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Summary

This thesis presents a structural decomposition technique for singular linear systems. Such

a decomposition can explicitly display the finite and infinite zero structures, system in-

vertibility structure, invariant geometric subspaces, as well as redundant states of a given

singular system. It is expected to be a powerful tool in solving singular system and con-

trol problems as its counterpart for nonsingular linear systems. To illustrate its potential

applications, the structural decomposition technique is finally applied to solve disturbance

decoupling problem of singular systems.

Firstly, after giving necessary background materials, we present a structural decomposition

technique for single-input and single-output (SISO) singular systems. The decomposition

results show that it is efficient in displaying internal structure features of a given system.

And compared with its counterpart for linear nonsingular systems, the decomposition

technique for SISO singular systems has more properties in revealing the redundant states.

The results for SISO singular systems give us important clues for the structural decompo-

sition form of multi-input and multi-output (MIMO) singular systems, but the situation

of multivariable case is much more difficult. To propose the structural decomposition for

MIMO singular systems, a constructive algorithm is developed in decomposing the given

singular state space into several distinct subspaces. The structural decomposition tech-

nique is given in equation form and compact matrix form. The decomposed subspaces also
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include redundant states and states of linear combination of system input and its deriva-

tives of different orders. Moreover, such a structural decomposition can explicitly display

all its structure properties such as invariant zero structure, infinite zero structure, invert-

ibility structure, as well as stabilizability and detectibility features. Numerical examples

show that the structural decomposition is a powerful tool in revealing and understanding

structure features of singular systems.

Furthermore, to give the geometric interpretations for the structurally decomposed sub-

spaces, we define several invariant geometric subspaces for singular systems. And with

these definitions, we show that the structural decomposition technique can also explicitly

display the invariant geometric subspaces of the given singular system. These invariant

geometric subspaces also give geometric interpretation of the structurally decomposed

subspaces.

After completing the theory of the structural decomposition technique. We explore its ap-

plication in solving disturbance decoupling problem of singular systems. With a sufficient

condition, we show that the structural decomposition can give an easier understanding

and a clearer solution for such problems. This enhances the expectation of its poten-

tial applications in solving singular system and control problems as its counterpart for

nonsingular systems.

Finally, to make this thesis more complete, we include main MATLAB codes for the

realization of the structural decomposition in the appendix. Such codes are essential in

the applications of this technique.
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Chapter 1

Introduction

1.1 Introduction

Linear singular systems, also commonly called generalized state space systems or descrip-

tor systems in the literature, appear in many practical situations including engineering

systems, economic systems, network analysis, and biological systems, to name a few but

far from complete (see e.g., Dai [29], Kuijper [45] and Lewis [47]). To be more specific, a

linear singular system generally can be expressed in the following state space form,

Σ :

{
E ẋ = A x + B u, x(0) = x0

y = C x + D u,
(1.1)

where x ∈ Rn represents internal state variable, y ∈ Rp is the system output, u ∈ Rm is

the system input and rank(E) < n. When the rank of matrix E is equal to n, the system

Σ is called a linear nonsingular system.

Further, when |sE − A| is not always equal zero, the matrix pencil (E,A) will be called

regular. Unique (classical) solutions are guaranteed to exist if (E,A) is regular. Hence

without loss of any generality, we assume that the matrix pencil (E,A) is always regular
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throughout this thesis.

In fact, many systems in the real life are singular in nature. They are usually simplified

as or approximated by nonsingular models because it is still lacking of efficient tools to

tackle problems related to such systems. However, a singular system model represents

more practical information, and such information like interconnection relationships, will

be crucial to the whole system in some critical situations. This makes it an important

research topic in the last three decades and motivates us to develop an innovative technique

for singular systems.

To develop an efficient tool for singular systems, structural properties are essential. From

those earlier days, they have received much attention in the literature. Weierstrass [77]

firstly gave a fundamental study for regular cases and Kronecker [44] extended the study

to non-regular cases by introducing structural indices. Gantmacher [35] systemically de-

scribed Kronecker Canonical Form and made it a popular tool in analyzing singular sys-

tems. Along this line, Kokotovic et al. [43] analyzed the relationship of fast subsystem and

slow subsystem in Weierstrass decomposition form. While Verghese et al. defined a strong

system equivalence using a trivial augmentation and deflation technique. Further, Misra

et al. [59] and Liu et al. [53] have presented their algorithms to compute the invariant

structural indices of singular systems. On the other hand, in the literature of geometric

approaches, Malabre [58] presented a new way of introducing invariant subspaces for sin-

gular systems and defined their structure indices like the one presented by Morse [60] for

nonsingular systems. Geerts [36] also defined and analyzed several geometric subspaces

by means of a fully algebraic distributional framework. However, as a matter of fact, all

of these methods for structural properties of singular systems are simply focusing either

on merely structural indices or on only some special parts of state space but have not

give a full image of the whole state space. The objective of this thesis is to develop an

efficient technique for decomposing the whole state space into several distinct subspaces
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corresponding to special structural features such as invariant zero structures, infinite zero

structures, redundant states, system invertibility and so on.

Most techniques for singular systems, generally speaking, are natural extensions of their

counterpart for nonsingular systems. Since Kalman [41] and other people [42] [37] pre-

sented state space model in 1960’s, nonsingular systems have been intensively researched

and many techniques have been presented in the literature. Among these methods, there

is a structural decomposition technique [70] [67] [19] which can explicitly display the zero

structures, invertibility and invariant geometric subspaces of a given nonsingular system.

It has been used in the literature to solve many system and control problems such as the

squaring down and decoupling of linear systems (see e.g., Sannuti and Saberi [70]), linear

system factorizations (see e.g., Chen et al [11], and Lin et al [51]), blocking zeros and

strong stabilizability (see e.g., Chen et al [12]), zero placements (see e.g. Chen and Zheng

[15]), loop transfer recovery (see e.g., Chen [10], Chen and Chen [16], and Saberi et al

[68]), H2 optimal control (see e.g., Chen et al [13, 14], and Saberi et al [69]), disturbance

decoupling (see e.g., Chen [18], and Ozcetin et al [63, 64]), H∞ optimal control (see e.g.,

Chen et al [11] and control with saturations (see e.g., Lin [50]). The list here is far from

complete.

The applications of the structural decomposition technique for nonsingular system prove

that it is a powerful tool. The main objective of this thesis is to extend this structural

decomposition technique to singular systems. We will focus on developing a structural

decomposition technique for singular systems to capture all structure properties, such as

invariant zero structures, infinite zero structures, invertibility structures, invariant geo-

metric subspaces, as well as redundant dynamics of a given singular system. Moreover,

we will exploit its applications in solving singular system and control problems, such as

disturbance decoupling, almost disturbance decoupling, H2 optimal control, H∞ control

and model reduction, as its counterpart for nonsingular systems.
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1.2 Notations

Throughout this thesis, we shall adopt the following notations:

R := the set of real numbers,

C := the entire complex plane,

C− := the open left-half complex plane,

C+ := the open right-half complex plane,

C0 := the imaginary axis in the complex plane,

I := an identity matrix,

Ik := an identity matrix of dimension k × k,

X ′ := the transpose of X,

rank(X) := the rank of X,

λ(X) := the set of eigenvalues of X,

Ker (X) := the null space of X,

Im (X) := the range space of X,

dim(X ) := the dimension of a subspace X ,

C−1{X} := the inverse image of C, where X is a subspace and C is a matrix ,

u(v) := the v-th order derivative of a function u(t),

Σ := a singular system characterized by (E,A, B, C,D) ,

Σ? := a singular system characterized by (E?, A?, B?, C?, D?) ,

M⊥ := the orthogonal complement of the space spanned by the columns of a matrix M,

S∞(M) := a matrix with orthogonal columns spanning the right null space of a matrix M,

T∞(M) := a matrix with orthogonal columns spanning the right null space of MT .
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1.3 Preview of Each Chapter

This thesis can naturally be divided into three parts. The first part includes Chapter 1

and Chapter 2 and gives some preliminary results and background materials. Chapter 1

gives the background and motivations of this thesis. Chapter 2 recalls some basic linear

system tools on system structure such as the Jordan Canonical Form, some controllability

decomposition form and the structural decomposition method for nonsingular systems. All

of these techniques will play essential roles in the later chapters. Chapter 2 also provides

a comprehensive study on singular systems and its properties. Some distinct features

of singular systems such as impulsive mode will be presented and discussed. The initial

conditions of a given singular system is discussed intensively before introducing some

important tools for singular systems such as Kronecker Canonical Form and invariant

structural indices. The last section of Chapter 2 lists some basic definitions such as

stability, stabilizability, detectibility and so on.

The second part is the core of this thesis and consists of Chapter 3 to Chapter 5. Chap-

ter 3 gives our research results on structural decomposition for linear single-input and

single-output (SISO) singular systems. This is the first step of our research on extending

the structural decomposition technique to singular systems. The results present a clear

view of the technique for singular systems. Chapter 4 is the most important section of

this thesis because it presents the structural decomposition technique for general multi-

variable singular systems. The properties of this technique show that it has a distinct

feature of explicitly displaying the zero structures, invertibility, stabilizability and de-

tectibility properties of the given systems, just as its counterpart in nonsingular systems.

Chapter 5 defines the invariant geometric subspaces of singular system in state space form

and presents the properties of our structural decomposition in displaying the invariant

geometric subspaces.
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The last part of this thesis focuses on the applications of our structural decomposition

technique. In Chapter 6, we apply the structural decomposition technique to solve dis-

turbance decoupling problem of singular systems with state feedback. It shows that the

structural decomposition technique is powerful in eliminating the influence of disturbance.

With a sufficient condition, we can see that the whole algorithm is based on decompos-

ing the system into several subspaces, and we can use the state feedback algorithm to

eliminate the corresponding disturbance in those subspaces. Moreover, Chapter 7 gives

concluding remarks on this thesis and propose our future work in the applications of this

structural decomposition in solving singular system and control problems.

Finally, in the appendix part, main MATLAB codes are given for the constructive al-

gorithm on computing the structural decomposition form. All essential procedures are

illustrated in detail. And complete source codes for those main functions are attached for

references.
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Chapter 2

Background Materials

2.1 Introduction

This chapter intends to recall necessary background material for the main work of this

thesis, the structural decomposition of singular systems and its applications. Such pre-

liminary materials include mathematical tools of matrix decomposition, the structural

decomposition for nonsingular systems, and a brief introduction of singular systems. All

of these are crucial in deriving, proving and understanding our structural decomposition

technique and its properties.

Mathematical tools for decomposing matrices and matrix pairs are widely used in linear

system theories. In this thesis, they are applied to constructively decompose state space

into several distinct subspaces displaying internal structural features of the given linear

system. Such tools include Jordan canonical form, controllability canonical form, as well

as block diagonal control canonical form.

The structural decomposition for nonsingular systems has a distinct feature of explicitly
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displaying a given nonsingular system’s internal structural properties such as invariant

and infinite zero structures, system invertibility, invariant geometric subspaces and so on.

This technique was first proposed by Sannuti et al. [70] and Saberi et al. [67] while

Chen [19] proved all of its properties and further decompose several subspaces, and more

important, gave clear geometric interpretations for the subspaces with a list of invariant

geometric subspaces. Our work in this thesis is to extend this powerful technique for

singular systems and apply it in solving singular systems and control problems.

At last, a brief knowledge on singular systems is recalled to make this thesis more self-

contained. Moreover, such knowledge is necessary in proving our structural decomposition

theorem and its properties, as well as its application in solving singular systems and

control problems. The background knowledge ranges from several basic definitions, such

as stabilizability, invariant zero structure and system invertibility, to very well known

Kronecker canonical form and invariant structural indices.

2.2 Mathematical Tools for Linear System Decomposition

Matrix decomposition is a must-go step in structural decomposition of linear systems. This

section recalls some important tools which will be used intensively in decomposing a given

singular system into its structural decomposition form. Firstly, the theorem on Jordan and

Real Jordan Canonical Form will be introduced, which can show the structural properties

of a given matrix according to its eigenvalues. Then some Controllability Canonical Forms

will be recalled for the decomposition of system matrix pair (A, B).

The following subsections give these important tools for matrices and matrix pairs.
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2.2.1 Structural Decomposition of (A,B)

This section recalls two important Controllability Canonical Forms, that is, Controllability

Structural Decomposition (CSD) and Block Diagonal Control Canonical Form (BDCCF).

All the canonical forms are presented for a linear system characterized by a matrix pair

(A,B) and display its controllability information in different ways.

Controllability canonical form is a very well-known tool in the literature. It decomposes

a given system into controllable and uncontrollable parts with an invertible coordinate

transform. Controllability structural decomposition form is generally called Brunovsky

canonical form in the literature, and in fact it is due to Luenberger [56] in 1967 and

Brunovsky [6] in 1970. Block diagonal control canonical form was presented by Chen [20],

it gives a totally new and powerful canonical form and its MATLAB software realization

can be found in Chen [17]. All these tools will pay key roles in the derivations of our

structural decomposition technique for singular systems.

The following theorem conducts a controllability structural decomposition for a matrix

pair (A,B).

Theorem 2.2.1 (CSD) Consider a pair of constant matrices (A,B) with A ∈ Rn×n and

B ∈ Rn×m. Assume that B is of full rank. Then, there exist nonsingular state and input

transformations Ts and Ti such that (Ã, B̃) := (T−1
s ATs, T

−1
s BTi) has the following form,







Ao 0 0 · · · 0 0

0 0 Ik1−1 · · · 0 0

? ? ? · · · ? ?

...
...

...
. . .

...
...

0 0 0 · · · 0 Ikm−1

? ? ? · · · ? ?




,




0 · · · 0

0 · · · 0

1 · · · 0
...

. . .
...

0 · · · 0

0 · · · 1







, (2.1)

where ki > 0, i = 1, · · · ,m, Ao is of dimension no := n −∑m
i=1 ki and its eigenvalues are

9



the uncontrollable modes of the pair (A, B). Moreover, the set of integers, C(A,B) :=

{no, k1, · · · , km }, is referred to as the controllability index of (A,B). 2

Proof. See Luenberger [56]. The software realization of such a canonical form can be

found in Lin and Chen [52].

At last, the theorem on block diagonal control canonical form is given in the following.

Theorem 2.2.2 (BDCCF) [20] Consider a constant matrix pair (A,B) with A ∈ Rn×n

and B ∈ Rn×m and with (A,B) being completely controllable. Then there exist an integer

k ≤ m, a set of κ integers k1, k2, · · · , kκ, and nonsingular state and input transformations

Ts and Ti such that (A,B) can be transformed into the following block diagonal control

canonical form,

Ã = T−1
s ATs =




A1 0 0 · · · 0

0 A2 0 · · · 0

0 0 A3 · · · 0
...

...
...

. . .
...

0 0 0 · · · Aκ




, (2.2)

and

B̃ = T−1
s BTi =




B1 ? ? · · · ? ?

0 B2 ? · · · ? ?

0 0 B3 · · · ? ?

...
...

...
. . .

...
...

0 0 0 · · · Bκ ?




, (2.3)

where ?s represent some matrices of less interest, and Ai and Bi, i = 1, 2, · · · , κ, have the
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following control canonical forms,

Ai =




0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

−ai
ki

−ai
ki−1 −ai

ki−2 · · · −ai
1




, Bi =




0

0
...

0

1




, (2.4)

for some scalars ai
1, a

i
2, · · · , ai

ki
. And it is obvious that

∑κ
i=1 ki = n. 2

The block diagonal control canonical form plays a key role in the derivation of our struc-

tural decomposition for singular systems. This will be introduced in detail in the Chapter

4 and 5.

2.2.2 Structural Decomposition of Linear Nonsingular Systems

Structural properties, such as invariant zero structures, are essential in understanding

the internal states of linear systems, which is the first step in solving linear systems and

control problems. Hence a good technique in displaying the structural properties is crucial

for us to find a better solution. And after so many years’ intensive research, there are a

large number of techniques for nonsingular systems in the literature to reveal their internal

structural features (see e.g., Lewis [47], Chen [20]). However, a better way to display the

structural properties is to decompose the whole state space into several distinct subspaces

each of which corresponding to special system structural properties. This has been proven

to be a successful technique in solving real applications by the structural decomposition

technique for nonsingular systems (see e.g. Chen et al. [13]).

In this section, structural decomposition for nonsingular systems is presented briefly. The

decomposition can explicitly display the zero structures, invertibility and geometric sub-

spaces of the given nonsingular system. And It has been proved to be a powerful tool in
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solving nonsingular system and control problems. Our structural decomposition technique

for singular systems is a natural extension of this method.

The structural decomposition for nonsingular systems was first presented by Sannuti and

Saberi [70] and Saberi and Sannuti [67]. Chen [19] proved the essential properties of the

structural decomposition technique and moreover, and linked them for the first time with

invariant geometric subspaces of geometric control theories, thus completing this theory.

Let us first consider a linear time-invariant (LTI) system Σ∗ characterized by a matrix

quadruple (A∗, B∗, C∗, D∗) or in the state space form,

Σ∗ :

{
ẋ = A∗ x + B∗ u,

y = C∗ x + D∗ u,
(2.5)

where x ∈ Rn, u ∈ Rm and y ∈ Rp are the state, the input and the output of Σ∗. Without

loss of any generality, we assume that both [B′∗ D′∗ ]T and [ C∗ D∗ ] are of full col and

row rank respectively. The transfer function of Σ∗ is then given by

H∗(s) = C∗(sI −A∗)−1B∗ + D∗, (2.6)

It is well-known that there exist non-singular transformations U and V such that

UD∗V =

[
Im0 0

0 0

]
, (2.7)

where m0 is the rank of matrix D∗. Without loss of generality, it is assumed that the

matrix D∗ has the form given on the right hand side of (2.7). One can now rewrite system

Σ∗ of (2.5) as,





ẋ = A∗ x + [ B∗,0 B∗,1 ]

(
u0

u1

)
,

(
y0

y1

)
=

[
C∗,0

C∗,1

]
x +

[
Im0 0

0 0

] (
u0

u1

)
,

(2.8)

where the matrices B∗,0, B∗,1, C∗,0 and C∗,1 have appropriate dimensions. We have the

following theorem.
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Theorem 2.2.3 [20] Given the linear system Σ∗ of (2.5), there exist

1. Coordinate free non-negative integers n−a , n0
a, n+

a , nb, nc, nd, md ≤ m−m0 and qi,

i = 1, · · · , md, and

2. Non-singular state, output and input transformations Γs, Γo and Γi which take the

given Σ∗ into the structural decomposition form that displays explicitly both the

invariant and infinite zero structures of Σ∗.

The structural decomposition can be described by the following set of equations:

x = Γsx̃, y = Γoỹ, u = Γiũ, (2.9)

x̃ =




xa

xb

xc

xd




, xa =




x−a

x0
a

x+
a


 , xd =




x1

x2

...

xmd




, (2.10)

ỹ =




y0

yd

yb


 , yd =




y1

y2

...

ymd




, ũ =




u0

ud

uc


 , ud =




u1

u2

...

umd




, (2.11)

and

ẋ−a = A−aax
−
a + B−

0ay0 + L−adyd + L−abyb, (2.12)

ẋ0
a = A0

aax
0
a + B0

0ay0 + L0
adyd + L0

abyb, (2.13)

ẋ+
a = A+

aax
+
a + B+

0ay0 + L+
adyd + L+

abyb, (2.14)
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ẋb = Abbxb + B0by0 + Lbdyd, yb = Cbxb, (2.15)

ẋc = Accxc + B0cy0 + Lcbyb + Lcdyd + Bc

[
E−

cax
−
a + E0

ca + E+
cax

+
a

]
+ Bcuc, (2.16)

y0 = C0cxc + C−
0ax

−
a + C+

0ax
0
a + C+

0ax
+
a + C0dxd + C0bxb + u0, (2.17)

and for each i = 1, · · · ,md,

ẋi = Aqixi + Li0y0 + Lidyd + Bqi


ui + Eiaxa + Eibxb + Eicxc +

md∑

j=1

Eijxj


 , (2.18)

yi = Cqixi, yd = Cdxd. (2.19)

Here the states x−a , x0
a, x+

a , xb, xc and xd are respectively of dimensions n−a , n0
a, n+

a , nb,

nc and nd =
∑md

i=1 qi, while xi is of dimension qi for each i = 1, · · · ,md. The control

vectors u0, ud and uc are respectively of dimensions m0, md and mc = m−m0−md while

the output vectors y0, yd and yb are respectively of dimensions p0 = m0, pd = md and

pb = p− p0 − pd. The matrices Aqi , Bqi and Cqi have the following form:

Aqi =

[
0 Iqi−1

0 0

]
, Bqi =

[
0

1

]
, Cqi = [ 1 0 · · · 0 ] . (2.20)

Assuming that xi, i = 1, 2, · · · ,md, are arranged such that qi ≤ qi+1, the matrix Lid has

the particular form

Lid = [ Li1 Li2 · · · Lii−1 0 · · · 0 ] . (2.21)

Also, the last row of each Lid is identically zero. Moreover,

λ(A−aa) ⊂ C−, λ(A0
aa) ⊂ C0, λ(A+

aa) ⊂ C+. (2.22)
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Also, the pair (Acc, Bc) is controllable and the pair (Abb, Cb) is observable. 2

The software toolboxes that realize the continuous-time structural decomposition can be

found in LAS by Chen [9] or in MATLAB by Lin [49]. The realization of this unified

structural decomposition can be found in Chen [17].

We can rewrite the special coordinate basis of the quadruple (A∗, B∗, C∗, D∗) given by

Theorem 2.2.3 in a more compact form,

Ã∗ = Γ−1
s (A∗ −B∗,0C∗,0)Γs

=




A−aa 0 0 L−abCb 0 L−adCd

0 A0
aa 0 L0

abCb 0 L0
adCd

0 0 A+
aa L+

abCb 0 L+
adCd

0 0 0 Abb 0 LbdCd

BcE
−
ca BcE

0
ca BcE

+
ca LcbCb Acc LcdCd

BdE
−
da BdE

0
da BdE

+
da BdEdb BdEdc Add




, (2.23)

B̃∗ = Γ−1
s [ B∗,0 B∗,1 ] Γi =




B−
0a 0 0

B0
0a 0 0

B+
0a 0 0

B0b 0 0

B0c 0 Bc

B0d Bd 0




, (2.24)

C̃∗ = Γ−1
o

[
C∗,0

C∗,1

]
Γs =




C−
0a C0

0a C+
0a C0b C0c C0d

0 0 0 0 0 Cd

0 0 0 Cb 0 0


 , (2.25)

D̃∗ = Γ−1
o D∗Γi =




Im0 0 0

0 0 0

0 0 0


 . (2.26)
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We note the following intuitive points regarding the special coordinate basis:

1. The variable ui controls the output yi through a stack of qi integrators (or back-

ward shifting operators), while xi is the state associated with those integrators (or

backward shifting operators) between ui and yi. Moreover, (Aqi , Bqi) and (Aqi , Cqi)

respectively form controllable and observable pair. This implies that all the states

xi are both controllable and observable.

2. The output yb and the state xb are not directly influenced by any inputs, however,

they could be indirectly controlled through the output yd. Moreover, (Abb, Cb) forms

an observable pair. This implies that the state xb is observable.

3. The state xc is directly controlled by the input uc, but it does not directly affect any

output. Moreover, (Acc, Bc) forms a controllable pair. This implies that the state

xc is controllable.

4. The state xa is neither directly controlled by any input nor does it directly affect

any output.

In what follows, we state some important properties of the above structural decomposition

for nonsingular systems.

