Master in Computing

Master of Science Thesis

FLUIDS REAL-TIME RENDERING

Xavier de la Fuente Caballé

Advisor: Antonio Susin Sanchez

January 2011

Contents

1 Introductionl

1.1 Project overview|

[1.2 Organization of this document|

Physics background|

[2.1 Physics of light|

2.1.1 Reflection and refraction|.

[2.1.2 Fresnel reflectivity and transmissivity|

[2.2 Optical properties of Huids|
[2.2.1 Participating media|
[2.2.2 Absorption|
[2.2.3 Scatteringl

2.3 Fluid simulationl

[2.3.2 Navier-Stokes equations|

Rendering techniques|

[3.1 Surface rendering|
[3.1.1 Ray tracing|

[3.1.2 Environment mapping|

[3.1.3 Projective texturing mapping|

[3.2 Fresnel approximation| . .

13.3 Modeling absorption and scattering.

3.4 Surface Caustics

Implementation|

4.1 Computer graphics using OpenGL|

[4.1.1 Shader programs| .

[4.1.2 Framebufter Objects|

{4.2 Above/under fluid division|

10
10
13
14
14
18
20

23
23
25
26
27

CONTENTS

4.3 Light rendering| 0oL 30
4.4 Surface renderingl Lo 31
4.5 Surface causticslo 33
4.6 Volume caustics/.o L 38
6_Results| 39
b.1 BEwvaluation|. 39
B2 Futureworkl. 44
b.3 Conclusionsl 44
|Bibliography| 46

ii

Introduction

Rendering of a fluid in real-time computer graphics is highly dependent
on the demands on realism. In the beginning of real-time graphics most ap-
plications treated fluid surfaces (normally water) as strictly planar surfaces
which had artist generated textures applied to them. The fluid in these ap-
plications did not look very realistic, but neither did the rest of the graphics
so it was not particularly problematic. But as the appearance of the ap-
plications increase with the available processing power and better computer
graphic techniques, the look of the fluid is becoming increasingly important.

Fluid rendering differ significantly from rendering of most other objects.
Fluids themselves have several properties that we have to consider when
rendering them in a realistic manner:

e They are dynamic objects. Unless the fluid is supposed to be totally
at rest it will have to be updated each frame. Wave interactions that
give the surface its shape are immensely complex and probably have
to be approximated.

e The surface can be huge. When rendering a large fluid body such as
an ocean it will often span all the way to the horizon.

e Its look is to a large extent based on reflected and refracted light. The
ratio between the reflected and refracted light vary depending on the
angle the surface viewed at.

It is necessary to limit the realism of fluid rendering in order to make
a real-time implementation feasible. In most applications it is common to
limit the span of the surface to small lakes and ponds. Wave interactions are
also immensely simplified. As mentioned in the introductory example, the
reflections and refractions are usually ignored, the surface is just rendered
with a texture that is supposed to look like water. Neither is it uncommon
that water still is treated as a planar surface without any height differences
whatsoever. But the state of computer generated fluids is rapidly improving

Introduction

and although most aspects of the rendering still are crude approximations
they are better looking approximations than the ones they replace.

1.1 Project overview

In this thesis the existing methods for realistic visualization of fluids
in real-time are reviewed. The correct handling of the interaction of light
with a fluid surface can highly increase the realism of the rendering, therefore
method for physically accurate rendering of reflections and refractions will be
used. The light-fluid interaction does not stop at the surface, but continues
inside the fluid volume, causing caustics and beams of light. The simulation
of fluids require extremely time-consuming processes to achieve physical
accuracy and will not be explored, although the main concepts will be given.

Therefore, the main goals of this work are:

e Study and review the existing methods for rendering fluids in real-
time.

e Find a simplified physical model of light interaction, because a com-
plete physically correct model would not achieve real-time.

e Develop an application that uses the found methods and the light
interaction model.

1.2 Organization of this document
This master thesis is organized as follows:

e Chapter [2 introduces the basics of optics and simulation algorithms
that are relevant for physically-based computer graphics research.

e Chapter [3] introduces the existing rendering techniques that can be
used for fluids and explains the analytical version of the light interac-
tion model.

e Chapter [4] focuses on the implementation details using OpenGL. It
also explains a developed method to distinguish between inside and
outside fluid rendering.

e Chapter [5| presents the results of this work and summarizes the con-
clusions.

Physics background

2.1 Physics of light

Light is the portion of electromagnetic radiation that is visible to hu-
mans. Here we discuss the interaction of light and matter, however, complete
electromagnetic descriptions of light are often difficult to apply in practice.
Practical optics is usually done using simplified models. The most common
of these, treats light as a collection of rays that travel in straight lines and
bend when they pass through or reflect from surfaces.

2.1.1 Reflection and refraction

If a light ray strikes the surface of the fluid, it is split into reflected
and transmitted (refracted) rays. The intensity of each of these two rays is
diminished by reflectivity and transmissivity coefficients. Here we discuss
the directions of the two outgoing rays, in the next subsection the coefficients
are discussed.

The equation for reflection is well known. We can see on figure the
geometry of a reflected ray. For an eye vector I (i.e. the ray from the eye
to the given point) and the surface normal N, the reflected ray is

R=2I-N)N -1 (2.1)

As seen on figure the direction of the refracted ray is given by Snell’s
law

n1 sin 6; = no sin ¢ (2.2)

where 6; and 6, are angles with the facet normal for incident and trans-
mitted rays, respectively and ni, ng are real indices of refraction for the
corresponding media. Snell’s law shows that for a sufficiently oblique ray
going from water to air it is possible to have total internal reflection when
only reflected ray is present.

Physics background

Reflected
Ray R

Figure 2.1: Calculating reflected ray

2.1.2 Fresnel reflectivity and transmissivity

The efficiency of the reflection and refraction through the surface is de-
scribed by the reflectivity R and the transmissivity 7', which relation is
constrained by the law of conservation of energy

R+T=1.

The derivation of the expressions for R and T is based on the electro-
magnetic theory of dielectrics. From [Glassner, 1994] we have two basic
solutions

i, 52
n;cos; —ng, /1 — (% sin 6;)?
Ry =
n;cos; +ng, /1 — (Z—Z sin 6;)?2
_ , 52
nis/1 — (% sin ;)2 — ny cos b;
R, =
ni/1— (% sin 6;)2 + ny cos 6;
Assuming that the light is not polarized we get R = @. We can see

on figure [2.3] a plot of the reflectivity for rays of light traveling down onto a
water surface as a function of the angle of incidence to the surface, and how
it changes if the incident ray comes from below the surface. In this case,
reflectivity increases rapidly, so there is no transmissivity of light through
the surface.

2.2 Optical properties of fluids

To generate realistic images of fluids one must consider in some detail
the interaction of light with the fluid body, or participating media.

4

Optical properties of fluids

Mormal
Vector M
Incident *
Vector |

Refracted
Vector T

Figure 2.2: Snell’s law

2.2.1 Participating media

Participating media are those media which alter in some way the elec-
tromagnetic radiation that traverses them. The propagation of light in par-
ticipating media is described by the radiative transport equation (RTE)
[Chandrasekhar, 1960]

= Lo(shy) — (0n + 05) L{sD) + 04 A PG,) L ()dG: (2.3)

which shows that radiance L gets affected at every differential point along
the optical path . f 4, refers to the integral of all the differential directions
along a sphere. There can be light emission (L.(W)), extinction due to
absorption or out-scattering (—(oq +05)L(ws)), or radiance increase coming
from in-scattering (o [, p(wi,wo)Li(w5;)). The absorption and scattering
coefficients (0, and oy, respectively) are often added up to another coefficient
named extinction coefficient o, = o, + 0s. The phase function p specifies
the normalized distribution of the scattered light, taking the form p = ﬁ if
the medium is isotropic. It can be defined as

dLy(wp)

SRR (2.4)

p(Wi, wp) =

Physics background

Reflectivity from Above Reflectivity from Below
1 - 1

Hheident from Above Incident from Above
{ineident from Below -

os |
0.3

o1 |

o o
o 10 20 a0 an 50 60 70 80 80 o 10 20 ER] a0 50 60 70 80 80
Incidence Angle (degraes) Incidence Angle (degrees)

Figure 2.3: Reflectivity for light coming from the air down to water surface
and from below the surface, respectively. From [Tessendorf, 1999]

2.2.2 Absorption

When light traverses a medium with some conductivity then the electro-
magnetic energy is taken up by the medium and transformed into other forms
of energy, such as heat [Born and Wolf, 1999, Bohren and Huffman, 1983].
As light traverses the absorbing medium, its irradiance F gets diminished
at every differential point along the path [

dE

The absorption coefficient is related to the attenuation index k:
4
Oa = K (2.6)

The attenuation index is related to the amount of power absorbed by a
medium as light traverses it. It depends on wavelength, so the absorption at
some wavelengths can be different from other ones. If o, is constant through
the medium, the attenuation of an irradiance Fy for a path d becomes

E = Eyedoe (2.7)
which means that intensity decays by a factor of e~! when the light has
traveled a distance o, 1 = \(47k) L.
2.2.3 Scattering

Scattering in fluids is caused by interactions of light at molecular level
and with particles [Mobley, 1994]. It can be classified in two broad cate-
gories: elastic and inelastic scattering, depending on whether the scattered

6

Fluid simulation

photon maintains or changes its energy in the process. The inelastic scatter-
ing events can be further sub-classified according to the nature of the energy
transfer: Stokes scattering, when a molecule of the medium absorbs the pho-
ton and re-emits it with a lower energy, and anti-Stokes scattering, when
the re-emitted photon has a higher energy. The process implies an energy
transfer from wavelength A’ to A, with A’ being the excitation wavelength
and A the re-emitted wavelength.
Depending on the point of view, scattering can be classified into:

e Qut-scattering From one side, light that is traversing a specific path
is scattered.

e In-scattering From the other side, light that is traversing a specific
path receives the radiance scattered from other parts of light.

