168 research outputs found

    Integration between Creativity and Engineering in Industrial Design

    Get PDF
    The objective of the paper is to illustrate which are the key issues today in the industrial design workflow, paying particular attention to the most creative part of the workflow, highlighting those nodes which still make hard the styling activities and giving a brief survey of the researches aimed at smoothing the transfer of the design intent along the whole design cycle and at providing tools even more adhering at the mentality of creative people. Based on the experience gained working in two different European projects, through the collaboration with industrial designers in the automotive and the household supplies fields, a general industrial design workflow will be depicted, highlighting the main differences between the automotive and non-automotive sectors; the problems still present in the design activity will be also illustrated. The paper includes short surveys, in relation to the aesthetic design, in matter of research activities aimed at - identifying the links between shape characteristics of a product and the transmitted emotions - better supporting, in a digital way, the 2D sketching phase and the automatic interpretation and transfer of the 2D sketches into a 3D surface model - improving the 3D Modeling phase

    Semantic Evaluation and Deformation of Curves Based on Aesthetic Criteria

    Get PDF
    To better simulate the way designers work, specific tools are needed to handle directly specific shape features meaningful for the design intent, without focusing on the underlying mathematic representation. For this purpose it is fundamental to identify proper higher-level shape descriptors as well as the corresponding manipulation techniques. The paper presents the definition and implementation of semantic operators for curve deformation based on a shape characterization that is specific to the industrial design context. The work grounds on the innovative approach suggested by the FIORES-II project for the intent-driven modeling tools for direct shape modification and on the multi-layered architecture proposed by the Network of Excellence AIM@SHAPE for the definition of semantic-oriented 3D models. In particular the paper proposes the use of meaningful aesthetic features for the evaluation of planar curve signature and for their intent-driven direct modification

    Conceptual free-form styling in virtual environments

    Get PDF
    This dissertation introduces the tools for designing complete models from scratch directly in a head-tracked, table-like virtual work environment. The models consist of free-form surfaces, and are constructed by drawing a network of curves directly in space. This is accomplished by using a tracked pen-like input device. Interactive deformation tools for curves and surfaces are proposed and are based on variational methods. By aligning the model with the left hand, editing is made possible with the right hand, corresponding to a natural distribution of tasks using both hands. Furthermore, in the emerging field of 3D interaction in virtual environments, particularly with regard to system control, this work uses novel methods to integrate system control tasks, such as selecting tools, and workflow of shape design. The aim of this work is to propose more suitable user interfaces to computersupported conceptual shape design applications. This would be beneficial since it is a field that lacks adequate support from standard desktop systems.Diese Dissertation beschreibtWerkzeuge zum Entwurf kompletter virtueller Modelle von Grund auf. Dies geschieht direkt in einer tischartigen, virtuellen Arbeitsumge-bung mit Hilfe von Tracking der Hände und der Kopfposition. Die Modelle sind aus Freiformlächen aufgebaut und werden als Netz von Kurven mit Hilfe eines getrack-ten, stiftartigen Eingabegerätes direkt im Raum gezeichnet. Es werden interaktive Deformationswerkzeuge für Kurven und Flächen vorgestellt, die auf Methoden des Variational Modeling basieren. Durch das Ausrichten des Modells mit der linken Hand wird das Editieren mit der rechten Hand erleichtert. Dies entspricht einer natürlichen Aufteilung von Aufgaben auf beide Hände. Zusätzlich stellt diese Arbeit neue Techniken für die 3D-Interaktion in virtuellen Umgebungen, insbesondere im Bereich Anwendungskontrolle, vor, die die Aufgabe der Werkzeugauswahl in den Arbeitsablauf der Formgestaltung integrieren. Das Ziel dieser Arbeit ist es, besser geeignete Schnittstellen für den computer-unterstützten, konzeptionellen Formentwurf zur Verfügung zu stellen; ein Gebiet, für das Standard-Desktop-Systeme wenig geeignete Unterstützung bieten