Property 2.2.1 The given system Σ∗ is observable (detectable) if and only if the pair

(Aobs, Cobs) is observable (detectable), where

Aobs :=




Aaa 0

BcEca Acc


 , Cobs :=




C0a C0c

Eda Edc


 , (2.27)

and where

Aaa :=




A−aa 0 0

0 A0
aa 0

0 0 A+
aa


 , C0a := [ C−

0a C0
0a C+

0a ] , (2.28)
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Eda := [ E−
da E0

da E+
da ] , Eca := [ E−

ca E0
ca E+

ca ] . (2.29)

Also, define

Acon :=




Aaa LabCb

0 Abb


 , Bcon :=




B0a Lad

B0b Lbd


 , (2.30)

B0a :=




B−
0a

B0
0a

B+
0a


 , Lab :=




L−ab

L0
ab

L+
ab


 , Lad :=




L−ad

L0
ad

L+
ad


 . (2.31)

Similarly, Σ∗ is controllable (stabilizable) if and only if the pair (Acon, Bcon) is controllable

(stabilizable). 2

The invariant zeros of a system Σ∗ characterized by (A∗, B∗, C∗, D∗) can be defined via the

Smith canonical form of the Rosenbrock system matrix [66] of Σ∗ defined as the polynomial

matrix PΣ∗(s),

PΣ∗(s) :=

[
sI −A∗ −B∗

C∗ D∗

]
. (2.32)

We have the following definition for the invariant zeros (see also [57]).

Definition 2.2.1 (Invariant Zeros). A complex scalar α ∈ C is said to be an invariant

zero of Σ∗ if

rank {PΣ∗(α)} < n + normrank {H∗(s)}, (2.33)

where normrank {H∗(s)} denotes the normal rank of H∗(s), which is defined as its rank

over the field of rational functions of s with real coefficients. 2

The special coordinate basis of Theorem 2.2.3 shows explicitly the invariant zeros and the

normal rank of Σ∗. To be more specific, we have the following properties.

Property 2.2.2
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1. The normal rank of H∗(s) is equal to m0 + md.

2. Invariant zeros of Σ∗ are the eigenvalues of Aaa, which are the unions of the eigen-

values of A−aa, A0
aa and A+

aa. Moreover, the given system Σ∗ is of minimum phase

if and only if Aaa has only stable eigenvalues, marginal minimum phase if and only

if Aaa has no unstable eigenvalue but has at least one marginally stable eigenvalue,

and non-minimum phase if and only if Aaa has at least one unstable eigenvalue. 2

In order to display various multiplicities of invariant zeros, let Xa be a non-singular trans-

formation matrix such that Aaa can be transformed into a Jordan canonical form, i.e.,

X−1
a AaaXa = J = blkdiag

{
J1, J2, · · · , Jk

}
, (2.34)

where Ji, i = 1, 2, · · · , k, are some ni × ni Jordan blocks:

Ji = diag
{

αi, αi, · · · , αi

}
+

[
0 Ini−1

0 0

]
. (2.35)

For any given α ∈ λ(Aaa), let there be τα Jordan blocks of Aaa associated with α. Let

nα,1, nα,2, · · ·, nα,τα be the dimensions of the corresponding Jordan blocks. Then we say

α is an invariant zero of Σ∗ with multiplicity structure S?
α(Σ∗) (see also [68]),

S?
α(Σ∗) =

{
nα,1, nα,2, · · · , nα,τα

}
. (2.36)

The geometric multiplicity of α is then simply given by τα, and the algebraic multiplicity

of α is given by
∑τα

i=1 nα,i. Here we should note that the invariant zeros together with

their structures of Σ∗ are related to the structural invariant indices list I1(Σ∗) of Morse

[60].

The special coordinate basis can also reveal the infinite zero structure of Σ∗. We note that

the infinite zero structure of Σ∗ can be either defined in association with root-locus theory

or as Smith-McMillan zeros of the transfer function at infinity. For the sake of simplicity,

we only consider the infinite zeros from the point of view of Smith-McMillan theory here.

18



To define the zero structure of H∗(s) at infinity, one can use the familiar Smith-McMillan

description of the zero structure at finite frequencies of a general not necessarily square but

strictly proper transfer function matrix H∗(s). Namely, a rational matrix H∗(s) possesses

an infinite zero of order k when H∗(1/z) has a invariant zero of precisely that order at

z = 0 (see [27], [65], [66] and [75]). The number of zeros at infinity together with their

orders indeed defines an infinite zero structure. Owens [62] related the orders of the infinite

zeros of the root-loci of a square system with a non-singular transfer function matrix to

C∗ structural invariant indices list I4 of Morse [60]. This connection reveals that even

for general not necessarily strictly proper systems, the structure at infinity is in fact the

topology of inherent integrations between the input and the output variables. The special

coordinate basis of Theorem 2.2.3 explicitly shows this topology of inherent integrations.

The following property pinpoints this.

Definition 2.2.2 [69] The system Σ possesses an infinite zero of order k if the associated

rational matrix C(1
z I − A)−1B has a invariant zero of precisely that order at z = 0. If

each qi of q1 ≥ · · · ≥ qmd
≥ 1 corresponds to an infinite zero of system Σ with order qi,

then S∞(Σ) = {q1, · · · , qmd
} is called the infinite zero structure of system Σ. 2

Property 2.2.3 Σ∗ has m0 = rank (D∗) infinite zeros of order 0. The infinite zero

structure (of order greater than 0) of Σ∗ is given by

S?
∞(Σ∗) =

{
q1, q2, · · · , qmd

}
. (2.37)

That is, each qi corresponds to an infinite zero of Σ∗ of order qi. Note that for a single-

input-single-output system Σ∗, we have S?∞(Σ∗) = {q1}, where q1 is the relative degree of

Σ∗. 2

The structural decomposition can also exhibit the invertibility structure of a given system

Σ∗. The formal definitions of right invertibility and left invertibility of a linear system
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can be found in [61]. Basically, for the usual case when [B′∗ D′∗ ] and [ C∗ D∗ ] are of

maximal rank, the system Σ∗ or equivalently H∗(s) is said to be left invertible if there

exists a rational matrix function, say L∗(s), such that

L∗(s)H∗(s) = Im. (2.38)

Σ∗ or H∗(s) is said to be right invertible if there exists a rational matrix function, say

R∗(s), such that

H∗(s)R∗(s) = Ip. (2.39)

Σ∗ is invertible if it is both left and right invertible, and Σ∗ is degenerate if it is neither

left nor right invertible.

Property 2.2.4 The given system Σ∗ is right invertible if and only if xb (and hence yb)

are non-existent, left invertible if and only if xc (and hence uc) are non-existent, and

invertible if and only if both xb and xc are non-existent. Moreover, Σ∗ is degenerate if

and only if both xb and xc are present. 2

The special coordinate basis can also be modified to obtain the structural invariant indices

lists I2 and I3 of Morse [60] of the given system Σ∗. In order to display I2(Σ∗), we let Xc

and Xi be non-singular matrices such that the controllable pair (Acc, Bc) is transformed

into Brunovsky canonical form (see Theorem 2.2.1), i.e.,

X−1
c AccXc =




0 I`1−1 · · · 0 0

? ? · · · ? ?

...
...

. . .
...

...

0 0 · · · 0 I`mc−1

? ? · · · ? ?




, X−1
c BcXi =




0 · · · 0

1 · · · 0
...

. . .
...

0 · · · 0

0 · · · 1




, (2.40)

where ?’s denote constant scalars or row vectors. Then we have

I2(Σ∗) =
{

`1, · · · , `mc

}
, (2.41)
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which is also called the controllability index of (Acc, Bc). Similarly, we have

I3(Σ∗) =
{

µ1, · · · , µpb

}
, (2.42)

where {µ1, · · · , µpb
} is the controllability index of the controllable pair (A′bb, C

′
b).

By now it is clear that the special coordinate basis decomposes the state-space into several

distinct parts. In fact, the state-space X is decomposed as

X = X−
a ⊕X 0

a ⊕X+
a ⊕Xb ⊕Xc ⊕Xd. (2.43)

Here X−
a is related to the stable invariant zeros, i.e., the eigenvalues of A−aa are the stable

invariant zeros of Σ∗. Similarly, X 0
a and X+

a are respectively related to the invariant zeros

of Σ∗ located in the marginally stable and unstable regions. On the other hand, Xb is

related to the right invertibility, i.e., the system is right invertible if and only if Xb = {0},
while Xc is related to left invertibility, i.e., the system is left invertible if and only if

Xc = {0}. Finally, Xd is related to zeros of Σ∗ at infinity.

There are interconnections between the special coordinate basis and various invariant

geometric subspaces. To show these interconnections, we introduce the following geometric

subspaces:

Definition 2.2.3 (Geometric Subspaces VX and SX). The weakly unobservable sub-

spaces of Σ∗, VX, and the strongly controllable subspaces of Σ∗, SX, are defined as follows:

1. VX(Σ∗) is the maximal subspace of Rn which is (A∗+B∗F∗)-invariant and contained

in Ker (C∗ + D∗F∗) such that the eigenvalues of (A∗ + B∗F∗)|VX are contained in

CX ⊆ C for some constant matrix F∗.

2. SX(Σ∗) is the minimal (A∗ + K∗C∗)-invariant subspace of Rn containing Im (B∗ +

K∗D∗) such that the eigenvalues of the map which is induced by (A∗ + K∗C∗) on

the factor space Rn/SX are contained in CX ⊆ C for some constant matrix K∗.
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Furthermore, we let V−= VX and S−= SX, if CX= C− ∪ C0; V+ = VX and S+ = SX, if

CX=C+; and finally V∗=VX and S∗=SX, if CX=C. 2

Various components of the state vector of the special coordinate basis have the following

geometrical interpretations.

Property 2.2.5

1. X−
a ⊕X 0

a ⊕Xc spans V−(Σ∗).

2. X+
a ⊕Xc spans V+(Σ∗).

3. X−
a ⊕X 0

a ⊕X+
a ⊕Xc spans V∗(Σ∗).

4. X+
a ⊕Xc ⊕Xd spans S−(Σ∗).

5. X−
a ⊕X 0

a ⊕Xc ⊕Xd spans S+(Σ∗).

6. Xc ⊕Xd spans S∗(Σ∗). 2

This property relates structural decomposition to invariant geometric subspaces, and thus

give a clear geometric interpretation for the distinct subspaces of structural decomposition.

2.3 Linear singular systems

Linear singular system, or alternatively called generalized linear system or linear descriptor

system [29] [47], is a better system model than nonsingular system since it represents more

general information of a real system. Roughly speaking, most real systems in this world

are singular in nature. Such systems include biological system, financial system, social

system, power system and electrical system, to name just a few. According to this fact,
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most real systems should be characterized as singular systems. However, due to lacking

of efficient tools, they just simply be treated as nonsingular systems in many cases. To

propose a new powerful tool for singular systems, we present the structural decomposition

in this thesis.

In general, most definitions and techniques for singular systems are natural extension of

their counterpart for nonsingular systems. This will be seen clearly in the following when

this section gives a brief introduction of definitions for singular systems.

Let us first look at the following example of an electrical circuit (see also [47] [29]).

¹¸

º·

¾ ?
CR2

I(t)
U(t)

R1

Figure 2.1: A simple electrical circuit.

Now we have at least two methods to model this circuit. First one is using nonsingular

system model, and we will have

U̇C = −R1 + R2

R1R2C
UC +

1
R1C

U(t), (2.44)

where UC(t) is the voltage across the capacity.

We can see that some internal information can not be represented by (2.44), such as

the relationship between UC(t) and I(t). While such information will be revealed in the

following singular system description.

[
0 0

0 C

][
İ(t)

U̇C(t)

]
=

[
R1 1

1 − 1
R2

][
I(t)

UC(t)

]
+

[−1

0

]
U(t). (2.45)
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It is clear that the whole circuit’s information has been included in the singular system

of (2.45). And in general, singular systems provide more internal information of the real

systems. This is the reason that the singular system has been in attention for so many

years.

Generally, a singular system can be expressed in the following state space form,

Σ :

{
E ẋ = A x + B u, x(0) = x0

y = C x + D u,
(2.46)

where x ∈ Rn, y ∈ Rp, u ∈ Rm and rank(E) < n.

2.3.1 Impulsive Mode and Initial Conditions

Linear nonsingular system, or alteratively called nonsingular system, is a simple expression

characterizing many real systems. And it has received an intensive research during last

three decades. A lot of methods have been presented in literature to solve system and

control problem in large variety. However, a singular system is a more natural model for

most real systems in this world. It is more general than a linear nonsingular system, simply

because it contains more complete information of the objects it characterized, which can

be seen clearly in its state space expression of (2.46) that a linear nonsingular system is

merely a special case of singular systems.

Further, singular systems have their own system features. One of these is impulsive mode.

Consider the following singular system,
[

0 1

0 0

][
ẋ1

ẋ2

]
=

[
1 0

0 1

][
x1

x2

]
+

[
0

−1

]
u, (2.47)

we can find its state variable as {
x1 = u̇

x2 = u.
(2.48)
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It is clear that there is an input derivative in the state variable x1, thus it will have a

impulse response factor δ(t) if the input is a function of unit step function u(t).

Hence the state x1 will have impulsive behavior at the starting point if the initial conditions

are not consistent, that is, if x2(0) 6= 0 or x1(0) 6= u(0). And actually this is quite like

the jump behavior in nonsingular systems when their initial conditions are not consistent.

Furthermore, if there is a jump in the input or even the input function is continuous, the

system response may also have impulsive modes or jump behaviors. All of such behaviors

are caused by the input derivatives, which is caused by the special structure properties of

singular systems. And this forms a distinct feature for singular systems which is totally

different from nonsingular systems.

In order to lay off those unnecessary discussion on initial conditions, and without loss of

any generality, we assume the initial conditions are consistent in this thesis, just like what

have happened in nonsingular systems. And if it is not consistent in some cases, we can

treat them case by case.

Then the only cause of impulsive behavior is the structural property of singular system

after the above general assumption on their initial conditions.

2.3.2 Restricted System Equivalence

Singular systems are also called descriptor systems, implicit systems or generalized state

space systems in the literature. As one of the main research topics in system and control

theories, singular system has been of attraction for more than three decades. This directly

result in the large number of techniques presented for singular systems. Among these

methods, one important group is about system equivalence. Because most other methods

are simply based on system equivalence to begin their development.
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An equivalent relationship between two systems possesses reflexivity, transitivity and in-

vertibility. While restricted system equivalence give more rigorous conditions and can be

defined as follows,

Definition 2.3.1 (see also [85] [38]) Two singular systems Σ(E,A, B, C) and Σ̃(Ẽ, Ã, B̃, C̃)

are restricted equivalent if there exist two invertible matrices P and Q such that

Ẽ = PEQ, Ã = PAQ, B̃ = PB, C̃ = CQ. (2.49)

Restricted equivalent singular systems have many identical properties such as structural

features. And here we recall two restricted equivalence forms very often used in the

literature.

Lemma 2.3.1 (see also [29]) For any singular system Σ of (2.46), if it is regular, there

exist an invertible coordinate transformation,

x = Qx̃ = Q

[
x1

x2

]
, x1 ∈ Rn1 , x2 ∈ Rn2 , (2.50)

and an invertible matrix P such that

PEQ =

[
In1 0

0 N

]
, PAQ =

[
A1 0

0 In2

]
, PB =

[
B1

B2

]
, CQ = [C1 C2 ] , (2.51)

and the original system Σ is decomposed into and restricted equivalent to the following

system,

Σ1 :

{
ẋ1 = A1 x1 + B1 u, x1(0) = x10

y1 = C1 x1 + D u,
(2.52)

Σ1 :

{
N ẋ2 = In2 x2 + B2 u, x2(0) = x20

y2 = C2 x2,
(2.53)

where y = y1 + y2 and N is a nilpotent matrix with an index of h, that is, Nh = 0 while

Nh−1 6= 0.
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This decomposition gives a restricted equivalent singular system, and it also called Weier-

strass decomposition or slow-fast decomposition in the literature. Such a decomposition

separates a nonsingular subsystem from another singular subsystem, and thus play an

important role in developing many techniques for singular systems.

For such a decomposition, we also have the following theorem,

Theorem 2.3.1 (see also [29]) Suppose Σ1(In1 , A1, B1, C1, D) and Σ2(N, In2 , B2, C2, 0)

are the two subsystems decomposed from Σ by Lemma 2.3.1 with invertible P and Q,

while Σ̄1(In̄1 , Ā1, B̄1, C̄1, D̄) and Σ̄2(N̄ , In̄2 , B̄2, C̄2, 0) are the two subsystems decomposed

from Σ by Lemma 2.3.1 with invertible P̄ and Q̄, then there exist two invertible transform

matrices U ∈ Rn1×n1 and V ∈ Rn2×n2 such that

P =

[
U 0

0 V

]
P̄ , Q = Q̄

[
U 0

0 V

]
,

A1 = UĀ1U
−1, N = V N̄V −1,

B1 = UB̄1, C1 = C̄1U
−1,

B2 = V B̄2, C2 = C̄2V
−1. (2.54)

This theorem shows that different decompositions by Lemma 2.3.1 are similar to each

other.

Now we can look at another kind of system equivalence for singular systems.

Lemma 2.3.2 [29] For any singular system Σ of (2.46), if it is regular, there exist an

invertible coordinate transformation,

x = Qx̃ = Q

[
x1

x2

]
, x1 ∈ Rq, x2 ∈ Rn−q, (2.55)

and an invertible transform matrix P such that

PEQ =

[
Iq 0

0 0

]
, PAQ =

[
A11 A12

A21 A22

]
, PB =

[
B1

B2

]
, CQ = [C1 C2 ] , (2.56)
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and the original system Σ is decomposed into and restricted equivalent to the following

system,

Σ3 :





ẋ1 = A11 x1 + A12 x2 + B1 u,

0 = A21 x1 + A22 x2 + B2 u,

y = C1 x1 + C2 x2 + D u,

(2.57)

This restricted equivalent decomposition shows the physical meaning of singular system

clearly. The first equation is of dynamic state variables and the second equation is a

algebraic one and represents the constrains among the internal state variables. Such a

decomposition shows that a singular system is a combination of several interconnected

subsystems.

2.3.3 Stabilizability and Detectability

Stabilizability and detectability are two essential properties of linear systems. Stabliizabil-

ity gives the possibility that we can revise a linear system while remaining its stability at

the same time. If it is totally stabilizable, we can design feedback controllers to improve

system’s performance and retain its internal stability as well. And we can not change

internal states if they are uncontrollable. Similarly, we can get the information of internal

state variables if the given system is detectible, otherwise we have to estimate them before

designing a feedback controller.

Before defining stabilizability and detecbility, we first give the definition on controllability

and observability.

Definition 2.3.2 (Controllability) [84] [26] A singular system Σ of (2.46) is said to

be controllable if, for any t1 > 0, x(0) ∈ Rn and w ∈ Rn, there exists a control input

u(t) ∈ Ch−1
p such that x(t1) = w. Here Ch−1

p represents the (h − 1)-times piecewise

continuously differentiable function set.
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From the definition of controllability on system states, we can see that if a state is con-

trollable, we can use a control input to set its value as we like. This is critical in designing

singular systems. Generally, a linear system is said to be controllable if and only if all its

states are controllable.

The following theorem gives a general criterion on controllability.

Theorem 2.3.2 [29] Singular system Σ is controllable if and only if

rank [ sE −A B ] = n, and rank [E B ] = n, (2.58)

for all finite s ∈ C.

This theorem is a simple rule for us to determine whether or not a given singular sys-

tem is controllable. There are also many other methods on judging a singular system’s

controllability, but basically they are all equivalent to this one.

Now we recall a theorem on the stabilizability of singular systems.

Theorem 2.3.3 [29] Singular system Σ is stabilizable if and only if

rank [ sE −A B ] = n, (2.59)

for all finite s ∈ C.

Dual to controllability, observability is also a critical concept in system and control the-

ories. Observability of a singular system shows how much internal state information we

can get to design output feedback controllers. This is essential for the success of designing

a good controller because internal state information is the basis of design. In general,

people design an observer to estimate internal state information when the given system is
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unobservable. However, such an estimation will have error for more or less and can not

perform as well as the internal states themselves.

We now give the definition on observability in following.

Definition 2.3.3 (Observability) [29] A singular system is said to be observable if its

initial condition x(0) can be uniquely determined by its input u(t) and output y(t) for

0 ≤ t ≤ ∞.

The observability states that the state of observable system may be determined by ob-

serving the initial condition x(0), followed by constructing the state response at any time

t.

The following theorem gives matrix form judgement rule on observability.

Theorem 2.3.4 [29] A singular system Σ is observable if and only if,

rank

[
E

C

]
= n, and rank

[
sE −A

C

]
= n (2.60)

for all finite s ∈ C.

And the following theorem is for detectibility.

Theorem 2.3.5 [29] A singular system Σ is detectible if and only if,

rank

[
sE −A

C

]
= n, (2.61)

for all finite s ∈ C.

Controllability and observability, or stabilizability and detectibility are basis for our later

discussions. They play essential roles in solving singular system and control problems.
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2.3.4 Zero Structures

Zero structures play essential roles in understanding internal structural information of a

singular system. Invariant and infinite zero structures have been widely used in solving

various system and control problems. And they are proved to be efficient in representing

given systems’ structural features.

The definition of invariant zeros of singular systems can be done similarly as that for

nonsingular systems (see e.g., Chen [19] and MacFarlane and Karcanias [57]) or in the

Kronecker canonical form associated with Σ (see e.g., Malabre [58]).

Definition 2.3.4 (Invariant Zeros) A complex scalar α ∈ C is said to be an invariant

zero of the singular system Σ of (2.46) if

rank{PΣ(α)} < n + normrank{H(s)}, (2.62)

where normrank{(H(s)} denotes the normal rank of H(s) = C(sE − A)−1B + D, which

is defined as its rank over the field of rational functions with real coefficients, and PΣ(s)

is the Rosenbrock system matrix associated with Σ and is given by

PΣ(s) =

[
A− sE B

C D

]
. (2.63)

The infinite zero structure of the given system Σ can be either defined in association with

the Kronecker canonical form of PΣ(s) or as Smith-McMillan zeros of the transfer function

from ũ to ỹ, say H̃(s), at infinity. The indices defined by these two methods are identical.

To define the zero structure of H̃(s) at infinity, one can use the familiar Smith-McMillan

description of the zero structure at finite frequencies of H̃(s). Namely, a rational matrix

H̃(s) possesses an infinite zero of order k when H̃(1/z) has a finite zero of precisely that

order at z = 0 (see [27], [65] and [75]). The number of zeros at infinity together with their

orders indeed defines an infinite zero structure.
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2.3.5 System Invertibility

The invertibility structure of a given singular system Σ is useful and it is an important

structural property of singular systems. And the definition of system invertibility for

singular systems are also similar to that for nonsingular systems [61].

Basically, for the usual case when [B′ D′ ] and [C D ] are of maximal rank, the system

Σ or equivalently H(s) is said to be left invertible if there exists a rational matrix function

L(s) such that

L(s)H(s) = Im. (2.64)

Σ is right invertible if there exists a rational matrix function R(s) such that

H(s)R(s) = Ip. (2.65)

Moreover, Σ is said to be invertible if it is both left and right invertible, and Σ is non-

invertible if it is not invertible.

2.3.6 Kronecker Canonical Form and Invariant Indices

The Kronecker canonical form plays an important role in the structural analysis of singular

systems. It exhibits the invariant zeros and infinite zeros of the system, and also shows

the left and right null-space structure. We recall that two pencils sM1−N1 and sM2−N2

of dimension m × n are strictly equivalent if there exist constant nonsingular matrices P

and Q such that

Q(sM1 −N1)P = sM2 −N2. (2.66)

It is showed in [35] that any pencil sM −N can be reduced, under strict equivalence, to

a canonical quasidiagonal form, which is given by

S(sM −N)T = blkdiag{Rr1 , . . . , Rrp , Ll1 , . . . , Llq , I − sH, sI − J}, (2.67)
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with Rk and Lk being the k × (k + 1) and (k + 1)× k bidiagonal pencil respectively,

Rk :=




s −1
. . . . . .

s −1


 , Lk :=




−1

s
. . .

