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Abstract 

Deforming freeform object is an important operation In computer-assisted geometric 

design and animation. Various approaches, e.g., point-based, lattice-based, and skeleton

based techniques are used for deforming freeform objects. The axial deformation 

technique adjusts an axial curve to deform the shape of a 3D object. This technique plays 

important role in computer graphics and computer-aided design. Recently, a curve pair 

based deformation technique has been proposed which allows the local coordinate frame 

along a curve to be controlled intuitively. Nevertheless, due to insufficient control on the 

local coordinate frame between control points of the curve-pair, unexpected twist may be 

obtained. An intuitive deformation tool is essential in computer-aided design applications 

where freeform control of an existing object is required. 

In this thesis, we propose a technique for deforming 3D objects using an axial curve, 

which allows direct control on the local coordinate frames (LCFs) defined on the axial 

curves. Users can move and twist the LCFs intuitively, while maintaining the continuity 

and the smoothness of the shape. This avoids undesirable twists as a result of the lack of 

control on the LCFs. The continuity and smoothness of the axial curve, and hence the 

associated geometric shape is maintained by adopting a suitable interpolation scheme to 

determine the LCF between user defined LCFs. 

In our investigation, the surfaces of the deformed object may overlap in an axial 

deformation. As a result, this causes self-intersection during the deformation. We 

introduced a technique to detect self-intersection using the axial curve. The system can 

use a set of controllable local coordinate frames to detect the self-intersection of the 

object which is deformed by axial curve, an algorithms is proposed to detect the self

intersection of the object surface by considering the planes constructed by the LCFs. 

Firstly, a set of normal planes are built according to the LCFs on an ax ial curve. During 

the deformation , intersection may be occurred when two planes are not parallel and they 

intersect in a line. But the mesh may not have self-intersection when the planes intersect. 
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Therefore, the distance between the vertices to the axial curve has to be considered in the 

detection. Then a sphere is constructed on the axial curve point. And its radius is the 

distance between the mesh vertex to the curve point. By projecting the sphere on to a 

normal plane, gives a circle on the normal plane. Finally, using the lengths comparison, 

we can compare the length between the intersection line to the curve point and the 

diameter of the circle. If self intersection occurs on an object mesh, the intersection line 

passes through the circles on the planes. 
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論文摘要

在電腦輔助結構設計和動畫中，自由變形技術是當中一項重要的工真 O 不同的表

示，例如:表示和骨酪表示會運用在自由變形技術 O 不過，軸向變形是指透過軸線

的調整令三維模型變形 。 在電腦圖像和電腦輔助設計中，這項技術扮演著重要的角

色 O 最近，介紹了以一對曲線為變形的技術，令坐標可以真實地控制 O 但是，這項

技術會造成線對的控制點扭轉一團 o 在電腦輔助設計中，需要能自由地控制已成的

物件，所以真實的變形工具是必需的 O

在這份論文中，我們將會介紹一項技術利用軸線去變形三維模型，這項技術允許直

接控制在軸線局部坐標 O 使用者可以隨心所欲地移動和扭動局部坐標，同時維持形

狀的持續性和平滑 o 這樣避免想像之外的扭動，結果座標失去了真實的控制 O 軸線

的持續和平順，去估計局部座標在使用者訂下的，從而維持相關結構的形狀 O

在我們的研究下，變形的物件的表面可能重疊，當軸向變形沒有任何邊界測試，結

果這樣造成自交情況 O 所以，我們介紹利用軸線去偵測自交情況 O 當變形時，因為

系統可以利用一組可控制的局部坐標偵測被軸線變形的物件的自交 D 首先，利用軸

線上的局部坐標去建立一組與軸線垂直的平面 O 當兩塊平面的垂直向量不是平行，它

們可能發生貫穿的情況貫穿成一條直線 。 但兩塊平面貫穿不等於物件上的點發生自

交 。 所以當模型變型時，我們需要考慮物件上的點與軸條上的點成形成的距離 O 之

後一個圓球體會建在軸線的點上，圓球體的半徑是物件上的點與軸條上的點成形成

的距離 。 另外把圓球體投射在垂直的平面上實結果一個圓形放在平面上 O 最後通過比

較長度，偵測貫穿線與軸條點和圓形的直徑的長度 o 如果在垂直的平面上，貫穿線穿過

圓形，物件上的點就會發生自交情況 O
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1. Introduction 

1.1 Motivation 

Axial Deformation is a popular technique for deforming existing geometric shapes. This 

technique is widely used for the modeling of objects in aesthetic design, 3D modeling 

and animation. Modeling and animation of 3D object has long been a research goal in 

computer-aided design. Various deformation techniques have been proposed for the 

deformation of object, such as lattice-based deformation, skeleton-based deformation and 

point-based deformation. Axial deformation is an efficiently technique for modeling soft 

objects. Nevertheless, the details (fairness and smoothness) of the deformed geometric 

model may be undesirably distorted in the deformation. 

Axial Deformation uses an axial curve to adjust the shape of an object. An intuitive axial 

deformation maintains the smoothness and continuities of the 3D model. Nerveless, 

accurate deformation requires expensive computation which is not an efficiency method. 

Although different approaches have been introduced for modeling 3D object by an axial 

curve, the basic problem of specifying local coordinate frames in an axial deformation is 

still not well addressed. 

Recently, a curve pair-based deformation is proposed basing on the axial deformation 

technique. A curve-pair is used to control the twisting and bending effect in a 

deformation. However, unexpected twisted may be obtained when the curve of curve-pair 

overlap. Moreover, self-intersection may be obtained in an axial deformation. Therefore, 

a technique to detect the self-intersection in a deformation is required. Most popular 

methods for detecting self-intersection use radii and distance map to detect the self 

intersection on the surface of the model. There is not much work using the deformation 

technique to detect the self intersection in real time. 
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1.2 Objectives 

The objective of this thesis is to develop an intuitive axial deformation technique which 

also detects the self intersection during the deformation. Although the axial deformation 

[ 1] is an effective tool for 3D modeling, classical axial deformation technique does not 

control on the twist of an object. Curve-pair based deformation technique [2] improve the 

axial deformation technique in order to provide an intuitive twisting deformation, but an 

unexpected twisted may be obtained by the overlap of the curves. In this research, we 

proposed to use a set of controllable local coordinate frame (LCF) to improve the axial 

deformation technique. 

An axial curve and a set of user defined local coordinate frame constitute the basic 

elements of our framework. An object attached to the axial curve can be deformed by 

adjusting the curve. One important issue is the control of the twist of the curve. Instead of 

using an additional orientation curve [2], we make use of a set of local coordinate frame 

defined on the axial curve. The twist of the curve can be directly controlled by 

manipulating the local coordinate frames. By attaching an object to the axial curve, each 

vertex of the object is specified relative to a local coordinate frame, and hence the object 

can be deformed according adjusting the local coordinate frame. To maintain the 

smoothness of the model, an interpolation scheme is adopted to obtain a smooth and 

continue orientation of the LCF between the users defined LCFs. 

Self-intersection is always a major problem in various deformation methods. Approach 

for detecting self-intersection include the use of distance map [3] , modifying the shape of 

an axial curve [ 1] and offset curves [ 4]. Preventing the self intersection problem by 

adjusting the position of the control point on an axial curve, this is an efficient method for 

preventing self intersection, but the shape of the axial curve cannot be control intuitively. 