    Conceptual free-form styling in virtual environments

    Get PDF
    This dissertation introduces the tools for designing complete models from scratch directly in a head-tracked, table-like virtual work environment. The models consist of free-form surfaces, and are constructed by drawing a network of curves directly in space. This is accomplished by using a tracked pen-like input device. Interactive deformation tools for curves and surfaces are proposed and are based on variational methods. By aligning the model with the left hand, editing is made possible with the right hand, corresponding to a natural distribution of tasks using both hands. Furthermore, in the emerging field of 3D interaction in virtual environments, particularly with regard to system control, this work uses novel methods to integrate system control tasks, such as selecting tools, and workflow of shape design. The aim of this work is to propose more suitable user interfaces to computersupported conceptual shape design applications. This would be beneficial since it is a field that lacks adequate support from standard desktop systems.Diese Dissertation beschreibtWerkzeuge zum Entwurf kompletter virtueller Modelle von Grund auf. Dies geschieht direkt in einer tischartigen, virtuellen Arbeitsumge-bung mit Hilfe von Tracking der Hände und der Kopfposition. Die Modelle sind aus Freiformlächen aufgebaut und werden als Netz von Kurven mit Hilfe eines getrack-ten, stiftartigen Eingabegerätes direkt im Raum gezeichnet. Es werden interaktive Deformationswerkzeuge für Kurven und Flächen vorgestellt, die auf Methoden des Variational Modeling basieren. Durch das Ausrichten des Modells mit der linken Hand wird das Editieren mit der rechten Hand erleichtert. Dies entspricht einer natürlichen Aufteilung von Aufgaben auf beide Hände. Zusätzlich stellt diese Arbeit neue Techniken für die 3D-Interaktion in virtuellen Umgebungen, insbesondere im Bereich Anwendungskontrolle, vor, die die Aufgabe der Werkzeugauswahl in den Arbeitsablauf der Formgestaltung integrieren. Das Ziel dieser Arbeit ist es, besser geeignete Schnittstellen für den computer-unterstützten, konzeptionellen Formentwurf zur Verfügung zu stellen; ein Gebiet, für das Standard-Desktop-Systeme wenig geeignete Unterstützung bieten

    Designing aesthetically pleasing freeform surfaces in a computer environment

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Architecture, February 2001.Includes bibliographical references (p. 151-160).Statement: If computational tools are to be employed in the aesthetic design of freeform surfaces, these tools must better reflect the ways in which creative designers conceive of and develop such shapes. In this thesis, I studied the design of aesthetically constrained freeform surfaces in architecture and industrial design, formulated a requirements list for a computational system that would aid in the creative design of such surfaces, and implemented a subset of the tools that would comprise such a system. This work documents the clay modeling process at BMW AG., Munich. The study of that process has led to a list of tools that would make freeform surface modeling possible in a computer environment. And finally, three tools from this system specification have been developed into a proof-of-concept system. Two of these tools are sweep modification tools and the third allows a user to modify a surface by sketching a shading pattern desired for the surface. The proof-of-concept tools were necessary in order to test the validity of the tools being presented and they have been used to create a number of example objects. The underlying surface representation is a variational expression which is minimized using the finite element method over an irregular triangulated mesh.by Evan P. Smyth.Ph.D

    Development of manufacturability constraints for press forming of sheet metal components

    Get PDF
    http://www.worldcat.org/oclc/2869757

    A Survey of Spatial Deformation from a User-Centered Perspective

    Get PDF
    The spatial deformation methods are a family of modeling and animation techniques for indirectly reshaping an object by warping the surrounding space, with results that are similar to molding a highly malleable substance. They have the virtue of being computationally efficient (and hence interactive) and applicable to a variety of object representations. In this paper we survey the state of the art in spatial deformation. Since manipulating ambient space directly is infeasible, deformations are controlled by tools of varying dimension - points, curves, surfaces and volumes - and it is on this basis that we classify them. Unlike previous surveys that concentrate on providing a single underlying mathematical formalism, we use the user-centered criteria of versatility, ease of use, efficiency and correctness to compare techniques

    Axial deformation with controllable local coordinate frames.