. . . −1

s




. (2.68)

J is in Jordan canonical form, and sI − J has the following Σδ
i=1di pencils as its diagonal

blocks,

sImi,j − Jmi,j (βi) :=




s− βi −1
. . . . . .

s− βi −1

s− βi




, j = 1, . . . , di, i = 1, . . . , δ.

(2.69)

H is nilpotent and in Jordan canonical form, and I − sH has the following d pencils as

its diagonal blocks,

Inj − sJnj (0) :=




1 −s

. . . . . .

1 −s

1




, j = 1, . . . , d. (2.70)

Then, {(s − βi)mi,j , j = 1, . . . , di} is finite elementary divisors at βi, i = 1, . . . , δ. The

index sets {r1, . . . , rp} and {l1, . . . , lq} are right and left minimal indices respectively.

{(1/s)nj , j = 1, . . . , d} are the infinite elementary divisors.

The definition of structural invariants of singular systems is based on invariant indices of

its system pencil. For singular systems, the right and left invertibility indices of singular

system are right and left minimal indices of system pencil respectively, and the invariant

and infinite zero structures of singular system are relate to finite and infinite elementary

divisors of system pencil.

Several methods have been developed to compute the structural invariants of singular

linear systems under algebraic setting. In the algebraic approaches, the row and column
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compressions of a matrix are often used in the decomposition, i.e.,

UH :=

[
Hr

0

]
, HV := [Hc 0 ] , (2.71)

where H is an arbitrary m × n matrix, U and V are unitary matrices, Hr and Hc have

full row and column rank respectively. By using the row and column compression, Van

Dooren et al. [31, 32] reduce an arbitrary pencil sM −N to the form

U(sM −N)V =




sMl −Nl ∗ ∗ ∗
0 sMf −Nf ∗ ∗
0 0 sMi −Ni ∗
0 0 0 sMr −Nr




, (2.72)

where ∗ is polynomial of s. sMl−Nl and sMr−Nr are nonsquare pencils with the informa-

tions of Kronecker indices of sM−N ; sMi−Ni and sMf −Nf are regular pencils with the

infinite and finite elementary divisors of sM −N respectively. Varga [73] presents several

condensed Kronecker-like forms which exhibit either the complete Kronecker structure or

only a part of the Kronecker structure of the system pencil.

For the singular system Σ(E, A, B, C, D), by using the transformations U and V such that

UEV = blkdiag{E11, 0}, where E11 is invertible, a “compressed generalized state space

system” Σπ(E11, Ǎ, B̌, Č, Ď) is introduced [59]. The transformations are conducted on the

base of the compressed system,

QPΣπ(s)P =

[
N1 − sM1 ∗

0 N2 − sM2

]
, (2.73)

where

N2 − sM2 =




N c
j,j N c

j,j−1 − sM c
j,j−1 . . . N c

j,2 − sM c
j,2 N c

j,1 − sM c
j,1

0 N c
j−1,j−1 . . . N c

j−1,2 − sM c
j−1,2 N c

j−1,1 − sM c
j−1,1

0 0
. . .

...
...

...
...

. . . N c
2,2 N c

2,1 − sM c
2,1

0 0 . . . 0 N c
1,1




.

(2.74)
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and where Mi+1,i has full row rank, N c
i,i has full column rank, and N1−sM1 and N2−sM2

have the similar structure. From the structure of the pencil, the structural invariants can

be obtained.

2.4 Conclusions

In this chapter, we recall a series of crucial tools for linear systems, which include Jordan

and Real Jordan Canonical Form, Controllability Canonical Form (CCF), Controllability

Structural Decomposition (CSD), Block Diagonal Control Canonical Form (BDCCF) and

the structural decomposition for nonsingular systems. Such tools have been used in the

literature to solve many system and control problems such as the squaring down and

decoupling of linear systems (see e.g., Sannuti and Saberi [70]), linear system factorizations

(see e.g., Chen et al [11], and Lin et al [51]), blocking zeros and strong stabilizability (see

e.g., Chen et al [12]), zero placements (see e.g. Chen and Zheng [15]), loop transfer

recovery (see e.g., Chen [10], Chen and Chen [16], and Saberi et al [68]), H2 optimal

control (see e.g., Chen et al [13, 14], and Saberi et al [69]), disturbance decoupling (see

e.g., Chen [18], and Ozcetin et al [63, 64]), H∞ optimal control (see e.g., Chen et al [11]

and control with saturations (see e.g., Lin [50]). The list here is far from complete.

The main objective of this thesis is to extend the structural decomposition technique to

singular systems and apply it to solve singular system and control problems as its coun-

terpart in nonsingular systems. All of these will be introduced in the following chapters.
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Chapter 3

Structural Decomposition of SISO

Singular Systems

3.1 Introduction

Singular systems, also commonly called generalized or descriptor systems in the literature,

appear in many practical situations including engineering systems, economic systems,

network analysis, and biological systems (see e.g., Dai [29], Kuijper [45] and Lewis [48]).

In fact, many systems in the real life are singular in nature. They are usually simplified

as or approximated by nonsingular models because there is still lacking of efficient tools

to tackle problems related to such systems. The structural analysis of singular systems,

using either algebraic or geometric approach, has attracted considerable attention from

many researchers over the last three decades (see e.g., Van Dooren [31, 32], Geerts [36],

Loiseau [55], Malabre [58], Misra et al. [59], Verghese [76], Zhou et al. [85], Chu et al. [21]

[22] and the references cited therein). Generally speaking, almost all the research work

dealing with singular systems is the natural extension of those results for nonsingular
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counterparts, although it is much harder in obtaining solutions associated with singular

systems.

It has been extensively demonstrated and proven for nonsingular systems that the system

structural properties, such as the finite zero and infinite zero structures as well as the

invertibility structures, play a very important role in solving related control problems

including H2, H∞ control and disturbance decoupling (see e.g., Chen [20] and Saberi et

al. [69]). In this chapter, we present a structural decomposition of general single-input

and single-output singular systems, which is capable of capturing and displaying all the

structural properties of the given system. Our method can be regarded as a natural

extension of the work of Sannuti and Saberi [70]. However, it will be seen shortly that

the structural decomposition of a singular system is much more complicated than that of

a nonsingular system. Such a decomposition technique is expected to be a powerful tool

and play an important role in solving control problems for singular systems, such as H2

and H∞ control, model reduction and disturbance decoupling, to name just a few.

To extend the structural decomposition for singular systems, we first focus on single input

single output case because it is easier to find a solution and can bring us hints for general

singular systems.

In this chapter, we first presents the structural decomposition theorem for general single-

input and single-output singular systems. Such a decomposition is a natural extension

of structural decomposition for nonsingular systems. As its counterpart for nonsingular

systems, it is expected to be a powerful tool in solving control problems for singular

systems. And in Section 3, we will show that the decomposition technique also has a

distinct feature of capturing and displaying all the structural properties, such as the finite

and infinite zero structures and redundant dynamics, of the given system. All proofs

for the main theorem and its properties are shown in Section 4. Further, an illustrative

example will be given in Section 5 to show the constructive decomposition procedure and
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verify its important properties. And finally, a conclusion will be draw in Section 6.

3.2 Structural Decomposition Theorem

We first consider a linear time-invariant system Σ characterized by
{

E ẋ = A x + B u, x(0) = x0

y = C x
(3.1)

where x ∈ Rn, u ∈ R and y ∈ R are respectively the state, input and output of the system,

and E, A, B, C and D are constant matrices of appropriate dimension. The system Σ

is said to be singular if rank(E) < n. As usual, in order to avoid any ambiguousness

in solutions to the system, we assume that the given singular system Σ is regular, i.e.,

det(sE −A) 6≡ 0, for all s ∈ C.

In this section, we will present a constructive algorithm that decomposes the state of the

system x into several distinct parts, which are directly associated with the finite zero

dynamics and infinite zero dynamics of the given system. It is interesting to note that our

decomposition will automatically and explicitly separate the redundant dynamics of the

system as well.

We present in the following the main results of the paper, i.e., the structural decomposition

of the singular system (3.1).

Theorem 3.2.1 Consider the singular system Σ of (3.1) satisfying the regularity as-

sumption, i.e., det(sE − A) 6≡ 0 for s ∈ C, and its transfer function is nontrivial, i.e.,

H(s) = C(sE −A)−1B 6≡ 0 for s ∈ C. There exist

1. non-negative integers n0, na, nd, ne and v; and
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2. nonsingular state, input and output transformations Γs ∈ Rn×n, Γi ∈ R and Γo ∈ R,

and a nonsingular constant matrix Γe ∈ Rn×n, which together give a structural

decomposition of Σ and display explicitly its finite and infinite zero structures.

The structural decomposition of Σ, or the transformed system, can be described by the

following set of equations:

x = Γsx̃, x0 = Γsx̃(0), x̃ =




xe

xz

xa

xd




, xd =




xd1

xd2

...

xdnd




, y = Γoỹ, u = Γiũ, (3.2)

where xe ∈ Rne, xz ∈ Rn0, xa ∈ Rna, xd ∈ Rnd, and

Case 1: If nd > 0,

xe = ũ(v),

xz = 0,

ẋa = Aaaxa + Ladyd,

ẋd1 = xd2,

ẋd2 = xd3,

...

ẋdnd
= Mdaxa + Lddyd + ũ(v), ỹ = yd = xd1,





; (3.3)

Case 2: If nd = 0,
xe = ũ(v),

xz = 0,

ẋa = Aaaxa + B0aỹ, ỹ = C̄xa + D̄ũ(v).





. (3.4)

A constructive proof of the structural decomposition in Theorem 3.2.1 will be given later

in the next section. Figure 3.1 gives a block diagram interpretation of the dynamics of the

structurally decomposed system in Case 1 of Theorem 3.2.1. In the figure, a signal given
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Figure 3.1: Block diagram representation of dynamics of the structurally decomposed
system.

by a double-edged arrow is some linear combination of output yd, whereas a signal given

by the double-edged arrow with a solid dot is some linear combination of all the states.

The structural decomposition technique decomposes the state space X into several distinct

subspaces. Such subspaces are associated with special structural properties of the given

singular system. The next section will give more details on this.

3.3 Properties of Structural Decomposition

As mentioned earlier, the structural decomposition of Theorem 3.2.1 has distinct feature

of revealing the structural properties of the given singular system Σ. In what follows,

we will study how the system properties of Σ such as the stabilizability, detectability,

invertibility, as well as finite zero and infinite zero structures, can be obtained from our

decomposition.

We have the following property.
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Property 3.3.1 (Stabilizability and Detectability) The given system Σ of (3.1) is

stabilizable if and only if the pair (Acon, Bcon) is stabilizable. Σ is detectable if and only

if the pair (Aobs, Cobs) is detectable. Here Acon := Aaa and Aobs := Aaa. Moreover,

Bcon := Lad and Cobs := Mda in Case 1 while Bcon := B0a and Cobs := C̄ in Case 2.

The definition of invariant zeros of singular systems has already been given in Chapter

2, which can be done similarly to that for nonsingular systems (see e.g., Chen [19] and

MacFarlane and Karcanias [57]) or in the Kronecker canonical form associated with Σ (see

e.g., Malabre [58]).

The following property shows that the invariant zeros of Σ can be obtained in the structural

decomposition in a trivial matter.

Property 3.3.2 (Invariant Zeros) The invariant zeros of Σ are the eigenvalues of Aaa.

The infinite zero structure of Σ can be either defined in association with the Kronecker

canonical form of PΣ(s) or as Smith-McMillan zeros of the transfer function H(s) at

infinity. This has been shown in Chapter 2 in detail.

Property 3.3.3 (Infinite Zero Structure) The infinite zero structure of the singular

system Σ is given by {nd−v}, i.e., Σ has an infinite zero of order or relative degree nd−v.

However, Σ has an infinite elementary divisor of order nd in its corresponding Kronecker

canonical form.

Again, the rigorous proofs to all these properties are given in the next section.
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3.4 Proofs of Main Results

We are ready to give proofs to the main results of our paper, i.e., the structural decom-

position of Theorem 3.2.1 and its properties.

3.4.1 Proof of Theorem 3.2.1

The following is a step-by-step constructive procedure for the structural decomposition of

Σ.

Step 1 (Preliminary Decomposition): It follows from Lemma 2.3.1 or Dai [29] that there

exist two nonsingular matrices P ∈ Rn×n and Q ∈ Rn×n such that

PEQ =

[
In1 0

0 N

]
, PAQ =

[
A1 0

0 In2

]
, PB =

[
B1

B2

]
, CQ = [C1 C2 ] ,

(3.5)

where A1, B1, B2, C1 and C2 are matrices with appropriate dimensions, and N is

a nilpotent matrix with an appropriate nilpotent index, say h, i.e., Nh−1 6= 0 and

Nh = 0. Equivalently, Σ can be decomposed into the following two subsystems:

Σ1 :

{
ẋ1 = A1 x1 + B1 u, x1(0) = x10

y1 = C1 x1

(3.6)

and

Σ2 :

{
N ẋ2 = x2 + B2 u, x2(0) = x20

y2 = C2 x2

(3.7)

where x1 ∈ Rn1 and x2 ∈ Rn2 with n1 + n2 = n, and y = y1 + y2.

Step 2 (Decomposition of Σ2): If B2 = 0, we have x0 = x2, n0 = n2, xe = ∅, ne = 0 and

v = 0. For this case, the following procedure does not apply. We go directly to Step

3.

For the case when B2 6= 0, it follows from Brunovsky [6] and Luenberger [56] (see

also Chen [20]) that there exists a nonsingular transformation T2 and α 6= 0 such
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that

x2 = T2

(
xv

xz

)
, xz ∈ Rn0 , xv ∈ Rvd , xv =




xv1

...

xvvd


 , (3.8)

and

T−1
2 NT2 =

[
Jc0 Ncc̄

0 Jn0

]
, T−1

2 B2 =

[
B2c

0

]
, C2T2 = [ C2c C2c̄ ] , (3.9)

where (Jc0, B2c) is a completely controllable pair. Since N has all its eigenvalues at

0 and B2c is a column vector, (Jc0, B2c) can actually be written as,

Jc0 =

[
0 Ivd−1

0 0

]
and B2c =

[
0

−1/α

]
. (3.10)

Also note that Jn0 has all its eigenvalues at 0. As such, it is simple to verify that

Σ2 is decomposed into the following two subsystems:

Jn0 ẋz = xz =⇒ xz = 0, (3.11)

and Jc0ẋv + Ncc̄ẋz = xv + B2cu, which is equivalent to Jc0ẋv = xv + B2cu or

u = αxvvd
, ẋvvd

= xvvd−1, · · · , ẋv2 = xv1, (3.12)

which implies

xe := xv1 =
1
α

u(v) and ne = 1, (3.13)

and where v = max(0, vd − 1). The output y2 can then be expressed as

y2 = C2cxv + C2c̄xz = C2cxv. (3.14)

Step 3 (Decomposition of the Finite and Infinite Zero Structure): Observing the results

in (3.6), (3.7), (3.11), (3.12), (3.13) and (3.14), we can obtain the following trivial

43



system,
ẋ1 = A1x1 + αB1xvvd

,

xv1 = xe = 1
αu(v),

ẋv2 = 1
αu(v),

...

ẋvvd
= xvvd−1,

xz = 0,

y = C1x1 + C2cxv,





(3.15)

which is equivalent to Σ if the following initial conditions are satisfied,




x1(0)

xv(0)

xz(0)


 =

[
I 0

0 T−1
2

]
Q−1x0. (3.16)

Furthermore, it can be seen that the impulsive modes of Σ are also reserved since

these impulsive modes are introduced by the derivatives of the input.

Next, let us partition

C2c = [ cv1 cv2 · · · cvvd
] . (3.17)

Thus, the nonsingular system (3.15) can be rewritten as,
{ ˙̄x = Ā x̄ + B̄ ū

y = C̄ x̄ + D̄ ū
(3.18)

where

x̄ =




x1

xv2

...

xvvd−1

xvvd




, Ā =




A1 0 · · · 0 0 αB1

0 0 · · · 0 0 0
...

...
. . .

...
...

...

0 0 · · · 1 0 0

0 0 · · · 0 1 0




, B̄ =




0

1
...

0

0




(3.19)

and

ū =
1
α

u(v), C̄ = [ C1 cv2 · · · cvvd−1 cvvd
] , D̄ = cv1. (3.20)

Note that H(s) is nontrivial. We have the following two distinct cases.
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1◦: D̄ = 0 and it is corresponding to Case 1 of Theorem 3.2.1. It follows from the

result of Sannuti and Saberi [70] that there exist nonsingular transformations Γ̄s and

Γo such that when we apply the following changes of coordinates,

x̄ = Γ̄sx̌ = Γ̄s

(
xa

xd

)
, y = Γoỹ, (3.21)

to the system in (3.18), and in view of (3.13), we have

˙̌x =

[
Aaa LadCd

BdMda Add

]
x̌ +

[
0

Bd

]
α−1u(v) (3.22)

and

ỹ = [ 0 Cd ] x̌, (3.23)

where Add, Bd and Cd have the form as given in (3.31). Let

u = Γiũ = αũ =⇒ α−1u(v) = ũ(v). (3.24)

Furthermore, noting the coordinate transforms in (3.5), (3.8), (3.20) and (3.21), we

have,

x̃ =




xe

xz

xa

xd




=

[
I 0

0 Γ̄−1
s

]



xe

xz

x̄


 =

[
I 0

0 Γ̄−1
s

]
T




x1

xv

xz




=

[
I 0

0 Γ̄−1
s

]
T

[
I 0

0 T−1
2

]
Q−1x = Γ−1

s x, (3.25)

where T is an n× n permutation matrix.

And from the results in (3.16) and (3.25), we can get the following initial condition

for the decomposed system,

x̃(0) = Γ−1
s x0. (3.26)

2◦: D̄ 6= 0 and it is corresponding to Case 2 of Theorem 3.2.1. In this case, it is

simple to obtain xd = ∅, nd = 0, xa = x̄, na = n1 + v and

ẋa = (Ā− B̄D̄−1C̄)xa + B̄D̄−1y = Aaaxa + B0ay (3.27)
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and

y = C̄xa + D̄α−1u(v) = C̄xa + D̄ũ(v), (3.28)

if we let u = Γiũ = αũ.

Moreover, similar to that in 1◦, there exist,

Γ−1
s = T

[
I 0

0 T−1
2

]
Q−1, Γo = 1, x̃(0) = Γ−1

s x0. (3.29)

This complete the algorithm for the structural decomposition of Σ.

Actually, we can rewrite the structural decomposition of Σ in a compact matrix form,

which will be handy in proving the properties of the structural decomposition. For sim-

plicity, we will only focus on Case 1 of Theorem 3.2.1, i.e., nd > 0. The compact form for

Case 1 of Theorem 3.2.1 is given by

Ẽ = Γ−1
e EΓs =




0 Ee0 0 0

0 Jn0 0 0

0 Ea0 Ina 0

0 Ed0 0 Ind




Ã = Γ−1
e AΓs =




0 Ae0 Nea Ned

0 In0 0 0

0 Aa0 Aaa LadCd

Bd Ad0 BdMda Add




,

B̃ = Γ−1
e BΓi =




Be

0

0

0




,

C̃ = Γ−1
o CΓs = [ 0 C0 0 Cd ] ,





(3.30)

where Jn0 is in a Jordan canonical form with all its diagonal elements being equal to 0, and

Nea, Ned and are sub-matrices with appropriate dimensions, and Be 6= 0. Furthermore,

matrices Add, Bd, Cd are in the following forms:

Add =

[
0 Ind−1

? 0

]
, Bd =

[
0

1

]
, Cd = [ 1 0 · · · 0 ] . (3.31)
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3.4.2 Proof of Property 3.3.1

It follows from Dai [29] that the singular system Σ of (3.1) is stabilizable if and only if

rank [ sE −A B ] = n, (3.32)

for all s ∈ C0 ∪ C+. Let us again focus on Case 1 of Theorem 3.2.1. In the structural

decomposition form

rank [ sE −A B ] = rank [ sẼ − Ã B̃ ]

= rank




0 sEe0 −Ae0 −Nea −Ned Be

0 sJn0 − In0 0 0 0

0 sEa0 −Aa0 sIna −Aaa −LadCd 0

−Bd sEd0 −Ad0 −BdMda sInd
−Add 0




= rank




0 0 0 0 Be

0 sJn0 − In0 0 0 0

0 0 sIna −Aaa −LadCd 0

−Bd 0 0 sInd
−Add 0




.

Noting that Be 6= 0 and the special structures of Jn0 , Add, Cd and Bd, it is straightforward

to show that Σ is stabilizable if and only if (Aaa, Lad) is stabilizable. Results for Case 2

of Theorem 3.2.1 can be shown in a similar way.

Similarly, the proof for the detectability can be done in a dual fashion. This completes

the proof of Property 3.3.1.

3.4.3 Proof of Property 3.3.2

Again, we prove this property for Case 1 of Theorem 3.2.1. Observing that for α ∈ C, we

have

rank
{

PΣ(α)
}

= rank
{

PΣ̃(α)
}
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= rank




0 Ae0 − αEe0 Nea Ned Be

0 In0 − αJn0 0 0 0

0 Aa0 − αEa0 Aaa − αIna LadCd 0

Bd Ad0 − αEd0 BdMda Add − αInd
0

0 C0 0 Cd 0




= rank




0 0 0 0 Be

0 In0 − αJn0 0 0 0

0 0 Aaa − αIna 0 0

Bd 0 0 Add − αInd
0

0 0 0 Cd 0




= ne + n0 + nd + 1 + rank
{

Aaa − αIna

}
. (3.33)

Obviously, the rank of PΣ drops if and only if α ∈ λ(Aaa). Hence, the invariant zeros of

Σ̃ are given by the eigenvalues of Aaa. In fact, the eigenstructure of Aaa defines the finite

zero structure of Σ. This completes the proof of Property 3.3.2.

3.4.4 Proof of Property 3.3.3

It is well known that the infinite zero structure or relative degree of Σ is nothing more than

the number of integrators that are inherent in between the system input u and the system

output y. As all transformations involved in our structural decomposition are nonsingular,

the number of inherent integrators remains unchanged under such transformations. It

follows from the constructive proof of Theorem 3.2.1 (see also Figure 3.1) that there are

nd integrators in between ũ(v) and ỹ, where v = max(0, vd − 1). Thus, the number of

inherent integrators in between u and y is nd − v. Hence, the result of Property 3.3.3

follows.
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3.5 An Illustrative Example

In this section, an example is presented to illustrate the structural decomposition proce-

dure and its properties. We consider a singular system of (3.1) with

E =




1 0 0 0 0

0 0 0 1 1

0 0 0 1 0

0 0 0 0 0

0 0 1 1 0




, A =




1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1




, B =




1

0

1

0

0




, x0 =




1

1

1

1

1




, (3.34)

and

C = [ 2 0 −2 1 −1 ] , D = 0. (3.35)

Step 1 (Preliminary Decomposition). The given system is already in the forms of (3.5),

i.e., we have

Σ1 :

{
ẋ1 = x1 + u

y1 = 2 x1

(3.36)

and

Σ2 :








0 0 1 1

0 0 1 0

0 0 0 0

0 1 1 0







ẋ2

ẋ3

ẋ4

ẋ5




=




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1







x2

x3

x4

x5




+




0

1

0

0




u

y2 = [ 0 −2 1 −1 ]




x2

x3

x4

x5




(3.37)

with n1 = 1 and n2 = 4.
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Step 2 (Decomposition of Σ2). Using the toolbox of Lin and Chen [52], we obtain a

nonsingular transformation

T2 =




1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0




, (3.38)

which transform Σ2 to the following canonical form

T−1
2 NT2 =




0 1 0 1

0 0 1 1

0 0 0 1

0 0 0 0




, T−1
2 B2 =




0

0

1

0




, C2T2 =
[

0 −1 −2 1

]
,

(3.39)

with vd = 3 and n0 = 1. Thus, ne = 1 and v = 2.