And since the curve is a non-trivial task to detect and trim all local and global self 

intersections, detecting and eliminate the self intersection problem by an offset curve and 

surface is a difficult task. 
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An algorithm is proposed to detect the self intersection us1ng LCFs-based axial 

deformation. Firstly, we use local coordinate frames for constructing a set of normal 

planes. Each vertex of the object mesh has one LCF reference of curve point and a 

normal plane. The normal planes of the LCF may intersect among themselves in the 

deformation. A line is always formed when two planes are intersected. But, planes 

intersection method may not be accurate when the tangents of those planes are parallel. 

Therefore, sphere is used to lying on the normal plane and its radius is the distance 

between the object mesh to an axial curve. The spheres and the intersection line are then 

used for detecting the self intersection on the object mesh by comparing the distance from 

the sphere or the intersection line to the axial curve. 

The proposed axial deformation technique uses a set of local coordinate frames to control 

an axial curve. This provides an accurate and intuitive deformation. Besides, this 

technique can prevent self intersection in the object mesh. Experimental results show that 

the proposed method is intuitive and can be used for deforming complex freeform objects. 
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1.3 Report Organization 

This thesis first reviews the current status on axial deformation and the detection of self 

intersection in deformation. These are given in chapter 2. This chapter is divided into two 

main sections. The first section provides an overview the Free-Form Deformation, the 

Extended Free-Form Deformation, the axial deformation , and the axial curve-pair 

deformation. And we introduce the technique of self intersection detection in section 2.2. 

Chapter 3 pre~ents an algorithm for deforming a 3D model using a set of controllable 

local coordinate frames. An axial space is briefly specified in section 3 .1. Then we 

describe the method to define a local coordinate frame in section 3.2. And we introduce 

the construction of a set of LCFs on an axial curve. Section 3.3 presents the advantages of 

using LCF as a deformation tool. Experimental results using a set of LCF to deform a 3D 

model is presented in section 3.5. 

Chapter 4 presents an algorithm for preventing self intersection during object 

deformation. This chapter has five sections. In section 4.1, we introduce using the LCFs 

to construct a normal plane on the axial curve. Then a set of planes may be intersected 

during the deformation in section 4.2. The method for detecting possible intersection 

between planes constraining LCFs is presented in section 4.3 - 4.6 

Chapter 5 gives the conclusions and proposes further works to enhance the performance 

of the technique. 
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2. Related Works 

2.1 Axial and Free Form Deformation 

An efficient and intuitive shape manipulation technique is vital to the shape editing 

process. Free-Form Deformation (FFD) is a popular technique for 30 modeling and 

animation. The FFD method allows complex objects to be deformed by adjusting a 

number of control points. The coordinates of an object point relative to the control lattice 

remain unchanged even if the control points are moved. An alternative approach called 

Extended Free-form Deformation (EFFD) [6] adopted a more intuitive interface. EFFD 

replaced the parallelepiped-shaped control lattice used in the FFD with a lattice of spline 

control points. It is referred to as lattice-based axial curve deformation and will be 

discussed in section 2.1.1 and 2 .1.2 . 

An alternative class of deformation method deforms a 30 object by associating its shape 

components to a skeleton [7,8] and in character modeling and animation. In Computer 

Vision , axial representation is frequently used to describe the shape and features of a 30 

object. Axial representation is an efficient and compact shape descriptor as it preserves 

the basic topology and geometry of an object. Work related to axial curve deformation 

can also be classified into polygon-based [9] and point-based [10]. 

Lazarus et al. [ 1] presented an axial deformation technique (AxDf) which will be 

discussed in section 2.1.3. This approach allows deforming a 30 object by adjusting the 

shape of an axial curve. It allows an object to be deformed by adjusting an ax ial curve. 

However, the object cannot be twisted by manipulating the axial curve. K.C. Hui [2] 

introduced an axial curve-pair based deformation technique for modeling objects. The use 

of a curve-pair allows the local coordinate frames to be controlled intuitively. However, 

the expected twist of object may still be obtained when the primary and orientation 

curves intersect. 
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2.1.1 The Free-Form Deformation 

In Computer-aided geometric design, Free-Form deformation (FFD) is a shape editing 

tool widely used for modeling and animation. Sederberg and Parry [5] introduced FFD 

for deforming geometric model in a free-form manner. This technique is based on the use 

of a control lattice defined with a trivariate Bernstein polynomial. Objects embedded in 

the lattice can be deformed by manipulating the control points of the lattice. The 

advantage of FFD is the deformations of the FFD lattice are then automatically passed to 

the object. However, it cannot provide an intuitive deformation. 

2.1.2 The Lattice-based Representation 

Free-From Deformation is an intuitive technique for modeling 3D object. It solves the 

size and the position problem. However, the deformation that can be achieved is 

restricted by the parallel piped shape of the lattice. The Extended Free-From Deformation 

(EFFD) technique uses a non-parallelpipedical lattice to allow more complex shaped 

deformations. The processes of the EFFD technique are: 

1. Define the shape of the lattice 

2. Deform and associate a lattice to the object surface 

3. Freeze the lattice 

4. Deform the surface using the lattices 

Although EFFD is quite effective for creating impressions and simple deformations, 

EEFD is based on the notion of deformation the underlying space of an object lies in. 

Therefore, the control lattice used to manipulate the underlying space is not directl y 

related to the object being deformed . Some control points may be too closed to the object 

surface and made an unexpected result to the users. 
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2.1.3 The Axial Deformation 

Lazarus et al. [1] introduced a deformation technique which uses a 3D axis for deforming 

an existing object. This technique is called the Axial Deformation (AxDt). Suppose a 3D 

model 0 and an axial curve c(t) , ! start ::; t::; t end of S is predefined by a set of I 

points P; , i E [1, 1]. And the axial curve c(t) is a B-spline curve which can be defined by 

n 

c(t) == L q ;N;,k (t) 
i=O (1) 

where qi, i E [1 , I] are the control points, and Ni ,k (t) is a B-spline basis function of order k 

. h < < Wit { start - f - f end· 

There are two main steps in an AxDf. First, each vertex of an object is attached to a poi nt 

on the axial curve and is specified relative to the local coordinate frame of the curve point. 

Second , object points are deformed by adjusting the shape of the axial curve since each 

object point is homologous to a curve point. One limitation of AxDf is that the object 

cannot be twisted by manipulating the axial curve. 

Step 1. Attaching the Vertex to the Axial 

Normally, object vertices are attached to their closest points of the axial curve. Different 

methods are available for computing the closest point on a curve [12, 13]. To avoid more 

than one closest point, adjacent vertices need to be considered, and the attached point is 

represented by its parametric value on the axial curve. 
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Step 2. Constructing Local Coordinate Frames on the Axial Curve 

Assume C(s), s E [0, L] is a regular curve, Klok [9] defined the rotation minimizing 

orthogonal frame t(s) , f(s) , g(s) is defined along C, so that 

t(s) = C'(s) !IIC'(s)ll 

f'(s) = -(C"(s) · J(s ))c'(s) ! IIC'(s)il
2 

g'(s) = -(C"(s) · g(s ))c'(s) !IIC'(s)i1
2 

Step 3. Compute Coordinates of the Deformed Vertices 

(2) 

A zone of influence is defined by two radii values, Rmin and Rmax of two circular cross 

section along the axis. The radii values can be defined by the users. 

Although this technique is suitable for modeling flexible or deformable objects, the 

limitation is the object cannot be twisted by manipulating the axial curve. Moreover, the 

local coordinate frame of an axial may cause unexpected twist of an object. 