Out-scattering is expressed as follows:

dL
The outgoing radiance from in-scattering is
dL,(w - N\
i;lo) = 0'3/ (W, W) L (W) du; (2.9)
4

The scattering coefficient can depend on the wavelength. If the incoming
radiance comes from a light source, is often called single scattering, while
if it comes from a previous interaction in the medium is called multiple
scattering.

2.3 Fluid simulation

For simulation of fluids sophisticated physical models are needed. As
stated above this work will not cover the simulation part, but this sec-
tion will cover the basic approaches which are used by the most common
simulation methods. Here are briefly presented only two methods to sim-
ulate the animation of fluids, but those who want to go deeper into the
subject can get more information on [Foster and Fedkiw, 2001} [Stam, 1999/
Foster and Metaxas, 1997].

2.3.1 Fast Fourier Transform

A fast Fourier transform (FFT) is an efficient algorithm to compute the
discrete Fourier transform (DFT) and its inverse, i.e. Fourier transformation
that samples the input at regularly placed points [Mastin et al., 1987]. The
FFT is used to compute model which is not based on any physics models, but
instead uses statistical models based on observations of the real sea. In this

Physics background

statistical model of the sea, wave height is a random variable of horizontal
position and time, h(X,t). It decomposes the wave height field into a set of
sinus waves with different amplitudes and phases. FFT allows us to quickly
evaluate the following sum:

h(X,t) = h(K,t)e™X (2.10)
K

where K is a 2D vector with components (ks, ky), ky = 2nn/Ly, ky =
2mm/L, and n and m are integers with bounds —N/2 < n < N/2 and
—M/2 <m < M/2. The FFT will generate a height field at discrete points
x = (nLy/N,mL,/M) which will be used to construct the ocean surface.

2.3.2 Navier-Stokes equations

The Navier-Stokes equations are the fundamental partial differentials
equations that describe the flow of incompressible fluids and consist of two
parts [Batchelor, 2000]. The first, enforces incompressibility by saying that
mass should always be conserved,

V-u=0 (2.11)
where w is the liquid velocity field, and

V =(0/0z,0/0y,0/0z)

is the gradient operator. The second equation couples the velocity and
pressure fields and relates them through the conservation of momentum,
% Vit vp =g+ 0v.viL (2.12)
ot P
This equation models the changes in the velocity field over time due to
the effects of viscosity (v), density (p), pressure (p) and gravity (g). By
solving and over time, we can model the behavior of a volume
of liquid, which leads to a physically accurate but computationally inten-
sive simulation. After that, we have a volume model which has to be ren-
dered in a different way than the FFT approach, such as marching cubes
[Lorensen and Cline, 1987].

Rendering techniques

Realistic looking fluids can be achieved by using special rendering tech-
niques. This section surveys global illumination algorithms for environments
including participating media.

The generation of physically accurate images of participating media is
an extremely challenging computational problem. Some difficulties arise
when treating light propagation in this type of environments. For example,
interaction phenomena take place not only in the medium boundaries but
within any point of the medium. Therefore, optical properties in each point
of the medium have to be known, and not only radiances on surfaces, but
source radiances throughout the space have to be computed. Phenomena like
fluorescence or phosphorescence, which imply a transfer of energy from one
wavelength to another are not significant in the wavelengths corresponding
to the visible range of the light spectrum, so the emission of light is not
considered.

This chapter is divided into five sections, the first explains the most used
methods to render surfaces. The second section explains the approximation
to the physical fresnel term. The third section gets into absorption and
scattering models, and simplifying them to achieve real-time. The fourth
and fifth sections describe rendering methods to generate surface and volume
caustics, respectively.

3.1 Surface rendering

Many rendering techniques have been researched to obtain a final image.
Nowadays, three families of surface rendering techniques coexist:

e Rasterization, which geometrically projects objects in the scene to an
image plane.

e Ray casting, which considers the scene as observed from a specific
point-of-view, calculating the observed image based only on geometry
and very basic optical laws of reflection.

Rendering techniques

e Ray tracing, which is similar to ray casting, but employs more ad-
vanced optical simulation, and usually uses Monte Carlo techniques to
obtain more realistic results at a speed that is often orders of magni-
tude slower.

In this thesis we will consider only rasterization algorithms, in order
to get real-time, but in the next section a brief description of a ray trac-
ing approach is given. After that, the main rasterization approaches are
presented.

3.1.1 Ray tracing

Ray tracing [Whitted, 1980] is a general rendering technique in com-
puter graphics. It is considered as a global illumination technique because
addresses all the type of light interactions that occur in a real world scenario
[Adabala and Manohar, 2002].

In nature light rays are shot from light sources, like the sun or lamps,
which interact with the environment causing new light rays to be created.
This process is iteratively continued for each newly created light ray. For
calculation on the computer this approach is too expensive to achieve real-
time, because it is hardly achievable to calculate all the necessary light rays.
Therefore the basic idea is to shoot rays not from the light sources but from
the viewer into the scene. Rays are shot from the view point through each
pixel of the screen. If the ray hits scene objects new rays are cast or not,
depending on the depth of recursion.

Ray tracing methods are usually slower than scan line algorithms, which
use data coherence to share computations between adjacent pixels. For ray
tracing such an approach can not work because for each ray the calculations
start from the beginning. Depending on the used geometry in the scene the
ray-object intersection calculations can be very expensive, therefore ray trac-
ing is hardly achievable in real time. However, a real time water volume ray
tracer with strict limitations was presented by [Baboud and Décoret, 2006].
It is a field still in research, as seen in the work of [Jiménez et al., 2005,
Gutierrez et al., 2008].

3.1.2 Environment mapping

Environment mapping [Blinn and Newell, 1976] is an old technique that
that simulates the results of ray-tracing. Because environment mapping is
performed using texture mapping hardware, it can obtain global reflection
and lighting results in real-time. KEssentially, it consists of pre-computing
a texture map of the distant environment surrounding and then sampling
texels from this texture during the rendering of a model. With this method
it is possible to map any kind of image onto any type of geometry. Fig.

10

Surface rendering

shows an unfolded cube map, which is the most extended form of environ-
ment mapping.

Figure 3.1: Unfolded cubemap texture [NVIDIA, 2010

The environment of a reflective object is rendered from a point, called
reference point, that is in the vicinity of the reflector. Figure [3.2]illustrates
in 2D an object, an eye position, and a cube map texture that captures
the environment surrounding the object. The incident ray I goes from the
eye to the object’s surface. When I reaches the surface, it is reflected in
the direction R based on the surface normal N. This second ray is the
reflected ray. During the rendering of the reflective object, the radiance
of the reflected ray is looked up from the cubemap texture using only the
3D direction vector of the ray but ignoring its origin and neglecting self
reflections. In other words, environment mapping assumes that the reflected
points are very (infinitely) far, and thus the hit points of the rays become
independent of the ray origin. This makes environment mapping to be not
view dependent, that means that the view point does not influence the way
the texture is mapped to the surface, so it’s not very suitable for local
reflections.

While global reflections are a good representation for objects that are
part of the environment, they are not a good representation for object within
the scene. Local reflections are defined as reflections from objects that can-
not be considered to be infinitely far away. Put differently, reflections where
the position on the reflecting surface in fact does matter, and the reflection
are not only dependent on the angle from where it reflects. A cube map
is capable of representing every possible angle of incoming light in a sin-

11

Rendering techniques

Object

Environment Map

Figure 3.2: Environment mapping

gle point, but the reflection across an entire surface cannot be represented
correctly using it.

[Brennan, 2002] describes a way to overcome this problem by adjusting
the use of the environment map such that it has an finite radius that is close
to the real proximity of the objects. The most precise way of doing this is
by intersecting the reflection or refraction ray with a proxy geometry of the
environment map (e.g. a sphere or a cube), and then use the vector from the
center of the map to the intersection point to index the map, as seen on figure
B:3] For a fixed and simple proxy geometry, the ray intersection calculation
can be executed by the GPU. However, the assumption of a simple and
constant environment geometry creates visible artifacts that make the proxy
geometry apparent during animation.

environmen
surface

=
reference
g
point:o
.

A

proxy hit
shaded pu'mlf\.f'

- real hit
s
point whose
color is used

proxy sphere

Figure 3.3: Use of a proxy sphere, from [Szirmay-Kalos et al., 2009]

12

Surface rendering

To reflect a dynamically changing environment, the environment map
texture must be regenerated each time the environment changes. A dynamic
cube map texture is generated by first render the scene six times from the
point of view of the reflective object. Each view is a different orthogonal 90
degree view frustum corresponding to one of the six faces of the cube map.

