Fig. 6.1 : The watervessel process. 
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The identification results which will be described in this section have been publisbed in 

[FD93]. The identification of this process using frequency domain methods can be 

found in [Lie91, vd.B93a]. The actuators and sensors of this process have been studied 

extensively in [Lie91). 

6.1.1 A Theoretica/ Vessel Model 

A theoretica! model of one vessel of the process can be derived using Bemauilli's law. 

Basically this law is an energy balance between two points in a process. If there is no 

pressure difference between those points and under the assumptions that the flow is 

laminar and the velocity uniform, the change in energy is assigned to varying kinetic 

and potential energy. 

h 

fout ______. 
"'-"-"--'.._......., ..... .....,_ 

Fig. 6.2 : A schematic view of a single watervessel. 

Consider the variables indicated in Fig. 6.2. Here, the variables denote : 

DI Diameter vessel (m2) 

D2 Diameter tap (m2) 

h Difference in height (m) 

fin Flow into vessel (m3/s) 

fout Flow out of hose (m3/s) 

As shown in [vd.B93a], the nonlinear dynamic behaviour of a single water vessel can be 

described by : 
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Az {2hg 

(6.1) 

where A1 = 1/.i 1t DT, A2 = \4 1t D~. This model can be linearized by consictering the 

behaviour of a vessel around a working point h = h
0 

resulting in : 

(6.2) 

where 

-~ (6.3) 

6. 1.2 Bounds on the Disturbances 

Bounded error identification is based on the fact that upper bounds on the disturbances 

which affect the process are available. All disturbances are indicated in Fig. 6.3. 

Control 

signa! 

Computed flow 

Disturbances 

Measurement 

noise 

Computed water level 

Fig. 6.3 : Disturbances on the process. 

Basically there are three effects that may cause disturbances and therefore uncertainty in 

the determination of the water level (output disturbances) : 
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• Errors in the level sensor, i.e. the inaccuracy of the output sensor voltage 

to represent the water level in the vessel. 

• Backlash effects in the level measurements due to the acthesion between 

the water and the parallel plates of the level sensor. 

Disturbances of the water surface in the vessel caused by the water flow. 

The upper bound on the total output error is approximately 2.25 mm where 0.25 mm is 

due to the measurement errors and 2 mm because of backlash and disturbances [Lie91]. 

It has been shown in [Lie91] that the dynamics of the roller pump can be neglected 

because of its smal! time-constant compared to the time-constant of the watervessel 

process. In addition, fluctuations in the water flow cau~ed by the roller pump can be 

neglected because it contains frequencies which are far beyond the bandwidth of the 

watervessel process. The water flow can be described most accurately by the average 

rotation speed of the pump. V ariations in the rotation speed results in a flow error of 

8 w-7 m3ts (input disturbance). 

6. 1.3 Reference Model 

A priori information about the structure of the model as well as the signs of the 

parameters is necessary to solve the bounded error identification problem. Therefore an 

initia! model is required. Further, to be able to make the parameter set identification 

robust against outliers (see Section 3.4), it is assumed that this initia! model defines an 

element of the final feasible parameter uncertainty set 8. 
Because the input of the process (the water flow) is not exactly known, prediction error 

identification ca.'1not be used to estimate an initia! model. Therefore, the Total Least 

Squares (TLS) estimation method has been adopted which is described in [vHV91]. The 

TLS problem considers an overdetermined set of linear equations A ft = b, obtained for 

example from Eq. B.15 containing scaled input and output data, where both the data 

matrix A as well as the observation vector b are inaccurate. The sealing is based on the 

bounds of the input/output noise. If the perturbations D on the data [A b] have zero 

mean and their covariance matrix E(DTD), with E the expected value operator, equals 

identity up to an unknown sealing factor (e.g. when all errors are independent and 

equally sized), then a strongly consistent estimate of the true solution of the unperturbed 

set can be computed where 11 L'1 À L'1 b 11 F = 11 [ A b] - [ À b] 11 F is minimized. Surely 

this condition cannot be fulfilled completely in practice, but it is reasonable to assume 

that the resulting initia! model is a member of the feasible model set. 

A Pseudo Random Binary Noise Sequence (PRBNS) is used to excite the process 

resulting in a data set of 1100 samples. After signal preprocessing as described in 

Appendix A, the input and output data, u(k) and y(k) respectively, has been normalized 
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using the standard deviations of the corresponding error signals. Normalization to equal 

sized errors is required to obtain a consistent initial model using the TLS estimation 

method . This results in : 

y(k) = -f1 y(k-l)- f2 y(k-2) + b1 u(k) + b2 u(k-l) + b3 u(k-2) 

1.09y(k-l)- 0.29y(k-2) + 0.21 u(k) + 0.27u(k-l) + 0.07u(k-2) 
(6.4) 

Because of the first order nature of each vessel (Eq. 6.2), a third order model can be 

expected on physical considerations. However, a second order model turned out to be 

sufficiently accurate because the sampling time of this data set is approximately 1.5 

times the time constant of the upper vessel which has therefore almast no contribution 

to the input-output behaviour resulting in a second order model. A higher sampling 

frequency is required to estimate a third order model. 

6. 1.4 Bounded Error Estimates 

For this errors-in-variables model a constraint set has been generaled according to 

Eq. 3.14 and Eq. 3.32 using the signs and the structure of the TLS estimate in Eq. 6.4 

tagether with the amplitude bound Ö
0 
= 8 w-7 m3/s on the input disturbances, and the 

amplitude bound ÖY = 2.25 w-3 m on the output disturbances. Under the assumption 

that this reference model : ~ = [ 2.06e-I, 2.7le-1, 6.67e-2, -1.09, 2.9le-l]T, is an 

element of the parameter uncertainty set e, 50 ("' 2.3%) vialating constraints have been 

detected. After outlier correction which has been described in Section 3.3, the modified 

data set can be used for parameter set estimation. 

Table 6.1 : Orthotopic bounding. 

Par. ~ ~ .se % 

bi 2.06e -1 2.05e -1 8.70e-3 4.3 

b2 2.7le -1 2.71e -1 1.48e-2 5.4 

b3 6.67e -2 5.81e -1 1.88e-2 32.3 

fl -1.09e+O - l.lle+O 4 .92e-2 4 .5 

f2 2.91e -1 3.07e -1 4.30e-2 14.0 

Orthotopic bounding (6
0

) results in the feasible parameter set described in Table 6.1 

where the central estimate ~ and the parameter uncertainty .se is computed according to 

Eq. 3.37. The volume of this initia! orthotope is given by : 
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vo rr 2se,i 
i= I 
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1.73 10-7 (6.5) 

As initia! ellipsoid a hypersphere of minimal volume, defined by : P0 = ? I, is used 

enclosing the initia! orthotope where the radius is defined by : r = --J SeT Se· 
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Fig. 6.4 : Parameter uncertainty reduction in set estimation by repeated 

constraint processing ; a) Ellipsoidal volume reduction and b) Ellipsoid­

aligned orthotopic volume reduction for normal (solid) and reverse constraint 

processing (dashed). 
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Repeated eenstraint processing bas been applied to eliminate the influence of the initia! 

ellipsoid and the sequence in which the constraints are processed (see Section 3.2.2). 

Fig. 6.4 and 6.5 show now after every iteration the volume reduction of the ellipsoid 

and the ellipsoid-aligned orthotope together with the behaviour of the central parameter 

estimates b1 and f1 respectively. To show that the final solution is indeed independent 

of the sequence in which the constraints are process~d, the solutions after every iteration 

step of both normal and reverse eenstraint processing are depicted in the figures . The 

oscillation of the centre value during the first iterations is caused by smal! variations of 

tbe coordinate system obtained from the ellipsoidal beunding metbod and disappears 

wben tbe ellipsoidal volume converges to its final value. After satisfying tbe stop 

criterion, orthotopic beunding witb coordinate transformation tben results in an 

ellipsoid-aligned orthotope eeo witb volume : V eo = 1.86 10-9, which is a significant 

reduction compared to V 
0

. 

Tbe application of the bounded error identification metbod to this watervessel Iaberatory 

process shows clearly that ellipsoidal beunding can be used as a preprocessing tooi to 

derive an optima! ortbonormal base for orthotopic beunding as motivated in 

Section 3.2.4. Tbe resulting ellipsoid-aligned orthotope has a significant smaller volume. 

Convergence has been achieved independently of tbe sequence in which tbe constraints 

are processed and initia! conditions, i.e P0 (see Fig. 6.4 and Fig. 6.5). All models in the 

parameter uncertainty sets eo and eeo are also stabie because these sets are witbin tbe 

stability triangle of a second order system which is defined by the inequalities : f2 < I, 

I + f1 + f2 > 0 and I + f1 + f2 > 0 (see [GS84] ). 

6.2 A Fed-batch Fermentation Process 

The application of bounded error identification methods to a fed-batcb fermentation 

process for the production of bakers' yeast (Saccharomyces cerevisiae) describes a 

possible approach to obtain the required a priori information from a single data set. 

Nonlinear behaviour is the rule, rather tban the exception, in the dynamical bebaviour of 

biotecbnical processes. Tbe culture of Saccharomyces cerevisiae grown in a fed-batch 

reactor is a bighly nonlinear and time-varying process due to its changing reaelions and 

process nonlinearities. The identification of the overall process can be divided roughly 

into 3 pbases wbere only specific eperation conditions wil! be considered to obtain a 

time-invariant bebaviour. First tbe data is compensated for assumed static nonlinearities 

which will be explained later. Applying classica! predietien error identification 

tecbniques to the resulting "linear" data will provide tbe required a priori knowledge for 

parameter set estimation. Combined ellipsoidal/orthotopic bounding (see Section 3.2.4) 

can then be used to obtain minimal parameter uncertainties. The accuracy of the central 

estimates wil! be compared to the nomina] model obtained by classica! predietien error 
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identification. These identification results have been published in [FK94]. The following 

process description is taken from [Keu93]. 

6.2.1 Yeast Production 

The production of yeast is closely related with the yeast (cel!) itself and with its 

biochemica! reactions (dynamics). A basic description of yeast is thus relevant to 

understand the specifications and limitations for production. A graphical representation 

of a yeast cell is shown in Fig. 6.6. The yeast cel! grows through cel! division, also 

called budding (the small knot at the right hand side in Fig. 6.6). For this growth, the 

cel! needs building material and energy. The energy and building material are derived 

from carbon sources, e.g. glucose. Beside the carbon sourees the cel! needs various 

other substances, e.g. minerals, vitamins, etc. Energy is most effectively generated with 

the aid of oxygen, the so called oxidative phosphorylation. If no oxygen is present, the 

yeast cell can grow as wel!, but less efficient. The energy is derived through production 

of ethanol. However, high concentrations of ethanol are taxie to the yeast (wine and 

beer production). As ethanol is a carbon souree as well, the cel! can use the ethanol for 

growth. However, yeast cells have a preferenee of sugars over ethanol. During growth, 

the yeast cell produces carbon dioxide, whether the cell grows on glucose or ethanol. 

Oxygen Ethanol 

Glucose Carbondioxide 

Fig. 6.6 : A schematic representation of 
a yeast cell and its main inputs and 
outputs. 
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Fig. 6.7 : The concentratien of biomass as 
a function of time during the three phases 
of the Iabaratory process. 

A physiological model of the yeast is made to understand the cell dynamics and its 
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nonlinearities better. The model is based on the oxygen limited capacity of the yeast cell 

[SK86) combined with a regulated enzyme production of the cell and a self containing 

term [Keu93]. The hypothesis of [SK86) divides the growth of yeast into three different 
pathways: 

Under normal conditions the yeast consumes glucose together with 

oxygen, without producing ethanol. 

If the glucose consumption is larger than the oxidative capacity of the 

cells, a reductive reaction occurs producing ethanol. 

• Ethanol can be consumed oxidatively if the glucose consumption is less 

than the oxidative capacity. 

The yeast cell metabolizes glucose and ethanol according to one or a combination of the 

three above mentioned pathways. Switching between the pathways is regulated through 

specific enzyme production. A basic nonlinearity is found in the budding. Cell 

concentration equations are exponential at constant growth (Eq. 6.6). The switching 

between pathways causes nonlinear effects as the growth efficiency is higher on glucose 

than on ethanol. The time-varying effects are caused by the specific enzyme production 

which regulates the switching between the pathways. 

Bakers' yeast is produced on a industrial scale. A "translation" is made from this 

industrial scale to a Iabaratory process. The Iabaratory process has three distinct phases 

(Fig. 6.7) : 

A batch phase in which the start concentration of the yeast is cultivated. 

A fed-batch phase in which the maximum yield of yeast is the main 

objective. 

A quality phase in which the yeast is cultivated according to eertaio 

quality constraints. 

Together they present the seed and propagation stages of the industrial process. Here the 

attention is focused on the fed-batch phase in the production of bakers' yeast. The fed­

batch phase is normally operated in such a way that a minimum amount of glucose is 

needed for a maximum yield (concentration) of yeast cells. This under the constraints of 

no ethanol production and a maximum available oxygen supply. 

6.2.2 The Labaratory Process 

The Iabaratory process is carried out in an aerated, continuously stirred fermenter. This 

lO litre fermenter (Fig 6.8) is the core of the fermentation system. The glasswall vessel 
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is fitted with an airtight rubber ring on both bottorn and top. The top plate contains a 

number of ports that are used to support a pH prÓbe, a dissolved oxygen probe, an anti­

foam sensor, an outlet air-cooling device, and several ports to add or withdraw 

chemicals. The bottorn plate contains ports for a temperature probe, a heating and 

cooling element, a combined air and feed inlet, a sample needie and a waste outlet 

Agitation is provided by a magnetically-coupled motor with adjustable speed. An 

impeller and four haffles provide good mixing. Air is blown into the fermenter though a 

smal! pipe ending just below the impeller, providing constant mixing of the air. The 

fermenter is held sterile during the fermentation in order to avoid contarnination. The 

laboratory process is performed at favourable environmental conditions, i.e. temperature 

at 30° C and pH at 5. 

Fig. 6.8 : The fermenter. 

Looking at the process from a control engineering point of view, it can be seen as a 

three input, four output MIMO system (Fig. 6.9). The inputs are : stirrer speed (SS), air 

flow (AF) and glucose flow (GF). The outputs are : ethanol concentratien (E), dissolved 

oxygen tension (DOT), the carbon-dioxide production rate (CPR) and the oxygen uptake 

rate (OUR). In practice the production requirements placed upon the controlled process 

are : a maximal yeast cell production with negligible ethanol production. Measuring the 

cell concentration on-line is not always feasible. Consequently, an auxiliary signa! has 

to be found to control the cell production. This auxiliary signa! is the oxygen uptake 

rate. The oxygen uptake rate depends on all inputs. However, the dependenee on the 

stirrer speed and air flow is physically and occurs only if the oxygen is lirnited. The 
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glucose flow has a pure biochemica! influence on the cells. The appropriate combination 

for controlling the cell concentration production is thus the glucose flow and the oxygen 

uptake rate. Here, only the oxidative growth on glucose will be considered . This 

limitation is chosen because of the severe nonlinearities and time-varying behaviour of 

the yeast production when all three pathways occur. It is also practical, as industrial 

production is focused around oxidative growth on glucose because of the high yield. 

Note that the dynarnics of the carbondioxide production rate are comparable to the 

oxygen uptake rate dynamics, only the gain is different. 

E 
GF 

Fed- DOT 
ss batch 

Process CPR 
AF 

OUR 

Fig. 6.9 : A simplified view of the fed-batch process. 

6.2.3 Nonlinear Compensation 

As mentioned before, only oxidative growth on glucose wil! be considered. This part of 

the process, if no ethanol is present, can be regarded as linear and time-invariant. 

However, the process itself remains highly nonlinear due to the exponential character of 

the cell growth. This nonlinearity associated with the cell growth will be compensated 

in the sense that assuming the amount of cells and overall growth rate is known, all 

input signals can be compensated with the estimated growth of the cells, an exponential 

function. The initia! cell concentration and the expected growth rate are obtained from 

information supplied by estimators, dry-weight and optica! density measurements. The 

nonlinear compensation is simply related to the cell concentration (Eq. 6.6) as an 

exponential increasing function upon the growth rate (1.1) of the cells : 

V x (t) = V x(O) e Jl(t) 1 (6.6) 

where V x = amount of biomass, and 11 = specific growth rate. Consiclering the input 

signals, the glucose flow (GF) is directly related to the modelled growth : 
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GF(t) (6.7) 

where Y xls == yield of cells on glucose, S0 == glucose concentration in the feed . 

The stirrer speed and the air flow are also directly correlated with the modelled growth. 

With the proper nonlinear compensation, the expected dissolved oxygen concentration is 

at constant level and is large enough to guarantee that no oxygen limitation occurs. The 

carbondioxide production rate and the oxygen uptake rate are expected to increase with 

the glucose flow as they are directly related to the amount of biomass in the fermenter. 

Fig. 6.10 and 6.11 depiet the measured glucose flow and oxygen uptake rate (a) tagether 

with the compensated data (b) respectively. The unknown parameters of the nonlinear 

exponential compensation (Eq. 6.7) have been tuned to achieve the best possible fit 

between the measured data (y m) and the assumed nonlinear compensation (y0ell1) : 

min 11 y - y e ll t 11 m o ~[O,T] 
Yo · ll 

(6.8) 

6.2.4 Linear /dentification 

Befare set estimation techniques can be applied, a priori knowledge, like model 

structure, signs of the parameters and noise bounds on input and output, is required. 

