275 research outputs found

    HIGH-FIDELITY 3D HAIR MODELING USING COMPUTED TOMOGRAPHY

    Get PDF
    An automatic framework for creating high-fidelity 3D hair models that are suitable for use in downstream graphics applications. This approach utilizes real-world hair wigs as input, and is able to reconstruct hair strands for a wide range of hair styles. Systems and method leverage computed tomography (Cl) to create density volumes of the hair regions, allowing users to see through the hair unlike image-based approaches which are limited to reconstructing the visible surface. To address the noise and limited resolution of the input density volumes, we employ a coarse-to-fine approach. This process first recovers guide strands with estimated 3D orientation fields, and then populates dense strands through a novel neural interpolation of the guide strands. The generated strands are then refined to conform to the input density volumes

    Mean value coordinates–based caricature and expression synthesis

    Get PDF
    We present a novel method for caricature synthesis based on mean value coordinates (MVC). Our method can be applied to any single frontal face image to learn a specified caricature face pair for frontal and 3D caricature synthesis. This technique only requires one or a small number of exemplar pairs and a natural frontal face image training set, while the system can transfer the style of the exemplar pair across individuals. Further exaggeration can be fulfilled in a controllable way. Our method is further applied to facial expression transfer, interpolation, and exaggeration, which are applications of expression editing. Additionally, we have extended our approach to 3D caricature synthesis based on the 3D version of MVC. With experiments we demonstrate that the transferred expressions are credible and the resulting caricatures can be characterized and recognized

    Adaptive Wisp Tree - a multiresolution control structure for simulating dynamic clustering in hair motion

    Get PDF
    International audienceRealistic animation of long human hair is difficult due to the number of hair strands and to the complexity of their interactions. Existing methods remain limited to smooth, uniform, and relatively simple hair motion. We present a powerful adaptive approach to modeling dynamic clustering behavior that characterizes complex long-hair motion. The Adaptive Wisp Tree (AWT) is a novel control structure that approximates the large-scale coherent motion of hair clusters as well as small-scaled variation of individual hair strands. The AWT also aids computation efficiency by identifying regions where visible hair motions are likely to occur. The AWT is coupled with a multiresolution geometry used to define the initial hair model. This combined system produces stable animations that exhibit the natural effects of clustering and mutual hair interaction. Our results show that the method is applicable to a wide variety of hair styles

    DeepSketchHair: Deep Sketch-based 3D Hair Modeling

    Full text link
    We present sketchhair, a deep learning based tool for interactive modeling of 3D hair from 2D sketches. Given a 3D bust model as reference, our sketching system takes as input a user-drawn sketch (consisting of hair contour and a few strokes indicating the hair growing direction within a hair region), and automatically generates a 3D hair model, which matches the input sketch both globally and locally. The key enablers of our system are two carefully designed neural networks, namely, S2ONet, which converts an input sketch to a dense 2D hair orientation field; and O2VNet, which maps the 2D orientation field to a 3D vector field. Our system also supports hair editing with additional sketches in new views. This is enabled by another deep neural network, V2VNet, which updates the 3D vector field with respect to the new sketches. All the three networks are trained with synthetic data generated from a 3D hairstyle database. We demonstrate the effectiveness and expressiveness of our tool using a variety of hairstyles and also compare our method with prior art

    HairBrush for Immersive Data-Driven Hair Modeling

    Get PDF
    International audienceWhile hair is an essential component of virtual humans, it is also one of the most challenging digital assets to create. Existing automatic techniques lack the generality and flexibility to create rich hair variations, while manual authoring interfaces often require considerable artistic skills and efforts, especially for intricate 3D hair structures that can be difficult to navigate. We propose an interactive hair modeling system that can help create complex hairstyles in minutes or hours that would otherwise take much longer with existing tools. Modelers, including novice users, can focus on the overall hairstyles and local hair deformations, as our system intelligently suggests the desired hair parts. Our method combines the flexibility of manual authoring and the convenience of data-driven automation. Since hair contains intricate 3D structures such as buns, knots, and strands, they are inherently challenging to create using traditional 2D interfaces. Our system provides a new 3D hair author-ing interface for immersive interaction in virtual reality (VR). Users can draw high-level guide strips, from which our system predicts the most plausible hairstyles via a deep neural network trained from a professionally curated dataset. Each hairstyle in our dataset is composed of multiple variations, serving as blend-shapes to fit the user drawings via global blending and local deformation. The fitted hair models are visualized as interactive suggestions that the user can select, modify, or ignore. We conducted a user study to confirm that our system can significantly reduce manual labor while improve the output quality for modeling a variety of head and facial hairstyles that are challenging to create via existing techniques

    Hair motion simulation

    Get PDF
    Hair motion simulation in computer graphics has been an attraction for many researchers. The application we have developed has been inspired by the related previous work as well as our own efforts in finding useful algorithms to handle this problem. The work we present uses a set of representations, including hair strands, clusters and strips, that are derived from the same underlying base skeleton, where this skeleton is animated by physical, i.e. spring, forces. © Springer-Verlag 2004

    Interactive freeform editing techniques for large-scale, multiresolution level set models

    Get PDF
    Level set methods provide a volumetric implicit surface representation with automatic smooth blending properties and no self-intersections. They can handle arbitrary topology changes easily, and the volumetric implicit representation does not require the surface to be re-adjusted after extreme deformations. Even though they have found some use in movie productions and some medical applications, level set models are not highly utilized in either special effects industry or medical science. Lack of interactive modeling tools makes working with level set models difficult for people in these application areas.This dissertation describes techniques and algorithms for interactive freeform editing of large-scale, multiresolution level set models. Algorithms are developed to map intuitive user interactions into level set speed functions producing specific, desired surface movements. Data structures for efficient representation of very high resolution volume datasets and associated algorithms for rapid access and processing of the information within the data structures are explained. A hierarchical, multiresolution representation of level set models that allows for rapid decomposition and reconstruction of the complete full-resolution model is created for an editing framework that allows level-of-detail editing. We have developed a framework that identifies surface details prior to editing and introduces them back afterwards. Combining these two features provides a detail-preserving level set editing capability that may be used for multi-resolution modeling and texture transfer. Given the complex data structures that are required to represent large-scale, multiresolution level set models and the compute-intensive numerical methods to evaluate them, optimization techniques and algorithms have been developed to evaluate and display the dynamic isosurface embedded in the volumetric data.Ph.D., Computer Science -- Drexel University, 201
    • …
    corecore