20 



2.1.4 Curve Pair-based Representation 

Although the axial deformation technique allows an object to be deformed by 

manipulating ax ial curve, unexpected twist may be obtained in a deformation. The lack of 

control on the local coordinate frame of the curve is the main problem of ax ial 

deformation. Hui [2] proposed to use axial curve-pairs to perform freeform design. This 

is extended for constructing an axial skeletal representation of an object. An axial curve-

pair is composed of a primary curve c(t) and an orientation curve c 0 (t). The primary 

curve defines _the position of a local coordinate frame along the curve. The orientation 

curve is an approximate offset of the primary curve. The orientation curve defines the 

orientation of the local coordinate frame. The orientation curve is used to define the 

normal vector. 

Using the axial curve-pair deformation , the control point of the orientation curve IS 

changed automatically when the primary is modified in order to maintain the curves 

relationship. For example: When the control point of the orientation curve is rotated 

around the primary curve, the local coordinate frame is oriented automatically. Therefore 

the shape of an object can be modified easily by adjusting the curve pair. 

The axial curve-pair based deformation is suitable for the bending and twisting of object 

shapes to the expected form. But, one limitation of this approach is that an undesirable 

twist of the object may be obtained when the primary curve and the orientation curve 

intersects each other. Figure 1 shows an example of this undesirable twist where 

distortions are found in the intersecting region. 
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Figure 1: Self-intersection of an object deformed with a curve-pair. 
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2.2 Self Intersection Detection 

Free-Form Deformation can be classified into lattice-based, point-based, curve-based and 

skeleton-based. One problem in all forms of spatial deformation is the potential cause of 

self intersection of an object. Technique for the detection of self-intersection is hence 

essential for detecting possible self-intersection deformation process. 

Self-intersection has been discussed a lot of deformation literature. In the FFD, the lattice 

provides an indication to experienced users of the degree of deformation. Since the 

lattices is not always a transparent guide to self-intersection. A lattice with overlapping 

faces does not necessary imply to selfintersection. Conversely though , a lattice without 

overlap does provided by an FFD lattice is not available in curve and point-based spatial 

deformation. 

There are several methods for detecting self-intersection in the spatial deformation 

literature. Samoilov and G. Elber [14] introduced an algorithm for eliminating self

intersection in freeform curve metamorphosis. In this approach a homotopy between the 

two original curves is build. These curves are composited of ruled surface with an 

appropriate subjective continuous function that causes the curve of homotopy to be self

intersection-free. The best correspondence between the relative parameterizations of the 

original curves is constructed. Finally, a flipping method is used to eliminate the 

remaining self-intersections. 

Seong et al. [ 15] presented an algorithm for trimming the local and global self

intersections of offset curves and surfaces. This method is used an analytic distance map 

between the original curve/surface and its offset. The global and local self intersection 

region can be identified by solving a bivariate polynomial equation for an offset 

curve/surface. The limitation of this trimming algorithm is that small self-intersections in 

the offset curves and surfaces may not be detected in the trimming procedure. 
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Pekerman et al. [ 16] introduced an algorithm for detecting and eliminating global self

intersection in freeform curve and surfaces. A bi-normal line criterion is used to detect 

antipodal points on an intersection loop through solving a system of five multivariate 

polynomial constraints. Applying an optimization procedure is satisfying the constraints, 

the location of the antipodal points are flipped to eliminate all self intersection. Later, 

they [ 17] introduced several algorithms for self-intersection detection. The method used 

binormal-line criterion and a simple direct algebraic elimination procedure to obtain a 

solution for the self-intersection. 
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3. Axial Deformation with a Set of Controllable LCFs 

3.1 Previous Methods 

An intuitive deformation tool is essential in design applications where freeform shape 

editing of an existing object is required. Although the axial deformation method [ 1] can 

be used for deforming complex objects, the lack of control on the twist of an axial curve 

may result in deformed shapes with undesirable distortions. Hui [2] proposed to use axial 

curve-pairs to _ perform free form design. An axial curve-pair is composed of a primary 

curve and an orientation curve. The orientation curve is an approximate offset of the 

primary curve. The object shape can be modified by adjusting the curve-pair. In order to 

maintain the relationship between the two curves, synchronized movement of the control 

points of the two curves is required. One limitation of this approach is that an undesirable 

twist of the object may be obtained when the primary curve and the orientation curve 

intersects each other. Figure 1 shows an example of this undesirable twist where 

distortions are found in the intersecting region. 

Our method is related different from the classical axial deformation technique by 

allowing users to directly control a set of local coordinate frames (LCF) on the axial 

curves. The associated model can be deformed and twisted by adjusting the LCFs, while 

maintaining the continuity and the smoothness of the shape. This avoids undesirable 

twists as a result of the lack of intuitive control on the LCFs. The continuity and 

smoothness of the axial curve, and hence the associated geometric shape is maintained by 

adopting a suitable interpolation scheme to determine the LCF between user defined 

LCFs. Experiments show that the proposed method is capable of maintaining the shape's 

smoothness while eliminating undesirable twist and distortion. 
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3.2 Axial Space 

Burtnyl N , Wein M [18] introduced a technique for defining 20 object using an axial 

curve. The pixels of an image are defined relative to a skeleton curve. When the curve is 

changed , the positions of the pixels and the shape of the image are changed. Coqu i llart [ 6] 

used the same approach for deforming 30 object using an axial curve. In his method, a 

3D object was represented with a polygon mesh. The shape of the polygon mesh is 

deformed by adjusting the shape of an axial curve. 

Considering an axial curve cas a B-spline curve defined with a set of control points: 

n 

c(t) == L q 1 Nt ,k (t) 
i=O (3) 

where Qi are the control points, and N 1,k (t) is the B-spline basis function of order k with 

{start ~ f ~fend · 

Given a curvec(t)and a local coordinate system l(t) == lt x(t) , IY(t) , lz(t ) j , we can define the 

axial space of c(t) as a 4-dimentional space which is a subset of R4
. A point p=(x, y, z), 

can be represented in the axial space of c(t) with a 4-tuple p=(t, u, v, w) where t specifies 

the coordinate frame the point p is belonging to, and (u, v, w) are the local coordinates 

with respect to that coordinate frame . 

A function f: R4 ~ R3 relates the axial space and the Euclidean space: 

p == f(t ,u , v, w) == c(t) + ulx(t) + vl y(t) + wlz(t) 
(4) 

Given the value of t, we can obtain a curve point c(t). Since an instance of a local 

coordinate system l(t) is defined on a curve point c(t) , by subtracting c(t) from p, where 

26 



p' = p- c(t), p' is then aligned with l(t), the values of u, v and w can then be computed 

by projecting p' to the three axis l1 x (t), I Y (t), I z (t) J. 

u = p' ·I X (t) 

v=p'·IY(t) 

w = p' ·I z (t) 
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3.3 Definition of Local Coordinate Frame 

A popular technique for defining the local coordinate frame of a curve is to use the 

Frenet Frame. Given a curve c(t), the Frenet Frame is defined in terms of the first 

derivative c'(t) and the second derivative c"(t) of the curve: 

T() c'(t) 
t = lie' ( t)ll 

B() c'(t) x c"(t) 

t = llc'(t) x c"(t)ll 
N (t) = B(t) X T(t) (6) 

These vectors are also referred to as the tangent T, normal N, and binormal B of c(t). 

Frenet Frame sufferers from two major limitations: Firstly, the frame is completely 

defined by the curve c(t), users can only adjust it via modifying the curve. There is no 

direct control on the orientation of the frame. Secondly, the second derivative may not be 

always available, c"(t) may vanish when the curve contains a straight segment which 

makes the frame undefined. 

Another similar approach proposed by Lossing and Eshleman[l9] uses an additional 

direction curve d(t) to define the normal n(t) of the curve: 

n(t) = d(t) x c' (t) (7) 

Although it allows the control of the orientation of the curve through controlling d(t) , it 

is still hard to control it. intuitively since this extra curve d(t) is independent of the 

pnmary curve. 

