
Universidade do Minho
Escola de Engenharia
Departamento de Informática

Carlos Peixoto Antunes de Castro

Shallow Waters Simulation

June 2022

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Carlos Peixoto Antunes de Castro

Shallow Waters Simulation

Master dissertation
Integrated Master’s in Informatics Engineering

Dissertation supervised by
António José Borba Ramires Fernandes

June 2022

C O P Y R I G H T A N D T E R M S O F U S E F O R T H I R D PA R T Y W O R K

This dissertation reports on academic work that can be used by third parties as long as the internationally
accepted standards and good practices are respected concerning copyright and related rights.

This work can thereafter be used under the terms established in the license below.

Readers needing authorization conditions not provided for in the indicated licensing should contact the author
through the RepositóriUM of the University of Minho.

L I C E N S E G R A N T E D T O U S E R S O F T H I S W O R K :

CC BY
https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

A C K N O W L E D G E M E N T S

I would like to express my deepest gratitude to my supervisor António Ramires Fernandes for his continuous help
and guidance throughout this work. I would also like to thank my parents for their support and encouragement
during the whole process. Lastly, I extend these words of gratitude to my friends, with whom I shared the many
successes and struggles.

i

S TAT E M E N T O F I N T E G R I T Y

I hereby declare having conducted this academic work with integrity.

I confirm that I have not used plagiarism or any form of undue use of information or falsification of results along
the process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of Minho.

ii

A B S T R A C T

Realistic simulation and rendering of water in real-time is a challenge within the field of computer graphics, as it
is very computationally demanding. A common simulation approach is to reduce the problem from 3D to 2D by
treating the water surface as a 2D heightfield. When simulating 2D fluids, the Shallow Water Equations (SWE)
are often employed, which work under the assumption that the water’s horizontal scale is much greater than it’s
vertical scale.

There are several methods that have been developed or adapted to model the SWE, each with its own advan-
tages and disadvantages. A common solution is to use grid-based methods where there is the classic approach
of solving the equations in a grid, but also the Lattice-Boltzmann Method (LBM) which originated from the field of
statistical physics. Particle based methods have also been used for modeling the SWE, namely as a variation of
the popular Smoothed-Particle Hydrodynamics (SPH) method.

This thesis presents an implementation for real-time simulation and rendering of a heightfield surface water
volume. The water’s behavior is modeled by a grid-based SWE scheme with an efficient single kernel compute
shader implementation.

When it comes to visualizing the water volume created by the simulation, there are a variety of effects that
can contribute to its realism and provide visual cues for its motion. In particular, When considering shallow water,
there are certain features that can be highlighted, such as the refraction of the ground below and corresponding
light attenuation, and the caustics patterns projected on it.

Using the state produced by the simulation, a water surface mesh is rendered, where set of visual effects are
explored. First, the water’s color is defined as a combination of reflected and transmitted light, while using a Cook-
Torrance Bidirectional Reflectance Distribution Function (BRDF) to describe the Sun’s reflection. These results
are then enhanced by data from a separate pass which provides caustics patterns and improved attenuation
computations. Lastly, small-scale details are added to the surface by applying a normal map generated using
noise.

As part of the work, a thorough evaluation of the developed application is performed, providing a showcase of
the results, insight into some of the parameters and options, and performance benchmarks.

K E Y W O R D S Shallow Water Equations, Fluid Simulation, Caustics, Real time, Heightfield

iii

R E S U M O

Simulação e renderização realista de água em tempo real é um desafio dentro do campo de computação gráfica,
visto que é muito computacionalmente exigente. Uma abordagem comum de simulação é de reduzir o problema
de 3D para 2D ao tratar a superfície da água como um campo de alturas 2D. Ao simular fluidos em 2D, é
frequente usar as equações de águas rasas, que funcionam sobre o pressuposto de que a escala horizontal da
água é muito maior que a sua escala vertical.

Há vários métodos que foram desenvolvidos ou adaptados para modelar as equações de águas rasas, cada
uma com as suas vantagens e desvantagens. Uma solução comum é utilizar métodos baseados em grelhas
onde existe a abordagem clássica de resolver as equações numa grelha, mas também existe o método de Lattice
Boltzmann que originou do campo de física estatística. Métodos baseados em partículas também já foram
usados para modelar as equações de águas rasas, nomeadamente como uma variação do popular método de
SPH.

Esta tese apresenta uma implementação para simulação e renderização em tempo real de um volume de
água com uma superfície de campo de alturas. O comportamento da água é modelado por um esquema de
equações de águas rasas baseado na grelha com uma implementação eficiente de um único kernel de compute
shader.

No que toca a visualizar o volume de água criado pela simulação, existe uma variedade de efeitos que podem
contribuir para o seu realismo e fornecer dicas visuais sobre o seu movimento. Ao considerar águas rasas, exis-
tem certas características que podem ser destacadas, como a refração do terreno por baixo e correspondente
atenuação da luz, e padrões de cáusticas projetados nele.

Usando o estado produzido pela simulação, uma malha da superfície da água é renderizada, onde um con-
junto de efeitos visuais são explorados. Em primeiro lugar, a cor da água é definida como uma combinação de
luz refletida e transmitida, sendo que uma BRDF de Cook-Torrance é usada para descrever a reflexão do Sol.
Estes resultados são depois complementados com dados gerados num passo separado que fornece padrões
de cáusticas e melhora as computações de atenuação. Por fim, detalhes de pequena escala são adicionados à
superfície ao aplicar um mapa de normais gerado com ruído.

Como parte do trabalho desenvolvido, é feita uma avaliação detalhada da aplicação desenvolvida, onde é ap-
resentada uma demonstração dos resultados, comentários sobre alguns dos parâmetros e opções, e referências
de desempenho.

PA L AV R A S - C H AV E Equações de Águas Pouco Profundas, Simulação de Fluídos, Cáusticas, Tempo
Real, Campo de Alturas

iv

C O N T E N T S

I I N T R O D U C T O R Y M AT E R I A L

1 I N T R O D U C T I O N 1

1.1 Context 1

1.2 Objectives 2

1.3 Document structure 2

2 S TAT E O F T H E A R T 4

2.1 The Navier-Stokes equations 4

2.1.1 The Momentum Equation 5

2.1.2 The Incompressibility Condition 5

2.2 Shallow water equations 5

2.2.1 Heightfield approximations 5

2.2.2 The shallow water equations 7

2.2.3 Other heightfield methods 8

2.3 Numerical simulation 9

2.3.1 Lagrangian and Eulerian Viewpoints 10

2.3.2 Discretizing in time 11

2.3.3 Boundary Conditions 13

2.4 Fluid solvers 14

2.4.1 Eulerian Solvers 14

2.4.2 Lattice-Boltzmann Method 15

2.4.3 Smoothed-Particle Hydrodynamics 16

2.4.4 Summary 17

2.5 Rendering 19

2.5.1 Water Surface Color 19

2.5.2 Caustics 22

2.5.3 Small-scale details 24

II C O R E O F T H E D I S S E R TAT I O N

3 S I M U L AT I O N 27

3.1 Numerical method 27

v

C O N T E N T S vi

3.1.1 Picard integral formulation for SWE 28

3.1.2 WENO reconstruction 28

3.1.3 Well-balanced treatment of the source term 29

3.1.4 Handling of the wetting/drying processes 30

3.2 Implementation 31

3.2.1 Timestepping 31

3.2.2 Data storage 32

3.2.3 Threading scheme 32

3.2.4 Boundary conditions 35

3.2.5 Algorithm loop 38

3.2.6 Algorithm step 38

3.2.7 Results 40

4 R E N D E R I N G 42

4.1 Rendering Geometry 42

4.2 Water Surface Color 44

4.2.1 Sun reflection 44

4.2.2 Intersecting the heightfield 45

4.2.3 Environment reflection 50

4.2.4 Transmission 51

4.2.5 Overview 54

4.2.6 Results 55

4.3 Caustics 56

4.3.1 Simulation 57

4.3.2 Rendering caustics map 63

4.3.3 Applying the caustics map 64

4.3.4 Algorithm overview 65

4.3.5 Results 65

4.4 Small Scale Details 67

4.4.1 Perlin Noise 67

4.4.2 Cellular Noise 68

4.4.3 Fractal Brownian Motion 68

4.4.4 Domain Warping 69

4.4.5 Using the normal map 70

5 E VA L U AT I O N 74

5.1 Overview 74

5.2 Shallow Water Equations solver 78

C O N T E N T S vii

5.2.1 Grid and cell size comparison 78

5.2.2 Limitations 81

5.2.3 Computation work group sizes 81

5.2.4 Wet only solver 83

5.3 Water rendering 83

5.3.1 Terrain intersection 83

5.3.2 Caustics 84

5.3.3 Small scale details 87

6 C O N C L U S I O N S A N D F U T U R E W O R K 93

6.1 Future work 93

III A P P E N D I C E S

A D E F I N I N G T H E F L U X J A C O B I A N S 106

B W E N O R E C O N S T R U C T I O N P R O C E D U R E 107

b.0.1 Flux splitting 107

b.0.2 Applying the WENO reconstruction 108

b.0.3 WENO step 109

C H I G H A N D L O W - O R D E R F L U X I N T E R P O L AT I O N C O E F F I C I E N T S 111

L I S T O F F I G U R E S

Figure 1 A 3x3 heightfield with one of the nine simulation cells drawn. The value η of each cell

represents the vertical displacement in its center. The cells’ centers are connected to

form triangles for visualization. 6

Figure 2 A fluid volume above terrain where both are represented as a heightfield elevation,

where η denotes the height of the fluid above zero level, b denotes the terrain height

and h denotes the fluid depth, or height above terrain. 7

Figure 3 An example of the difference between linearized (left) and full SWE (right). The

whirlpool is not created in the linearized version (Kellomäki and Saari, 2014). 9

Figure 4 Velocity property represented as a vector on the Eulerian (points in a fixed grid) and

Lagrangian (particles) viewpoints 10

Figure 5 Consider a simple simulation that aims at reproducing a function q(t) (orange line).

The state of the simulation is advanced iteratively, where the estimates are calculated

using the last estimate and slope of the function. With small timesteps (left graph),

the estimates (blue points) approximate the function, but if the timestep is too large

(right graph) it will cause the estimate to completely overshoot the function, potentially

resulting in instability. 12

Figure 6 A comparison between reflecting boundary conditions (top row of pictures), and

absorbing ones (bottom row) (Müller et al., 2008). 14

Figure 7 The BRDF defines the amount of light that is reflected at a surface point p with normal

n from incident direction ωi in the outgoing direction ωo. 20

Figure 8 When entering a participating media, light can be scattered once (left) or multiple

times (right) before exiting the media. 21

Figure 9 Illustration of how the photon flux of a light ray is affected when in a participating

media. 22

Figure 10 Visible caustics caused by perturbations in the water surface. Examples from Yuksel

and Keyser (2009), Parna (2020) and Yang and Ouyang (2021), from left to right

respectively. 22

Figure 11 Water surfaces with small-scale details added through normal mapping. Examples

from Vlachos (2010), Yu et al. (2011) and Ojeda Contreras (2013), from left to right

respectively. 24

viii

L I S T O F F I G U R E S ix

Figure 12 Access of neighboring cells that leads invalid values (example for left boundary of the

x direction, same applies for y). Valid cells colored in green and invalid cells in white.

The valid cells are determined as follows: (1) initial group domain; (2) cells where F̃ is

valid (Equation 22); (3) cells where the Weighted Essentially Non-Oscillatory (WENO)

reconstructions are valid (Equation 29); (4) cells where θ is valid (Equation 73); (5)

cells where the final Un+1 is valid (Equation 26) 33

Figure 13 Illustration of overlapping threads between neighboring groups in a single dimension.

Inner domain cells are colored in green and boundary cells in white. 33

Figure 14 Illustration of the simulation domain within the dispatched compute groups, with a

group highlighted. Each group is composed of its local inner domain (B) and local

boundary cells (A). Similarly, the whole simulation domain is composed of the global

inner domain (C) and global boundary cells (D). There can be threads outside the

global domain (E). 34

Figure 15 One dimension view of the simulation domain near the left boundary. The 4 inner

domain cells closest to the boundary write their data to the mirrored global boundary

cells, denoted by the bottom arrows. The cells’ depths are represented by the blue

columns, and the arrows above it denote the velocity in the displayed dimension. The

signal of this directional momentum/velocity component is changed when written to

the boundary cells. 35

Figure 16 Propagation of data from inner domain cells to boundary cells. Example scenario of

top left corner of a group. The inner domain cells that copy their data to boundary

cells are highlighted in green, the ones that do not are in yellow. The solid arrows

indicate the direction of the packed offsets and the dashed-arrows indicate offsets

that lead to out-of-bounds accesses. At (4, 5) the offsets are (−1,−3), at (5, 5) are

(−3,−3), at (6, 5) are (−5,−3), at (8, 6) are (k,−5) and at (8, 8) are (k, k), with k

being an arbitrarily large number that always leads to out-of-bounds. 36

Figure 17 Diagram of the pipeline of the main rendering loop. 38

Figure 18 3D snapshots of a simulation at t ≈ 0, 1, 2, 3s. The bathymetry is flat and the water

height is set to 8m in the center and 5m everywhere else. Initial velocities are set to 0.

Grid size is 512x512 (including boundary cells) with ∆x = ∆y = 0.1m and maximum

timestep t = 0.01s. 41

Figure 19 3D snapshots of a simulation at t ≈ 0, 1, 5, 10s. The bathymetry is a complex height-

field and the water height is set to 8m in the left column and 0 depth everywhere

else. Initial velocities are set to 0. Grid size is 512x512 (including boundary cells) with

∆x = ∆y = 0.1m and maximum timestep t = 0.01s. 41

Figure 20 Water volume surface and sides rendered as a wireframe 43

Figure 21 Water climb up artifacts visible in dry-wet boundary (left) and same scene with height

averaged from neighbors (right) 43

L I S T O F F I G U R E S x

Figure 22 Visualization of different levels in a maximum mipmap representing an heightfield.

Each texel can be seen as a bounding box over a certain extent of the heightfield

(from Tevs et al. (2008)). 46

Figure 23 The exit point of a ray from a texel is determined by considering two of its edges. Of

the ray’s intersection points with these edges, texExit is the one closest to texEntry,

i.e., with the smaller ∆t. 47

Figure 24 The ray’s entry and exit points at the texel are denoted by a red point, and the

intersection points by a black cross. When testing for intersection, the height value

is compared to either the entry or exit point, depending on whether the ray is going

upwards or downwards, respectively. 48

Figure 25 At the finest level, the ray (denoted in red) is intersected with a linear approximation

of the heightfield (denoted in blue). Even if the ray intersects the texel it can miss the

linear intersection test (left). 48

Figure 26 A reflected ray can intersect the terrain (right), or sample from an environment map

(left). 51

Figure 27 A refracted ray can intersect the terrain (left), or a bounding box where it is refracted

again and samples from an environment map (right). 52

Figure 28 Path traveled by the light inside the water body before it reaches the viewer, repre-

sented by the solid vectors vr and lr. 52

Figure 29 Comparison between an approximated light path, lr, and a more accurate path

computed during caustics simulation, lrc. 53

Figure 30 Comparison between an approximated light path (left) and a more accurate path

computed during caustics simulation (right). A high absorption coefficient is used,

and the caustics’ intensity is not considered for better clarity. 53

Figure 31 Different water tones obtained by varying the extinction coefficient (σt) and diffuse

scattering color (Cscatter). 55

Figure 32 Contribution of each component to the water’s final color. Reflection and transmission

include the Fresnel factor. A normal map is applied to the surface as a way to add

small-scale detail (Section 4.4). 56

Figure 33 Overview of caustics simulation, vertices of a water surface grid emulate photons and

are intersected with the bottom terrain. The typical caustic patterns would be formed

by the triangles such as the one on the left where the rays converge, which results in

a higher light intensity. 57

Figure 34 Diagram of two iterations of the intersection estimation algorithm (left to right). The

light gray dotted line correspond to lookups to the bathymetry texture. 58

Figure 35 Neighborhood of triangles around vertex (2, 2) on a 4× 4 caustics grid. 61

Figure 36 Steps of the caustics simulation performed at each thread. 62

L I S T O F F I G U R E S xi

Figure 37 Example scenario that leads to overlapping triangles and reversed winding order

(highlighted in red). 64

Figure 38 Overview of the caustics algorithm. Render passes are represented by gray boxes,

and the resources used and produced by these passes are represented as orange

(buffers) and blue (textures/images) boxes. The texture’s colors are scaled for better

visualization. 65

Figure 39 Caustics created by multiple waves on the water surface. 66

Figure 40 Caustics created by a normal map (Section 4.4) applied on a flat water surface pierced

by the bottom terrain. 66

Figure 41 Shadowed borders produced by the caustics algorithm, since it only considers incom-

ing light from the water surface. 67

Figure 42 Perlin noise, height map values on the left, normal map on the right. 68

Figure 43 Cellular noise, height map values on the left, normal map on the right. 68

Figure 44 Perlin (left) and cellular (right) 3 octaves fractal noise normal maps. 69

Figure 45 Cellular fractal noise normal maps, on the right with domain warping, and on the left

without. 70

Figure 46 Perlin (top) and cellular (bottom) fractal noise applied as a normal map to clear water.

The noise is composed of 2 octaves and the cellular noise has domain warping

caused by 2 octaves Perlin fractal noise. 71

Figure 47 Perlin (top) and cellular (bottom) fractal noise applied as a normal map to turbid water.

The noise is composed of 4 octaves. The cellular noise has domain warping caused

by 4 octaves Perlin fractal noise. 72

Figure 48 Perlin (top) and cellular (bottom) fractal noise applied as a normal map to turbid water.

The noise is composed of 4 octaves and stretched in one dimension. The cellular

noise has domain warping caused by 4 octaves Perlin fractal noise. 73

Figure 49 Pipeline of the full application. Each gray box is a pass, and the surrounding boxes

highlight the main components. At the noise generating component, the passes

performed depend on the type of noise used. The solver pass can be repeated

several times if needed due to a limiting timestep. 75

Figure 50 Example scene used to obtain the timings displayed in Table 1. 76

Figure 51 Frame time breakdown of the full application for different grid sizes, and resolution

1920x1080. Both axes are scaled logarithmically. Values in Table 1. 77

Figure 52 Rendering time for different resolutions, and grid size 1024x1024. The time is also

displayed without the caustics and noise passes, that is, only the water surface and

sides drawing passes. Both axes are scaled logarithmically. Values in Table 1. 77

Figure 53 Frame breakdown with all components for some combinations of resolution and grid

size. Values in Table 1. 78

L I S T O F F I G U R E S xii

Figure 54 Scenes with the same physical dimensions (≈ 200m) but different combinations of

grid and cell sizes. From top to bottom the scenes have increasingly smaller cells and

larger grids. 79

Figure 55 Scenes with different starting conditions but all other parameters equal. The scene

on the right (B) has a higher average depth which results in faster waves. 80

Figure 56 Several frames of a wave in a simulation, advancing from left to right. Shallow waters

can not model breaking waves, so instead a unnatural wall-like wave can be formed.

81

Figure 57 Performance of the SWE solver with different work group thread configurations.

Values in Table 4. 82

Figure 58 Scenes with different bathymetries of decreasing steepness from left to right. The

bottom row depicts a heatmap of iterations of the intersection algorithm, corresponding

to the scenes in the top row. Timings in Table 6. 84

Figure 59 Performance of the various caustics simulation passes with different caustics grid

sizes. Both axes are scaled logarithmically. Values in Table 7. The total accounts for

a complete step, which includes the compute pass and two render passes. 85

Figure 60 Performance of the caustics vertex buffer compute pass with different work group

thread configurations. Values in Table 9. 86

Figure 61 Close-ups of different caustics obtained by varying the grid size and texture resolution.

Patterns created by applying a cellular noise normal map to the surface. 87

Figure 62 Performance of the details normal map generation with different resolutions and noise

types (one octave). Both axes are scaled logarithmically. Values in Table 10. 88

Figure 63 Performance of the details normal map generation with different noise types and

octaves (512x512 resolution). Values in Table 11. 89

Figure 64 Different surface detail levels obtained by varying the number of octaves of Perlin

noise used to generate the normal map. 90

Figure 65 Different surface detail levels obtained by varying the number of octaves of cellular

noise used to generate the normal map. 91

Figure 66 Different caustics patterns obtained by varying the number of octaves and type of

noise used to generate the normal map. 92

L I S T O F TA B L E S

Table 1 Frame time breakdown of the full application for different combinations of grid sizes

and resolutions. Each cell of the table has 3 timings which from left to right correspond

to: simulation, rendering and total. Timings are in milliseconds. 76

Table 2 Data about scenes with grid size 1024x1024, resolution 1920x1080 and varying cell

size. 80

Table 3 Data about the scenes depicted in Figure 55, with grid size 1024x1024, resolution

1920x1080 and cell size 0.2x0.2. 81

Table 4 Performance of the SWE solver with different work group thread configurations.

Simulation grid size is 512x512. 82

Table 5 Performance of the SWE solver with different grid sizes and solvers, timings in

milliseconds. The wet only solver has no computations for handling wetting/drying

processes. 83

Table 6 Rendering timings for different bathymetries of varied steepness (shown in Figure 58).

Only the water surface and sides passes are considered. Grid size is 512x512 and

resolution is 960x540. 83

Table 7 Performance of the various caustics simulation passes with different caustics grid

sizes. Caustics textures resolution is 1024x1024 and timings are in milliseconds. The

total accounts for a complete step, which includes the compute pass and two render

passes. 85

Table 8 Performance of a caustics rendering pass with different resolutions. The grid size

refers to the caustics grid and the resolution to the generated caustics textures. 85

Table 9 Performance of the caustics simulation pass with different work group thread configu-

rations. Caustics grid size is 1024x1024. 86

Table 10 Performance of the details normal map generation with different resolutions and noise

types (one octave), timings in milliseconds. 88

Table 11 Performance of the details normal map generation with different noise types and

octaves (512x512 resolution). The cellular noise includes warping and an additional

pass to compute the normals. Timings in milliseconds. 89

xiii

L I S T O F A L G O R I T H M S

1 Offsets initialization . 37

2 Determining the exit point of a heightfield texel . 47

3 Increasing the mipmap level if necessary . 49

4 Maximum mimpmap heightfield intersection . 50

5 Water surface shading . 54

6 Intersection estimation . 59

7 Caustics simulation . 63

8 fBm function . 69

9 Noise function using fractal sums and domain warping . 70

xiv

A C R O N Y M S

BRDF Bidirectional Reflectance Distribution Function. iii, iv, viii, 19, 20, 44, 51, 52, 93

CFD computation fluid dynamics. 15, 16, 17
CFL Courant-Friedrichs-Lewy. 12

ENO Essentially Non-Oscillatory. 107

fBm fractal Brownian motion. 68
FDM finite difference method. 14
FFT Fast Fourier Transform. 24
FVM finite volume method. 14

GSM Group Shared Memory. 31, 32, 38, 39, 60, 61, 62, 63

LBM Lattice-Boltzmann Method. iii, 15, 16, 17, 94

NDF Normal Distribution Function. 20
NSE Navier-Stokes Equations. 1, 2, 4, 5, 7, 15

PIF Picard integral formulation. 27, 28

SPH Smoothed-Particle Hydrodynamics. iii, iv, 16, 17, 27, 94
SWE Shallow Water Equations. iii, viii, xii, xiii, 1, 2, 7, 8, 9, 13, 14, 15, 16, 17, 27, 28, 30, 78, 82, 83, 86, 93,

106

WENO Weighted Essentially Non-Oscillatory. ix, 27, 28, 30, 33, 37, 39, 107, 108, 109

xv

Part I

I N T R O D U C T O R Y M AT E R I A L

1

I N T R O D U C T I O N

Simulating water behavior in real-time can be very expensive, and thus, a 2D heightfield approximation is often
used. This approximation can be achieved by ignoring certain components of the simulation under the assump-
tion that the water is shallow. This chapter provides some context into this field of study (Section 1.1), as well
as the goal of this thesis within it (Section 1.2). The final section provides a brief description of the chapters that
compose this document (Section 1.3).

1.1 C O N T E X T

Water is common element in nature, and as such, is often encountered in virtual environments. Recently, physi-
cally based effects have become more and more popular in these environments, which includes both the simula-
tion and rendering of water.

The simulation of the water’s behavior is often achieved by numerically solving the Navier-Stokes Equations
(NSE) in offline applications, such as for movie special effects. In contrast, interactive systems require the simu-
lation to be performed in real-time while achieving a frame rate of at least 60 Hz. Additionally, most applications
require most of the computing budget to be used for other core features, leaving only a few milliseconds for
physical simulation. Simply reducing the resolution of the methods used in offline simulations often yields blobby
results and removes all the interesting details. Alternatively, many approaches have been developed in order to
efficiently approximate the results obtained by those more complex methods.

A common simulation approach is to reduce the problem from 3D to 2D by treating the water surface as a 2D
heightfield. Some simple and quite popular methods to simulate water surfaces are based on the wave equation
or the pipe model (e.g., Dagenais et al. (2018), Kellomäki (2017)). However, these methods have the drawback
of not being able to correctly simulate effects that are based on horizontal motion, such as whirlpools or the flow
of a river. This effects can, however, be captured by the SWE, with this approach being used in both interactive
graphics (e.g. Chentanez and Mueller (2010), Parna (2020)), as well as in engineering applications (e.g., Horváth
et al. (2020)).