Step 3 (Decomposition of the Finite and Infinite Zero Structures). Following from the

results of (3.15) to (3.18), we obtain an auxiliary nonsingular system
{ ˙̄x = Ā x̄ + B̄ ū

y = C̄ x̄ + D̄ ū
(3.40)

with

Ā =




1 0 −1

0 0 0

0 1 0


 , B̄ =




0

1

0


 , C̄ = [ 2 −1 −2 ] , D̄ = 0. (3.41)

Again, using the toolbox of Lin and Chen [52], we obtain

Γ̄s =




−0.3333 −0.7071 0

0.6667 0 1

−0.6667 −0.7071 0


 , Γ̄o = −1 and Γ̄i = 1, (3.42)

which transform the nonsingular system (3.40) into the so-call special coordinate

basis,

Γ̄−1
s ĀΓ̄s =




−1 0 −3

0 0 1.4142

0.6667 0 2


 , Γ̄−1

s B̄Γ̄i =




0

0

1


 , Γ̄−1

o C̄Γ̄s = [ 0 0 1 ]

(3.43)
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with na = 2 and nd = 1. Finally, putting all the sub-transformations together, we

obtain

Γe =




1 0 −0.3333 −0.7071 0

0 0 0.6667 0 1

1 0 0 0 0

0 1 0 0 0

0 0 −0.6667 −0.7071 0




, Γs =




0 0 −0.3333 −0.7071 0

1 0 0 0 0

0 0 −0.6667 −0.7071 0

0 1 0 0 0

0 0 0.6667 0 1




,

(3.44)

and Γo = −1, Γi = 1.

The transformed system is then given by

xe = ü, xz = 0, (3.45)

ẋa =

[−1 0

0 0

]
xa +

[ −3

1.4142

]
yd, (3.46)

ẋd1 = [ 0.6667 0 ]xa + 2yd + ü, ỹ = yd = xd1, x̃(0) =




1

1

0

−1.4142

1




, (3.47)

or in the following compact form

Ẽ = Γ−1
e EΓs =




0 1 0 0 0

0 0 0 0 0

0 −6 1 0 0

0 4.2426 0 1 0

0 5 0 0 1




, C̃ = Γ−1
o CΓs = [ 0 −1 0 0 1 ] , (3.48)

and

Ã = Γ−1
e AΓs =




0 0 −0.6667 −0.7071 0

0 1 0 0 0

0 0 −1 0 −3

0 0 0 0 1.4142

1 0 0.6667 0 2




, B̃ = Γ−1
e BΓi =




1

0

0

0

0




. (3.49)

51



It is simple to see now from the above decomposition that there are two invariant zeros

are s1 = −1 and s2 = 0, and the infinite zero structure or relative degree of Σ from ü to y

is equal to 1. Thus, Σ has a relative degree of −1 from u to y. These results can be easily

verified from the transfer function of Σ,

H(s) = C(sE −A)−1B =
s(s + 1)
s− 1

. (3.50)

Finally, we note that it can be shown that there is an infinite elementary divisor of order

nd = 1 in the the Kronecker canonical form associated with Σ.

3.6 Conclusions

We have presented in this chapter the structural decomposition technique for general

single-input and single-output singular systems, which has a distinct feature of explicitly

capturing and displaying the structural properties, such as the finite and infinite zero

structures, of the given system. As its counterpart in nonsingular systems, the technique

is expected to play an important role in solving many control problems related to singular

systems. This will actually be the subject of the following chapters. The next chapter

will give the structural decomposition technique for multi-input and multi-output singular

systems.
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Chapter 4

Structural Decomposition of

Multivariable Singular Linear

Systems

4.1 Introduction

Last chapter describes our work on the structural decomposition technique for single input

single output singular linear systems. The technique and its essential properties show that

it can explicitly display the given system’s internal structural features with decomposed

distinct subspaces. In this chapter, we will further extend this technique for multivariable

singular linear systems.

The internal structural features of multi-input and multi-output (MIMO) singular systems

are much more complex than those of single-input and single-output (SISO) singular

systems. This largely dues to the increasing number of input and output. And compared
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to a SISO singular system, a MIMO singular system has more internal structural features

such as system invertibility and so on. However, although the structural decomposition

technique for a MIMO singular system may be more complex and difficult to be derived, it

also has the similar and even more properties in revealing the internal structural features.

As we have described before, such a decomposition has a distinct feature of capturing

and displaying all the structural properties, such as the finite and infinite zero structures,

invertibility structures, redundant dynamics, and the invariant geometric subspaces of the

given system. As its counterpart for nonsingular systems, we believe that the technique

is a powerful tool in solving control problems for singular systems, including H2 and H∞

control, model reduction, disturbance decoupling problems, to name a few.

In this chapter, we will give some existing research results in Section 2. Such prelimi-

nary results include the invariant structure indices for singular systems and some other

efforts in revealing internal structural properties of a given MIMO singular system. And

Section 3 will give our main result of this chapter, that is, the main theorem of the struc-

tural decomposition for MIMO singular systems and its essential properties. Moreover,

in Section 4, a constructive decomposition algorithm is presented to prove our main the-

orem of structural decomposition. After that, the essential properties of this structural

decomposition technique will be proved in Section 5. To give a clear understanding of

the structural decomposition technique and its properties, an illustrative example will be

given in Section 6. And finally in Section 7, a concluding remark will be drawn.

4.2 Preliminary Results

As we have pointed out in the last chapter, since it is a better model for most real systems,

the singular system has attracted many researchers in the last three decades. And just

like the nonsingular system, its structural features are crucial in solving systems and
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control problems. To find a good technique for revealing such structural features, many

efforts have been presented in the literature (see e.g., Dooren [31, 32], Geerts [36], Loiseau

[55], Malabre [58], Misra et al. [59], Verghese [76], Zhou et al. [85], and the references

cited therein). Generally speaking, almost all the research works dealing with singular

systems are the natural extensions of their nonsingular system counterparts, although

these extensions are usually non-trivial.

In this section, we try to give some important preliminary results which will be essential

in our derivation in the following sections. Such results include essential knowledge on

strictly equivalence based on Kronecker canonical form.

To be more specific, we consider a linear time-invariant system Σ characterized by

Σ :

{
E ẋ = A x + B u, x(0) = x0,

y = C x + D u,
(4.1)

where x ∈ Rn, u ∈ Rm and y ∈ Rp are respectively the state, input and output of the

system, and E, A, B, C and D are constant matrices of appropriate dimensions. Tradi-

tionally, the Kronecker canonical form, a classical form of matrix pencils under strictly

equivalent transformation, has been used extensively in the structural analysis of singular

systems. Malabre [58] presents a geometric approach and introduces structural invariants

of singular systems. In that paper, some definitions are shown to be consistent with other

ones directly deduced from matrix pencil tools. It extends many geometric and structural

results (see e.g., Wonham [83]) from the nonsingular systems to singular systems.

The Kronecker canonical form exhibits the finite- and infinite-zero structures (i.e., invari-

ant indices) of the system, and shows the left and right null-space structures. And first

we recall the following lemma on strictly equivalent.

Lemma 4.2.1 (Strictly Equivalence) Two singular systems Σ1 and Σ2 are strictly

equivalent if they have same Kronecker canonical forms.
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The result of this lemma is obvious in the literature [74] [76]. And it is clear that two

strictly equivalent singular systems have the same structural features because they have

the same Kronecker canonical form of their system matrices.

4.3 The Structural Decomposition Theorem

It has been extensively demonstrated and proven for nonsingular systems that the system

structural properties, such as the finite and infinite zero structures and the invertibility

structures, play a very important role in solving various control problems including H2,

H∞ control and disturbance decoupling (see e.g., [20] and [69]). The structural properties

of singular systems and their applications to the control problems of singular systems are

however less emphasized in the literature. In their recent work, He and Chen [39] have

developed a technique that gives a structural decomposition for single-input and single-

output (SISO) singular systems. The technique is capable of revealing all the structural

properties, including the finite and infinite zero structures. In this section, we present

a structural decomposition technique for general multivariable singular systems. Again,

such a technique can be used to capture and display the structural properties of general

singular systems. Our work generalizes the result of He and Chen [39]. It can also be

regarded as a natural extension and counterpart of the work of Sannuti and Saberi [70] for

nonsingular systems. However, it will be seen shortly that the structural decomposition

of a general multivariable singular system is much more involved.

Here we first summarize the structural decomposition of general multivariable singular

systems in the following main theorem. All its properties and its connection to the concept

of geometric spaces will also be given. The constructive algorithm for the structural

decomposition and proofs of all these properties will be separately given in Section 4 and

Section 5 for clarity of presentation.
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We have the following theorem.

Theorem 4.3.1 Consider the general multivariable singular system Σ of (4.1). Then,

1. there exist non-negative integers nz, ne, na, nb, nc, nd, md, m0, mc, pb, and positive

integers pi, i = 1, 2, · · · , ne, if ne > 0, and qi, i = 1, 2, · · · ,md, if md > 0; and

2. there exist nonsingular state and output transformations Γs∈Rn×n and Γo∈Rp×p,

and a nonsingular transformation Γe∈Rn×n, as well as an m×m input transforma-

tion Γi(s), whose inverse has all its elements being some polynomials of s (i.e., its

inverse contains various differentiation operators), which together give a structural

decomposition of Σ and display explicitly its structural properties.

The structural decomposition of Σ can be described by the following set of equations:

x = Γsx̃, y = Γoỹ, u = Γi(s)ũ, (4.2)

and

x̃ =




xz

xe

xa

xb

xc

xd




, ỹ =




y0

yb

yd


 , ũ =




u0

uc

ud


 , (4.3)

xd =




xd1

xd2

...

xdmd




, yd =




yd1

yd2

...

ydmd




, ud =




ud1

ud2

...

udmd




, (4.4)

and

xz = 0, (4.5)
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xe = Be0u0 + Becuc + Bedud, (4.6)

ẋa = Aaaxa + B0ay0 + Ladyd + Labyb, (4.7)

ẋb = Abbxb + B0by0 + Lbdyd, yb = Cbxb, (4.8)

ẋc = Accxc + B0cy0 + Lcdyd + Lcbyb + BcMcaxa + Bcuc, (4.9)

y0 = C0axa + C0bxb + C0cxc + C0dxd + u0, (4.10)

and for each i = 1, 2, · · · , md,

ẋdi = Aqixdi +Li0y0 +Lidyd +Bqi


udi + Miaxa + Mibxb + Micxc +

md∑

j=1

Mijxdj


 , (4.11)

ydi = Cqixi, yd = Cdxd, (4.12)

for some appropriate dimensional constant submatrices. Here the states xz, xe, xa, xb, xc

and xd are respectively of dimensions nz, ne, na, nb, nc and nd =
∑md

i=1 qi, while xdi is of

dimension qi for each i = 1, 2, · · · ,md. The control vectors u0, ud and uc are respectively

of dimensions m0, md and mc = m−m0 −md while the output vectors y0, yd and yb are

respectively of dimensions m0, md and pb = p−m0−md. The pair (Abb, Cb) is completely

observable, the pair (Acc, Bc) is completely controllable, and the triple (Aqi , Bqi , Cqi) has

the following form:

Aqi =

[
0 Iqi−1

0 0

]
, Bqi =

[
0

1

]
, Cqi = [ 1 0 · · · 0 ] . (4.13)

Assuming that xi, i = 1, 2, · · · ,md, are arranged such that qi ≤ qi+1, the matrix Lid will

be in the following particular form:

Lid = [ Li1 Li2 · · · Lii−1 0 · · · 0 ] , (4.14)

with its last row of Lid being all zeros. Finally, the initial condition of the transformed

system x̃0 = Γ−1
s x0. 2

A constructive proof of the structural decomposition in Theorem 4.3.1 will be given later

in the next section. Figure 4.1 gives a block diagram interpretation of the dynamics of the
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structurally decomposed system. In the figure, a signal given by a double-edged arrow is

some linear combination of output yd, whereas a signal given by the double-edged arrow

with a solid dot is some linear combination of all the states.

In what follows, we illustrate the essential features of the structural decomposition of

general singular systems given in Theorem 4.3.1.

1. The state xz is purely static and identically zero for all time t. It can neither be

controlled at all by the system input nor be affected by other states.

2. The state xe is again static and contains a linear combination of the input variables

of the system and their derivatives of appropriate orders. It contains the impulse

modes of Σ, if any, as impulse modes are caused by the derivatives of the system

input.

3. The state xa is neither directly controlled by the system input nor does it directly

affect the system output.

4. The output yb and the state xb are not directly influenced by any input, although

they could be indirectly controlled through the output yd. Moreover, (Abb, Cb) forms

an observable pair. This implies that the state xb is observable.

5. The state xc is directly controlled by the input uc, but it does not directly affect

any output. (Acc, Bc) forms a controllable pair. This implies that the state xc is

controllable.

6. The variables udi controls the output ydi through a stack of qi integrators. Further-

more, all the states xdi are both controllable and observable.

We mentioned earlier that the structural decomposition of Theorem 4.3.1 has the distinct

feature of revealing the structural properties of the given singular system Σ. We are now
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Figure 4.1: Block diagram representation of dynamics of the decomposed system.
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ready to study how the system properties of Σ, such as the stabilizability, detectability,

finite zero and infinite zero structures, and invariant geometric subspaces, can be obtained

from the decomposition.

The definitions of stability, stabilizability and detectability of singular systems have been

recalled in Chapter 2. And the following property gives our structural decomposition

technique’s function in reflecting the given system’s stabilizability and detectability.

Property 4.3.1 (Stabilizability and Detectability) The given system Σ of (4.1) is

stabilizable if and only if (Acon, Bcon) is stabilizable, and is detectable if and only if

(Aobs, Cobs) is detectable, where

Acon :=

[
Aaa LabCb

0 Abb

]
, Bcon :=

[
B0a Lad

B0b Lbd

]
, (4.15)

and

Aobs :=

[
Aaa 0

BcMca Acc

]
, Cobs :=

[
C0a C0c

Mda Mdc

]
. (4.16)

Again, the definition of invariant zeros of singular systems has already been given in detail

in Chapter 2. The following property shows that the invariant zeros of Σ can be obtained

in the structural decomposition in a trivial manner.

Property 4.3.2 (Invariant Zeros, Normal Rank) The invariant zeros of the given

singular system Σ are the eigenvalues of Aaa. The normal rank of Σ is equal to m0 + md.

In fact, in many applications, it is handy and necessary to further separate the state

variable associated with the invariant zero dynamics, i.e., xa, into a stable part, an unstable

part and the part associated with invariant zeros on the imaginary axis. It is simple to
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note that there exists a nonsingular transformation, say Ta, such that

xa = Ta




x−a

x0
a

x+
a


 , T−1

a AaaTa =




A−aa 0 0

0 A0
aa 0

0 0 A+
aa


 , (4.17)

where λ(A−aa) ⊂ C−, i.e., the stable invariant zeros, λ(A0
aa) ⊂ C0, i.e., the invariant zeros

on the imaginary axis, and λ(A+
aa) ⊂ C−, the unstable invariant zeros.

The infinite zero structure of the given system Σ can be defined as the structure associated

with the corresponding block in the Kronecker canonical form of its system matrix PΣ(s).

It can also be defined using the well-known Smith-McMillan form.

Property 4.3.3 (Infinite Zero Structure) Σ has m0 infinite zeros of order 0. The

infinite zero structure (of order greater than 0) of Σ is given by

S?
∞(Σ) = {q1, q2, · · · , qmd

}, (4.18)

i.e., for each i = 1, 2, · · · ,md, Σ has an infinite zero of order qi, respectively.

Our structural decomposition can also exhibit the invertibility structure of a given singular

system Σ. As its counterpart in nonsingular systems, the following property shows that

the invertibility of a singular system is associated with the decomposed subspaces xb and

xc.

Property 4.3.4 (Invertibility Structure) The singular system Σ is right invertible if

and only if xb and hence yb are non-existent, left invertible if and only if xc and hence uc

is non-existent, and invertible if and only if both xb and xc are non-existent.

There are also interconnections between the structural decomposition form and invariant

geometric subspaces. The definitions of various invariant geometric subspaces for singular
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systems and their relation with the structurally decomposed subspaces will be given in

detail in the next chapter.

Finally, we can conclude that the structural decomposition separates the state-space into

several distinct parts. In fact, the state-space X is decomposed as

X = Xz ⊕Xe ⊕X−
a ⊕X 0

a ⊕X+
a ⊕Xb ⊕Xc ⊕Xd. (4.19)

Here Xz is related to the state that is identically zero and Xe is related to the state that

is a linear combination of the system input. X−
a is related to the stable invariant zeros,

i.e., the eigenvalues of A−aa are the stable invariant zeros of Σ. Similarly, X 0
a and X+

a

are respectively related to the invariant zeros of Σ located in the marginally stable and

unstable regions. On the other hand, Xb is related to the right invertibility, i.e., the system

is right invertible if and only if Xb = {0}, while Xc is related to left invertibility, i.e., the

system is left invertible if and only if Xc = {0}. Finally, Xd is related to zeros of Σ at

infinity.

4.4 A Constructive Algorithm for the Structural Decompo-

sition

We now present a constructive proof for the main results of the previous section, i.e.,

Theorem 4.3.1. The following is a step-by-step algorithm for the structural decomposition

of general multivariable singular systems.

Step 1 (Preliminary Decomposition): This step is to separate the given singular

system into a nonsingular subsystem and a singular subsystem with a special struc-

ture. It follows from Campbell [8] (see also Dai [29]) that there exist two nonsingular
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matrices P ∈ Rn×n and Q ∈ Rn×n such that

PEQ =

[
In1 0

0 N

]
, PAQ =

[
A1 0

0 In2

]
, PB =

[
B1

B2

]
, CQ = [C1 C2 ] ,

(4.20)

where A1, B1, B2, C1 and C2 are matrices with appropriate dimensions, and N is

a nilpotent matrix with an appropriate nilpotent index, say h, i.e., Nh−1 6= 0 and

Nh = 0. Equivalently, Σ can be decomposed into the following two subsystems:

Σ1 :

{
ẋ1 = A1 x1 + B1 u

y1 = C1 x1 + D u
(4.21)

and

Σ2 :

{
N ẋ2 = x2 + B2 u

y2 = C2 x2

(4.22)

where x1 ∈ Rn1 and x2 ∈ Rn2 with n1 + n2 = n, y = y1 + y2.

To conduct the above decomposition, one can follow such procedures in the following

(see also Dai [29]).

First, since (E, A) pair is regular, thus there exists a numerous α such that |αE+A| 6=
0. Now we can construct the following pencil with this α,

Ê = (αE + A)−1E, Â = (αE + A)−1A, (4.23)

and it is clear that Â = I − αÊ.

Secondly, it is obvious that there exists an invertible transform matrix T such that

T−1ÊT =

[
Ê1 0

0 Ê2

]
, (4.24)

where Ê1 ∈ Rn1×n1 is nonsingular and Ê2 ∈ Rn2×n2 is nilpotent.

Moreover, since Ê2 is nilpotent and hence we have a nonsingular (I − αÊ2) to

construct the following two transformation matrices,

P =

[
Ê−1

1 0

0 (I − αÊ2)−1

]
T−1(αE + A)−1, Q = T. (4.25)
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Remember that Â = I − αÊ, we can verify the decomposition as follows,

PEQ =

[
Ê−1

1 0

0 (I − αÊ2)−1

]
T−1(αE + A)−1ET =

[
In1 0

0 N

]
,

PAQ =

[
Ê−1

1 0

0 (I − αÊ2)−1

]
T−1(αE + A)−1AT =

[
A1 0

0 In2

]
, (4.26)

where N = (I − αÊ2)−1Ê2 is nilpotent and A1 = Ê−1
1 (I − αÊ2).

The above algorithm is simple in decomposing a given singular system into its canon-

ical form.

Step 2 (Decomposition of xz and xe): The key idea is to separate the controllable

and uncontrollable parts of the pair (N, B2) in Σ2. It will be simple to observe that

some of the state variables of Σ2 are identically zero and some are the derivatives

of the system inputs. It follows from Chen [20] (see e.g., Theorems 2.3.1 and 2.3.2)

that there exist following nonsingular coordinate transformations

x2 = Tsx̂2, u = Tiû, (4.27)

such that

x̂2 =

(
xv

xz

)
, xv =




xv1

xv2

...

xvne




, xz ∈ Rnz , û =




û1

û2

...

ûne

û∗




, (4.28)

where

xvi ∈ Rpi , xvi =




xvi,1

xvi,2

...

xvi,pi




, i = 1, 2, · · · , ne, p1 ≤ p2 ≤ · · · ≤ pne , (4.29)
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and

N̂ = T−1
s NTs =

[
Jv Nzv

0 Jnz

]
=




Jv1 0 · · · 0 N1z

0 Jv2 · · · 0 N2z

...
...

. . .
...

...

0 0 · · · Jvne Nnez

0 0 · · · 0 Jnz




, (4.30)

B̂2 = T−1
s B2Ti =

[
Bv

0

]
=




B11 B12 · · · B1ne B1z

0 B22 · · · B2ne B2z

...
...

. . .
...

...

0 0 · · · Bnene Bnez

0 0 · · · 0 0




, (4.31)

and where (Jv, Bv) is completely controllable. Furthermore, N being nilpotent im-

plies that Jvi and Jnz have all their eigenvalues at 0, and Jvi and Bij have the

following control special forms,

Jvi =




0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

0 0 0 0




, Bii =




0
...

0

1




, Biz =




biz,1

...

biz,pi−1

0




, Bij =




bij,1

...

bij,pi−1

0




.

(4.32)

As such, by the transformation of (4.27), Σ2 is decomposed into the following sub-

systems:

Jnz ẋz = xz =⇒ xz = 0, (4.33)

and for i = 1, 2, · · · , ne,

Jviẋvi + Nizẋz = xvi + Biiûi +
ne∑

j=i+1

Bij ûj + Bizû∗, (4.34)

which is equivalent to

Jviẋvi = xvi + Biiûi +
ne∑

j=i+1

Bij ûj + Bizû∗. (4.35)
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Owing the special structure of Jvi, we have for i = 1, 2, · · · , ne,

ẋvi,2 = xvi,1 +
ne∑

j=i+1

bij,1ûj + biz,1û∗

ẋvi,3 = xvi,2 +
ne∑

j=i+1

bij,2ûj + biz,2û∗

...

ẋvi,pi = xvi,pi−1 +
ne∑

j=i+1

bij,pi−1ûj + biz,pi−1û∗





(4.36)

ûi = −xvi,pi (4.37)

and

xvi,1 = −û
(pi−1)
i −

pi−2∑

k=0

ne∑

j=i+1

bij,k+1û
(k)
j −

pi−2∑

k=0

biz,k+1û
(k)
∗ . (4.38)

Let us define a new input variable

ǔi = xvi,1 = ψi(s)û, (4.39)

for an appropriate vector ψi(s) whose elements are polynomials in s. Then, we can

rewrite (4.36) as follows

ẋvi,2 = −
ne∑

j=i+1 & pj>1

bij,1x̂vj,pj + biz,1û∗ + ǔi +
ne∑

j=i+1 & pj=1

bij,1ǔj

ẋvi,3 = xvi,2 −
ne∑

j=i+1 & pj>1

bij,2x̂vj,pj + biz,2û∗ +
ne∑

j=i+1 & pj=1

bij,2ǔj

...

ẋvi,pi = xvi,pi−1 −
ne∑

j=i+1 & pj>1

bij,pi−1x̂vj,pj + biz,pi−1û∗ +
ne∑

j=i+1 & pj=1

bij,pi−1ǔj




(4.40)

Next, define

xe = ǔe =




ǔ1

ǔ2

...