Because only the current data set is available without any extra noise information, the 

data has been filtered resu1ting in a !ow-frequent (LF) and a high-frequent (HF) 

component of both input and output signals. (Fig. 6.10 and 6.11 c,d). The separation 

frequency for the filters has been chosen in such a way that the auto-correlation of the 

HF-component (noise) is as white as possible. This noise component can then be used 

to delermine the bounds on the input/output noise. The remaining LP-component is 

suitable to apply classica! identification techniques. 

Table 6.2 : Order selection. 

n8 Ve® AIC FPE 

2 2.72e-l 7.27e+2 2.74e-1 

3 2.62e-1 7.12e+2 2.65e-1 

4 2.51e-1 6.93e+2 2.55e-1 

5 2.50e-1 6.94e+2 2.56e-1 

6 2.5le-1 6.97e+2 2.57e-1 
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Fig. 6.10 : Glucose Flow (GF) ; a) Measured GF (solid) and nonlinear 

compensation (dashed), b) Compensated GF, c) LF-component GF, d) HF­

component GF with bound ~\ = 1.27 (dashed). 
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Fig. 6.11 : Oxygen Uptake Rate (OUR) ; a) Measured OUR (solid) and 

nonlinear compensation (dashed), b) Compensated OUR, c) LF-component 

OUR, d) HF-component OUR with bound ~\ = 6.22e-2 (dashed). 
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To obtain a model which is suitable for long horizon contra!, output-error identification 

has been applied to the filtered data. Because the order of the model is unknown, the 

loss-function, the AIC and FPE criterion (Eq. 2.27) have been deterrnined for increasing 

order. The results are given in Table 6.2. The rnadeis have been fully parametrized with 

or without one delay to achieve a continuous increasing number of parameters (nEl). 

Theoretically, the loss-function V e(fD decreases continuously for increasing model order. 

However, due to overparametrization, the optimization might not converge correctly 

resulting in a larger value of the loss-function compared to a model of lower order. 

According to the AIC and the FPE criterion a second order model with one delay 

(nEl = 4) is optima!. The corresponding model simulation tagether with the output-error 

are depicted in Fig. 6.12. The relative varianee of the output-error is 26%. The 

remaining misfit between the measured oxygen uptake rate and the simulated model 

output cannot be reduced significantly by increasing the model order. This misfit is 

mainly due to the nonlinearities still present in the data [KAG94]. 

The parameter estimates and the corresponding stochastic parameter uncertainty set epe 

are given in Table 6.3. These bounds are computed from the covariance matrix of the 

parameter estimates (see Appendix C) where a 2cr bound has been adopted which 

corresponds to 95% confidence. 

a) 
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Fig. 6.12 : a) Measured oxygen uptake rate (solid), Simulation output-error 

model (dashed) and central estimate of set model (dotted), b) Error ; Output­

error model (dashed) and central estimate of set model (dotted). 
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6.2.5 Set Estimation 

To obtain an uncertainty model which is suitable for robust control design, set 

estimation can be used resulting in hard bounds on the parameters. The required a priori 

information has been derived in the previous section. Consider now the model structure 

of the optima! output-error model : 

y(k) 
bz-1+bz -2 

1 2 u(k) + l;(k) 
l+f z -l+f z -2 

I 2 

(6.9) 

Contrary to the output-error identification where the filtered data has been used, the fact 

is included that both input and output are corrupted by noise using the original 

compensated data where only a bounded-error assumption will be made on the 

input/output noise (see Eq. 3.7 and Eq. 3.8). The noise bounds have been determined in 

the previous section from the high-frequent components of the oxygen uptake rate 

(8y = 6.22e-2) and the glucose flow (8u = 1.27) respectively. 

Table 6.3 : Parameter identification of a fed-batch fermentation process. 

e pe e 0 e eo 

Par. ~ % (2cr) ~ % ~ % 

bi 5.40e -2 7.7 6.32e -2 38.2 6.30e -1 (10.0)* 

b2 1.97e -2 34.6 2.64e -2 >100 3.50e -2 (10.5)* 

ft -1.50e+O 1.2 -1.45e+O 7.2 -1.45e+0 (3.3)* 

f2 5.55e -1 2.9 5.23e -1 19.3 5.18e -1 (6.4)* 

*) Relative uncertainty in ellipsoid-aligned coordinate system. 

The constraints for bounded error identification are constructed according to Eq. 3.14. 

The figures 6.1 Od and 6.11 d indicate clearly that outliers in the data vialate the defined 

error bounds. To avoid that the parameter uncertainty set 0 becomes empty the output­

error model obtained by classica! identification has been used as reference model (see 

Section 3.4) to eliminale all vialating constraints ("' 5.5%). Ellipsoid-aligned orthotopic 

bounding with repeated constraint processing has been applied to approximate the 

parameter uncertainty set 0. To illustrate the achievable reduction of the parameter 

uncertainty taking the orientation of the parameter set into account, Table 6.3 shows the 
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results of the orthotopic set estimation, with and without orientation. The simulation 

results using the central estimate of the ellipsoid-aligned orthotope eeo are depicted in 

Fig. 6.12. Camparing Fig. 6.12b and Fig. 6.11d indicates that the error bound is defined 

too optimistic because no model errors are taken into account. The varianee of the 

output-error (28%) is only slightly worse compared to the output-error model obtained 

by classica! identification (26%). For comparison of the models in Table 6.3, the 

spectrum analysis of the input/output data tagether with the amplitude plots of the 

central estimates have been depicted in Fig. 6.13. Due to limitations in the available 

measurement equipment the sampling time which can be realized is in fact too low and 

has caused aliasing in the data. 
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Fig. 6.13 : Magnitude plots of fed-batch fermentation models ; Spectrum analysis 

of input/output data (solid), prediction error estimate ~ (dashed), central estimate 

f!c of eo (dash-dotted) and central estimate f!c of eeo (dotted). 

This exarnple illustrates that even if the amount of information is limited to a single, 

relative short data set, set estimation can provide reliab1e models. The output-error 

estimate and the central estimates obtained by bounded error identification are not 

significantly different. However, the bounded error approach requires more effort to 

obtain accurate models. Additional information like bounds on the disturbances, outlier 

correction to avoid an empty parameter set and repeated constraint processing in 

ellipsoid-aligned othotopic bounding to obtain a minimum uncertainty set eeo, make this 

identification metbod more complex from a computational point of view. 
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6.3 A Distil/ation Column Simu/ation Process 

The ever increasing automation in industry and the application of multivariable and 

adaptive control systems has led to the development of a specific software package by 

ST AMICARBON (an engineering company of DSM) called GIDS : Graphical . 

Interactive Dynamica! Simulation system. GIDS is a real-time computer simuiatien 

system which has been developed for the training of operators, instrumentation 

technicians in the process industry and students in technica! education. GIDS contains a 

simuiatien of a chemica! process, i.e. a binary distillation column, which is specifically 

designed to teach some essential aspects in the control of a physical process and to 

study the dynamica! behaviour of this process. The education objectives are : 

• To operate a chemica! process by simulated instrumentation and controL 

• To obtain insight in the dynamica! behaviour of a chemica! process from 

a theoretica! as well as a practical point of view, without danger for 

people, environment, equipment and/or economie risks. 

• To startup control loops without disturbing the process. 

• To study and/or optimize the applied control strategies and to work with 

actvaneed process controL 

A typical two-product distillation column is shown in Fig. 6.14. This simuiatien process 

is based on algebraic and nonlinear differential equations which describe the physical 

behaviour of the chemical process. 

The distillation column separates a mixture of hexane (C6H14) and heptane (C7H16). 

The feed is preheated in a heat exchanger and the mixture is fed into the column as a 

saturated liquid. The overhead vapor stream is cooled and completely condensed after 

which it flows into the reflux tank. The cooling of the overhead vapor is accomplished 

with cooling water. The liquid from the reflux tank is partly pumped back into the 

column and is partly removed as the distillate or top product. At the base of the 

distillation column, a liquid product stream (the bottorn product) is partly removed and 

partly recirculated after it has been heated with steam in the reboiler. More detailed 

information in the field of distillation dynamics and control can be found in various 

textbooks, e.g. [Shi84]. A more recent overview is given in [Sko92]. 

The objective of this section is to show that set estimation identification can be applied 

to multivariable systems. An indication of the signal-to-noise ratio is required to 

guarantee reasonable estimates. In addition, it will be shown that fixing the value of 

parameters which have almost no contribution to the input/output behaviour can reduce 

the uncertainty in the remaining parameters significantly. 
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6.3. 1 Experiments and Model Structure Selection 

Although this simulation process is typically nonlinear, the dynamica! behaviour around 

an operating point can be described sufficiently accurate by a linear model. The inputs 

and outputs which have been selected to model this chemica! process are described in 

Table 6.4. For multivariable identification, independent PRBNS signals have been 

applied to the 3 inputs simultaneously. The excitation in the operating point has been 

maximized maintaining linear process behaviour. The quality of the top (hexane, C6H14) 

and bottorn (heptane, C7H16) product, the system outputs, are measured as impurities of 

heptane and hexane respectively. The output range is also given in Table 6.4. 

Table 6.4 : Identification experiment. 

Inputs Excitation (tonlhr) 

Reflux flow 29.7 ± 2.0 

Reboil flow 7.0 ± 0.4 

Feed flow 15.8 ± 5.0 

Outputs Min.(%) Mean (%) Max (%) 

Top product, impurity C7H16 1.38e-2 2.80e-2 5.45e-2 

Bottom product, impurity C6H14 0.69 5.92 15.17 

Because this is a simulation process and no additional disturbances, like process or 

output noise, have been applied during the identification experiment, the data 

preprocessing (Appendix A) reduces to mean (offset) correction and sealing of the data 

to unit variance. This approach guarantees a maximum achievable signal-to-noise ratio. 

A high signal-to-noise ratio is preferred for set estimation to obtain reasonable 

parameter uncertainties. For delay estimation, the cross-correlations between all inputs 

and outputs are depicted in Fig. 6.15 (see Section A3). The delay matrix (Eq. A.l2) 

deterrnined from Fig. 6.15 is given by : 

(6.10) 

As expected for a physical process, at least one sample delay is present in each transfer 

function which will be corrected for identification. Note however, that the additional 

delay in the first output cannot be corrected and will therefore be included in the model. 
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Fig. 6.15 : Delay estimation for the distillation column simulation process 

Dasbed lines indicate the 95% confidence intervals and the dash-dotted lines 
define the estimated delay in each transfer. 

For the classica! prediction error identification approach the realization of a white 

prediction error implies in practice that a noise model must be included. For set 
estimation a linear constraint approximation is preferred to guarantee a convex and 

conneeled parameter uncertainty set 8 (see Section 3.1) which simplifies the solution of 
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the identification problem. Therefore, taking these considerations into account, an 

ARMAX model has been adopted : 

(6.11) 

where !!. and ~ denote the inputs and outputs with entries as indicated in Table 6.4. The 

structure selection has been reduced to an order selection by assuming proper process 

and noise transfer functions. Taking now the delay matrix of Eq. 6.10 into account, the 

model structure (Eq. BA) for order mo of the ARMAX model is defined by : 

nn = [ na I nb 11 nb12 nb13 nb21 nb22 nb23 I nc 11 nc22 I 

nd I nf I nk11 nk12 nk13 n~1 nk22 nk23 ] 

[ mo I mo +I mo mo mo +I mo +I mo + 1 I mo mo I 

0101011000] 

6.3.2 Parametrie ldentification 

(6.I2) 

The total data set has been divided into an estimation and a validation data set of 

N = 1042 data samples each. To select a correct model order, predietien error 

identification has been applied for increasing model order mo. The va1ue of the 1oss­

function (Eq. 2.24) for bath data sets is depicted in Fig. 6.16. This figure indicates 

clear1y a 2nd order model. 
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Fig. 6.16 : Order selection of ARMAX model ; Loss-function of estimation (solid) 

and validation (dashed) data set. 
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Fig. 6.17 : Prediction error of the 2nd order ARMA.X model for both estimation 

and validation data set. The auto-correlations of the prediction errors indicate the 

accuracy of the estimated model. 
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The predietien errors of this estimated 2"d order ARMAX model for both the estimation 

and the validatien data are depicted in Fig. 6.17. The auto-correlations of these 

predietien errors show that the residual is almest white. Increasing the model order wil! 

not improve the whiteness of the residuals significantly. Therefore this model describes 

the distillation column simuiatien process in the selected eperating point sufficiently 

accurate. The signal-to-noise ratio which has been realized for both outputs is 

approximately 30 dB. 

This predietien error identification has been performed to obtain the a priori knowledge 

which is required for set estimation. The predietien errors depicted in Fig. 6.17 provide 

information about the upper bounds of the noise (Eq. 3.1) which have been defined as 

2cr bounds resulting in ~ = [6.5 le-2, 6.53e-2]T. The predietien error estimate ~ which 

can be used as reference model to select the constraints which violate the defined upper 

bounds of the noise, is shown in Table 6.5 logether with the corresponding stochastic 

parameter uncertainties which have been computed from the covariance matrix of the 

estimate Cov(~) (see Sectien C.l). lt has been shown in Sectien 3.4 that for N = 1000 

data samples, a 2cr bound which corresponds to a confidence of 95% gives accurate 

uncertainty bounds. These results show that there are several parameters with more than 

100% uncertainty which have almest no iufluence on the inputJoutput behaviour. 

lt can be expected that the deterministic uncertainty bounds are equal but probably 

larger than the stochastic uncertainty bounds due to the conservatism which is 

introduced by the way the bounded error identification problem is solved (see 

Chapter 5). Therefore, the parameters with more than 100% uncertainty (b22,3 , c11 ,2 , 

c22, 1 and c22,2) have been fixed to the value of the predietien error estimate because 

these parameters cannot be estimated accurately by set estimation. The constraints for 

bounded error identification can be constructed according to Eq. 3.14 for the defined 

upper bounds of the predietien error~ and the parameters b22,3 , c 11 ,2 , c22,1 and c22,2 
fixed. Under the assumption that the predietien error estimate can be used as reference 

model which defines an element of the parameter uncertainty set 8 , 3.2% of the 

constraints violate the reference model where 4.4% have been eliminaled for bounded 

error identification (see Sectien 3.3). More constraints have been eliminaled because the 

possible data outliers in the violating constraints are also incJuded in other constraints 
which should therefore be eliminaled as wel!. 

The identification results of ellipsoid-aligned orthotopic parameter beunding (EOPB 1) 

are given in Table 6.5. This approach has been selected because as shown in the 

previous SISO case studies, the ellipsoid-aligned orthotopic parameter beunding 

provides the most accurate description of the parameter uncertainty set 8 . It should be 

noted that the parameter uncertainty corresponds to the ellipsoid-aligned coordinate 
system while for comparison the central estimate ~ has been transformed back to the 

original coordinate system. This predietor is even unstable because of the large 

parameter uncertainties. Whenever this uncertainty is close to 100% the corresponding 
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central estimate is not reliable. For example, the parameter c 11 ,1 differs significantly 

from the predietien error estimate and makes therefore the predietor unstable. 