The rendering of the water surface can be divided into various parts. An essential component is the reflection
of the environment, including the distinct specular glitter caused by the Sun. Considering the case of shallow
water, another big component is the refraction of the bottom terrain and the caustics caused in it by the water
surface (e.g., Yang and Ouyang (2021)). There are also a variety of effects that focus on addressing limitations of

1

1.2. Objectives 2

the heightfield representation, such as adding breaking waves, splashing particles, or small-scale perturbations
below the simulation scale (e.g., Ojeda and Susín (2014), Fujisawa et al. (2017)).

1.2 O B J E C T I V E S

The aim of this dissertation is to develop an application for simulating water behavior by solving the SWE, and
rendering the grid it outputs as a water volume. Furthermore, the application must allow both the simulation
and rendering to run in real-time on current graphics hardware. To limit the scope of this work, rendering will be
limited to the water surface’s color (which includes reflections, refractions and shading), caustics, and small-scale
details.

This can be split into the following sub-objectives:

• Study and understand the background on this field of study.

• Survey the state-of-the-art for both simulation and rendering techniques.

• Implement a solver for the SWE.

• Implement a visualization algorithm for the simulation.

• Evaluate the results and performance of the full application.

1.3 D O C U M E N T S T R U C T U R E

This dissertation is split into various chapters that roughly match the previously presented objectives, and is
organized as follows:

chapter 2 provides the needed background for the dissertation, starting from the NSE and introducing some
simplifying assumptions used to achieve a form more feasible for real-time simulation, the SWE. This is followed
by an overview of the current state-of-the-art, and a review of the more relevant fluid simulation methods. Then, a
review of the state-of-art of rendering methods suitable for the simulation is presented, focusing on the previously
mentioned set of effects.

chapter 3 presents the implemented simulation of the water’s behavior. The chapter starts with a description of
the numerical scheme, followed by the details of the GPU implementation. The next chapter (chapter 4) explores
the rendering effects used to visualize the grid output by the water simulation, providing the implementation
details. Both chapters end with a brief showcase of its results.

A thorough review of the results is presented in the following chapter (chapter 5). Here the SWE solver im-
plementation is analyzed, reviewing different options, and presenting performance benchmarks. Then, a similar
discussion is done for the rendering, going through each of the components individually. The chapter ends with
a a showcase of varied example scenes, accompanied by a performance breakdown of the full application.

The final chapter (chapter 6) briefly discusses the main conclusions from the developed work and provides
possible avenues of future work .

1.3. Document structure 3

In addition to the work presented here, the full source code of the developed application is provided online at
https://github.com/carlosc20/shallow-waters-nau.

https://github.com/carlosc20/shallow-waters-nau

2

S TAT E O F T H E A R T

This chapter provides an overview of the state-of-the-art in real-time simulation of shallow water. It starts by
providing some background into the common ground of all fluid simulations, the NSE (Section 2.1). Then, it
approaches the need of simplified solutions for real-time applications, focusing on the approximation provided
by the shallow water equations (Section 2.2). This is followed by an overview of the main concepts of numerical
fluid simulations (Section 2.3). Subsequently, the current methods used for developing shallow water solvers
are presented and compared (Section 2.4). Finally, rendering methods used for realistic water visualization are
reviewed, focusing on those adequate for a shallow water heightfield input (Section 2.5).

2.1 T H E N AV I E R - S T O K E S E Q U AT I O N S

The NSE, a reformulation of Newton’s Second Law, are often used to describe fluid flow. For incompressible and
Newtonian fluids they consist in a set of partial differential equations, the momentum equation (Equation 1) and
the incompressibility condition (Equation 2), as depicted in Bridson (2015) where a more in depth analysis can
be found.

∂u
∂t

+ u · ∇u +
1
ρ
∇p = a + ν∇ · ∇u (1)

∇ · u = 0 (2)

In Equations 1 and 2, u is the fluid velocity vector, p is the fluid pressure, ρ is the fluid density and ∇ · ∇
is the Laplacian operator. ν is the kinematic viscosity and is equal to η/ρ where η is the dynamic viscosity
coefficient. Acceleration due to external forces is commonly represented by g when only gravity is considered.
However, in interactive applications other forces often need to be considered, such as those created by user
input. Considering that, a more generic a term is used to represent the acceleration due to all external body
forces.

4

2.2. Shallow water equations 5

2.1.1 The Momentum Equation

The momentum equation (Equation 1) describes how the fluid velocity u evolves over time. Most of the com-
ponents of the momentum equation represent different accelerations caused by forces affecting the water par-
ticles: external forces a (commonly gravity, wind or user interaction), pressure gradient − 1

ρ∇p, and viscosity
ν∇ · ∇u.

Since water has low viscosity, which has a minor impact in the animation of large bodies of water, the term
is typically dropped. This is further supported by the fact that numerical methods used to solve the NSE often
introduce errors that can be physically reinterpreted as artificial viscosity (Bridson, 2015).

The process of a physical quantity moving with the velocity field of the fluid is called advection. This also
affects the velocity itself, in what can be called self-advection, and is modeled by the convective acceleration
term u · ∇u.

Advection can also be represented using the material derivative operator, this notation is exemplified in Equa-
tion 3.

∂x
∂t

+ u · ∇x ≡ Dx
Dt

(3)

2.1.2 The Incompressibility Condition

The incompressibility condition (Equation 2), sometimes also called the continuity equation, ensures the conser-
vation of mass, that is, the incompressibility of the fluid. In reality, fluids are not actually incompressible, but they
are close enough to be considered as such in computer graphics. The equation states that density along the line
of flow remains constant over time, therefore divergence of velocity is null all the time, i.e., water is flowing out as
fast as it is flowing in from other directions.

2.2 S H A L L O W W AT E R E Q U AT I O N S

This section will explore a special case of water simulation that allows much faster and simpler algorithms, by
making certain assumptions, namely that the water surface can be represented as an heightfield and that the
horizontal scale of the simulation is much larger than the vertical scale.

2.2.1 Heightfield approximations

Simulation models based on the NSE are highly realistic, since they capture the three-dimensional dynamics of
fluids. The downside of such models is that, for full-scale water simulations, full 3D simulations are often too slow
to achieve real-time rates.

2.2. Shallow water equations 6

A common solution is to assume the water surface can be represented as a heightfield, in other words, the
surface z-coordinate is a function η(x, y), bounded from below by the bottom topography and from above by
another fluid of negligible density (commonly air). This allows the simulation to take place in a 2D grid, which
means that if n cells are required per dimension, the time complexity is typically lowered from O(n3) to O(n2).

Another advantage is that the rendering of the simulation results can be done using common, fast rendering
techniques, similar to those used for e.g. terrain rendering. Full 3D simulations usually require surface tracking
(e.g. level sets (Bridson, 2015)) and expensive volume rendering techniques (e.g. ray marching (Crane et al.,
2007)) or mesh generating algorithms (e.g. marching cubes (Thürey, 2007)).

A regular 2D grid can be imagined as a group of adjacent water columns, where the water is defined by a
nxm 2D array of depth values. A nxm heightfield is often visualized by creating (n− 1)x(m− 1) squares
that are rendered as two triangles each (Figure 1).

Figure 1: A 3x3 heightfield with one of the nine simulation cells drawn. The value η of each cell represents the
vertical displacement in its center. The cells’ centers are connected to form triangles for visualization.

This approach results in a clear limitation, behavior that breaks the water surface can not be represented,
such as breaking waves, waterfalls and splashes. However, some of these effects only occur in limited areas in
the simulation and can be added using, e.g., a local small-scale particle simulation, while the main body of water
is simulated using 2D methods (Chentanez and Mueller, 2010).

In many virtual environments it is common that the terrain is also represented as a heightfield. In this cases
it is therefore interesting to simulate the interaction of the water with the terrain below. Assuming that the water
flows on top of an arbitrary heightfield terrain b(x, y), and can freely spread to dry areas, it can be represented
by the depth h(x, y) ≥ 0, with surface height η = b + h (as shown in Figure 2). Most simulations for this
setup use the depth instead of the surface height as the main simulation variable.

2.2. Shallow water equations 7

Figure 2: A fluid volume above terrain where both are represented as a heightfield elevation, where η denotes the
height of the fluid above zero level, b denotes the terrain height and h denotes the fluid depth, or height
above terrain.

2.2.2 The shallow water equations

A very common approximation used to create a heightfield simulation on top of a heightfield terrain is to ignore
vertical variations in the velocity field, resulting in the SWE. These are a simpler set of equations derived from
the NSE, and were first introduced in computer graphics in Layton and Panne (2002).

Another important assumption of the SWE is that the vertical movement of the water is dominated by gravity
and pressure, which is a suitable approximation only if other accelerations in the fluid are much smaller than the
acceleration due to gravity. By taking the vertical component of the momentum equation (Equation 1), dropping
all other terms except the pressure and gravity, and integrating from some coordinate z to the surface η, the
hydrostatic pressure equation (Equation 4) is obtained.

p(z) = ρg(η − z). (4)

As in this model the pressure is fully determined by the depth, there is no longer a need to store it. With these
assumptions, the non-conservative form of the SWE (Equation 5 and Equation 6) is derived from the NSE, where
g denotes the vertical acceleration of the fluid due to gravity, and h denotes the depth. The horizontal velocities,
represented by u, are tracked as an average in the whole column of water. The proof is left out for brevity but
can be found in Bridson (2015).

∂h
∂t

+ u · ∇h = −h(∇ · u) (5)

∂u
∂t

+ u · ∇u = −g∇η (6)

2.2. Shallow water equations 8

Equation 5 describes the rate of change of the fluid depth. The depth is advected by the term u · ∇h. On the
right side, the depth, representing the vertical direction, that has been integrated out, is multiplied by the negative
divergence of the velocity, which represents the volume density of the inwards flux to the point.

Equation 6 describes how the velocity u changes. It has two components: the velocity self-advection term on
the left (u · ∇u), and on the right the term describing acceleration caused by the pressure difference (−g∇η).
As the vertical pressure gradients are assumed to be nearly hydrostatic, this acceleration is simply the accelera-
tion by gravity times the surface gradient.

An alternative conservation law form of the SWE is often used by the scientific community, with some appear-
ances in computer graphics literature (e.g. Brodtkorb et al. (2012), Parna et al. (2018)). This form of the SWE
is given by Equation 7 and Equation 8 (as in Parna et al. (2018), where a full derivation can also be found). It
should be noted that the velocity vector u is now represented by its two separate components, as in u = (u, v).

∂U
∂t

+
∂F
∂x

+
∂G
∂y

= S (7)

U =

 h
hu
hv

F =

 hu
hu2 + 1

2 gh2

huv

 G =

 hv
huv

hv2 + 1
2 gh2

S =

 0
−gh ∂b

∂x

−gh ∂b
∂y

 (8)

U is the vector of conserved variables (fluid height h and horizontal momenta hu and hv, where u, v are the
horizontal fluid velocities); F and G are respectively the x and y directional fluxes; S is the source term due to
the underlying bathymetry/topography function b; g is the gravitational constant. The difference between the two
forms, and which makes it more common in the scientific community, is that the conservation form produces a
correct solution with shock conditions, whereas the non-conservation form might not (Toro, 2009). A shock or
hydraulic jump is caused when a fluid at high velocity discharges into a zone of lower velocity, causing a sudden
rise in the fluid surface.

2.2.3 Other heightfield methods

A simple alternative technique to simulate water surfaces is to further simplify the SWE by dropping the advection
terms completely, as was first done in computer graphics in Kass and Miller (1990). Equations 5 and 6 become
Equations 9 and 10.

∂h
∂t

= −h(∇ · u) (9)

∂u
∂t

= −g∇η (10)

2.3. Numerical simulation 9

Deriving Equation 9 assumes that the depth varies only slowly (Kass and Miller, 1990), which means it can
work well for calm scenes with local phenomena like puddles or waves around a boat.

As shown in, e.g., Kass and Miller (1990), these linearized shallow water equations are actually equivalent
to the 2D wave equation. Bridson (2015) points out that the wave equation has solutions corresponding to
waves moving at speed

√
gh. Yuksel et al. (2007) directly made a very fast wave solver from this observation,

using “wave particles” traveling at this speed which locally change the height of the water. This idea, based on
displacing a 2D domain, was later extended and stands and as a middle ground between Fourier-based methods
and SWE solvers (Jeschke and Wojtan (2017), Jeschke et al. (2018)). It allows for a highly detailed surface and
interaction with objects/terrain, but also requires a flat domain, so the water can not flow over dry or different
height areas.

A different approach that leads to a method similar to the wave equation, is to think of the heightfield water as
a group of adjacent water columns, where the flow is modeled by virtual pipes between columns of water on the
grid. Hydrostatic pressure is used to calculate the flow in each pipe. This method that was originally formulated
by O’Brien and Hodgins (1995) and is often called the pipe method (Kellomäki (2015), Dagenais et al. (2018)).

Figure 3: An example of the difference between linearized (left) and full SWE (right). The whirlpool is not
created in the linearized version (Kellomäki and Saari, 2014).

The main drawback of the mathematical model used in methods based on the wave equation or the pipe
model is that it only works with a vertical velocity field. Therefore, effects that are based on horizontal motion
such as whirlpools or the flow of a river cannot be treated correctly (Figure 3). The SWE can capture these
effects because in addition to the heightfield, they describe the evolution of a 2D velocity field normal to the water
columns. Because of this, and its similar performance (Kellomäki, 2015) to full shallow water solvers, only the
later will be considered on the following sections.

2.3 N U M E R I C A L S I M U L AT I O N

This section will approach the main concepts to consider when numerically simulating the behavior of a fluid.

2.3. Numerical simulation 10

2.3.1 Lagrangian and Eulerian Viewpoints

For a numerical solution, the domain needs to be discrete. When it comes to a continuum (like a fluid) moving,
there are two approaches to tracking its motion, the Lagrangian viewpoint and the Eulerian viewpoint.

Figure 4: Velocity property represented as a vector on the Eulerian (points in a fixed grid) and Lagrangian
(particles) viewpoints

Lagrangian / Particle-based Viewpoint

The Lagrangian approach treats the fluid like a particle system. Each particle represents a discrete blob of fluid
and has a set of properties such as mass and velocity (Figure 4, right). In a simulation, a certain number of small
particles is followed. The forces affecting each particle are evaluated to get the acceleration of each particle. The
particles’ properties are automatically moved or advected by them. These properties can then be evaluated in
any point of the continuum, e.g., as a weighted-average of the corresponding properties of the particles.

Eulerian / Grid-based Viewpoint

The Eulerian approach looks at sample points fixed in space, that represent small fluid volumes, and sees how
the fluid properties measured at those points change in time (Figure 4, left). These points are commonly aligned
to a grid, which is why the Eulerian approach is also known as the grid-based approach. In this framework, the
fluid properties change in time due to external forces, and also because of advection, i.e., the fact that the fluid
itself is flowing past these points.

Comparison

When it comes to advection, for the Eulerian methods it is an additional burden compared to the Lagrangian
methods, as in the latter it is automatically kept track of, because the observation point (the particle) is also
advected along the velocity field. However, it is easier to analytically work with the spatial derivatives in the
Eulerian viewpoint, and to numerically approximate those spatial derivatives on a fixed Eulerian grid than on a

2.3. Numerical simulation 11

cloud of arbitrarily moving particles (Bridson, 2015). Determining particle neighbors at each simulation step is
generally accelerated by the use of specific data structures Koschier et al. (2019).

For the Lagrangian approach, conservation of mass comes easily since the mass property is only associated
with each particle and, therefore, is not altered as long as particles are not created or destroyed. A major prob-
lem with this approach is that the particles can get arbitrarily close to each other, which causes a large pressure
force pushing them apart. Similarly, particles can spread out, allowing for regions with low density, where the
calculations will become less accurate as there is not enough information stored in the nearby particles. For a dis-
cretization based on a regular grid this obviously cannot happen, because the forces are always calculated from
quantities evaluated at the same distance from each other. For the same reason, the Eulerian approach does
not suffer from the same problems with low-density regions as particle-based representations do. Overall, this
leads to the Lagrangian methods in general requiring smaller timesteps than the Eulerian approach (Kellomäki,
2017).

Discretizing a heightfield with particles has the benefit over grid-based approaches when it comes to the
handling of complex and sparsely filled domains. These limitations are overcome since particles can move to
arbitrary locations and can separate from the main body of fluid, which allows the interaction of a user with the
flow and environment in a more flexible way.

2.3.2 Discretizing in time

To solve the value of q(t) in a differential equation of the form ∂q/∂t = f (q), the equation needs to be
integrated over time. In most numerical methods this is approximated by finding the value of q(t) at a finite
number of time instants with timestep ∆t between each instant (denoted by the superscripts): q1, q2, . . . , qn.
There are multiple methods for achieving this with varying degrees of accuracy. One simple and commonly
used method is the forward Euler, which simply evaluates the next value as a function of the previous value
(Equation 11).

qi+1 = qi + ∆t f (qi) (11)

This is only accurate if f (q) stays constant for the duration of the timestep. There are many time integration
methods that are more sophisticated than forward Euler, while also being more costly to evaluate, such as the
Runge-Kutta family (Butcher, 1987). Still, it is possible for one of these methods to allow using a longer timestep,
which might compensate for the slower evaluation.

An important feature of the simplistic forward Euler method is that it is an explicit method, meaning that qi+1

is only a function of the state at the previous time instant qi. In contrast, implicit methods need to solve an
equation that includes the future state, which leads to them being usually more stable, but also more expensive
to calculate.

2.3. Numerical simulation 12

Stability

Numerical integration methods provide only an approximation of the true solution for the corresponding partial
differential equations. When ∆t −→ 0 the numerical solution usually converges to the actual solution, but as
larger timesteps are used, many methods can become unstable, i.e., start to deviate exponentially from the true
solution (a simple example is given in Figure 5). In off-line simulations adaptive time-stepping can be used in
situations where stability problems arise. However, in real-time applications that should run at a fixed frame-rate,
the simulation method must be stable for the given timestep size no matter the situation. Since the goal is to
simulate as fast as possible without losing numerical accuracy, ideally the timestep is as large as possible, but
not enough to destabilize the simulation.

Figure 5: Consider a simple simulation that aims at reproducing a function q(t) (orange line). The state of the
simulation is advanced iteratively, where the estimates are calculated using the last estimate and slope
of the function. With small timesteps (left graph), the estimates (blue points) approximate the function,
but if the timestep is too large (right graph) it will cause the estimate to completely overshoot the
function, potentially resulting in instability.

The most common tool for analyzing the stability of an explicit numerical fluid solver is the Courant-Friedrichs-
Lewy (CFL) condition (Courant et al. (1928), Bridson (2015)). Considering a grid-based simulation, the CFL
condition says to choose a value of ∆t small enough so that when any quantity is moved from the center of
some cell through the velocity field, it will only move ∆x distance, ∆x being the size of the cell’s sides. This
makes sense intuitively, since if the quantities were allowed to move in any larger amounts than this, some
parts of the velocity field would be ignored. Using this idea, a necessary (but not sufficient) condition for the
convergence of most explicit time integration methods based on finite differences can be formed (Equation 12,
Bridson (2015)). Here, α is the CFL number which is a parameter that changes with the method used to solve
the discretized equation.

∆t ≤ α
∆x
|u| (12)

As stated in Equation 12, given a maximum fluid velocity |u|, the stability condition sets an upper bound for
the timestep, given ∆x and maximum fluid velocity |u|. This is set as a condition on the timestep since the ∆x
is usually a fixed value as to achieve a certain level of detail in the simulation. A similar condition can be obtained
for particle-based simulations that instead takes the particle size into consideration (Koschier et al., 2019).

2.3. Numerical simulation 13

2.3.3 Boundary Conditions

SWE need boundary conditions where the water ends (in the x–y horizontal plane) or the simulation domain
ends. As in heightfield simulations the free surface is automatically handled, only solid walls or open boundaries
need to be addressed.

A solid wall (or reflective) boundary is where the fluid is in contact with a solid (Figure 6, top row). The fluid
should not be flowing into or out of the solid, therefore the normal component of velocity should be zero, as
defined by Equation 13a, where n̂ is the normal to the solid boundary. In case the solid is moving, the normal
component of the fluid velocity needs to match the normal component of the solid’s velocity, as in Equation 13b.
This kind of condition is also referred to as "no-stick" condition, since it only restricts the normal component of
velocity, allowing the fluid to freely slip past in the tangential direction (Bridson, 2015).

u · n̂ = 0 (13a)

u · n̂ = usolid · n̂ (13b)

This is correct only for a inviscid fluid. For fluids that do have viscosity, the stickiness of the solid generally
influences the tangential component of the fluid’s velocity, forcing it to match. This is called the "no-slip" boundary
condition and can be defined by Equation 14a, or if the solid is moving Equation 14b. For fluids with very low
but nonzero viscosity this is more accurate than the "no-stick" condition only in microscopic detail, so a "no-stick"
condition is often used instead (Bridson, 2015).

u = 0 (14a)

u = usolid (14b)

It is much more difficult dealing with the edge of the simulation domain if it is assumed that the water continues
on past the edge. If waves should be entering along one edge, perhaps from a simple sinusoid model, the
normal velocity and height can be further specified. However, if the waves are expected to leave through the
edge, giving the effect of an open water surface, things are much trickier. This is called a absorbing (or non-
reflecting) boundary condition (Figure 6, bottom row), and is a long known problem that continues as a subject
of research in numerical methods Düz et al. (2017). The usual approach taken is to gradually blend away the
simulated velocities and heights with a background field (such as a basic sinusoid wave, or flat water at rest),
over the course of many grid cells (or particles): if the blend is smooth and gradual enough, reflections should be
minimal. A commonly used method to achieve this, is the perfectly matched layer introduced by Berenger (1994),
a method originally used for the absorption of electromagnetic waves and adapted for use in fluid simulation (e.g.
Söderström and Museth (2009)).

2.4. Fluid solvers 14

Figure 6: A comparison between reflecting boundary conditions (top row of pictures), and absorbing ones
(bottom row) (Müller et al., 2008).

For boundaries where fluid should flow into or out of the domain, the two types above can be used. Inflow
boundary conditions can be achieved by specifying reflecting ones, with an additional fixed normal velocity. For
outflow boundary conditions, absorbing ones with free normal velocities can be used. These boundaries can
then be enhanced by adding a source term to the height equation, directly adding (or subtracting) water in some
regions. Such source terms are also ideal for modeling vertical sinks or sources of water (such as a drop falling
from above, for instance in a particle system, or a drainage hole).

2.4 F L U I D S O LV E R S

This section provides an overview of the methods used to model water behavior, focusing on methods that solve
SWE in real-time applications.

2.4.1 Eulerian Solvers

The traditional Eulerian fluid solvers are based directly on solving the underlying equations using a finite differ-
ence method (FDM) or finite volume method (FVM).

Eulerian fluid simulations were first introduced to computer graphics in Foster and Metaxas (1996) which
simulated a fluid surface and included a one-way water-object interaction by advecting the floating objects using
the fluid velocity.

A breakthrough came when the stable fluids semi-Lagrangian method was introduced in Stam (1999). It
achieved significant performance improvements, ensuring the solver was unconditionally stable at larger timesteps.
It should be noted, however, that the interpolation which guarantees stability, also introduces excessive dissi-
pation, leading to a loss of small details and a less lively look. Most Eulerian simulation methods proposed
afterwards use some variation of this approach. More advanced methods were also developed, such as the
MacCormack method and its variants, to combat the deficiencies of this simple approach (Selle et al., 2008).

2.4. Fluid solvers 15

For shallow water, water surfaces were first simulated in Kass and Miller (1990) by solving the linearized SWE.
Later, this work was in O’Brien and Hodgins (1995), modeling the flow between fluid columns with virtual pipes,
coupling objects as they impacted the surface of the fluid and adding particle based splashes. The full SWE
equations were first introduced in Layton and Panne (2002) to computer graphics, using the non-conservative
form of the SWE.

Since then the computer graphics community has continued using the non-conservative form where the gov-
erning equations are usually solved using splitting and explicit time-stepping on a staggered grid (Bridson (2015),
Chentanez and Mueller (2010), Thurey et al. (2007)): first, the self advection of the velocity field is solved, then
the heightfield and velocity field are integrated forward in time. The advection term (∂x

∂t + u · ∇x) is commonly
solved using the semi-Lagrangian method introduced in Stam (1999).

An alternative with a simpler solver was proposed in Lee and O’Sullivan (2007) by ignoring the divergence
term and using a uniform collocated grid. Although sacrificing unconditional stability for speed, it was shown to
be sufficiently stable. In Wang et al. (2007) surface tension forces were added to the SWE to simulate water
flow on arbitrary surfaces. An implicit Newmark integration scheme was used in Angst et al. (2008) to reduce
numerical dissipation in the velocity advection step. In Chentanez and Mueller (2010) a modified MacCormack
method (Selle et al., 2008) is used for the advection and stability is further improved by evaluating water height
values in the upwind direction.

SWE are also explored in the scientific community, namely in computation fluid dynamics (CFD). Here, the
conservation law form of the SWE is preferred. The accuracy of the numerical solution is also prioritized over the
computational efficiency, whereas in computer graphics the opposite is the norm. Methods that originated in CFD
have also been used for realistic water animation. A finite volume scheme based on the formulation in Kurganov
and Petrova (2007) was implemented on GPUs for real-time simulations with photorealistic rendering in Brodtkorb
et al. (2012). Parna et al. (2018) demonstrated that with the power of modern era GPUs, higher order numerical
techniques usually applied to CFD use cases, can be used in computer graphics for more visually compelling
results. The technique presented avoids some commonly encountered issues (e.g. oscillatory solution profiles
and mass conservation issues) and do not need to rely on post-simulation unphysical fixes (such as in Chentanez
and Mueller (2010)).