    Get PDF
    Chow, Yuk Pui.Thesis (M.Phil.)--Chinese University of Hong Kong, 2010.Includes bibliographical references (leaves 83-87).Abstracts in English and Chinese.Chapter 1. --- Introduction --- p.13-16Chapter 1.1. --- Motivation --- p.13Chapter 1.2 --- Objectives --- p.14-15Chapter 1.3 --- Thesis Organization --- p.16Chapter 2. --- Related Works --- p.17-24Chapter 2.1 --- Axial and the Free Form Deformation --- p.17Chapter 2.1.1 --- The Free-Form Deformation --- p.18Chapter 2.1.2 --- The Lattice-based Representation --- p.18Chapter 2.1.3 --- The Axial Deformation --- p.19-20Chapter 2.1.4 --- Curve Pair-based Representation --- p.21-22Chapter 2.2 --- Self Intersection Detection --- p.23-24Chapter 3. --- Axial Deformation with Controllable LCFs --- p.25-46Chapter 3.1 --- Related Methods --- p.25Chapter 3.2 --- Axial Space --- p.26-27Chapter 3.3 --- Definition of Local Coordinate Frame --- p.28-29Chapter 3.4 --- Constructing Axial Curve with LCFs --- p.30Chapter 3.5 --- Point Projection Method --- p.31-32Chapter 3.5.1 --- Optimum Reference Axial Curve Point --- p.33Chapter 3.6 --- Advantages using LCFs in Axial Deformation --- p.34Chapter 3.6.1 --- Deformation with Smooth Interpolated LCFs --- p.34-37Chapter 3.6.2 --- Used in Closed-curve Deformation --- p.38-39Chapter 3.6.3 --- Hierarchy of Axial Curve --- p.40Chapter 3.6.4 --- Applications in Soft Object Deformation --- p.41Chapter 3.7 --- Experiments and Results --- p.42-46Chapter 4. --- Self Intersection Detection of Axial Curve with LCFs --- p.47-76Chapter 4.1 --- Related Works --- p.48-49Chapter 4.2 --- Algorithms for Solving Self-intersection Problem with a set of LCFs --- p.50-51Chapter 4.2.1 --- The Intersection of Two Plane --- p.52Chapter 4.2.1.1 --- Constructing the Normal Plane --- p.53-54Chapter 4.2.1.2 --- A Line Formed by Two Planes Intersection --- p.55-57Chapter 4.2.1.3 --- Problems --- p.58Chapter 4.2.1.4 --- Sphere as Constraint --- p.59-60Chapter 4.2.1.5 --- Intersecting Line between Two Circular Discs --- p.61Chapter 4.2.2 --- Distance between a Mesh Vertex and a Curve Point --- p.62-63Chapter 4.2.2.1 --- Possible Cases of a Line and a Circle --- p.64-66Chapter 4.3 --- Definition Proof --- p.67Chapter 4.3.1 --- Define the Meaning of Self-intersection --- p.67Chapter 4.3.2 --- Cross Product of Two Vectors --- p.68Chapter 4.4 --- Factors Affecting the Accuracy of the Algorithm --- p.69Chapter 4.3.1 --- High Curvature of the Axial Curve --- p.69-70Chapter 4.3.2 --- Mesh Density of an Object. --- p.71-73Chapter 4.5 --- Architecture of the Self Intersection Algorithm --- p.74Chapter 4.6 --- Experimental Results --- p.75- 79Chapter 5. --- Conclusions and Future Development --- p.80-82Chapter 5.1 --- Contribution and Conclusions --- p.80-81Chapter 5.2 --- Limitations and Future Developments --- p.82References --- p.83-8

    Processing free form objects within a Product Development Process framework

    Get PDF
    The purpose of the chapter is then to review: (1) the stages of a product development pro- cess (PDP) where free-form shapes appear and are subjected to aesthetic and functional require- ments; (2) the modeling, sketching, and modification activities illustrating how free-form surfaces can be processed and what are the corresponding difficulties faced during these tasks; (3) the con- tributions of our community to solve some of these issues, and the problems which are still open

    Geometric Surface Processing and Virtual Modeling

    Get PDF
    In this work we focus on two main topics "Geometric Surface Processing" and "Virtual Modeling". The inspiration and coordination for most of the research work contained in the thesis has been driven by the project New Interactive and Innovative Technologies for CAD (NIIT4CAD), funded by the European Eurostars Programme. NIIT4CAD has the ambitious aim of overcoming the limitations of the traditional approach to surface modeling of current 3D CAD systems by introducing new methodologies and technologies based on subdivision surfaces in a new virtual modeling framework. These innovations will allow designers and engineers to transform quickly and intuitively an idea of shape in a high-quality geometrical model suited for engineering and manufacturing purposes. One of the objective of the thesis is indeed the reconstruction and modeling of surfaces, representing arbitrary topology objects, starting from 3D irregular curve networks acquired through an ad-hoc smart-pen device. The thesis is organized in two main parts: "Geometric Surface Processing" and "Virtual Modeling". During the development of the geometric pipeline in our Virtual Modeling system, we faced many challenges that captured our interest and opened new areas of research and experimentation. In the first part, we present these theories and some applications to Geometric Surface Processing. This allowed us to better formalize and give a broader understanding on some of the techniques used in our latest advancements on virtual modeling and surface reconstruction. The research on both topics led to important results that have been published and presented in articles and conferences of international relevance
    • …
    corecore