thesis

Axial deformation with controllable local coordinate frames.

Abstract

Chow, Yuk Pui.Thesis (M.Phil.)--Chinese University of Hong Kong, 2010.Includes bibliographical references (leaves 83-87).Abstracts in English and Chinese.Chapter 1. --- Introduction --- p.13-16Chapter 1.1. --- Motivation --- p.13Chapter 1.2 --- Objectives --- p.14-15Chapter 1.3 --- Thesis Organization --- p.16Chapter 2. --- Related Works --- p.17-24Chapter 2.1 --- Axial and the Free Form Deformation --- p.17Chapter 2.1.1 --- The Free-Form Deformation --- p.18Chapter 2.1.2 --- The Lattice-based Representation --- p.18Chapter 2.1.3 --- The Axial Deformation --- p.19-20Chapter 2.1.4 --- Curve Pair-based Representation --- p.21-22Chapter 2.2 --- Self Intersection Detection --- p.23-24Chapter 3. --- Axial Deformation with Controllable LCFs --- p.25-46Chapter 3.1 --- Related Methods --- p.25Chapter 3.2 --- Axial Space --- p.26-27Chapter 3.3 --- Definition of Local Coordinate Frame --- p.28-29Chapter 3.4 --- Constructing Axial Curve with LCFs --- p.30Chapter 3.5 --- Point Projection Method --- p.31-32Chapter 3.5.1 --- Optimum Reference Axial Curve Point --- p.33Chapter 3.6 --- Advantages using LCFs in Axial Deformation --- p.34Chapter 3.6.1 --- Deformation with Smooth Interpolated LCFs --- p.34-37Chapter 3.6.2 --- Used in Closed-curve Deformation --- p.38-39Chapter 3.6.3 --- Hierarchy of Axial Curve --- p.40Chapter 3.6.4 --- Applications in Soft Object Deformation --- p.41Chapter 3.7 --- Experiments and Results --- p.42-46Chapter 4. --- Self Intersection Detection of Axial Curve with LCFs --- p.47-76Chapter 4.1 --- Related Works --- p.48-49Chapter 4.2 --- Algorithms for Solving Self-intersection Problem with a set of LCFs --- p.50-51Chapter 4.2.1 --- The Intersection of Two Plane --- p.52Chapter 4.2.1.1 --- Constructing the Normal Plane --- p.53-54Chapter 4.2.1.2 --- A Line Formed by Two Planes Intersection --- p.55-57Chapter 4.2.1.3 --- Problems --- p.58Chapter 4.2.1.4 --- Sphere as Constraint --- p.59-60Chapter 4.2.1.5 --- Intersecting Line between Two Circular Discs --- p.61Chapter 4.2.2 --- Distance between a Mesh Vertex and a Curve Point --- p.62-63Chapter 4.2.2.1 --- Possible Cases of a Line and a Circle --- p.64-66Chapter 4.3 --- Definition Proof --- p.67Chapter 4.3.1 --- Define the Meaning of Self-intersection --- p.67Chapter 4.3.2 --- Cross Product of Two Vectors --- p.68Chapter 4.4 --- Factors Affecting the Accuracy of the Algorithm --- p.69Chapter 4.3.1 --- High Curvature of the Axial Curve --- p.69-70Chapter 4.3.2 --- Mesh Density of an Object. --- p.71-73Chapter 4.5 --- Architecture of the Self Intersection Algorithm --- p.74Chapter 4.6 --- Experimental Results --- p.75- 79Chapter 5. --- Conclusions and Future Development --- p.80-82Chapter 5.1 --- Contribution and Conclusions --- p.80-81Chapter 5.2 --- Limitations and Future Developments --- p.82References --- p.83-8

    Similar works