2.4.2 Lattice-Boltzmann Method

LBM is a grid-based method that originated from the field of statistical physics. Although it comes from descrip-
tions on the molecular level, the method can still be used to compute fluids on a larger scale, and is applicable
both in 3D and 2D. For simulations with LBM, the simulation region is usually represented by a Cartesian equidis-
tant grid, where each cell only interacts with its direct neighborhood.

While conventional solvers directly discretize the NSE, LBM is essentially a first order explicit discretization of
the Boltzmann equation in a discrete phase-space. It has be shown that LBM approximates the NSE with good
accuracy, a detailed overview of LBM and derivations of the NSE and SWE from the LBM can be found in Zhou

2.4. Fluid solvers 16

(2004). An in-depth review on the history and development of the LBM is presented in Arumuga Perumal and
Dass (2015).

LBM has several advantages that make it appealing for real-time applications. The LBM algorithm uses only
arithmetic operations and is totally local, so it maps very well to parallel architectures such as GPUs. The method
is also considered simple to understand and implement.

Its shortcomings include the strict limit on the timestep to ensure stability, and large memory consumption
(Ojeda Contreras, 2013). It also has the same drawback of conventional SWE simulations when it comes to
coupling with external dynamic objects, as it needs ad hoc processes to handle those interactions.

The LBM has also proven to be an accurate and efficient alternative for solving the SWE. The first reports
on this topic were conducted in Salmon (1999) and Zhou (2002). As the LBM is very suitable for parallel archi-
tectures, several publications can be found on solving the SWE with a GPU implementation (e.g. Kuznik et al.
(2010), Tubbs and Tsai (2011)). Navarro-Hinojosa et al. (2018) provides a survey on GPU accelerated LBM
applications.

The LBM has seen some use in computer graphics, both for both 3D (Thürey et al., 2005) and shallow water
(2D) simulations García Bauza et al. (2010). A series of publications by Ojeda and Susín can be highlighted,
where they explore 2D versions of the method for shallow water simulations with a focus on real-time execution
and GPU implementation (Ojeda Contreras (2013), Ojeda and Susín (2013), Ojeda and Susín (2014)). They
also present an approach that couples the LBM for shallow waters with a particle system that adds more details,
and supports breaking waves. Its performance is similar to the Eulerian alternative developed in Chentanez and
Mueller (2010) (Kellomäki, 2017).

Recently, although the LBM for solving the SWE still sees extensive use in CFD, it has received little attention
in computer graphics. A novel simplified LBM presented in Zhou (2022) could possibly be of interest as it has a
reduced computational and memory cost while having similar accuracy.

2.4.3 Smoothed-Particle Hydrodynamics

SPH is probably the most common of the particle-based methods. As it is a Lagrangian method, the advection
term is automatically handled by the movement of the particles. All that remains is determining the various forces
affecting the particles to update their velocity, and then to update the position based on the velocity. For this, the
necessary fluid physical quantities and their derivatives need to be evaluated at the particle locations. SPH is a
method used for interpolating these quantities as a distance-weighted sum from the values stored in the nearby
particles (using kernel functions). External forces can be simply applied to each particle independently of the
others.

It was introduced to the computer graphics community with fire and gas simulations in Stam and Fiume (1995),
with interactive simulations being demonstrated in Müller et al. (2003) with a limited particle count. There is a
vast literature of variants and extensions of SPH that include, e.g., GPU implementations, different methods for
enforcing incompressibility and handling boundaries, combining particles with varying sizes or timesteps, and
multiphase fluids. However, most of the methods are not designed for a real-time context. A review of the theory

2.4. Fluid solvers 17

and applications of SPH in CFD and computer graphics can be found in Weaver and Xiao (2016) and Koschier
et al. (2019).

As was the case with grid-based methods, 3D particles methods were adapted to 2D with the goal of improving
performance for interactive applications. The first case was in Lee and Han (2010), where the SPH model was
applied to solve the SWE. This work was extended in Solenthaler et al. (2011) which introduces arbitrary domain
boundaries and terrain slopes. They also add two-way coupling of the particle based fluid with rigid bodies, and
improve the surface rendering of low density particle regions. In both cases the surface is defined as a height
map, using the density to displace the vertices.

Shallow water methods are naturally much faster than a full 3D solution, as they require far fewer particles,
while also retaining the good rigid body coupling of SPH. However, shallow water SPH methods still have sig-
nificantly worse performance than similar grid-based methods due to requiring very short timesteps (Kellomäki,
2017).

Further work was done in Chladek and Durikovic (2015), which improved simulation accuracy and boundary
handling. The shallow water simulation can also be coupled with a full 3D SPH simulation, although this has a
considerable impact in performance.

Fujisawa et al. (2017) extends the work in Solenthaler et al. (2011) by combining the 2D simulation with a 3D
simulation to address missing behaviors such as splashes and breaking waves. The 3D particles are generated
from 2D particles by categorizing these particles according to motion and position and deleted when they reenter
the water’s surface. The 3D particles behavior is simulated using the position based fluid method (Macklin and
Müller, 2013) and both particle types are rendered using a screen-space rendering technique.

Since then, significant work has been done in SPH, which reduces the severe time step restrictions of standard
techniques (Koschier et al., 2019), however, this has still not been applied to SWE 2D simulations.

2.4.4 Summary

The first and most researched solvers were of the Eulerian type. In particular, the splitting scheme and semi-
Lagrangian advection combination became the most popular in computer graphics (Bridson, 2015). Alternatively,
recent work (Parna et al., 2018) argues that higher order numerical methods, commonly found in the scien-
tific community, can provide a higher quality solutions and avoid unphysical modifications, with an acceptable
increase in computational cost.

An alternative is the LBM which has a simple and easily parallelizable algorithm. Its update step is fast but
forces the use of small timesteps to ensure stability, which leads to a similar performance to other Eulerian
methods (Kellomäki, 2015), while having increased memory requirements (Ojeda and Susín, 2014).

A third counterpart is the SPH model, which provides unique advantages due to being a particle based method,
such as the inherent conservation of mass and coupling with objects. Although SPH has seen significant ad-
vances recently (Koschier et al., 2019), they are yet to be applied to the SWE, where previous solvers have
significantly worse performance than their grid-based counterparts (Solenthaler et al. (2011), Kellomäki (2017)).

2.4. Fluid solvers 18

This is further accentuated by the requirement of extra heightfield surface construction procedures, and needing
high particle counts to avoid blobby a surface (Chladek and Durikovic (2015), Fujisawa et al. (2017)).

2.5. Rendering 19

2.5 R E N D E R I N G

The previous section focused solely on the dynamics of the fluid and its interaction with the terrain. The goal of
this section is to explore real-time rendering effects that can achieve a realistic representation of the developed
fluid simulation, including the water color, small surface details and caustics.

2.5.1 Water Surface Color

The water’s surface color is composed of reflected and transmitted/refracted light, which can be handled as two
separate components. The ratio between the two is given by the Fresnel reflectance F, which specifies how
much light is reflected at an interface between two different media. Consequently, the transmitted fraction is
given by 1− F, resulting in a final composition as in Equation 15. Cre f l and Ctrans are the light intensities that
are reflected and transmitted, respectively, before applying the Fresnel factor.

C = F(θi)Cre f l + (1− F(θi))Ctrans (15)

F is often calculated using Schlick’s approximation (Schlick, 1994), given in Equation 16, which takes as input
the angle of incidence θi and the specular reflectance at normal incidence f0 (for water, f0 = 0.02, Akenine-
Mller et al. (2018)).

F(θi, f0) = f0 + (1− f0)(1− θ)5 (16)

Reflection

A surface’s BRDF, denoted by f (ωi, ωo, n), describes for a particular point, how much of the incoming light in
a direction ωi is reflected in an outgoing direction ωo, where n is the surface normal. Considering a surface lit
from a single direction, such as by a directional light, the reflected light at the surface can be given by Equation 17,
where Clight is the light’s intensity and all vectors are considered to be normalized. This is illustrated in Figure 7
where the value θi represents the angle between n and ωi.

Cre f l = f (ωi, ωo, n)Clight(n ·ωi) (17)

2.5. Rendering 20

Figure 7: The BRDF defines the amount of light that is reflected at a surface point p with normal n from incident
direction ωi in the outgoing direction ωo.

The BRDF, is typically made of two terms: a diffuse component and a specular component (Pharr and
Humphreys, 2018). However, when describing the surface of a transparent media such as water, only the spec-
ular component is considered, as the refracted/transmitted light is handled separately.

Physically based specular BRDF terms are typically based on microfacet theory (Pharr and Humphreys, 2018).
The core idea is that any surface at a microscopic scale can be described by tiny perfectly reflective mirrors called
microfacets. The light reflectance is then statistically modeled based on these surface variations that are present
below the observation scale. One of the most commonly used models is the Cook-Torrance model (Cook and
Torrance, 1982), given by Equation 18.

f (ωi, ωo, n) =
D(h)F(ωi, h)G(ωi, ωo, h)

4(n ·ωi)(n ·ωo)
(18)

As the microfacets are considered to be perfect mirrors, for a microfacet to reflect light from ωi into ωo its
surface normal has to be oriented exactly halfway between ωi and ωo. The vector halfway between ωi and
ωo is called the half-vector and denoted as h. D(h) is the microgeometry Normal Distribution Function (NDF)
evaluated at the half-vector h and represents the probability that a given microfacet’s normal m is oriented
correctly, i.e. m = h.

G(ωi, ωo, h) is the geometry function1 and it represents the proportion of surface points with m = h that
are not shadowed (microfacets not being directly lit) or masked (microfacets being occluded by other microfacets
from the viewing direction). Therefore, the product of D(h) and G(ωi, ωo, h) gives the concentration of active
surface points, the surface points that actively participate in the reflectance by successfully reflecting light from
ωi into ωo.

F(ωi, h) is the Fresnel reflectance of the active surface points as a function of the light direction ωi and the
active microgeometry normal m = h.

Finally, the denominator 4(n · ωi)(n · ωo) is a correction factor which accounts for the transformation of
quantities between the local space of the microgeometry and that of the macro-surface.

A widely adopted choice for the D and G terms is the GGX distribution and its matching Smith geometric
function (Burley (2012), Heitz (2018), Guy and Agopian (2019)). A review of the options for these terms and

1 Can also be found in the literature with various other names, such as: geometry factor, shadowing-masking function,
shadowing function, geometry term, geometric attenuation, amongst other denominations.

2.5. Rendering 21

additional information on the subject can be found in Pharr and Humphreys (2018) and Hoffman (2013). Specific
models have been used in ocean rendering, however these rely on the statistical properties of ocean wind waves
(Bruneton et al., 2010).

To compensate for the lack of indirect lighting, which is especially noticeable with highly specular surfaces,
some kind of ambient or image-based lighting is typically added (Hoffman, 2013).

Transmission

Transmitted/refracted light is given by the reflection of the terrain below. However, this is further complicated by
the fact that water acts as a participating media and therefore affects the distribution of radiance in it. Light that
enters the water volume, after being refracted at its boundary, will be affected by two main processes (Pharr and
Humphreys, 2018):

• Absorption, which causes reduction in radiance due to conversion from light to some other form of energy,
such as heat.

• Scattering, which causes the light direction to change due to particle collisions.

As a ray of light passes through a media, it can collide with particles and be scattered in different directions,
which results on the ray losing intensity. Consequently, radiance from other rays can also be scattered into the
path of this ray increasing its intensity. These interactions are referred to as out-scattering and in-scattering
respectively. Furthermore, single and multiple scattering can be distinguished when considering the number of
times a light ray is scattered when traveling through the media (Figure 8).

Figure 8: When entering a participating media, light can be scattered once (left) or multiple times (right) before
exiting the media.

How much scattering happens is described by the scattering coefficient σs. Similarly, how much the media
absorbs light is determined by the absorption coefficient σs. Combining both coefficients results in the extinc-
tion/attenuation coefficient σt = σa + σs which describes how much light is attenuated along its path through
the media. The fraction of light that is not absorbed or scattered, while traveling a distance d through the media,
is defined as the transmittance (given by the Beer-Lambert Law) as in Equation 19 (Pharr and Humphreys, 2018).

T(d) = e−σtd (19)

2.5. Rendering 22

The variance of the photon flux in a light ray traveling through the media can be visualized in Figure 9.

Figure 9: Illustration of how the photon flux of a light ray is affected when in a participating media.

2.5.2 Caustics

Figure 10: Visible caustics caused by perturbations in the water surface. Examples from Yuksel and Keyser
(2009), Parna (2020) and Yang and Ouyang (2021), from left to right respectively.

Caustics are concentrations of light in diffuse surfaces (receivers) caused by refraction or reflection of light from
a highly specular surface (generator). In water rendering, caustics are interesting visual elements that enhance
the quality and realism of generated images, while also providing additional cues to perceive the shape of the
water surface (examples presented in Figure 10). The efficient rendering of caustics in real-time is rather difficult,
as a single point may depend on light redirected from several points.

In an early attempt at real-time caustics, a technique was presented in Stam (1996) which projected a pre-
computed texture onto the scene geometry using additive blending, animated by texture coordinate perturbation.
Although this technique is extremely fast, evidently the caustics produced are not correct in relation to the water
surface and receiver geometry.

A method is proposed in Guardado and Sanchez-Crespo (2007) that computes caustics by tracing rays from
the receiver surface to the water surface, where each receiving point is computed from a single point in the
surface. The intensity is modulated based on the direction of these rays and samples a light map in the normal
direction at the intersection point. The results produced by this method are not physically correct either, and

2.5. Rendering 23

can only roughly approximate caustics for sun light coming from directly above the water surface. Since then,
real-time techniques have significantly advanced towards physical accuracy.

Caustics mapping is introduced in Shah et al. (2007), a technique similar to shadow mapping that generates a
caustics texture that can be projected into the receiver geometry. The algorithm starts by rendering the generator
and receiver objects from the light’s view onto textures, storing its position and normals. A vertex grid of equal
resolution to the generator’s texture is then used in place of the object, where each vertex maps to a texel. At each
vertex, the incoming light ray is refracted and intersected with the receiver’s positions (stored in the previously
mentioned texture) and the light intensity is estimated at this point. The intersection positions are then used to
splat points from the light’s view onto the caustics map. The same idea was explored concurrently in Wyman and
Davis (2006) and Hu and Qin (2007) which present similar methods.

Hierarchical and adaptive photon casting methods were proposed in Wyman (2008) and Wyman and Nichols
(2009) to improve caustic mapping performance by reducing redundant processing.

A similar method in Papadopoulos and Papaioannou (2010) utilizes the image-space ray-scene intersection
method introduced in Shah et al. (2007), but uses instead a uniform light screen space grid, to decouple the
effect accuracy from the refractive geometry. This method additionally implements dynamically varying splatting
size and improves image quality via additional filtering.

A method for simulating caustics in a flat receiver due to water refraction was proposed in Yuksel and Keyser
(2009). It considers the refracted radiance towards a point on a receiver plane from a singular rectangular region
of the heightfield surface. This approach is fast, but has the drawback of only working with flat receiver geometry.

Alternatively to splatting based methods, some work rendered continuous geometry instead of discrete photon
hits. Real-time beam tracing is applied in Ernst et al. (2005), where a bounding volume is drawn for each caustic
volume created by a triangle in the generator mesh. The caustics intensity is then accumulated by performing
point-in-volume tests for every rendered pixel of the receiver. Liktor and Dachsbacher (2010) separates the
generator mesh density from photon casting density by projecting a vertex grid onto a light space rendering of
the generator geometry. This generator mesh is then extruded into the receiver surface using a geometry shader
to create the caustics volume. Liktor and Dachsbacher (2011) further improves performance by implementing
adaptive beam generation while also supporting multiple bounces.

Parna (2020) extends Shah et al. (2007) caustics mapping to work directly with heightfield water simulations
by using its grids points as photons to be traced. The caustics intensities are computed efficiently by exploiting
compute shader capabilities. Both splatting and geometry based reconstruction are implemented.

Recently, hardware accelerated ray-tracing has also been used for real-time caustics. A method is presented
in Gruen (2019) that follows the common procedure of caustics mapping while computing accurate intersections
using ray-tracing. This method is then extended in Yang and Ouyang (2021) where the rendering process of the
caustics map is improved, resulting in two approaches: one based in photon splatting and another in building an
intermediate caustic mesh.

2.5. Rendering 24

2.5.3 Small-scale details

Figure 11: Water surfaces with small-scale details added through normal mapping. Examples from Vlachos
(2010), Yu et al. (2011) and Ojeda Contreras (2013), from left to right respectively.

The heightfield simulation cannot resolve waves with wavelengths smaller than the grid resolution ∆x. Decreas-
ing ∆x is not feasible past a certain point as it implies more cells and requires a smaller time-step to maintain
stability, which would break the real-time constraint. Instead, this high frequency detail can be added through
normal mapping (Thurey et al., 2007). The idea is to perturb the surface normals per pixel using an animated
normal map texture, mimicking wave effects at a smaller scale (examples presented in Figure 11).

A method for advecting texture coordinates was introduced in Max and Becker (1995), which periodically reset
the texture coordinates to their original values to avoid too much distortion. To counter the popping caused by
the coordinates reset, further sets of textures were used that were smoothly faded-in and out. A drawback is that
the reset frequency is dependent on the fluid velocity of the scene used and therefore requires fine-tuning.

An attempt to fix this problem was presented in Neyret (2003) by blending three layers (with different reset
times) of three phase-shifted textures, and keeping track of the accumulated deformation of each. The resulting
textures were combined using trilinear interpolation based on a maximum allowed deformation. This method how-
ever, besides being more expensive, has the downside of having large texture storage requirements in scenes
with a big variety of flow speeds.

The method in Max and Becker (1995) was used in Chentanez and Mueller (2010) for normal map texture
coordinate regeneration and texture blending, while using an Fast Fourier Transform (FFT) based wave simulation
(Tessendorf, 2001) to generate the wave texture normal map. The same method (Max and Becker, 1995) was
also applied in Vlachos (2010) to a normal map by utilizing two textures offset by half a phase for blending.
The problem of pulsing artifacts was addressed by using a noise texture to change the phase of the pulsing.
A disadvantage is that it only works for non-directional wave patterns, i.e, using a normal map with directional
waves can result in them appearing to move sideways.

An alternative Lagrangian technique for the advection of textures was presented in Yu et al. (2009) and Yu
et al. (2011). The technique ensures that the moving texture follows the velocity field of the fluid, while preserving
several key properties of the original texture. A set of deformable textured grids are advected as particles with
the flow. At each time step a uniform distribution of particles is maintained by removing and creating particles

2.5. Rendering 25

as necessary. Particles whose grid is too distorted are also removed. A method was provided for ensuring both
spatial and temporal continuity when blending these grids.

Noise functions are a common way of adding detail to surfaces (Lagae et al., 2010), and have been used to
simulate water. In Ojeda Contreras (2013) instead of advecting a normal map at the surface, one is generated
every frame and applied directly. The texture is generated/updated using 3D Perlin noise (Perlin, 2002) (and
going through one dimension over time) or FFT based wave simulation (Tessendorf, 2001). The use of noise to
add detail to a water surface is also common in games (e.g., Grujic and Cutocheras (2018)).

Part II

C O R E O F T H E D I S S E R TAT I O N

3

S I M U L AT I O N

This chapter presents the method used for the numerical simulation of the water’s behavior. The chapter starts by
presenting a mathematical description of the chosen scheme, followed by the details of its GPU implementation.

A grid-based approach was chosen as it allows for better performance over the particle approach, since pre-
vious SWE SPH methods performed significantly worse than its grid-based counterparts (Kellomäki, 2017), and
newer SPH methods (Koschier et al., 2019) have yet to be applied to the SWE case. Additionally, constructing a
surface is not as straightforward as in the grid case (Kellomäki (2017), Parna (2020)), requiring further processing
to avoid a bumpy appearance ((Chladek and Durikovic, 2015), (Fujisawa et al., 2017)).

From within the grid-based methods, the finite difference scheme introduced in Parna et al. (2018) was chosen
as it provides higher quality solutions over the commonly used splitting scheme (Parna, 2020). Since it is a higher
order shock capturing scheme, it provides better physical accuracy and avoids extra unphysical tweaking that
other lower-order schemes rely on (Chentanez and Mueller, 2010). A downside of this scheme is its increased
computational complexity, however, this is outweighed by the power of modern GPUs (Parna, 2020).

3.1 N U M E R I C A L M E T H O D

The implemented scheme, as previously mentioned, is the PIFWENO scheme introduced in Parna et al. (2018).
The scheme solves the conservation law form of the SWE (Section 2.2.2), and is based on the Picard integral
formulation (PIF) of conservation laws combined with WENO reconstruction. It consists of two main steps:
Approximating the time-averaged fluxes (defined in the PIF), and inserting this result into the finite difference
WENO reconstruction, used to approximate the spatial derivatives.

As an explicit scheme, the state of the simulation at the following time instant is computed from the current
state. All of the stored quantities (conserved variables U and bathymetry b) are located at the grid cell centers.
However, it should be noted that values at cell’s edges (with fractional indices) are used during computations, but
are never actually stored in the input/output grid.

27

3.1. Numerical method 28

3.1.1 Picard integral formulation for SWE

The PIF of the SWE is defined by integrating Equation 7 over the interval t ∈ [tn, tn+1] Christlieb et al. (2015),
resulting in Equation 20 (subscripts denote derivatives and superscripts denote the timestep). U , F G and S
are defined in Equation 8.

Un+1 = Un − ∆tF̃n
x − ∆tG̃n

y + ∆tSn (20)

F̃n and G̃n are the time-averaged fluxes and defined as in Equation 21.

F̃n =
1

∆t

∫ tn+1

tn
Fn dt

G̃n =
1

∆t

∫ tn+1

tn
Gn dt

(21)

Henceforth, the superscripts for time level n are dropped for simplicity. The time averaged fluxes are approxi-
mated as in Equation 22 (Parna et al., 2018), derived from a second order Taylor expansion of the fluxes centered
at t = tn (Christlieb et al., 2015). Here, ∂F/∂U and ∂G/∂U are the flux Jacobians, as in Equation 23 (see
Appendix A for definition). All derivatives that appear in Equation 22 are evaluated using simple central finite
differences (Fx, Gy and those in S).

F̃ = F +
∆t
2

∂F
∂U

(
S− Fx −Gy

)
G̃ = G +

∆t
2

∂G
∂U

(
S− Fx −Gy

) (22)

∂F
∂U

=

 0 1 0
−u2 + gh 2u 0
−uv v u

 ∂G
∂U

=

 0 0 1
−uv v u

−v2 + gh 0 2v

 (23)

3.1.2 WENO reconstruction

Having F̃ and G̃ approximated at each grid point (Equation 22), the values at the cell’s edges, F̂ and Ĝ, are
computed using the third-order WENO reconstruction (Parna et al., 2018), as in Equation 24. This procedure

3.1. Numerical method 29

takes as input a stencil1 of the 4 surrounding time-averaged fluxes (F̃ and G̃). The subscripts denote the position
in the grid and a description of the WENO3 procedure can be found in Appendix B.

F̂i+1/2,j = WENO3(F̃i−1,j, F̃i,j, F̃i+1,j, F̃i+2,j)

Ĝi,j+1/2 = WENO3(G̃i,j−1, G̃i,j, G̃i,j+1, G̃i,j+2)
(24)

The spatial derivatives F̃x and G̃y (in Equation 20), of F̃ and G̃ respectively, are approximated by a conser-
vative flux difference, as in Equation 25, using the values at the cell’s edges, F̂ and Ĝ. ∆x and ∆y are the cell’s
dimensions in the x and y direction respectively.

F̃x;i,j =
1

∆x
(F̂i+1/2,j − F̂i−1/2,j)

G̃y;i,j =
1

∆y
(Ĝi+1/2,j − Ĝi−1/2,j)

(25)

Inserting Equation 25 into Equation 20 gives its finite difference discretization, as in Equation 26 (Parna et al.,
2018).

Un+1
i,j = Un

i,j −
∆t
∆x

(F̂n
i+1/2,j − F̂n

i−1/2,j)−
∆t
∆y

(Ĝn
i,j+1/2 − Ĝn

i,j−1/2) + ∆tSn
i,j (26)

3.1.3 Well-balanced treatment of the source term

Steady state solutions (e.g., a still flat water surface) in non-flat bottoms have it’s flux gradients exactly balanced
by the source term S. This balance will fail to be preserved if a straightforward treatment of the source term is
used. This issue is addressed by the inclusion of the method described in Xing and Shu (2005) (Parna et al.,
2018).

One of the requirements of the method is to modify and split the source term into two parts as in Equation 27.
The central finite difference approximations used in Equation 22 must follow this splitting.

S =

 0
(1

2 gb2)x

(1
2 gb2)y

+

 0
−(h + b)gbx

−(h + b)gby

 (27)

1 A stencil is a set of grid points that relate to the point of interest, when using a numerical approximation routine.

3.1. Numerical method 30

The other requirement is to then approximate the split source term derivatives using the WENO reconstruction
(Xing and Shu, 2005), similarly to the fluxes. Therefore, the final source term S (used in Equation 26) is given by
Equation 28, where s = (1

2 gb2), and ŝ and b̂ are the values of s and b at the cells’ edges.