Table 6.5 : Parametrie uncertainty in ARMAX model of the distillation column. The 

stochastic parameter uncertainty of the predietien error (PE) estimate corresponds to a 

2cr bound (95% confidence). The deterrninistic parameter uncertainty bas been computed 

by ellipsoid-aligned orthotopic parameter bounding (EOPB). 

~~~~ 
EOPB3 

~ % .fic % .fic % .fic % *) 

al -1.72e+O 2.7 -1.72e+û (0.3). -1.73e+0 (0.7). -1.73e+0 (0.8)* 

a2 7.37e-1 6.3 7.40e-1 (0.7). 7.43e-l (0.2). 7.42e-l (0.2). 

bll,l 7.94e-3 73.7 1.77e-2 (1.6)* 8.14e-3 (0.8). 7.80e-3 (2.2). 

bll,2 6.28e-2 10.7 5.69e-2 (0.7). 6.25e-2 (1.6) * 6.24e-2 ( 1.2) * 

bl1,3 3.18e-2 19.2 5.89e-2 (10.8)* 3.09e-2 ( 1.8) * 3.12e-2 (17.5)* 

bl2,2 -2.33e-2 27.6 -2.69e-2 (4.5)* -2.28e-2 ( 1.6)* -2.27e-2 ( 1.8) * 

bl2,3 -2.75e-2 24.1 -5.81e-2 (8.1) * -2.78e-2 (>100)* -2.75e-2 x 

bl3,2 1.03e-2 56.4 2.24e-2 (5.5)* 1.06e-2 (2.3). 1.08e-2 (2.3). 

b13,3 -2.23e-2 31.5 -4.07e-2 ( 4.1). -2.26e-2 (1.4/ -2.26e-2 (2.7/ 

bzu -1.69e-2 34.5 -1.69e-2 (3 .9)* -1.76e-2 (1.3)* -1.76e-2 (0.9)* 

b21 ,2 -2.93e-2 20.5 -2.93e-2 (>100)* -2.97e-2 (2.3)* -2.95e-2 (2.1) * 

b21,3 1.42e-2 44.0 1.54e-2 (>100)* 1.57e-2 (22.6)* 1.57e-2 (17.1)* 

b22,1 8.69e-3 67.3 9.03e-3 (>100)* 8.76e-3 (2.5). 8.64e-3 (2.4). 

b22,2 3.11e-2 18.9 3.05e-2 (> 100). 2.97e-2 (4.6)* 2.97e-2 (2.4). 

b22,3 8.39e-4 >100 8.39e-4 x 8.39e-4 x 8.39e-4 x 

b23,1 -6.68e-2 8.7 -6.58e-2 (>100)* -6.61e-2 (4.0)* -6.61e-2 (4.8)* 

b23,2 -5.34e-2 14.3 -5.36e-2 (>100)* -5.32e-2 (7.8)* -5.34e-2 (4.4)* 

b23,3 6.12e-2 13.6 6.20e-2 (> 100) * 6.23e-2 (0.7)* 6.24e-2 (0.7)* 

cll,l 5.29e-1 42.2 2.66e+1 (99.0)* 5.29e-2 x 5.29e-1 x 

cll,2 2.39e-1 >100 2.39e-1 x 2.39e-1 x 2.39e-1 x 

c22.1 1.21e-2 > 100 1.21e-2 x 1.21e-2 x 1.21e-2 x 

c22.2 1.72e-2 >100 1.72e-2 x 1.72e-2 x 1:72e-2 x 

I) Parameters b22.3 , c 1 ~,2 , c22.1 and c22.2 have been fixed totheir prediction error es ti mate. 

2) Also parameter c 11.1 has been fixed. 

3) Next parameter b12,3 has been fixed . 

*) Parameter uncertainty in ellipsoid-aligned coordinate system. 
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To reduce these large parameter uncertainties, an additional parameter wil! be fixed as 

described in Chapter 5. The order in which the parameters wiJl be fixed can be 

computed from the summed parameter correlations (Eq. 5.3). If accordingly the 

parameter c11 , 1 is fixed as wel!, 6.6% of the constraints violate the reference model. 

Note that because all e-parameters have been fixed, the bounded error identifieation of 

the ARMAX model reduees in fact to a pure equation-error problem. The identification 

results of the ellipsoid-aligned orthotopic parameter bounding (EOPB2) are given in 

Table 6.5. The parameter uncertainty of EOPB2 compared to EOPB 1 has been redueed 

significantly by fixing this additional parameter c11 ,J· Only the parameter b12.3 has still 
an uncertainty of more than 100%. lf this parameter is also fixed, the estimates of 

EOPB3 are obtained. The parameter uneertainty however reduees hardly, and the 

different uncertainties are mainly caused by a different orientation of the ellipsoid­

aligned coordinate system. 

To illustrate the aeeuracy of the estimated models, the magnitude plots of the transfers 

are compared with the spectra of the input/output data in Fig. 6.18. Because of the large 

similarity of the models, only the magnitude plots of the predietion error estimate are 

shown. The differences in the low frequeney range is caused by the ARMAX model 

structure selection which emphasizes the higher frequency range. 

For eomparison of the different models, the standard deviations of the predietien error 

for each output and for both the estimation and the validatien data set have been 

computed (Table 6.6) using the predietien error estimate ~ and the central estimates ~ 

obtained by bounded error identifieation. This quality measure indieates that all models, 

except the estimate EOPB 1, are al most the same. 

Table 6.6 : Comparison of prediction error and bounded error estimates. 

Estimation Validatien 
Type 

Output #l Output #2 Output #1 Output #2 

PE 3.256e-2 3.265e-2 3.095e-2 3.936e-2 
EOPB 1 5.965e-2* 3.267e-2 5.919e-2* 3.939e-2 
EOPB2 3.242e-2 3.29le-2 3.082e-2 3.977e-2 
EOPB3 3.240e-2 3.293e-2 3.078e-2 3.978e-2 

I) Parameters b22,3 , c 11 ,2 , c22,1 and c22,2 have been fixed totheir prediction error estimate. 

2) Also parameter c 11 ,1 has been fixed . 

3) Next parameter b 12•3 has been fixed . 

*) Polynomial C 11 (z:1) has been stabilized by mirroring the unstable roots inside the unit c ircle 

which causes an increased error function . 
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Fig. 6.18 : Magnitude plots of transfer functions in distillation column ; Spectra of 

input/output data (solid) and process transfer functions of the predietien error 

estimate (dashed). 

From a computationa1 point of view, however, the predietien error identification 

approach is prefeered because it is less time consuming and more accurate. The 

corresponding stochastic parameter uncertainty provides a reliable description of the 
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parameter uncertainty set e. Solving the ellipsoid-aligned orthotopic parameter bounding 

problem is computationally time consuming because of the repeated constraint 

processing. Especially for increasing number of parameters, more iterations are required 

befare the ellipsoid converges to its minimum volume. The main problem, however, is 

that set estimation is very sensitive to overparametrization, i.e. including parameters 

which hardly influence the inputfoutput behaviour. Repeated ellipsoid-aligned orthotopic 

parameter bounding is required where the most uncertain parameters will be fixed, in 

order to obtain reasonable central estimates !!c· 
Although a signal-to-noise ratio of 30 dB has been studied, which is large compared to 

an industrial production environment, this simulation example of a distillation column 

shows clearly the bottlenecks of the bounded error identification approach : 

• Data outhers which violate the defined upper bounds of the errors. 

• Sensitivity to overparametrization. 

6.4 A Glass Tube Production Process 

The identification of an industrial multivariable manufacturing process will be 

considered which can be approximated around an operating point as being linear and 

time-invariant. Because the signal-to-noise ratio which can be realized for this process is 

limited, only the prediction error identification approach will be described in this 

section. This example wiH illustrate that the prediction error identification algorithms 

adopting a minimal polynomial model structure can be applied to industrial processes. 

Figure 6.19 depiets a schematic outline of the most important parts of the tube glass 

production process. The raw material pours down through a feeder into the fumace 
vessel. This vessel is heated electromagnetically which yields sintering at the transition 

between the sand and the melted glass. At the bottorn of the furnace the melted glass 

pours out through a spout where a mandrel is accurately positioned. Shaping of the tube 

takes place at and just below the mandreL The shape of the tube is determined by two 

output variables : the wal! thickness (W) and the diameter (D) as function of time. In 

the production process, 4 wal! thickness (North, South, East and West) and 2 diameter 

(North/South and East!West) sensors measure the tube quality. The two process 

parameters that can be influenced most easily and affect the shape of the tube most 

directly with the shortest time delay over the largest frequency range, are the mandrel 

pressure (MP), i.e. the pressure of the gas led into the mandrel at the top, and the 

drawing speed (DS) [Bac87]. Increasing the mandrel pressure results in an increase of 

the diameter and, simultaneously, in a decrease of the wall thickness, while increasing 

the drawing speed results in a decrease of both the diameter and the wall thickness. 
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Fig. 6.19 : The glass tube production process. 

Fig. 6.20 : Bottom view of a glass furnace. 
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6.4. 1 Data Preprocessing 

For model identification a pseudo random binary noise experiment has been carried out 

resulting in a data set of 18000 samples where the two inputs have been excited 

simultaneously. An oversampling ratio of 10 is chosen for proper data preprocessing. 

The 4 wal! thickness and 2 diameter measurements must be preprocessed to construct an 

average wal! thickness and diameter signal. 

A smal! trend present in the measured output signals corresponds to very slowly varying 

process behaviour which is not the objective in the identification of a dynamic model 

and has therefore been removed from the signals (see for example Fig. A.l ). Further, 

peaks in the wall thickness measurements due to sensor failures which have been 

detected are eliminated by peakshaving (see for example Fig. A.2). An average wall 

thickness signa! can be constructed by simply adding the 4 measurements since all wall 

thickness sensors are installed at the same height (Fig. 6.19) and therefore no relative 

delay exists between the 4 signals. Since the diameter sensors are installed at different 

heights, the relative delay between the two diameter measurements has to be derived 

first before an average diameter signa! can be constructed. The time lag which 

corresponds to the maximum value in the cross-correlation between the North/South and 

East/West diameter signals defines this relative delay. 

The next step in the data preprocessing after constructing average wall thickness and 

diameter signals, is the estimation of the process delays. To determine these delays, the 

cross-correlations between all inputs and outputs have been computed which are 

depicted in Fig. 6.21. To make the delay estimation easier, a vertical Iine at every 101h 

sample is plotted which corresponds to the defined oversampling ratio. The process 

delays which have been determined from Fig. 6.21 are given in Table 6.7. 

Table 6.7 : Process delays. 

MP DS 

w 100 90 

D 60 40 

Since in a 2-input 2-output system only 3 degrees of freedom are available, it cannot be 

guaranteed that the defined delay matrix can be realized. For this problem, the realizable 

delay (Eq. A.14) matrix is : 

r [ 100 90 I 
Mdelay = 50 40 

(6.13) 
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Fig. 6.21 Estimating process delays where the dashed lines indicate the 95% 

confidence intervals and the dash-dotted lines indicate the defined process delays. 

This implies that with an oversampling ratio of 10, 1 sample delay from the mandrel 

pressure to the diameter cannot be corrected. Finally, for model identification the first 

1000 samples have been selected for the estimation data set and the remaining data 

samples for the model validation. The inputJoutput estimation data has been scaled to 

unit standard deviation and is depicted in Fig. 6.22. 

6.4.2 Model Estimation 

For minimal polynomial model identification it is required that the inputJoutput data is 

scaled in such a way that the white noise sequences disturbing the process have equal 

variance. Otherwise, a relative weighting is introduced during the prediction error 

minimization. Of course, these variances are not known a priori in practice. An accurate 

estimate however, can be obtained by first estimating a high-order equation-error model 

which can approximate any linear system arbitrary well for sufficiently high-order. 
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The standard deviation of the predietien error computed from a 501h order ARX-model, 

~pe = [ l.19e-1 7.43e-2], canthen be used to rescale the output data (Eq. A.18): 

s = 1 6.24e-1 o 1 
y 0 1 

(6.14) 

This sealing matrix indicates that the noise disturbing the wal! thickness measurements 

is larger compared to the diameter measurements. 

To obtain a model which is suitable for controller design and to obtain a white 

predietien error, a Box-Jenkins model structure has been adopted : 

y(k) = B(z-1) u(k) + C(z -1) ~(k) 
F(z -I) - D(z -I) 

(6.15) 

by selecting the polynomials B(z- 1), F(z-1) and C(z- 1), D(z- 1) in the general model 
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definition. The I sample delay which could nol be corrected in the data preprocessing 

phase, wil! be included in the model. Because the order of the process and the noise 

dynamics are nol known, the identification has been perforrned for several orders of the 

process (po) and the noise part (no), resulting in the following model structure : 
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Fig. 6.23 : Process and noise order selection ; Loss-function of estimation data set 

(solid) and validation data set (dashed). 

The loss-functions of the estimated models for the estimation and the validation data 

sets are depicted in Fig. 6.23 where the process order ranges from 0 to 8 and the noise 

order from 0 to 3. Theoretically, the loss-function V e® decreases continuously for 

increasing model order. However, due to overparametrization, the optimization rnight 

not converge correctly resulting in a larger value of the loss-function compared to a 

model of lower order. 
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From Fig. 6.23 it follows that the loss-function for the output-error models, i.e. no noise 

model, is significantly larger compared to the estimates including a noise model. On the 

other hand, a 3rd order noise model does not result in a significant lower value of the 

loss-function. By selecting a I st order noise model, the process order would be 6 (~ 1 ), 
while selecting a 2nd order noise model would indicate a 41h order process model (!42) 

when camparing just the values of the loss-function. Because it is difficult to decide 

which model should be selected consictering the values of the loss-function and the 

number of parameters only, the auto-correlation of the prediction error for every output 

has been computed. The results are depicted in Fig. 6.24. It is obvious from these 

figures, that the prediction error of the estimate ~1 with the I st order noise model is 

still clearly correlated, while the objective was to obtain a white predietien error. This 

will never be completely possible in practice, but the predietien error of the estimate 

~2 with the 2nd order noise model is almost completely within the confidence intervals. 

For this reason, the combination of a 41h order process model and a 2nd order noise 

model has been selected. 
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Fig. 6.24 : Auto-correlations of the prediction errors ; ~1 (left) and ~2 (right). 
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To realize a correct identification criterion in the prediction error method, the estimated 

prediction error should be white and of equal varianee for each output. If the sealing is 

not correct, an implicit weighting is introduced during the optimization. The whileness 

of the prediction error is an indication of the remaining dynamica! information which 

has not been estimated. In practice, however, a complete white prediction error can 

never be realized because the model will always be a low order process approximation. 

Applying an AR-model to the prediction errors can be used to validate the sealing of 

the inputfoutput data (see Section C.l, Eq. C.21) and provides information about the 

whiteness of the prediction error. The variances of the prediction error (crp/) and the 

whitened prediction error (crç2) for both outputs are given in Table 6.8 . For both outputs 

the varianee is approximately of the same size which shows that the sealing of the data 

based on the prediction error estimate of an high-order ARX-model is a fast way to 

scale the data properly a priori . 

Table 6.8 : V alidation of the data sealing. 

Varianee 0 AR.X 
2 

crpe 
2 aç2 

Wall thickness 1.42e-2* l.lOe-2 1.05e-2 

Diameter 5.52e-3 1.25e-2 1.15e-2 

*) Unscaled data. If the sealing matrix Eq. 6. 14 is included, this value 

reduces to the diameter variance. 

For model validation, the prediction errors for both data sets, estimation and validation 

respectively, are depicted in Fig. 6.25. Note that these prediction errors have been 

scaled to a normalized value by dividing by the standard deviation of the corresponding 

output. The standard deviations of these normalized prediction errors for both the 

estimation (cre) and the validation (cry) data set are given in Table 6.9. 

Table 6.9 : Model validation. 

Standard deviation cre crv 

Wal! thickness 1.68e-1 2.0le-1 

Diameter 1.12e-l 1.21e-1 
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This validation of tbe estimate _!42 using an independent data set shows clearly tbat an 

accurate model of the glass tube production process has been obtained in tbe defined 

operating point. The signal-to-noise ratios which have been realized with this model for 

the wal! thickness and diameter outputs are 15.5 dB and 19.0 dB respecti vely. These 

rather low signal-to-noise ratios make this example not suitable for bounded error 

identification . 
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Fig. 6.25 : Prediction error for estimation (left) and validation (right) data set. 

A further indication of the model accuracy is shown in Fig. 6.26. In this figure the 

magnitude plots of the process model are compared with the estimated spectra of the 

inputfoutput data for each transfer. The 41h order process model can describe the 

dynamica! behaviour of the tube glass production process accurately. The remaining 

misfit can only be reduced if a model of significantly higher order is estimated. 

However, according to Fig. 6.23, the quality of the model in terms of prediction errors 

wil! hardly improve. 
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Fig. 6.26 : Magnitude plots of transfer functions in the glass tube production 