3.1.3 Projective texturing mapping

To allow for local reflections on our scene, the most common used ap-
proach is projective texture mapping. It is a technique for generating tex-
ture coordinates dynamically via a projection of 3D geometry into a texture
map. In the same way that screen coordinates are generated by project-
ing 3D geometry onto your 2D screen, 3D geometry can be projected onto
a texture map. The basic algorithm generates reflections for flat surfaces
([Kilgard, 2001]), but for a water surface is better to use the modification
done by [Jensen and Golias, 2001].

reflected viewer

geometry

angle of
incidence
angle of reflection
reflector

image \
geometry',

Figure 3.4: Reflection in a plane, showing the reflected geometry and its
reflection. Source: [Akenine-Moller et al., 2008§]

Figure [3.4] shows that the flat surface reflection acts like a mirror, where
the reflected image of the object is simply the object itself, physically re-
flected through the plane. To render a scene, the objects to be reflected have
to be drawn first, but mirrored along the desired plane. Objects that are
behind the reflector plane should not be reflected, and thus a user-defined
clipping plane is placed so it coincides with the reflecting plane. Then, the
scene is rendered to a texture from the cameras point-of-view. When ren-
dering the mirror plane, the texture can be used to provide the reflection by
using a texture lookup with the actual screen coordinates as texture coordi-
nates. Instead, we add an offset to the texture coordinates that is based on
the intersection of the reflected ray with a plane positioned slightly above

13

Rendering techniques

the surface. This gives a more realistic result, but as the surface can reflect
more of the scene than a flat mirror, there are parts which the reflected color
is unknown. Typically, when rendering to the scene, the camera’s field-of-
view is set slightly higher than for the normal camera, but this only covers
the image’s margins. Go to section to see a more detailed explanation
of this method, as it has been implemeted.

3.2 Fresnel approximation

The computation of the exact Fresnel term is quite expensive even on
the graphics hardware. In real time applications, we need its approximation,
which is much cheaper to evaluate, but is accurate enough not to destroy
image quality.

[Schlick, 1994] gives an approximation of Fresnel reflectance that is fairly
accurate for most substances:

Rr(0;) = Rp(0) + (1 — Rp(0))(1 — cos 6;)° (3.1)

This equation gives reasonably accurate results for most materials, as
seen in figure [3.5] with a cost of 5 multiplications. With this approximation,
Rp(0) is the only parameter that controls the reflectance. Rr(0) is available
for many real-world materials and its value varies between 0 and 1. It is
common to assume the refractive index n; to be 1, as is the index of air.
Using n instead of ng gives the following equation:

re() = (25 1)2 (32)

Other approximations like [Lazdnyi and Szirmay-Kalos, 2005] give bet-
ter results for certain materials, but using a more complex formula which
requires more computational cost.

Although external reflection is the most commonly encountered case,
internal reflection is important as well. Total internal reflection can occur
when a light ray traveling in a transparent material encounters an interface
with another transparent, but less optically dense material, that is nq > ng
in figure[3.6] The Schlick approximation form equation [3.1]is correct for ex-
ternal reflection, and it can be used for internal reflection if the transmission
angle 6; is substituted for 6;.

3.3 Modeling absorption and scattering

For the spectral absorption and scattering functions of fluids we will
be using ocean water models [Preisendorfer, 1976, [Smith and Baker, 1981),
Mobley, 1994]. Apart from the water molecules themselves, natural water

14

Modeling absorption and scattering

RF T T T T T T

fallls llllllollllll.llnl'ol"

08

0.6 £

04

0.8 -

0 e e '

04+

I I I 1 I I 1 1
0 10 20 30 40 50 60 70 30 90
angle of incidence #;

= copper = aluminum -— iron diamond — glass — water

Figure 3.5: Schlick’s approximation of Fresnel reflectance compared to the
correct values for external reflection from a variety of substances. The solid
lines were computed from the full Fresnel equations and the dotted lines are
the result of Schlick’s approximation. Source: [Akenine-Moller et al., 2008]

is made up of a high variety of optically influent constituents which can de-
termine the optical properties of water. For fluid compatibility, we will only
consider inherent optical properties, which depend only on the constituents
of water.

To proceed analytically it is assumed that the medium is throughout
homogeneous, in other words o = const.

Single scattering happens when radiation is only scattered by one local-
ized scattering center. It is very common that scattering centers are grouped
together, and in those cases the radiation may scatter many times, which is
known as multiple scattering. Single scattering represents a high simplifica-
tion with respect to multiple scattering. When the participating medium is
optically thin (i.e. the transmittance through the entire medium is nearly
one) or has low albedo, then the source radiance can be simplified to ignore
multiple scattering within the medium. The albeldo can be written

A=25

Ok

As shown on figure 3.7} assuming single scattering, the ray with direction

15

Rendering techniques

n
A
l‘i\zj/l
: n;
t P ;
-n

Figure 3.6: Internal reflection. Source: [Akenine-Moller et al., 2008]

@ through z the media only receives light from the refracted path defined
by wj;, to the light source, then the integral over €24 collapses to the sin-
gle direction wj). Then, the light reaching the viewpoint from the fluid is
calculated using the following equation

L(w) = / e =g (2)p(x, @,) Li(z,),) dx (3.3)
0

Also, the incoming radiance L; coming from the direction wj; through
the homogeneous media can be evaluated as:

Li(x,3,) = Lye F@)7s, (3.4)

where k(z) is the distance from —xd to the surface of the media in the
direction w,. L, is the amount of radiance coming directly from the light
source inside the fluid. At each position x in the media the distance to the
surface toward the point light k& will change accordingly. If the media is
refractive the direction 1, is the refracted direction from the light source,
in which we have

sin o
xr =
sin 3

where ¢ is a variable that depends on the index of refraction. If the
normal at the intersection of the scattered light ray is assumed to be constant
the relation ¢ will be a constant.

k=

cx (3.5)

If the light source is positioned far away from the ray which is scattering
the light backwards to the eye, it is possible to assume that the direction
toward the light source can be seen as independent of x, thereby having
a constant direction wy(z) = wp. This assumption is valid as long as the
length of integration is short compared to the distance to the light, which

16

Modeling absorption and scattering

Figure 3.7: Calculation of light intensity reaching viewpoint outside the fluid

is the case of the sun. When the light source is positioned far away, it is
also possible to assume that the radiance coming from the light source is
constant along the eye ray L; = const.

With all these simplifications and assumptions, according to [Gath, 2008],
the equation becomes

= —0, L(@) + osp(@)L; | e 03y
0
- p(_’) —ok(1+c)s
= —oxL A———=(1—e L; :
@)+ A") (36)

In the case where the viewpoint is inside the fluid, the equation comes
from the situation depicted on figure [3.8] which becomes

L(w) = /) g (@)p(, @,) Lo,) + Loe ™ (3.7)
0

This expression is very close to equation[3.3] so it can be simplified under
the same assumptions, becoming

L(&;) = —opL(w,) + Af(j:l(l — e TR IFOS L) 4 Lyem 0k (3.8)

If the light is near the viewer we cannot assume that «;(x) = j, and
thus the integral along s cannot be avoided. However, a real-time rendering

17

Rendering techniques

Ay

%

M, A
M,

Figure 3.8: Calculation of light intensity reaching viewpoint inside the fluid

solution is still possible through work by [Sun et al., 2005], which describes
the incoming radiance when the eye and light source both are present in
the same media. To achieve it, they derive an expression by making some
assumptions - isotropic light source, homogeneous media, single scattering
and no volumetric shadows. They arrive to a solution that has no analytical
expression, but which can be stored as a 2D table as it is independent of
the physical parameters of the problem. Later, this work was expended in
[Wyman and Ramsey, 2008] to include volumetric shadows.

3.4 Surface Caustics

Caustics show up as beautiful patterns on diffuse surfaces, formed by
light paths originating at light sources and visiting mirrors or refracting
surfaces. Caustics are the concentration of light, which can “burn”. The
name caustic, in fact, derived from Greek “kaustiko”, which means “burn-
ing”. Caustics are complex patterns of shimmering light that can be seen
on surfaces in presence of reflective or refractive objects, for example those
formed on the floor of a swimming pool in sunlight. A more formal defi-
nition is that whenever multiple rays of light converge on the same point
on a surface, they cause that region to become relatively brighter than its
surrounding regions.

There are two major classes of caustic rendering techniques: image space
and object space. [Ernst et al., 2005] was one of the first object space algo-
rithms, it used the idea of a warped caustic volume. Each of the objects of
the scene is tagged as caustic generator, and/or as a caustic receiver. Caus-
tics are computed in two passes. First, the receivers are rendered to a texture

18

Surface Caustics

Figure 3.9: Surface caustics from real world due to reflection and refraction.

Source |Akenine-Moller et al., 2008]

in their world positions. The second pass consists of drawing a bounding
volume for each caustic volume. Using the positions from the texture, point-
in-volume tests are computed for every visited pixel by a fragment shader.
For points inside the volume, caustic intensity is computed and accumu-
lated in the framebuffer. This process results in light being added where
it focuses. This method works well for the rendering of underwater scenes,
but it introduces a significant geometry load and does not account for the
blocking of caustics rays by a receiver.

[Wyman, 2008] is an image space algorithm that computes caustics in

three passes. In the first pass, the scene is rendered from the light point of
view. Each texel whit a reflective or refractive object will cause the light
to divert and change its direction. This diverted illumination is tracked,
once a diffuse object is hit, the texel location is recorded as having re-
ceived illumination. This image with depth is called the photon buffer.
The second pass treats each location that received light as a point object.
By treating them as small spheres that drop in intensity (splats), are then
transformed to the eye’s viewpoint and rendered to a caustic map. De-
pending on the amount of convergence or divergence of the photons, splats
can be represented smaller or larger. The caustic map is then projected
onto the scene, like a shadow map. This technique extends previous ones
|Szirmay-Kalos et al., 2005, [Wyman and Davis, 2006, |[Shah et al., 2007 by
using a mip-map based approach to treat the photons in a more efficient
hierarchical manner.

19

Rendering techniques

Some of the caustic rendering techniques presented in the next sec-
tion are also able to compute surface caustics, like [Kriiger et al., 2006),
Sun et al., 2008, [Papadopoulos and Papaioannou, 2009)|.