Si,j =

0(1

∆x (ŝi+1/2,j − ŝi−1/2,j)
)
− (h + b)g

(
1

∆x (b̂i+1/2,j − b̂i−1/2,j)
)(

1
∆y (ŝi,j+1/2 − ŝi,j−1/2)

)
− (h + b)g

(
1

∆y (b̂i,j+1/2 − b̂i,j−1/2)
)
 (28)

The values at the cells’ edges, ŝ and b̂, are computed using the WENO reconstruction, sharing the non-linear
weights of the fluxes (as described in Appendix B). The input stencil contains the required values of b and s.

ŝi+1/2,j = WENO3(si−1,j, si,j, si+1,j, si+2,j)

b̂i,j+1/2 = WENO3(bi,j−1, bi,j, bi,j+1, bi,j+2)
(29)

3.1.4 Handling of the wetting/drying processes

The computation of the mass-conservation equation, given by the first line of the conservative SWE, must be
made positivity preserving for the scheme to allow wetting and drying processes (Parna et al., 2018), that is, the
values of h need to remain non-negative. This is achieved by incorporating the maximum principle preserving
method in Liang and Xu (2014) for the mass computation equations.

The final fluxes for the mass, namely the first components of F̂ and Ĝ, are re-defined as a linear combination
of low- and high-order fluxes, as in Equation 30. Here, the (1) superscript denotes the first entry of a vector.

F̂(1) ← θF̂(1) + (1− θ) f̃

Ĝ(1) ← θĜ(1) + (1− θ)g̃
(30)

The f̃ and g̃ are first-order positivity preserving flux approximations. These are evaluated using the Lax-
Friedrichs flux (Seal et al., 2016) as in Equation 31, where α is given by Equation 61.

f̃i+1/2,j =
1
2

(
F(1)

i,j + F(1)
i+1,j − αi(U

(1)
i+1,j −U(1)

i,j)
)

g̃i,j+1/2 =
1
2

(
G(1)

i,j + G(1)
i,j+1 − αj(U

(1)
i,j+1 −U(1)

i,j)
) (31)

The coefficients of the linear combination, θi+1/2,j and θi,j+1/2, are determined in a way that ensures the
interpolation between the high and low-order fluxes is of the highest order possible, while preserving the positivity
of the solution. This is achieved by solving a simple optimization problem, described in Appendix C.

3.2. Implementation 31

Wet/dry interface velocities

Since finding the velocities u and v require divisions by h (as only the momenta hu and hv are stored in U),
high velocities can develop near the wet/dry interface where h is very small or even 0, which would then lead to
instabilities (Parna et al., 2018). To avoid this, the method in Kurganov and Petrova (2007) is used, where u and
v are recalculated using Equation 32 in regions where h is smaller than a specific threshold ε. The determination
of ε is problem specific but a value of 0.01 as used in Parna et al. (2018) was found to be suitable for the scenes
used.

u′ =
√

2h(hu)√
h4 + max(h4, ε)

v′ =
√

2h(hv)√
h4 + max(h4, ε)

(32)

This is applied to U at the start of the simulation step, which is updated with the new velocity values u′ and v′,
as in Equation 33. Additionally, the water depth h is clamped to zero as it can become negative due to numerical
round-off errors (Parna et al., 2018).

U =

max(h, 0)
hu′

hv′

 (33)

3.2 I M P L E M E N TAT I O N

The implementation was tackled using GPU programming, more specifically OpenGL compute shaders. The
GPU has been shown to be highly effective for this kind of simulations as it is able to handle large amounts of
parallel data and maps well to the Eulerian (grid) approach (Parna et al. (2018), Dagenais et al. (2018), Horváth
et al. (2020)). Additionally, storage of the simulation results on the GPU means that rendering is straightforward
as there’s no need in copying data between the CPU and GPU. For the solver step, the single kernel GPU
implementation of Parna et al. (2018) is followed, which aims at decreasing the costly memory read/writes at the
expense of arithmetic operations. The scheme is compressed into a one pass solution by making heavy use of
local group setup combined with local synchronization and abstract Group Shared Memory (GSM) usage.

3.2.1 Timestepping

The first step of the simulation is determining the timestep, which is limited by the stability restrictions of the
scheme. Dynamic timestepping with a maximum fixed timestep is used as it can advance the simulation in
real-time, while also guaranteeing stability.

3.2. Implementation 32

For the simulation to run at real time, every frame of the animation should advance the simulation roughly the
same amount forward in time as the frame’s duration. This can be approximated by using the previous frame’s
duration, f rameTime, as a reference for how much the simulation should advance, so ∆t = f rameTime.
However, the timestep ∆t has to be restricted, in order to ensure stability, by defining an upper bound max∆t.
Since no unexpected accelerations are introduced in this work, e.g. via the user’s input, this max∆t can be
determined empirically. Considering that the frame duration can be longer than the defined maximum timestep,
advancing the simulation can require multiple steps, which are performed iteratively while consuming the frame
time. For example, with max∆t = 12ms and f rameTime = 30ms, three solver steps would be performed,
each with ∆t = 10.

3.2.2 Data storage

The three components of U (the height, and momentum terms in the x and y directions) need to be stored
in between simulation steps. This is done using two textures, where the data is read from one and written to
the other, swapping after each simulation step. These have 4 channels of 32 bit floating point data, 3 for the
components of U , the last being used to encode boundary information (its use is described in Section 3.2.4). As
the algorithm uses a co-located grid, the mapping to a texture is straightforward, where each texel corresponds
to a grid cell. A single channel texture is also used to store the bathymetry data.

The height and normal of the water are also required to be stored so they can then be used when rendering
the water surface (chapter 4). A 32 bit 4 channel texture is used for this, where the first 3 channels are used to
store the normalized normal vector of the water surface, and the last channel is used to store the water surface
height (given by the water depth plus the bathymetry).

The grid that constitutes the simulation domain has dimensions of W and H in the x and y directions respec-
tively. The simulation data textures have dimensions equal to (W + B× 2, H + B× 2), where (W, H) is
the simulation domain and B is the number of boundary cells (see Section 3.2.3). Although not required, the
bathymetry and the "normal and height" textures have the same dimensions so they can be accessed using the
same coordinates.

3.2.3 Threading scheme

The concurrent computation work is managed by decomposing the simulation domain into fixed size smaller
groups, where each thread corresponds to a cell. Each one of these groups will require their own set of boundary
cells in order to correctly process the values at the edge of the group’s domain.

The scheme has a series of computations that require accessing the neighboring cells’ data, which is stored
in the GSM (further information in Section 3.2.6). The computed data in a cell can be invalid if it is the result of
computations that involve values outside the range of the local GSM. If other cells access this invalid data, then
their computations derived from it will also become invalid. Tracking the validity of the computed data in each

3.2. Implementation 33

cell, the scheme is found to require 4 boundary cells (Parna et al., 2018), as illustrated in Figure 12. Cells where
the results are valid are referred to as inner domain cells.

Figure 12: Access of neighboring cells that leads invalid values (example for left boundary of the x direction,
same applies for y). Valid cells colored in green and invalid cells in white. The valid cells are
determined as follows: (1) initial group domain; (2) cells where F̃ is valid (Equation 22); (3) cells
where the WENO reconstructions are valid (Equation 29); (4) cells where θ is valid (Equation 73);
(5) cells where the final Un+1 is valid (Equation 26)

These boundary cells need to be overlapped with valid cells of other groups, so all the simulation domain is
covered. This is illustrated in Figure 13 where a grid point is involved in calculations once as a boundary cell,
where the results are not stored, and once as an inner domain cell, where the results are written to the textures.

Figure 13: Illustration of overlapping threads between neighboring groups in a single dimension. Inner domain
cells are colored in green and boundary cells in white.

As some grid points are involved in calculations more than once, more threads need to be dispatched than
the total number of inner domain cells. The total number of groups to be dispatched for each dimension, in order

3.2. Implementation 34

to accommodate for the boundary cells, is given by Equation 34. Kx and Ky are the number of elements in each
work group for the x and y dimensions respectively.

Gx =

⌈
W

Kx − 2× B

⌉
Gy =

⌈
H

Ky − 2× B

⌉ (34)

Since the number of groups is rounded up (denoted by d e) to encompass all the simulation domain, more
threads than required can be dispatched. To account for this, global boundary cells are required in addition to
the local group boundary cells (which can overlap), since a thread can be inside a group’s inner domain, but
outside the simulation domain. An illustration of the simulation domain within the dispatched compute groups is
presented in Figure 14. The local computation results are written to the output textures only for cells where they
are valid, i.e., that are both part of the local inner domain and global inner domain.

Figure 14: Illustration of the simulation domain within the dispatched compute groups, with a group highlighted.
Each group is composed of its local inner domain (B) and local boundary cells (A). Similarly, the
whole simulation domain is composed of the global inner domain (C) and global boundary cells (D).
There can be threads outside the global domain (E).

Indexing into the textures has to consider the boundary cells and overlapping threads. The global indices ig

and jg in the x and y directions can be found as in Equation 35, where G denotes the group ID, T the thread ID
in the given group and the x/y subscripts the dimension.

ig = Gx × (Kx − 2× B) + Tx

jg = Gy × (Ky − 2× B) + Ty
(35)

These indices are used only when interacting with the simulation data textures, that is, the initial read and the
final write. All other intermediate computations that require accessing the neighbors data through shared memory

3.2. Implementation 35

use the local group thread ID Tx and Ty. The final write to the textures is only performed if the conditions given
in Equation 36 are true, which guarantee that the cell is both in the global inner domain (Cg) and local inner
domain (Cl).

Cg = (ig ≥ B) ∧ (ig < W + B) ∧ (jg ≥ B) ∧ (ig < H + B)

Cl = (Tx ≥ B) ∧ (Tx < Kx − B) ∧ (Ty ≥ B) ∧ (Ty < Ky − B)
(36)

3.2.4 Boundary conditions

Reflection boundary conditions are used, in the form of "no-stick" boundaries, i.e, the velocity in the normal
direction should be zero at the boundaries (Section 2.3.3). These are implemented using the global boundary
cells, by making them mirror the 4 nearest inner domain cells, while changing the sign of the velocity in the
normal direction to the respective boundary.

At the end of each solver step, a cell writes its computation results to their position in the output texture. If the
cell is in the 4 nearest to the boundary, it also writes a copy to the boundary cells that should mirror it. This copy
has the sign of its velocity/momentum changed depending on which dimension the cell is mirrored, i.e., the copy
is multiplied by a specific boundary vector ((1,−1, 1)T and (1, 1,−1)T for x and y propagation respectively).
This process is demonstrated in Figure 15.

Figure 15: One dimension view of the simulation domain near the left boundary. The 4 inner domain cells closest
to the boundary write their data to the mirrored global boundary cells, denoted by the bottom arrows.
The cells’ depths are represented by the blue columns, and the arrows above it denote the velocity in
the displayed dimension. The signal of this directional momentum/velocity component is changed
when written to the boundary cells.

As a way to avoid potentially reduced performance caused by thread divergence, branching based on thread
ID for boundary conditions is avoided (Parna et al., 2018). As an alternative, each cell of the inner domain that is
to be mirrored in the boundary cells contains the offsets to those boundary cells. The offsets then can be added
to the previously computed global indices in order to find the ID of the boundary cell. As the grid is 2D, the value
of a cell can be propagated up to a maximum of two boundary cells, one in the x direction and one in the y
direction, so the offsets can be defined as a pair of values. To exemplify, if a cell at (5, 5) should copy its data to

3.2. Implementation 36

the boundary cells at (4, 5) and (5, 4), then it would contain the offsets (−1,−1). For cells that do not copy
their content to boundary cells, a large offset (k) to out-of-bounds cells is assigned 2. Since offsets provided
by 16bit integers are enough, both offsets can be packed into the single 4th component of the simulation data
texture.

Summing up, all inner domain cells write their computation results to their corresponding cell, as well as a
copy multiplied by a specific boundary vector into two boundary cells, defined by the offsets. Some example
scenarios are presented in Figure 16.

Figure 16: Propagation of data from inner domain cells to boundary cells. Example scenario of top left corner of
a group. The inner domain cells that copy their data to boundary cells are highlighted in green, the
ones that do not are in yellow. The solid arrows indicate the direction of the packed offsets and the
dashed-arrows indicate offsets that lead to out-of-bounds accesses. At (4, 5) the offsets are (−1,−3),
at (5, 5) are (−3,−3), at (6, 5) are (−5,−3), at (8, 6) are (k,−5) and at (8, 8) are (k, k), with k
being an arbitrarily large number that always leads to out-of-bounds.

Initial setup

The packed offsets are constant during the simulation so they only need be to set up once at the start. Only
the 4 inner domain cells nearest to the boundary (highlighted in green in Figure 15 and Figure 16) are copied to
boundary cells, consequently, only they require specific packed offsets. The offsets to be packed at each cell can
be determined as in Algorithm 1, where nWidth and nHeight are the width and height of the inner domain,

2 Writes to out-of-bounds texels are guaranteed to do nothing by the OpenGL specification.

3.2. Implementation 37

OOB_OFFSET is a large offset that leads to out-of-bounds accesses and B = 4 is the number of boundary
cells.
Algorithm 1: Offsets initialization

Input: Cell coordinates p
ox ← OOB_OFFSET;
oy← OOB_OFFSET;
for i← 0; i < B; i← i + 1 do

o f f set← 1 + 2× i;
if p.x = i then

ox ← −o f f set;
if p.x = nWidth− i− 1 then

ox ← o f f set;
if p.y = i then

oy← −o f f set;
if p.y = nHeight− i− 1 then

oy← o f f set;

end
return packBCData(ox, oy);

Packing and unpacking

As the texture initialization is done in the GPU where bit manipulation is limited, an example of the packing
and unpacking of offsets is described here. When packing the offsets, the packHalf2x16 function is used
to pack them into a single 32 bit integer followed by uintBitsToFloat to access the integer as a float.
Subsequently, floatBitsToUint followed by unpackHalf2x16 is used to extract the packed offsets.
This allows the representation of a range of values up to 65536 which is more than enough for its use.

Flux boundaries

The previously described boundaries apply only to the final write of the computation results to the output texture.
However, when computing the WENO reconstructions (Equation 64), the stencil of time-averaged fluxes should
also consider the boundary conditions (Parna et al., 2018). These intermediate flux boundaries need to be
handled manually as out-of-bounds writes causes the invalidation of shared memory. Given this, the directional
flux boundaries are only set if the corresponding boundary cells are inside the current group, as defined in the
condition in Equation 37 for the x direction, where Ox is the x offset and Kx the group dimension. This is set
similarly for the y direction.

C f = (i + Ox ≥ 0∧ i + Ox < Kx) (37)

3.2. Implementation 38

To be consistent with the reflective boundary condition applied previously, the boundary cells receive copies
of their respective inner domain cell time-averaged flux values multiplied by a boundary-vector that reflects the
horizontal velocity components ((−1, 1, 1)T).

3.2.5 Algorithm loop

Each solver step takes as input a simulation data texture, resulting from the previous timestep’s simulation, and
the bathymetry texture. During its execution, it updates the output simulation data texture, as well as the normal
and height texture. The two simulation data textures are swapped out after each render step to create a loop
(also called the ping-pong technique). Initially, one texture is filled with the simulations starting conditions, and
then compute calls are chained that perform operations on this data, swapping out the textures in between.

A diagram of the process is presented in Figure 17. Before this loop, an initial setup step is performed that fills
the required textures: first input simulation data texture, bathymetry texture and height and normal texture.

Figure 17: Diagram of the pipeline of the main rendering loop.

3.2.6 Algorithm step

A solver step consists of a single compute shader call which implements the previously described numerical
scheme (Section 3.1). Each thread computes the required values at its corresponding cell (i, j), and intermedi-
ate values at the cell’s edges at (i + 1, j) and (i, j + 1).

The implementation of the step follows the description and use of shared memory presented in Parna et al.
(2018), adding the steps required for filling the height and normal texture. An abstract approach to GSM manage-
ment is used in order to minimize the total GSM block size. GSM is treated as arrays of raw memory which are
used as needed by the scheme. Each element of the arrays corresponds to a thread in the group, consequently,
the arrays’ length is equal to the group’s size. Four arrays are used in total: one of type float (denoted as

3.2. Implementation 39

GSM0) and three of type vec3 (denoted as GSM1-3). The individual components of the elements are denoted
using x, y, z, w subscripts, e.g. the first component of GSM1 is GSM1x.

To guarantee a correct order of execution, both group memory barriers and thread synchronization barriers
are used (denoted as BARRIER). These are used between accesses to the same GSM array, for example: a
thread stores a value in the GSM, then the barriers are applied, then the neighboring threads read the stored
value.

1. Load the previous timestep’s results

Compute global indices (Equation 35). Load the previous timestep’s output and bathymetry values from
textures. Extract boundary offsets from 4th component of simulation data. Process velocities if h is below
threshold ε (Equation 32) and update U accordingly (Equation 33).

2. Compute α for flux splitting, and low-order positivity preserving fluxes

Compute maximum eigenvalues of the flux Jacobians in the x and y direction. Store current water height
h and maximum eigenvalues in GSM1. Store bathymetry b in GSM0 Compute the fluxes F and G
(Equation 8) and store in GSM2 and GSM3.

BARRIER

Compute α for the flux splitting (Equation 61). Compute the the low-order positivity preserving fluxes f̃
and g̃ (Equation 31).

3. Compute the time-averaged fluxes

Compute flux derivatives Fx and Gy and source term S, using central differences for the derivatives. Com-
pute the flux Jacobians ∂F

∂U and ∂G
∂U (Equation 23). Compute time-averaged fluxes F̃ and G̃ (Equation 22).

Store low-order fluxes f̃ and g̃ in GSM1.

BARRIER

Compute Γ (Equation 75). Store the modified conserved quantities (η, hu, hv) for the flux splitting in
GSM3. Store x directional time averaged flux F̃ in GSM2.

BARRIER

4. Do the WENO reconstruction in the x direction

Store F̃ multiplied by the boundary vector in the boundary cells (in GSM2) to set the flux boundary condi-
tions in the x direction (Equation 37).

BARRIER

Do the WENO reconstruction (Equation 24, described in Appendix B)..

5. Do the WENO reconstruction in the y direction

Repeat the previous step but for the y direction.

3.2. Implementation 40

6. Enforce positivity preservation in the h component of the flux

Compute Fi+1/2,j and Fi,j+1/2 (Equation 76), and store in GSM2xy.

BARRIER

Compute bounding Λ values (Equation 79, Equation 77 and Equation 78). Store ΛL and ΛD in GSM1.

BARRIER

Compute the interpolation coefficients θi+1/2,j and θi,j+1/2 (Equation 73). Replace the first component
of F̂ and Ĝ with the respective positivity preserving term (Equation 30). Store F̂ and Ĝ in GSM2 and
GSM3.

7. Compute final result Un+1

Store second source term reconstructions Ŝ in the x and y directions in GSM0 and GSM1z.

BARRIER

Determine Un+1 as in Equation 26 (with S as in Equation 28).

8. Compute surface height and normal

Compute updated total height (η = h + b) and store in GSM0.

BARRIER

Compute surface normal using central differences of the heights.

9. Store results

Write results to corresponding textures based on conditions in Equation 36. To the height and normal
texture: write normal and height to current cell. To the active simulation data texture: write Un+1 to
current cell and write Un+1 multiplied by the corresponding boundary vector the boundary cells specified
by the offsets.

3.2.7 Results

Examples of the results produced by the scheme are shown in Figure 18 and Figure 19, as a set of 3D snapshots.
Geometry is rendered as described in Section 4.1, with simple diffuse shading. The first example (Figure 18)
highlights the boundary reflections in a fully wet simulation, while the second example (Figure 19) highlights the
advance of a wet/dry contact line.

3.2. Implementation 41

Figure 18: 3D snapshots of a simulation at t ≈ 0, 1, 2, 3s. The bathymetry is flat and the water height is set to 8m
in the center and 5m everywhere else. Initial velocities are set to 0. Grid size is 512x512 (including
boundary cells) with ∆x = ∆y = 0.1m and maximum timestep t = 0.01s.

Figure 19: 3D snapshots of a simulation at t ≈ 0, 1, 5, 10s. The bathymetry is a complex heightfield and the
water height is set to 8m in the left column and 0 depth everywhere else. Initial velocities are set to
0. Grid size is 512x512 (including boundary cells) with ∆x = ∆y = 0.1m and maximum timestep
t = 0.01s.

4

R E N D E R I N G

This chapter deals with the visualization of the water simulation framework developed in the previous chapter.
First, the geometric representation of the water surface and bottom terrain is addressed (Section 4.1). This is
followed by the description of the water surface color computations (Section 4.2). The extension of this result is
discussed next with the addition of caustics (Section 4.3). Finally, a method for adding small-scale surface details
is presented (Section 4.4).

4.1 R E N D E R I N G G E O M E T R Y

Both the bottom terrain and water surface are rendered as an uniform grid-shaped mesh. In both cases only the
inner domain is considered, excluding the boundary cells which are required for the solver. The vertex buffers
are filled with the terrain’s positions and normals.

When rendering the water surface mesh, at the vertex shader, its height and normal are sampled from the
corresponding texture. Since the depth can be very close to 0, but not 0, a cell is considered dry if its depth is
under a certain threshold. Dry cells then have their height set to slightly lower than the terrain in order to avoid
z-fighting and to have a clearly defined shoreline.

The water volume’s sides are setup in a similar way, where the vertex buffers are filled with the terrain’s
positions and normals. When rendering, the upper vertices set their height to match the water surface height,
and the bottom vertices set the height to 0. An example of the geometry used is shown in Figure 20, rendered
as a wireframe.

42

4.1. Rendering Geometry 43

Figure 20: Water volume surface and sides rendered as a wireframe

For dry cells in a dry-wet boundary, its height can be extrapolated by averaging the neighboring wet cells
values. The goal is to avoid water climb up artifacts that can happen in these boundaries, as illustrated in 21.
This is less of a problem when the water is clear and in denser grids, so its use can be scene dependent. The
required neighboring cells data is sampled from the simulation data and bathymetry textures.

Figure 21: Water climb up artifacts visible in dry-wet boundary (left) and same scene with height averaged from
neighbors (right)

The drawing passes are executed before the solver pass, so the first frame contains the initial simulation
state. The water surface is drawn after the bottom terrain as the fragment calculations are expected to be more
expensive and therefore can be skipped in case the water is covered by the terrain. All geometry is scaled by
∆x in the x and y dimensions so it keeps the correct proportions with the height.

4.2. Water Surface Color 44

4.2 W AT E R S U R F A C E C O L O R

This section presents the methods used to compute the water’s surface color. Similarly to most water render-
ing methods (Ma et al. (2016), Bruneton et al. (2010)), three components are considered: the Sun’s specular
reflection Csun, the environment’s reflection Cenv and the transmitted light Ctrans which encompasses the bot-
tom terrain reflection and scattered light. These components are described separately, with an overview and
examples of the results obtained at the end of the section.

4.2.1 Sun reflection

The Sun’s reflection is computed by using a microfacet BRDF to describe the surface and a directional light to rep-
resent the Sun. Certain models have been used in ocean rendering but these rely on the statistical properties of
the deep ocean waves (Bruneton et al., 2010) so a more general BRDF is required. The Sun’s specular reflection
can therefore be given by the Cook-Torrance specular term (Guy and Agopian, 2019), as in Equation 38.

fspec(p, v, l) =
D(h)F(l, h)G(l, v, h)

4(n · l)(n · v) (38)

By considering the sun as a directional light, this BRDF can then be used to compute the Sun’s contribution
to radiance as in Equation 39.

Lsun = π f (p, l, v) ◦ Csun(n · l) (39)

The D(h) term follows the GGX distribution described in Walter et al. (2007), which is one of the most widely
used in the rendering industry (Heitz, 2018). The underline denotes a function such that a = max(a, 0) and is
used to avoid negative numbers if the angle in a dot product is higher than 90 deg.

D(n, h) =
α2

π((n · h)2(α2 − 1) + 1)2 (40)

This microfacet distribution is commonly used with the matching Smith shadowing function (as the G(v, l, α)

term), derived in the same paper (Walter et al., 2007). The geometry term term can be replaced with a visibility
term V(l, v, h) which is a simplification of the BRDF by merging the denominator 4(n · l)(n · v) with the
geometric term (Hoffman, 2013). The final BRDF is therefore given by Equation 41 where the visibility term is
given in Equation 42 (Guy and Agopian, 2019).

fspec = D(h)V(l, v, h)F(l, h) (41)

4.2. Water Surface Color 45

V(v, l, α) =
G(v, l, α)

4(n · l)(n · v) = V1(l, α)V1(v, α)

V1(v, α) =
1

n · v +
√

α2 + (1− α2)(n · v)2

(42)

Heitz (2014) notes however that taking the height of the microfacets into account to correlate masking and
shadowing leads to more accurate results. The height correlated visibility function thus becomes Equation 43,
as in Guy and Agopian (2019).

V(v, l, α) =
0.5

n · l
√

α2 + (1− α2)(n · v)2 + n · v
√

α2 + (1− α2)(n · l)2
(43)

4.2.2 Intersecting the heightfield

Reflected and refracted rays need to be intersected with the environment in order to compute the light going in
its direction and effects along its path. Only intersections with the terrain are considered, and therefore, only one
intersection test is needed for either refractions or reflections. As the terrain is represented by a heightfield, a
heightfield ray-casting approach is followed for both refractions and reflections.