process ; Spectra of input/output data (solid) and process transfer functions of 

predietien error estimate (dashed). 

These case studies show clearly that the predietien error identification approach using a 

minimal polynomial model structure provides fast and very efficient identification 

algorithms to model multivariable processes accurately. This approach definitely 

outperfarms existing multivariable identification procedures using (pseudo-) canonical 

model structures. A library of identification and data preprocessing routines is one of 

the deliverables of this thesis work. 

To apply bounded error identification methods to multivariable processes, an extremely 

high quality of the data is required which cannot always be realized in an industrial 

environment In addition, this bounded error identification method is more sensitive with 

respect to vialating theoretica! assumptions then the predietien error identification 

approach. Therefore, depending on the character of the noise, predietien error 

identification is preferred to model industrial processes because of its robustness and 

relative low computational complexity compared to bounded error identification. 
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Conclusions 
and Remarks 

In this thesis procedures have been described for the identification of multivariable 

linear time-invariant systems in the time domain which yield a nomina! model with 

uncertainty bounds on its parameters. This parametrie uncertainty can either be 

stochastic or deterministic depending on the assumptions which have been made with 

respect to the noise which disturbs the system, i.e. a statistica! or a bounded error 

description. The analyses made can be summarized in the following statements : 

The extension of SISO process descriptions in prediction error identification to 

mul ti variabie systems using (pseudo-) canonical model structures have been 

studied extensively in the literature [Lju87, SS89] but are of limited use in 

practice. This limitation is caused by the fact that structural indices, which are 

required for these descriptions, are hard to estimate for industrial processes. 

Adopting a minimal polynomial model structure [Bac87] with an extension to 

the general family of polynomial model structures (Eq. 2.17), avoids the problem 

of structural indices and is therefore more suitable for modeHing multivariable 

industrial processes (Chapter 2) . 

• If the data is properly scaled, the minimal polynomial model structure for 

multivariable systems shows interesting similarities with the SISO case (e.g. 
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Eq. 2.24). The first- and second-order derivatives which are required for solving 

the parameter estimation problem by non-linear least-squares optimization, can 

be computed analytically by simply filtering data sequences (Appendix B). This 

results in fast and very efficient identification algorithms. A library of 

identification and data preprocessing routines is one of the deliverables of this 
thesis work. 

• In order to provide a quality measure of the model (Cramér-Rao bound), it is a 

fundamental requirement in current prediction error identification that the process 

is (asymptotically) contained in the model set. This requirement has been 

relieved in the present work. If the process is not contained in the model set, 

which is always the case in practice, an estimation of the parameter covariance 

matrix has been derived which can be used to compute stochastic uncertainty 

bounds on the parameters (Appendix C). 

The basic idea of bounded error identification is that the process behaviour can 

be described by a model from a given model set where the data set does not 

conflict the bounded error assumption (Section 3.2). In practice, however, the 

interplay between model structure (with linearized constraints in the parameter 

space), error distribution, signal-to-noise ratio, length of the data set and data 

outliers, requires proper precautions like outlier correction and/or fixing specific 

parameters (Section 3.3 and Chapter 5). This, to avoid an empty or unbounded 

parameter uncertainty set. 

The least conservative approximation of the parameter uncertainty set in bounded 

error identification can be obtained by ellipsoid-aligned orthotopic bounding. 

This approach combines the features of ellipsoidal and orthotopic bounding and 

treats the parameter space as a coordinate free Euclidean space. 

• In identification, sensitivity to overparametrization can be reduced by fixing 

those parameter values which have only a smal! contribution to the inputfoutput 

behaviour (Chapter 5). These values can be fixed to predefined values for 

example of a reference model. By fixing the parameters which are difficult to 

estimate, the uncertainty in the remaining parameters wil! be reduced. This 

approach may seem counter intuitive. Indeed, one may argue that it is logica! to 

fix system parameters with small uncertainty and which have a relatively large 

contribution to the system behaviour. However, with the proposed metbod an 

error in a fixed parameter which has a large uncertainty and a smal! dynamic 

contribution has little influence on the set of identified models. These parameters 

may be viewed intuitively as poorly observable parameters of the model set 
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(Section 5.3). This strategy can be applied both in deterministic model set 

estimation and in conventional stochastic prediction error identification. The 

criteria for bad observability then is respectively sign uncertainty in deterministic 

identifiç:ation and standard deviation exceeding the absolute value of the 

expectation in the stochastic case. 

• Parameter bounds which have been computed either by stochastic prediction or 

by bounded error identification can be considered as reliable if the uncertainty 

bounds obtained by both methods are of equal size. So both identification 

methods have to be applied to obtain a measure of the quality of the parameter 

uncertainty (Section 3.4). 

From practical experience, the following conclusions can be drawn : 

• The case studies (Chapter 6) have illustrated that from a computational point of 

view prediction error identification is less complex compared to bounded error 

identification. The latter approach requires repeated constraint processing in 

ellipsoid-aligned orthotopic bounding (Section 3.2) to approximate the parameter 

uncertainty set as accurate as possible. In addition, the predietien error 

identification approach is more robust with respect to violating the theoretical 

assumptions which is often the case in practice. 

• In order to apply bounded error identification methods to multivariable industrial 

processes, an extremely high quality of the data is required (Section 6.3). 

• The accuracy of a model which describes a process is deterrnined by the quality 

and quantity of the data. Once the data has been prepocessed correctly, the 

application of the identification algorithms is straightforward and automated and 

will certainly provide accurate models for the given data set. However, the 

accuracy of this model with respect to the actual process will highly depend on 

the quality and the quantity of the data. Therefore, system access, experiment 

design, process excitation and the duration of the experiments in production 

processes will mainly determine the achievable model quality {Chapter 6). 

Identification and robust control design based on a worst case approach will in practice 

not result in a closed-loop behaviour of acceptable performance. Treating all models in 

the model set equivalent, will make the control design very conservative. It is therefore 

required to include stochastic information in future research and to develop 

identification and robust control design methods which can handle the models in the 

model set with different probability. Consequently both the bounded error îdentification 
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and the stochastic prediction error estimation will then be indispensable to provide 
together the necessary information for control design. 



A 

Data Preprocessing 

Al Delrending A3 Delay Correction 

A2 Peakshaving A4 Data Decimation and Sealing 

The quality (accuracy) of models obtained by identification techniques will in practice 

highly depend on the quality of the data which has been offered to the identification 
algorithms. Disturbances which will always be present in industrial process data range 
from noise and spikes to drifts and offsets. These disturbances will decrease the 
resulting model quality. Therefore, their influence should be diminished by dedicated 
signal processing techniques [Bac87]. 
For parameter identification techniques, the models descrihing the system dynarnics 
should be parsimonious reducing the number of parameters as much as possible. For 
increasing number of parameters the bias of the estimate will reduce while the varianee 

will increase approximately by n9/N. Overparametrization, however, decreases the 
model quality because the additional parameters will hardly improve the identification 
criterion while thereby the higher dimensional identification problem is numerically 
harder to solve. In particular, time delays in the measured process data should be 
compensated in advance as much as possible before identifying the dynamica! system. If 
no correction is applied, many extra moving average parameters have to be estimated, 
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which deteriorate the model quality. 

Finally, the sealing of the measured data is the last step in the data preprocessing which 

influences the model quality. In industrial practice not all inputs and outputs have the 
same order of magnitude. Additionally, to realize a correct identification criterion for 

prediction error minimization of multivariable systems, it is required that the variances 
of the prediction error for the several outputs are of equal size. 

In this appendix, each step of the data preprocessing : 

• Vetrending to remove drifts and offsets, 

• Peakshaving to eliminate data outliers, 

• Delay correction to reduce the required number of parameters, 

• Data decimation and sealing of input and output sequences to realize a 
correct identification criterion, 

will be described briefly. For industrial practice in particular, all these steps have to be 

processed to obtain useful data for identification. 

It is assumed that the process signals have been sampled at a frequency higher than the 

frequency actually needed for identification. This oversampling rate should be chosen 5 

to 10 times higher than the bandwidth of the process. The redundancy (due to the 
oversampling) present in the test signals which have been defined for the identification 

experiments, can be used for proper preprocessing of the recorded data. 

A. 1 Detrending 

The purpose of identification is to describe the dynamica! behaviour of the process 

accurately. In industrial practice, however, recorded process data often shows a low 

frequent drift which has been induced by external changes, e.g. temperature variations. 
This low frequent inforrnation present in the measured output data should be considered 

as a disturbance because no process dynarnics are described and therefore this drift has 

to be eliminated. Detrending of the input signals consists only of offset correction since 

these signals are assumed to be exact, e.g. setpoint inputs. 

A measured signal can be divided into a process signal with zero mean and a trend 

signal : 

(A.l) 

To determine the trend signal, various types of detrending can be distinguished 

depending on the best description of the drift which should be selected by visualization 

of the data: 
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• Mean : the mean value is removed frorn the data signal. In fact no drift is 

present but only an offset. 

• Linear : linear detrending rernoves the best straight-line fit from the data 

signal. 

• Filter : the drift can be described best by a low frequent signal which has 

to be elirninated by filtering. 

Note, that whenever spikes (data outliers) disturb the recorded data, e.g. sensor failures, 

data acquisition errors etc., the detrending will be influenced significantly by these 

outlîers. Therefore, the signal should be clipped before applying any detrending to 

reduce the influence of these outliers. Formally, for any rneasured data value the 

clipping is defined by : 

·1 
xmax x> xmax 

x clip x xmin ::;; X ::;; xmax 
(A.2) 

xmin x< xmin 

where xmin and xmax indicate the lower and upper bound respectively. 
Mean and linear detrending are standard available (MATLAB identification toolbox), 

but these types are often not sufficient for accurate detrending of low frequent drifts. To 

extract these low frequent drifts, the clipped process signal is filtered with a !ow-pass 

second order trend filter : 

k -1 
pZ 

(A.3) 

where the gainis defined by kp = (1-p)2 realizing a unit transfer at frequency zero. The 

pole p of the filter can be derived from the trend period (Ttrend in samples) defining the 
highest frequency which the trend signal will contain. This trend period bas to be 

deterrnined by hand frorn the visualized signal. Further, the damping of the filter bas 

been set to 1 dB whicb corresponds to a damping ratio Ç = 0.89 in order to realize a 

detrending filter with no oversboot l,Uld oscillation in its step response. The pole p of the 

filter can then be computed from [HSS82] : 
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p • exp ( -Ç roT,:",",) • oxp[ -Ç ~mplo l 
[ 

27tÇTs:mplel [ -21tr l =exp =exp ------~~---

r:endR TtrendR 

(A.4) 

with rotrend ro ~(l-Ç2) where ro is the undamped natural frequency, r:ample the 
sampling time (seconds), rotrend the trend frequency and T~rend the trend period 
(seconds). Note that the superscript * has been used to change the units of the time 
variables from samples to seconds. 

Before filtering, the beginning and ending data sequences of the signa! have to be 
deflected with matching slope to minimize startop and ending transients of the filter. 

The length of these data sequences can be derived from the settling time r:ettling of a 
unit step response of the second order filter. The time to reach its steady state value is 

approximately given by : r:ettling = 8/Çro. Therefore the required length of the data 
sequences to eliminate transient effects of the filter is given by : 

T settling 
8 

* Ç 00trend T sample 

* r:-:::;:-8TtrendV 1-Ç-

* 2 1t Ç T sample 

8TtrendR 

1t 

(A.5) 

To avoid that the connections of the deflected beginning and ending data sequences is 
based on extreme values or outliers, a mean conneetion value is computed taking 

Tsettlin/10 samples into account (see Fig. A.l). These mean conneetion values of the 
beginning and ending data, are added to the original data sequence and used to position 
fictitious x-y axes. A matching slope canthen be realized by mirroring the data selected 

by Tsettling around the origins of these fictitious x-y axes. Further, to realize zero-phase 
distortion, the data signa! bas to be filtered causa! and anti-causa! with matching initia! 

conditions. When deriving in this way the trend signal : 

(A.6) 

the detrended process signa! can simply be obtained by subtracting the trend signa! from 

the clipped signa! : 
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(A.7) 

The trend period T trend should be chosen carefully and as low as possible because all 

frequencies below this trend frequency will be filtered out and hence reducing tbe 

frequency contents of the signals available for identification. An example of detrending 

where clearly filtering is required is depicted in Fig. A.I. 

Detrending 
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Fig. A.l : Detrending and clipping in data preprocessing ; a) A trend period 

of Ttrend 12500 samples bas been selected fora measured (solid) signal of 
N = 18000 samples. The white dots indicate tbe mean conneetion values 

where fictitious x-y axes have been positioned to deflect tbe beginning and 

ending data of T settling = 8098 samples. The grey line shows the computed 
trend signal and the horizontal (dashed) lines indicate the bounds which have 
been used for clipping the data signal ; b) Detrended (solid) signal. 
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A.2 Peakshaving 

Although the influence of spikes in the recorded signals has been limited by clipping 

during the detrending phase, the remaining amplitudes of the spikes are still expected to 

be larger than the signal variations. If these spikes are not removed from the process 

signals, the corresponding energy might be large compared to the noise energy. 

Therefore these disturbances can have a considerable influence on the estimated model 

whereas they may not be caused by the dynamics of the process. A correction of these 

data samples is therefore necessary. 

Peakshaving 
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Fig. A.2 : Peakshaving in data preprocessing ; a) The horizontal (dashed) 

lines indicate the newly defined upper and lower bounds for peakshaving. 

All data values of the detrended (grey) signal outside these bounds are 

considered as outHers and have been corrected by interpolation (solid 
signal) ; b) Peakshaved (solid) signal. 
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The data correction of these spikes can be realized by linear interpolation. Since the 
duration of outliers can range from one sample to several samples, the first sample 
before and after an outlier has to be deterrnined. Outliers are selected by defining new 
upper and lower bounds for the detrended signa!. In fact, all those data samples are 
considered to belong to the selected outlier which are outside this band. Once these 
indices are known, the data samples belonging to a outlier can be corrected by linear 