3.5 Volume caustics

Volume caustics (also known as godrays) are caused by the same concen-
tration of light that creates surface caustics. The difference comes from the
fact that in the presence of participating media (fog, clouds, smoke, etc.),
the light is affected by emission, scattering and absorption. This creates
changes in the light’s direction of propagation, and thus the shafts of light
can arrive to an external viewer, who perceives them as volume caustics.

One of the first methods [Jensen and Christensen, 1998] to simulate this
kind of phenomena introduced volume photon maps, which is only used to
represent indirect illumination, that is, it only stores photons that have been
reflected or transmitted by surfaces before interacting with the media, and
photons that have been scattered at least once in the media. This ray casting
approach creates very realistic results, although it’s an off-line approach that
requires several minutes to render one single image.

[Nishita and Nakamae, 1994] demonstrated that porting this effects to
scan line algorithms was possible, proposing a light shaft structure based on
triangles from the reflector/refractor object. This method generates photo-
realistic images, but it also is very geometric intensive. This approach is
similar to the concept employed after by [Ernst et al., 2005], although it
still doesn’t achieve real-time performance.

[Thrke et al., 2007] pre-compute a volumetric representation of a spec-
ularly deformed wavefront, allowing the interactive rendering of specular
effects including complex volumetric caustics. Unfortunately, significant
pre-computation costs preclude application in dynamic scenes. A different
approach is used in [Kriiger et al., 2006], where the authors directly splat
energy to screen pixels using refracted lines as querying primitives. They
get approximate solutions in real time, at the cost of neglecting some of the
effects of the light (like absorption).

The work by [Sun et al., 2008] is capable of rendering the effects of re-
fraction, single scattering, and absorption at interactive rates, even as the
lighting, material properties, geometry, and viewing parameters are chang-
ing. They also use lines between specular object and receiver as rendering
primitives. Here, however, the lines are rasterized into an intermediate il-
lumination volume which enables a correct evaluation using a second ray
marching step. However, they results have limited resolution due to high
memory consumption.

[Papadopoulos and Papaioannou, 2009] is another method that uses lines
as rendering primitives, similar to [Kriiger et al., 2006]. It casts photons

20

Volume caustics

Figure 3.10: Volume and surface caustics from [Hu et al., 2010]

from the light source evenly distributed over a grid. These photons are in-
tersected against the scene geometry, and line primitives are created between
the intersection points. This method is capable of rendering both surface
and volume caustics. They get very good performance and reasonably re-
sults, but only supports homogeneous media.

Recently, [Hu et al., 2010] presented an approach that can be seen as a
combination of [Kriiger et al., 2006] and [Sun et al., 2008]. Its screen-based
approach gives high performance, which combined with physical-based ac-
curacy gives good real-time results, but it still has some limitations, mainly
due to its screen-based approach.

21

22

Implementation

4.1 Computer graphics using OpenGL

This section will give a brief introduction to OpenGL, a standard spec-
ification that defines a cross-platform API language for producing 2D and
3D graphics. In a more detailed vision, OpenGL is considered a state ma-
chine. The basic operation of OpenGL’s state machine, that receives the
name of Standard Graphics Pipeline, is to receive primitives points, lines
and polygons and to convert them into pixels shown in the screen display.
Most OpenGL commands either issue primitives to the graphics pipeline, or
configure how the pipeline processes these primitives.

Display
List
‘ Per-Vertex
Operations |
o LA - Per-Fragment
> —‘ Evaluator H Primitive RastenzahonH Operaticnes Frame Buffer
Assembly

Texture
Memory

P o Pixel
Operations |4

Figure 4.1: Simplified version of the Graphics Pipeline Process. Source
[OpenGL, 2010]

A brief description of the process in the graphics pipeline is presented in
which consists of

1. Evaluation, if necessary, of the polynomial functions which define cer-
tain inputs, like NURBS surfaces, approximating curves and the sur-

23

Implementation

face geometry.

2. Vertex operations, transforming and lighting them depending on their
material. Also clipping non-visible parts of the scene in order to pro-
duce the viewing volume.

3. Rasterization or conversion of the previous information into pixels.
The polygons are represented by the appropriate color by means of
interpolation algorithms.

4. Per-fragment operations, like updating values depending on incom-
ing and previously stored depth values, or color combinations, among
others.

5. Finally, fragments are inserted into the frame buffer.

The purpose of the OpenGL pipeline is to convert three-dimensional
objects into a two-dimensional image. To accomplish the transformation
from three dimensions to two, OpenGL defines several coordinate spaces
and transformations between those spaces. Each coordinate space has some
properties that make it useful for some part of the rendering process.

Three-dimensional object attributes, such as vertex positions and surface
normals, are defined in object space. This coordinate space is one that is
convenient for describing the object that is being modeled. For example, the
origin of this coordinate system (i.e., the point (0, 0, 0)) can be different for
each object. In order to compose a scene that contains a variety of three-
dimensional objects, each of which might be defined in its own unique object
space, we need a common coordinate system. This common coordinate
system is called world space. The units and the origin of this coordinate
system is also arbitrary. After world space is defined, all of the objects in
the scene must be transformed from their own unique object coordinates
into world coordinates through the model transformation matrix.

After the scene has been defined, it is necessary to specify the viewing
parameters. The camera position from which the scene will be viewed has to
be set, as well as other viewing parameters such as the focus point and the
up direction. The viewing parameters are combined in the vieweing matrix.
When multiplied by this matrix, a coordinate is transformed from world
space into eye space. By definition, the origin of this coordinate system is
at the eye position.

Other 3D graphics APIs allow to specify the modeling matrix and the
viewing matrix separately, but OpenGL combines them into a single ma-
trix called the modelview matrix. This matrix transforms coordinates from
object space into eye space, as seen in Figure |4.2

The next step is to define a viewing volume. Is the region of the scene
that will be visible in the image, and its described in the projection ma-
trix. The projection matrix is a transformation that takes the objects in

24

Computer graphics using OpenGL

vertex position

object space

[MODELVIEW Matrix }

eyespace

{ PROJECTION Matrix

clip space

(Perspective Divide J

normalized device coordinate space

‘ Viewport/Depth range scale and bias |

i windaw space

window coordinate

Figure 4.2: OpenGL coordinate spaces and transforms. Source
[OpenGL, 2010]

the viewing volume into clip space, a coordinate space that is suitable for
clipping.

The next stage in the transformation of vertex positions is the per-
spective divide. This operation divides each component of the clip space
coordinate by the homogeneous coordinate w. The resulting x, y, and z
components will range from [1,1]. This space is called the normalized device
coordinate space.

Finally, to get pixel positions, the viewport transformation is needed.
It specifies the mapping from normalized device coordinates into window
coordinates, where = values range from 0 to the width of the window, and
y values range from 0 to the height of the window.

4.1.1 Shader programs

Since version 2.0, OpenGL allowed the programmer to replace the fixed-
function pipeline with vertex and fragment shaders, and later the geometry
shaders were introduced.

A vertex shader is responsible of computing the final 3D vertex position,
with the peculiarity of knowing nothing about other vertices. Geometry
shaders are executed after vertex shaders, and their input is a whole primi-
tive (that is, vertex-relation information, and possibly adjacency information

25

Implementation

t00). These shaders can emit zero or more primitives as output, which will
be passed to the fragment shader. The fragment shader, also known as
pixel shader, defines the final color of a fragment (a potential pixel) from
illumination, material and texture properties.

Shaders are written in GLSL (OpenGL Shading Language), a high level
shading language based on the C programming language. The language has
a rich set of types, including vector and matrix types to make code more
concise for typical 3D operations. A special set of type qualifiers manages
the unique forms of input and output needed by the shaders. The attibute,
uniform and varying qualifiers specify what type of input or output a vari-
able serves. Attribute variables communicate frequently changing values
from the application to a vertex shader, uniform variables comunicate in-
frequently changing values from the application to any shader, and varying
variables communicate interpolated values between shaders. GLSL also adds
some built-in variables that begin with the reserved prefix “gl_” in order to
access existing OpenGL state and to communicate with the fixed function-
ality. For instance, shader can access built-in uniform variables that contain
state values that are readily available within the current rendering context,
like gl ModelViewMatrix for obtaining the current modelview matrix. The
vertex shader must write the variable gl Position in order to provide nec-
essary information to the fixed functionality stages. A geometry shader has
to call the functions EmitVertex() and EndPrimitive() depending on the
number and type of primitives it outputs. The fragment shader typically
writes gl _FragColor and/or gl FragDepth, or gl FragData[i] in case of
multiple render targets.

To use a shader, shader source code is first loaded into a shader object
and then compiled. One or more shader objects are then attached to a pro-
gram object. A program object is then linked, which generates executable
code from all the compiled shader objects attached to the program. When a
linked program object is used as the current program object, the executable
code for the vertex shaders it contains is used to process vertices, and frag-
ment shaders affect the processing of fragments during rasterization. If the
program object does not have one of the types of shaders, or no program
object is currently in use, the fixed-function method for that type of shader
is used instead.

4.1.2 Framebuffer Objects

Framebuffers objects, known as FBOs, is an extension to OpenGL that
allows to divert the rendering away from the window’s framebuffer to one
or more created offscreen framebuffers. Offscreen means that the content of
the framebuffer is not visible until is first copied into the original window.
Is similar to rendering to the back buffer, which is not visible until swapped.

FBOs have special characteristics that makes them interesting during

26

Above/under fluid division

the rendering:

e F'BOs are not limited to the window resolution.

e Textures can be attached to FBOs, allowing direct rendering to tex-
tures without an explicit copy.

e FBOs can contain multiple color buffers, which can be written to simul-
taneously from a fragment shader, known as multiple render targets.