The maximum mipmaps technique is used as it provides a fast and scalable solution for intersecting height-
fields, with negligible precomputing (Dick et al. (2009), Silvestre (2017)). The ray-casting algorithm relies on a
precomputed maximum mipmap as an acceleration structure to skip empty space when advancing the ray. A lim-
itation of this algorithm is that, due to its quadtree structure, it can only be used with heightfields in power-of-two
resolutions.

Maximum mipmap

Texels in the maximum mipmap contain the maximum height value over a certain extent of the heightfield depend-
ing on the mipmap level. The maximum mipmap follows a quadtree structure, where a texel in given mipmap
level contains four children texels in the next finer level. The finest level (0), is the original heightfield texture, and
the coarser levels are associated with ascending level numbers. Each mipmap level is, therefore, computed by
determining the maximum value of the four children texels in the level below and storing it in the parent texel.
This process starts at the finest level, and is applied recursively on each level until the coarsest level is reached,
which consists of a single texel. A visual representation of the maximum mipmap is presented in Figure 22. The
mipmap is generated at the application’s start, and introduces additional GPU memory requirements of 1/3 of
the memory needed to store the original heightfield.

4.2. Water Surface Color 46

Figure 22: Visualization of different levels in a maximum mipmap representing an heightfield. Each texel can be
seen as a bounding box over a certain extent of the heightfield (from Tevs et al. (2008)).

Ray traversal algorithm

The ray-traversal method described in Dick et al. (2009) is followed, using a linear approximation for the final
intersection test (Drobot, 2018).

Initially, the ray’s starting position and direction are converted to the heightfield’s texture size coordinates from
world coordinates. After the final hit point is determined, the position is converted back to world coordinates.

The following description of the algorithm applies to an example ray direction dir with dir.x ≥ 0 and dir.z ≥
0. To reduce the number of conditional branches within the ray-casting loop, the sign (≥ 0, < 0) of each dir.x,
dir.z and dir.y is tested at the beginning, and the ray-casting loop is replicated for each of the eight branches.
The differences between branches are explained when relevant.

The traversal algorithm steps the ray through any of the mipmap levels by recalculating the ray entry and
exit points of each texel. The entry point of the current heightfield texel is denoted by texEntry and is initially
equal to fragment’s position. The ray-casting loop is run while the ray does not intersect the heightfield and
does not leave the domain, i.e, texEntry.x < N ∧ texEntry.z < N. For other branches these conditions
are adjusted accordingly, for example if dir.x < 0, the x boundary condition is instead texEntry.x ≥ 0. If
dir.y > 0, an additional boundary is set at the highest level of the heightfield, which can be sampled from the
coarsest level of the mipmap (texEntry.y ≤ maxHeight). Let l denote the current level of the mipmap which
is used to test for ray intersection. Initially, the second coarsest level is used, so l = maxLevel − 1.

At the start of each ray-casting step, the current heightfield texel is fetched from the current level. The texel’s
coordinates are given by (b texEntry.x

2l c, b texEntry.z
2l c). For other branches, for example if dir.x < 0, the texel’s

x coordinate would be instead d texEntry.x
2l e − 1. This also applies to any other texel’s coordinates, such as in

texel’s edges.
The ray’s exit point texExit is then computed from that texel. For this, the ray is intersected with the texel’s

edges, as illustrated in Figure 23. Of the two intersections, texExit becomes the closest one, given by the
smaller ray parameter ∆t.

4.2. Water Surface Color 47

Figure 23: The exit point of a ray from a texel is determined by considering two of its edges. Of the ray’s
intersection points with these edges, texExit is the one closest to texEntry, i.e., with the smaller ∆t.

To avoid infinite looping due to rounding errors, the coordinates are set to the intersected texel edge, for
example, if ∆t = ∆tx then texExit.x = btexEntry.xc+ 1. The full process for determining texExit is
given in Algorithm 2.
Algorithm 2: Determining the exit point of a heightfield texel

texEdges.xz← (b texEntry.xz
2l c+ 1)× 2l

∆t.xz← texEdges.xz−texEntry.xz
dir.xz

∆t← min(∆tx, ∆tz)

texExit← texEntry + ∆t× dir
if ∆t = ∆tx then

texExit.x ← texEdges.x
else

texExit.z← texEdges.z
end

Having determined texExit, the intersection test is performed. This test depends on the ray’s vertical di-
rection: If the ray is going upwards (dir.y ≥ 0) the ray intersects the texel if texEntry.y < height; if the
ray is going downwards (dir.y < 0) the ray intersects the texel if texExit.y < height. If an intersection is
detected in the first case, the intersection point is equal to texEntry. In the second case, the intersection point
is computed as in Equation 44. Both outcomes are illustrated in Figure 24.

intersection = texEntry + max
(

height− texEntry.y
dir.y

, 0
)
× dir (44)

4.2. Water Surface Color 48

Figure 24: The ray’s entry and exit points at the texel are denoted by a red point, and the intersection points by a
black cross. When testing for intersection, the height value is compared to either the entry or exit
point, depending on whether the ray is going upwards or downwards, respectively.

If the ray intersects the texel, the ray is advanced to the intersection point, so texEntry becomes texExit.
Additionally, if l > 0, traversal must proceed to the next finer level to test intersections more accurately on a
child texel (l ← l − 1).

Once at the lowest level (l = 0), instead of a descending operation, an intersection test is performed with
the heightfield. Here, the surface is approximated as a linear interpolation (Drobot, 2018). The heightfield is
sampled at the entry and exit positions of the cell, texEntry and texExit. Then, the final point is given as
the intersection between the ray and linearly approximated curve created by the sampled points, as illustrated in
Figure 25.

Figure 25: At the finest level, the ray (denoted in red) is intersected with a linear approximation of the heightfield
(denoted in blue). Even if the ray intersects the texel it can miss the linear intersection test (left).

4.2. Water Surface Color 49

If the ray does not intersect the heightfield within the texel, texEntry becomes texExit and the loop ad-
vances to the next step. If the texel that would be tested in the next traversal iteration has a different parent texel
than the current texel, the level is increased (l ← l + 1). This process is given in Algorithm 3.
Algorithm 3: Increasing the mipmap level if necessary

if ∆t = ∆tx then
edge← b texExit.x

2l c
else

edge← b texExit.z
2l c

end
l ← min(l + 1− (edge (mod 2)), maxLevel − 1)

If it leaves the domain without intersecting the heightfield, the ray is intersected with the boundary. This is
performed similarly to Algorithm 2, but intersecting the domain boundaries instead of the texel’s edge.

4.2. Water Surface Color 50

An overview of the full algorithm is given in Algorithm 4, for heightfield size N × N. The return values are a
boolean which indicates if an intersection with the terrain was found, and the intersection point position.
Algorithm 4: Maximum mimpmap heightfield intersection

Input: Ray direction and initial position.
l ← maxLevel − 1
texEntry← rayOrigin
while texEntry.x < N ∧ texEntry.z < N do

Fetch height from current texel and level.
Determine texExit (Algorithm 2).
if texExit.y ≤ height then

Advance texEntry to intersection point (Equation 44).
if l > 0 then

Descend one level.
else

Check intersection with heightfield (Figure 25).
if intersects heightfield then

return true and hit position.
else

Advance texEntry to texExit.
Ascend one level if needed (Algorithm 3).

end
end

else
Advance texEntry to texExit.
Ascend one level if needed (Algorithm 3).

end
end
Compute accurate intersection with domain boundaries.
return false and hit position.

4.2.3 Environment reflection

In addition to the Sun’s reflection, the environment’s reflection is also considered. These include the parts of the
terrain that are above the water surface, and the far-away environment, namely the sky. A simplified approach
is used where the water surface is assumed as perfectly specular, so only one direction needs to be sampled

4.2. Water Surface Color 51

to obtain the reflection color. This value is then multiplied by the Fresnel reflectance about the surface normal,
resulting in Equation 45.

Cenv = F(v · n)Cenv (45)

The reflection color Cenv is determined by casting a ray to intersect the terrain, using the previously described
method. If it intersects the terrain, its color and normal are fetched from the respective textures and its lighting
is computed using a perfectly diffuse BRDF. For rays that do not intersect the terrain, a color is fetched from a
cubemap that depicts the far-away environment. Both outcomes are exemplified in Figure 26.

Figure 26: A reflected ray can intersect the terrain (right), or sample from an environment map (left).

4.2.4 Transmission

The transmitted color Ctrans is composed of light reflected on the bottom Cbottom and scattered light (due to in-
scattering) Cscatter, while subject to attenuation. Light that is not attenuated is determined by the transmittance
T(d), as given by Equation 19, where d is the distance that light traveled while inside the medium. This is under
the assumption that the water volume is homogeneous, i.e. it has the same extinction coefficient in all its volume.
Scattering is simply approximated as an added constant diffuse color, Cscatter.

An additional intensity modifier Ic is fetched from a caustics map texture and multiplied by the bottom color.
The caustics map generation process is described in the following section (Section 4.3). The final transmission
color computation is given by Equation 46.

Ctrans = (1− F(v · n))× (IcCbottomT(d) + Cscatter)× Csun (46)

Refracted ray

The bottom reflection color Cbottom and transmission distance dv are determined by intersecting a refracted ray
with the bottom terrain. Most water bodies are bounded by terrain, such as lakes and rivers, so a ray that enters
the water is expected to hit the ground further on. This, however, is not true for transparent enclosing surfaces,
such as in an aquarium, or terrain sections with invisible boundaries. When hitting one of these surfaces, the ray

4.2. Water Surface Color 52

can then be refracted again and used to fetch a color from an environment map (as used for reflections). Both
cases can be visualized in Figure 27.

Figure 27: A refracted ray can intersect the terrain (left), or a bounding box where it is refracted again and
samples from an environment map (right).

As with the reflections, the bottom color and normal are fetched from the corresponding textures using the
intersection point’s position. Similarly, a perfectly diffuse BRDF is used for the lighting computation.

Light Path

When computing the transmittance of the refracted ray during the light’s path inside the water volume, the whole
path should be considered, that is, both before and after the light is reflected at the bottom. The former is given
by the intersection algorithm, while the latter can be approximated as coming from a flat surface at the same
height as the entry point. The total distance is given by Equation 47 and is illustrated in Figure 28, where dv is
the distance determined during ray intersection and cos θ = n · lr. The water height h is given by the difference
between the height of the current fragment and of the intersection point.

d = dv +
h

cos θ
(47)

Figure 28: Path traveled by the light inside the water body before it reaches the viewer, represented by the solid
vectors vr and lr.

4.2. Water Surface Color 53

A more accurate estimate for this distance can also be retrieved from a texture. This distance is computed
during the caustics simulation and stored in the texture in a previous pass, as is described in the following section
(Section 4.3). The previous approximation has the worst results when the light ray enters and leaves the water
surface at considerably different heights. As such, when using the more accurate path obtained from the caustics
simulation, the difference in results will be visible where these heights most differ. This difference is exemplified
in the comparison presented in Figure 29, where lr is the approximated light path, and lrc the one determined
during caustics simulation.

Figure 29: Comparison between an approximated light path, lr, and a more accurate path computed during
caustics simulation, lrc.

A comparison of results is presented in Figure 30. The difference is particularly noticeable if the water has low
transmittance, as the distance traveled by the light inside the water volume will have a greater impact on its final
color.

Figure 30: Comparison between an approximated light path (left) and a more accurate path computed during
caustics simulation (right). A high absorption coefficient is used, and the caustics’ intensity is not
considered for better clarity.

4.2. Water Surface Color 54

4.2.5 Overview

The water’s final color is defined as a mix of reflected and transmitted light (Equation 48) where the Fresnel term
is computed using Schlick’s approximation (Equation 16). To be noted that CSun already includes the Fresnel
term in its computation.

C = CSun + F(θi)Cenv + (1− F(θi))Ctrans (48)

An overview of the full color computation is presented in Algorithm 5, which is implemented in a fragment
shader. All calculations are done in world space, with the appropriate conversions to texture space performed
when needed. Only the inner domain is considered when accessing simulation data textures. A normal map can
also be applied to the water surface, which is discussed in Section 4.4.
Algorithm 5: Water surface shading

Input: eye, normal, light
normal ← applyNormalMap(normal)
re f lectDir ← re f lect(eye, normal)
hit← intersectTerrain(re f lectDir)
if hit then

Cbottom, tNormal ← Sample terrain color and normal from textures
Cenv ← di f f use(Cbottom, tNormal)

else
Cenv ← Sample environment map color from texture

end
re f ractDir ← re f ract(eye, normal)
hit, pathLength← intersectTerrain(re f ractDir)
if hit then

Cbottom, tNormal ← Sample terrain color and normal from textures
Cre f r ← di f f use(Cbottom, tNormal)
causticsIntensity, causticsPathLength← Sample caustics data from textures
Cre f r ← Cre f r × causticsIntensity
pathLength← pathLength + causticsPathLength

else
Cre f r ← Sample environment map color from texture

end
f resnel ← f resnelSchlick(eye, normal)
Csun ← cookTorranceSpecular(normal, eye, lightDir)× normal · lightDir
Cenv ← Cenv × f resnel × normal · lightDir
Ctrans ← (1− f resnel)× Cre f r × (transmittance(pathLength) + Cscatter)

return Csun + Cenv + Ctrans

4.2. Water Surface Color 55

4.2.6 Results

Examples showcasing different parameters are presented in Figure 31, based on varying extinction coefficients
and diffuse scattering colors. These are what mainly affect the water tone and bottom visibility. Another exam-
ple of the rendering results is shown in Figure 32, showcasing the contributions of the various components in
separate.

Figure 31: Different water tones obtained by varying the extinction coefficient (σt) and diffuse scattering color
(Cscatter).

4.3. Caustics 56

Figure 32: Contribution of each component to the water’s final color. Reflection and transmission include the
Fresnel factor. A normal map is applied to the surface as a way to add small-scale detail (Section 4.4).

4.3 C A U S T I C S

This work will consider caustics generated due to refraction, as they are projected on the bottom terrain and
visible when viewing the water surface from the outside. The approach in Parna (2020) for generating a caustics
map is followed as it is particularly suited for heightfield surfaces and allows improved intensity computations.
Some further modifications are done to take advantage of the heightfield bottom terrain, and an additional light
path length output is generated. The algorithm consists of three main steps: computing the caustics vertex
buffer (where the bulk of the complexity is), rendering the caustics map, and application of the caustics map to

4.3. Caustics 57

a receiver diffuse surface, namely the bottom terrain. This section will go through each of the steps and present
the obtained results.

4.3.1 Simulation

Caustics are formed when multiple rays of light converge at a single point. This occurs in water as the refraction at
the water surface causes the light rays to deviate from their original path and converge to a common region. The
core of the simulation emulates the photon paths from the light source through the water surface (Figure 33). This
is often modeled using a light view-space grid (Shah et al. (2007), Papadopoulos and Papaioannou (2010)) where
each vertex of the grid constitutes a single photon to be traced. Since this work uses a heightfield representation
for the water surface which has a grid structure already, this can be exploited by considering the world space
vertices as reference for the photons to be traced (Parna, 2020). This also removes the dependency on the light
view resolution (as in Shah et al. (2007)) and instead couples it to the fluid simulation resolution.

Figure 33: Overview of caustics simulation, vertices of a water surface grid emulate photons and are intersected
with the bottom terrain. The typical caustic patterns would be formed by the triangles such as the one
on the left where the rays converge, which results in a higher light intensity.

The entire caustics simulation is performed with a single compute kernel where each thread matches a vertex
in the caustics grid. The threading scheme is similar to the fluid simulation (Section 3.2.3), but only a single-cell
boundary layer is required. The global indexes are given by Equation 35 and the number of compute groups to
be dispatched is given by Equation 34. The output of this step is stored in a vertex buffer that has 4 floats per
vertex, 2 for the x and z world space position of the hit points, 1 for the corresponding light intensity and 1 for the
light path length.

Initial Positions

The simulation pass starts with determining the vertex position assigned to each thread, which is sampled from
the simulation heights and normals texture. This data is the starting point for the refracted ray used in the

4.3. Caustics 58

following simulation steps. Each vertex is also considered to be associated with a grid cell that consists of two
triangles, which will be referred to as the vertex’s associated triangles.

A caustics grid of size NW × NH is used where N defines the grid density increase (W/H are the
simulation grid width/height), i.e., N = 1 results in the caustics grid matching the simulation grid and N = 2
results in a 4 times denser caustics grid compared to the simulation grid. The scaled grid spacing is given by
Equation 49 and the caustics grid initial vertex position is therefore given by Equation 50, where (i, j) are the
global indexes and η is the surface height sampled from the simulation data texture at the specified position.

βx =
W − 1

NW − 1
∆x

βy =
H − 1

NH − 1
∆x

(49)

P = (iβx, η, jβy) (50)

Post-refraction hit-point detection

The intersection point of the refracted ray with the receiver geometry must be computed in order to output the final
vertex position. Since the intersections are not required to be completely accurate, as the patterns generated
are the most important feature, a cheaper but less accurate intersection algorithm is used (compared to the one
described in Section 4.2). A similar algorithm to the one described in Shah et al. (2007) is used, which is an
iterative estimation process that is derived from the Newton-Raphson root finding method. The original algorithm
requires a previous pass to render the positions of the receiver geometry. As only the bottom heightfield is
considered as receiver geometry in this case, the bathymetry texture can be used instead.

Figure 34: Diagram of two iterations of the intersection estimation algorithm (left to right). The light gray dotted
line correspond to lookups to the bathymetry texture.

4.3. Caustics 59

Let p0 be the position of the current vertex with surface normal n, the light direction be l and the normalized
refracted light vector be r, as illustrated in Figure 34. Points along the refracted ray are thus defined as in
Equation 51, where d is the distance from the vertex p0.

p = p0 + d× r (51)

Estimating the point of intersection comes down to estimating the value of d, the distance between p0 and the
receiver geometry along r. Let p′ be the project texture sampling of p on the bathymetry texture with a top-down
view, therefore sharing the same coordinates. Point p0 is initially projected into the bathymetry and the distance
d′ between p0 and the looked up position p′0 is used as an estimate value for d in Equation 51 to obtain a new
point, p1.

This process composes a single iteration of the algorithm. For example, in the next iteration p1 is projected
into the bathymetry to obtain p′1 and the distance between p′1 and p0 is used as a new estimate for d. This
value is plugged into Equation 51, returning a new estimated intersection point p2.

The estimate of the intersection point improves with each iteration as it tends to converge at the true intersec-
tion point (Shah et al., 2007). The magnitude of error and the number of iterations to convergence will depend
on the terrain topology. A constant value of 5 iterations was used, as suggested in Shah et al. (2007), and found
to produce good results.

The full process can be seen in Algorithm 6.
Algorithm 6: Intersection estimation

Input: Initial point of the ray p0 and normalized refracted light direction re f ractDir
p← p0
for i← 0; i < intersectIters; i← i + 1 do

// Project p into bathymetry

b← texture(bathymetry, p).r
pProj = (p.x, b, p.z)
// Use distance for next approximation

d← distance(p0, pProj)
p← p0 + d× re f ractDir

end
return p

With the intersection point determined, the path length is simply computed as the distance between its position
and the initial water surface position.

Caustics intensity

Since the vertices went through refraction, the associated triangles areas may differ between the original/pre-
refraction vertices and the post-refraction vertices. For focusing rays, the area decreases, and for dispersive rays
it increases (see Figure 33). This difference in areas is used as a way to define a per vertex intensity (Parna,
2020).

4.3. Caustics 60

The final intensity Ii is determined as a ratio of the sum of the areas of the pre-refraction triangles around
vertex pi and the post-refraction triangles around R(pi), multiplied by the light intensity at the water surface.
This can be seen in Equation 52, where R(pi) is the post refraction hit point of pi and N(p) is the set of
triangles neighboring a given vertex p. A(4) is the area of a triangle, and I(4) is the light intensity as defined
in Equation 53, where n4 is the triangle’s normal and l is the normalized light direction. Considering that the
normal of the triangle is computed using a cross product, the triangle’s area can be given by the length of the
normal vector1.

Ii =
∑4i∈N(pi) A(4i)I(4i)

∑4j∈N(R(pi)) A(4j)
(52)

A(4) = ‖n4‖

I(4) = normalize(n4) · l
(53)

Following this idea, the steps required to compute the caustics’ intensity are:

1. Compute the pre- and post-refraction areas and intensities associated with each triangle.

2. Sum the values associated with each vertex by adding the surrounding triangles’ values.

3. Compute the ratio between both values.

Although the values used for the intensity ratio computation are the triangles areas multiplied by the light
intensity, they will still be referred to as areas for simplicity’s sake.

The regular nature of the water surface grid allows the neighboring triangle set of a vertex to be easily deter-
mined. Considering that refraction does not alter vertex connectivity, the neighboring region stays the same both
pre- and post-refraction.

All data related to the vertices positions required for the triangle normal calculations is stored in GSM. As the
grid spacing is uniform (βx and βy), only height needs to be shared for the pre-refraction area computation. For
the post-refraction areas the equal grid-spacing is not preserved and as such the areas are computed using the
vertices positions.

With the pre- and post-refraction areas computed for all triangles, they are also stored in GSM so they can
be accessed for the total neighboring triangle area calculation. The neighborhood of triangles for a vertex pi,j

to be summed is illustrated in Figure 35). The final area is defined as in Equation 54, where at is the total area

1 The actual area of the triangle would be half of the cross-product, but since only the ratio of areas is of interest, the division is
dropped.

4.3. Caustics 61

and areau(i, j) and areal(i, j) are functions that read from GSM the area of the upper and lower associated
triangles of vertex (i, j). The use of GSM is further explained below.

a1 = areau(i− 1, j)

a2 = areal(i− 1, j)

a3 = areau(i, j)

a5 = areal(i− 1, j− 1)

a5 = areau(i, j− 1)

a6 = areal(i, j− 1)

at = a1 + a2 + a3 + a4 + a5 + a6

(54)

Figure 35: Neighborhood of triangles around vertex (2, 2) on a 4× 4 caustics grid.

Simulation overview

An overview of the steps of the caustics simulation is provided in Figure 36. Starting at step (1), the intersection
point of the refracted ray with the bottom terrain is estimated. At step (2), the vertex’s associated triangles
areas and intensities are computed. Step (3) takes the previously computed results of the vertex’s triangle
neighborhood, and adds them. Finally at step (4), a ratio of the neighborhood sums is computed by dividing the
pre-refraction area by the post-refraction area, resulting in the final caustics intensity. Both the hit point position
computed at step (1) and the caustics intensity at step (4) are stored in a buffer to be later used to render the
caustics map.

4.3. Caustics 62

Figure 36: Steps of the caustics simulation performed at each thread.

During this compute shader pass, GSM is used to avoid doing redundant processing and texture accesses.
The initial vertex height (1 float) and hit point position (3 floats) are stored in GSM so they can be later accessed
for area calculations. Then, pre- and post-refraction triangle areas are also stored in GSM for triangle neighbor-
hood accesses (4 floats in total). As only 4 floats need to be stored at the same time, a single GSM vec4 array
is used.

An overview of the caustics simulation process where the order of execution and use of GSM can be seen is
in Algorithm 7. Memory barriers with thread synchronizations are denoted as barrier and used between reads

4.3. Caustics 63

and writes in the GSM to guarantee a correct order of execution. The input resources to this pass are the heights
and normals texture, bathymetry texture and normal map.
Algorithm 7: Caustics simulation
// Compute and sample initial data

Compute global indices (Equation 35).
Sample height and normal from simulation data texture.
Sample and apply normal map to perturb normal.
Compute new grid spacing and vertex position waterPos (Equation 49 and Equation 50).
// Find hit point

re f ractDir ← normalize(refract(lightDir, normal, eta))
Estimate intersection point (hitPoint) with receiver using waterPos, re f ractDir and bathymetry

texture (Algorithm 6).
pathLength← distance(waterPos, hitPoint)
Store height and hitPoint in GSM.
barrier
// Compute associated triangle areas and intensities

Read heights and hitPoints of vertices in associated triangles from GSM.
Compute normals for pre- and post-refraction associated triangles using heights and hitPoints.
Compute triangle areas and intensities for the required triangles using their normals (Equation 53).
barrier
Store triangle areas in GSM.
barrier
// Read and sum values from triangle neighborhood (Equation 54)

Read vertex triangle neighborhood intensities from GSM, preAreas and posAreas for pre- and
post-refraction areas respectively.

totalPre← ∑x∈preAreas x
totalPos← ∑x∈posAreas x
intensity← totalPre

totalPos

// Write results to buffer

if this vertex is in inner local and global domains (Equation 36) then
Write intensity, pathLength and hitPoint x and z components to buffer.

4.3.2 Rendering caustics map

The previous pass filled the caustics vertex buffer with the positions and intensity data, which will now be used
to render the caustics map texture.

There are two main rendering methods: splatting based (Shah et al., 2007) and triangle based (Ernst et al.,
2005). Both methods output a caustics map texture that is then projected onto the caustics receiver. Parna

4.3. Caustics 64

(2020) compared the methods, suggesting the use of caustics triangle rendering as it provided significantly
sharper results while also being slightly faster to render and not requiring additional parameter tuning. As such,
it is the method implemented in this work.

The caustics map texture is obtained by rendering the triangles of the caustics grid and using the fragment
shader to smoothly interpolate the vertex intensities across the rasterized pixels. Since triangles can end up
overlapping or have a reversed winding order due to refraction (Figure 37), the rendering pass is performed with
both culling and depth-testing disabled and additive blending enabled.

