7 research outputs found

    Fluids real-time rendering

    Get PDF
    In this thesis the existing methods for realistic visualization of uids in real-time are reviewed. The correct handling of the interaction of light with a uid surface can highly increase the realism of the rendering, therefore method for physically accurate rendering of re ections and refractions will be used. The light- uid interaction does not stop at the surface, but continues inside the uid volume, causing caustics and beams of light. The simulation of uids require extremely time-consuming processes to achieve physical accuracy and will not be explored, although the main concepts will be given. Therefore, the main goals of this work are: Study and review the existing methods for rendering uids in realtime. Find a simpli ed physical model of light interaction, because a complete physically correct model would not achieve real-time. Develop an application that uses the found methods and the light interaction model

    Fluids real-time rendering

    Get PDF
    In this thesis the existing methods for realistic visualization of uids in real-time are reviewed. The correct handling of the interaction of light with a uid surface can highly increase the realism of the rendering, therefore method for physically accurate rendering of re ections and refractions will be used. The light- uid interaction does not stop at the surface, but continues inside the uid volume, causing caustics and beams of light. The simulation of uids require extremely time-consuming processes to achieve physical accuracy and will not be explored, although the main concepts will be given. Therefore, the main goals of this work are: Study and review the existing methods for rendering uids in realtime. Find a simpli ed physical model of light interaction, because a complete physically correct model would not achieve real-time. Develop an application that uses the found methods and the light interaction model

    Shallow waters simulation

    Get PDF
    Dissertação de mestrado integrado em Informatics EngineeringRealistic simulation and rendering of water in real-time is a challenge within the field of computer graphics, as it is very computationally demanding. A common simulation approach is to reduce the problem from 3D to 2D by treating the water surface as a 2D heightfield. When simulating 2D fluids, the Shallow Water Equations (SWE) are often employed, which work under the assumption that the water’s horizontal scale is much greater than it’s vertical scale. There are several methods that have been developed or adapted to model the SWE, each with its own advantages and disadvantages. A common solution is to use grid-based methods where there is the classic approach of solving the equations in a grid, but also the Lattice-Boltzmann Method (LBM) which originated from the field of statistical physics. Particle based methods have also been used for modeling the SWE, namely as a variation of the popular Smoothed-Particle Hydrodynamics (SPH) method. This thesis presents an implementation for real-time simulation and rendering of a heightfield surface water volume. The water’s behavior is modeled by a grid-based SWE scheme with an efficient single kernel compute shader implementation. When it comes to visualizing the water volume created by the simulation, there are a variety of effects that can contribute to its realism and provide visual cues for its motion. In particular, When considering shallow water, there are certain features that can be highlighted, such as the refraction of the ground below and corresponding light attenuation, and the caustics patterns projected on it. Using the state produced by the simulation, a water surface mesh is rendered, where set of visual effects are explored. First, the water’s color is defined as a combination of reflected and transmitted light, while using a Cook- Torrance Bidirectional Reflectance Distribution Function (BRDF) to describe the Sun’s reflection. These results are then enhanced by data from a separate pass which provides caustics patterns and improved attenuation computations. Lastly, small-scale details are added to the surface by applying a normal map generated using noise. As part of the work, a thorough evaluation of the developed application is performed, providing a showcase of the results, insight into some of the parameters and options, and performance benchmarks.Simulação e renderização realista de água em tempo real é um desafio dentro do campo de computação gráfica, visto que é muito computacionalmente exigente. Uma abordagem comum de simulação é de reduzir o problema de 3D para 2D ao tratar a superfície da água como um campo de alturas 2D. Ao simular fluidos em 2D, é frequente usar as equações de águas rasas, que funcionam sobre o pressuposto de que a escala horizontal da água é muito maior que a sua escala vertical. Há vários métodos que foram desenvolvidos ou adaptados para modelar as equações de águas rasas, cada uma com as suas vantagens e desvantagens. Uma solução comum é utilizar métodos baseados em grelhas onde existe a abordagem clássica de resolver as equações numa grelha, mas também existe o método de Lattice Boltzmann que originou do campo de física estatística. Métodos baseados em partículas também já foram usados para modelar as equações de águas rasas, nomeadamente como uma variação do popular método de SPH. Esta tese apresenta uma implementação para simulação e renderização em tempo real de um volume de água com uma superfície de campo de alturas. O comportamento da água é modelado por um esquema de equações de águas rasas baseado na grelha com uma implementação eficiente de um único kernel de compute shader. No que toca a visualizar o volume de água criado pela simulação, existe uma variedade de efeitos que podem contribuir para o seu realismo e fornecer dicas visuais sobre o seu movimento. Ao considerar águas rasas, existem certas características que podem ser destacadas, como a refração do terreno por baixo e correspondente atenuação da luz, e padrões de cáusticas projetados nele. Usando o estado produzido pela simulação, uma malha da superfície da água é renderizada, onde um conjunto de efeitos visuais são explorados. Em primeiro lugar, a cor da água é definida como uma combinação de luz refletida e transmitida, sendo que uma BRDF de Cook-Torrance é usada para descrever a reflexão do Sol. Estes resultados são depois complementados com dados gerados num passo separado que fornece padrões de cáusticas e melhora as computações de atenuação. Por fim, detalhes de pequena escala são adicionados à superfície ao aplicar um mapa de normais gerado com ruído. Como parte do trabalho desenvolvido, é feita uma avaliação detalhada da aplicação desenvolvida, onde é apresentada uma demonstração dos resultados, comentários sobre alguns dos parâmetros e opções, e referências de desempenho