ǔne




=




xv1,1

xv2,1

...

xvne,1




. (4.41)

It is now straightforward to verify that the transformed system of Σ2 as given in
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(4.22) can be rearranged into the following form




xz = 0

xe = ǔe

˙̌x2 = Ǎ2x̌2 + B̌2eǔe + B̌2∗û∗

y2 = Č2x̌2 + Ď2eûe

(4.42)

where x̌2 consists of all the state variables of xv that are not contained in xe, and

Ǎ2, B̌2e, B̌2∗, Č2 and Ď2e are constant matrices with appropriate dimensions. Fur-

thermore, Σ1 of (4.21) can be rewritten as follows
{

ẋ1 = A1x1 + Ǎ12x̌2 + B̌1eǔe + B̌1∗ǔ∗

y1 = C1x1 + Č12x̌2 + Ď1eǔe + Ď1∗ǔ∗
(4.43)

for some appropriate dimensional constant matrices Ǎ12, B̌1e, B̌1∗, Č12, Ď1e and

Ď1∗.

Step 3 (Formation of a Nonsingular System and Final Decomposition): The

key idea is to form a nonsingular system from the subsystems (4.42) and (4.43), and

then apply the result of nonsingular systems to obtain a structural decomposition

for the original system given in (4.1). Following (4.42) and (4.43), we obtain a

nonsingular system

Σ̄ :

{ ˙̄x = Ā x̄ + B̄ ū

y = C̄ x̄ + D̄ ū
(4.44)

where

x̄ =

(
x1

x̌2

)
, ū =

(
ǔe

û∗

)
, (4.45)

Ā =

[
A1 Ǎ12

0 Ǎ2

]
, B̄ =

[
B̌1e B̌1∗

B̌2e B̌2∗

]
(4.46)

and

C̄ = [ C1 Č2 + Č12 ] , D̄ = [ Ď1e + Ď2e Ď1∗ ] . (4.47)

It then follows from the result of Sannuti and Saberi [70] and Saberi and Sannuti

[67] that there exist nonsingular transformations Γ̄s ∈ Rn̄×n̄, where n̄ = n−ne−nz,
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Γ̄o ∈ Rp×p and Γ̄i ∈ Rm×m such that when they are applied to Σ̄, i.e.,

x̄ = Γ̄s




xa

xb

xc

xd




, y = Γ̄oỹ = Γ̄o




y0

yb

yd


 , ū = Γ̄iũ = Γ̄i




u0

uc

ud


 , (4.48)

where xa ∈ Rna , xb ∈ Rnb , xc ∈ Rnc , xd ∈ Rnd , u0 ∈ Rn0 , uc ∈ Rmc , ud ∈ Rmd ,

y0 ∈ Rn0 , yb ∈ Rpb , yd ∈ Rmd ,

xd =




xd1

xd2

...

xdmd




, yd =




yd1

yd2

...

ydmd




, ud =




ud1

ud2

...

udmd




, (4.49)

we have

ẋa = Aaaxa + B0ay0 + Ladyd + Labyb, (4.50)

ẋb = Abbxb + B0by0 + Lbdyd, yb = Cbxb, (4.51)

ẋc = Accxc + B0cy0 + Lcdyd + Lcbyb + Bc [uc + Mcaxa] , (4.52)

y0 = C0axa + C0bxb + C0cxc + C0dxd + u0, (4.53)

and

ẋdi = Aqixdi + Li0y0 + Lidyd + Bqi


udi + Miaxa + Mibxb + Micxc +

md∑

j=1

Mijxdj


 ,

(4.54)

ydi = Cqixdi, yd = Cdxd, (4.55)

with (Aqi , Bqi , Cqi) having the following special form as given in (4.13).

This completes the proof of Theorem 4.3.1.

For future use, we can rewrite the structural decomposition of Theorem 4.3.1 in its compact

form. This compact form will be handy in developing many applications of the theory.
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It will be frequently used later in the next section to prove the structural properties of

the system. The following corollary gives the compact matrix form of the structural

decomposition.

Corollary 4.4.1 (Compact Form) The structural decomposition in Theorem 4.3.1 can

also be given as the following compact matrix transformation form,

Ẽ = Γ−1
e EΓs = Ẽcmp =




Jnz 0 0 0 0 0

Eez 0 0 0 0 0

Eaz 0 Ina 0 0 0

Ebz 0 0 Inb
0 0

Ecz 0 0 0 Inc 0

Edz 0 0 0 0 Ind




,

Ã = Γ−1
e AΓs = Ãcmp + Ãk

=




Inz 0 0 0 0 0

0 Ine 0 0 0 0

0 0 Aaa LabCb 0 LadCd

0 0 0 Abb 0 LbdCd

0 0 BcMca LcbCb Acc LcdCd

0 0 BdMda BdMdb BdMdc Add




+




0

0

B0a

B0b

B0c

B0d




[ 0 0 C0a C0b C0c C0d ] + Ãk,
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B̃ = Γ−1
e BΓi(s) = B̃cmp + B̃k(s) =




0 0 0

B0e Bde Bce

B0a 0 0

B0b 0 0

B0c 0 Bc

B0d Bd 0




+ B̃k(s),

C̃ = Γ−1
o CΓs = C̃cmp + C̃k =




C0z 0 C0a C0b C0c C0d

Cdz 0 0 0 0 Cd

Cbz 0 0 Cb 0 0


 + C̃k, (4.56)

D̃ = Γ−1
o DΓi(s) = D̃cmp + D̃k(s) =




Im0 0 0

0 0 0

0 0 0


 + D̃k(s), (4.57)

where

Ãkx̃ + B̃k(s)ũ = 0, C̃kx̃ + D̃k(s)ũ = 0. (4.58)

Proof: Although the constructive decomposition process has been given in the proof of

Theorem 4.3.1, the process is in equation form and thus not direct when we want to

compute it with a computer program. The following algorithm proves this corollary and

gives a different form of decomposition in the view of compact matrix computation.

First, observing (4.20) to (4.41) in the constructive decomposition procedure, we can

combine the Step 1 and Step 2 with coordinate transform matrices Γe1, Γs1 and Γi1.

These transform matrices decompose the original singular system Σ as,

x = Γs1x̂ = Γs1




xz

xe

xf


 , u = Γi1û = Γi1




û1

...

ûne

û?




= Γi1

(
ûe

û?

)
, (4.59)
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and Σ is transformed into the following Σ̂,

Ê = Γe1EΓs1 = U

[
In1 0

0 T−1
s

]
PEQ

[
In1 0

0 Ts

]
V =




Jnz 0 0

Eez 0 0

Efz 0 Inf


 ,

Â = Γe1AΓs1 = U

[
In1 0

0 T−1
s

]
PAQ

[
In1 0

0 Ts

]
V =




Inz 0 0

0 0 Ag

0 Ae Af


 ,

B̂ = Γe1BΓi1 = U

[
In1 0

0 T−1
s

]
PBTi =




0 0

Ine 0

0 Bf


 ,

Ĉ = CΓs1 = CQ

[
In1 0

0 Ts

]
V = [ Cz Ce Cf ] ,

D̂ = DΓi1 = DTi = [ De Df ] , (4.60)

where U and V are permutation matrices. And it is obvious that the original singular

system Σ : (E,A, B, C, D) is equivalent to Σ̂ : (Ê, Â, B̂, Ĉ, D̂).

Next, noting (4.39) and (4.41), we have the following input transformation,

ǔ =

(
ǔe

û?

)
= Γis(s)û =

[
Ψ1(s) Ψ2(s)

0 Im−ne

](
ûe

û?

)
, (4.61)

and

xe = ǔe. (4.62)

Now if we apply the input transformation ǔ = Γis(s)û to the transformed system Σ̂, we

will have,

Ê = Ě =




Jnz 0 0

Eez 0 0

Efz 0 Inf


 ,

Â = Ǎ + Ǎk =




Inz 0 0

0 Ine 0

0 0 Af


 +




0 0 0

0 −Ine Ag

0 Ae 0



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=




Inz 0 0

0 0 Ag

0 Ae Af


 ,

B̂Γ−1
is = B̌ + B̌k(s) =




0 0

Ine 0

Ae Bf


 +




0 0

Ψ?
1(s)− Ine Ψ?

2(s)

−Ae 0




=




0 0

Ψ?
1(s) Ψ?

2(s)

0 Bf




Ĉ = Č + Čk = [ Cz 0 Cf −DeAg ] + [ 0 Ce DeAg ]

= [Cz Ce Cf ] ,

D̂Γ−1
is (s) = Ď + Ďk(s)

= [Ce Df ] + [ DeΨ?
1(s)− Ce DeΨ?

2(s) ]

= [DeΨ?
1(s) DeΨ?

2(s) + Df ] . (4.63)

Here

Γ−1
is (s) =

[
Ψ1(s) Ψ2(s)

0 Im−ne

]−1

=

[
Ψ?

1(s) Ψ?
2(s)

0 Im−ne

]
. (4.64)

Now the system Σ̂ has been further transformed into the following system Σ̌,

Σ̌ :

{
Ě ˙̌x = Ǎx̌ + B̌ǔ + Ǎkx̌ + B̌k(s)ǔ,

y = Čx̌ + Ďǔ + Čkx̌ + Ďk(s)ǔ,
(4.65)

where x̌ = x̂.

And noting (4.33), (4.59) and (4.60), we have the following equation in system Σ̂,

Agxf + ûe = 0. (4.66)

Then after the input transformation of (4.64), (4.66) becomes,

Agxf + [ Ψ?
1(s) Ψ?

2(s) ] ǔ = 0. (4.67)
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Now with (4.67), and check (4.63), we have

Ǎkx̌ + B̌k(s)ǔ = 0, Čkx̌ + Ďk(s)ǔ = 0. (4.68)

And thus the singular system Σ̂ : (Ê, Â, B̂, Ĉ, D̂) is equivalent to the following transformed

system Σ̌ : (Ě, Ǎ, B̌, Č, Ď),

At last, according to the decomposition procedure (4.44) to (4.48) in Section 4.4, we have

Ẽ =




Inz 0 0

0 Ine 0

0 0 Γ̄−1
s


 Ě




Inz 0 0

0 Ine 0

0 0 Γ̄s


 = Ẽcmp

=




Jnz 0 0 0 0 0

Eez 0 0 0 0 0

Eaz 0 Ina 0 0 0

Ebz 0 0 Inb
0 0

Ecz 0 0 0 Inc 0

Edz 0 0 0 0 Ind




,

Ã =




Inz 0 0

0 Ine 0

0 0 Γ̄−1
s


 (Ǎ + Ǎk)




Inz 0 0

0 Ine 0

0 0 Γ̄s




= Ãcmp + Ãk

=




Inz 0 0 0 0 0

0 Ine 0 0 0 0

0 0 Aaa LabCb 0 LadCd

0 0 0 Abb 0 LbdCd

0 0 BcMca LcbCb Acc LcdCd

0 0 BdMda BdMdb BdMdc Add



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+




0

0

B0a

B0b

B0c

B0d




[ 0 0 C0a C0b C0c C0d ] + Ãk,

B̃ =




Inz 0 0

0 Ine 0

0 0 Γ̄−1
s


 (B̌ + B̌k)Γ̄i

= B̃cmp + B̃k(s)

=




0 0 0

B0e Bde Bce

B0a 0 0

B0b 0 0

B0c 0 Bc

B0d Bd 0




+ B̃k(s),

C̃ = Γ̄−1
o (Č + Čk)




Inz 0 0

0 Ine 0

0 0 Γ̄s




= C̃cmp + C̃k

=




0 0 C0a C0b C0c C0d

0 0 0 0 0 Cd

0 0 0 Cb 0 0


 + C̃k,

D̃ = Γ̄−1
o (Ď + Ďk)Γ̄i

= D̃cmp + D̃k

=




Im0 0 0

0 0 0

0 0 0


 + D̃k(s), (4.69)
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where

Ãk =




0 0 0

0 −Ine AgΓ̄s

0 Γ̄−1
s Ae 0


 ,

B̃k(s) =




0 0

Ψ1(s)− Ine Ψ2(s)

−Γ̄−1
s Ae 0


 Γ̄i,

C̃k = [ 0 Γ̄o
−1

Ce Γ̄o
−1

DeAgΓ̄s ] ,

D̃k(s) = [ Γ̄o
−1(−Ce + DeΨ1(s)) Γ̄o

−1
DeΨ2(s) ] Γ̄i, (4.70)

This completes the proof of Corollary 4.4.1.

We also have the following corollary,

Corollary 4.4.2 (Strictly Equivalence) The structurally decomposed system in equa-

tion form, or in compact form, is strictly equivalent to the original singular system Σ.

Proof: Actually, from the computation algorithm for the compact form of the structural

decomposition, we can easily get that the structural decomposition is nothing more than

an invertible transformation on the original system’s system matrix, that is,

PΣ̃(s) =

[
Ãcmp − sẼcmp B̃cmp

C̃cmp D̃cmp

]
= ΓpPΣ(s)Γq = Γp

[
A− sE B

C D

]
Γq, (4.71)

and

Γp =




Inz 0 0 0

0 Ine 0 0

0 0 Γ̄s
−1 0

0 0 0 Γ̄o
−1







Inz 0 0 0

0 Ine 0 0

0 0 Inf
0

0 −De 0 Ip




U




In1 0 0

0 T−1
s 0

0 0 Ip




[
P 0

0 Ip

]
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=




Inz 0 0 0

0 Ine 0 0

0 0 Γ̄s
−1 0

0 −Γ̄o
−1

De 0 Γ̄o
−1




U




In1 0 0

0 T−1
s 0

0 0 Ip




[
P 0

0 Ip

]
,

Γq =

[
Q 0

0 Im

]



In1 0 0

0 Ts 0

0 0 Ti


V




Inz 0 0 0 0

0 0 0 Ine 0

0 0 Inf
0 0

0 Ine 0 0 0

0 0 0 0 Im−ne




·




Inz 0 0 0 0

0 Ine −Ag 0 0

0 0 Inf
0 0

0 0 0 Ine 0

0 0 0 0 Im−ne







Inz 0 0 0 0

0 Ine 0 −Ine 0

0 0 Inf
0 0

0 0 0 Ine 0

0 0 0 0 Im−ne







Inz 0 0 0

0 Ine 0 0

0 0 Γ̄s 0

0 0 0 Γ̄i




=

[
Q 0

0 Im

]



In1 0 0

0 Ts 0

0 0 Ti


V




Inz 0 0 0 0

0 0 0 Ine 0

0 0 Inf
0 0

0 Ine −Ag −Ine 0

0 0 0 0 Im−ne







Inz 0 0 0

0 Ine 0 0

0 0 Γ̄s 0

0 0 0 Γ̄i




.

Here nf = n− nz − ne and Γp and Γq can be clearly computed from the above algorithm

in proving Corollary 4.4.1.

And thus according to the definition of strictly equivalence, the decomposed system Σ̃ :

(Ẽ, Ã, B̃, C̃, D̃) is strictly equivalent to Σ. So its Kronecker canonical form will remain

unchanged and all of its structural properties are reserved.
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4.5 Proofs of Properties of Structural Decomposition

We present in this section the proofs of all the properties of the structural decomposition

given in the previous sections. The following lemmas are essential and instrumental to

our proofs of the structural properties of singular systems.

Lemma 4.5.1 Consider a singular system Σ characterized by (E, A, B, C, D) or in the

state space form of (4.1). Then, for any state feedback gain F ∈ Rm×n satisfying det(sE−
A − BF ) 6≡ 0, ΣF as characterized by (E,A + BF, B, C + DF, D) has the following

properties:

1. ΣF is stabilizable if and only if Σ is stabilizable;

2. the normal rank of ΣF is equal to that of Σ;

3. the invariant zero structure of ΣF is the same as that of Σ;

4. the infinite zero structure of ΣF is the same as that of Σ;

5. ΣF is (left or right or non) invertible if and only if Σ is (left or right or non) invertible;

Proof. Item 1 is obvious. In view of the following reductions,

HF(s) : = (C + DF )(sE −A−BF )−1B + D

= (C + DF )(sE −A)−1 [ I −BF (sE −A)−1 ]−1 B + D

= (C + DF )(sE −A)−1B [ I − F (sE −A)−1B ]−1 + D

= [ C(sE −A)−1B + D ] [ I − F (sE −A)−1B ]−1

= H(s) [ I − F (sE −A)−1B ]−1 , (4.72)

Item 2 follows. Next, noting that
[

A + BF − sE B

C + DF D

]
=

[
A− sE B

C D

][
I 0

F I

]
, (4.73)
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and the fact that the invariances of PΣ(s) are strictly equivalent under nonsingular con-

stant transformations, the results of Items 3, 4 and 5 follow.

This completes the proof of Lemma 4.5.1.

Lemma 4.5.2 Consider a singular system Σ characterized by (E, A, B, C, D) or in the

state space form of (4.1). Then, for a constant output injection gain K ∈ Rn×p satisfying

det(sE − A − KC) 6≡ 0, ΣK as characterized by (E,A + KC, B + KD, C,D) has the

following properties:

1. ΣK is stabilizable if and only if Σ is stabilizable;

2. the normal rank of ΣK is equal to that of Σ;

3. the invariant zero structure of ΣK is the same as that of Σ;

4. the infinite zero structure of ΣK is the same as that of Σ;

5. ΣK is (left or right or non) invertible if and only if Σ is (left or right or non) invertible.

Proof: It is a dual version of Lemma 4.5.1.

We now proceed to prove the properties of the structural decomposition. Noting the

properties in Corollary 4.4.2, and without loss of generality, we assume throughout the

rest of this section that the given system Σ has been transformed into the structural
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decomposition of Theorem 4.3.1 or into the compact form of (4.57), i.e.

E =




Jnz 0 0 0 0 0

Eez 0 0 0 0 0

Eaz 0 Ina 0 0 0

Ebz 0 0 Inb
0 0

Ecz 0 0 0 Inc 0

Edz 0 0 0 0 Ind




, B =




0 0 0

B0e Bde Bce

B0a 0 0

B0b 0 0

B0c 0 Bc

B0d Bd 0




, (4.74)

A =




Inz 0 0 0 0 0

0 Ine 0 0 0 0

0 0 Aaa LabCb 0 LadCd

0 0 0 Abb 0 LbdCd

0 0 BcMca LcbCb Acc LcdCd

0 0 BdMda BdMdb BdMdc Add




+




0

0

B0a

B0b

B0c

B0d




[ 0 0 C0a C0b C0c C0d ]

(4.75)

and

C =




0 0 C0a C0b C0c C0d

0 0 0 0 0 Cd

0 0 0 Cb 0 0


 , D =




Im0 0 0

0 0 0

0 0 0


 . (4.76)

We further note that A∗dd, Bd and Cd have the following forms:

A∗dd = blkdiag{Aq1 , · · · , Aqmd
}, (4.77)

and

Bd = blkdiag{Bq1 , · · · , Bqmd
}, Cd = blkdiag{Cq1 , · · · , Cqmd

}, (4.78)

where Aqi , Bqi and Cqi , i = 1, 2, · · · ,md, are as defined in (4.13).

The following proofs of the properties of the structural decomposition for singular systems

follow pretty closely to those given in Chen [19] for nonsingular systems.
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4.5.1 Proof of Property 4.3.1

It follows from Dai [29] that the singular system Σ of (4.1) is stabilizable if and only if

rank [ sE −A B ] = n, (4.79)

for all s ∈ C0 ∪ C+. Let us define a state feedback gain matrix

F = −




0 0 C0a C0b C0c C0d

0 0 Mda Mdb Mdc Mdd

0 0 Mca 0 0 0


 , (4.80)

which gives

A + BF =




Inz 0 0 0 0 0

0 Ine Nea Neb Nec Ned

0 0 Aaa LabCb 0 LadCd

0 0 0 Abb 0 LbdCd

0 0 0 LcbCb Acc LcdCd

0 0 0 0 0 A∗dd




, (4.81)

where Nea, Neb, Nec and Ned are constant matrices with appropriate dimensions.

Noting that (Acc, Bc) is completely controllable, we have for any s ∈ C0 ∪ C+,

rank [ sE −A−BF B ]

= rank




sJnz−Inz 0 0 0 0 0 0 0 0

0 −Ine −Nea −Neb −Nec −Ned B0e Bde Bce

sEaz 0 sIna−Aaa −LabCb 0 −LadCd B0a 0 0

sEbz 0 0 sInb
−Abb 0 −LbdCd B0b 0 0

sEcz 0 0 −LcbCb sInc−Acc −LcdCd B0c 0 Bc

sEdz 0 0 0 0 sInd
−A∗dd B0d Bd 0



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=rank




sJnz−Inz 0 0 0 0 0 0 0 0

0 −Ine 0 0 0 0 0 0 0

0 0 sIna−Aaa −LabCb 0 −LadCd B0a 0 0

0 0 0 sInb
−Abb 0 −LbdCd B0b 0 0

0 0 0 0 sInc−Acc 0 0 0 Bc

0 0 0 0 0 sInd
−A∗∗dd B0d Bd 0




=rank




sJnz−Inz 0 0 0 0 0 0 0

0 −Ine 0 0 0 0 0 0

0 0 sI−Acon 0 Bcon1Cd Bcon0 0 0

0 0 0 sInc−Acc 0 0 0 Bc

0 0 0 0 sInd
−A∗∗dd B0d Bd 0




, (4.82)

where A∗∗dd = A∗dd − LddCd and

Acon =

[
Aaa LabCb

0 Abb

]
, Bcon = [ Bcon0 Bcon1 ] =

[
B0a Lad

B0b Lbd

]
. (4.83)

Also, noting the special structure of Jnz and the properties of (A∗dd, Cd, Bd), it is simple to

verify that [ sE −A−BF B ] is of maximal rank if and only if [ sI −Acon Bcon ] is of

maximal rank. By Lemma 4.5.1, we have that Σ is stabilizable if and only if (Acon, Bcon)

is stabilizable.

Similarly, the property of detectability of the system can be proved in an output injection

way. This completes the proof of Property 4.3.1.
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4.5.2 Proof of Property 4.3.2

To prove this property, we first define a state feedback gain matrix F as in (4.80) and an

output injection gain matrix K as follows:

K = −




0 0 0

0 0 0

B0a Lad Lab

B0b Lbd 0

B0c Lcd Lcb

B0d Ldd 0




, (4.84)

and noting the results in (4.81), we thus have,

E? = E =




Jnz 0 0 0 0 0

Eez 0 0 0 0 0

Eaz 0 Ina 0 0 0

Ebz 0 0 Inb
0 0

Ecz 0 0 0 Inc 0

Edz 0 0 0 0 Ind




, (4.85)

A? = A + BF + KC + KDF =




Inz 0 0 0 0 0

0 Ine Nea Neb Nec Ned

0 0 Aaa 0 0 0

0 0 0 Abb 0 0

0 0 0 0 Acc 0

0 0 0 0 0 A∗∗dd




, (4.86)

B? = B + KD =




0 0 0

B0e Bde Bce

0 0 0

0 0 0

0 0 Bc

0 Bd 0




, (4.87)
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and

C? = C + DF =




0 0 0 0 0 0

0 0 0 0 0 Cd

0 0 0 Cb 0 0


 , D? = D =




Im0 0 0

0 0 0

0 0 0


 . (4.88)

Next, it can be shown by some matrix manipulations that the transfer function of the

singular system Σ? characterized by (E?, A?, B?, C?, D?) is given by

H?(s) = C?(sE? −A?)−1B? + D? =




Im0 0 0

0 Cd(sInd
−A∗dd)

−1Bd 0

0 0 0


 , (4.89)

with

Cd(sInd
−A∗dd)

−1Bd =




1
sq1

. . .

1
sqmd


 . (4.90)

By Lemma 4.5.1 and Lemma 4.5.2, we have

normrank {H(s)} = normrank {H?(s)} = m0 + md. (4.91)

Next, noting the special structure of the triple (A∗dd, Bd, Cd), and the properties of (Abb, Cb)

and (Acc, Bc), we have, for a complex scalar α,

rank {PΣ?(α)}

= rank

[
A? − αE? B?