Figure 37: Example scenario that leads to overlapping triangles and reversed winding order (highlighted in red).

The path length requires different blending, so an additional texture is rendered in the same way, but using the
path length as the color and minimum blending instead of additive.

Parna (2020) rendered the caustics map from camera’s view which required an additional pass to render the
depth so it can be later used to avoid incorrect caustics when the viewing ray crosses the caustics mesh more
than once. As in this work only heightfields are to be rendered underwater, a top-down camera was chosen
instead, therefore guaranteeing that the mesh is intersected only once and avoiding the previously described
problem. Additionally, only the x and z coordinates of the hit point are needed in the caustics buffer and the
projection of the caustics map to the receiver is trivial.

4.3.3 Applying the caustics map

When rendering the water surface, the intersection point between the viewing ray and the bottom terrain is
computed (Section 4.2.2). The x and z coordinates of this point are converted to texture space and used to
access the caustics map and path length textures. The intensity modifier sampled from the caustics map texture
is then multiplied by the refracted color which is used in the remainder color computations. The path length
replaces the approximate path length when computing the transmittance as described in the previous section.

4.3. Caustics 65

4.3.4 Algorithm overview

An high level overview of the rendering pipeline is provided in Figure 38. Since the algorithm runs entirely on the
GPU, it is presented in terms of render passes performed.

Figure 38: Overview of the caustics algorithm. Render passes are represented by gray boxes, and the resources
used and produced by these passes are represented as orange (buffers) and blue (textures/images)
boxes. The texture’s colors are scaled for better visualization.

4.3.5 Results

Some example scenarios with caustics are provided in Figure 39 and Figure 40. In both examples the caustics
distinctive brighter zones are clearly visible due to the convergence of light rays.

4.3. Caustics 66

Figure 39: Caustics created by multiple waves on the water surface.

Figure 40: Caustics created by a normal map (Section 4.4) applied on a flat water surface pierced by the bottom
terrain.

A limitation of the method used is that only light incoming from the water surface is considered, as if the scene
was contained inside a box, which produces shadows near the borders (Figure 41). This could be fixed by simply
extending the caustics generating grid to outside the domain of the simulation as necessary.

4.4. Small Scale Details 67

Figure 41: Shadowed borders produced by the caustics algorithm, since it only considers incoming light from
the water surface.

4.4 S M A L L S C A L E D E TA I L S

A procedurally generated normal map is used to provide higher frequency details for surface rendering. Pro-
cedural noise functions are widely used in Computer Graphics (Lagae et al., 2010) and for a diverse range of
purposes including varied natural scenery, water being one of them. This section explores the use of Perlin and
cellular noise as a way of adding detail to the water surface and the caustics it produces.

Although only a 2D texture is needed to generate the normal map, the 3D version of the noise functions are
used to animate the texture. By fixing two coordinates and moving through the other one (simulating time), as if
a plane was slicing a 3D volume, a smooth animation can be achieved.

4.4.1 Perlin Noise

Perlin noise (Perlin, 2002) is probably the most famous noise algorithm and is commonly used to generate
patterns and shapes found in nature. It is an implementation of gradient noise, which consists in the creation of
a lattice of random gradients at integer locations, interpolated to obtain values between the lattices. The version
used here is Perlin simplex noise, an improved version of classic Perlin noise (Perlin, 2002), but will be referred
to simply as Perlin noise. The GLSL implementation presented in Gustavson and McEwan (2022) is used for the
noise generating function. The normal map is obtained from the analytical derivatives of the noise function.

4.4. Small Scale Details 68

Figure 42: Perlin noise, height map values on the left, normal map on the right.

4.4.2 Cellular Noise

Cellular noise, also known as Worley noise (Worley, 1996), was explored with the goal of producing more con-
vincing and diversified caustics patterns. Cellular Noise is based on distance fields, more specifically, of the
distance to the closest point in a set of feature points. The space is subdivided into tiles, each one containing
a feature point in a random position. At each pixel, the distance between the point in their own tile and the
points in the surrounding tiles is checked and the shorter distance is stored. The result is a distance field as in
Figure 43. The open source GLSL implementation in Gustavson (2021) is used for the noise generating function.
The normal map is computed from the noise in an additional pass, using a finite difference approximation of the
derivatives.

Figure 43: Cellular noise, height map values on the left, normal map on the right.

4.4.3 Fractal Brownian Motion

To obtain a finer granularity in the noise and get more fine detail, a technique called fractal Brownian motion (fBm)
can be used (Vivo and Lowe, 2021), also referred to simply as fractal noise. This consists in adding different
iterations of noise (octaves), where the frequencies are successively incremented in regular steps (lacunarity)
and the amplitude decreased (gain). The derivatives/gradient are accumulated in the same way as the noise,

4.4. Small Scale Details 69

added and multiplied by the amplitude at each iteration. A fractal noise function is provided in Algorithm 8, and
example generated textures in Figure 44.
Algorithm 8: fBm function

Input: 2D coordinates p
f requency← 1
amplitude← 1
total ← 0
for i← 0; i < octaves; i← i + 1 do

total ← total + amplitude× noise(f requency× p)
f requency← f requency× lacunarity
amplitude← amplitude× gain

end
return total

Figure 44: Perlin (left) and cellular (right) 3 octaves fractal noise normal maps.

4.4.4 Domain Warping

With cellular noise, the edges of the cells create sharp peaks and lead to the typical cell shaped caustics. How-
ever, the cell’s straight lines give it a unnatural appearance which needs further tweaking. Domain warping can
be used to add some distortion to the generated noise. With a image defined as a function of space, as is the
case of the noise function used so far, warping simply means distorting the domain with another function, i.e,
replacing f (p) with f (g(p)). As the goal is only to slightly distort the image, the domain warping function
g(p) can be defined as a small arbitrary distortion h(p), or in other words, g(p) = p + h(p). The final noise
function will therefore be computed as f (p + h(p)), where h(p) can be another noise function (example of
use in Algorithm 9).

The final noise is generated using a cellular noise fractal sum and an additional Perlin noise fractal sum used
for domain warping. Examples of generated noise using this configuration are presented in Figure 45.

4.4. Small Scale Details 70

Figure 45: Cellular fractal noise normal maps, on the right with domain warping, and on the left without.

Algorithm 9: Noise function using fractal sums and domain warping
Input: 2D coordinates p
q = f Bm(p)
return f Bm(p + 0.1× (q, q))

4.4.5 Using the normal map

When rendering the water surface, the normal map is applied as usual by distorting the water surface normals.
When the generated normal map is accessed it can also optionally be stretched and slid over the surface over
time to simulate small wind waves.

Examples of scenes with noise generated normal maps can be seen in Figure 46, Figure 47 and Figure 48.
The first example has clear water and clearly visible caustics patterns. In this case only a small number of
octaves are used, but domain warping is required in order to distort the straight lines of cellular noise. The
second example has turbid water where the bottom terrain barely contributes to the water’s color and the sun’s
specular highlights are visible. Here 4 octaves are used as the finer detail results in the distinct sparkling look
created by the water’s specular reflections. The final example shows small directional waves, resulting from
stretching the normal map in one direction. In this example the normal map would also be slid over the surface
over time, in the direction perpendicular to which it was stretched.

4.4. Small Scale Details 71

Figure 46: Perlin (top) and cellular (bottom) fractal noise applied as a normal map to clear water. The noise is
composed of 2 octaves and the cellular noise has domain warping caused by 2 octaves Perlin fractal
noise.

4.4. Small Scale Details 72

Figure 47: Perlin (top) and cellular (bottom) fractal noise applied as a normal map to turbid water. The noise is
composed of 4 octaves. The cellular noise has domain warping caused by 4 octaves Perlin fractal
noise.

4.4. Small Scale Details 73

Figure 48: Perlin (top) and cellular (bottom) fractal noise applied as a normal map to turbid water. The noise
is composed of 4 octaves and stretched in one dimension. The cellular noise has domain warping
caused by 4 octaves Perlin fractal noise.

5

E V A L U AT I O N

This chapter discusses the results of the developed framework in various scenarios and provides performance
benchmarks.

Initially, an overview of the developed application is provided (Section 5.1), where a brief review of the pipeline
is presented, as well as common performance benchmarks for the main components. The following section (Sec-
tion 5.2) provides a more in-depth review of the solver, analyzing its capabilities for modeling different scenes.
The final section (Section 5.3) performs a similar analysis for the various rendering components, exploring differ-
ent options and providing additional performance benchmarks.

All timings are obtained with OpenGL queries and using a NVIDIA GeForce GTX 1060 with 6 GB of VRAM.
The timings are averaged over at least 1000 frames.

5.1 O V E R V I E W

This section presents a brief review of the full application and performance benchmarks of its various compo-
nents.

A diagram of the application pipeline can be seen in Figure 49 where the separate components are highlighted.
Additional passes such as for the terrain and skybox were omitted. The solver step is the last step as it updates
the state for following frame, with the first frame displaying the initial state. Multiple solver steps may need to be
performed in a single frame due to stability restrictions (Section 3.2.1).

74

5.1. Overview 75

Figure 49: Pipeline of the full application. Each gray box is a pass, and the surrounding boxes highlight the main
components. At the noise generating component, the passes performed depend on the type of noise
used. The solver pass can be repeated several times if needed due to a limiting timestep.

When rendering a certain simulation grid, the water surface vertex grid is actually slightly smaller due to
excluding the boundary cells, e.g., for a simulation grid size of 1024x1024, the corresponding vertex grid is
of size 1016x1016. However, for simplicity’s sake, when referring to grid sizes only the simulation size will be
mentioned.

The timings of the full application for various combinations of resolutions and grid sizes are presented in
Table 1. Graphs of these timings are presented in Figure 52 and Figure 51, and the scene used for these tests
is displayed in Figure 50. A chart with a more detailed breakdown into the various components is presented in
Figure 53 for some of the grid size and resolution pairs.

The timings for rendering include the water volume rendering and the previous components that generated
textures that are used in it (the first three components in Figure 49). A single step of the solver is performed per
frame in all cases, and the cell’s size is adjusted so that the physical dimensions of the scene remain the same

5.1. Overview 76

for all grid sizes. The caustics and normal map textures have a resolution equal to the grid’s size. The normal
map is generated using two octaves of cellular noise.

Other parameters that influence the performance of the application, such as the work group size in a compute
shader, are set as the ones that yield the best performance, with the analysis regarding them being presented
further ahead (Section 5.2.3, Section 5.3.2).

Figure 50: Example scene used to obtain the timings displayed in Table 1.

Resolution

Grid size
256 x 256 512 x 512 1024 x 1024 2048 x 2048

480 x 270 0.09; 0.73; 0.82 0.33; 1.68; 2.01 1.33; 4.23; 5.56 5.42; 13.89; 19.31

960 x 540 0.09; 1.32; 1.41 0.33; 2.96; 3.29 1.33; 6.30; 7.63 5.42; 16.50; 21.92

1920 x 1080 0.09; 2.00; 2.09 0.33; 4.82; 5.15 1.33; 11.80; 13.13 5.42; 27.22; 32.64

Table 1: Frame time breakdown of the full application for different combinations of grid sizes and resolutions.
Each cell of the table has 3 timings which from left to right correspond to: simulation, rendering and
total. Timings are in milliseconds.

5.1. Overview 77

Figure 51: Frame time breakdown of the full application for different grid sizes, and resolution 1920x1080. Both
axes are scaled logarithmically. Values in Table 1.

Figure 52: Rendering time for different resolutions, and grid size 1024x1024. The time is also displayed without
the caustics and noise passes, that is, only the water surface and sides drawing passes. Both axes are
scaled logarithmically. Values in Table 1.

As seen on Figure 51, frame time scales linearly with the grid size. The rendering time also scales linearly
with the resolution when considering only the surface and and sides rendering passes (Figure 52), since in these
examples the caustics and noise texture sizes were defined based on the grid size, and therefore are equal for
all resolutions.

5.2. Shallow Water Equations solver 78

Figure 53: Frame breakdown with all components for some combinations of resolution and grid size. Values in
Table 1.

Rendering takes the bulk of computation time, this difference being accentuated when a small grid size is
used with a larger resolution, e.g, in Figure 53 comparing the two middle examples. However, the examples
given had only one solver step per frame, while due to stability restrictions more can be required, an option that
is reviewed at Section 5.2.1. From within the different rendering components, drawing the water surface takes
the most time. Even when the texture resolution used for caustics and noise is larger than the final rendering
resolution, rendering the water surface takes more than half of the rendering time (second example from the right
in Figure 53), with noise generation taking the least.

5.2 S H A L L O W W AT E R E Q U AT I O N S S O LV E R

This section presents a review of the SWE solver for different scenarios. Initially, the impact of the grid and cells
size is evaluated for different scenarios, providing a visual showcase of the water behavior modeled by the solver.
Then, different possible work group configurations for the compute shader are evaluated. Finally, the option of
adjusting the solver for fully water covered scenes is analyzed.

5.2.1 Grid and cell size comparison

The simulation has two main parameters that define the physical domain it models, the grid size and the cell
size. While keeping the total physical dimension constant, increasing the grid size and reducing the cell size
will increase the simulations detail level, while doing the opposite decreases the detail level. For a scene with
the same physical dimensions and initial conditions, several combinations of grid and cell sizes are tested with
rendered results shown in Figure 54.

5.2. Shallow Water Equations solver 79

Figure 54: Scenes with the same physical dimensions (≈ 200m) but different combinations of grid and cell sizes.
From top to bottom the scenes have increasingly smaller cells and larger grids.

As seen in Figure 54, lowering the cell size and increasing the grid size accordingly leads to a more detailed
simulation, with sharper features and more complex waves and caustics patterns.

As all cells are treated the same in the solver, and as confirmed during testing, the state of the scene (e.g.,
the wet to dry cell ratio) has no impact in the performance of the solver. That leaves the size of the simulated grid
as the performance defining parameter. Increasing the detail level implies increasing the grid size, which will in
consequence affect performance.

However, due to stability requirements (Section 3.2.1), more than one solver step can be required per frame
since there is a limit on the timestep size. Stability will mostly depend on the velocity of the water flow, and on
the dimension of the cells relative to that velocity: the smaller the cell size, or the higher the velocities are, the
smaller the maximum timestep allowed will be. So for a certain grid size, reducing the cell size might require
additional solver steps in order to ensure stability.

For a grid size of 1024x1024, the same scenario was tested with different cell sizes, and consequently,
different total physical domains. The timings for the tested scenes as well as the maximum timesteps (determined

5.2. Shallow Water Equations solver 80

as to ensure stability in the simulation) and number of solver steps are provided in Table 2. The maximum
timestep (Max Delta t) was determined through trial and error as the lowest value that would allow for a stable
simulation.

Cell size (m) 0.4 x 0.4 0.2 x 0.2 0.1 x 0.1

Max ∆ t (ms) 20 10 5

Solver steps per frame 1 2 4

Render time (ms) 9.09 10.59 11.95

Solver time (ms) 1.25 2.49 4.98

Total (ms) 10.34 13.98 16.93

Table 2: Data about scenes with grid size 1024x1024, resolution 1920x1080 and varying cell size.

As seen in Table 2, decreasing the cell’s size to a quarter resulted in requiring to halve the maximum timestep
in order to ensure stability. This leads to more solver steps being needed per frame, increasing its contribution to
frame time in relation to rendering.

Similarly, increasing the velocities in the scene, for example by increasing the water depth which causes the
waves to travel faster, will lead to more strict stability requirements, in the form of a lower maximum timestep. Two
scenarios with the same parameters but different water depths were tested, with the results shown in Table 3.
The scenes tested are depicted in Figure 55.

Figure 55: Scenes with different starting conditions but all other parameters equal. The scene on the right (B)
has a higher average depth which results in faster waves.

5.2. Shallow Water Equations solver 81

Scene A B

Max ∆ t (ms) 10 7

Solver steps per frame 2 3

Render time (ms) 10.76 11.31

Solver time (ms) 2.49 3.75

Total (ms) 13.25 15.06

Table 3: Data about the scenes depicted in Figure 55, with grid size 1024x1024, resolution 1920x1080 and cell
size 0.2x0.2.

As seen in Table 3, a lower maximum timestep required to ensure stability will lead to a larger number of solver
steps per frame.

Although depending on several different parameters, the simulation proved viable (when aiming for around 60
frames per second, or 0.017 ms per frame) for the examples provided for a resolution of 1920x1080, grid of size
1024x1024 and cell size 0.2x0.2m, which accounts for a total physical domain of ≈ 200m (Table 2, Table 3).
Covering larger domains can be achieved by increasing the cells’ size, having the drawback of lower detail. For
scenes with higher rendering or stability requirements, other parameters would have to be adjusted accordingly,
such as lowering the grid resolution or increasing the cells’ size.

5.2.2 Limitations

A limitation of the heightfield representation is that when creating a larger/faster wave, if the wave were to break,
an unnatural wall-like wave is formed instead. An example of this is shown in Figure 56.

Figure 56: Several frames of a wave in a simulation, advancing from left to right. Shallow waters can not model
breaking waves, so instead a unnatural wall-like wave can be formed.

5.2.3 Computation work group sizes

As there are various different conflicting optimization parameters, which make finding the optimal work group size
a difficult task (Brodtkorb et al., 2012), a set of different possible configurations is tested. Still, there are some
aspects that can be considered. Firstly, there are some restrictions set by OpenGL, namely, for each work group
there is a maximum number of threads of 1536, and a maximum size of the shared memory of 49152 Bytes.

5.2. Shallow Water Equations solver 82

The compute kernel uses 10 floats per thread, therefore requiring 40 bytes in total. Considering the limit of
49152B, a maximum number of threads per work group of 49152/40 ≈ 1229 would be expected. However,
when compiling the shader, the shared memory limit was reached at a lower value of 928 threads, possibly due
to how OpenGL internally handles the memory.

Another aspect to consider is that having a bigger and square work group maximizes the ratio of internal valid
cells to boundary cells (see Figure 14). Finally, since the warp size is 32, it is a common practice to keep the
number of threads to an integer multiple of it (Brodtkorb et al., 2012). During testing, only the configurations with
either 16 or 32 threads on the x dimension produced correct results, possibly due to synchronization issues. Due
to the shared memory limit, that makes the maximum work group sizes to be 32x29 or 16x58.

Considering these guidelines and restrictions, a variety of possible thread configurations were tested. A selec-
tion of the computation times of these configurations are shown in Table 4 and Figure 57. More configurations
than those shown were tested, which followed a similar distribution to the one presented in Figure 57. Smaller
groups than those shown had increasingly worse results.

Threads (XxY) 16x16 16x20 16x24 16x28 16x32 16x36 16x40 16x44 16x48

Timings (ms) 0.54 0.44 0.40 0.42 0.38 0.38 0.37 0.46 0.46

Threads (XxY) 32x12 32x14 32x16 32x18 32x20 32x22 32x24 32x26 32x28

Timings (ms) 052 0.45 0.39 0.36 0.33 0.42 0.41 0.38 0.38

Table 4: Performance of the SWE solver with different work group thread configurations. Simulation grid size is
512x512.

Figure 57: Performance of the SWE solver with different work group thread configurations. Values in Table 4.

As expected, the smallest configurations had the worst results, probably due to the low ratio of inner to bound-
ary cells, which then requires more groups to be dispatched to cover the whole domain. However, increasing
the size of the group only yields better results up until a certain point, with the largest groups having worse
results. The best configuration can be seen as a "dip" in both charts (Figure 57), which corresponds to a size of
640 = 32x20 = 16x40 threads. Within this size, the configuration of 32x20 had the best results, so it is used
for all other tests.

5.3. Water rendering 83

5.2.4 Wet only solver

Since the solver has specific computations to handle wetting/drying processes (Section 3.1.4), an alternative
version of the solver without these computation was also tested, which will be referred to as the wet only solver.
This solver could be used in scenes where it is guaranteed that every cell is covered in water, as a way to improve
performance. The computation times for both solvers are presented in Table 5 for varying grid sizes.

Grid size 128 x 128 256 x 256 512 x 512 1024 x 1024 2048 x 2048

Standard 0.03 0.09 0.33 1.33 5.42

Wet only 0.03 0.11 0.26 1.26 5.29

Table 5: Performance of the SWE solver with different grid sizes and solvers, timings in milliseconds. The wet
only solver has no computations for handling wetting/drying processes.

The wet only solver provides a slight increase in performance which can justify its use in scenes that allow
it. Still, since the solver usually amounts for a small part of total computation time, it may only be noticeable in
scenes that rely on multiple solver passes.

5.3 W AT E R R E N D E R I N G

This section presents a more in-depth review of some parameters and options of the rendering components, as
well as additional performance benchmarks.

5.3.1 Terrain intersection

As part of the water color computations, when determining the intersection of the refracted/reflected viewing ray
with the terrain, a heightfield intersection algorithm is used. This algorithm is tested with bathymetries of varying
steepness and its computation times are shown in Table 6. The scenes tested and heatmaps of the number of
iterations required for intersection are provided in Figure 58.

Bathymetry type A B C

Timings (ms) 2.95 2.30 1.99

Table 6: Rendering timings for different bathymetries of varied steepness (shown in Figure 58). Only the water
surface and sides passes are considered. Grid size is 512x512 and resolution is 960x540.

5.3. Water rendering 84

Figure 58: Scenes with different bathymetries of decreasing steepness from left to right. The bottom row depicts
a heatmap of iterations of the intersection algorithm, corresponding to the scenes in the top row.
Timings in Table 6.

As seen in Table 6 and Figure 58, the number of iterations required o intersect the terrain depends on its
steepness, with steeper terrain requiring more iterations. This is due to the high variation in heights of the steep
terrain causing the ray to descend levels too quickly, which then requires more iterations to advance through the
lower levels (as seen in the red hotspots in Figure 58). On the other hand, on flatter terrain, the ray is more likely
to only descend levels when actually getting near the intersection point.

5.3.2 Caustics

The caustics generation step (yellow outline in Figure 49) consists of three passes, the first one being a compute
shader that creates a vertex buffer filled with the caustics data. Then, there are two rendering passes that utilize
the generated vertex buffer to create textures, one drawing the caustics intensity values, and the other drawing
the incident light path length.

Performance results for the caustics map generation with varying grid sizes are given in Table 7 and Figure 59,
and with varying resolutions in Table 8. Both rendering passes have similar performance so a single value is
displayed for both. The total includes the three passes, namely the initial compute pass and the following two
rendering passes.

5.3. Water rendering 85

Caustics grid size 256 x 256 512 x 512 1024 x 1024 2048 x 2048

Computer vertex buffer 0.07 0.16 0.52 1.97

Render textures 0.26 0.38 1.44 6.80

Total 0.33 0.54 1.96 8.77

Table 7: Performance of the various caustics simulation passes with different caustics grid sizes. Caustics textures
resolution is 1024x1024 and timings are in milliseconds. The total accounts for a complete step, which
includes the compute pass and two render passes.

Figure 59: Performance of the various caustics simulation passes with different caustics grid sizes. Both axes are
scaled logarithmically. Values in Table 7. The total accounts for a complete step, which includes the
compute pass and two render passes.

Grid size

Resolution
256 x 256 512 x 512 1024 x 1024 2048 x 2048 4096 x 4096

256 x 256 0.05 0.05 0.08 0.28 0.98

512 x 512 0.20 0.18 0.18 0.52 1.17

1024 x 1024 0.88 0.86 0.72 0.76 1.47

2048 x 2048 3.58 3.54 3.40 2.90 3.03

Table 8: Performance of a caustics rendering pass with different resolutions. The grid size refers to the caustics
grid and the resolution to the generated caustics textures.

As shown in Table 7 and Figure 59, the bulk of the computation time is spent drawing the caustics textures and
not computing the vertex buffer that they are drawn from. Since computing the path length for the attenuation is
only useful in certain scenes, it can be omitted to improve performance. Reducing the resolution to below the

5.3. Water rendering 86

grid size resulted in similar or worse timings, as shown in Table 8, so this should be avoided (considerably worse
results are also produced, as later seen in Section 5.3.2).

Caustics work group size

Similarly to the SWE solver (Section 5.2.3), the caustics simulation is tested with various work group sizes. Since
the compute kernel uses only 4 floats per thread (16 bytes) of shared memory, a maximum number of threads
per work group of 49152/16 ≈ 3072 would be expected to reach the limit. The upper bound for work group
size is instead set by the maximum number of threads, 1536.

A selection of computation times of this pass with some different possible work group configurations are
presented in Table 9 and Figure 60, with a caustics grid of size 1024x1024.

Threads (XxY) 4x4 8x8 12x12 16x16 20x20 24x24 28x28 32x32 36x36

Timings (ms) 1.90 0.93 0.52 0.72 0.52 0.77 0.58 0.87 0.62

Table 9: Performance of the caustics simulation pass with different work group thread configurations. Caustics
grid size is 1024x1024.

Figure 60: Performance of the caustics vertex buffer compute pass with different work group thread configura-
tions. Values in Table 9.

Similarly to the results obtained in Section 5.2.3, a trend can be seen where the smallest sized groups per-
formed the worst, but increasing the size will only provide improved results up until a certain point, where a "dip"
in the chart can be seen (Figure 60). The major difference here is that further increasing the group’s size results
in an oscillating increase in the timings rather than a steady one. Looking at the previously mentioned "dip", one
of the work group configurations that yielded the best results is 12x12, and therefore, was used for all other
tests.