interpolation. This correction bas to be performed for all detected outliers. The 
peakshaving in the data preprocessing bas been illustrated in Fig. A.2 where the clipped 
and detrended signa! of Fig. A.l is further processed. 

A.3 Delay Correction 

Time delays in . industry are often introduced because the required inforrnation is not 
instantaneously available (e.g. due to delay in data acquisition) and/or can only be 

measured at delayed time instants (e.g. due to high temperature which sensors cannot 
tolerate). If measured process responses contain time delays and if the data is not 
corrected before using it for process identification, these time delays necessarily have to 
be estimated as part of the process model. Although the time delays constitute an 
essential part of the process, they can be treated separately in the identification process 
so as to avoid unnecessary complex (i.e. high order) models to describe the dynamica! 
behaviour of the process under study. Estimation of the process delays basedon the data 
during the identification by means of polynomial models, increases the number of 
parameters to be estimated significantly. The model quality will reduce because of the 
effect of overparametrization. Therefore, time delays should be estimated separately and 
treated as a priori inforrnation for the process identification. 
Estimation of time delays in process transfers can be done using correlation techniques. 
When analyzing_ the cross-correlation between input and output, the process is assumed 
to be ergodie and the input signa! applied to the dynamica! system is assumed to be a 
stationary, white, zero mean noise sequence. 
The norrnalized cross-correlation tunetion for time lag 't when N tends to infinity 
between an input signa! u and an output signa! y is defined by : 

l N - max(O;t) 

- .E u(k)y(k+'t) 
N k =l - min(O;t) (A.8) 

where 
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(A.9) 

The advantage of computing the normalized cross-correlation function is that confidence 

. intervals can be provided. It has been shown in [SS89] that when the number of data 

samples N tends to infinity and r
0
y(oo) = 0, the normalized cross-correlation function 

converges in distribution to a normal distribution : 

di st 
--7 N(O,l) 

(A.lO) 

and a 95% confidence interval indicating no correlation between the signals (null 

hypothesis) is given by : 

(A.ll) 

The time delays can be found by selecting the beginning of the cross-correlation values 

which differ significantly from the confidence interval. An example of estimating the 

time delay from the cross-correlation function using industrial data, is depicted in 

Fig. A.3. 

c 0 .g 
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] 
-0.3 

0 100 200 300 
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Fig. A.3 : Delay estimation. The dasbed lines indicate the 95% confidence 

interval. The input has been excited with a PRBN sequence and the delay 

obtained from this figure is about 90 samples. 
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Note that for a process with nu inputs and ny outputs typically (nuxny) different time 
delays have to be corrected. The correction of the time delays can be realized by 

shifting the signals in time with respect to each other. Soppose now that for a 

multivariable system a delay matrix, Mdelay E :enyxnu , has been determined from the. 
various cross-correlation functions. The output delay, dy E Rnyxl, has to be computed 

first by selecting the minimum delay for every output : 

dy,i = min(Mdelay,i*) 

Mdelay,i* := Mdelay,i* dy,i 

The remaining delays have to be corrected by the inputs, du E Rlxnu : 

(A.12) 

(A.l3) 

and the process delay matrix which can be realized, M~elay E Rnyxnu, is then given by : 

(A.l4) 

Note, that this delay correction depends on the order in which the input and output 

delays are processed. Further, not all delays in a multivariable system which have been 

estimated, for example from the cross-correlation functions (Fig. A.3), can always be 

corrected because the degrees of freedom for input/output delay correction are limited. 

For example in a 2-input 2-output system, 3 delays can be corrected which define 

automatically the remaining delay. In general, nu+ny-1 delays can be corrected in a 

multivariable system with nu inputs and ny outputs. 

A.4 Data Decimation and Sealing 

The final step in the preprocessing to obtain data suitable for identification, is the data 
decimation and sealing. Since it has been assumed that the data is recorded using a 

higher sampling frequency than needed for identification, the decimation of the data can 

be realized by simply selecting every kth sample corresponding to the oversampling . 
ratio. 

The most important step however is the data sealing. As described in Chapter 2 to 

realize a correct identification criterion for prediction error minimization of 
multivariable systems, the data should be scaled in such a way that the covariance 
matrix satisfies : 
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(AIS) 

Of course, this sealing is not known a priori and an iterative procedure to satisfy 

Eq. A.l5 seems not very useful in practice. Therefore an alternative approach will be 

proposed. 

Because the data will be recorded probably in different units resulting in large 

differences between the signals with respect to their amplitude, the first step in the 

sealing is approximately unifying the signal amplitude to equal standard deviation : 

uscale [ diag(g:u) r u 
(A.16) 

yscale [ diag(g:y) r y 

where .!:!u e :eixnu and !!y e Rlxny define the standard deviations for all inputs and 

outputs respectively. 

Applying prediction error minimization for multivariable systems, Eq. A.16 shows that 

the input/output data has to be scaled in such a way that the supposed white noise 

sequences disturbing the process have equal variance. Otherwise a relative weighting is 

introduced during the prediction error minimization reducing the model quality. Of 
course, these variances are not known a priori in practice. An accurate estimate 

however, can be obtained by first estimating a high order equation error model : 

(A.l7) 

which can be computed analytically and can approximate any linear system arbitrary 

well for sufficiently high order as N tends to infinity (see Section 2.3.3). Using the 

standard deviation of the prediction error, Sl'e e Rlxny, computed from this high order 

ARX-model as new sealing factors, the rescaled output data to realize Eq. A.15 is given 

by: 

(A.l8) 

Note that only rescaling of the output is sufficient since in prediction error minimization 

it is assumed that the inputs are exactly known. This results in the following overall 
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sealing factors for the original data : 

su = [diag(Q:u)r 
(A.l9) 

sy =min (Q:e) [ diag(Q:yQe) r 

The sealing of the data using this approach is based on the assumprion that the final low 
order model obtained by idenrification describes the process accurately realizing a white 
predierion error. Because a white predierion error cannot always be realized in an 
industrial environment, the correctness of the sealing should always be verified after 
completing the model esrimation. 
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B.l Model Structure 
B.2 Prediction error 

B 

Minimal Polynomial 
ldentification 

B.4 Parameter Optimization 
B.S Gradient Computation 

B.3 Pseudo-linear Regression Form B.6 Hessian Computation 

This appendix describes briefly the basic ideas of the minimal polynomial identification 
procedure based on numerical minimization of the prediction error, the identification 
criterion. The prediction error approach will be reviewed briefly and the minimal 
polynomial model structure is rewritten into a pseudo-linear regression forrn. The 
solution to the identification problem is described in parameter optimization using 
analytic expressions for the Gradient and the Hessian, the first and second order 
derivatives of the preilietion error, respectively. 

8.1 Model Structure 

The input/output data of a multivariable system with nu inputs and ny outputs consisting 
of N data samples tagether with the independent white noise sequences disturbing the 
process, are defined as : 
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y = E RNxny , U= E RNxnu , .::,= E RNxny (8.1) 

y T(N) !! T(N) 

For identification of multivariable systems, the minimal polynomial model structure 
which has been introduced in Section 2.2.2, is given by : 

where the polynomials are defined as : 

8ij(z -1) 

cii(z - 1
) 

{ l +al z -1 + ... + anaz -na ) I ny 

-nk .. ( 1 -nb··+ 1 ) z •J b-· 1 + b-· 2z- + ... + b-· b z •J 
IJ, IJ, IJ,fi ij 

l d -1 d -nd 
+ 1 z + ··· + ndz 

l f -1 f -nf + I z + ... + nfz 

i= 1... ny 

j = 1... nu 

(8.2) 

(8.3) 

In this model structure, A(z-1), D(z-1) and F(z'1) are described by scalar polynomials 
while 8(z-1) and C(z-1) are matrix polynomials of size (nyxnu) and (nyxny) 
respectively. Under the assumption that the influences of the noise sequences are 
mutually independent, C(z-1) can be restricted to have diagonal entries only (off­
diagonal polynomials are zero). This reduces the degrees of freedom and eliminates in 
fact the true multivariable character of the noise model, but the computational 
complexity for the parameter estimation reduces significantly. The complete structure of 
the multivariable minimal polynomial model is defined by the structure array : 

nn = [ na nb11 ... nblnu nb21 ... nbnynu ncll ... ncnyny 

nd nf nkll ... nklnu nk2l"' nkuynu ] 
(8.4) 

where the entries define the orders of the various polynomials and where n~j indicates 
the additional delay from input j to output i. All polynomial coefficients of Eq. 8.3 are 
combined in a parameter vector, .e. E epe c R"9• defined by : 
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!! = [ al ... ana bll 1 ···bil nb b12 1 ... bnynu nb ell 1 ... Cll nc 
' ' J 1 ' ' nynu ' ~ 11 (B.5) 

Note that the parameter vector!} will be restricted to those values for whieh the model 
as well as the predietor are asymptotically stabie (see Eq. 2.5). 

8.2 Preelietion Error 

The prediction error is defined by : 

~(k.!!) = y(k) - y(kl!!) (B.6) 

where ft is defined in Eq. B.S and the predietor is defined as : 

The prediction error : 

(B.8) 

ean be simplified by introducing the following auxiliary variables : 

(B.9) 

where similar to the data definition in Eq. B.l : 

E :e.Nxny, V(_!!)= E RNxnu, E(_!!) = E :e.Nxny 

y T(N,_!!) ~ T(N,_!!) 

(B.lO) 

Then, the predietion error .~<(k,ft) reduces to : 

(B.ll) 

Sinee C(z-1
) is restrieted to have diagonal entries only, the polynomial matrix inversion 
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in Eq. B.ll becomes very simple, C 1(z-1) = diag{l!C11(z-1) ... 1/Cnyny(z-1)}. The 

inversion reduces to simple scalar operations applied to the diagonal entties C1i(z-1). 

Note that for identification, it is required that the process under study is stable. 
Therefore, model stability which is obtained by stability of the polynornials A(z-1 ), 

D(z-1) and F(z-1), i.e. having roots inside the unit circle, should be imposed by the data. 

For preilietion error estimation however, the predietor has to be stabie as well in order 

to compute stabie predictions. This requires stability of the polynomials C(z-1), or, in 

other words, the noise model has to be minimum phase. Because of the allpass character 
of this noise model, due to monic polynornials C(z-1) and D(z-1), stabie predietors can 

be realized by multiplying the noise model wilh an appropriate allpass filter, wilhout 

changing the estirnate. In practice, this corresponds to deflecting possible unstable roots 
of the polynomials C(z-1) into the unit circle. This approach guarantees a stabie estimate 

of the multivariable system on the long run. 

8.3 Pseudo-linear Regression Form 

To derive a pseudo-linear regression form of the minimal polynornial model structure, 

the scalar case will be considered first : 

A(z -1) y(k) 

w(k,ft) 

[ A(z - 1) y(k)- w(k,ft) ] 

v(k,ft) 

(B.12) 

The prediction error e(kJ!) which describes in fact the noise sequence ~(k) disturbing 

lhe process, can be written as : 

-e(k,ft) [CCz -1) -l]e(k,ft) [D(z - 1)- I]v(k,ID- v(k,ft) 

[qz-1)-l]e(k,ft) [ncz-1)-l]v(k,ft)-[A(z-1)-l]y(k) 

- y(k) - w(k,ft) 

(B.l3) 

where A(z-1), C(z-1), D(z-1) and F(z-1) are monic polynornials. This results in the 
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following expression of the predietor : 

y(ki!D- y(k) 

J.. 

Y(kl!!) 

[qz-1) l]e(k,Q) [D(z-1) l]v(k,Q)-[A(z-1) l]y(k) 

y(k)- [ F(z -I) 1] w(k,Q) + B(z -I) u(k) 

[ A(z -I) 1 ]y(k) + B(z -I) u(k) + [ C(z -l) 1] e(k,Q) 

- [ D(z -I) 1] v(k,Q)- [F(z - 1) 1] w(k,Q) 

which can then be rewritten in the required pseudo-Iinear regression form : 

a b c d f f- Parameters 
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(B.14) 

(B.l5) 

where .e. is defined in Eq. B.5. The extension to the multivariable case for the minimal 
polynornial model structure is straightforward and results in : 

where 

and 

$el(Q) 0 0 

0 $e/!!) ··. 

0 ··. 
.· .. 0 

0 0 cpe (Q) 
ny 

0 

0 0 

0 cpunyl ... $u 
nynu 

cpv/!!) cpwi(Q) 

cpv/Q) $w/!!) 

cpv (Q) ny cpw (Q) 
ny 

Ycoi(Q) [ Yt(n+ liQ) ... Yt(NIQ) Yz(n+ liQ) ... y n/NIQ) r 

(B.l6) 

(B.l7) 

(B.18) 

The column representation of the predietor yA 
1
(6) results from the "common" co -
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parameters in all outputs due to the minimal polynomial model structure. The data 

samples of all outputs in the predietor matrix Y(.~D have to be stacked on top of each 

other when rewriting the minimal polynomial model into a pseudo-linear regression 

form. The several entries of the regression matrix <P(e) describe the regression 

sub-matrices which have been built from the input/output data and the auxiliary 

variables (Eq. B.9) : 

(B.19) 

where n defines the maximum delay required for initialization : 

n = max([na nb .. +nk .. -1 nc .. nd nf]) 
. • lj IJ ll (B.20) 
l,J 

8.4 Parameter Optimization 

Methods for numerical minimization of the weighted loss-function Ve<.!D : 

1 (B.21) 

where 

(B.22) 

update the estimate iteratively. This is usually done according to : 
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(B.23) 

where 1i is a search direction basedon information about Vë(!!) acquired at previous 

iterations, and d.i is a positive constant deterrnined so that an appropriate decrease in the 

value of V ë (!!) is obtained. Numerical minimization methods using values of the 

function, of its gradient (the first order derivative), and of its Hessian (the second order 

derivative) correspond to Newton algorithms, where the correction is chosen in the 

'Newton' direction : 

(B.24) 

To obtain an expression for the gradient vector of Vê(!!) note that the first partial 

derivative with respect to ej is given by : 

2 
Ncol 

E 
f=l 

Define now the Jacobian matrix J(!!) by : 

J(!!) 

dë coi(Ncol•!!) 

ae, 

then the gradient vector can be written as : 

de cot(l,.Q.} 

aena 

dëcot<Ncol•!!) 

aena 

Va Vë(.Q.) là G(.Q.) = N2 J T(!!) ~col(!!) 
col 

(B.25) 

(B.26) 

(B.27) 

Differentiating Eq. B.25 with respecttoOi gives the ilh-element of the Hessian matrix : 

(B.28) 

Let HtiD he the Hessian matrix of ëc01 {Q,.Q.) : 
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then the complete Hessian matrix of VeOD can be written as : 

(B.30) 

R(!l) + S(ft) 

Apparently, the derivatives of a sum-of-squares function display considerable structure. 

This structure can be explored even more when consictering the special construction of 

the minimal polynomial model which is clearly visible in the pseudo-linear regression 

form (see e.g. regressionmatrix c;tl(9) of Eq. B.17 and the appendices 8.5 and B.6). 

The iterative search for the optima! parameter estimates is terminated when at iteration 

step i no impravement of the loss-function Ve(ft) in the calculated search direction l!i 
can be found after the step length a! bas been bisected I 0 times starting with ai,o = I, 

or when: 

and 

are satisfied where a toleranee margin y1 is defined for the maximum norm of the 

gradient and a toleranee margin y2 for the minimal parameter improverneut To update 

the parameter vector during the optimization correctly towards the minimum of the 

criterium, it is required that the Hessian matrix H(ID is positive definite (all eigenvalues 

larger than zero). When starting the optimization, possibly far from the optimum, the 

term S(ID in Eq. B.30, consisting of the second order derivatives with respect to the 

prediction error, can make the Hessian non-positive definite. In this case, to guarantee 

convergence to a (local) minimum, the Hessian matrix will be approximated by R(ID 

which is positive definite by construction. To terminate the optimization successfully, 

the complete Hessian matrix H(ID has to be positive definite and the toleranee margins 

defined in Eq. B.31 have to be satisfied. This problem of a non-positive definite Hessian 

matrix H(ID can be reduced by providing accurate initial estimates of ft (see 

Subsection 2.3.3). 

8.5 Gradient Computation 

In this section, expressions will be provided to compute the gradient (first-order 



8.5 Gradient Gomputstion 175 

derivatives) of the weighted prediction error (Eq. B.22) : 

(B.32) 

with respect to the parameters f! in an efficient way. The complete Jacobian matrix 
J(ID e Rny(N-n)xnB (Eq. B.26) is defined by : 

J.:',<.!!l Jb~l(.!!_) ··· Jb~nu(ft) 0 0 0 

J.~lft) 0 0 Jb~u+J(.!!_) ... Jb~2nu(ft) • .. 
J(ft) = 0 0 · .. 

• .. 0 0 

0 
Ja.ny(.!!_) 0 0 

0 Jb,(ny-l)nu+l(!!) 
0 

... Jb.ny nu(!!) 

Jc~I(Q) 0 0 Jd~l(!!) 1r~(Q) 

0 Jc~2(!!) ··. 1d~2(!!) Ir.~(Q) 
0 •., 

'· 0 

0 
0 

0 Jc,nyC\V 

(B.33) 

which shows the same structure as the regression matrix <I>(ID. The derivatives can be 

distinguished with respect to the parameters of the several polynomials and the outputs 

of the dynamical system, e.g. : 

êJei(k,!!) = L.(z -1) D(z -1) 
1 

1 
Yi(k-n) 