    Interactive image-space techniques for approximating caustics

    No full text
    Figure 1: Our approach to interactive caustics builds off work for interactive reflections and refractions. The first pass renders (a) the view from the light, (b) a depth map for shadow mapping, and (c) final photon locations into buffers. The second pass gathers the photons and (e) renders a result from the eye’s point of view. The result significantly improves on (d) existing interactive renderings, and compares favorably with (f) photon mapping. Interactive applications require simplifications to lighting, geometry, and material properties that preclude many effects encountered in the physical world. Until recently only the most simplistic reflections and refractions could be performed interactively, but state-of-the-art research has lifted some restrictions on such materials. This paper builds upon this work, but examines reflection and refraction from the light’s viewpoint to achieve interactive caustics from point sources. Our technique emits photons from the light and stores the results in image-space, similar to a shadow map. We then examine various techniques for gathering these photons, comparing their advantages and disadvantages for rendering caustics. These approaches run interactively on modern GPUs, work in conjunction with existing techniques for rendering specular materials, and produce images competitive with offline renderings using comparable numbers of photons

    Reconstruction and rendering of time-varying natural phenomena

    Get PDF
    While computer performance increases and computer generated images get ever more realistic, the need for modeling computer graphics content is becoming stronger. To achieve photo-realism detailed scenes have to be modeled often with a significant amount of manual labour. Interdisciplinary research combining the fields of Computer Graphics, Computer Vision and Scientific Computing has led to the development of (semi-)automatic modeling tools freeing the user of labour-intensive modeling tasks. The modeling of animated content is especially challenging. Realistic motion is necessary to convince the audience of computer games, movies with mixed reality content and augmented reality applications. The goal of this thesis is to investigate automated modeling techniques for time-varying natural phenomena. The results of the presented methods are animated, three-dimensional computer models of fire, smoke and fluid flows.Durch die steigende Rechenkapazität moderner Computer besteht die Möglichkeit immer realistischere Bilder virtuell zu erzeugen. Dadurch entsteht ein größerer Bedarf an Modellierungsarbeit um die nötigen Objekte virtuell zu beschreiben. Um photorealistische Bilder erzeugen zu können müssen sehr detaillierte Szenen, oft in mühsamer Handarbeit, modelliert werden. Ein interdisziplinärer Forschungszweig, der Computergrafik, Bildverarbeitung und Wissenschaftliches Rechnen verbindet, hat in den letzten Jahren die Entwicklung von (semi-)automatischen Methoden zur Modellierung von Computergrafikinhalten vorangetrieben. Die Modellierung dynamischer Inhalte ist dabei eine besonders anspruchsvolle Aufgabe, da realistische Bewegungsabläufe sehr wichtig für eine überzeugende Darstellung von Computergrafikinhalten in Filmen, Computerspielen oder Augmented-Reality Anwendungen sind. Das Ziel dieser Arbeit ist es automatische Modellierungsmethoden für dynamische Naturerscheinungen wie Wasserfluss, Feuer, Rauch und die Bewegung erhitzter Luft zu entwickeln. Das Resultat der entwickelten Methoden sind dabei dynamische, dreidimensionale Computergrafikmodelle