5.3. Water rendering 87

Caustics grid size and resolution comparison

Example of scenes rendered with caustics of varying grid sizes and texture resolutions are presented in Figure 61.
As can be seen, increasing the caustics grid size results in better defined and sharper caustics. This, however,
requires a matching increased resolution, with the best results obtained when the resolution is greater than
the grid size. This supports the previous conclusion that using a lower resolution than the caustics grid size is
detrimental (Section 5.3.2).

The caustics grid size is not coupled to the simulation’s grid size and therefore can be increased for added
detail. Since increasing the whole simulations grid size has a larger impact on performance than just increasing
the caustics grid size, the latter option could be used as an intermediate way of increasing visual quality.

Figure 61: Close-ups of different caustics obtained by varying the grid size and texture resolution. Patterns
created by applying a cellular noise normal map to the surface.

5.3.3 Small scale details

The generation of the normal map for small scale details (green outline in Figure 49) requires either one or two
passes depending on the type of noise used. Perlin requires only one pass as the analytical derivatives/normals
can be computed directly, while cellular noise requires an additional pass to compute the normals from the noise
values.

5.3. Water rendering 88

The computation times of the normal map generation passes are presented in Table 10 and Figure 62. The
timings for cellular noise include both the noise generation pass, and the additional one for computing the normals.
Cellular noise timings are provided both with and without warping, with the first case requiring the computation
of an additional Perlin noise value. The results are for 1 octave of noise for both noise types, including the one
used for domain warping.

Texture Resolution 256 x 256 512 x 512 1024 x 1024 2048 x 2048

Perlin 0.02 0.07 0.30 1.22

Cellular w/o warping 0.03 0.14 0.37 1.53

Cellular 0.06 0.18 0.51 2.12

Table 10: Performance of the details normal map generation with different resolutions and noise types (one
octave), timings in milliseconds.

Figure 62: Performance of the details normal map generation with different resolutions and noise types (one
octave). Both axes are scaled logarithmically. Values in Table 10.

While cellular noise is slightly more expensive than Perlin noise, both cases are fairly fast, having a minor
contribution to the total frame time (Figure 53).

Noise octaves comparison

While there are several parameters that can be tweaked for the noise, such as the frequency and amplitude, these
have no impact in the performance and can be changed as necessary. The number of octaves, however, does
have an impact in performance and is also one of the main characteristics of the noise produced. Computation

5.3. Water rendering 89

times for different octave counts are provided in Table 11 and Figure 63. The timings for cellular noise include
the generation of the Perlin noise used for warping (with the number of octaves matching the one of the cellular
noise) and include the additional pass required to compute the normals.

Octaves 1 2 3 4 5 6

Perlin 0.07 0.13 0.18 0.24 0.30 0.37

Cellular 0.18 0.24 0.34 0.42 0.52 0.62

Table 11: Performance of the details normal map generation with different noise types and octaves (512x512
resolution). The cellular noise includes warping and an additional pass to compute the normals.
Timings in milliseconds.

Figure 63: Performance of the details normal map generation with different noise types and octaves (512x512
resolution). Values in Table 11.

Examples of scenes rendered using the generated noise with varying octave counts (Table 11) are shown in
Figure 64, Figure 65 and Figure 66. When considering water surface detail (Figure 64, Figure 65), adding more
octaves increases the detail, which is especially noticeable in the Sun’s specular glitter. However, the impact of
the added octaves is also increasingly smaller, being barely noticeable at above 4 octaves. When aiming only
for generating caustics patterns, lower octave counts are enough (Figure 66). Both noise types can produce the
intended level of detail, with cellular noise producing more diverse caustics patterns.

As mentioned in Section 5.3.3 and confirmed by the values in Table 11, for the desired resolutions and octave
counts the noise generating step should have a minimal contribution to total frame time.

5.3. Water rendering 90

Figure 64: Different surface detail levels obtained by varying the number of octaves of Perlin noise used to
generate the normal map.

5.3. Water rendering 91

Figure 65: Different surface detail levels obtained by varying the number of octaves of cellular noise used to
generate the normal map.

5.3. Water rendering 92

Figure 66: Different caustics patterns obtained by varying the number of octaves and type of noise used to
generate the normal map.

6

C O N C L U S I O N S A N D F U T U R E W O R K

The domain of application for fluid simulation is vast, and there are numerous specializations based on the
requirements. When the goal is water simulation on real-time applications, certain aspects have to be ignored in
order to meet the performance constraints. Shallow water simulations are a commonly used approximation for
applications with real-time requirements as they allow for both faster simulation and rendering.

A framework for water simulation in real-time using the SWE and a heightfield surface representation was
presented in this work. The water’s behavior was simulated by using an Eulerian SWE solver which computes a
grid of values at each frame in an efficient GPU implementation. The grid generated by the simulation is then used
to render a mesh of the water surface. The color of the water surface is determined by a combination of reflected
and transmitted light, using a physically based BRDF to describe the Sun’s reflection. The terrain’s contribution is
obtained by intersecting a reflected and a refracted ray. Transmitted light also takes into consideration the water’s
attenuation and simplified scattering. This result is then enhanced by a separate pass which generates caustics
and improves the attenuation computations. Finally, small-scale details were added to the surface as a normal
map to account for the limit in resolution and scope of the simulation, as well as aiding in creating interesting
caustics patterns. The developed application was tested and performance benchmarks as well as insights into
some parameters and options were provided.

The resulting simulation accurately captures the intended shallow water wave behaviors and interaction with
terrain, and its rendering provides the essential identifiable features of a water surface. The full system was
shown to be able to achieve a desirable 60 frames per second on consumer hardware.

6.1 F U T U R E W O R K

There are several areas where the developed work can be improved, either by addressing the existing limitations,
adding new functionality or simply improving on the various components. A few options are proposed here.

Starting with the inherent limitations of shallow water simulations, since the surface is represented by an
heightfield, behavior such as breaking waves, splashing and waterfalls can not be modeled. To address this, the
system could be combined with a particle system (e.g., Ojeda and Susín (2014)) or volumetric techniques (e.g.,
Parna (2020)). Similarly, in order to support a larger area and deep ocean regions where the water is no longer
"shallow", the system could be combined with a procedural simulation.

93

6.1. Future work 94

Another approach could be to add rigid-body coupling, to add a higher degree of interactivity with the scene.
When considering the simulation, since dry regions are treated just as wet regions (Section 5.2.1), a clear

option would be to have a sparse simulation where dry regions are not computed. Another option would be
to explore other methods of simulation, some mentioned in Section 2.4, such as LBM and 2D SPH, and do a
comparison in the context of computer graphics as this appears to be lacking recent data.

As for rendering, since hardware supported ray-tracing is getting increasingly better and widespread, it would
make sense to explore a ray-tracing solution for reflections, refractions and caustics generation. One more
option would be to explore underwater visualization, which also pairs well with an improvement of the scattering
computations, including the addition of volumetric caustics.

B I B L I O G R A P H Y

Tomas Akenine-Mller, Eric Haines, and Naty Hoffman. Real-Time Rendering, Fourth Edition. A. K. Peters, Ltd.,
USA, 4th edition, 2018. ISBN 0134997832.

R. Angst, N. Thürey, M. Botsch, and M. Gross. Robust and efficient wave simulations on deforming meshes.
Computer Graphics Forum, 27, 2008.

D. Arumuga Perumal and Anoop K. Dass. A review on the development of lattice boltzmann computation of
macro fluid flows and heat transfer. Alexandria Engineering Journal, 54(4):955–971, 2015. ISSN 1110-
0168. doi: https://doi.org/10.1016/j.aej.2015.07.015. URLhttp://www.sciencedirect.com/
science/article/pii/S1110016815001362.

Jean-Pierre Berenger. A perfectly matched layer for the absorption of electromagnetic waves. Journal
of Computational Physics, 114(2):185–200, 1994. ISSN 0021-9991. doi: https://doi.org/10.1006/

jcph.1994.1159. URL http://www.sciencedirect.com/science/article/pii/

S0021999184711594.

Robert Bridson. Fluid simulation for computer graphics. A K Peters/CRC Press, 2nd edition, 2015. ISBN
9781351968843.

André R. Brodtkorb, Martin L. Sætra, and Mustafa Altinakar. Efficient shallow water simulations on gpus: Imple-
mentation, visualization, verification, and validation. Computers & Fluids, 55:1–12, 2012. ISSN 0045-7930.
doi: https://doi.org/10.1016/j.compfluid.2011.10.012.

Eric Bruneton, Fabrice Neyret, Nicolas Holzschuch, Eric Bruneton, Fabrice Neyret, Nicolas Holzschuch, Real
time Realistic, Ocean Lighting, Hal Id Inria, Eric Bruneton, Fabrice Neyret, and Nicolas Holzschuch. Realtime
realistic ocean lighting using seamless transitions from geometry to brdf. Comput. Graph. Forum, pages
487–496, 2010.

Brent Burley. Physically based shading at disney. In ACM SIGGRAPH 2012 Courses, 2012.

J. C. Butcher. The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear
Methods. Wiley-Interscience, USA, 1987. ISBN 0471910465.

Nuttapong Chentanez and Matthias Mueller. Real-time Simulation of Large Bodies of Water with Small Scale
Details. In MZoran Popovic and Miguel Otaduy, editors, Eurographics/ ACM SIGGRAPH Symposium on
Computer Animation. The Eurographics Association, 2010. ISBN 978-3-905674-27-9. doi: 10.2312/SCA/

SCA10/197-206.

95

http://www.sciencedirect.com/science/article/pii/S1110016815001362
http://www.sciencedirect.com/science/article/pii/S1110016815001362
http://www.sciencedirect.com/science/article/pii/S0021999184711594
http://www.sciencedirect.com/science/article/pii/S0021999184711594

B I B L I O G R A P H Y 96

Wang Chi-Shu. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic con-
servation laws. Technical report, Institute for Computer Applications in Science and Engineering (ICASE),
1997.

Michal Chladek and Roman Durikovic. Particle-based shallow water simulation for irregular and sparse simulation
domains. Computers & Graphics, 53:170–176, 2015. ISSN 0097-8493. doi: https://doi.org/10.1016/j.cag.

2015.04.002.

Andrew J. Christlieb, Yaman Güçlü, and David C. Seal. The picard integral formulation of weighted es-
sentially nonoscillatory schemes. SIAM Journal on Numerical Analysis, 53(4):1833–1856, 2015. doi:
10.1137/140959936.

R. L. Cook and K. E. Torrance. A reflectance model for computer graphics. ACM Trans. Graph., 1(1):7–24, jan
1982. ISSN 0730-0301. doi: 10.1145/357290.357293.

R. Courant, K. Friedrichs, and H. Lewy. Über die partiellen differenzengleichungen der mathematischen physik.
Mathematische Annalen, 100(1):32–74, Dec 1928. ISSN 1432-1807. doi: 10.1007/BF01448839. URL
https://doi.org/10.1007/BF01448839.

Keenan Crane, Ignacio Llamas, and Sarah Tariq. Real Time Simulation and Rendering of 3D Fluids, chapter 30.
Addison-Wesley, 2007.

I. Cravero and M. Semplice. On the accuracy of weno and cweno reconstructions of third order on nonuniform
meshes. Journal of Scientific Computing, 67(3):1219–1246, Jun 2016. ISSN 1573-7691. doi: 10.1007/

s10915-015-0123-3. URL https://doi.org/10.1007/s10915-015-0123-3.

F. Dagenais, J. Guzmán, V. Vervondel, A. Hay, S. Delorme, D. Mould, and E. Paquette. Real-time virtual pipes
simulation and modeling for small-scale shallow water. In Proceedings of the 14th Workshop on Virtual
Reality Interactions and Physical Simulations, VRIPHYS ’18, page 45–54, Goslar, DEU, 2018. Eurographics
Association.

Christian Dick, Jens Krüger, and Rüdiger Westermann. GPU Ray-Casting for Scalable Terrain Rendering. In
D. Ebert and J. Krüger, editors, Eurographics 2009 - Areas Papers. The Eurographics Association, 2009. doi:
10.2312/ega.20091007.

Michał Drobot. Quadtree Displacement Mapping with Height Blending, chapter 1. Taylor & Francis, 2018.

B. Düz, M.J.A. Borsboom, A.E.P. Veldman, P.R. Wellens, and R.H.M. Huijsmans. An absorbing boundary
condition for free surface water waves. Computers & Fluids, 156:562–578, 2017. ISSN 0045-7930. doi:
https://doi.org/10.1016/j.compfluid.2017.05.018. URL https://www.sciencedirect.com/
science/article/pii/S0045793017301871. Ninth International Conference on Computa-
tional Fluid Dynamics (ICCFD9).

https://doi.org/10.1007/BF01448839
https://doi.org/10.1007/s10915-015-0123-3
https://www.sciencedirect.com/science/article/pii/S0045793017301871
https://www.sciencedirect.com/science/article/pii/S0045793017301871

B I B L I O G R A P H Y 97

Manfred Ernst, Tomas Akenine-Möller, and Henrik Wann Jensen. Interactive rendering of caustics using interpo-
lated warped volumes. In Proceedings of Graphics Interface 2005, GI ’05, page 87–96, Waterloo, CAN, 2005.
Canadian Human-Computer Communications Society. ISBN 1568812655.

Nick Foster and Dimitris Metaxas. Realistic animation of liquids. CVGIP: Graphical Model and Image Processing,
58:471–483, 01 1996.

Makoto Fujisawa, Takuya Nakada, and Masahiko Mikawa. Particle-based shallow water simulation with splashes
and breaking waves. Journal of Information Processing, 25:486–493, 07 2017. doi: 10.2197/ipsjjip.25.486.

Cristian García Bauza, Juan D’Amato, Gustavo Boroni, Marcelo Vénere, and Alejandro Clausse. Real-time inter-
active animations of liquid surfaces with lattice-boltzmann engines. Australian Journal of Basic and Applied
Sciences, 08 2010.

Holger Gruen. Ray-Guided Volumetric Water Caustics in Single Scattering Media with DXR, pages 183–201.
Apress, Berkeley, CA, 2019. ISBN 978-1-4842-4427-2. doi: 10.1007/978-1-4842-4427-2_14. URL
https://doi.org/10.1007/978-1-4842-4427-2_14.

Branislav Grujic and Cristian Cutocheras. Water Rendering in FarCry 5. https://www.gdcvault.

com/play/1025555/Advanced-Graphics-Techniques-Tutorial-Water, 2018.
[Online; accessed 28-June-2022].

Juan Guardado and Daniel Sanchez-Crespo. Rendering water caustics, chapter 2. Addison-Wesley, 2007.

Stefan Gustavson. Noise for glsl 1.20. https://github.com/stegu/webgl-noise, 2021. [On-
line; accessed 28-June-2022].

Stefan Gustavson and Ian McEwan. Tiling simplex noise and flow noise in two and three dimensions. Journal
of Computer Graphics Techniques (JCGT), 11(1):17–33, February 2022. ISSN 2331-7418. URL http:
//jcgt.org/published/0011/01/02/.

Romain Guy and Mathias Agopian. Physically based rendering in filament. https://www.

gamedeveloper.com/programming/deep-water-animation-and-rendering,
2019.

Eric Heitz. Understanding the masking-shadowing function in microfacet-based brdfs. Journal of Computer
Graphics Techniques (JCGT), 3(2):48–107, June 2014. ISSN 2331-7418. URL http://jcgt.org/
published/0003/02/03/.

Eric Heitz. Sampling the ggx distribution of visible normals. Journal of Computer Graphics Techniques (JCGT),
7(4):1–13, November 2018. ISSN 2331-7418. URL http://jcgt.org/published/0007/04/
01/.

Naty Hoffman. Background: Physics and math of shading, 2013.

https://doi.org/10.1007/978-1-4842-4427-2_14
https://www.gdcvault.com/play/1025555/Advanced-Graphics-Techniques-Tutorial-Water
https://www.gdcvault.com/play/1025555/Advanced-Graphics-Techniques-Tutorial-Water
https://github.com/stegu/webgl-noise
http://jcgt.org/published/0011/01/02/
http://jcgt.org/published/0011/01/02/
https://www.gamedeveloper.com/programming/deep-water-animation-and-rendering
https://www.gamedeveloper.com/programming/deep-water-animation-and-rendering
http://jcgt.org/published/0003/02/03/
http://jcgt.org/published/0003/02/03/
http://jcgt.org/published/0007/04/01/
http://jcgt.org/published/0007/04/01/

B I B L I O G R A P H Y 98

Zsolt Horváth, Andreas Buttinger-Kreuzhuber, Artem Konev, Daniel Cornel, Jürgen Komma, Günter Blöschl,
Sebastian Noelle, and Jürgen Waser. Comparison of fast shallow-water schemes on real-world floods. Journal
of Hydraulic Engineering, 146(1):05019005, 2020. doi: 10.1061/(ASCE)HY.1943-7900.0001657.

Wei Hu and Kaihuai Qin. Interactive approximate rendering of reflections, refractions, and caustics. IEEE
Transactions on Visualization and Computer Graphics, 13(1):46–57, 2007. doi: 10.1109/TVCG.2007.14.

Stefan Jeschke and Chris Wojtan. Water wave packets. ACM Trans. Graph., 36(4), jul 2017. ISSN 0730-0301.
doi: 10.1145/3072959.3073678. URL https://doi.org/10.1145/3072959.3073678.

Stefan Jeschke, Tomáš Skřivan, Matthias Müller-Fischer, Nuttapong Chentanez, Miles Macklin, and Chris Wojtan.
Water surface wavelets. ACM Trans. Graph., 37(4), jul 2018. ISSN 0730-0301. doi: 10.1145/3197517.

3201336. URL https://doi.org/10.1145/3197517.3201336.

Michael Kass and Gavin Miller. Rapid, stable fluid dynamics for computer graphics. SIGGRAPH Comput. Graph.,
24(4):49–57, September 1990. ISSN 0097-8930. doi: 10.1145/97880.97884. URL https://doi.
org/10.1145/97880.97884.

Timo Kellomäki. Large-Scale Water Simulation in Games. PhD thesis, Tampere University of Technology, 2015.

Timo Kellomäki. Fast water simulation methods for games. Computers in Entertainment, 16(1), 2017. doi:
10.1145/2700533. URL https://doi.org/10.1145/2700533.

Timo Kellomäki and Timo Saari. A User Study: Is the Advection Step in Shallow Water Equations Really Nec-
essary? In Eric Galin and Michael Wand, editors, Eurographics 2014 - Short Papers. The Eurographics
Association, 2014. doi: 10.2312/egsh.20141010.

Dan Koschier, Jan Bender, Barbara Solenthaler, and Matthias Teschner. Smoothed particle hydrodynamics for
physically-based simulation of fluids and solids. In EUROGRAPHICS 2019 Tutorials. Eurographics Associa-
tion, 2019.

Alexander Kurganov and Guergana Petrova. A Second-Order Well-Balanced Positivity Preserving Central-
Upwind Scheme for the Saint-Venant System. Communications in Mathematical Sciences, 5(1):133–160,
2007. doi: cms/1175797625.

Frédéric Kuznik, Christian Obrecht, Gilles Rusaouen, and Jean-Jacques Roux. Lbm based flow simulation using
gpu computing processor. Computers & Mathematics with Applications, 59(7):2380–2392, 2010. ISSN 0898-
1221. doi: https://doi.org/10.1016/j.camwa.2009.08.052. URL https://www.sciencedirect.
com/science/article/pii/S0898122109006361. Mesoscopic Methods in Engineering
and Science.

A. Lagae, S. Lefebvre, R. Cook, T. DeRose, G. Drettakis, D.S. Ebert, J.P. Lewis, K. Perlin, and M. Zwicker.
A survey of procedural noise functions. Computer Graphics Forum, 29(8):2579–2600, 2010. doi: https:

//doi.org/10.1111/j.1467-8659.2010.01827.x.

https://doi.org/10.1145/3072959.3073678
https://doi.org/10.1145/3197517.3201336
https://doi.org/10.1145/97880.97884
https://doi.org/10.1145/97880.97884
https://doi.org/10.1145/2700533
https://www.sciencedirect.com/science/article/pii/S0898122109006361
https://www.sciencedirect.com/science/article/pii/S0898122109006361

B I B L I O G R A P H Y 99

Anita Layton and Michiel Panne. A numerically efficient and stable algorithm for animating water waves. The
Visual Computer, 18:41–53, 02 2002. doi: 10.1007/s003710100131.

Hyokwang Lee and Soonhung Han. Solving the shallow water equations using 2d sph particles for interactive
applications. The Visual Computer, 26:865–872, 06 2010. doi: 10.1007/s00371-010-0439-9.

Richard Lee and Carol O’Sullivan. A fast and compact solver for the shallow water equations. In Vriphys: Work-
shop on Virtual Reality Interactions and Physical Simulations, pages 51–57, Postfach 8043, 38621 Goslar,
Germany, 2007. The Eurographics Association;. ISBN 978-3-905673-65-4. doi: 10.2312/PE/vriphys/

vriphys07/051-057.

Randall J LeVeque et al. Finite volume methods for hyperbolic problems, volume 31. Cambridge university press,
2002. ISBN 9780511791253.

Chao Liang and Zhengfu Xu. Parametrized maximum principle preserving flux limiters for high order schemes
solving multi-dimensional scalar hyperbolic conservation laws. Journal of Scientific Computing, 58(1):41–
60, Jan 2014. ISSN 1573-7691. doi: 10.1007/s10915-013-9724-x. URL https://doi.org/10.
1007/s10915-013-9724-x.

Gabor Liktor and Carsten Dachsbacher. Real-time volumetric caustics with projected light beams. In Fifth
Hungarian conference on computer graphics and geometry, 2010.

Gábor Liktor and Carsten Dachsbacher. Real-time volume caustics with adaptive beam tracing. In Symposium
on Interactive 3D Graphics and Games, I3D ’11, page 47–54, New York, NY, USA, 2011. Association for
Computing Machinery. ISBN 9781450305655. doi: 10.1145/1944745.1944753. URL https://doi.
org/10.1145/1944745.1944753.

Chunyong Ma, Shu Xu, Hongsong Wang, Fenglin Tian, and Ge Chen. A real-time photo-realistic rendering algo-
rithm of ocean color based on bio-optical model. Journal of Ocean University of China, 15(6):996–1006, Dec
2016. ISSN 1993-5021. doi: 10.1007/s11802-016-3037-2. URL https://doi.org/10.1007/
s11802-016-3037-2.

Miles Macklin and Matthias Müller. Position based fluids. ACM Trans. Graph., 32(4), jul 2013. ISSN 0730-0301.
doi: 10.1145/2461912.2461984. URL https://doi.org/10.1145/2461912.2461984.

N Max and B Becker. Flow visualization using moving textures. In ICASEILaRC Symposium on Visualizing Time
Vary Data, 1995.

Matthias Müller, David Charypar, and Markus Gross. Particle-based fluid simulation for interactive applications.
In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’03,
page 154–159, Goslar, DEU, 2003. Eurographics Association. ISBN 1581136595.

Matthias Müller, Jos Stam, Doug James, and Nils Thürey. Real time physics: Class notes. In ACM SIG-
GRAPH 2008 Classes, SIGGRAPH ’08, New York, NY, USA, 2008. Association for Computing Machinery.

https://doi.org/10.1007/s10915-013-9724-x
https://doi.org/10.1007/s10915-013-9724-x
https://doi.org/10.1145/1944745.1944753
https://doi.org/10.1145/1944745.1944753
https://doi.org/10.1007/s11802-016-3037-2
https://doi.org/10.1007/s11802-016-3037-2
https://doi.org/10.1145/2461912.2461984

B I B L I O G R A P H Y 100

ISBN 9781450378451. doi: 10.1145/1401132.1401245. URL https://doi.org/10.1145/

1401132.1401245.

Octavio Navarro-Hinojosa, Sergio Ruiz-Loza, and Moises Alencastre-Miranda. Physically based visual simulation
of the lattice boltzmann method on the gpu: a survey. The Journal of Supercomputing, 74, 07 2018. doi:
10.1007/s11227-018-2392-8.

Fabrice Neyret. Advected Textures. In D. Breen and M. Lin, editors, ACM SIGGRAPH / Eurographics Symposium
on Computer Animation, pages 147–153, San diego, United States, July 2003. Eurographics Association. URL
https://hal.inria.fr/inria-00537472.

J.F. O’Brien and J.K. Hodgins. Dynamic simulation of splashing fluids. In Proceedings Computer Animation’95,
pages 198–205, 1995. doi: 10.1109/CA.1995.393532.

J. Ojeda and A. Susín. Enhanced lattice boltzmann shallow waters for real-time fluid simulations. In Eurographics,
2013.

Jesus Ojeda and Antonio Susín. Real-time lattice boltzmann shallow waters method for breaking wave simula-
tions. In Sebastiano Battiato, Sabine Coquillart, Robert S. Laramee, Andreas Kerren, and José Braz, editors,
Computer Vision, Imaging and Computer Graphics – Theory and Applications, pages 3–18, Berlin, Heidelberg,
2014. Springer Berlin Heidelberg. ISBN 978-3-662-44911-0.

Jesús Ojeda Contreras. Efficient algorithms for the realistic simulation of fluids. PhD thesis, Universitat Politèc-
nica de Catalunya, 2013.

Charilaos Papadopoulos and Georgios Papaioannou. Realistic real-time underwater caustics and godrays. 19th
International Conference on Computer Graphics and Vision, GraphiCon’2009 - Conference Proceedings, 08
2010.