One recent approach proposed by K.C Hui [2] modifies the Lossing and Eshleman ' s 

approach [ 19] by using an additional curve called the orientation curve. This orientation 

curve forms an axial-pair together with the primary curve. In contrast to the Lossing and 

Eshleman's method where d(t) is independent of the primary curve c(t), the orientation 
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curve is an approximate offset of the primary curve c(t). The local coordinate frame is 

defined by: 

I t - c'(t) 
z ( ) -lc'(t)l 

I y (t) = I z (t) X I X (t) 

where n(t) = Co (t)- c(t) 
Jc 0 (t)- c(t)j 

(8) 

and Jc D (t)- c(t)j is less than a user defined values, i.e. Jc D (t)- c(t)j:::; r 

The primary and the orientation curves contain the same number of control points which 

are used to control the shapes of the curve-pair. His research proposed an algorithm to 

synchronize the modification of the two curves. It is essential to maintain the relationship 

between the two curves, a synchronized movement of the control points of two curves is 

required. There is one limitation when the primary curve and the orientation curve are 

intersecting to each other, an undesirable twist may be resulted of the object. 
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3.4 Construction of Axial Curve with LCFs 

Beside Frenet Frame, there exists others approach for defining the coordinate frames on a 

curve, such as rotation minimizing method [20] , tangent reference method [21] and 

normal projection method [22]. However, these methods may not provide a satisfactory 

output when the curvature of the curve is high. In this research , the normal projection 

method is adopted. The normal vector is constructed by using the Axis Projection method. 

The normal N(s) is defined by projecting theY -Axis to the tangent plane. 

and the local coordinate frame at t is given by 

I (t)- c'(t) 
z - ic'(t)l 

I (t)- N(t) 
y -INU)I 

lx(t) = IY(t)x 1
2
(!) 

However, the normal may not be defined if the tangent plane is perpendicular to the Y

axis. This situation happens when the tangent vector is parallel to the Y -axis, such that 

the dot product of the Y -axis and the tangent vector is zero. This means the normal vector 

is parallel to the tangent vector. This is impossible, and the normal vector is define as ( -1 , 

0, 0) when the axial curve is a vertical line. 
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3.5 Point Projection Method 

This section describes the point projection method which associates each vertex of an 

object to the axial curve, c(t). One straight forward method is to associate vertices to their 

closest point the axial curve. 

Given that knot sequence 

(1 0) 

A direct linear search is used. The time complexity of the process is O(N), where N is the 

number oft .. This is computational expensive when theN is large. In order to reduce the 
I 

time complexity, we adopt a technique called the nearest neighbor search [17] , which 

reduce the searching time to O(logN). Given the knots t ., a set of discrete curve points is 
I 

obtained. The nearest neighbor search can then be performed on the set of curve points. 

Based on our experiments, with the use of the nearest neighbor search , real time response 

is attained even with large point set in the order of thousands. However, one limitation of 

the above method is that the value oft obtained may not be optimal if the optimal value is 

not in the set oft ., and hence only an approximation can be obtained. 
I 

Although the approximation is usually enough for freeform design , one may desire to 

have an optimal solution for the value oft. In this case, we propose to use a modified 

version of the method introduced by Wang et al. [ 18]. This method combines a quadratic 

minimization problem with the Newton ' s method. Given three initial values of t, 

quadratic minimization converges slowly but it is good for refining coarse estimates. On 

the other side, the Newton's method converges quickly with a good initial value, but 

provides a rough estimation. 

Our method replaces the quadratic minimization process by the above discrete 

approximation. The first reason is that the quadratic minimi zation method suffers from 
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the problem of local minima, and may converge to a wrong estimate for the Newton's 

method. Instead of a local minimum, the discrete approximation method always provides 

a solution that approximates the global optimal solution. The second reason is that no 

initial guess is required for the discrete approximation while it is essential for the 

quadratic minimization. A bad initial guess may cause the algorithm to fail. 
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3.5.1 Optimum Reference Axial Curve Point 

Consider an object 0 , and a point p in 0 , where p =(x, y, z), is in 30 Euclidean space. In 

order to associate p to an axial curve, p has to be transformed into the 40 axial space in 

the form of p=(t, u, v, w). As mentioned in section 2.1, once tis found , u, v and w can be 

determined easily. The parameter tis defined as the value such that the curve point c(t) is 

closest to the point p. 

Our proposed two-step algorithm to find t: 

1. Discrete approximation: Given a discrete set of curve points, and an object point p, 

the closest point c* to p is obtained using the nearest neighbor search. The 

approximate optimal t* is the value oft associated with c*. 

2. Newton ' s Method: Given a point p, and a curve point c(t), the square of the distance 

between them is: 

( 11) 

The Newton's method attempts to find the optimal value t* by minimizing O(t) . It leads 

to the following iterative equation: 

D'( * n * n+l * n f ' ) 
t · = t ' + ,.. , n = 0,1,2, ... 

D"(t ,n) ( 12) 

with the above method, an initial value t *,o is obtained from step 1. This value is usually 

close to the optimal value t*. If a good initial guess is obtained after step 1, this iterative 

process can converge quickly - usually within 3 iterations. Moreover, the local minimum 

problem which is usually found in quadratic minimization is also avoided by the good 

initial value. 
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3.6 Advantages using LCFs in Axial Deformation 

Axial Deformation is a popular technique in modeling and animation. The shape of an 

object can be modified by adjusting the shape of an axial curve. However, there is no 

control on the twist of the axial curve. In this research, local coordinate frame is used to 

control the shape of the axial curve. 

3.6.1 Deformation with a Smooth Interpolation 

After attaching an object to an axial curve, each point of the object is associated with its 

closest point on the axial curve, and the local coordinate frame (LCF) at the 

corresponding curve point is regarded as the orientation frame reference. When the 

LCF (1 x(t) , ly(t) , l
2
(t))is transformed to (t*x(t) , t* y(t) , t* z(t)) with a rotation transformation 

R, an attached object point Pa will be moved to a new position p a* with the same 

transformation relative to the LCF. 

f x(t) = Jx(f)R 

l* y(t) = ly(t)R 

I* z (t) = I z (t)R 

Pa* = PaR(B(t)) (13) 

To maintain the smoothness of the object, when one particular local coordinate frame 

is modified , an interpolation scheme is adopted to propagate the changes to the other 

LCF. Assume two LCFs are rotated for an angle 80 and 81 respectively, an algorithm 

is presented to determine the rotation angle e(t )of the LCF at an y t between the 

modified LCFs. 

In our system, the axial curve is approximated with a set of I in ear curve segment. 

Each segment is constructed with consecutive LCFs. Since the knots may not be 
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positioned evenly, the rotation angle can be computed based on the arc length l(t) and 

the total arc length l(n) of the curve. 

l(t) 
a=--

l(n) ' 

(}t = (1- a )Bo + aBl (14) 

However, the rate of change of 81 may not be continuous at the knot t. Consider the 

first derivative of the above equation, the rate of change of B1 depends only on the 

angle difference (or twist angle), i.e. o; = (01 - B0 )o-'. Hence, when two consecutive 

segments are having large difference in their twist angles, a sharp tum will be 

obtained as shown in Figure 2. 

r------, 
I 
I 
I I 

I 
I 

____ _J 

Figure 2: The linear interpolation 

In order to maintain a smooth change in the rotation angle, one possible solution is to 

use polynomial interpolation. In general an n-1 degree polynomial can be used to 

interpolate n data points. Given 4 angles(B0 ,BpB2 ,B3), the interpolated angle can be 

obtained with the following equation. 
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(15) 

Figure 3: The cubic interpolation 

Since the cubic interpolation is twice continuously differentiable, it ensures that the 

change of rotation angle is smooth and continuous. However, comparing to linear 

interpolation, polynomial interpolation is relatively computational expensive. 