Cii(z- ) 
(B.34) 

This expression shows clearly that the derivatives of all parameters a0 for the i1h output 

can be computed by filtering Yi correctly. To reduce data storage, a matrix Ja® is 

constructed : 

(B.35) 

where the i1h column contains the derivative information of the a-parameters for 

output i, i.e. : 

(B.36) 
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This is not the true Jacobian matrix, but a matrix that contains this information in a 

compact way. The entries of the Jacobian matrix, e.g. Ja~(!!), can then be constructed 

by selecting the correct data sequence in the derivative matrix Ja(!î) and shifting this 
data sequence according the delays which correspond to the selected parameters : 

(B.37) 

The derivatives of the prediction error with respect to the parameters of the polynomials 
Bij(z-1), Cii(z- 1), D(z-1) and F(z-1), can be derived in a similar way : 

aei(k,Q) 

aei(k,Q) 

êldn 

aei(k,Q) 

êlbij,n 

Li(z -l) - D(z -l) [ A(z -1) Yi(k-n) 
c?cz -t) 

11 

Lj(z - 1) -1 
ei(k-n,e) 1 -Cij(z- ) 

nu 

E 
j=l 

=> Jc,*i(Q) ê Li(z -1) 1 E*i(Q) 
cii(z 

Li(z -t) 
1 [ A(z - 1) Yi(k-n) 

nu 

E 
Cii(z -I) j =1 

Li(z-1) 
1 

vi(k-n,Q) 
cii(z- ) 

(B.38) 

(B.39) 

-1) l 
U·(k-n~·-n) 

F(z -1) J J 
(B.40) 

J c(Q) E JRNx ny (B.41) 

-1) l 
U·(k-n~·-n) 

F(z - 1) J 1 
(B.42) 
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(B.43) 

(B.44) 

It has been shown that the tirst-order derivatives of the preilietion error with respect to 

the parameters, V 9 ~(k,!!), can be computed by a single filtering procedure for all the 

parameters of one polynomial, i.e. A(z-1), BijCz-1), Cii(z-\ D(z-1) and F(z-1). It is 

therefore sufficient and efficient to store the first order derivative information in data 

matrices : Ja<ft), Jb@, Je®, Jd® and Jf(ID where the subscripts indicate the 

corresponding polynomials. 

8.6 Hessian Computation 

In this section the elements of the Hessian matrix will be computed (the second-order 

derivatives) of the prediction error with respect to the parameters. The derivatives can 

be distinguished with respect to the parameters of the several polynomials similar to the 

Gradient computation (Section B.S), e.g. : 

a2ëi(k,Q) 

aamê)cii,n 

(B.46) 

This shows that also the second-order derivatives can be computed by appropriate 



178 Minimal Polynomial ldentification 

filtering of data sequences. A matrix HacC!!) is constructed : 

Hac(!!) [ Hac,*l(Q) ... Hac,*ny{Q)] E lR.Nxny (B.47) 

for compact data storage, where the ith column contains the second order derivative 

information of all (a,c)-parameters for output i, i.e. : 

(B.48) 

Similar to the computation of the Jacobian matrix J(f!) (Eq. B.33), the tensor elements 

of the Hessian matrix H{ID (Eq. B.29) can be computed efficiently by filtering data 

sequences. In addition, this Hessian matrix for the minimal polynomial model structure 

shows considerable structure where only a few elements have to be computed. 
. 2 n9xn9xN 1 Note however, that the construction of the complete tensor Vee!<coi(Q) e JR. co 

should be avoided to reduce data storage combined with memory limitations. It is 

therefore much more efficient to compute instead of this tensor, the term S(f!) e JR.nexne 

(Eq. B.30) in the Hessian matrix which is clearly of much lower dimension. The 

structure of this term S(!!) is depicted in Table B.l. 

The entries in Table B.l are matrices constructed by multiplying the shifted data 

sequences Hac(8) with the weighted preilietion error Ê(Q). For example, the entry 

Sac,l (Q) e JR.naxncu is constructed by multiplying the weighted prediction error 

Ê*1(Q) with the data sequence Hac,*l(f!) and thereby shifting Hac,*l(f!) over na samples 

in vertical and over nc11 samples in horizontal direction : 

'•, 

N N 

L èl(k,ft) Hac,(k-na-l)l(ft) ... 
N-ns k=ns+l 

L ël(k,ft) Hac,{k-na-nc
11

)1(ft) 
k=ns+ 1 

(B.49) 

where ns defines the maximum delay required for initialization of this Hessian term : 

ns = max ( [na nbij+nkij-1 ncii nd nf ]T * 
iJ 

[ na nbij +nkij -1 ncii nd nf ] ) 

(B.50) 

Since by construction the Hessian term S(f!) bas to be symmetrie, sec Table B.l, it is 

sufficient to construct the upper triangular part only. 
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!l na nb11 nblnu n~l ~~ nd nf 

na 0 0 0 0 0 s.c,l sac,2 sad 

nbu 0 0 0 0 0 sbc.t 0 0 ~d.l sbr.t 

··. ··. '•. 

nblnu 0 0 0 0 0 sbc,nu 0 0 sbd,nu sbf,nu 

n~l 0 0 0 0 0 0 sbc.nu+l 0 sbd,nu+l sbf,nu+l 

··, · .. ··. 

0 0 0 0 , .. sbc,nynu sbd,nynu sbf,nynu 

scb,l scb,nu 0 0 0 se<t.l Scr. I 

nczz Sca,2 0 0 scb,nu+l scc,2 0 se<t.2 

··. '•, '·. 

ncnyny Sca,ny 0 0 0 ... scb,nynu 0 0 scc,ny scd,ny scf.ny 

nd sda sdb.I sdb,nu sdb,nu+l ... sdb,nynu sdc,l sdc,2 sdc,ny 0 sdr 

nf 0 sfb.t sfb,nu sfb,nu+l sfb,nynu Src,i Src,2 Src,ny Srd sff 

Table B.l : Structure Hessian term S(ID. 

The other entries can be constructed in a similar way where the dimensions are defined 

by the number of parameters of the corresponding polynomials. 

0 (B.51) 

(B.52) 
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damddn 

ïPei(k,Q) a 
aamdfn - aam 
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(B.53) 

(B.54) 

nu B··(Z-1) ]] E 11 U·(k-~·-n) 
. F( -1) J J j=l z 

(B.55) 

(B.56) 

(B.57) 

(B.58) 

a2ei(k,Q) 

êlbpq,mabij,n 
-- L·(Z ) U·(k-nk .. n+l) = 0 (B.59) a [ -1 -D(z-

1
) l 

ab 1 c .. ( -1)F( -1) J IJ pq,m 11 z z 

(B.60) 
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ëiej(k,ft) 

abpq,macii,n 

!Li(z-1) D(z-
1
) uq(k-~q-n-m+l) p =i 

Ci~(z - 1) F(z -t) 

0 p * i 

a2ei(k,Q) 

abpq,màdn 

H (9) E RNx(ny.nu) 
bc-

1 -1 
Li(z-) ---:----,-u (k-~ -n-m+l) 

C ( F(z -I) q q 
ii z 
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(B.61) 

(B.62) 

(B.63) 

Hbd(Q) E RNx (ny.nu) (B.64) 
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a2ëi(k,!!) 

abpq,mafn 

Minimal Polynomial ldentification 

D -1 nu l -1 (z ) -1 · 
Li(z ) :E Bï(z )u-(k-nkï-n) 

C ( -1) F 2( -1) . _ J J J iiz z J-1 

(B.65) 

{ 

Li(z - 1) D(z -
1
) uq(k-n~q -n-m+ 1) 

Cii(z-1)F2(z-1) 

0 

p = i 

p :;t i 

-1 
=> Hbf,•(i-1)nu+J·(!!) A --1-Jb,•(i-1)nu+J. 

F(z- ) 
Hbr(!!) E RNx (ny.nu) (B.66) 

a2 ëi(k,!!) 

acpp,macii,n 

Li(z -1) 2D(z -1) ( A(z -1) Yi(k-n-m) 
c.Jcz -I) 

11 

nu B .. (z -1) l :E 11 U·(k-~--n-m,l) 
F(z -1) J J j =1 

0 

(B.67) 

p 

p:;t 

(B.68) 
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iPëi{k,ft) 

acpp,màdn 

a2ëi(k,ft) 

acpp,mafn 

0 

p 

H (9) E lRNxny 
cd-

a [L ( -1) D(z -1) Lnu B ( -1) (k = -- · z .. z U· -nlr .. -n) a I -1 2 -J IJ J "ij 
cpp,m Cii(z ) F (z ) j =I 

{

Li(z-1) 
2 
-~(z-l) _ Ë Bij(z- 1)u/k-~j-n-m) 

= Cii(z 1)F 2(z 1) J=1 

0 

H (9) E lR.Nx ny 
cf-

p =i 

p :;é i 
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(B.69) 

(B.70) 

(B.71) 

(B.72) 
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a2ei(k,!!) 
ddmdf0 

a2ei(k,!!) 
()fm()fn 

azeim> 
ddmdd0 
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(8.73) 

nu 8 .. (z -1) ]] L IJ · u.(k-n~·-n) = 0 
. F( -1) J J j=1 z 

(8.74) 

(8.75) 

R·(Z -l) 
IJ U·(k-n~ -n-m) 

Cii(z -1) F2(z -1) J J 
p = i 

0 p ;t: i 

H ((:)) E RNxny 
' df- (8.76) 

(8.77) 

p 

p;t: i 
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H (9) e JRNxny 
ff-
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(B.78) 

The implementation in MATLAB of this minimal polynomial identification procedure is 
quite complex. Some simple examples can be used to verify the correctness and 

numerical accuracy of the algorithms. 

Example 

The following true process and noise model : 

(B.79) 

have been used to generate identification data according to : 

OE 
3.4034e-1 

(B.80) 

BJ 
Gt<z -l)u(k) + Ht<z -l)l;bjCk) = y

8
(k) + e

5
(k) 

CiYs = 3.4034 , Cïçbj 1.9284 

where a PRBN sequence has been used as input signal , u(k) e [-1,1], N = 1023 

samples, and normally distributed noise sequences ~(k) and Çbj(k) . 

The identification results of these 3 examples are depicted in the Tables B.2 and B.3 for 
the OE and the BJ examples respectively. 

Table B.2 : Output-error estimation. 

SNR = oo SNR = 20 dB 
(ape = 3.3991e-l) 

!4 ft %* ft %* 

1.5 l.SOOOe+O 0 1.4963e+0 0.25 
-0.9 -9.0000e -1 0 -9.0067e -1 0.07 

*) Relative uncertainty : 100 I (,ft- .!!
1

) /.ft
1 
I 
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Table B.3 : Box-Jeukins estimation, crpe 1.9206 

~ Q %* 

1.5 1.5072e+O 0.48 
0.5 5.1012e -i 2.02 

-0.7 -6.2799e -1 10.29 
-0.9 -9.0844e -1 0.94 

These simulation examples show clearly the accuracy of the algorithms. Note however, 
that the exact estimation of the parameters in the noise free output-error example is a 
coincidence which occurred because the toleranee margins (see Eq. B.31) have been 
defined sufficiently small (y1 y2 = le-4). In genera!, numerical round-off errors will 
limit the accuracy of the solutions. When noise is included, the parameter estimates 
depend highly on the signal-to-noise ratio and how this noise affects the dynamica! 
system. Especially for the Box-Jeukins simulation example, the estimate of the 
d1-parameter is less accurate. However, the standard deviation of the corresponding 
preilietion error, crpe = 1.9206, is smaller compared to the noise which has been used to 
generate the data, cr~b· 1.9284. So prediction error rninimization of the data set 
generated with the Box.?Jenkins system converges to the global minimum, but obviously 
there exists a parameter estimate which can explain the data more accurate using this 
identification criterion. 
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c 

Parameter 
Co varianee 

C.2 Confidence Computation 

A quality measure of the parameter estimates can be obtained by estimating the 
covariance matrix of the parameter vector !l as well. The problem, however, is that in 
general the assumption is required that the process is contained in the model set, defined 
by the minimal polynornial structure in Eq. 2.17. As described in the introduetion this is 
not a valid assumption in practice and therefore the standard expressions for the 
covariance matrix cannot be used. Nevertheless, the estimate ft converges to a 
minimum point of the loss-function V e<ID· When the number of data samples N tends to 
infinity, there holds : 

(C.l) 

which indicates the best possible approximation of the system within the selected model 
set. The parameter vector !!* is by definition such that the prediction error ~(kJ!) has a 
varianee as smal! as possible. Taking this undermodelling explicitly into account, an 
expression for the parameter covariance matrix Cov(ft) will be derived which can be 
used to compute confidence intervals. 

187 
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C.1 Covariance Approximation 

Under the assumption that the process is not contained in the model set, an expression 
of the covariance matrix can be derived as follows. Consider flrst the noise free case : 

where the subscript col indicates a column vector which stores the data as described in 
Appendix B. A Taylor series expansion of the noise free loss-function around .e,* is 
given by: 

Ve(~!) =Vee!!*)+ V~Ve(.{!*)(!! !!*) + ±(1!-!!*)TV~9 Ve<!!*)(ft !!*) + 0 3 

(C.3) 

since there holds that for the minimum .e,* of the loss-function Ve(!l*) : V9Ve(!l*) = 0, 
when N tends to infinity. 
When including noise, the prediction error ei(k,ID will still consist of a term ei(k,ID due 
to the undermodelling and in addition a white noise term Çi(k) : 

(C.4) 

where Çi(k) is supposed to be a Gaussian white noise sequence with zero mean 
corresponding to the i1h output. The loss-function Ve® canthen be weitten as : 

(C.S) 

Due to the fact that e001( @.!!) in the last term is parameter dependent, the minimum of 
the loss-function V e<ID will not converge to .6* : 

(C.6) 

But if N tends to infinity, the last term in Eq. C.S can be neglected since Çcol(f) 

consists of white noise sequences which are assurned to be uncorrelated with ec01(f,ID. 
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Therefore, the expectation satisfies : 

So, the parameter estimate will still asymptotically converge to the optima! value : 

A Taylor series expansion of ec01(U!) around ~· gives : 

eco,<f.~) = ecol(Q,~*) + v!ecol(Q,~*)(~ ~*) + 

±(~-~*)Tv~aecoi(Q,~*)(~ ~*) + 03 

Substitution of Eq. C.9 into Eq. C.2 then results in : 

ecol (~.!!*) (~- !!*) T V~eecol(~.~*) (~ ~*) + 

(!!- ~*) T Veecol (Q,~*) V! ecol(Q,~*) (~- ~*) + 0 3] 
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(C.7) 

(C.8) 

(C.9) 

(C.lO) 

Comparing Eq. C.lO with Eq. C.3 results in the following expressions for the loss­
function and its derivatives : 
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(C.lO) 

The parameter estimate Q can be derived by calculating : V e V e (Q) 0. Substituting 
Eq. C.3 and C.9 into Eq. C.5, this gradient can be written as : 

which yields : 

Q= 

where the higher order terms rJ2 are neglected, or : 

-1 

Ncol 

!!*- V~e Ve<!!*) + -
2

- L V~e 10col(Q,!!*) ~~(~) 
Ncol 1=1 

""!!*-[ V~eVe(!!*) r 2 È1 VeEcol(f,!!*)~l(~ 
Ncol Q=l 

!!*-n. 

(C.l2) 

(C.l3) 

(C.l4) 

where the approximation is due to the fact that the white noise sequence 1;001( ~) is 
assumed to be independent of the second derivative matrix V~eEcol(Q,!!*) and therefore 

this term tends to zero for N -'? oo. Because asymptotically the parameter estimate 
converges to the optima! value !!* (Eq. C.8), the asymptotic covariance matrix is defined 
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by: 

(C.15) 

which can be rewritten in the following form by substituting n (Eq. C.l4) : 

Cov(ft*) = E l [ V'~a Ve(ft*) r N~ ~~ ~~ [V' aecol(f,ft*) /;colm ~l(s) V'~ecol{s,ft*)] 
col 

[v~ave<ft*>r} cc.t6) 

Since asymptotically the noisy derivatives will be independent of the white noise 

components affecting the data, this covariance matrix can be approximated in practice 
by replacing the first and second order-derivatives by those determined from the 
measured data resulting in : 

-1 

* 

(C.l7) 

which can be considerably simplified by substituting Eq. B.30 : 

Cov(~) = 2 ö~ [ R(ft} + S(ft) r R(Q) [ R(ft) + S(ft) r (C.l8) 

where 



192 Parameter Covariance 

R(~) 

(C.19) 

It bas been shown in Appendix B that the Gradient J(~) and the Hessian H(~) of the 

prediction error, the first and second order derivatives with respect to the parameters, 

can be calculated analytically in an efficient way. However, cr~ bas to be approximated. 

If the system is contained in the model set, cr~ could easily be obtained from the 

criterion V eC~J .., cr~ for N ~ =. When the system is not contained in the model set, 
there holds : 

(C.20) 

As assumed in Eq. C.4 the prediction error will consist of a correlated sequence ei(k,ft) 

and a white noise sequence ~i(k). To obtain an estimate Ö'~ of the white noise variance, 

estimates of the innovations ~(k) have to be formed which can be computed by 

applying a high order AR-model to e/k.~) : 

(C.21) 

The reason for this approximation is twofold : 

• The sealing of the data should be verified to validate the assumption 

Ö'~ 1 "' ... "' Ö't (Eq. 2.21, equal varianee of the white noise sequences). 
• An upper boun~ estimate of the true parameter covariance can be obtained, since 

Ö'~ ~ cr~ implies that Cov(~) ~ Cov(!!j. When constructing a white noise 
sequence Çi(k) of the prediction error ei(k,~) according to Eq. C.21, the 
correlation at time lag 't = 0 is completely assigned to the white noise sequence. 
Under the assumption of Eq. C.4, however, the auto-correlation of the preilietion 

error at time lag 't = 0 is built of both signals, ei(k,ft) and Çi(k), and therefore 

the approximation of the white noise varianee is always larger than or equal to 
the true varianee (see Eq. C.20). 

In practice, however, it should be verified that Ncol » n9 in order to guarantee that the 

approximation in Eq. C.20 is valid, i.e. (N00rn9)/Ncol ~ 1. 
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C.2 Confidence Computation 

As described in Section 2.5, confidence ellipsoids of the parameter estirnate !! are 
described by : 

(A *)T A (A *) z9 = Ncol !! -!! Cov(!!) !! -!! (C.22) 

where z9 converges in distribution to a x2-distribution with n9 degrees of freedorn as 
the nurnber of data samples N, and therefore also Ncol• tends to infmity. The x2-

distribution is defined as [Kre93] : 

where 

Ze 
F(ze) = Cne J e<-Yzx) x<V.n9-l) dx 

0 

Cna = ----­
zV.ne r(Yzn9) 

and the gamma function satisfies : 

r(n+ 1) n! 

r(2) = r(l) = 1 

1.3.5 ... 2n-1 r(Vz) 
2n 

Repeated partial integration of the integral defined in Eq. C.23 results in : 

Ze J e-V.xx(Y2n9-I)dx 

0 

e -llzx x (Vzn9-l) 

-Yz 

e-V. x x (V.ne -1) 

-Y2 

za 
Y2n8-l J -V.x (Vzn9-2)d e x x 

0 

Za 

(C.23) 

(C.24) 

(C.25) 

Y2n9-1 e-Y2xx(Y2n9-2) 

-Yz 
Y2n8-2 J -V.x (Y2 n9-2)d e x x 

0 
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Ze 
m [ r l W•nf.l-r-1) e-Va L (-l)r I1 (lhn9-k-l) _x ___ _ 

r=O k=O (-Y2)r+ o 
+ 

(C.26) 

where m is defined as the smallest integer of Yme-1. The integral to compute the x2-

distribution can now be written in a more compact form : 

F(za) rn [ r-1 l e -lht:a z (lhna-r-1)- o<lhna-r-1) 
= I: ( -1 )r rr (l/2 ne -r -1) ___ a ___ -,--__ _ 

Cna r=l k=O (-Yz)r+1 nf.l>l 

n 
(C.27) 

(-l)n+l rr (lhne-k-1) Ze 

+ k=O J x -lh e -lhxdx 

0 na odd 

The problem has been solved for an even number degrees of freedom. However, when 

ne is odd, the remaining integral must be computed : 

Ze 
I J e -lhx x -lh dx 

0 

which can be rewritten in a more convenient form by substituting x = 2y2 : 

I == 

(lhza)y, 2 
-y J e 4y dy 

0 y .fi 
Using now power series expansions : 

eY = L 1 yk 
k=O k! 

e 

2 
e -y dy 

"" k ~ (-1) 2k 
L --Y 
k=O k! 

this integral can be written as an infinite sum according to : 

(C.28) 

(C.29) 

(C.30) 
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I 
2 

e -y dy 

(~ Zn)'h 
" "" k 212 I :E c-1; y2k 

0 k=O k. 

I 
.. k l(~za)v. 

2/2 :E (-1) y2k+l 

k=O (2k+1)kt O 

(C.31) 

2 '2 "" (Y2 z )k+~ 
v.., tó (2k+1)kt 9 

In practice, this integral can be approximated accurately by a finite sum of elements, 
because the term (2k+l)k! ensures that the elementsof the sum will decrease rapidly for 