P. Parna, K. Meyer, and R. Falconer. Gpu driven finite difference weno scheme for real time solution of the
shallow water equations. Computers & Fluids, 161:107–120, 2018. ISSN 0045-7930. doi: https://doi.org/

10.1016/j.compfluid.2017.11.012.

Peeter Parna. Shallow water equations in real-time computer graphics. PhD thesis, Abertay University, 2020.

Ken Perlin. Improving noise. ACM Trans. Graph., 21(3):681–682, July 2002. ISSN 0730-0301. doi: 10.1145/

566654.566636. URL https://doi.org/10.1145/566654.566636.

M. Pharr and G. Humphreys. Physically based rendering: from theory to implementation. https://www.
pbr-book.org/3ed-2018/contents, 2018.

R. Salmon. The lattice boltzmann method as a basis for ocean circulation modeling. Journal of Marine Research,
57:503–535, 1999.

https://doi.org/10.1145/1401132.1401245
https://doi.org/10.1145/1401132.1401245
https://hal.inria.fr/inria-00537472
https://doi.org/10.1145/566654.566636
https://www.pbr-book.org/3ed-2018/contents
https://www.pbr-book.org/3ed-2018/contents

B I B L I O G R A P H Y 101

Christophe Schlick. An inexpensive brdf model for physically-based rendering. Computer Graphics Forum, 13
(3):233–246, 1994. doi: https://doi.org/10.1111/1467-8659.1330233.

David C. Seal, Qi Tang, Zhengfu Xu, and Andrew J. Christlieb. An explicit high-order single-stage single-step
positivity-preserving finite difference weno method for the compressible euler equations. Journal of Scientific
Computing, 68(1):171–190, Jul 2016. ISSN 1573-7691. doi: 10.1007/s10915-015-0134-0. URL https:
//doi.org/10.1007/s10915-015-0134-0.

Andrew Selle, Ronald Fedkiw, ByungMoon Kim, Yingjie Liu, and Jarek Rossignac. An unconditionally stable
maccormack method. J. Sci. Comput., 35:350–371, 06 2008. doi: 10.1007/s10915-007-9166-4.

Musawir A. Shah, Jaakko Konttinen, and Sumanta Pattanaik. Caustics mapping: An image-space technique for
real-time caustics. IEEE Transactions on Visualization and Computer Graphics, 13(2):272–280, 2007. doi:
10.1109/TVCG.2007.32.

André Silvestre. A real-time terrain ray-tracing engine. Master’s thesis, Instituto Superior Técnico da Universidade
de Lisboa, 2017.

Andreas Söderström and Ken Museth. Non-reflective boundary conditions for incompressible free surface fluids.
In SIGGRAPH 2009: Talks, SIGGRAPH ’09, New York, NY, USA, 2009. Association for Computing Machin-
ery. ISBN 9781605588346. doi: 10.1145/1597990.1597994. URL https://doi.org/10.1145/
1597990.1597994.

Barbara Solenthaler, Peter Bucher, Nuttapong Chentanez, Matthias Müller, and Markus Gross. SPH Based
Shallow Water Simulation. In Jan Bender, Kenny Erleben, and Eric Galin, editors, Workshop in Virtual Reality
Interactions and Physical Simulation "VRIPHYS" (2011). The Eurographics Association, 2011. ISBN 978-3-
905673-87-6. doi: 10.2312/PE/vriphys/vriphys11/039-046.

Jos Stam. Random caustics: Natural textures and wave theory revisited. In ACM SIGGRAPH 96 Visual Pro-
ceedings: The Art and Interdisciplinary Programs of SIGGRAPH ’96, SIGGRAPH ’96, page 150, New York,
NY, USA, 1996. Association for Computing Machinery. ISBN 0897917847. doi: 10.1145/253607.253883.
URL https://doi.org/10.1145/253607.253883.

Jos Stam. Stable fluids. In Proceedings of the 26th Annual Conference on Computer Graphics and Inter-
active Techniques, SIGGRAPH ’99, page 121–128, USA, 1999. ACM Press/Addison-Wesley Publishing Co.
ISBN 0201485605. doi: 10.1145/311535.311548. URL https://doi.org/10.1145/311535.
311548.

Jos Stam and Eugene Fiume. Depicting fire and other gaseous phenomena using diffusion processes. In
Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH
’95, page 129–136, New York, NY, USA, 1995. Association for Computing Machinery. ISBN 0897917014. doi:
10.1145/218380.218430. URL https://doi.org/10.1145/218380.218430.

Jerry Tessendorf. Simulating ocean water. SIGGRAPH 2001 Course Notes, 2001.

https://doi.org/10.1007/s10915-015-0134-0
https://doi.org/10.1007/s10915-015-0134-0
https://doi.org/10.1145/1597990.1597994
https://doi.org/10.1145/1597990.1597994
https://doi.org/10.1145/253607.253883
https://doi.org/10.1145/311535.311548
https://doi.org/10.1145/311535.311548
https://doi.org/10.1145/218380.218430

B I B L I O G R A P H Y 102

Art Tevs, Ivo Ihrke, and Hans-Peter Seidel. Maximum mipmaps for fast, accurate, and scalable dynamic height
field rendering. In Proceedings of the 2008 Symposium on Interactive 3D Graphics and Games, I3D ’08,
page 183–190, New York, NY, USA, 2008. Association for Computing Machinery. ISBN 9781595939838. doi:
10.1145/1342250.1342279. URL https://doi.org/10.1145/1342250.1342279.

N. Thurey, M. Muller-Fischer, S. Schirm, and M. Gross. Real-time breaking waves for shallow water simulations.
In 15th Pacific Conference on Computer Graphics and Applications (PG’07), pages 39–46, 2007. doi: 10.

1109/PG.2007.33.

Nils Thürey. Physically based animation of free surface flows with the Lattice Boltzmann method. PhD thesis,
University of Erlangen-Nuremberg, 2007.

Nils Thürey, Ulrich Rüde, and Carolin Körner. Interactive free surface fluids with the lattice boltzmann method.
Technical report, University of Erlangen-Nuremberg, 2005.

Eleuterio F. Toro. Some Properties of the Euler Equations, pages 87–114. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2009. ISBN 978-3-540-49834-6. doi: 10.1007/b79761_3. URL https://doi.org/10.
1007/b79761_3.

Kevin R. Tubbs and Frank T.-C. Tsai. Gpu accelerated lattice boltzmann model for shallow water flow and
mass transport. International Journal for Numerical Methods in Engineering, 86(3):316–334, 2011. doi:
https://doi.org/10.1002/nme.3066.

Patricio Gonzalez Vivo and Jen Lowe. Fractal brownian motion. https://thebookofshaders.com/
13/, 2021. [Online; accessed 28-June-2022].

Alex Vlachos. Water flow in Portal 2. https://advances.realtimerendering.com/s2010/,
2010. [Online; accessed 28-June-2022].

Bruce Walter, Stephen R. Marschner, Hongsong Li, and Kenneth E. Torrance. Microfacet Models for Refrac-
tion through Rough Surfaces. In Jan Kautz and Sumanta Pattanaik, editors, Rendering Techniques. The
Eurographics Association, 2007. ISBN 978-3-905673-52-4. doi: 10.2312/EGWR/EGSR07/195-206.

Huamin Wang, Gavin Miller, and Greg Turk. Solving general shallow wave equations on surfaces. In Proceedings
of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’07, page 229–238,
Goslar, DEU, 2007. Eurographics Association. ISBN 9781595936240.

T. Weaver and Z. Xiao. Fluid simulation by the smoothed particle hydrodynamics method: A survey. In Pro-
ceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and
Applications: Volume 1: GRAPP, GRAPP 2016, page 215–225, Setubal, PRT, 2016. SCITEPRESS - Sci-
ence and Technology Publications, Lda. ISBN 9789897581755. doi: 10.5220/0005673702130223. URL
https://doi.org/10.5220/0005673702130223.

https://doi.org/10.1145/1342250.1342279
https://doi.org/10.1007/b79761_3
https://doi.org/10.1007/b79761_3
https://thebookofshaders.com/13/
https://thebookofshaders.com/13/
https://advances.realtimerendering.com/s2010/
https://doi.org/10.5220/0005673702130223

B I B L I O G R A P H Y 103

Steven Worley. A cellular texture basis function. In Proceedings of the 23rd Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’96, page 291–294, New York, NY, USA, 1996. Association
for Computing Machinery. ISBN 0897917464. doi: 10.1145/237170.237267. URL https://doi.
org/10.1145/237170.237267.

Chris Wyman. Hierarchical caustic maps. In Proceedings of the 2008 symposium on Interactive 3D graph-
ics and games, I3D ’08, page 163–171, New York, NY, USA, 2008. Association for Computing Machinery.
ISBN 9781595939838. doi: 10.1145/1342250.1342276. URL https://doi.org/10.1145/

1342250.1342276.

Chris Wyman and Scott Davis. Interactive image-space techniques for approximating caustics. In Proceedings
of the 2006 Symposium on Interactive 3D Graphics and Games, I3D ’06, page 153–160, New York, NY, USA,
2006. Association for Computing Machinery. ISBN 159593295X. doi: 10.1145/1111411.1111439. URL
https://doi.org/10.1145/1111411.1111439.

Chris Wyman and Greg Nichols. Adaptive caustic maps using deferred shading. Computer Graphics Fo-
rum, 28(2):309–318, 2009. doi: https://doi.org/10.1111/j.1467-8659.2009.01370.x. URL https://
onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2009.01370.x.

Yulong Xing and Chi-Wang Shu. High order finite difference weno schemes with the exact conservation property
for the shallow water equations. Journal of Computational Physics, 208(1):206–227, 2005. ISSN 0021-
9991. doi: https://doi.org/10.1016/j.jcp.2005.02.006. URL https://www.sciencedirect.

com/science/article/pii/S002199910500094X.

Xueqing Yang and Yaobin Ouyang. Real-Time Ray Traced Caustics, pages 469–497. Apress, Berkeley, CA,
2021. ISBN 978-1-4842-7185-8. doi: 10.1007/978-1-4842-7185-8_30. URL https://doi.org/
10.1007/978-1-4842-7185-8_30.

Q. Yu, E. Bruneton, N. Holzschuch, and F. Neyret. Lagrangian texture advection: Preserving both spectrum and
velocity field. IEEE Transactions on Visualization & Computer Graphics, 17(11):1612–1623, nov 2011. ISSN
1941-0506. doi: 10.1109/TVCG.2010.263.

Qizhi Yu, Fabrice Neyret, Eric Bruneton, and Nicolas Holzschuch. Spectrum-preserving texture advection
for animated fluids. Research Report RR-6810, INRIA, 2009. URL https://hal.inria.fr/

inria-00355827.

Cem Yuksel and John Keyser. Fast real-time caustics from height fields. The Visual Computer, 25:559–564, 05
2009. doi: 10.1007/s00371-009-0350-4.

Cem Yuksel, Donald H. House, and John Keyser. Wave particles. ACM Transactions on Graphics (Proceedings
of SIGGRAPH 2007), 26(3), 2007. doi: 10.1145/1276377.1276501. URL http://doi.acm.org/
10.1145/1276377.1276501.

https://doi.org/10.1145/237170.237267
https://doi.org/10.1145/237170.237267
https://doi.org/10.1145/1342250.1342276
https://doi.org/10.1145/1342250.1342276
https://doi.org/10.1145/1111411.1111439
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2009.01370.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2009.01370.x
https://www.sciencedirect.com/science/article/pii/S002199910500094X
https://www.sciencedirect.com/science/article/pii/S002199910500094X
https://doi.org/10.1007/978-1-4842-7185-8_30
https://doi.org/10.1007/978-1-4842-7185-8_30
https://hal.inria.fr/inria-00355827
https://hal.inria.fr/inria-00355827
http://doi.acm.org/10.1145/1276377.1276501
http://doi.acm.org/10.1145/1276377.1276501

B I B L I O G R A P H Y 104

Jian Guo Zhou. Lattice boltzmann model for the shallow water equations. Computer Methods in Applied Me-
chanics and Engineering, 191:3527–3539, 06 2002. doi: 10.1016/S0045-7825(02)00291-8.

Jian Guo Zhou. Lattice Boltzmann Methods for Shallow Water Flows. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2004. ISBN 978-3-662-08276-8.

Jian Guo Zhou. Macroscopic lattice boltzmann method for shallow water equations (maclabswe). Water, 14
(2065), 2022.

Part III

A P P E N D I C E S

A
D E F I N I N G T H E F L U X J A C O B I A N S

The fluxes in the conservative SWE, F and G, can be written as in Equation 56, with U as in Equation 55.

U =

 h
hu
hv

 =

A
B
C

 (55)

F =

 hu
hu2 + 1

2 gh2

huv

 =

 B
B2

A + 1
2 gA2

BC
A

G =

 hv
huv

hv2 + 1
2 gh2

 =

 C
BC
A

C2

A + 1
2 gA2

(56)

Then, the flux Jacobians ∂F/∂U and ∂G/∂U are determined as per the Jacobian definition, resulting in
Equation 57 ((LeVeque et al., 2002)). The subscripts denote the entry of the vector, e.g., F1 = hu = B.

∂F
∂U

=

 0 1 0
−u2 + gh 2u 0
−uv v u

 =

∂F1
∂A

∂F1
∂B

∂F1
∂C

∂F2
∂A

∂F2
∂B

∂F2
∂C

∂F3
∂A

∂F3
∂B

∂F3
∂C

∂G
∂U

=

 0 0 1
−uv v u

−v2 + gh 0 2v

 =

∂G1
∂A

∂G1
∂B

∂G1
∂C

∂G2
∂A

∂G2
∂B

∂G2
∂C

∂G3
∂A

∂G3
∂B

∂G3
∂C

(57)

106

B
W E N O R E C O N S T R U C T I O N P R O C E D U R E

The main idea of Essentially Non-Oscillatory (ENO) and WENO reconstruction procedure is to choose an ap-
proximation to the function to be reconstructed such that it is as smooth as possible in the candidate stencil used
for the approximation (Chi-Shu, 1997). WENO extends ENO in that, instead of choosing a single approximation,
a convex combination of all reconstructions from different candidate stencils is used, assigning larger weights to
smoother stencils. A more in-depth description and survey of it’s applications can be found in Chi-Shu (1997).

The third-order WENO procedure is used to compute F̂ and Ĝ, as in Parna et al. (2018). Generally, the fluxes
and conserved variables are projected to the local characteristic fields before applying the WENO reconstruction
procedure. However, an alternative without characteristic projection (also called component-by-component) was
shown in (Parna et al., 2018) to have better performance, while having similar accuracy, so this approach is
followed.

B.0.1 Flux splitting

The first step for finite difference WENO methods is to split the fluxes so correct upwinding can be used (Chi-
Shu, 1997). Upwinding is the biasing of the stencil to the direction that the flow is coming from. For example, if
∂F̃
∂U ≥ 0, the "wind direction" is positive, so more points would be sampled in this direction. Since ∂F̃

∂U and ∂G̃
∂U

can change sign over the sampled points, the fluxes (F̃ and G̃) are split, as in Equation 58, such that it satisfies
Equation 59. From now on, only the x direction is considered, as for flux F̃, but the same applies to G̃.

F̃ = f+ + f− (58)

∂ f+

∂U
≥ 0

∂ f−

∂U
≤ 0 (59)

Local Lax-Friedrichs flux splitting (LeVeque et al., 2002) is used to split the fluxes (Parna et al., 2018), as in
Equation 60. A modified U is used where η replaces h, so that U ′ = (η, hu, hv)T . This is part of the well-

107

108

balanced treatment of the source term (Section 3.1.3), and is useful because in still water stationary solutions, η

stays constant (Xing and Shu, 2005).

f± =
1
2
(

F̃ ± αU ′
)

(60)

The α is given by Equation 61, where λn is the nth eigenvalue of the flux Jacobian (Equation 23).

α = max
U∈I

max
1≤n≤3

|λi| (61)

The maximum eigenvalues (max1≤n≤3 |λi|) for the x and y direction flux Jacobians can be computed as
|u|+

√
gh and |v|+

√
gh respectively. I is the stencil of values to be considered, which has 4 points around

the value being computed, e.g, when computing F̂i+1/2,j, I ∈ {Ui−1,j, Ui,j, Ui+1,j, Ui+2,j}.
When applying the WENO reconstruction to the source term derivatives (Section 3.1.3), they are simply split

as in Equation 62 (example for b).

b± =
1
2

b (62)

B.0.2 Applying the WENO reconstruction

Considering the WENO reconstruction function as presented in Equation 63, after flux splitting, each flux F in
the stencil is split into f+ and f− (Equation 60).

F̂i+1/2,j = WENO3(F̃i−1,j, F̃i,j, F̃i+1,j, F̃i+2,j) (63)

The WENO reconstruction is then applied to the split fluxes, using the corresponding biased stencil for each,
as in Equation 64. The WENO3± function is described further below.

f̂+i+1/2,j = WENO3+(f+i−1,j, f+i,j , f+i+1,j)

f̂−i+1/2,j = WENO3−(f−i,j , f−i+1,j, f−i+2,j)
(64)

F̂i+1/2,j is then defined as in Equation 65.

F̂i+1/2,j = f̂+i+1/2,j + f̂−i+1/2,j (65)

109

B.0.3 WENO step

A single third order WENO reconstruction step for a value v is described here (as in Parna et al. (2018)). The
x direction is used as an example (j subscript dropped for simplicity), where the procedure is denoted by the
functions WENO3± in Equation 66. The± superscript denotes which bias the stencil uses.

v+i+1/2 = WENO3+(v+i−1,j, v+i,j, v+i+1,j)

v−i+1/2 = WENO3−(v−i,j, v−i+1,j, v−i+2,j)
(66)

The steps of the procedure are as follows:

1. Find the approximations on two different stencils (Equation 67).

f+0 =
1
2

v+i +
1
2

v+i+1

f+1 = −1
2

v+i−1 +
3
2

v+i

f−0 =
1
2

v−i+1 +
1
2

v−i

f−1 = −1
2

v−i+2 +
3
2

v−i+1

(67)

2. Find the smoothness indicators (Equation 68).

β+
0 = (v+i+1 − v+i)

2

β+
1 = (v+i − v+i−1)

2

β−0 = (v−i+1 − v−i)
2

β−1 = (v−i+2 − v−i+1)
2

(68)

3. Find the non-linear weights (Equation 69, where n ∈ {0, 1}, and the linear weights are d0 = 2
3 and

d1 = 1
3).

ω±n =
ζ±n

ζ±0 + ζ±1
ζ±n =

dn

(ε + β±n)2 (69)

While ε was originally chosen in order to avoid the denominator becoming zero, it has been shown that it
actually should relate to the grid-spacing, so it is set as ε = (∆x)2 (Cravero and Semplice, 2016).

4. Find the third order accurate approximation (Equation 70) by combining the two approximations with the
non-linear weights.

v±i+1/2 = ω±0 f±0 + ω±1 f±1 (70)

When applying the WENO reconstruction to the source term derivatives (Section 3.1.3), the first source term
derivative, s = (1

2 gb2), can simply be absorbed into the computations of the relevant flux to save cost (Xing

110

and Shu, 2005), e.g., for direction x as given in Equation 71. Consequently, when computing the final source
term S Equation 28, the first term is ignored, as it is already included in the flux.

f± ← f± − 1
2

0
s
0

 (71)

The second term, b, goes through the usual reconstruction procedure but uses the same smoothness indica-
tors as in the flux reconstruction. That is, for example, after computing the reconstruction of a split flux, f̂+, when
computing the reconstruction of corresponding b̂+, the same smoothness indicators β+ are used (Equation 68).

C
H I G H A N D L O W - O R D E R F L U X I N T E R P O L AT I O N C O E F F I C I E N T S

When interpolating the low- and high-order fluxes, the coefficients of the linear combination θi+1/2,j and θi,j+1/2

need to be determined in a way that ensures the interpolation is of the highest order possible, while preserving
the positivity of the solution. This is achieved by solving the following optimization problem.

Given Λ values that bound θ (with Λ ∈ [0, 1]), as in Equation 72, the θ parameters are then given by the
minimum case of the bounding values (Seal et al., 2016), as in Equation 73.

θi−1/2,j ∈ [0, ΛL]

θi+1/2,j ∈ [0, ΛR]

θi,j−1/2 ∈ [0, ΛD]

θi,j+1/2 ∈ [0, ΛU]
(72)

θi+1/2,j = min(ΛR,i,j, ΛL,i+1,j)

θi,j+1/2 = min(ΛU,i,j, ΛD,i,j+1)
(73)

The minimal case method proposed in Parna et al. (2018) is used to determine the bounding values Λ, while
ensuring that hn+1

i,j ≥ 0, whose steps are as follows:

1. Determine Γ and theF values (Equation 75 and Equation 76). These are defined by applying Equation 30
to the first line of Equation 26, which becomes as in Equation 74 (which is being solved so that hn+1

i,j ≥ 0).

hn+1
i,j = −Γi,j + θi+1/2,jFi+1/2,j + θi−1/2,jFi−1/2,j + θi,j+1/2Fi,j+1/2 + θi,j−1/2Fi,j−1/2 (74)

Γi,j = −
(

h− ∆t
∆x

(f̃i+1/2,j − f̃i−1/2,j)−
∆t
∆y

(g̃i,j+1/2 − g̃i,j−1/2)

)
(75)

111

112

Fi+1/2,j = −
∆t
∆x

(F̂(1)
i+1/2,j − f̃i+1/2,j)

Fi,j+1/2 = − ∆t
∆y

(Ĝ(1)
i,j+1/2 − g̃i,j+1/2)

Fi−1/2,j =
∆t
∆x

(F̂(1)
i−1/2,j − f̃i−1/2,j)

Fi,j−1/2 =
∆t
∆y

(Ĝ(1)
i,j−1/2 − g̃i,j−1/2)

(76)

2. Determine Q (Equation 77) and α, β, γ, δ (Equation 781 , which are functions of the signs of the values
in Equation 76).

Q = min
(

Γi,j

αFi+1/2,j + βFi−1/2,j + γFi,j+1/2 + δFi,j−1/2

)
(77)

α =

1, if Fi+1/2,j < 0

0, otherwise

γ =

1, if Fi,j+1/2 < 0

0, otherwise

β =

1, if Fi−1/2,j < 0

0, otherwise

δ =

1, if Fi,j−1/2 < 0

0, otherwise

(78)

3. Determine the Λ bounding values (Equation 79).

ΛR = (1− α) + αQ

ΛU = (1− γ) + γQ

ΛL = (1− β) + βQ

ΛD = (1− δ) + δQ
(79)

1 Note that the branching in Equation 78 can be avoided by directly utilizing the return value of a conditional expression.

	 Introductory material
	1 Introduction
	1.1 Context
	1.2 Objectives
	1.3 Document structure

	2 State of the art
	2.1 The Navier-Stokes equations
	2.1.1 The Momentum Equation
	2.1.2 The Incompressibility Condition

	2.2 Shallow water equations
	2.2.1 Heightfield approximations
	2.2.2 The shallow water equations
	2.2.3 Other heightfield methods

	2.3 Numerical simulation
	2.3.1 Lagrangian and Eulerian Viewpoints
	2.3.2 Discretizing in time
	2.3.3 Boundary Conditions

	2.4 Fluid solvers
	2.4.1 Eulerian Solvers
	2.4.2 Lattice-Boltzmann Method
	2.4.3 Smoothed-Particle Hydrodynamics
	2.4.4 Summary

	2.5 Rendering
	2.5.1 Water Surface Color
	2.5.2 Caustics
	2.5.3 Small-scale details

	 Core of the dissertation
	3 Simulation
	3.1 Numerical method
	3.1.1 Picard integral formulation for SWE
	3.1.2 WENO reconstruction
	3.1.3 Well-balanced treatment of the source term
	3.1.4 Handling of the wetting/drying processes

	3.2 Implementation
	3.2.1 Timestepping
	3.2.2 Data storage
	3.2.3 Threading scheme
	3.2.4 Boundary conditions
	3.2.5 Algorithm loop
	3.2.6 Algorithm step
	3.2.7 Results

	4 Rendering
	4.1 Rendering Geometry
	4.2 Water Surface Color
	4.2.1 Sun reflection
	4.2.2 Intersecting the heightfield
	4.2.3 Environment reflection
	4.2.4 Transmission
	4.2.5 Overview
	4.2.6 Results

	4.3 Caustics
	4.3.1 Simulation
	4.3.2 Rendering caustics map
	4.3.3 Applying the caustics map
	4.3.4 Algorithm overview
	4.3.5 Results

	4.4 Small Scale Details
	4.4.1 Perlin Noise
	4.4.2 Cellular Noise
	4.4.3 Fractal Brownian Motion
	4.4.4 Domain Warping
	4.4.5 Using the normal map

	5 Evaluation
	5.1 Overview
	5.2 Shallow Water Equations solver
	5.2.1 Grid and cell size comparison
	5.2.2 Limitations
	5.2.3 Computation work group sizes
	5.2.4 Wet only solver

	5.3 Water rendering
	5.3.1 Terrain intersection
	5.3.2 Caustics
	5.3.3 Small scale details

	6 Conclusions and future work
	6.1 Future work

	 Appendices
	A Defining the flux Jacobians
	B WENO Reconstruction procedure
	B.0.1 Flux splitting
	B.0.2 Applying the WENO reconstruction
	B.0.3 WENO step

	C High and low-order flux interpolation coefficients