Therefore, the cosine interpolation [ 19] is adopted in this research which is defined as 

follows: 

l(t) 
rr == -- where 0 ~ rr1 ~ 1 1 l(n)' 

1- cos(rr1n) 
rr 2 == 

2 
, where 0 ~ rr 2 ~ 1 

One important advantage of using cosine interpolation is that the angle is guaranteed 

to change smoothly especially at the junction point of two segments. Consider the rate 

of change of the rotation angle, that is, the first derivative of B1 : 

(17) 
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We can observe that at the two end points of each segment, where the values of u 1 are 

0 and 1, the rate of change is always zero. In other words, at the connection point of 

each segment, the rate of change is always zero. The angle change is thus always 

smooth on the whole curve. Therefore, a suitable cosine function serves to provide a 

smooth transition between adjacent segments as shown in Figure 4. 

Figure 4: The cosine interpolation 
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3.6.2 Used in Closed-curve Deformation 

In previous sections, an open curve is assumed for the axial curve. Given the control 

points of the curve asqo,ql' ... , qepnum-1, a closed b-spline curve can be formed by setting 

the first 3 control points to be the same as the last 3 control points of the axial curve. 

ql = qepnum-2 

q2 = qepnum-3 (18) 

Therefore, the new control points sequence is updated to becomeqo,ql' ... , qepnum - 3. 

And the local coordinate frames are built by the normal projection method which ts 

discussed in section 3.4. 

\ 
', 
I 

. .. 
/I 

-·"./ / 

I 
I 
I 

Figure 5: Construction of closed axial curve: (a) the original control points; (b) merging 

the first and last three control points to form a closed curve. 

Twisting in a closed curve can also be performed by using the proposed axial 

deformation method. Assume the rod is twisted by a set of controllable local coordinate 

frames. And then the rod is bent to from a ring. The first three and last three control 

points of the axial curve are merged together. The shape of the rod is adjusted according 

to the closed loop form of the axial curve. As a result, a ring shape rod is formed by a 
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closed axial curve. The local coordinate frames at the front and end of the curve are 

adjusted in order to provide a smooth segment at the connection point of the axial curve. 

Besides, the circular object can be twisted naturally. 
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3.6.3 Object Representation with a Hierarchy of the Axial Curve 

reference })oint 
~;IE (t) I~~ rt) Ill: (t )' 

BODY .A .. ~'L~ CUR\·~ 
c(t) 

Figure 6: The orientation of a LCF of a hierarchy axial 

Assume c(t) is an axial curve of the main body of an object and d(t) is an axial curve of a 

component of the object, d(t) is attached to a reference point on the axial curve c(t) that is 

the closest to the end point of d(t). Given the LCF (lx(t),ly(t),lz(t)) at the reference point 

of the axial curve c(t) is transformed to (f x(t),f y(t),f z(t)) with a rotation transformation 

R, then the rotation transformation will be applied to the local coordinate frames of the 

axial curve d( t) and . 

fx(f) == lx(f)R 

l*y(t) == ly(t)R 

fz(f) == Jz(f)R 
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3.6.4 Application in Soft Object Deformation 

In general , the animations of soft objects can be controlled by an axial curve, such as fish 

swimming, snake movement and the swing of tree. Lazarus et al. [ 1] applied Axial 

Deformation technique to deform the shape of soft objects. In Axial deformation, the 

shape of an object is adjusted according to the shape of an axial curve. When the local 

coordinate frame on the axial curve is changed, the associated object points will be 

transformed to new positions corresponding to the new orientation of the local coordinate 

frame and its reference curve point on the axial curve. 

In the proposed approach, users can adjust the orientation of a local coordinate frame and 

other local coordinate frames will be adjusted with an interpolation scheme in order to 

maintain the smoothness and continuity of the orientation. 
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3. 7 Experiments and Results 

An experimental system was implemented in a standard personal computer. The surface 

mesh of an object can be constructed using commercial CAD systems, such as Maya, 3D 

Studio Max etc. The mesh data file of the object is then exported from the CAD system 

and passed into our experimental system. The axial curve is constructed interactively by 

specifying a number of data points. The system then constructs a set of local coordinate 

frames automatically by using Normal Plane Projection method. Imported object can be 

attached to the axial curve which forms an axial representation of the object surfaces. 

Figure 7 shows a S- shape ribbon constructed with the experimental system. An axial 

curve is attached to the ribbon. The shape of the axial curve can be modified by adjusting 

the LCFs of the curve. The corresponding positions of the other frames are adjusted in 

accordance automatically. 

A ribbon is modified to form a butterfly shape as shown in Figure 8. The deformation is 

obtained by orientating the local coordinate frames of the axial curve. Figure 9 shows a 

twisted ribbon. The local coordinate frame at the mid-point of the curve is rotated 180 

degrees to obtain the twist, and the in-between frames are interpolated by using Cosine 

interpolation. The result shows that no self intersection occurs on the ribbon. 
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Figure 7: A ribbon is bent to form aS-shape 

Figure 8: Defonning a ribbon to a butterfly shape 
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Figure 9: A ribbon twisted 180 degrees, no intersection occurs. 

Figure 10 shows the deformation of a set of leave. The initial structure of the leave is 

shown in Figure 1 O(a). The leave is attached to an axial curve (Figure 1 O(b )). The local 

coordinate fratnes are deformed to obtain aS-shape leave as shown in Figure 1 O(c). The 

axial curve is further twisted to obtain the shape as shown in Figure 1 0( d). 

Figure 11 illustrates the design of the motions of a dolphin. The original posture of the 

dolphin is shown in Figure 11 (a). An axial curve is defined through the body of the 

dolphin as shown in Figure 11(b). [n Figure 1l(c), the tail of the dolphin is bent and 

moved upwards. Different postures can be obtained by orientating the axial curve. Figure 

11 (d) shows the tail of the dolphin being twisted 45 degrees about the axial curve. 

Figure 12(a) shows the construction of an octopus. The head of the octopus is attached to 

the main axial curve. Each ann is attached to its own axial curve. The arms are deformed 

to obtain the shape in Figure 12(b ). 
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(a) (b) 

(c) (d) 

Figure 10: Deformation of a leaf: (a) the original imported leaf; (b) the leaf stetn defined 

with an axial curve; (c) result of deforming the leaf stetns; (d) result of twisting the 

defonned stem to fonn a new shape. 
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{a ) (0) 

(c) (d ) 

Figure 11: Deformation of a dolphin: (a) the original dolphin; (b) the dolphin modified by 

a single axial curve; (c) the tail of the dolphin is bent and moved upwards; (d) twisting 

the tail for 45 degrees. 

(a) (b) 

Figure 12: Deformation of an octopus: (a) the original octopus; 

(b) the octopus with bent ann. 
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4. Self Intersection Detection of an Axial Curve with LCFs 

Self-intersection is a fundamental problem in the shape editing of geometric models using 

axial deformation. In the previous chapter, we presented an axial representation of a 

geometric object using a set of local coordinate frames (LCFs) defined on an axial curve, 

and the object can then be deformed by adjusting the attached axial curve with a set of 

controllable LCFs. 