C? D?

]

= rank




Inz−αJnz 0 0 0 0 0 0 0 0

0 −αEaz Aaa−αIna 0 0 0 0 0 0

−αEez Ine Nea Neb Nec Ned B0e Bde Bce

−αEbz 0 0 Abb−αInb
0 0 0 0 0

−αEcz 0 0 0 Acc−αInc 0 0 0 Bc

−αEdz 0 0 0 0 Add−αInd
0 Bd 0

0 0 0 0 0 0 Im0 0 0

0 0 0 0 0 Cd 0 0 0

0 0 0 Cb 0 0 0 0 0



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= rank




Inz−αJnz 0 0 0 0 0 0 0 0

0 Ine 0 0 0 0 0 0 0

0 0 Aaa−αIna 0 0 0 0 0 0

0 0 0 Abb−αInb
0 0 0 0 0

0 0 0 0 Acc−αInc 0 0 0 Bc

0 0 0 0 0 Add−αInd
0 Bd 0

0 0 0 0 0 0 Im0 0 0

0 0 0 0 0 Cd 0 0 0

0 0 0 Cb 0 0 0 0 0




= nz + ne + rank {Aaa − αIna}+ nb + nc + nd + m0 + md. (4.92)

It is clear that the rank of P?(α) drops below n + m0 + md if and only if α ∈ λ(Aaa).

Hence, by Lemmas 4.5.1–4.5.2, the invariant zeros of Σ are given by the eigenvalues of

Aaa. This completes the proof of Property 4.3.2.

4.5.3 Proof of Property 4.3.3

Observing (4.89) and (4.90), we can easily see that Σ?, or equivalently by Lemmas 4.5.1–

4.5.2 the given singular system Σ, has m0 infinite zeros of order 0 and has md infinite

zeros of orders qi respectively, where i = 1, 2, · · · ,md.

4.5.4 Proof of Property 4.3.4

Following from the results of Lemmas 4.5.1–4.5.2, we have that Σ or H(s) is (left or right

or non) invertible if and only if Σ? or H?(s) is (left or right or non) invertible. Then, the

results of Property 4.3.4 follow explicitly from the properties of H?(s) in (4.89).
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4.6 An Illustrative Example

We now present a numerical example to illustrate the structural decomposition technique

and the properties. We consider a singular system of (4.1) characterized by

E =




1 0 0 0 0 0 0

0 0 1 0 1 0 −1

0 0 0 0 0 0 0

0 0 0 0 1 0 0

0 −1 0 0 1 1 −1

0 0 1 0 1 0 −1

0 −1 0 0 1 1 −1




, A = I7, B =




1 1 0

−1 1 1

1 0 0

0 0 1

−1 0 1

−1 2 1

−1 0 1




, (4.93)

and

C =

[
1 0 0 0 0 0 1

0 −1 1 0 2 1 −2

]
, D =

[
0 1 0

0 0 0

]
. (4.94)

Step 1 (PRELIMINARY DECOMPOSITION). The given system is already in the form

of (4.20), i.e., we have

Σ1 :





ẋ1 = x1 + [ 1 1 0 ] u

y1 =

[
1

0

]
x1 +

[
0 1 0

0 0 0

]
u

(4.95)
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and

Σ2 :








0 1 0 1 0 −1

0 0 0 0 0 0

0 0 0 1 0 0

−1 0 0 1 1 −1

0 1 0 1 0 −1

−1 0 0 1 1 −1







ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

ẋ7




=




x2

x3

x4

x5

x6

x7




+




−1 1 1

1 0 0

0 0 1

−1 0 1

−1 2 1

−1 0 1




u

y2 =

[
0 0 0 0 0 1

−1 1 0 2 1 −2

]




x2

x3

x4

x5

x6

x7




(4.96)

with n1 = 1 and n2 = 6.

Step 2 (DECOMPOSITION OF xz AND xe). Using the toolbox of Lin and Chen [52],

we obtain two nonsingular transformations

Ts =




1 0 0 0 0 0

0 1 0 0 0 1

0 1 1 0 0 0

0 0 0 1 0 0

1 0 0 0 1 1

0 0 0 1 0 1




, Ti =




1 0 0

0 1 0

1 0 1


 , (4.97)

which transform Σ2 to the following canonical form

T−1
s NTs =




0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0




, T−1
s B2Ti =




0 1 1

1 0 0

0 0 1

0 0 1

0 1 0

0 0 0




,

87



C2Ts =




0 0 0 1 0 1

0 1 0 0 1 0


 . (4.98)

As such, Σ2 is decomposed into:

xz = x̂7 = 0, (4.99)

and
û1 = −xv12 ,

ẋv12 = xv11 + û2 + û3,

}
(4.100)

û2 = −xv23 ,

ẋv23 = xv22 + û3,

ẋv22 = xv21 + û3,





(4.101)

Thus nz = 1, ne = 2, p1 = 2, p2 = 3, vd = p2 − 1 = 2 and

xe1 = − ˙̂u1 − û2 − û3 = −u̇1 + u1 − u2 − u3,

xe2 = −¨̂u2 − ˙̂u3 − û3 = −ü2 + u̇1 − u̇3 + u1 − u3. (4.102)

Step 3 (FORMATION OF A NONSINGULAR SYSTEM AND FINAL DECOMPOSI-

TION).

According to the input transformation in (4.98), and noting the results in (4.100)

and (4.101), we can rewrite Σ1 as:

ẋ1 = x1 + û1 + û2 = x1 − xv11 − xv21 . (4.103)

Now, combining the results of (4.100), (4.101) and (4.103), we obtain an auxiliary

nonsingular system { ˙̄x = Ā x̄ + B̄ ū

y = C̄ x̄ + D̄ ū
(4.104)

with

x̄ =




x1

xv12

xv22

xv23




, ū =




xe1

xe2

û3


 , (4.105)
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and

Ā =




1 −1 0 −1

0 0 0 −1

0 0 0 0

0 0 1 0




, B̄ =




0 0 0

1 0 1

0 1 1

0 0 1




, C̄ =

[
1 0 1 0

0 1 0 1

]
, D̄ = 0. (4.106)

Again, using the toolbox of Lin and Chen [52], we obtain

Γ̄s =




0.7746 0 0 0

−0.2582 −0.3162 0 0.6

−0.5164 0.3162 1 0.4

0.2582 0.3162 0 0.4




, Γ̄i =




0 0.2 −0.8944

1 0 0

0 0.4 0.4472


 , Γ̄o = I2,

(4.107)

na = 1, nb = 0, nc = 1, nd = 2,

Γ̄−1
s ĀΓ̄s =




1 0 0 −1.2910

−1.4697 1 1.8974 2.3190

1.2910 −0.3162 −1 −1.4000

−0.7746 0 1 0




, (4.108)

and

Γ̄−1
s B̄Γ̄i =




0 0 0

0 0 1.4142

1 0 0

0 1 0




, Γ̄−1
o C̄Γ̄s =

[
0 0 1 0

0 0 0 1

]
. (4.109)

Finally, the structural decomposition of the given singular system is given by

xz = 0, (4.110)

xe =

[
0.8944

0

]
uc +

[
0 −0.2

−1 0

]
ud, ud =

(
ud1

ud2

)
, (4.111)

ẋa = xa + [ 0 −1.2910 ] yd, (4.112)

ẋc = xc − 1.4697xa + [ 1.8974 2.3190 ] yd + 1.4142uc, (4.113)

and
(

ẋd1

ẋd2

)
=

[
1.2910

−0.7746

]
xa +

[−0.3162

0

]
xc +

[−1 −1.4

1 0

]
yd + ud, yd =

(
xd1

xd2

)
.

(4.114)
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It is simple to see now from the above decomposition that the given system is right

invertible with one invariant zero at s = 1 and two infinite zeros of order 1. The given

system has one state variable, which is identically zero, and two state variables, which

are nothing but the linear combination of the system inputs and their derivatives.

These state variables are actually redundant in the system dynamics. All of these

properties can be verified clearly from the following Kronecker canonical form of its

system matrix,

Γu

[
A− sE B

C D

]
Γv =




1− s 0 0 0 0 0 0 0 0 0

0 −s 1 0 0 0 0 0 0 0

0 0 0 1 −s 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 −s 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1




, (4.115)

with

Γu =




1 1 −1 0 −2 −1 2 0 1

0 2 0 0 −1 −1 1 0 0

1 1 −2 1 −4 −1 3 0 1

0 1 0 0 0 −1 0 1 0

0 2 0 0 0 −1 1 0 0

0 0 0 0 0 0 0 0 1

0 0 0 0 −1 0 1 0 0

0 0 1 0 1 0 −1 0 0

0 −1 0 0 1 1 −1 0 0




,
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Γv =




1 0 0 0 0 0 0 0 0 0

−1 −2 2 0 1 −1 2 0 0 0

0 1 0 0 0 0 0 1 0 0

−2 0 0 1 1 0 1 0 0 0

−1 −1 0 0 1 0 1 0 0 0

−1 −3 2 0 1 −1 3 1 0 0

−1 −1 0 0 1 0 1 1 0 0

0 −1 0 0 0 0 0 0 1 0

0 1 0 0 0 0 −1 0 0 1

1 0 −1 0 −1 1 −1 0 1 0




. (4.116)

Finally, for completeness, we give below all the necessary transformation matrices:

Γe =




0 1 1 0.7746 0 0 0

0 0 1 −0.2582 −0.3162 0 0.6

1 1 0 0 0 0 0

0 1 0 −0.5164 0.3162 1 0.4

0 0 0 0.2582 0.3162 0 0.4

1 0 2 −0.2582 −0.3162 0 0.6

1 0 0 0.2582 0.3162 0 0.4




, (4.117)

Γs =




0 0 0 0.7746 0 0 0

0 1 0 0 0 0 0

1 0 0 −0.2582 −0.3162 0 0.6

0 0 1 −0.2582 −0.3162 0 0.6

0 0 0 −0.5164 0.3162 1 0.4

1 1 0 0.2582 0.3162 0 0.4

1 0 0 0.5164 0.3162 1 0.4




, (4.118)

and

Γi(s) =




s + 1 −s2 −s− 1

−s− 2 −1 −1

0.8944s− 0.4472 0.8944 1.3416




−1

, Γo =

[
1 0

0 1

]
. (4.119)
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Finally, we note that the s-dependent input transformation Γi(s) simply implies that




uc

ud1

ud2


 =




0 −1 0

0 0 0

0 0 0


 ü+




1 0 −1

−1 0 0

0.8944 0 0


 u̇+




1 0 −1

−2 −1 −1

−0.4472 0.8944 1.3416


u.

(4.120)

And the structurally decomposed system is strictly equivalent to the original system.

This can be verified by the following transformations.

[
Ã− sẼ B̃

C̃ D̃

]

= Γp

[
A− sE B

C D

]
Γq

=




1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 −0.2000 0.8944

0 0 1 0.0000 −0.0000 0 0 −1.0000 0 0

0 0 0 1.0000− s 0.0000 0 −1.2910 0 0 −0.0000

0 0 0 −1.4698 1.0000− s 1.8975 2.3192 0.0000 0 1.4143

0 0 0 1.2910 −0.3162 −1.0000− s −1.4000 1.0000 0 0.0000

0 0 0 −0.7746 0 1.0000 −s −0.0000 1.0000 0

1 0 0 −0.0000 0.0000 1.0000 0.0000 −0.0000 0 0

0 0 0 0 0 0 1.0000 0 0 0




,
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where

Γp =




0 0 0 0 −1.0000 0 1.0000 0 0

0 0 1.0000 0 1.0000 0 −1.0000 0 0

0.0000 −1.0000 −0.0000 0 1.0000 1.0000 −1.0000 0 0

1.2910 1.2910 −1.2910 0 −2.5820 −1.2910 2.5820 0 0

−1.0542 −3.5842 1.0542 0 5.2709 2.3192 −3.3734 0 0

1.0000 1.0000 −2.0000 1.0000 −4.0000 −1.0000 3.0000 0 0

−0.0000 2.0000 0.0000 0 0.0000 −1.0000 1.0000 0 0

−0.0000 1.0000 0.0000 0 −1.0000 −1.0000 1.0000 1.0000 0

0 0 0 0 0 0 0 0 1.0000




,

(4.121)

and

Γq =




0 0 0 0.7746 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0.2000 −0.8944

1 0 0 −0.2582 −0.3162 0 0.6000 0 0 0

0 0 0 −0.2582 −0.3162 0 0.6000 1.0000 0 0

0 0 0 −0.5164 0.3162 1.0000 0.4000 0 0 0

1 0 0 0.2582 0.3162 0 0.4000 0 0.2000 −0.8944

1 0 0 −0.5164 0.3162 1.0000 0.4000 0 0 0

0 1.0000 0 0.2582 0.3162 0 −0.6000 0 −0.2000 0.8944

0 0 1.0000 −0.2582 −0.3162 0 −0.4000 −1.0000 0 0

0 1.0000 0 0.2582 0.3162 0 −0.6000 0 0.2000 1.3416




.

(4.122)

4.7 Conclusions

We have presented in this chapter a structural decomposition technique for general multi-

variable singular systems, which has a distinct feature of explicitly capturing and display-

ing all structural properties, such as the finite and infinite zero structures, invertibility
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structure, as well as redundant states of a given singular system. And all the properties of

the structural decomposition can be verified by the Kronecker canonical form of its system

matrix. As its counterpart in nonsingular systems, the technique is expected to play an

important role in solving many control problems related to singular systems. This will

actually be the subject of our future research. And Chapter 6 will give an example of the

potential applications of the structural decomposition technique.
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Chapter 5

Geometric Subspaces of Singular

Systems

5.1 Introduction

Geometric approach for linear systems firstly appeared in the literature when Basile and

Marro [3], [4], [5] and Wonham and Morse [81], [82] presented the notations of (A,B)-

invariance and (C, A)-invariance in the late 1960’s. From then on, more geometric invariant

subspaces have been proposed, such as (C,A, B)-pair introduced by Schumacher [71] and

almost invariant subspaces by Willems [78], [79], [80]. Geometric invariant subspaces and

pairs play core roles in geometric approach since they can be used to characterize structural

properties of linear systems such as controllability, observability, system invertibility and

so on. In general, the essence of geometric approach is to characterize a system or control

problem as a verifiable property of some constructible state subspaces. Then a specific

solution will be derived from a set of such state subspaces and their generations.
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For singular systems, geometric approach is also a powerful tool and has been widely used

in the literature [58], [45]. And this chapter is to give geometric interpretations of the

structural decomposition technique through those invariant geometric subspaces.

The structural decomposition technique for singular systems is a natural extension of its

counterpart for linear nonsingular systems [70] [67]. Its initial ideas are structure prop-

erties and system equivalence, which have been intensively researched in the literature.

Campbell [8] presented an effective structural decomposition method and got the corre-

sponding equivalent system, while Verghese et al. [76] defined a strong system equivalence

using a trivial augmentation and deflation technique. On the other hand, structural in-

variants also received intensive research in literature. Further, Misra et al. [59] and Liu

et al. [53] have presented their algorithms to compute the invariant structural indices of

singular systems. More recently, He and Chen [39] and He et al. [40] have developed a

structural decomposition method for single-input single-output and multivariable singular

systems respectively. Such a structural decomposition can not only give the invariant

structural indices but also explicitly display the structural features, such as the finite and

infinite zero dynamics, invertibility structures and redundant dynamics of the given sys-

tems. And it is expected to be a powerful tool in solving system and control problems as

its counterpart in nonsingular linear system [13].

In this chapter, we first give the definitions of several geometric subspaces for singular

systems. Then the geometric subspaces will be alternatively expressed in matrix form by

some theorems and lemmas. And finally, the relations between structurally decomposed

subspaces and those geometric subspaces will be presented and proved.
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5.2 Geometric Subspaces of Singular Systems

The definitions of many geometric subspaces have already been presented in the literature

by Malabre [58] in geometric form, and Geerts [36] in the so called algebraic distributional

framework. However, to our best knowledge, there are still some problems in their defini-

tions in algebraic frame. Thus we first try to give the definitions of geometric subspaces

in an algebraic framework in this section.

The following definitions are natural extensions from those for nonsingular systems (see

e.g., Trentelman et al. [72]).

Weakly unobservable subspace is a superset of unobservable subspace, which is generally

denoted as 〈Ker C | A〉. It is associated with system zeros and thus become a very useful

tool of geometric approach.

Definition 5.2.1 (Weakly Unobservable Subspace V?) For a singular system Σ, an

initial point x0 ∈ X is called weakly unobservable if there exists an input function u such

that the corresponding output yu(t1, x0) = 0 for all t1 > 0. The weakly unobservable

subspace V? of Σ is the set of all its weakly unobservable points.

Based on the above definition, strongly controllable subspace is contained in the control-

lable subspace 〈 A | Im B〉. And it is also widely used in geometric approach.

Definition 5.2.2 (Strongly Controllable Subspace S?) For a singular system Σ, an

initial point x0 ∈ X is called strongly controllable if there exists an impulsive input

function u such that xu(t1, x0) = 0 for all t1 ≥ 0. The strongly controllable subspace S?

of Σ is the set of all its strongly controllable points.
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The following two definitions are generally extension of weakly unobservable subspace and

strongly controllable subspace.

Definition 5.2.3 (Controllable Weakly Unobservable Subspace R?) For a singu-

lar system Σ, an initial point x0 ∈ X is called controllable weakly unobservable if there

exists an input function u and T > 0 such that the corresponding output yu(t1, x0) = 0

for all t1 ∈ [0, T ] and xu(T, x0) = 0. The controllable weakly unobservable subspace R?

of Σ is the set of all its weakly unobservable points.

Definition 5.2.4 (Distributionally Weakly Unobservable Subspace W?) For a sin-

gular system Σ, an initial point x0 ∈ X is called distributionally weakly unobservable if

there exists an distributionally impulsive input function u such that the corresponding

output yu(t1, x0) = 0 for all t1 > 0. The distributionally weakly unobservable subspace

W? of Σ is the set of all such points.

After defining these subspaces, we give their relationship in the following. Since they are

quite obvious, we do not need to prove them here.

Remark 5.2.1 It can be seen clearly that V? is dual to S? from their definitions.

Further, we have the following lemma on the relationship of the above four geometric

subspaces.

Lemma 5.2.1 The relationship of geometric subspaces can be characterized as:

R? = V? ∩ S?, W? = V? ∪ S?. (5.1)
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5.3 Geometric Expression of the Subspaces

The definitions in Section 5.2 are direct but not in geometric form. This section will

express the definition in geometric form and prove their equivalence.

We first give the geometric description of weakly unobservable subspace in the following

theorem.

Theorem 5.3.1 V?(Σ) is the largest subspace V of X for which there exists a constant

matrix F such that

(A + BF )V ⊂ EV and (C + DF )V = 0. (5.2)

Or alternatively, V?(Σ) is the largest subspace V of X such that
[

A

C

]
V ⊂

[
EV
0

]
+ Im

[
B

D

]
. (5.3)

This theorem gives a direct way in finding the weakly unobservable subspace for a given

singular system Σ. To prove it, we first need the following lemma.

Lemma 5.3.1 If x0 ∈ V?(Σ) and let u be an input function such that the corresponding

output function satisfies yu(x0, t) = 0 for all t ≥ 0. Then the associated state satisfies

xu(x0, t) ∈ V?(Σ) for all t ≥ 0.

The proof of this lemma is similar to its counterpart in nonsingular systems which is found

in the literature (see e.g. Trentelman et al. [72]).

Proof of Theorem 5.3.1:
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Let x0 ∈ V?(σ) and let u be such that yu(x0, t) = 0 for all t ≥ 0. Since V?(σ) is a linear

subspace of X , we have

ẋ(0+) := lim
t→0

xu(x0, t)− x0

t
∈ V?(Σ). (5.4)

Now because Eẋ(0+) = Ax0 + Bu0 and Cx0 + Du0 = 0, we see that for any given x0 ∈
V?(σ), there exists a vector u0 ∈ U such that Ax0 + Bu0 ∈ EV?(Σ) and Cx0 + Du0 = 0.

Equivalently, the subspace V = V?(Σ) satisfies
[

A

C

]
V ⊂

[
EV
0

]
+ Im

[
B

D

]
. (5.5)

And now let V be any subspace of X with the property (5.5). Choose a basis x1, · · ·, xn for

X such that x1, · · ·, xr is a basis for V with r ≤ n. And by (5.5), there are vectors ui ∈ U
such that for i = 1, 2, · · · , r we have Axi + Bui ∈ EV and Cxi + Dui = 0. Let F : X → U
be any linear map such that Fxi = ui for i = 1, 2, · · · , r. Then we have (A + BF )xi ∈ EV
and (C +DF )xi = 0. Since x1, · · ·, xr is a basis of V, we conclude that there exists a map

F : X → U such that

(A + BF )V ⊂ EV and (C + DF )V = 0. (5.6)

Now we can use (5.5) and (5.6) to prove Theorem 5.3.1. First, we have already shown that

V = V?(Σ) satisfies (5.5). Now let V be an arbitrary subspace satisfies (5.5), according

to the above, there exists an F such that (5.6) holds. Let x0 ∈ V and apply the feedback

control u(t) = Fx(t). The resulting trajectory xu(x0, t) then remains in V for all t ≥ 0.

Hence,

yu(x0, t) = (C + DF )xu(x0, t) = 0 (5.7)

for all t ≥ 0. This means that x0 ∈ V?(Σ) and thus V ⊂ V?(Σ).

On the other hand, we also already showed that there exists an F such that (5.6) holds

with V = V?(Σ). Now let V be any subspace such that (5.6) holds for some F . It can

100



be seen immediately that V satisfies (5.5). According to what we have proved above, this

implies that V ⊂ V?(Σ).

In this way, we complete the proof for Theorem 5.3.1.

Similarly, for the strongly controllable subspace S? of the given singular system Σ, we

have the following theorem,

Theorem 5.3.2 S?(Σ) is the smallest subspace S of X for which there exists a constant

matrix K such that

(A + KC)S ⊂ ES and Im(B + KD) ⊂ S. (5.8)

Again, its proof is similar to that for nonsingular systems.

The following lemmas show that the weakly unobservable subspace and strongly control-

lable subspace are invariant according to state feedback and output injection.

Lemma 5.3.2 The weakly unobservable subspace V?(Σ) of a given singular system Σ is

invariant under state feedback and output injection.

Proof: Firstly, from Theorem 5.3.1, it is obviously invariant under any state feedback

laws.

Next, for any subspace V that satisfies the following conditions:

(A + BF )V ⊂ EV, and (C + DF )V = 0, (5.9)

we have an output injection matrix K and

(A + (B + KD)F + KC)V
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= (A + BF + K(C + DF ))V

= (A + BF )V + K(C + DF )V

= (A + BF )V ⊂ EV (5.10)

So V? is also invariant under any output injection laws. This complete the proof.

Lemma 5.3.3 The strongly controllable subspace S?(Σ) of a given singular system Σ is

invariant under state feedback and output injection.

Similarly, the proof of this lemma can be derived accordingly.

5.4 Geometric Interpretation of Structural Decomposition

As its counterpart for nonsingular systems, our structural decomposition for singular sys-

tems also has the following geometrical interpretations.