    Visually pleasing real-time global illumination rendering for fully-dynamic scenes

    Get PDF
    Global illumination (GI) rendering plays a crucial role in the photo-realistic rendering of virtual scenes. With the rapid development of graphics hardware, GI has become increasingly attractive even for real-time applications nowadays. However, the computation of physically-correct global illumination is time-consuming and cannot achieve real-time, or even interactive performance. Although the realtime GI is possible using a solution based on precomputation, such a solution cannot deal with fully-dynamic scenes. This dissertation focuses on solving these problems by introducing visually pleasing real-time global illumination rendering for fully-dynamic scenes. To this end, we develop a set of novel algorithms and techniques for rendering global illumination effects using the graphics hardware. All these algorithms not only result in real-time or interactive performance, but also generate comparable quality to the previous works in off-line rendering. First, we present a novel implicit visibility technique to circumvent expensive visibility queries in hierarchical radiosity by evaluating the visibility implicitly. Thereafter, we focus on rendering visually plausible soft shadows, which is the most important GI effect caused by the visibility determination. Based on the pre-filtering shadowmapping theory, wesuccessively propose two real-time soft shadow mapping methods: "convolution soft shadow mapping" (CSSM) and "variance soft shadow mapping" (VSSM). Furthermore, we successfully apply our CSSM method in computing the shadow effects for indirect lighting. Finally, to explore the GI rendering in participating media, we investigate a novel technique to interactively render volume caustics in the single-scattering participating media.Das Rendern globaler Beleuchtung ist für die fotorealistische Darstellung virtueller Szenen von entscheidender Bedeutung. Dank der rapiden Entwicklung der Grafik-Hardware wird die globale Beleuchtung heutzutage sogar für Echtzeitanwendungen immer attraktiver. Trotz allem ist die Berechnung physikalisch korrekter globaler Beleuchtung zeitintensiv und interaktive Laufzeiten können mit "standard Hardware" noch nicht erzielt werden. Obwohl das Rendering auf der Grundlage von Vorberechnungen in Echtzeit möglich ist, kann ein solcher Ansatz nicht auf voll-dynamische Szenen angewendet werden. Diese Dissertation zielt darauf ab, das Problem der globalen Beleuchtungsberechnung durch Einführung von neuen Techniken für voll-dynamische Szenen in Echtzeit zu lösen. Dazu stellen wir eine Reihe neuer Algorithmen vor, die die Effekte der globaler Beleuchtung auf der Grafik-Hardware berechnen. All diese Algorithmen erzielen nicht nur Echtzeit bzw. interaktive Laufzeiten sondern liefern auch eine Qualität, die mit bisherigen offline Methoden vergleichbar ist. Zunächst präsentieren wir eine neue Technik zur Berechnung impliziter Sichtbarkeit, die aufwändige Sichbarkeitstests in hierarchischen Radiosity-Datenstrukturen vermeidet. Anschliessend stellen wir eine Methode vor, die weiche Schatten, ein wichtiger Effekt für die globale Beleuchtung, in Echtzeit berechnet. Auf der Grundlage der Theorie über vorgefilterten Schattenwurf, zeigen wir nacheinander zwei Echtzeitmethoden zur Berechnung weicher Schattenwürfe: "Convolution Soft Shadow Mapping" (CSSM) und "Variance Soft Shadow Mapping" (VSSM). Darüber hinaus wenden wir unsere CSSM-Methode auch erfolgreich auf den Schatteneffekt in der indirekten Beleuchtung an. Abschliessend präsentieren wir eine neue Methode zum interaktiven Rendern von Volumen-Kaustiken in einfach streuenden, halbtransparenten Medien
    corecore