To a certain extent, self-intersection can be largely and easily detected by visual 

inspection. And sometimes minor editing on the original model can be done to solve the 

self-intersection problem. However, expensive redesign or working around may be 

required. And minor self intersections may still remain in the CAD model. Therefore, a 

system to locate those regions with self-intersection is desirable; in our experimental 

system, those areas with self-intersection are highlighted in order to help reducing the 

problems when the CAD model is being deformed. 

This chapter focuses on developing an algorithm for detecting self intersection using a set 

of local coordinate frame on an axial curve 
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4.1 Related Works 

Self-intersection is a serious problem in Free-form Deformation. Borrel and Repoport [23] 

presented a model for producing controlled spatial deformation , Simple Constrained 

Deformation (ScoDef). The users defined a set of constraint points by giving a desired 

displacement and radius of influence for each. However, self-intersection problem has to 

be identified and corrected by the users. 

In the Free-Form Deformation, James [24] proposed an injectivity (one-to-one) test for 

preventing self-intersection under lattice-based spatial deformation. To solve the problem 

of injectivity test which is accurate but computation expensive, a technique called the 

Directly Manipulated Free-Form Deformation (DMFFD) is proposed. It composes many 

small injective deformations. The DMFFD can prevent self-intersection under a range of 

possible deformation without sacrificing the speed of the approximate test. 

Lazarus et al. [ 1] proposed using an axial curve to deform the complex geometry. There 

are two types of self-intersections: local self intersection and global self intersection. In 

local self intersection, the axis curvature is the main mainly causes of the self intersection . 

Global self intersection is mainly caused by a narrow space between two different 

sections of the axis curve . 

Ji et al. [25] presented a nova! axial deformation algorithm without local self-intersection. 

The algorithm used the curvature of an axial curve to detect the self intersection. When 

the curvature is too large, the control points of the axis are relocated and the shape of the 

axial curve is modified. Therefore, the local self intersection can be avoided by changing 

the curvature of the curve. 

Lee et al. [26] presented a new approach to realistic hand modeling. Self intersections 

may occur in a hand model when the fingers touch the palm. A simple approximation of 

the hand is constructed using spheres and planes. This allows self intersection around the 
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knuckles to be detected using cross-sectional plane at each joint, and sphere-sphere 

intersections. 

Yoshizawa et al. [27] proposed a mesh evolution scheme for avoiding self intersections. 

The original mesh is then represented as the set of displacements applied to the vertices 

of the improved (smoothed) skeletal mesh. The mesh deformation process is combined 

from deformations of the smoothed skeletal mesh and the displacement field. And the 

local and global self-intersections of the deformed mesh can be removed by the mesh 

evolutions method. 

Charlie et al. [28] presented a view-dependent method to perform object deformation. In 

the context of self intersection, their approach adopted the Correa et al. [29] model. The 

warp distorts the model in two dimensions to match artwork from a given camera 

perspective. With reference to the method of Correa et al., they compute the tangent 

curve to avoid the self intersection. 
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4.2 Algorithms for Solving Self-intersection Problem with a set of LCFs 

In axial deformation, self-intersection may lead to undesirable distortion of the object 

mesh may be broken during deformation. Ji et al. [25] proposed to relocate the control 

points of an axial curve to avoid the self-intersection problem. The problem is that the 

relocated control point cannot be predicted by the users. The deformation is hence not 

intuitive. The proposed method displays the self -intersection region to the users, so that 

the user can control the shape of an object all the time without self-intersection. 

In this chapter, we propose an algorithm for detecting self-intersection on object mesh. 

The algorithm uses a set of normal planes constructed at the position of the local 

coordinate frames on the axial curve. By observing that two normal planes overlap when 

self-intersection occurs, this algorithm can accurately detect local self-intersection on the 

mesh. Unfortunately, self-intersection cannot be detected, for example, when the object is 

bent into a U shape or S shape, such that the planes are parallel. In the proposed 

algorithm, an enclosing sphere is used to detect the overlapping region in the deformation. 

The radius of the sphere is the distance between the vertex on the object mesh and the 

corresponding axial curve point, and its center is the reference curve point. When the two 

planes intersect, a line is formed. The intersection line also cuts the spheres when there is 

self-intersection. Our algorithm can detect both local and global self-intersection on the 

object. Figure 13 shows that a self-intersection occurs when the intersection line passes 

through both spheres. 
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Figure 13: Detecting self-intersection on an object surface by the proposed algorithm. 
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4.2.1 The Intersection of Two Planes 

In the proposed an axial deformation technique, a set of local coordinate frames is used to 

specify the location of the mesh vertices. Besides, these local coordinate frames can also 

act as a self-intersection detector. 

In this thesis, we proposed to use the local coordinate frames to detect the self

intersection on an object mesh . A set of local coordinate frames are used to construct a 

set of normal planes on an axial curve. Each mesh vertex has a reference local coordinate 

frame. As a result, each vertex has a reference normal plane. The normal plane 

construction is discussed in section 4.2.1 .1. When the normal planes are not parallel , they 

must be intersection between the normal planes. It means possible self-intersection on the 

object. 

In some cases, no overlap occurs on the object mesh although the planes are intersecting 

each other. This is because the planes may intersect in region outside of the object. 

Therefore, the sizes of the planes have to be considered in order to have an accurate 

detection. However, in general , when two planes are not parallel , self-intersection may 

occur. A line is always formed when two planes are intersecting as will be di scussed in 

section 4.2.1.2. 
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4.2.1.1 Constructing the Normal Plane 

In the detection of self-intersection, the local coordinate frames are used to construct a set 

of normal planes on the axial curve. When the LCFs on the axial curve are modified, the 

nonnal planes are autornatically updated. The mesh of the object is deformed according 

to the position and orientation of the LCFs. Since, the LCFs are associated with the object 

mesh, each vertex of the object is associated with the normal plane of its corresponding 

LCF. 

- - c(t) 

Figure 14: A normal plane is constructed at a curve point ton an axial curve c 

Assume that p is the vector representing the position of a point on the plane, and let n be 

a nonzero nonnal vector lying on the plane. The center of the normal plane is at its 

reference curve point. The normal plane TI containing the normal vector n = (a , b, c) that 

passes through an axial curve point x0 = (x0 , y 0 , z0 ) is 
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(20) 

where x = (x, y, z). This gives the general equation of a plane, 

ax + by + cz + d = 0 (21) 

where d = -ax0 - by0 - cz0 

There is intersection between two planes with plane normals n ;, n 
1 

if 

i * j , i , j = 1,2,3, ..... . (22) 

Normally the planes must cross each other when the normals of the two planes are not 

parallel. Some regions of the mesh do not need to be considered in subsequent processes 

if the normal planes are parallel in that region. 
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4.2.1.2 A Line Formed by the Intersection of Two Planes 

Intersection between the nonnal plane tnay occur when n i x n 
1 

IS not zero. Figure 16 

shows an intersection line between two planes. 

Figure 15: A line is fonned when two planes are intersecting each other. 

Consider there are two planes n i' IT I with normal nt , n2 respectively. The equation of 

the intersection line can be obtained by the following steps. 