Theorem 5.4.1 Suppose that the state-space X is structurally decomposed into the fol-

lowing distinct subspaces,

X = Xz ⊕Xe ⊕Xa ⊕Xb ⊕Xc ⊕Xd, (5.11)

we have

V?(Σ) = Im








0 0

Nea Nec

Ina 0

0 0

0 Inc

0 0








, (5.12)
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and

S?(Σ) = Im








0 0

Nec Ned

0 0

0 0

Inc 0

0 Ind








, (5.13)

where

Nea = B0eC0a + BdeMda + BceMca,

Nec = B0eC0c + BdeMdc,

Ned = B0eC0d + BdeMdd. (5.14)

Proof:

First, without loss of any generality, we assume throughout the rest of this section that

the given system Σ has been transformed into the structural decomposition or into the

compact form as follows,

E =




Jnz 0 0 0 0 0

Eez 0 0 0 0 0

Eaz 0 Ina 0 0 0

Ebz 0 0 Inb
0 0

Ecz 0 0 0 Inc 0

Edz 0 0 0 0 Ind




, B =




0 0 0

B0e Bde Bce

B0a 0 0

B0b 0 0

B0c 0 Bc

B0d Bd 0




, (5.15)

A =




Inz 0 0 0 0 0

0 Ine 0 0 0 0

0 0 Aaa LabCb 0 LadCd

0 0 0 Abb 0 LbdCd

0 0 BcMca LcbCb Acc LcdCd

0 0 BdMda BdMdb BdMdc Add




+




0

0

B0a

B0b

B0c

B0d




[ 0 0 C0a C0b C0c C0d ]

(5.16)
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and

C =




C0z 0 C0a C0b C0c C0d

Cdz 0 0 0 0 Cd

Cbz 0 0 Cb 0 0


 , D =




Im0 0 0

0 0 0

0 0 0


 . (5.17)

Now we begin to prove the invariant geometric subspace V?(Σ), i.e.,

V?(Σ) = Im








0 0

Nea Nec

Ina 0

0 0

0 Inc

0 0








. (5.18)

Firstly, we need to prove that

Im








0 0

Nea Nec

Ina 0

0 0

0 Inc

0 0








⊆ V?(Σ). (5.19)

It follows from Lemma 5.3.2 that V?(Σ) is invariant under output injection laws. Thus

first we can choose an output injection gain matrix K as

K = −




0 0 0

0 0 0

B0a Lad Lab

B0b Lbd 0

B0c Lcd Lcb

B0d Ldd 0




, (5.20)
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then we have

Â = A + KC =




Inz 0 0 0 0 0

0 Ine 0 0 0 0

Waz 0 Aaa 0 0 0

Wbz 0 0 Abb 0 0

Wcz 0 BcMca 0 Acc 0

Wdz 0 BdMda BdMdb BdMdc A?
dd + BdMdd




, (5.21)

where Waz, Wbz, Wcz and Wdz are matrix blocks with less interest and

B̂ = B + KD =




0 0 0

B0e Bde Bce

0 0 0

0 0 0

0 0 Bc

0 Bd 0




. (5.22)

Let Σ̂ be a system characterized by (Â, B̂, C, D). Then it is sufficient to show the property

of V?(Σ) by showing that

V?(Σ̂) = Im








0 0

Nea Nec

Ina 0

0 0

0 Inc

0 0








. (5.23)

First, let us choose a state feedback gain matrix F as

F = −




0 0 C0a C0b C0c C0d

0 0 Mda Mdb Mdc Mdd

0 0 Mca 0 0 0


 , (5.24)
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then we have

Â + B̂F =




Inz 0 0 0 0 0

0 Ine −Nea −Neb −Nec −Ned

Waz 0 Aaa 0 0 0

Wbz 0 0 Abb 0 0

Wcz 0 0 0 Acc 0

Wdz 0 0 0 0 A?
dd




, (5.25)

where

Nea = B0eC0a + BdeMda + BceMca,

Neb = B0eC0b + BdeMdb,

Nec = B0eC0c + BdeMdc,

Ned = B0eC0d + BdeMdd. (5.26)

and

C + DF =




C0z 0 0 0 0 0

Cdz 0 0 0 0 Cd

Cbz 0 0 Cb 0 0


 . (5.27)

Now it is simple to see that for any

ζ ∈ Im








0 0

Nea Nec

Ina 0

0 0

0 Inc

0 0








⊂ X , (5.28)
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we have

ζ =




0

ζe

ζa

0

ζc

0




. (5.29)

And since ζ ∈ X , it should satisfy

Âζ + B̂Fζ = Eζ̇, (5.30)

which implies that

ζe = Neaζa + Necζc, (5.31)

and thus,

(Â + B̂F )




0

ζe

ζa

0

ζc

0




=




0

0

Aaaζa

0

Accζc

0




∈ EIm








0 0

Nea Nec

Ina 0

0 0

0 Inc

0 0








= Im








0 0

0 0

Ina 0

0 0

0 Inc

0 0








. (5.32)

Moreover, we have

(C + DF )




0

ζe

ζa

0

ζc

0




= 0. (5.33)
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Thus, by Theorem 5.3.1, we have

Im








0 0

Nea Nec

Ina 0

0 0

0 Inc

0 0








⊆ V?(Σ̂). (5.34)

Conversely, for any ζ ∈ V?(Σ̂), by Theorem 5.3.1, there exists a gain matrix F̂ ∈ Rm×n

such that

(Â + B̂F̂ )ζ ∈ EV?(Σ̂), (5.35)

and

(C + DF̂ )ζ = 0. (5.36)

Noting that EV?(Σ̂) ⊂ V?(Σ̂), we can get from (5.35) and (5.36) that, for any ζ ∈ V?(Σ̂),

(C + DF̂ )(Â + B̂F̂ )kζ = 0, k = 0, 1, · · · , n− 1. (5.37)

Thus, (5.37) and (5.34) imply

(C + DF̂ )(Â + B̂F̂ )k




0 0

Nea Nec

Ina 0

0 0

0 Inc

0 0




= 0, k = 0, 1, · · · , n− 1. (5.38)

Now if we partition F̂ as follows:

F̂ =




Fz0 Fe0 Fa0 − C0a Fb0 − C0b Fc0 − C0c Fd0 − C0d

Fzd Fed Fad −Mda Fbd −Mdb Fcd −Mdc Fdd −Mdd

Fzc Fec Fac −Mca Fbc Fcc Fdc


 , (5.39)
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we will have

C + DF̂ =




? Fe0 Fa0 Fb0 Fc0 Fd0

Cdz 0 0 0 0 Cd

Cbz 0 0 Cb 0 0


 , (5.40)

and

Â + B̂F̂ =




Inz 0 0 0 0 0

? ? ? ? ? ?

? 0 Aaa 0 0 0

? 0 0 Abb 0 0

? BcFec BcFac BcFbc Acc + BcFcc BcFdc

? BdFed BdFad BdFbd BdFcd A??
dd




, (5.41)

where ?s are some matrices of not much interest and A??
dd = A?

dd + BdFdd.

Then, using (5.38) with a positive integer k together with (5.40), we have

(C + DF̂ )(Â + B̂F̂ )k =




? ? ? ? ? ?

? 0 0 ? 0 Cd(A??
dd)

k

? 0 0 Cb(Abb)k 0 0


 = 0. (5.42)

Now, for any

ζ =




ζz

ζe

ζa

ζb

ζc

ζd




∈ V?(Σ̂), (5.43)

there exists 


ζz

ζe

ζa

ζb

ζc

ζd




∈ Im




0

xe

xa

xb

xc

xd




, (5.44)
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because V?(Σ̂) and X are in the same coordinate and V?(Σ̂) ⊂ X , we thus have ζz = 0.

Furthermore, for any

ζ =




0

ζe

ζa

ζb

ζc

ζd




∈ V?(Σ̂), (5.45)

it follows from (5.38) and (5.42) that

Cb(Abb)kζb = 0, k = 0, 1, · · · , n− 1, (5.46)

which implies ζb = 0 because (Abb, Cb) is completely observable, and

Cd(A??
dd)

kζd + ? · ζb = Cd(A??
dd)

kζd = 0, k = 0, 1, · · · , n− 1, (5.47)

which implies ζd = 0 because (A??
dd, Cd) is also completely observable.

Thus, for any ζ ∈ V?(Σ̂), there exists

ζ ∈ Im








0 0

Nea Nec

Ina 0

0 0

0 Inc

0 0








, (5.48)

and we finally have

V?(Σ̂) ⊆ Im








0 0

Nea Nec

Ina 0

0 0

0 Inc

0 0








. (5.49)
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Obviously, (5.34) and (5.49) show the result. Similarly, one can follow the same procedure

as in the above to show the property about strongly controllable subspace.

5.5 Conclusions

In this chapter, we introduced and defined important geometric subspaces for singular

systems. Moreover, the internal relationship between these geometric subspaces and our

structural decomposition was presented and proved. Such relationship shows that the

structural decomposition technique can explicitly display the invariant geometric sub-

spaces of a given singular system.
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Chapter 6

Disturbance Decoupling of

Singular Systems via State

Feedback

6.1 Introduction

Among the problems of singular system and control, disturbance decoupling plays a crucial

role in robust control of singular systems. Let’s consider the following time-invariant

continuous singular system,

Σ :





E ẋ = A x + B u + G w, x(0) = x0,

y = x,

h = C x,

(6.1)

where rank(E) < n and x ∈ Rn, u ∈ Rm and y ∈ Rp are respectively the state, input and

output of the system while w ∈ Rq is the system disturbance, which may represent noise

or errors from measuring and modelling. And E, A, B, C and G are constant matrices

of appropriate dimensions. As usual, in order to avoid any ambiguity in the solutions to
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the system, we assume throughout this paper that the given singular system Σ is regular,

i.e., det(sE −A) 6≡ 0, for all s ∈ C.

Now the disturbance decoupling problem of singular systems by state feedback is to find a

constant state feedback matrix F such that the closed loop system is internally stable and

the influence of disturbance to system output is eliminated. The problem of disturbance

decoupling for singular systems was first formulated and solved by Fletcher and Aasaraai

[34] but with an extra assumption that the output is independent of input disturbance

in the sense that there is a set of admissible initial conditions such that the system’s

response is zero. After that, with geometric concepts of sliding and coasting subspaces,

Banaszuk et al. [2] gave necessary and sufficient conditions for solving the disturbance

decoupling problem of implicit discrete-time systems while Lebret [46] presented structural

equivalent characterization to solve the same problem. Then Ailon [1] considered the

standard disturbance decoupling problem for singular systems and formulated a solution

in state space form. And more recently, Chu and Mehrmann [23] developed a numerically

stable solution for the problem and Liu and Ho [54] designed a constructive method for

the disturbance decoupling problem of linear time-varying singular systems. All of these

researchers’ work has improved the understanding for the disturbance decoupling problem

and their solutions are effective under the accordingly conditions, however, to our best

knowledge, such solutions are either cumbersome or too technical to be applied in the real

controls.

This chapter intends to present a easy and clear solution for the disturbance decoupling

problem of singular systems by state feedback. The solution is based on structural de-

composition technique and a sufficient condition is proposed to guarantee the feasibility

of such a solution. It should be pointed out that the solution presented in this chapter is

far from complete in solving the disturbance decoupling problem since it needs a sufficient

condition and the necessary condition is skipped. However, the objective of this chapter is
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to illustrate how the structural decomposition technique can be applied in solving singular

system and control problems. Furthermore, the full solution including both necessary and

sufficient conditions is on researching and the result will be completed soon.

Without loss of any generality, we also assume throughout this chapter that the matrix B

in Σ is of full collum rank and C is of full row rank.

The organization of this chapter is as follows. Section 6.1 gives background and formu-

lation of the disturbance decoupling problem for singular systems. To make this chapter

more self-contained, some essential preliminary materials are included in Section 6.2. In

Section 6.3, our main results are presented by a constructive algorithm for solving the

disturbance decoupling problem and a sufficient condition is also proposed. And a numer-

ical example is given in Section 6.4 to show the detail of the application of the structural

decomposition. Finally, a concluding remark is drawn in Section 6.5.

6.2 Preliminary Materials

In this section, we briefly introduce necessary background materials for solving distur-

bance decoupling of singular systems by state feedback. First, the necessary and sufficient

conditions for the existence of a state feedback matrix to get a regular and impulse free

closed-loop system are remembered. To make this chapter more self-contained, we also

include the necessary and sufficient conditions for the existence of a state feedback for dis-

turbance decoupling. And further more, several essential definitions are also introduced

in this chapter.

We first recall the following lemma on regularity by state feedback.

Lemma 6.2.1 (See [29]) For the system in (6.1), there exists a state feedback matrix

114



F ∈ Rm×n such that (E,A + BF ) is regular if and only if

rank [ sE −A B ] = n. (6.2)

2

Here is another lemma on both regularity and impulse free through state feedback.

Lemma 6.2.2 (See [7] [73]) For the system in (6.1), there exists a state feedback matrix

F ∈ Rm×n such that (E,A + BF ) is regular and impulse free if and only if

rank [ E AS∞(E) B ] = n. (6.3)

2

Here S∞(M) denotes a matrix with orthogonal columns spanning the right null space of

a given matrix M .

For the disturbance decoupling of singular systems by state feedback, many researchers

have presented their solutions. Recently, Chu and Mehrmann [23] proposed their solution

for this problem and presented the necessary and sufficient conditions. To give their

solution here, we need some background materials as following.

Lemma 6.2.3 (See [30]) There exist orthogonal matrices U and V such that a matrix

pencil (E, A) can be decomposed into the following form:

U(sE −A)V =




sE11 −A11 sE12 −A12 sE13 −A13 sE14 −A14

0 sE22 −A22 sE23 −A23 sE24 −A24

0 0 sE33 −A33 sE34 −A34

0 0 0 sE44 −A44




. (6.4)

Here E11, A11 ∈ Rn1×l1 , E22, A22 ∈ Rn2×l2 , and furthermore E22, A22, E33 and A33 are

quare matrices. And sE11−A11 and sE44−A44 contain all left and right singular Kronecker
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blocks of (sE − A) respectively. Moreover, sE22 − A22 and sE33 − A33 are regular and

contain the finite and infinite structures of (sE −A) respectively. 2

Basing on the above lemma, we have the following definitions.

Definition 6.2.1 (see [30]) Given a matrix pencil (E, A) and orthogonal matrices U and

V with U(sE −A)V in the form of (6.4), we can define,

1. The left reducing subspace Vf−l[E,A] corresponding to the finite spectrum of (E,A),

is the space spanned by the leading n1 + n2 columns of UT .

2. The right reducing subspace Vf−r[E,A] corresponding to the finite spectrum of

(E,A), is the space spanned by the leading l1 + l2 columns of V . 2

Then some necessary computation can be conducted with the definitions introduced above.

Π := T∞(

[
B G

0 0

]
), Ψ := T∞(G),

Γ1 :=

[
0 ΨT E

0 0

]
, Γ2 =

[
ΨT B ΨT A

0 0

]
,

Λr := Vf−r[ΠT

[
E

0

]
, ΠT

[
A

C

]
],

Λl := Vf−l[ΠT

[
E

0

]
, ΠT

[
A

C

]
],

Λt := [ΠT Π ]

[
I 0

0 Λl

]
,

Λ1 := ΛT
t

[
E

0

]
Λr, Λ2 := ΛT

t

[
A

C

]
Λr,

Λ3 := ΛT
t

[
B

0

]
, Λ4 := (V ⊥

f−l[Γ1, Γ2])T Γ1V
⊥
f−r[Γ1, Γ2], (6.5)
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where T∞(M) denotes a matrix with orthogonal columns spanning the right null space of

MT .

Furthermore, the following computations are also necessary,

τ := dim(Vf−l[

[
0 ΨT E

0 0

]
,

[
ΨT B ΨT A

0 C

]
]),

µ := dim(V ⊥
f−r[

[
ΨT B ΨT E

0 0

]
,

[
0 ΨT A

0 C

]
]),

η := dim(Vf−l[

[
ΨT B ΨT E

0 0

]
,

[
0 ΨT A

0 C

]
]). (6.6)

Now we can remember the following lemma on the necessary and sufficient conditions for

the disturbance decoupling problem of singular systems by state feedback.

Lemma 6.2.4 (see [23]) For the singular system in (6.1) with disturbance, there exists a

state feedback matrix F such that the disturbance is decoupled if and only if the following

conditions are satisfied,

1. rank [E AS∞(E) B ] = n;

2. τ + µ ≤ n− p;

3. rank(Λ1) + rank(Λ4) = rank(E);

4. rank [ Λ1 Λ2S∞(Λ1) Λ3 ] = p + τ + η. 2

Now we have finished introducing the necessary and sufficient conditions for disturbance

decoupling of singular systems by state feedback. Chu and Mehrmann [23] have also

presented an algorithm for computing the state feedback matrix F , however, the process

is too complex and is not transparent in physical meaning. In the next section, we will

find that our structural decomposition technique can be used to find the state feedback
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matrix F in a clear way. The detailed algorithm will be presented in the following section

and a numerical example will be given in the section after that.

6.3 A Constructive Solution for the Disturbance Decou-

pling of Singular Systems

In this section, we try to give a novel solution for the disturbance decoupling of singular

systems. Such a solution uses the structural decomposition technique and need a special

sufficient condition. Although this kind of solution is far from complete due to the sufficient

condition may be more rigorous than that in Lemma 6.2.4 and the necessary condition

is skipped. However, such a solution is a good example in illustrating how the structural

decomposition technique can be used in solving such problems. And what is more, the full

necessary and sufficient conditions for the disturbance decoupling of singular systems by

the structural decomposition technique still remains in our research topics and the results

will be completed soon.

To illustrate how the structural decomposition technique can be applied in solving linear

system and control problems, we present a constructive algorithm in solving the distur-

bance decoupling problem step by step. And during this process, a sufficient condition is

proposed to guarantee the feasibility of such a solution.

Step 1:

For the singular system Σ with disturbance, according to the structural decomposition

technique in Chapter 4, there exist transform matrices Γe and Γs such that Σ can be
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coordinately transformed into the following form,

Ê = Γ−1
e1 EΓs1 =




Jnz 0 0

Eez 0 0

Efz 0 Inf


 , Â = Γ−1

e1 AΓs1 =




Inz 0 0

0 0 Ag

0 Ae A?


 ,

B̂ = Γ−1
e1 B =




0 0

Ine 0

0 B?


 , Ĝ = Γ−1

e1 G =




Gz

Ge

Gf


 ,

Ĉ = CΓs1 = [ Cz Ce C? ] , (6.7)

where Eez, Efz, Ag, Ae, A?, B?, Gz, Ge, Gf , Cz, Ce and C? are matrices with appro-

priate dimensions. And the transformation matrices can be computed by the following

manipulations.

Γe1 = U

[
I 0

0 T−1
s

]
P, Γs1 = Q

[
I 0

0 Ts

]
V, (6.8)

where the transformation matrices can be found in the constructive decomposition proce-

dure in Chapter 4.

Step 2:

Now for the transformed system in (6.7), we can find a constant state feedback matrix F

as in the following,

F =

[
0 Ine −Ag

0 −Fe F?

]
, (6.9)

where B?Fe = Ae. And it can be proved that such a Fe is existent because B is full collum

rank and thus B? is full collum rank, and furthermore, from the decomposition process in

Chapter 4, we can get that Ae is also full collum rank and every collum of Ae has only

one non-zero element.

Then the feedback matrix F further change the system in (6.7) into,

Ê =




Jnz 0 0

Eez 0 0

E? 0 Inf


 , Â + B̂F =




Inz 0 0

0 Ine 0

0 0 A? + B?F?


 ,
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B̂ = Γ−1
e B =




0 0

Ine 0

0 B?


 , Ĝ = Γ−1

e G =




Gz

Ge

Gf


 ,

Ĉ = CΓs = [ Cz Ce Cf ] . (6.10)

Step 3:

Now if we set

H? = sI −A? −B?F?, Hk =

[
sJ − I 0

sEez −Ine

]
, (6.11)

and

Ck = [Cz Ce ] , Gk =

[
Gz

Ge

]
, (6.12)

then according to the formulas on inverse of block matrix, it is simple to compute that

the transfer function from disturbance to output is

Twh = CkH
−1
k Gk − C?H

−1
? [ sE? 0 ] H−1

k Gk + C?H
−1
? G?. (6.13)

Step 4:

Now it can be seen clearly from ( 6.11) and ( 6.12) that

CkH
−1
k Gk = [Cz Ce ]

[
(sJ − I)−1 0

sEez(sJ − I)−1 −I

][
Gz

Ge

]

= Cz(sJ − I)−1Gz + CesEez(sJ − I)−1Gz − CeGe,

C?H
−1
? [ sE? 0 ]H−1

k Gk = C?H
−1
? [ sE? 0 ]

[
Gz

Ge

]

= C?(sI −A? −B?F?)−1sE?(sJ − I)−1Gz,

C?H
−1
? G? = C?(sI −A? −B?F?)−1G?. (6.14)

Thus we have,

Twh = CkH
−1
k Gk − C?H

−1
? [ sE? 0 ] H−1

k Gk + C?H
−1
? G?

= [CesEez(sJ − I)−1Gz] + [Cz(sJ − I)−1Gz − CeGe
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− C?(sI −A? −B?F?)−1sE?(sJ − I)−1Gz] + [C?(sI −A? −B?F?)−1G?]

= Tµ + T? + C?H
−1
? G?. (6.15)

where

Tµ = CesEez(sJ − I)−1Gz,

T? = Cz(sJ − I)−1Gz − CeGe − C?(sI −A? −B?F?)−1sE?(sJ − I)−1Gz. (6.16)

Step 5:

Now it is clear that all entities of Tµ are strictly non-proper polynomials while all entities

of C?H
−1
? G? are strictly proper polynomials, and all entities of T? are polynomials with

orders different from those in Tµ and C?H
−1
? G?.

Thus a sufficient condition for Twh = 0 is,

Tµ = 0, T? = 0, C?H
−1
? G? = 0. (6.17)

And if we want the closed-loop system to be internally stable, the non-proper entities

should not exist in final system. Furthermore, for the nonsingular system C?H
−1
? G?,

according to the structural decomposition technique presented in Chapter 2, we can find

Γ?s, Γ?i and Γ?o such that it is decomposed in the structural decomposition form.

And if we set,

Γ−1
?s G? =




G?a−

G?a0

G?a+

G?b

G?c

G?d




, (6.18)

then the sufficient condition will be,
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Lemma 6.3.1 For the given singular system Σ with disturbance, its disturbance can be

decoupled if the following conditions are satisfied,

1. (A?, B?) is stabilizable;

2. (A?, C?) is detectable;

3. Eez = 0, E? = 0 and Cz(sJ − I)−1Gz = CeGe;

4. G?a+ = 0, G?a0 = 0, G?b = 0 and G?d = 0.

This Lemma is obvious according to the above decomposition procedures and the results

for nonsingular systems [20].

Step 6:

This last step is to finish constructing the feedback matrix F , the only part left in (6.9)

is F?, which is the feedback matrix for nonsingular system (A?, B?, C?, G?). There have

been many research results in this in the literature [24] [33] [28] and it is easy to design

such a F?.

6.4 An Example

In this section, we give a numerical example to show the detail process of applying the

structural decomposition technique in solving disturbance decoupling problems.

Let us consider the following singular system with disturbance,

E =




−0.5 0.5 0.5

0 0 0

−0.5 0.5 0.5


 , A =




0.5 0.5 0.5

0 0 1

−0.5 1.5 0.5


 ,
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B =




0 1

1 0

1 1


 , G =




1

2

1


 , C = [−0.5 1.5 −0.5 ] . (6.19)

Now according to the structural decomposition technique and the constructive decomposi-

tion algorithm presented in Chapter 4, we can find the such two invertible transformation

matrices,

Γe1 =




1 0 1

1 1 0

0 1 1


 , Γs1 =




1 1 0

0 1 1

1 0 1


 , (6.20)

such that the given system in (6.19) can be decomposed into,

Ê = Γ−1
e1 EΓs1 =




0 0 0

0 0 0

0 0 1


 ,

Â = Γ−1
e1 AΓs1 =




1 0 0

0 0 1

0 1 1


 ,

B̂ = Γ−1
e1 B =




0 0

1 0

0 1


 , Ĝ = Γ−1

e1 G =




1

1

0


 ,

Ĉ = CΓs1 = [−1 1 1 ] . (6.21)

Now we can check the sufficient condition in Lemma 6.3.1. It can be easily seen that

A? = 1, B? = 1, C? = 1, G? = 0,

Cz = −1, Gz = 1, Ce = 1, Ge = 1. (6.22)

Hence the sufficient condition in Lemma 6.3.1 is satisfied. Thus we can find the following

state feedback matrix according to (6.9),

F =

[
0 1 −1

0 −1 −2

]
. (6.23)
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Furthermore, we can compute Twh by the following manipulations.