The FBOs have two main uses: the post-processing of rendered images,
and composition between different scenes.

4.2 Above/under fluid division

To the best of our knowledge, the division of a scene to separate fluid
rendering between above and under it has never been explicitly proposed or
evaluated. Previous methods only consider one of these situations, while we
want to be able to change between media. To solve this problem, we have
developed a technique that uses the stencil buffer, similar to stencil shadow
volumes, in order to differentiate between above and under the fluid. Shadow
volumes [Crow, 1977] is an old technique to add shadows into a rendered
scene, it divides the virtual world in two: areas that are in shadow and
areas that are not.

The stencil buffer [Neider et al., 1997] is an extra buffer of the computer
graphics hardware, besides the color buffer and the depth buffer. The buffer
is per pixel, and works on integer values, usually with a depth of one byte
per pixel. The stencil function controls whether a fragment is discarded or
not by the stencil test, and the stencil operation determines how the stencil
buffer is updated as a result of that test, so it can be used to limit the area
of rendering. Stencil buffer actions are part of OpenGL’s fragment oper-
ations, it occurs immediately after the alpha test, and immediately before
the depth test. Whether a stencil operation for a given fragment passes or
fails has nothing to do with the color or depth value of the fragment. The
stencil operation is a comparison between the value in the stencil buffer for
the fragment’s destination pixel and the stencil reference value. The value
in the stencil planes is bitwise AND-ed with mask and with the reference
value before the comparison is applied. The reference value, the compari-
son function, and the comparison mask are set by glStencilFunc(). The
available comparison functions are listed in Table

If the stencil test fails, the fragment is discarded (the color and depth
values for that pixel remain unchanged) and the stencil operation associated
with the stencil test failing is applied to that stencil value. If the stencil
test passes, then the depth test is applied. If the depth test passes (or if

27

Implementation

Comparison | Comparison test between reference and stencil
value

GL_NEVER Always fails

GL_ALWAYS Always passes

GL_LESS Passes if reference value is less than stencil buffer

GL_LEQUAL Passes if reference value is less than or equal to
the stencil buffer

GL_EQUAL Passes if reference value is equal to the stencil
buffer

GL_GEQUAL Passes if reference value is greater than or equal
to the stencil buffer

GL_GREATER | Passes if reference value is greater than the sten-
cil buffer

GL_NOTEQUAL | Passes if reference value is not equal to the sten-
cil buffer

Table 4.1: Stencil buffer comparisons

depth testing is disabled or if the visual does not have a depth buffer), the
fragment continues on through the pixel pipeline, and the stencil operation
corresponding to both stencil and depth passing is applied to the stencil
value for that pixel. If the depth test fails, the stencil operation set for
stencil passing but depth failing is applied to the pixel’s stencil value. Thus,
the stencil test controls which fragments continue towards the framebuffer,
and the stencil operation controls how the stencil buffer is updated by the
results of both the stencil test and the depth test. The available stencil
operations are presented in Table which are set by glStencilOp().

GL_KEEP Keeps stencil value unchanged

GL_ZERO Sets stencil value to 0

GL_REPLACE | Replaces stencil value by stencil reference value

GL_INCR Increments the current stencil buffer value

GL_DECR Decrements the current stencil buffer value.
Clamps to 0

GL_INVERT | Bitwise inverts the current stencil buffer value

Table 4.2: Stencil buffer operations

Writes to the stencil buffer can be disabled and enabled per bit by
glStencilMask(). This allows an application to apply stencil tests without
the results affecting the stencil values.

The developed technique uses the stencil buffer to divide the scene in
two with an accuracy to the pixel. First, we assume that the fluid has its
normals pointing outside the volume. A first solution would be just to use

28

Above/under fluid division

the facing to determine the division, being inside the volume when back-
facing, and outside when front-facing. But if we have other objects inside
the fluid volume this approach is not valid, as it would classify as outside
the volume the pixels within the object. Another solution consists of simply
rendering a color mask depending on the facing when rendering the volume.
This allows to separate the scene, but we implemented a similar technique
that permits to separate the rendering into different stages to get a clearer
code, not for performance reasons. Our solution makes two passes of the
fluid volume, and thus are not affected by the other objects of the scene. As
in shadow volumes, we render the front and back surfaces of the volume in
separate passes. If we are looking at the interior of the volume all the faces
will be backwards, or forward if we are looking at the exterior. Then, we
need several rendering passes of the scene to complete the process:

1. First pass, increment value if it is the internal part of the volume.
2. Second pass, decrement value if it is the external part of the volume.

3. Third pass divided into two:

e Render scene outside the volume.

e Render scene inside the volume.

In a more detailed view, the steps of each pass are the presented. First
pass:

1. Disable writing to the depth and color buffers.
2. Enable stencil buffer.
3. Use front-face culling.

4. Set the stencil operation to increment on depth pass. Stencil function
is set to always pass.

5. Render fluid volume
Second pass:
1. Use back-face culling.

2. Set the stencil operation to decrement on depth pass. Stencil function
is set to always pass.

3. Render fluid volume

After this is accomplished, the stencil buffer has 0 in the positions looking
outside the volume, and 1 where looking inside. Now that we have the
division of the scene we can render it normally. Third pass:

29

Implementation

1. Enable writing to the depth and color buffers.

2. Set stencil function to pass if value is 0. Stencil operation keeps the
values.

3. Render objects outside the volume.

4. Set stencil function to pass if value is 1. Stencil operation keeps the
values.

5. Render objects inside the volume.

During the third pass it is possible that we do not know if an object is
inside or outside the volume, or even it might be on both. In this case, we
have to render twice the object, which increases the rendering time.

Although this approach requires several rendering passes, they are not
as costly as full-rendering passes. The first two passes only render the fluid
volume, not the whole scene, and they have disabled writing to the depth
and color buffers, which also improves efficiency.

4.3 Light rendering

As mentioned in section the Fresnel reflectance term is essential
to achieve realistic shading of water. It is recommended to use the Fresnel
term on a per-fragment basis as it can change quite rapidly. The Fresnel
term is calculated using the formula implemented on a fragment shader
with the following function

void fresnel(in vec3 incom, in vec3 normal, in bool internal, in float index,
out float reflectance, out float refracted_angle)

{
float eta;
if (internal)
{
eta = index;
}
else
{
eta = 1.0/index;
}

float rf = pow((index - 1.0)/(index + 1.0),2.0);

float cos_thetal = dot(normal, incom);

float cos_theta2 = sqrt(1.0 - (pow(eta,2.0) * (1.0 - pow(cos_thetal,2.0))));
float cos_theta_slope = dot(normal,vec3(0,0,1));

refracted_angle = 3.141592 + (acos(cos_theta2) - acos(cos_theta_slope));

reflectance = rf + (1.0 - rf) * pow((1.0 - abs(cos_thetal)),5.0);

where the incoming ray and the normal have to be in the same transfor-
mation space.

30

Surface rendering

Light attenuation can vary with wavelength, producing visually com-
pelling chromatic scales. Ideally, the color spectrum has to be discretized
and computations must be done per wavelength. Using only the three com-
ponents of the RGB color space gives an appropriate approximation. This
is done by computing the attenuation color per wavelength:

L(d,z) = (Lg(d,z), Lg(d, z), Lp(d, z))

and combining it component-wise with the incoming colors. Absorption
and scattering coefficients per wavelength can be found on oceanographic
bibliography like [Preisendorfer, 1976, Mobley, 1994], if we are simulating
water. In the case of other fluids, the parameters can be found on related
papers.

The following fragment shader gets the reflected and refracted colors
from the scene, and using the equation and the Fresnel function obtains
the final color.

void main(void)
{
vec4 refraction_color;
float fresnelR, angle, depth;

vec3 attenuation = _underwaterAbsortion + _underwaterScattering;
vec3 albeldo = _underwaterScattering / attenuation;

vecd reflection_color = computeReflectionColor();
computeRefractionColor(refraction_color,depth);

//calculate fresnel
fresnel(view, normal, false, index, fresnelR, angle);

refraction_color.rgb = -attenuation * refraction_color.rgb +
(albeldo / 2.0) * (1.0 - light_in * exp(-attenuation*2.0%
depth-gl_FragCoord.z*zFar)) ;

vecd final_color = mix(refraction_color,reflection_color,fresnelR);

gl_FragColor = final_color;

4.4 Surface rendering

The implemented projective texture mapping first stores the reflected
and refracted environment in different framebuffer objects. The refracted
FBO also stores the depth in order to retrieve the distance from the bottom.
In this passes, all the objects from the scene excluding the fluid itself are
rendered. During the reflection pass, all the objects are mirrored so they
appear upside down in the reflection.