Plane equation of n I 

(23 ) 
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Plane equation of n 2 

From Eq. (23) 

Eq. (24) then gives 

-by-cz-d 
X= I I I 

al 

-(by+cz+d) 
a 1 1 1 +by+cz+d =0 2 2 2 2 

al 

- a2b
1 
+ a

1
b2 a 2c1 - a 1c2 a2d

1 
+ a

1
d 2 - - ---y = z + -----

al a1 a1 

( -a2b1 + a1b2 )y = (a 2c1 - a1c2 )z + a2d 1 + a1d 2 

(a 2c1 - a1c2 )z + a2d1 + a1d2 y = 
( -a2bl + alb2) 

Using Eq. (23) and express in term ofx andy 

-ax-b y -d z = I I I 

c l 
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Eq. (24) gives 

a2c1 b2c1 - a1c2x- b1c2y- c2d 1 + c1d 2 __ 
0 --x + --y + ---------

cl cl cl cl 

a2c1x + b2c1y + -a1c2 x - b1c2 y - c2d 1 + c1d 2 = 0 

(a2c1 - a1c2 )x- (b1c2 - b2c1 )y + c1d 2 - c2d 1 = 0 

(a2c1 - a1c2 )x + c1d 2 - c2d1 y= 
(blc2 -b2c1) 

Equation of the intersection line L is 
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4.2.1.3 Problems 

When the two planes are not parallel , they tnust intersect each other. In tnost cases, the 

normal planes intersect when the axial curve is not straight. For example, a straight rod is 

bent into a high curvature shape (U shape or S shape). 

The existence of intersections between planes containing the LCF is a necessary but not 

sufficient condition for self-intersection. As shown in Figure 16, Plane 1 and Plane 2 

intersect while there is no self-intersection in the object. Further tests are required to 

decide if a self-intersection occurred. 

Object 0 ... 

Figure 16: An axial curve IS bent into a S shape with intersecting normal planes. 
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4.2.1.4 Approximating Axially Represented Object with Sphere 

In order to provide a more accurate estimate of self-intersection, a set of spheres are 

constructed at the reference curve points. The radius of the sphere is the distance between 

the tnesh vertices and their reference axial curve point. It shows in Figure 17. Self

intersection tnay occur if the intersection line between the normal planes passes through 

the spheres of the two reference curve points. 

Figure 17: An axial curve ts bent into S shape, there are intersected nonnal planes. 
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Assutne r to be the radius of a sphere. The center is at its reference curve point 

x0 = (x0 , y 0 , z0 ) on the axial curve and the equation of the sphere is 

(26) 

Now, we can use Eq. 25 and Eq. 26 to check if the intersection line passes through two 

spheres. To simplify the process, the sphere is projected onto the normal plane. As a 

result, a circle is obtained on the plane after the projection which is shown in Figure 18. 

• Mesh 
Vertex P 

Projected C~ircle 

Normal Plane 

Figure 18: A sphere is projected onto the normal plane. 
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4.2.1.5 An Intersection Line with Two Circles 

The center of the projected circle lies on its reference axial curve point and its radius is 

the distance between the mesh vertex and the axial curve point. In the proposed axial 

defonnation method , each vertex is deformed according to the location and orientation of 

its reference LCFs. A set of normal planes are constructed at the LCFs and different sizes 

of circles are fanned on the planes after the projection. The intersection line between two 

nonnal planes represents the common space between two planes, and the projected circle 

on the normal plane represents a region between the object and the axial curve. Since the 

center of the circle lies on the axial curve like the sphere, self-intersection detection can 

be detected by simply comparing the radius of the circle and the distance from the 

intersection line to the vertex. If the diatneter is larger than the distance, the intersection 

line passes through the spheres. As a result, self-intersection occurs on the object mesh. 

c(t) 

Figure 19: The intersection line passes through two circles on normal planes 

in a self-intersection. 
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4.2.2 Distance between a Vertex to a Curve Point 

Consider p = (x P, y P, z P) is the vertex on the object mesh and x0 = (x0, Yo, z0) is the curve 

point on the axial curve. Assume d as the distance between the vertex and the 

intersection line. 

The radius of the circle is 

Denote the intersection line as 

L: Ax+ By+ Cz + D = 0 

Then distance from a vertex point p = (x P, y P, z P) to the intersection I ine L is 

d = Ax P + By p + Cz p + D 

.JA2 +B 2 +C 2 
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l\llesh 
ertex P 

Projected 
c u·cle 

IItterse ted Liite 

N orm~1 l Pl.:tne 

d 

Figure 20: The projected circle and the intersection line are placed on a normal plane. 
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4.2.2.1 Possible Cases of a Line and a Circle 

Figure 20 shows that a projected circle and an intersection line on a normal plane. When 

the distance d is larger than the diameter 2r, the intersection line does not cut the circle. 

It means that the object mesh does not have self-intersection. Eq.30 is used to compare 

the values of d and 2r . 

2r -d > 0 (30) 

Using Eq. 30, there are three possible results. First, if the diameter 2r is larger than the 

distance d, there is self-intersection in the object mesh. Figure 21 , if the diameter 2r is 

less than the distance d, self-intersection does not occur on the object mesh which shows 

in Figure 22. When the intersection line touches the circle, the object mesh does not 

overlap. Therefore no self-intersection occurs. 
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Figure 22: The intersection line does not pass through the circle, no self-intersection 

occurs. 
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4.3 Definition Proof 

4.3.1 Define the Meaning of Self-intersection 

Given two neighboring vertices point p 1 and p 2 of an object, when the location of p
1 

and p 2 are flipped with each other during the deformation process, self-intersection 

occurs on the object surface. 

In our proposed self-intersection algorithm, we introduced to use a set of certain size 

spheres and normal planes to detect the self-intersection. When two nonnal planes are 

intersected, an intersection line is always formed. However, by detecting the intersection 

of the normal planes cannot provide an accurate detection when an object is with S or U 

shape. Therefore a set of reference spheres are built and the radius are defined according 

to the distance between the object mesh to an axial curve. And then, we proposed that 

self-intersection occurs when an intersection line can pass through two spheres at the 

same time. 

Figure 23: Two spheres are intersected: (a) the intersected line is out of both spheres; 

(b) the intersected I i ne is inside the spheres. 
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4.3.2 Cross Product of Two Vectors 

Figure 24: Two vertices of the intersected spheres: (a) two vertices are on the spheres; 

(b) the location of the vertices are flipped when the intersected line passes through both 

spheres. 

Assume that p 1 and p2 be the original object vertices and p; and p ; be the deformed 

object vertices. Two vectors are formed by crossing p 1 , p 2 and p; , p; . When self

intersection occurs, two cross product vectors tnust be opposite to each other since the 

locations of two object points are flipped. 
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4.4 Factors Affecting the Accuracy of the Algorithm 

The presented algorithm uses the local coordinate frame on an axial curve for detecting 

self-intersection. In this section, we will discuss three factors - curvature, thickness and 

vertices distance which can affect the accuracy of the algorithm. 

4.4.1 High Curvature of the Axial Curve 

Assume K be the curvature of the curve point at parametric value t of an axial curve c. 

The curvature can be obtained by 

lie' (t) x c" (t)li 
K(t)=----

iic'(t)li 3 
where t = 1,23, ... (31) 

Self-intersection usually occurs in the region with a high curvature on the axial curve. 

When the distance d between the mesh vertex p = (x P, y P, z P) of the object 0 to the axial 

curve is larger than the radius of curvature Kat its reference point x0 = (x0 , y 0 , z 0 ) on the 

axial curve c, the region near that reference curve point may exhibit self-intersection. 

1 
d>-

K 

69 

where t = 1,23, ... (32) 



(a) Object 0 

(b) 

Figure 25: The result of an object which defonned by an axial curve: (a) The original 

shape of an object and an axial curve; (b) When the curvature of the axial curve is too 

high, self-intersection occurs on the object. 
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4.4.2 Mesh Density of an Object 

In Figure 26 shows two objects with different mesh densities. The models in Figure 26(a) 

and (b) have the same size of the rods, and the thickness of the models are the sa1ne. 

