1,198 research outputs found

    In-Network View Synthesis for Interactive Multiview Video Systems

    Get PDF
    To enable Interactive multiview video systems with a minimum view-switching delay, multiple camera views are sent to the users, which are used as reference images to synthesize additional virtual views via depth-image-based rendering. In practice, bandwidth constraints may however restrict the number of reference views sent to clients per time unit, which may in turn limit the quality of the synthesized viewpoints. We argue that the reference view selection should ideally be performed close to the users, and we study the problem of in-network reference view synthesis such that the navigation quality is maximized at the clients. We consider a distributed cloud network architecture where data stored in a main cloud is delivered to end users with the help of cloudlets, i.e., resource-rich proxies close to the users. In order to satisfy last-hop bandwidth constraints from the cloudlet to the users, a cloudlet re-samples viewpoints of the 3D scene into a discrete set of views (combination of received camera views and virtual views synthesized) to be used as reference for the synthesis of additional virtual views at the client. This in-network synthesis leads to better viewpoint sampling given a bandwidth constraint compared to simple selection of camera views, but it may however carry a distortion penalty in the cloudlet-synthesized reference views. We therefore cast a new reference view selection problem where the best subset of views is defined as the one minimizing the distortion over a view navigation window defined by the user under some transmission bandwidth constraints. We show that the view selection problem is NP-hard, and propose an effective polynomial time algorithm using dynamic programming to solve the optimization problem. Simulation results finally confirm the performance gain offered by virtual view synthesis in the network

    Optimal layered representation for adaptive interactive multiview video streaming

    Get PDF
    We consider an interactive multiview video streaming (IMVS) system where clients select their preferred viewpoint in a given navigation window. To provide high quality IMVS, many high quality views should be transmitted to the clients. However, this is not always possible due to the limited and heterogeneous capabilities of the clients. In this paper, we propose a novel adaptive IMVS solution based on a layered multiview representation where camera views are organized into layered subsets to match the different clients constraints. We formulate an optimization problem for the joint selection of the views subsets and their encoding rates. Then, we propose an optimal and a reduced computational complexity greedy algorithms, both based on dynamic-programming. Simulation results show the good performance of our novel algorithms compared to a baseline algorithm, proving that an effective IMVS adaptive solution should consider the scene content and the client capabilities and their preferences in navigation

    Providing 3D video services: the challenge from 2D to 3DTV quality of experience

    Get PDF
    Recently, three-dimensional (3D) video has decisively burst onto the entertainment industry scene, and has arrived in households even before the standardization process has been completed. 3D television (3DTV) adoption and deployment can be seen as a major leap in television history, similar to previous transitions from black and white (B&W) to color, from analog to digital television (TV), and from standard definition to high definition. In this paper, we analyze current 3D video technology trends in order to define a taxonomy of the availability and possible introduction of 3D-based services. We also propose an audiovisual network services architecture which provides a smooth transition from two-dimensional (2D) to 3DTV in an Internet Protocol (IP)-based scenario. Based on subjective assessment tests, we also analyze those factors which will influence the quality of experience in those 3D video services, focusing on effects of both coding and transmission errors. In addition, examples of the application of the architecture and results of assessment tests are provided

    Multiview video representations for quality-scalable navigation

    Get PDF
    Interactive multiview video (IMV) applications offer to users the freedom of selecting their preferred viewpoint. Usually, in these systems texture and depth maps of captured views are available at the user side, as they permit the rendering of intermediate virtual views. However, the virtual views' quality depends on the distance to the available views used as references and on their quality, which is generally constrained by the heterogeneous capabilities of the users. In this context, this work proposes an IMV scalable system, where views are optimally organized in layers, each one offering an incremental improvement in the interactive navigation quality. We propose a distortion model for the rendered virtual views and an algorithm that selects the optimal views' subset per layer. Simulation results show the efficiency of the proposed distortion model, and that the careful choice of reference cameras permits to have a graceful quality degradation for clients with limited capabilities

    A multi-camera approach to image-based rendering and 3-D/Multiview display of ancient chinese artifacts

    Get PDF
    published_or_final_versio

    In-Network View Re-Sampling for Interactive Free Viewpoint Video Streaming

    Get PDF
    Interactive free viewpoint video offers the possibility for each user to independently choose the views of a 3D scene to be displayed at de- coder. The visual content is commonly represented by N texture and depth map pairs that capture different viewpoints. A server selects an appropriate subset of M ≤ N views for transmission, so that the user can freely navigate in the corresponding window of viewpoints without being affected by network delay. During navigation, a user can synthesize any intermediate virtual view image in the navigation window via depth-image-based rendering (DIBR) using two nearby camera views as references. When the available bandwidth is too small for the transmission of all camera views needed to synthesize views in the navigation window, we propose to synthesize intermedi- ate virtual views as new references for transmission—a re-sampling of viewpoints for the 3D scene—so that the synthesized view dis- tortion within the navigation window is minimised. We formulate a combinatorial optimization to find the best set of M virtual views to synthesize as new references, and show that the problem is NP- hard. We approximate the original problem with a new reference view equivalence model and derive in this case an optimal dynamic programming algorithm to determine to best set of M views to be transmitted to each user. Experimental results show that synthesiz- ing virtual views as new references for client-side view synthesis can outperform simple selection from camera views by up to 0.73dB in synthesized view quality

    Semantics-aware content delivery framework for 3D Tele-immersion

    Get PDF
    3D Tele-immersion (3DTI) technology allows full-body, multimodal interaction among geographically dispersed users, which opens a variety of possibilities in cyber collaborative applications such as art performance, exergaming, and physical rehabilitation. However, with its great potential, the resource and quality demands of 3DTI rise inevitably, especially when some advanced applications target resource-limited computing environments with stringent scalability demands. Under these circumstances, the tradeoffs between 1) resource requirements, 2) content complexity, and 3) user satisfaction in delivery of 3DTI services are magnified. In this dissertation, we argue that these tradeoffs of 3DTI systems are actually avoidable when the underlying delivery framework of 3DTI takes the semantic information into consideration. We introduce the concept of semantic information into 3DTI, which encompasses information about the three factors: environment, activity, and user role in 3DTI applications. With semantic information, 3DTI systems are able to 1) identify the characteristics of its computing environment to allocate computing power and bandwidth to delivery of prioritized contents, 2) pinpoint and discard the dispensable content in activity capturing according to properties of target application, and 3) differentiate contents by their contributions on fulfilling the objectives and expectation of user’s role in the application so that the adaptation module can allocate resource budget accordingly. With these capabilities we can change the tradeoffs into synergy between resource requirements, content complexity, and user satisfaction. We implement semantics-aware 3DTI systems to verify the performance gain on the three phases in 3DTI systems’ delivery chain: capturing phase, dissemination phase, and receiving phase. By introducing semantics information to distinct 3DTI systems, the efficiency improvements brought by our semantics-aware content delivery framework are validated under different application requirements, different scalability bottlenecks, and different user and application models. To sum up, in this dissertation we aim to change the tradeoff between requirements, complexity, and satisfaction in 3DTI services by exploiting the semantic information about the computing environment, the activity, and the user role upon the underlying delivery systems of 3DTI. The devised mechanisms will enhance the efficiency of 3DTI systems targeting on serving different purposes and 3DTI applications with different computation and scalability requirements
    • …
    corecore