increasing values of k. 
It is now possible to compute the confidence F(Ze) for a given integration range z9 of 
the x2-distribution, exact for even n9 and approximate for odd n9. The confidence 
ellipsoids for the parameter estimates are scaled, however, by z9 for a given F(z9). 

Therefore, this sealing factor Ze has to be computed iteratively, e.g. by biseetion search 
within a predefined interval, to determine the required confidence F(z9). 
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Parametrie Uncertainty 
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D.l Mnltivariable Bonnded 

Error Models 

D.2 Exact Polytope Updating 

D.3 Ellipsoidal Parameter Bonnding 

D.4 Orthotopic Parameter Bonnding 

In this appendix the bounded error identification approach which has been described in 

Chapter 3 will be extended to multivariable models. In addition, several algorithms to 

characterize or approximate the parameter uncertainty set 8 will be described in detail. 

D.1 Multivariable Bounded Error Models 

For the multivariable minimal polynomial model structure as described in Section 2.2 : 

A(z -t)y(k) = B(z -1) g(k) + C(z -1) f,(k) 
F(z - 1) D(z - 1) 

(D.l) 

the pseudo-linear regression forrn is given by : 

(D.2) 

197 
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where <PCID and 1\
01

(@,!!) have been defined in Appendix B.3, Eq. B.17 and Eq. B.l8 

respectively. The unknown but bounded error identification can be extended to the 

multivariable case by computing lower and upper bounds of the prediction error ~(k,f!) 

and of the auxiliary variables y(k,~) and ~(kJ!), e.g. ~min(k) and ~max(k). These lower 

and upper bounds can then be used to compute the centre values and the corresponding 

uncertainty for all variables : 

~c(k) Y2 ( ~max(k) + ~min(k) ) 

.Q_e(k) Yz ( ~max(k) - ~min(k) ) 

a (k) -w 

!h(v (k)+v.(k)) -max -mm 

!h ( .!::.max(k) + ~min(k) ) 

!h ( .!::.max(k) - .!::.min(k) ) 

'v'k (D.3) 

The corresponding conditions in bounded error identification (Eq. 3.14) to this 

multivariable regression form can now be derived in a straightforward way and are 

defined by: 

where 

Hl : '111 (@,ft) ft ~ cl ( Q) 

H2 : 'Vz(@,ft) ft ~ cz(@) 

'lft(Q,ft) $(f,ft) + A<)>(@,ft) 

'!12 (~,ft) = <\>(O,ft) - A<)>(@,ft) 

cl(@) = Yco!O) - öe,col<n 

Cz(O} = Yco!Cn + öe,col<n 

and y col(@) and oe, col(@) describe the elements of the veetors : 

Ycol = [ Yt(n+l) ··· Yt(N) Yz(n+l) ... Yny(N) ]T 

Q.e,col [ <>e,l(n+l) ··· 0e,l(N) oe,z(n+l) ··· <>e,ny(N) ]T 

(D.4) 

(D.5) 

(D.6) 

The rows <)>( @,~) of the regression matrix <P(ID, which has been defined in Appendix B, 

Eq. B.17, contain the inputJoutput data together with the prediction error and the 

auxiliary signals where the various data samples, e.g. w(k-1,!}), are replaced by the 
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corresponding centre values, e.g. wc(k-1). The uncertainty regression matrix A<P(f}) 

which consists of rows Alj>(Q,!!), can be derived in a sirnilar way to <P(!!) by introducing 

the following sub-rnatrices with respect to the several data and auxîliary signals : 

0 ... 0 0 ... 0 

0 ... 0 0 ... 0 

(0.7) 

which then results in : 

Lll\lyl <l<Puu ··· .tlcpulnu 0 0 0 

Lll\ly2 0 0 .tlcpu2l ··· Ll$u2nu 

.tl<ll(Q) 0 0 

· . 0 0 

.tl<j>Yny 0 0 .tl<l> Unyl ... .tl<l>u 
nynu 

(D.8) 

.tl<Pe
1 
(Q) 0 0 .tl<l>vl (Q) .tl<l>wl (Q) 

0 .tl<l>e2 (Q) Al\lv2(Q) A<llwzCQ) 

0 .. 

0 

0 0 Al\le (Q) Lll\lv (Q) .tl<l>w (!i) ny ny ny 

The structure of this uncertainty regression matrix A<P(!!) is exactly the same as the data 



200 Parametrie Uncertainty Descriptions 

regression matrix lliCID where only the data sub-matrices have been replaced by the 
boundary matrices, e.g. clle (,!!) by Aclle (,!!). The construction of these regression 

l l 

matrices for special cases of the multivariable minimal polynomial model structure 
(equation-error models, output-error models, etc.) is exactly the same as for SISO 
models described in Section 3.1 and will therefore not be mentioned bere. 

D.2 Exact Polytope Updating 

The exact description of the parameter uncertainty set e [Mo89] can be computed by 
iteratively updating the following information matrices : 

• 

• 

• 

The vertex set (hlv8) which contains the coordinates of the vertices in 
column form where the column p corresponds to the coordinates of 

vertex Yp· 

The vertex-plane adjacency list (Mvp) which contains in column p the 
indices of the hyperplanes intersecting through vertex Yp· 
The vertex-vertex adjacency list <hlvv) which contains in column p the 
indices of the neighbouring vertices with respect to Yp· 

The hyperplanes which describe the boundary of the parameter uncertainty set e are 
defined by Eq. D.4 replacing the inequality signs by equalities. A simpte example will 

be used to illustrate the updating in more detail together with the initialization. 

0.2. 1 Initia/ Orthotope 

An initial polytope 8° must be specified before the updating can start. If there is no a 
priori information on the bounds of the parameters, 8° can be of any shape as long as 
its boundary does not partly define the final parameter uncertainty set e. An orthotope 

is a suitable simpte initial shape which can easily be constructed even for higher 
dimensional identification problems. This orthotope bas zne vertices which are the 
combinations of all minimum and maximum values descrihing the extreme points. As 
example the following two-dimensional problem (n9 2) bas been defined : 

•' = [: l (D.9) 

This initial orthotope is illustrated in Fig. D.la. 
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2 2 

0 2 0 2 

Fig. D.l : Exact polytope updating ; a) Initial orthotope, b) Updating step. 

The corresponding hyperplanes bounding this orthotope are defined by : 

hl 0 !! 3 

h2 0 !! = l 
(D.lO) 

h3 0 l !! = 3 

h4 0 l !! = l 

and the construction of the corresponding information matrîces for this initial orthotope 

is because of its simple shape straightforward. 

Yt y2 Y.3 y4 

3 3 1 
Mvs Vertex coordinates 

3 3 

l 2 2 
(D.ll) 

Mvp 
3 4 3 4 

Intersecting hyperplanes hp through yp 

2 1 1 2 
Mvv = Neighbour vertices of v 

3 4 4 3 -p 

Whenever a new constraint is added from the set ~ (Eq. D.8) which is defined by 

'l'i(~,.[) = ci(Q), i= { 1,2}, e.g. : 

(D.l2) 

the vertex set Mvs• the vertex-plane Mvp and vertex-vertex Mvv adjacency lists 
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(Eq. 0.11) have to be updated. 

0.2.2 Updating Vertex Set 

For every boundary from the set 'lfi(~J!) = ci(Q), i = { 1,2}, which is added to the 
constraint set, compute : 

(0.13) 

where Q indicates the selected constraint in the set H1. The sign of ~P indicates the 
position of the new hyperplane with respect to .Yp : 

• 
• 
• 

~p positive indicates that .Yp is inside e . 
~p = 0 indicates that .Yp is on the boundary of e . 
Pp negative incticates that xp is outsicte e . 

For a given .fl, corresponding to the constraint to be added in the form of a half space 
~,i= {1,2} (Eq. 0.4), the following situations can be distinguished for the updating: 

• H1 11 8 1 = e1 = e~+l if all elements of .fl are either positive or zero for 
which no updating is necessary. 

• H1 11 ek = 0 if all elements of .fl are negative which indicates a violating 
constraint and suggesting that ~ is caused by an outlier. 

• H1 11 el = eM c ef if the elements of .fl have different signs which 

requires updating of ~s· Mvp and Mvv· 

Computing .fl for the selected example and h5 (from Eq. 0.12) : 

(0.14) 

indicates that the vertex will be outside the new boundary. 
To update the vertex set, all vertices inside the boundary are selected and all vertices 
outside the boundary will be eliminated. An edge list is constructed having n9-1 
hyperplanes in common to compute the new vertices which will then be added to the set 
of selected vertices of the old boundary. This edge list can be constructed by forrning 

all combinations of adjacent vertices from MVV' 
The edge list Mei of the initial orthotope (ne = 2) is build from the vertex-plane 
adjacency list by combining all vertices having 1 common hyperplane in each column : 
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(D.15) 

When computing ~P for all vertices Yp in the edge list Mei• a changing sign in a column 

indicates then an intersection. A different sign in the first and second row of ~el 

(Eq. D.16) indicates that one vertex is inside the boundary while the other vertex is 

outside the boundary. The corresponding vertices are sorted with respect to increasing 

~P for each column : 

I -1 1 -1 1 I 
~el = 1 3 1 3 

* [2 24] 
Mei = 1 3 4 3 

(D.l6) 

where M:, indicates the sorted edge list. This guarantees that for an intersection the 

vertex Yp in the first row of M:1 is outside the new boundary (negative sign of~) while 

the vertex Yq in the second row of M:1 is inside the new boundary (positive sign of ~). 
Obviously, for the first and third combination in the edge list, new vertices have to be 

computed. The new vertices can now be computed according to : 

(D.17) 

where Wi( Q,.{i) Y interseet = ei( Q) • and 

(D.l8) 

which defines the unique solution of Eq. D.l8 and the new vertex. 

The updated boundary of the simulation example is shown in Fig. D.lb and the 

corresponding vertex set Mvs derived according to the described procedure becomes : 

I 3 2 

2 1 

3 

3 3 : l (D.19) 

Updated vertex coordinates 

where the first two vertices have been added due to the intersection of the new 

hyperplane and the last three vertices correspond to old vertices (in different order). 

This reordering of the vertices results from the fact that in the exact polytope updating 

algorithm, the updated vertex list Mvs (Eq. D.l9) is constructed by first computing the 

new vertices according to Eq. D.18 and then actding the vertices which have not been 

modified. 
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Round-off errors in the computation of .6. and À. can cause incorrect updating of the 
parameter uncertainty set 8. Coinciding vertices rnight not be detected due to these 
round-off errors which then results in artificial actding or elirninating of vertices. The 
repeated occurrence of exclusion of feasible vertices and inclusion of infeasible vertices 
from the vertex set can lead to an inaccurate final polytope which is undesirable. This 
is, however, very unlikely in practice and will have very little effect on the algorithm 
but can be avoided by combining vertices within a predefined distance. 

0.2.3 Updating Vertex-plane Adjacency List 

The updating of Mvp is straightforward since the intersecting hyperplanes of the old 
vertices do not change. This information is already known from the old list. For the new 
vertices (Eq. 0.17) the added hyperplane is one element. The other hyperplanes 
intersecting the new vertex can be derived by selecting the n9-1 comrnon hyperplanes 
of the vertex combination in the edge list 

[ : 5 

4 3 

1 

3 ~ l (0.20) 

Updated vertex -plane adjacency list 

In this updated list, the first element of the new vertices, y 1 and y2, corresponds to the 
index of the new hyperplane. The second element bas of y 1 for example corresponds to 
the index of the comrnon hyperplane of y 1 and y2 (first column of the edge list in 
Eq. 0.14), i.e. 1 (comrnon index of first two columns in Mvp list, Eq. 0.11). 

0.2.4 Updating Vertex-vertex Adjacency List 

This is the most time consurning step in the updating procedure since the new Mvv list 
must be constructed again for all vertices · due to the reordering of these vertices. 
Because edges between neighbour vertices are formed by nO-l hyperplanes, the Mvv list 
can be constructed by searching for at least nO-l comrnon hyperplanes in the Mvp list 
Note that the number of adjacent vertices depends on the number of hyperplanes 
intersecting a vertex which can theoretically explode to infinity but simulation examples 
indicate that this number will be lirnited in most cases. 
The procedure of exact polytope updating shows however clearly, the exploding 
computational complexity for high-dimensional identification problems. An overview of 
other exact bounding methods is given in [MN90], but all these algorithms which are 
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not significantly different suffer from the fundamental problem of dimensionality. 

[ : 1 3 

5 4 5 ~ I Updated vertex -vertex adjacency list 

0.3 Ellipsoidal Parameter Bounding 

205 

(D.21) 

This approach is based on a recursive construction of ellipsoidal sets enclosing the 
parameter uncertainty set e : 

being a bounding ellipsoid from the first f-1 constraints and a region se: 

(D.23) 

being the region in the parameter space associated with the new measurements which is 
limited by two parallel hyperplanes (Fig. 3.4), i.e. d(jl(Q,!Z) = .Q is required in Eq. D.5. 
However, when approximating models which are nonlinear in their parameters by 
pseudo--linear regression models to guarantee a convex parameter uncertainty set e, the 
new parameter space S1 will be enclosed by two non-parallel hyperplanes {H1,H2} 

(Eq. D.4). 
In [CG90] a two step algorithm is proposed where parallel hyperplanes are 
systematically used, once or twice at each iteration step depending on the configuration 
of the parameter space S~ and the ellipsoid E~1 (Fig. D.2). The algorithm is initiated 
by taking E0 large enough to eosure that it contains the parameter uncertainty set e. A 
hyperplane H~ tangent to E~1 and parallel to the constraint H1 is constructed to define 
an intermediate ellipsoid E*. Next this procedure is repeated for E* and u; to construct 
E1. Using this approach, it is obvious that the ellipsoids E* and Ef describe a 
parameter space that is much larger than strictly necessary ( compare shaded areas in 
Fig. D.2). Instead of using tangent hyperplanes to obtain a new ellipsoid Ef of 

minimum volume, parallel hyperplanes {H~,H;} should be constructed which interseet 
E~1 and {H1,H2} descrihing the smallest parameterspace possible. 
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3.5 

3 

2.5 
bl 

2 

1.5 

0 0.5 1.5 2 
fl 

3.5 

3 

2.5 
bi 

2 

1.5 

fl 

Fïg. D.2 : Two-step construction of a bounding ellipsoid 
from non-parallel hyperplanes using intermediate 
tangent-parallel hyperplanes. 

Before going into detail of this la<>t approach, the ellipsoidal bounding procedure will be 
summarized. If E~-l lî {H1,H2} = 0, the parameterspace 8 is empty and the procedure 

is terminated. This occurs if : 

where 

c1 (f) > v 1 (f,.!Z,)!!~-
1 + J g1(f,.!Z,) 

cz(f) < \lfz(• • .!Z.).!Z.~- 1 V g2(t.!Z,) 

gl(Q,.!Z,) = Vt(@,.!Z,)P~-l vi(t.!Z,) 

g2U,.!Z,) \lf2(t.!Z,)PH vi<~ • .!Z,) 

or 
(D.24) 

(D.25) 

Otherwise three different situations can occur when calculating Ef after testing which 
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(D.26) 

• Only one of the hyperplanes {H1,H2} intersects Ef-1. In this case the non 

intersecring hyperplane is replaced by one tangent to EH and parallel to the 

intersecting hyperplane defining temporarily a new measurement and bound 

value: 

1 
y *( ~) 

H* 
1 () *( ~) 

jY *n) 
H * 

2 ö*(Q) = 

Y2 ( c I ( Q) +'!ft ( Q,ftH!~- 1 
+ J gl(Q,ft) ) 

Y2 ( -cl Cn +'!ft (Q,ft)ft~- 1 
+ V g1(f,ft) ) 

Y2 ( cz(Q) + 'lfz(Q,ft)ft~-l - J gz(Q,ft) ) 

Y2 ( cz(e} 'lfz(Q,ft)ft~- 1 
+ J gz(Q,ft)) 

or 

(D.27) 

• Both hyperplanes {H1,H2} interseet Et·l. The new ellipsoid Eq can be obtained 

by a two step procedure, similar to [CG90], computing parallel and intersecring 
hyperplanes {H~.H;}. First an intermediate ellipsoid : E* ::::> EQ·l n {H2,H;} and 

then the new ellipsoid : Et::::> E* n {H1,H~} is constructed. 

\jf 1 ~c l-1. t-.r·.··.·r· ·. r ~~ 
'1'2 ~c \; g 2 4.4 

-r-------------. 

Fig. D.3 : loterseetion of hyperplanes {H1,H2 } with ellipsoid E~·1 . 
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Note that the cross-section HJ. which is considered to compute the intersecting 
hyperplanes {H~,H;} describes a special cross-section in the nS-dimensional parameter 
space : the space perpendicular to the intersection of H1 and H2, i.e. HJ. l. ( H1 n H2 ). 

The construction of parallel and intersecting hyperplanes {H~,H;} will be explained by 

constructing a hyperplane u; parallel to H2 and intersecting at Ee-1 n H1. First apply a 
coordinate transformation using a Cholesky decomposition (P = RTR), such that the 
ellipsoid Ef-1 transforms into a unit hypersphere in the origin : 

VI cl - 'l't ~c 
V = cl,n 

l,n IIVtllz IIVtllz 
(0.28) 

Vz 'Jiz R T Vz,n 
Vz 

cz,n 
Cz- 'l'z~c 

IIVzllz IIVzllz 

where the arguments ~ and .!! have been omitted to simplify the notation. The resulting 
situation is illustrated in Fig. 0.4. The next step is to calculate the intersection point ~1 
that has a maximum distance to H2 in the following way. Let : 

(0.29) 

define the projection of the origin on H1. This hyperplane will interseet Eunit in ~1 and 
~2 which define the intersection points of maximum and minimum distance to H2 
respectively. The distance between ~ and the intersection points ~1 and ~2 is defined 
by: 

(0.30) 

There exists a hyperplane H 0 parallel to H1 containing the origin : V l,n .!! = 0. The 
direction vector from ~ to the intersection points can now be computed by deriving the 
projection of V z,n onto the hyperplane H0 : 

(0.31) 

This normalized direction vector 12n can be used to compute the intersection points : 

~i = ~ ± d 12n· The point which has the maximum distance to the hyperplane H2 is 
selected as ~1 • Inverse coordinate transformation and actding the centre point .!lc results 
in the intersection point in the original coordinate system : 
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Rs + 9 
-t -c 

209 

(D.32) 

Define c;( ~) = 'l'2( un ~. The intersecting hyperplane u; can now be constructed as 
follows: 

Porbidden 
Region 

(D.33) 

Fig. D.4 : Construction of intersection point in cross-section Hl. 

Consider now H2 and the parallel hyperplane u;. The ellipsoid E* :::> Et-l lî {H2,H;} 
can be computed using for example the basic ellipsoidal bounding formulas. In the final 