However, one of them has lower mesh density than the other. In Figure 26(a), two 

spheres constructed with the points p" p 2 touched each other. In Figure 26(b ), the 

vertices distance of the spheres is reduced and the two spheres wi II not interest. The 

intersection line between the normal planes will never intersect the spheres . 

(a) 

Object 0 

c 

(b) 

Object 0 

c 

Figure 26: Two rod s with di fferent mesh den siti es. 

Assume v d be the di stance between the vertices and r ,, r 1 be the radiu s of the sphere . Self

intersection can be detected when the vertices distance v c~ = IP2 - p 11 is less than or equal 

to the minimum value of the diameter 2r, of a set of spheres, such that 
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v J ::; rnin[2ri] where i = 1 ,2,3, ... (33) 

The problern of Figure 26(b) object is that the system can not detect the self-intersection 

when the object bent into a high curvature shape. In Figure 27, it shows that a ribbon is 

bent with high curvature. The region between Pi - l and p,+
1 

occurs self intersection. But, 

since the distance between the vertices is too large, the sphere at a curve point t , does not 

intersect with its neighboring spheres. Therefore, the vertices distance of the object mesh 

is one of the factors affecting the accuracy of our proposed algorithm. 

Object 0 

c(t) 

Figure 27: A ribbon is bent with a high curvature. Self-intersection occurs near the region 

of curve point p,. 
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Assume v d be the distance between the vertices and r1 , ri be the radius of the 

corresponding sphere. Since each vertex has its own reference curve point and a sphere is 

constructed on that point, the vertices distance should be less then or equal to the 

minimum value of the sum of the distance between two neighboring spheres, or 

v d ~ min[r1 + r1 ] where i , j = 1,2,3, ... n i -:t j (34) 

in order that self-intersection can be detected. 

73 



4.5 Architecture of the Self-intersection Algorithm 

No self-intersection 

No self-intersection 

No 

No 

Find the reference curve point for 
each vertex on the object mesh 

Construct normal plane on 
axial curve 

Perform plane- plane 
intersection during deformation? 

An intersection 
line is formed on 

two planes. 

Construct a sphere with a radius 
between the curve point and the 

vertex on object mesh 

Check ifthe 
intersected line cuts 
the projected sphere 
on the normal planes 

Yes 

Self-intersection 

Table 1: Detecting self-intersection 
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4.6 Experimental Results 

In this section, we show the results of our presented algorithm. In the examples shown, 

the regions of self-intersection are displayed in red. 

In Figure 28, the region of high curvature where self-intersection occurs, are displayed in 

red. In Figure 29, an axial curve is defined on a straight rod. The rod is then bent such 

that there is self-intersection on the mesh. 

A hand model with fingers is deformed in Figure 30. Multiple axial curves are included 

to model the skeletons of the hand. Each vertex of the hand model is attached to one axial 

curve point. When one of the axial curves is moved towards another axial curve, 

intersection may occur between the two axial curves. The system displays red color in the 

regions of the intersection. 

A rod is bent to form a ring in Figure 31. In our method, we check the binormal of the 

normal planes. When two ends are touched each other, the tangents of normal planes are 

parallel. Using our algorithm, the region of two ends can discard the self-intersection 

detection occurs. 

In Figure 32, a leaf ring is used to show the effect of the density of mesh. Two rings are 

with different mesh density. The one with higher density can provide accurate self

intersection detection than another. 
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Figure 28: Self-intersection in a U-shaped rod. 

Figure 29: Bending a rod to a S shape with self-intersection. 
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Figure 30: A hand model with self-intersection. One finger is bent to collide with another 

fingertip. The red color shows the intersecting region of the hand 1nodel. 
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(a) (b) 

(c) 

Figure 31: A rod defonned into a closed ring: (a) In perspective and front view, the rod 

ends do not touch each other; (b) Move one end to another, the 1nesh of the rod overlaps 

and causes self-intersection. 
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(a) 

(b) 

Figure 32: A leaf ring is deformed: (a) The ring with lower density of mesh , self

intersection in some parts is rnissed; (b) The model has higher mesh density, our 

proposed algorithm provides accurate self-intersection detection. 
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5. Conclusions and Future Developments 

5.1 Contribution and Conclusions 

An ax ial deformation technique is proposed in this thesis. A set of controllable local 

coordinate frames is used to deform a 30 object. Self-intersection in the deformed object 

is also one of the considered by using planes constructed at the local coordinate frames. 

Axial deformation with controllable local coordinate frames is a reliable technique for 

deforming freeform shape. An axial curve is constructed with a NURBS curve which is 

manipulated by a set of control points. However, deforming axial curve by control points 

may result in undesirable twist or distortion of the associated object. In the proposed 

algorithm for the axial deformation of an object, a set of local coordinate frames along an 

axial curve is constructed by using the Normal Plane Projection method. When one 

particular local coordinate frame is modified , the modification is propagated to the whole 

set of local coordinate frames . An algorithm for interpolating the local coordinate frames 

is presented to maintain the smoothness and continuity of the coordinate frames along the 

axial curve. To associate object mesh points to points on the axial curve, each vertex on 

the object is mapped to the closest point on the axial curve. Users can directly control the 

LCFs to modify the shape of the axial curve. This modification is propagated to the 

attached mesh of the object. The new position of the mesh is updated automatically 

whenever the LCFs of the axial curve are modified. The smoothness and continuity of the 

axial curve can effectively reduce undesirable distortions of the shape. Experiments show 

that the technique can be used for blending and twisting regular or freeform objects and 

gives better results compared with the result of deforming object with curve pairs. 

Self-intersection is one of the main problems in deformation. In the second part of this 

thesis, we present an algorithm for detecting the self-intersection in a deformation by 

using a set of constructed local coordinate frames . Using a set of LCFs on an ax ial curve, 

a set of normal planes is constructed. Plane-Plane intersection always occurs between 

normal planes and a line is formed when the planes are not paralle l. Since the intersection 

80 



on the normal planes may not lead to self-intersection especially on the models with high 

curvature (U shape and S shape), the distance between the object mesh and the axial 

curve is also used for the detection. A sphere is constructed between the axial curve and 

the object. Its radius is the distance between the object mesh to the axial curve. When 

there is self-intersection in the object mesh is self-intersected, the intersection line 

between normal planes should pass through two spheres at the same time. By comparing 

the length between the mesh vertex to the axial curve with the diameter of the projected 

circle to the axial curve, the self-intersection can be detected. Experimental results show 

that this algorithm can be applied on freeform object with complex shapes. 
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5.2 Limitations and Future Developments 

This thesis presents an axial deformation technique which uses a set of controllable local 

coordinate frames. It also presents an algorithm to prevent self-intersection on the object 

mesh by using the local coordinate frames. However, there are limitations in these 

approaches as I isted below: 

1. In proposed axial deformation method, when one LCF is modified , the 

neighboring LCFs are also adjusted. Therefore the user cannot specifically deform 

certain region of an object and the object mesh is always smooth. 

2. The number of the mesh vertices can affect the accuracy of the algorithm for self

intersection detection. When more vertices are placed on the surface, more LCFs 

are constructed on the axial curve. But, if the object contains fewer vertices, fewer 

spheres are used to detect the self-intersection. This may result in inaccurate self

intersection detection. 

There are also several potential works that may be considered in the future. They are 

described as follows: 

1. In the proposed system, the continuity and smoothness of the object is always 

maintained. However, some designs may require non-smooth surface. Some extra 

constraints will have to be included to provide more control on the deformation 

process. 

2. If the object has more mesh vertices, the self-intersection detection is more 

accurate. However, the process is time consuming. Some further study can be 

performed to locate an optimum number of object vertices for accurate self

intersection. 
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