Once we have the textures rendered, we have to send to the GPU the
reflective surface and all the parameters that the shader needs. The resulting
vertex shader is the following;:

31

Implementation

void rayIntersection(in vec4 plane, in vec3 origin,
in vec3 dir, out vec3 intersection)

{
float dNV = dot(plane.xyz, dir);
float t = -(dot(plane.xyz, origin) + plane.z) / dNV;
intersection = origin + (dir * t);

}

void main(void)
{
mat4 bias = mat4(0.5, 0.0, 0.0, 0.0

0.0, 0.5, 0.0, 0.0,
0.0, 0.0, 0.5, 0.0,
0.5, 0.5, 0.5, 1.0);
vec3 intersection;
vec3 dir = normalize(gl_Vertex.xyz - _eyePosition.xzy);

normal = normalize(gl_NormalMatrix * gl_Normal);

vec3 reflection = reflect(dir, normalize(gl_Normal));
vec3 refraction = refract(dir, normalize(gl_Normal), eta);

rayIntersection(plane_under, gl_Vertex.xyz, refraction, intersection);
waterRefrTex = bias * gl_ModelViewProjectionMatrix *
vec4(intersection.xyz,gl_Vertex.w);

rayIntersection(plane_above, gl_Vertex.xyz,
vec3(reflection.xy,refraction.z), intersection);

waterReflTex = bias * gl_ModelViewProjectionMatrix *
vec4(intersection.xyz,gl_Vertex.w);

view = normalize(vec3(gl_ModelViewMatrix * gl_Vertex));

gl_Position = ftransform();

The texture coordinates are computed and passed to the fragment shader
via varying. The reflection texture coordinate is computed from the inter-
section of the reflected ray in world space with a plane situated above the
surface. The refracted texture coordinate is computed in a similar way, but
with a plane situated under the surface. The bias matrix is needed in order
to change the coordinates from the range [-1,1] to the range [0,1] used by
the textures. Other computed values are passed to the fragment shader for
its own calculations.

The code which computes the reflected and refracted colors consists of

vec4 computeReflectionColor ()

{
//get projective texcoords
vec4d tmp = vec4(1.0 / waterReflTex.w);
vec4 projCoord = waterReflTex * tmp;
projCoord = clamp(projCoord, 0.001, 0.999);

//load reflection

vecd refl = texture2DProj(water_reflection, projCoord) ;
return refl;

32

Surface caustics

}
void computeRefractionColor(out vec4 refr, out float depth)
{

//get projective texcoords

vecd tmp = vec4(1.0 / waterRefrTex.w);

vecd4 projCoord = waterRefrTex * tmp;

projCoord = clamp(projCoord, 0.001, 0.999);

//load refraction and depth texture

depth = texture2DProj(_depthScene, projCoord).x;

refr = texture2DProj(water_refraction, projCoord);
}

4.5 Surface caustics

Recent research developments have introduced a new image-space tech-
nique for rendering caustics in real-time entitled “Realistic Real-time Under-
water Caustics and Godrays”. We have decided to implement this technique
because it gets better performance results than previous ones and its easier
to implement. It only supports homogeneous media, but our fluids are in
fact homogeneous. This section explains the technique and a stepwise guide
of how has been implemented. The presented steps are different from those
of the paper, as it has been modified to allow for a non-planar refractive ge-
ometry, because the original paper [Papadopoulos and Papaioannou, 2009]
works with a planar surface and simulates water movement generating nor-
mals through a noise function.

Light source
Shader-generated point i\

\

Original
point

Figure 4.3: The process followed to cast photons. Source
|Papadopoulos and Papaioannou, 2009]

33

Implementation

The algorithm is conceptually quite simple and intuitive. It starts by
casting photons from the light source evenly distributed over a grid. These
photons are intersected against the refractive object to find the refracted
photon. The intersection point of the refracted ray with the scene geometry
is computed, and point primitives of variable size are created at the final
position. The emitted point primitives are then rasterized and added to
the final image. Figure shows a schematic of the algorithm that finds
the intersection points. Following is a high-level overview of the rendering
pipeline:

1. Obtain depth and surface normals of the refractive object. The refrac-
tive object is rendered to texture from the lights view. The surface
normals in world space and depth are output for each pixel. These
textures are used with a grid of vertices of equal resolution, such that
each vertex maps to a pixel on the texture. The vertex grid is used
for the remainder of the algorithm in place of the refractive object.

2. Obtain 3D positions of the receiver geometry. The receiver geometry
is rendered to a positions texture from the lights view. 3D world
coordinates are output for each pixel instead of color. This positions
texture is used for ray-intersection estimation in the next step.

3. Cast a regular photon grid from the light’s view. An array of points is
sent to the GPU in the light’s canonical screen space to simulate the
emission of photons.

4. A geometry shader tesselates each grid cell to produce the desired
number of points, ensuring a dense photon distribution. The geometry
shader also performs the refraction and emitts the final points.

5. The emitted point primitives are then rasterized and filtered to avoid
aliasing in the low intensity areas.

Steps 1 and 2 are pretty straightforward, consisting only on FBO opera-
tions and simple shaders programs which output the interpolated 3D world
positions instead of color. In step 3, the photon grid is created and ini-
tializated with a low resolution of points in the light’s screen space, with
coordinates ranging from -1.0 to 1.0. Then, using the geometry shader, each
grid cell is subdivided to increment the number of photons. Now that the
photon vertex grid has been setup, we need to determine the positions where
the light rays intersect with the refractive object. We can do that by using
the depth texture from step 1, transforming a point in light’s screen space
to world space. Using the surface normals texture we can also retrieve the
normal in world space for that surface point, which allow us to perform the

34

Surface caustics

refraction of the emitted light ray. Next, we need to compute the intersec-
tion points of the refracted light rays with the scene geometry to determine
where the caustics will form.

The used method to find the intersection point is a variant of the Newton-
Raphson method proposed in [Shah et al., 2007], which converges faster
than others. The intersection estimation algorithm utilizes the positions
texture rendered in the second step. A schematic illustration of the proce-
dure is shown in Figure [f.4] Let v be the position of the surface intersection
and 7 the refracted light vector. Points along the refracted ray are thus
defined as P = v+ d - ¥. An initial value of 1 is assigned to d and a new po-
sition, Pp, is computed. P; is then projected into the lights view space and
used to look up the positions texture. The distance, d, between v and the
looked up position is used as an estimate value for d to obtain a new point,
P,. Finally, P, is projected in to the lights view space and the positions
texture is looked up once more to obtain the estimated intersection point.

normal
\"
+
’ r
r ¢
ti 'l II)I
b 1
4 1
1

P1 projection final estimate

Figure 4.4: Diagram of the estimation intersection alghorithm. Source:
[Shah et al., 2007]

The input parameters to the algorithm are respectively: pos, the origin
of the refracted ray; dir, the direction of the refracted ray; m VP, the lights
View-Projection matrix; posTer, the receiver geometry positions texture;
num_iter, the desired number of iterations.

vec2 getTC(mat4 mVP, vec3 pos)

{
vecd texpos = mVP * vec4(pos,1.0);
texpos = texpos / texpos.w;
vec2 tc = vec2(0.5*(texpos.xy)+vec2(0.5,0.5));
return tc;
}

float rayGeoNP(vec3 pos, vec3 dir, mat4 mVP, sampler2D posTex, int num_iter)
{
float eps = 0.1;

35

Implementation

vec2 tc = vec2(0.0,0.0);
// initial guess
float x_k = 1.0;
for(int i=0;i<num_iter;i++)
{
// £(x_k)
vec3 pos_p = pos + dir*x_k;
tc = getTC(mVP, pos_p);
vec4 newPosl = texture2D(posTex, tc);
newPosl = newPosl / newPosl.w;
x_k = distance(newPosl.xyz, pos_p);
}

return x_Kk;

Generally, each successive iteration increases the accuracy of the approx-
imation. However, for the purpose of rendering caustics just a single itera-
tion is sufficient. Once the intersection point is found, it is transformed into
camera eye space coordinates. They are rendered using additive blending
with their size corresponding to their screen space coverage, so when several
refracted light rays intersect at the same point, multiple light deposits will
be accumulated in that region causing it to get brighter and thus forming
caustics. If all points emitted have a constant size, then the projection of
the distant point primitives would overlap on the view plane, resulting in
much brighter caustics than the ones close to the camera. The solution to
this issue is to regulate the size of the points based on their distance from
the camera, with smaller points close to the camera and greater for distant
ones.

The code of the geometry shader that perform all these operations is the
following:

void main()

{
float wDepth = shadow2D(_waterDepth,
vec3(0.5%(gl_PositionIn[0].xy)+vec2(0.5,0.5),1.0)).x;
if (wDepth < 1.0)
{

float s 2;
for(int i = 0; i < s; i++)
{

for(int j = 0; j < s; j++)

{
gl_PositionIn[0];
* _photonDist/s;
* _photonDist/s;

vec4 position =
position.x += i
position.y += j

//to world space
vecd ri = normalize(gl_ModelViewProjectionMatrixInverse * position);
vec4 water_intersection = gl_ModelViewProjectionMatrixInverse
* vec4(position.xy,wDepth*2-1,1.0);
water_intersection = water_intersection / water_intersection.w;

//find normal in world space

vecd normal = texture2D(_waterNormals, vec2(0.5%(position.xy)
+vec2(0.5,0.5)));

36

Surface caustics

//refraction
vec3 rs = refract(ri.xyz,normalize(normal.xzy),eta);
rs = normalize(rs);

//estimated intersection point
float d = rayGeoNP(water_intersection.xyz,
rs,gl_ModelViewProjectionMatrix,_scenePos,1);

//scene intersection

vecd pi = vec4(water_intersection.xyz + rs * d,1.0);
vec2 tc = getTC(gl_ModelViewProjectionMatrix, pi.xyz);
vecd final_pos = texture2D(_scenePos, tc);

final_pos = final_pos / final_pos.w;

//point size regulation
float smin = 2.0;
float smax = 55.0;

float a = smax - (zFar * (smax - smin)) / (zFar - zNear);
float b = (zNear * zFar * (smax - smin)) / (zFar - zNear);
float distPointViewer = distance(pi.xyz,_cameraPosition);

//to camera screen space

gl_PointSize = a + b / distPointViewer;

vec4 final_position = _cameraProjectionMatrix * _cameraViewMatrix
* final_pos;

gl_Position = final_position;

EmitVertex();

EndPrimitive();

Finally, the fragment shader checks if the rasterized point is visible from
the camera’s view, discarding it if not. It also computes the final intensity
value of the photon according to the formula

L; = Lye %4 (4.1)

where d is the distance of the photon from the water surface. It doesn’t
take into account the distance travelled to the viewer, as it is already handled
via the point size regulation.