setup, the procedure just explained is first applied to construct an intermediate ellipsoid 

E* based on H2 and u; 11 H1 and next the procedure is repeated applying it to E"', 

u; 11 H2 and H1 to yield Ef. This procedure is îllustrated in Fig. D.5. 

The two-step construction of intersecting hyperplanes for ellipsoidal bounding can be 

surnmarized as follows : 

Hz* l y *(~) = Y2 ( c2( e) + \jf2( Q,!!_h_) (D.34) 

ö *( Q) = Vz { c2( 0)- 'Jf2 ( e ,!!_h_) 
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3.5 r---.----.---,--'"""'----, 

3 

2.5 
bi 

2 

1.5 

0 0.5 1 1.5 2 
fl 

Fig. D.S : Two-step construction of bounding ellipsoid 
from non-parallel hyperplanes using intermediate 
intersecting-parallel hyperplanes. 

Whenever parallel hyperplanes have been constructed, basic ellipsoidal bounding 

algorithms can be applied to update the ellipsoid Et-1. An ellipsoid of minimal volume 

can be derived according to [FH82] by computing the auxiliary variables : 

and 

E y *(~)- \lfj(~.!D!l~-1 

2 
a (n9-1) gi (@,!l) 

b 

c 

gi(f.!l) ( (2n8-l)ö*
2
(f)- gi(f,!l) + e2 ) 

o*\Q) ( n8 (0*
2
(f)-E2 )- gi(f,!l)) 

(D.35) 
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(D.36) 
p 

where depending on the construction of parallel hyperplanes H~ and u;, i corresponds 

with { 1 ,2}. The parameter estimate can then be updated by : 

p ~-1 p~-1 -
p p~-1 'I'[(@,!!) 'l'i(O,j!) pH 

. -
2 

ö * en + P g/ o.!v 

[ 2 l (D.37) pf pt-1 1 + p _ p e 

ö*
2
W + p gi(~.!D 

a~ 0t-l +~pH 'Jf!(Q 0) 
-c -c 2 I '-

ö * ( Q) 

Instead of using the Modified Ellipsoirlal Bounding (MEB) algorithm (updating 

according to Eq. D.37 combined with the modification of Eq. D.27), the Ellipsoidal 

bounding with Parallel Cuts (EPC) algorithm described in [WPL90] can be applied as 

well which is mathematically equivalent to MEB [PWPL89]. The ellipsoirlal updating in 

these two algorithms is computed numerically in a different way, but simulation 

exarnples did not indicate a preferenee due to a higher numerical accuracy or faster 

updating. The minimization of the volume of the ellipsoid enclosing the parameter 

uncertainty set e involves the analysis of a quadratic function (Eq. D.36) where as 

alternative the minimization of the trace of the ellipsoid involves the analysis of a cubic 

equation which requires somewhat more computational effort. A detailed description of 

this approach can be found in [FH82]. 

Simulations showed that the order in which the intermediate hyperplanes {H;,u;} are 

constructed, can result in a final ellipsoid Eq of different volume for both approaches 

(tangent as well as intersecting hyperplanes). It is easy to give examples which illustrate 

this fact. To obtain an optimal salution with respect to the minimum volume of the 

ellipsoid Et enclosing st n Ee-1, both orders, {H~,n;} and {H;,H~}, must be applied 

to derive. Eq and select the ellipsoid of minimum volume. This increases, of course, the 

computational complexity. 

The volume of the ellipsoid V e is proportional to the determinant of Pq : 
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(D.38) 

where 

Y2 (ne-2) 

II k ne even 
k=t 

r(Y2n8) (D.39) 

fi Y2 (ne-t) 

II 2 k -1 ne odd 
2v2 (ne-t) k=t 

The minimum and maximum parameter values of the corresponding ellipsoid Et are 

defined by : 

(D.40) 

descrihing the uncertainty intervals associated with each parameter ei. 

0.4 Orthotopic Parameter Bounding 

The parameter uncertainty set 8 is described by an orthotope aligned with the 

coordinate axis. The final bounds emin,i and emax,i of the uncertainty interval associated 

with the i1h parameter are given by the minimum and maximum values of the criterion : 

(D.41) 

under 2Ncol linear constraints : 

(D.42) 

where 

f. = 

-c -t (D.43) 

_ç_2 

and the elementsof 'Pi(.ID and _ç_i, i= {1,2}, are defined in Eq. D.5. Each bound can 

therefore be obtained by solving a linear programming problem. The computation of the 

orthotopic bounding thus requires the solution of 2n8 linear programming problems, 
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each with 2Ncol linear constraints which can be solved using a simplex metbod as 

proposed in [WPL90]. However, as shown in Fig. 3.6, only a small set of constraints is 

active in an optima! point f(!}). In addition, equality constraints are easier to treat than 

inequalities, which suffer from the fundamental difficulty that the active set is unknown. 

These two facts form a motivation to use active set methods. The idea of active set 

methods is to develop aprediction (working set) of the constraints active at the solution. 

The working set may change at each iteration and constraints in the working set are 

(temporarily) treated as equalities during a given iteration. 

The solution to the problem can then be found in two steps. First an initia! feasible 

solution !}0 together with the corresponding initia! working set has to be derived. A 

feasible solution for the 2Ncol inequality constraints, is constructed by adding a single 
artificial variable, denoted by Ç. Consider the Qth constraint, \jl(f"f!) .f!0 

:::; c(O, of the set 

of original constraints defined in Eq. D.42. This constraint can always be satisfied by 

subtracting a sufficiently large positive quantity : \ji(~,ID !}0 
- Ç :::; c(O. If .f!0 satisfies 

this constraint when Ç is zero, .f!0 is feasible with respect to the original constraint. To 

find a feasible point, it is sufficient to drive the artificial variabie to zero, which can be 

achieved by an appropriate defmition of the objective function. A new linear 

programming problem to find an initia! feasible solution has been formulated: 

minimize 
(D.44) 

where 1 E JR
2

Nco1• The new variabie .f!*, the normal vector of the objective function .f* 
and the 2Nc01+1 inequality constraints: 'P\!!) .!l*:::; ç_*, are given by: 

0 

ft'·[!] '!' 0 
(D.45) 

If the smallest value of Ç is zero (in which case a feasible point has been found with 

respect to the original constraints) the added constraint - Ç :::; 0 (r = 0) is active and the 

feasible point is a vertex of the polytope descrihing the parameter uncertainty set 8. Due 

to finite precision in numerical computation, however, the minimum value of Ç can be 

strictly positive, so that the constraint - Ç :5 0 is not active. Therefore, this formulation 

with one artificial variabie to find a feasible initia! point, is slightly modified by 

choosing ras a small positive number, - Ç:::; r (r 10"5) [GMW91]. Note that it has to 

be verified afterwards that this constraint is active for .f!*. 
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Starting at an arbitrary point .e_*, the search direction is defined by 12k=- zk [Zk]T [*, 
where zk is the null space of the active set (Z0 = 1). Selecting the minimum distance 

dm in in the search direction before a constraint ('P(ft *) ffi *] T ~ !< *) is violated, the new 
point ffi*]k+l is defined by: ffi*]k+t = ffi*]k + dmin 12k· As long as the active set 'P:(ft) is 

smaller than the number of parameters (n8+ 1 ), the constraint along the search direction 

is added to the active set. When the active set is equal to the number of parameters, the 

. new constraint along the search direction 12k is added to the working set and the 

constraint corresponding with the smallest Lagrange multiplier f* = 'P:(ft) ll.~in is 

removed. The procedure is terminated and an optima! initia! point is reached, if there 

exists a point .e_;;pt satisfying 'P\.6.) .e_;;pt ~ !<*, f* = 'P:(ft) ll.~pt and when all Lagrange 
multipliers satisfy ll.~pt ~ 0. After deriving an initia! feasible point together with the 

n8+ 1 active constraints, the artificial variabie can be elirninated again together with the 

corresponding constraint. This gives the initialization conditions, a feasible point .6_0 that 

is a vertex of the polytope and the initia! working set (n8 constraints) for the non 

simplex active set method. 
The final solution can now be found by solving, the same way, the 2n8 linear 

programrning problems f(ft) for the original constraints (Eq. D.42) using the derived 

working set 'P a(ft) and the initia! feasible point .6_0 
• A more detailed explanation can be 

found in [GMW91]. 
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Samenvatting 

Identificatieprocedures in het tijddomein zijn bestudeerd voor lineaire tijd-invariante 
multivariabele systemen. Hierbij wordt een model afgeleid met onzekerheidsgrenzen op 
de modelparameters. Deze parametrische onzekerheid kan zowel stochastisch als 
deterministisch zijn, afhankelijk van de veronderstellingen die gemaakt zijn m.b.t. de 

ruis die het systeem verstoord (statistische eigenschappen of een absolute begrenzing). 
De klassieke predictiefout-identificatiemethode wordt kort uiteengezet, waarbij eerst de 
SISO modelstructuren en de (pseudo-) canonieke uitbreidingen naar multivariabele 
systemen beschreven worden. Deze multivariabele modelstructuren zijn echter niet 
geschikt voor procesidentificatie in de praktijk. In het bijzonder in een industriële 
omgeving vanwege de structuuronzekerheid. Daarom is een minimum polynoom­
structuur geïntroduceerd welke grote overeenkomsten vertoont met de SISO situatie. Het 
modelschattingsprobleem wordt opgelost m.b.v. niet-lineaire kleinste-kwadraten 

optimalisatie. Hierbij wordt de som van de gekwadrateerde predictiefouten 
geminimaliseerd, gebruik makend van analytische eerste en tweede afgeleiden die zeer 
efficient berekend kunnen worden. In de klassieke aanpak is de veronderstelling 
noodzakelijk dat het proces in de gedefinieerde modelverzameling zit om stochastische 
onzekerheidsgrenzen te kunnen bepalen. In de praktijk kan echter slechts een lage orde 
procesbenadering geschat worden. Voor de situatie dat het proces niet in de model­
verzameling zit, wordt een benadering van de covariantie matrix afgeleid, die gebruikt 
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kan worden om stochastische onzekerheidsgrenzen op de parameters te berekenen. 
Deterministische onzekerheden op de modelparameters worden verkregen m.b.v. 
begrensde foutidentificatie of setschattingen. De veronderstelling van begrensde mis 
(predictiefout), die het proces verstoort, wordt vertaald naar begrenzingen in de 

parameterruimte die de toegestane parameterverzameling definiëren. Om te garanderen 
dat een convexe en aaneengesloten parameterverzameling (polytope) in de parameter­

ruimte gedefinieerd wordt, moeten de begrenzingen lineair in de modelparameters zijn. 
Voor modellen die niet-lineair in de parameters zijn, wordt een lineaire benadering van 

de begrenzingen gegeven. De parameterverzameling die begrensd wordt door een 
polytope kan niet exact beschreven worden voor complexe identificatieproblemen. 
Daarom wordt de voorkeur gegeven aan eenvoudigere, maar benaderende beschrijvingen 
van de parameterbegrenzingen, zoals ellipsoirles of rechthoeken. De minst conservatieve 
benadering van de parameterverzameling wordt verkregen met een ellips georiënteerde 
rechthoek die de voordelen van beide methodieken combineert. Desalniettemin is de 
toepassing van deze identificatiemethode in de praktijk beperkt, als gevolg van pieken in 
de data die niet voldoen aan de gedefinieerde foutgrenzen. Bovendien is deze methode 
zeer gevoelig voor overparametrisatie. Uitschieters in de data kunnen veroorzaakt 
worden door fouten tijdens de data acquisitie, de data voorbewerking, maar ook door te 
optimistische foutgrenzen of niet gemodelleerde dynamica. Om te voorkomen dat de 
parameterverzameling leeg wordt, is een robuuste uitbreiding van deze methode 
voorgesteld. Hierbij wordt een referentiemodel gebruikt om de datapieken in de 
begrenzingen te detecteren. De gevoeligheid voor overparametrisatie ontstaat door het 
conservatisme van de setschattingsmethodiek zelf en door de conservatieve bescltrijving 
van de parameterverzameling. Indien de parameteronzekerheden zeer groot zijn, geeft de 
daarbij behorende centrale schatting geen nauwkeurige beschrijving van het proces. Dit 

conservatisme kan beperkt worden, door de parameters met de grootste onzekerheid te 
fixeren. Hierdoor zal de onzekerheid in de overige parameters kleiner worden en de 
centrale schatting verbeteren. Deze moeilijkheden beperken de toepasbaarheid van de 
identificatie met begrensde ruis in de praktijk, met name in een industriële omgeving. 
Voor de compatibiliteit met robuust regelaarontwerp, wordt de parametrische 
onzekerheid in de polynoommodellen, vertaald in een onzekerheidsmodel met een LFf 
representatie. De parameterfouten worden weergegeven in een diagonaal matrix en het 
nominale model samen met de verbindingsmatrices (tussen de parameterfouten en het 
nominale model) worden gecombineerd in een samengesteld toestandsruimtemodeL 
De voorgestelde identificatiemethodieken zijn getest op verschillende praktijk 
voorbeelden, die variëren van SISO laboratoriumprocessen tot multivariabele industriële 
produktieprocessen. In deze voorbeelden is de aandacht vooral gericht op de toepassing 
van de twee identificatiemethodieken in de praktijk om daarmee de voor- en nadelen 
aan te tonen. Het vergelijken van beide methodieken geeft aan dat de predictiefout 
aanpak de voorkeur verdient voor de identificatie van industriële processen. 
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1. Ondanks veel onderzoek op het gebied van robuuste regeltechniek en 
identificatie, zullen modelverzamelingen met een uniforme weging 
van de elementen te ruim blijven, om tegelijkertijd stabiliteit en hoge 
prestaties te garanderen voor de gehele modelverzameling. De 
oplossing kan gevonden worden in een combinatie met stochastiek, 
die een regelaarontwerp mogelijk maakt op basis van een 
modelverzameling met statistisch gewogen elementen. 

2. Predictiefout-identificatie onder de aanname dat het proces in de 
modelverzameling zit, conflicteert met de aangenomen voorkennis 
voor robuust regelaarontwerp. Dit reduceert redelijk recente en vaak 
geciteerde boeken over systeemidentificatie tot theoretische 
beschouwingen. 

- L. Ljung (1987). System Identification : Theory for the user. Prentice Hall, 
Engelwood Cliffs, N.J. 

- T. Söderström and P. Stoica (1989). System Jdentification. Prentice Hall, 
Engelwood Cliffs, N.J. 

3. In de literatuur wordt identificatie met gebruikmaking van set­
schattingen, gepresenteerd als een alternatief voor predictiefout­
identificatie. De praktijk leert echter, dat deze technieken als 
wederzijds ondersteunend gebruikt moeten worden. 

- M. Milanese ( 1989). Es tirnation and prediction in the presence of unknown 
but bounded uncertainty : A survey. Robustness in Identification and 
Control, Plenum Press, N.Y. 

- E. Walter and H. Piet-Lahanier (1990). Estimation of parameter bounds 
from bounded-error data : A survey. Mathernaties and Computers in 
Simulation, Vol. 32, No. 5 & 6, pp. 449-468 

- Dit proefschrift. 

4. In de praktijk kan geen enkele garantie gegeven worden, dat een voor 
regeldoeleinden gespecificeerde modelonzekerheid ten opzichte van 
een nominaal systeemgedrag, niet overschreden wordt. 

5. De nauwkeurigheid van een geïdentificeerd model is fundamenteel 
begrensd door de kwaliteit en de kwantiteit van de data. 



6. Nieuwe technieken zullen in de industrie al1een worden toegepast, 
indien economische belangen de drempel van de introductie van deze 
technologieën overwinnen. 

7. In het algemeen zijn vertragingen (looptijden) rampzalig voor de 
karakteristieken van het teruggekoppelde proces. Anderzijds kunnen 
deze vertragingen juist compensatie van verstoringen met een 
voorwaartse regeling mogelijk maken. 

- H.M. Falkus, A.A.H. Damen and A.C.P.M. Backx (1994). Disturbance 
rnadelling in a tube glass production process. To be publisbed in proc. 
ACC '94, June 29 - July 1, Baltimore, Maryland. 

8. Met het presenteren van de toestandsruimte oplossing, is voor 
wiskundigen het Hoo regelaarontwerp opgelost. Voor regeltechnici 
daarentegen begint dan pas het probleem · om een regelaar te 
ontwerpen die aan de specificaties voldoet. 

K. Glover and J. Doyle (1988). State-space formulae for all stahilizing 
controllers that satisfy an H""-norm bound and relations to risk sensitivity. 
Systems & Control Letters, Vol 11, pp. 167-172 

- H.M. Falkus, A.A.H. Damen and J. Bouwels (1992). General MIMO H"" 
controldesignframework. Proc. 315tiEEE CDC,December 16-18, Tucson, 
Arizona, pp. 2181-2186. 

9. De spontaniteit en interesse bij de jeugd tijdens demonstraties van 
laboratorium opstellingen, is omgekeerd evenredig met hun leeftijd. 

10. De voortdurende kortingen enerzijds op technisch onderwijs en 
technische onderzoeksinstellingen en de aanhoudende pogingen 
anderzijds om het volgen van een technische opleiding te stimuleren, 
geven aan dat politici geen consistent beleid voeren. 

11. Een verenigd Europa is net ~s een sprookje : het is mooi maar zal 
nooit werkelijkheid worden. Nationale belangen zullen, vooral 
wanneer het slechter gaat met de economie, een volledig geïntegreerde 
samenwerking verhinderen. 



12. De impliciete verplichting tot het gebruik "an moderne 
tekstverwerkers, tekenprogramma's en geavanceerde afdrukapparatuur 
leidt tot een onevenwichtige tijdsverdeling bij het afronden van een 
promotie door de beperkingen van deze middelen. 

13. Van de racketsporten badminton, squash, tafeltennis en tennis, is 
squash het meest geschikt om frustraties, ontstaan tijdens de afronding 
van een promotie, af te reageren. 

14. Het afronden van een promotie met een proefschrift, is in zichzelf 
geen reden tot stress. Een Y2 woord per minuut is voldoende om in 9 
maanden met een werkweek van 48 uur een proefschrift van 60000 
woorden te schrijven. 

15. De door de leescommissie van dit proefschrift gesuggereerde correctie 
van het woord "mandril" in "mandrill" is onjuist. Een "mandrill" is 
een Afrikaanse aap. Een "mandril" (voorkeursspelling "mandrel") 
daarentegen is een nauwkeurig gepositioneerde buis. 

- The compact edition of the Oxford English dictionary (1971), Vol. 1, 
Oxford University Press. 

- Webster's new twentieth century dictionary : Unabridged (1978), second 
edition, World Publishing Co., Inc. 