Twh = Ĉ [ sÊ − Â− B̂F ] Ĝ

= [−1 1 1 ]




−1 0 0

0 −1 0

0 0 s + 1




−1 


1

1

0




= [−1 1 1 ]




−1 0 0

0 −1 0

0 0 1
s+1







1

1

0




= 0. (6.24)

It is clear that with such a F , the influence of the disturbance is eliminated and the

closed-loop system is also internally stable.

This simple example illustrates in detail the process of applying structural decomposition

technique in solving disturbance decoupling problem of singular systems. It is obvious

that such a technique may be powerful in solving disturbance decoupling problems.

6.5 Conclusions

In this chapter, we give an example on how to apply the structural decomposition tech-

nique in solving singular system and control problems. The structural decomposition

technique for disturbance decoupling of singular systems has been illustrated and a suffi-

cient condition is given. Although it is still a great distance to a complete solution, the

sufficient condition and the state feedback matrix show in detail the procedures in how to

analyze the problem using the structural decomposition technique. The complete solution

by the structural decomposition technique is still on going and it will further be used to

solve many other problems such as all most disturbance decoupling, H2 and H∞ optimal

control of singular systems, to name just a few.
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Chapter 7

Conclusions and Future Work

This thesis presents a structural decomposition technique for linear singular systems and

its applications in solving system and control problems. The main focus is the structural

decomposition theorem and the constructive algorithm for the decomposition.

Firstly, the structural decomposition for single-input single-output (SISO) linear singular

systems is proposed. The results show that there are two situations, one is with xd and

the other is with y0. However, both situations can explicitly display the internal structural

properties of the given linear singular system. Such structural properties include invariant

zero structure, infinite zero structure, stabilizability and detectability. To illustrate the

decomposition process, a numerical example is given and all properties are verified after

the decomposition.

The results of structural decomposition for SISO linear singular system provide a clearer

view for that of multi-input multi-output (MIMO) linear singular system. But the MIMO

case is much more complex largely because it has more system inputs. To prove our struc-

tural decomposition theorem for MIMO linear singular systems, a constructive algorithm
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is deduced. This algorithm gives details of decomposition process and its MATLAB codes

have been attached in the appendix for reference. As its counterpart for linear nonsingular

systems, the structural decomposition technique we presented for MIMO linear singular

systems can explicitly display all structure properties such like invariant zero structure,

infinite zero structure, invertibility structure, stabilizability and detectability of the given

linear singular system. Furthermore, it can also clearly reveals the redundant states of

the given system, such redundant states are either static and equal to zero or are linear

combinations of system inputs and their derivatives in different orders.

Moreover, we define several invariant geometric subspaces and use them to find the re-

lationship between these subspaces and the structurally decomposed subspaces. It has

been showed that our structural decomposition technique can also explicitly display the

invariant geometric subspaces of the given linear singular system.

To show the potential applications of the structural decomposition technique in solving

linear singular system and control problems, we use it to solve disturbance decoupling

problem of linear singular systems. A sufficient condition is presented after decomposing

the given system into several subspaces. Although the solution is not complete because it

has no necessary condition, it shows in detail how the structural decomposition technique

can be used in solving practical questions.

The structural decomposition technique has been widely used in solving linear nonsingular

system and control problems. Our future work includes applying this technique to solve

linear singular system and control problems, such as H2 optimal control, H∞ control,

almost disturbance decoupling and etc. Moreover, its application for nonlinear systems

will also be studied in the future.
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Appendix A

MATLAB Codes for Realization of

the Structural Decomposition

In this appendix, we list realization codes for several main functions. This software package

enhances the power of the structural decomposition technique as a useful tool in solving

singular systems and control problems.

To illustrate it in a clearer way, we list the functions according to their mutual relationship,

that is, a main function will be presented first and followed by its subfunctions. For those

important functions but not essential in this thesis, we only give their algorithms here

while their full codes can be found in Lin and Chen [52].

1. StructuralDecomposition.m

This is the main function, that is, the structural decomposition function for general

multivariable singular systems. The function transforms the given singular system

(E,A, B, C,D) into its structural decomposition in compact form (Ẽ, Ã, B̃, C̃, D̃),

which can explicitly display all the structural properties, such as the finite and
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infinite zero structures, invertibility structures and even redundant dynamics of the

given system. All other procedures are sub-programs of this main function.

function [Ge,Gs,invGi,Go,Ev,Av,Bv,Cv,Dv,nz,ne,na,nb,nc,nd]
=StructuralDecomposition(E,A,B,C,D,tol)

%----Structural Decomposition for singular systems-----
%----[Ge,Gs,invGi,Go,Ev,Av,Bv,Cv,Dv,nz,ne,na,nb,nc,nd]
%--------------=Structural-Decomposition(E,A,B,C,D,tol)
% decomposes the system (E,A,B,C,D) into its
% structurally decomposed form (Ev,Av,Bv,Cv,Dv).
%
% Inputs:
% E, A, B, C, D : state space matrices of a given system.
%
% Outputs:
% Ev, Av, Bv, Cv, Dv : state space matrices in an
% structurally decomposed form.
% Ge, Gs, Go, invGi : an invertable transform matrix and
% state, output and input transformations
% respectively.
% nz, ne, na,nb nc, nd : dimensions of Xz, Xe, Xa, Xb, Xc, Xd
% respectively.
%
%
% Minghua He, NUS, Kent Ridge, Singapore, Sept. 24, 2002.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if nargin<6
tol=1e-5;

end

%----define the dimensions

n=size(A,1); m=size(B,2); p=size(C,1);

%----decompose it to sys_hat and separate the redundant states

[E_hat,A_hat,B_hat,C_hat,D_hat,Ge_1,Gs_1,Gi_1,
nz,ne,nf,Gi_es,Psi_1,Psi_2]=RedundantSeparation(E,A,B,C,D,tol);

%----seperate A_e, A_g, and C_e, D_e ...

Ag=A_hat(nz+1:nz+ne,nz+ne+1:n); Ae=A_hat(nz+ne+1:n,nz+1:nz+ne);
Ce=C_hat(:,nz+1:nz+ne); De=D_hat(:,1:ne);

Ak=zeros(n,n); if ne>0,
Ak(nz+1:nz+ne,nz+1:nz+ne)=-eye(ne);
Ak(nz+1:nz+ne,nz+ne+1:n)=Ag;
Ak(nz+ne+1:n,nz+1:nz+ne)=Ae;

end

Bk=zeros(n,m); if ne>0,
Bk(nz+1:nz+ne,1:ne)=2*eye(ne);
Bk(nz+ne+1:n,1:ne)=-Ae;

end
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Ck=zeros(p,n); if ne>0,
Ck(:,nz+1:nz+ne)=Ce;
Ck(:,nz+ne+1:n)=De*Ag;

end

Dk=zeros(p,m); if ne>0,
Dk(:,1:ne)=De-Ce;

end

%----construct an nonsingular system----
A_chk=A_hat-Ak; A_bar=A_chk(nz+ne+1:n,nz+ne+1:n);

B_chk=B_hat-Bk; B_bar=B_chk(nz+ne+1:n,:);

C_chk=C_hat-Ck; C_bar=C_chk(:,nz+ne+1:n);

D_chk=D_hat; D_bar=D_hat-Dk;

[As,Bs,Cs,Ds,G1,G2,G3,qv,rv,dims]=scb(A_bar,B_bar,C_bar,D_bar,tol);

na=dims(1)+dims(2)+dims(3); nb=dims(4); nc=dims(5); nd=dims(6);

Gs_bar=G1; Gi_bar=G3; Go_bar=G2;

Gs_2=eye(n); Gs_2(nz+ne+1:n,nz+ne+1:n)=Gs_bar;

opq=eye(ne); for i=nz+1:nz+ne,
for j=1:ne,

Tmp(i,j)=Psi_1(i-nz,j)+opq(i-nz,j);
end
for j=ne+1:m,

Tmp(i,j)=Psi_2(i-nz,j-ne);
end

end

for i=1:nz,
for j=1:m,

Tmp(i,j)=0;
end

end

for i=nz+ne+1:n,
for j=1:ne,

Tmp(i,j)=-Ae(i-nz-ne,j);
end
for j=ne+1:m,

Tmp(i,j)=0;
end

end

Bk=Tmp;

Dd1=De*Psi_1; Dd2=De*Psi_2;

for i=1:p,
for j=1:ne,

Bmp(i,j)=Dd1(i,j)-Ce(i,j);
end
for j=ne+1:m,
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Bmp(i,j)=Dd2(i,j-ne);
end

end

Dk=Bmp;

Ak_v=inv(Gs_2)*Ak*Gs_2; Bk_v=inv(Gs_2)*Bk*Gi_bar;
Ck_v=inv(Go_bar)*Ck*Gs_2; Dk_v=inv(Go_bar)*Dk*Gi_bar;

Ge=Ge_1*Gs_2; Gs=Gs_1*Gs_2; Gi=Gi_1*Gi_es*Gi_bar;
invGi=inv(Gi_bar)*inv(Gi_es)*inv(Gi_1); Go=Go_bar;

Ev=inv(Ge)*E*Gs; Av=inv(Gs_2)*A_chk*Gs_2;
Bv=inv(Gs_2)*B_chk*Gi_bar; Cv=inv(Go_bar)*C_chk*Gs_2;
Dv=inv(Go_bar)*D_chk*Gi_bar;

2. RedundantSeparation.m

This is an essential function which separates two kinds of redundant states from the

original system state. One kind of such redundant states are static and identical

zero all the time, whereas the other redundant states are linear combination of

appropriate order of system input’s derivatives. Such states are associated with the

so called impulse modes, which are introduced by the derivatives of the system input.

The main algorithm for this function is the following transformations.

x = Γs1x̂ = Γs1




xe

xz

xf


 , u = Γi1û = Γi1

(
ûe

û?

)
, (A.1)

and

Ê = Γe1EΓs1 =




Jnz 0 0

Eez 0 0

Efz 0 I


 , (A.2)

Â = Γe1AΓs1 =




I 0 0

0 0 Ag

0 Ae Af


 , (A.3)

B̂ = Γe1BΓi1 =




0 0

I 0

0 Bf


 , (A.4)
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Ĉ = CΓs1 = [Ce Cz Cf ] , (A.5)

D̂ = DΓi1 = [De Df ] . (A.6)

Here the states xz = 0 and xe are redundant states in the structurally decomposed

form.

function
[E_hat,A_hat,B_hat,C_hat,D_hat,Ge_1,Gs_1,Gi_1,
nz,ne,nf,Gi_es,Psi_1,Psi_2]=RedundantSeparation(E,A,B,C,D,tol)

%-----decompose system to x-> (x_z,x_e,x_f)’
%

%----------------------------------------------------
if nargin<6

tol=1e-5;
end

%---determine the dimensions of state,input and ouput

n=size(A,1); m=size(B,2); p=size(C,1);

%---perform the Weitress decomposition

[P,Q,n1,n2,A1,B1,C1,N,B2,C2]=Weierstrass(E,A,B,C);

%---find Ts and Ti and transform (N,B2) into
%---Controllability Canonical Form

Ts=eye(n2); Ti=eye(m);

%------trans (N,B2) into controllable and non-controllable subspaces
% [Nbar,Bbar,Cbar,T,k] = ctrbf(N,B2,C2)
% Abar = T * A * T’ , Bbar = T * B , Cbar = C * T’
% and the transformed system has the form

% | Anc 0 | | 0 |
% Abar = ---------- , Bbar = --- , Cbar = [Cnc| Cc].
% | A21 Ac | |Bc |
% The number of controllable states is SUM(K)

[Nbar,Bbar,Cbar,T,k] = ctrbf(N,B2,C2); sumk=sum(k); Ts=T*Ts;

%---transform x_z to jordan form

if sumk~=n2,
nz=n2-sumk;
Nz=Nbar(1:nz,1:nz);
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[Nt,Ttt,xindex]=r_jordan(Nz,tol);
Tt=eye(n2);
Tt(1:nz,1:nz)=inv(Ttt);
Ts=Tt*Ts;

else
nz=0;

end

%---transform controllable part to control canonical form

if sumk~=0,
Nc=Nbar(nz+1:n2,nz+1:n2);
Bc=Bbar(nz+1:n2,:);
[Nc,Bc,Ts_c,Ti_c,ks]=bdccf(Nc,Bc,tol);

Tt=eye(n2);
Tt(nz+1:n2,nz+1:n2)=inv(Ts_c);

Ts=Tt*Ts;
Ti=Ti*Ti_c;

ne=length(ks);

V=eye(m); dog=0;
for i=1:ne,

dog=dog+ks(i);
for j=i+1:m,

if abs(Bc(dog,j))>tol,
Vt=eye(m);
Vt(i,j)=-Bc(dog,j);
V=V*Vt;
Bc=Bc*V;

end
end

end
Ti=Ti*V;

else
nz=n2;
ne=0;

end

%----construct transform matrix Gie(s)

syms s;

for i=1:n2-nz,
for j=1:m,

Bc(i,j)=round(Bc(i,j)*10000)/10000;
end

end

row_pos=1; for i=1:ne,
for j=1:m,

tmp=0;
for k=0:ks(i)-1,

dog=Bc(row_pos+k,j);
tmp=tmp-(dog)*s^(k);

end
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invGie(i,j)=tmp;
end
row_pos=row_pos+ks(i);

end

for i=ne+1:m,
for j=(ne+1):m,

invGie(i,j)=1;
end

end

Gi_es=inv(invGie);

Psi_1=Gi_es(1:ne,1:ne); Psi_2=Gi_es(1:ne,ne+1:m);

%----construct the transform matrices---

Ge_1=eye(n); Ge_1(n1+1:n,n1+1:n)=Ts; Ge_1=Ge_1*P;

Gs_1=eye(n); Gs_1(n1+1:n,n1+1:n)=inv(Ts); Gs_1=Q*Gs_1;

Gi_1=Ti;

%---separate xe,xz and xf------------

%----------------combine the dynamics in x_1 and x_2 to x_f

%--Permutation Step-1:

% x_e
% x -> x_z
% x_f

V=eye(n); pos=1; ttt=0; for i=1:ne,
V(i,i)=0;
V(i,n1+nz+pos)=1;
if n1+nz+pos>ne+nz,

ttt=ttt+1;
V(n1+nz+pos,ttt)=1;
V(n1+nz+pos,n1+nz+pos)=0;

end
pos=pos+ks(1,i);

end

for i=1:nz,
V(ne+i,ne+i)=0;
V(ne+i,n1+i)=1;
if n1+i>ne+nz,

ttt=ttt+1;
V(n1+i,ttt)=1;
V(n1+i,n1+i)=0;

end
end

%--\vt{x}=Vx

disp(’---Permutation Step-1: set sequence of x_e,x_z,x_f--’)
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Ge_1=V*Ge_1; Gs_1=Gs_1*inv(V);

EE=Ge_1*E*Gs_1; AA=Ge_1*A*Gs_1; BB=Ge_1*B*Gi_1; CC=C*Gs_1; DD=D;

%---rearrange the sequence to x_z->x_e->x_f

V=zeros(n,n); V(1:nz,ne+1:ne+nz)=eye(nz);
V(nz+1:nz+ne,1:ne)=eye(ne); V(nz+ne+1:n,nz+ne+1:n)=eye(n-nz-ne);

Ge_1=V*Ge_1; Gs_1=Gs_1*inv(V);

EE=Ge_1*E*Gs_1; AA=Ge_1*A*Gs_1; BB=Ge_1*B*Gi_1; CC=C*Gs_1; DD=D;

%--Permutation Step-2:

% | 0 * 0 | | 0 * * | | I 0 |
% E -> | 0 J 0 | A -> | 0 I 0 | B -> | 0 0 |
% | 0 * I | | * * * | | * * |

U=eye(n); for i=ne+nz+1:n,
Tt=eye(n);
for j=1:n,

if EE(j,i)>1-tol,
if j~=i,

Tt(j,i)=1;
Tt(i,j)=1;
Tt(i,i)=0;
Tt(j,j)=0;

end
end

end
EE=Tt*EE;
U=Tt*U;

end

disp(’---Permutation Step-2: unify matrix E------’)

Ge_1=U*Ge_1;

EE=Ge_1*E*Gs_1; AA=Ge_1*A*Gs_1; BB=Ge_1*B*Gi_1; CC=C*Gs_1; DD=D;

%--Permutation Step-3:

% | 0 * 0 | | 0 * * | | I 0 |
% E -> | 0 J 0 | A -> | 0 I 0 | B -> | 0 0 |
% | 0 * I | | * * * | | 0 * |

%--substitute u_e in x_f by x_vh and unify B

U=eye(n); for i=1:ne,
for j=1:n,

if j~=(nz+i),
if abs(BB(j,i))>tol,

Ut=eye(n);
Ut(j,nz+i)=-BB(j,i);
U=Ut*U;
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BB=U*BB;
end

end
end

end

disp(’---Permutation Step-3: unify matrix BB------’)

Ge_1=U*Ge_1;

Ge_1=inv(Ge_1);

E_hat=inv(Ge_1)*E*Gs_1; A_hat=inv(Ge_1)*A*Gs_1;
B_hat=inv(Ge_1)*B*Gi_1; C_hat=C*Gs_1; D_hat=D;

nf=n-nz-ne;

3. Weierstrass.m

This one is to perform a fast-slow decomposition (see e.g., [29] for more details)

for the given singular system. With two constant transform matrices P and Q,

it transforms the given singular system into two subsystems, one is nonsingular

and the other is singular. The decomposition can be characterized as the following

transformations,

PEQ =

[
In1 0

0 N

]
, PAQ =

[
A1 0

0 In2

]
,

PB =

[
B1

B2

]
, CQ = [C1 C2 ] , (A.7)

where N is a nilpotent matrix.

function [P,Q,n1,n2,A1,B1,C1,N,B2,C2]=Weierstrass(E,A,B,C,tol)

%-------perform the Weitress decomposition for a singular system-----
%
% | I 0 | | A1 0 |
% | 0 N2 |, | 0 I | = P (E,A) Q
%
%-------He Minghua, Sept.5, 2002, Kent Ridge, Singapore
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%---set the toleratio
if nargin<5,

tol=1e-5;
end
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%---determine the dimensions of state,input and ouput
n=size(A,1);

%---find P,Q and make a Weierstrass decomposition

%-----Step 1: find an nonsingular alpha*E+A

alpha=0; Ealp=eig(E); Aalp=eig(A); for i=1:n,
alpha=alpha+Ealp(i)+Aalp(i);

end alpha=alpha/(2*n);

%-----Step 2: compute E_hat

E_hat=inv(alpha*E+A)*E;

%-----Step 3: decompose E_hat and get E_1 and E_2

[J,T,xindex]=r_jordan(E_hat,tol) T=inv(T);

SizeJordan=size(xindex);

n1=0; n2=0;

start=1; pos=0; s2=1; for i=1:SizeJordan(1),
for j=1:SizeJordan(2),

pos=pos+xindex(i,j);
if xindex(i,j)~=0 & abs(J(pos,pos))<tol,

n2=n2+xindex(i,j);
H=J(start:start+xindex(i,j)-1,start:start+xindex(i,j)-1);
E_2(s2:s2+xindex(i,j)-1,s2:s2+xindex(i,j)-1)=H;
s2=s2+xindex(i,j);
start=start+xindex(i,j);

end
end

end

n1=n-n2;

E_1=J(n2+1:n,n2+1:n);

%------construct P and Q
n=n n1=n1 n2=n2

U=zeros(n,n); U(1:n1,n2+1:n)=eye(n1); U(n1+1:n,1:n2)=eye(n2);

T=U*T;

Q=inv(T);

P=zeros(n); P(1:n1,1:n1)=inv(E_1);
P(n1+1:n,n1+1:n)=inv(eye(n2)-alpha*E_2); P=P*T*inv(alpha*E+A);

EE=P*E*Q; AA=P*A*Q; BB=P*B; CC=C*Q;

%---Seperate the two sub systems----

A1=AA(1:n1,1:n1); B1=BB(1:n1,:); C1=CC(:,1:n1);
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N=EE(n1+1:n,n1+1:n); B2=BB(n1+1:n,:); C2=CC(:,n1+1:n);

%---the end of code-----------------------

4. Kronecker.m

The function transform the given system’s system matrix PΣ(s) to its Kronecker

Canonical Form with two constant transform matrices M and N , that is,

P̃Σ(s) = MPΣ(s)N

= M

[
A− sE B

C D

]
N

= blkdiag{sI − J,Rr1 , . . . , Rrp , Ll1 , . . . , Llq , I − sH}.

Here every block of the diagonal entries in P̃Σ(s) is associated a series of distinct

structure indices.

5. CCF.m

The function transform a matrix pair (A,B) into its control canonical form as follows,

T−1AT =

[
Ac Acc̄

0 Ac̄

]
, T−1B =

[
Bc

0

]
, (A.8)

where (Ac, Bc) is completely controllable while (Ac̄, 0) is totally uncontrollable.

6. BDC.m

This function decomposes a complete controllable pair (Ac, Bc) into a special block

controllability canonical form [20], in which every submatrix block corresponds to a

distinct input channel. The decomposition process can be described as follows,

R−1AcR =




J1 0 · · · 0

0 J2 · · · 0

0 0
. . .

...

0 0 0 Jk




,

R−1Bc =




B1 B12 · · · B1k B1l

0 B2 · · · B2k B2l

0 0
. . .

...
...

0 0 0 Bk Bkl




, (A.9)
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where Ji, i = 1, 2, · · · , k are Jordan blocks with zero eigenvalue and

Bi =




0

0
...

1




, Bij =




?

?

...

0




. (A.10)

7. StrictEquivalence.m

This function is used to find two invertible transform matrices Γp and Γq. It can be

showed that the structural decomposition for singular systems is nothing more than

an invertible transform on the given singular system’s system matrix. This can be

illustrated as the following equation,

PΣ̃(s) =

[
Ã− sẼ B̃

C̃ D̃

]

= ΓpPΣ(s)Γq

= Γp

[
A− sE B

C D

]
Γq, (A.11)

where PΣ̃(s) is the system matrix of structurally decomposed system.

8. CancelledParts.m

This procedure computes the cancelled parts Ãk, B̃k(s), C̃k and D̃k(s) in (4.57).

The algorithm for computation is in the following,

Ãk =




0 0 0

0 Ine −AgΓ̄s

0 −Γ̄−1
s Ae 0


 ,

B̃k(s) =




0 0

−Ψ1(s)− Ine −Ψ2(s)

Γ̄−1
s Ae 0


 Γ̄i,

C̃k = [ 0 −Γ̄o
−1

Ce −Γ̄o
−1

DeAgΓ̄s ] ,

D̃k(s) = [ Γ̄o
−1(Ce −DeΨ1(s)) −Γ̄o

−1
DeΨ2(s) ] Γ̄i,

where Γ̄s, Γ̄i and Γ̄o are invertible transform matrices from the following SCB.m for

decomposing a nonsingular system into its structural decomposition form.
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9. SCB.m

This is the function of structural decomposition for linear nonsingular system. The

function was developed by Lin and Chen [52], and it decomposes a given linear

system (A,B, C,D) and explicitly displays its structural properties. The function

Structural-Decomposition.m is its natural extension to singular systems.

10. Jordan.m

This function transforms a real matrix A to its Jordan canonical form. It is more

reliable and accurate than the one provided by MATLAB.

The functions introduced here are only some main procedures, for the codes of other

functions, there are more details in Lin and Chen [52].
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