After these steps, the resulting image can display some aliasing in the
areas with a low light intensity. A low pass filter, a gaussian blur, is applied
to avoid it. The filtering requires 9 texture samples per pixel:

vecd blur(void)
{
vec4 sample[9];

vec2 pixelSize = 1.0/_texSize;
vec2 texCoord = gl_TexCoord[0].st;

sample[0] = texture2D(_caustics, texCoord + vec2(-pixelSize.x,-pixelSize.y));
sample[1] = texture2D(_caustics, texCoord + vec2(-pixelSize.x,0.0));
sample[2] = texture2D(_caustics, texCoord + vec2(-pixelSize.x,pixelSize.y));

37

Implementation

sample[3] = texture2D(_caustics, texCoord + vec2(0.0,-pixelSize.y));
sample[4] = texture2D(_caustics, texCoord + vec2(0.0,0.0));

sample[5] = texture2D(_caustics, texCoord + vec2(0.0,pixelSize.y));

sample [6] texture2D(_caustics, texCoord + vec2(pixelSize.x,-pixelSize.y));

+

sample[7] = texture2D(_caustics, texCoord vec2(pixelSize.x,0.0));
sample[8] = texture2D(_caustics, texCoord + vec2(pixelSize.x,pixelSize.y));

// Gaussian kernel

/121
// 242 /16
/121

return (sample[0] + (2.0*sample[1]) + sample[2] +
(2.0*sample[3]) + (4.0*sample[4]) + (2.0xsample[5]) +
sample[6] + (2.0*sample[7]) + sample[8]) / 16.0;

4.6 Volume caustics

The technique of volume caustics uses most of the work done in the pre-
vious section, as the two implementations are very close and are part of the
same work [Papadopoulos and Papaioannou, 2009]. All the needed buffers
and computations are exactly equal than in the case of surface caustics, ex-
cept for the primitives emitted by the geometry shader. Instead of emitting
point primitives, line primitives are created from the fluid intersection point
to the scene intersection point. The main difference lies in the formula that
produces the final intensity value per godray fragment, which is

Li = Loe e 5p(f) (4.2)

where p(6) is the phase function, d is the distance of the photon from
the water surface, and s is the distance from the camera.

38

Results

5.1 Evaluation

The final tests were performed on a system with an Intel Core 2 Duo
processor running at 1.86GHz, with 2 gigabytes of RAM and NVidia GeForce
8800 GTX GPU with 128 stream processors. The main window viewport
resolution was 800 x 600, the caustic and godray buffers were 400 x 300,
and the grid for caustics and godrays were 700 x 700 x 4 and 200 x 200 x
4 photons respectively. The volumetric nature of the godray effect requires
a smaller amount of cast photons when compared to the caustic effect in
order to achieve satisfactory detail.

The rendered scene consists of a surface with a resolution of 128 x 128
vertices simulated using FFT, an underwater object (a dolphin) and limiting
walls. With this configuration, the programs achieves a frame rate of 35
fps. The above and under fluid surface rendering takes 3,086 and 2,444
milliseconds respectively, with a combined frame rate of 160 fps. Surface
caustics rendering needs 14,492 ms, while volume caustics require 5,882 ms.
Using all caustic rendering effects only, the application achieves 50 frames
per second.

The simulated fluid uses absorption and scattering coefficients for pure
water extracted from [Premoze and Ashikhmin, 2001]. Although naturally
clear, water can present other particles suspended on it that change its ap-
pearance. Parameters such as phytoplankton concentration are not handled
by our implementation, and thus our results for water can differ from real
natural water. Physical simplifications made on section like single scat-
tering neither help towards realistic appearance, but we still get good results
about water color as seen on figure [5.1

A comparison with different attenuation coefficients is available in fig-
ure [5.2 The absorption parameters for pure water at 720, 550 and 450
nanometers (Red, green and blue, respectively) are (1.169,0.0638,0.0150).
The parameters for the scattering coefficient at the same wavelengths are
presented in table

39

Results

Figure 5.1: Render of a clear ocean surface.

Figure 5.2: Render of coastal ocean and turbid harbor, respectively.

40

FEvaluation

Clear ocean (0.028, 0.035, 0.039)
Coastal ocean | (0.17, 0.20, 0.234)
Turbid harbor | (0.71, 0.82, 0.96)

Table 5.1: Different scattering coefficients used

Reflection and refraction colors can be observed in figures and
Notice how the dolphin is visible in the second image. The method works
as expected, changing the texture coordinates accordingly with the water
movement. But it still has some issues that need to be addressed, as it
doesn’t handle precisely colors at the border of the viewport, specially when
the camera is situated near the surface. This problem comes from the fact
that the reflected or refracted color may not be available from the rendered
textures.

Figure 5.3: Render of underwater reflection and refraction. Attenuation is
not calculated for color clarity.

Scene division can be seen on figure 5.5 where volumetric caustics can
also be observed. Figure 5.6|shows an underwater image where volume and
surface caustics are more visible, as well as light attenuation. Although it
cannot be observed in a static image, light decreases as deeper the viewer
goes. Caustics don’t show up as very realistic, but it’s expected from the
physical simplicity of the employed method. Caustic patterns are not very
sharpened, mainly due to a low variance of the surface normals.

We can compare our application with other available water rendering ap-

41

Results

Figure 5.4: Reflection and refraction are mixed according to fresnel term.

Figure 5.5: Simultaneous rendering of above and under water.

42

FEvaluation

Figure 5.6: Underwater rendering with caustics.

plications, such as Hydrax [Hydrax, 2010] and osgOcean [osgOcean, 2009].
They are add-ons to open source 3D graphics engines, Ogre and OpenScene-

Graph respectively. Although our application is not specifically oriented to
ocean rendering, we can see on table that similar techniques are used.
Our techniques are almost the same as the ones used by Hydrax, but com-
pared to osgOcean gets better results, as the latter doesn’t take into account
the movement of the surface in the reflections and refractions. It neither di-
vides the scene, it just applies the underwater shader from a defined height,
without taking into account the waves.

Hydrax osgOcean Our application
Reflections and | Projective tex- | Planar textures Projective tex-
refractions tures tures
Fresnel term Yes Yes Yes
Scene division Per-pixel Based on eye po- | Per-pixel

sition

Caustics Yes Yes Yes
Others Foam Foam -

Table 5.2: Techniques used according to the program.

43

Results

5.2

Future work

Although the main goals have been achieved, there is still lots of work
to do. Some of the areas that need improving are listed below.

5.3

The used light interaction model has been derived from physical mod-
els, but it has been simplified in order to achieve an analytical ex-
pression. Use of stored textures with pre-computed values, as in
[Sun et al., 2005], could improve the realism while maintaining inter-
active rates.

We have not addressed the use of a bidirectional reflectance distribu-
tion function (BRDF) to reflect sunlight. A suitable approach in the
case of ocean rendering can be found on [Bruneton et al., 2010], which
presents an accurate analytical BRDF model.

The implemented caustics methods could be improved to reach more
realistic results, or use other techniques presented in sections [3.4) and
3.5

Conclusions

In this thesis, many computer graphic and physical fields have been
touched for the aim of building a real-time fluid rendering application:

Basic light physics concepts have been reviewed.
Fluid simulation techniques have been introduced.
Nowadays rendering techniques have been researched.
Physically-based rendering models have been studied.

An application using all previous steps has been implemented.

Fluid rendering has become more interesting as newer generations of
graphics hardware has made it possible to approximate the shading in an
increasingly realistic manner. Fluids like water has often been troublesome
as it did not directly apply to the standard lighting models that were tradi-
tionally used. Processing power and rendering techniques have improved to
the degree that a surface no longer has to be approximated as a flat plane,
it can be rendered with very high detail. It is feasible to consider per-
fragment shading and it is viable to provide reasonably realistic reflections

and refractions.

44

46

Bibliography

[Adabala and Manohar, 2002] Adabala, N. and Manohar, S. (2002). Tech-
niques for realistic visualization of fluids: A survey. Computer Graphics
Forum, 21:65-82.

[Akenine-Moller et al., 2008] Akenine-Moller, T., Haines, E., and Hoffman,
N. (2008). Real-time rendering. Third Edition. Ak Peters Series. A.K.
Peters.

[Baboud and Décoret, 2006] Baboud, L. and Décoret, X. (2006). Realistic
water volumes in real-time. Furographics Workshop on Natural Phenom-
ena.

[Batchelor, 2000] Batchelor, G. K. (2000). An Introduction to Fluid Dy-
namics. Cambridge University Press.

[Blinn and Newell, 1976] Blinn, J. F. and Newell, M. E. (1976). Texture and
reflection in computer generated images. Communications of the ACM
19, 10:542-547.

[Bohren and Huffman, 1983] Bohren, C. F. and Huffman, D. R. (1983). Ab-
sorption and scattering of light by small particles. Wiley-Interscience, New
York.

[Born and Wolf, 1999] Born, M. and Wolf, E. (1999). Principles of Optics:
Electromagnetic Theory of Propagation, Interference and Diffraction of
Light. Cambridge University Press.

[Brennan, 2002] Brennan, C. (2002). Accurate environment mapped reflec-
tions and refractions by adjusting for object distance. In Shader X. Engel
W.

[Bruneton et al., 2010] Bruneton, E., Neyret, F., and Holzschuch, N. (2010).
Real-time realistic ocean lighting using seamless transitions from geome-
try to brdf. Computer Graphics Forum, 29:487-496.

47

BIBLIOGRAPHY

[Chandrasekhar, 1960] Chandrasekhar, S. (1960). Radiative Transfer. Dover
Publications, Inc.

[Crow, 1977] Crow, F. C. (1977). Shadow algorithms for computer graphics.
SIGGRAPH Computer Graphics, 11:242-248.

[Ernst et al., 2005] Ernst, M., Akenine-Moller, T., and Jensen, H. W.
(2005). Interactive rendering of caustics using interpolated warped vol-
umes. In GI ’05: Proceedings of Graphics Interface 2005, pages 8796,
University of Waterloo, Ontario, Canada. Canadian Human-Computer
Communications Society.

[Foster and Fedkiw, 2001] Foster, N. and Fedkiw, R. (2001). Practical ani-
mation of liquids. In Proceedings of the 28th annual conference on Com-

puter graphics and interactive techniques, SIGGRAPH ’01, pages 23-30,
New York, NY, USA. ACM.

[Foster and Metaxas, 1997] Foster, N. and Metaxas, D. (1997). Controlling
fluid animation. Computer Graphics International Conference, 0:178.

[Gath, 2008] Gath, J. (2008). Analytic approaches to single scattering in
participating media. http://www.blacksmith-studios.dk.

[Glassner, 1994] Glassner, A. S. (1994). Principles of Digital Image Synthe-
sis. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[Gutierrez et al., 2008] Gutierrez, D., Seron, F. J., Munoz, A., and Anson,
0. (2008). Visualizing underwater ocean optics. Computer Graphics Fo-
rum, 27(2):547-556.

[Hu et al., 2010] Hu, W., Dong, Z., Ihrke, I., Grosch, T., Yuan, G., and Sei-
del, H.-P. (2010). Interactive volume caustics in single-scattering media.
In 18D ’10: Proceedings of the 2010 ACM Siggraph symposium on In-
teractive 8D Graphics and Games, pages 109-117, New York, NY, USA.
ACM.

[Hydrax, 2010] Hydrax (2010). Hydrax web site.
http://www.ogre3d.org/tikiwiki/Hydrax.

[Ihrke et al., 2007] Ihrke, I., Ziegler, G., Tevs, A., Theobalt, C., Magnor,
M., and Seidel, H.-P. (2007). Eikonal rendering: efficient light transport
in refractive objects. ACM Trans. Graph., 26(3):59.

[Jensen and Christensen, 1998] Jensen, H. W. and Christensen, P. H.
(1998). Efficient simulation of light transport in scenes with participating
media using photon maps. In Siggraph ’98: Proceedings of the 25th an-
nual conference on Computer graphics and interactive techniques, pages

311-320, New York, NY, USA. ACM.

48

BIBLIOGRAPHY

[Jensen and Golids, 2001] Jensen, L. S. and Golids, R. (2001). Deep-water
animation and rendering. Proceedings of the Game Developer’s Confer-
ence FEurope.

[Jiménez et al., 2005] Jiménez, J.-R., Myszkowski, K., and Pueyo, X.
(2005). Interactive global illumination in dynamic participating media
using selective photon tracing. In Proceedings of the 21st spring confer-
ence on Computer graphics, SCCG ’05, pages 211-218, New York, NY,
USA. ACM.

[Kilgard, 2001] Kilgard, M. J. (2001). Improving shadows and reflections
via the stencil buffer. nVidia white paper.

[Kriiger et al., 2006] Kriiger, J., Biirger, K., and Westermann, R. (2006).
Interactive screen-space accurate photon tracing on GPUs. In Proc. of
EGSR, pages 319-329.

[Lazanyi and Szirmay-Kalos, 2005] Lazanyi, I. and Szirmay-Kalos, L.
(2005). Fresnel term approximations for metals. WSCG 2005, Short
Papers, pages 77-80.

[Lorensen and Cline, 1987] Lorensen, W. E. and Cline, H. E. (1987). March-
ing cubes: A high resolution 3d surface construction algorithm. SIG-
GRAPH Comput. Graph., 21:163-1609.

[Mastin et al., 1987] Mastin, G., Watterberg, P., and Mareda, J. (1987).
Fourier synthesis of ocean scenes. Computer Graphics and Applications,
IEEE, 7(3):16-23.

[Mobley, 1994] Mobley, C. D. (1994). Light and Water: Radiative Transfer
in Natural Waters. Academic Press, Inc., San Diego.

[Neider et al., 1997] Neider, J., Davis, T., and Woo, M. (1997). OpenGL
Programming Guide. Addison-Wesley.

[Nishita and Nakamae, 1994] Nishita, T. and Nakamae, E. (1994). Method
of displaying optical effects within water using accumulation buffer. In
Siggraph ’94: Proceedings of the 21st annual conference on Computer
graphics and interactive techniques, pages 373-379, New York, NY, USA.
ACM.

INVIDIA, 2010] NVIDIA (2010). Nvidia developer web site.
http://developer.nvidia.com/.

[OpenGL, 2010] OpenGL (2010). Opengl web site. http://www.opengl.org.

[osgOcean, 2009] osgOcean (2009). osgocean web site.
http://code.google.com/p/osgocean.

49

BIBLIOGRAPHY

[Papadopoulos and Papaioannou, 2009] Papadopoulos, C. and Papaioan-
nou, G. (2009). Realistic real-time underwater caustics and godrays. In
Proc. GraphiCon 09, pages 89-95.

[Preisendorfer, 1976] Preisendorfer, R. W. (1976). Hydrologic Optics. In-
troduction, vol. 1. National Technical Information Service, Springfield,
IL.

[Premoze and Ashikhmin, 2001] Premoze, S. and Ashikhmin, M. (2001).
Rendering natural waters. Computer Graphics Forum, 20(4):189-199.

[Schlick, 1994] Schlick, C. (1994). An inexpensive brdf model for physically-
based rendering. Computer Graphics Forum, 13:233-246.

[Shah et al., 2007] Shah, M. A., Konttinen, J., and Pattanaik, S. (2007).
Caustics mapping: An image-space technique for real-time caustics. I[EEE
Transactions on Visualization and Computer Graphics, 13:272-280.

[Smith and Baker, 1981] Smith, R. C. and Baker, K. S. (1981). Optical
properties of the clearest natural waters (200-800 nm). Applied optics,
20(2):177-184.

[Stam, 1999] Stam, J. (1999). Stable fluids. In Proceedings of the 26th
annual conference on Computer graphics and interactive techniques, SIG-
GRAPH 99, pages 121-128, New York, NY, USA. ACM Press/Addison-
Wesley Publishing Co.

[Sun et al., 2005] Sun, B., Ramamoorthi, R., Narasimhan, S. G., and Nayar,
S. K. (2005). A practical analytic single scattering model for real time
rendering. ACM Trans. Graph., 24(3):1040-1049.

[Sun et al., 2008] Sun, X., Zhou, K., Stollnitz, E., Shi, J., and Guo, B.
(2008). Interactive relighting of dynamic refractive objects. In Siggraph
'08: ACM Siggraph 2008 papers, pages 1-9, New York, NY, USA. ACM.

[Szirmay-Kalos et al., 2005] Szirmay-Kalos, L., Aszddi, B., Lazanyi, 1., and
Premecz, M. (2005). Approximate ray-tracing on the gpu with distance
impostors. Computer Graphics Forum, 24:695-704.

[Szirmay-Kalos et al., 2009] Szirmay-Kalos, L., Umenhoffer, T., Patow, G.,
Széesi, L., and Sbert, M. (2009). Specular effects on the gpu: State of the
art. Computer Graphics Forum, 28:1586—-1617.

[Tessendorf, 1999] Tessendorf, J. (1999). Simulating ocean water. In Sig-
graph "99 Course Notes.

[Whitted, 1980] Whitted, T. (1980). An improved illumination model for
shaded display. ACM, 23:343-349.

50

BIBLIOGRAPHY

[Wyman, 2008] Wyman, C. (2008). Hierarchical caustic maps. In 13D "08:
Proceedings of the 2008 symposium on Interactive 3D graphics and games,
pages 163-171, New York, NY, USA. ACM.

[Wyman and Davis, 2006] Wyman, C. and Davis, S. (2006). Interactive
image-space techniques for approximating caustics. In Proceedings of the

2006 symposium on Interactive 3D graphics and games, pages 153-160,
New York, NY, USA. ACM.

[Wyman and Ramsey, 2008] Wyman, C. and Ramsey, S. (2008). Interac-
tive volumetric shadows in participating media with single-scattering. In
Interactive Ray Tracing, 2008. IEEE Symposium, pages 87-92.

o1

	Introduction
	Project overview
	Organization of this document

	Physics background
	Physics of light
	Reflection and refraction
	Fresnel reflectivity and transmissivity

	Optical properties of fluids
	Participating media
	Absorption
	Scattering

	Fluid simulation
	Fast Fourier Transform
	Navier-Stokes equations

	Rendering techniques
	Surface rendering
	Ray tracing
	Environment mapping
	Projective texturing mapping

	Fresnel approximation
	Modeling absorption and scattering
	Surface Caustics
	Volume caustics

	Implementation
	Computer graphics using OpenGL
	Shader programs
	Framebuffer Objects

	Above/under fluid division
	Light rendering
	Surface rendering
	Surface caustics
	Volume caustics

	Results
	Evaluation
	Future work
	Conclusions

	Bibliography

