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Abstract

Interactive multiview video applications endow users wiite freedom to navigate through neighboring viewpoints BDa
scene. To enable such interactive navigation with a minimiew-switching delay, multiple camera views are sent toukers,
which are used as reference images to synthesize additivha! views via depth-image-based rendering. In practimndwidth
constraints may however restrict the number of referenesisent to clients per time unit, which may in turn limit theality
of the synthesized viewpoints. We argue that the refereme® selection should ideally be performed close to the ysamd
we study the problem of in-network reference view synthesish that the navigation quality is maximized at the clieke
consider a distributed cloud network architecture whera déored in a main cloud is delivered to end users with the bél
cloudlets, i.e., resource-rich proxies close to the udersrder to satisfy last-hop bandwidth constraints from theudlet to
the users, a cloudlee-samples viewpoints of the 3D scene into a discrete set of views (coatimn of received camera views
and virtual views synthesized) to be used as reference éosyhthesis of additional virtual views at the client. Thisnetwork
synthesis leads to better viewpoint sampling given a badithEonstraint compared to simple selection of camera vidws
it may however carry a distortion penalty in the cloudletthesized reference views. We therefore cast a new refereieay
selection problem where the best subset of views is defingdeasne minimizing the distortion over a view navigation domw
defined by the user under some transmission bandwidth edmistr We show that the view selection problem is NP-hard, an
propose an effective polynomial time algorithm using dymaprogramming to solve the optimization problem under gehe
assumptions that cover most of the multiview scenarios actpre. Simulation results finally confirm the performaneegffered
by virtual view synthesis in the network. It shows that clax@imputing resources provide important benefits in resogreedy
applications such as interactive multiview video.

Index Terms

Depth-image-based rendering, network processing, cimsisted applications, interactive systems.

|. INTRODUCTION

Interactive free viewpoint video systemis [1] endow userhhe ability to choose and display any virtual view of a 3D
scene, given original viewpoint images captured by mudtiphmeras. In particular, a virtual view image can be syizbds
by the decoder videpth-image-based rendering (DIBR) [2] using texture and depth images of two neighboniews that act
as reference viewpoints. One of the key challengestieractive multiview video streaming (IMVS) [B] systems is to transmit
an appropriate subset of reference views from a potentaitye number of camera-captured views such that the cligoys
high quality and low delay view navigation even in resoucoastrained environments| [4]3-[6].

In this paper, we propose a new paradigm to solve the refereieav selection problem and capitalize on cloud computing
resources to perform fine adaptation close to the clientscd¥isider a hierarchical cloud framework, where the selaotif
reference views is performed bynatwork of cloudlets, i.e., resource-rich proxies that can perform persondlp®cessing at
the edges of the core network [7]) [8]. An adaptation at tloudlets results in a smaller round-trip time (RTT), henceeano
reactivity than in more centralized architectures. Spetiff, we consider the scenario depicted in [Elg. 1, where & laud
stores pre-encoded video from different cameras, whicliteme transmitted to the edge cloudlets that act as proxiefal
delivery to users. We assume that there is sufficient netwapacity between the main cloud and the edge cloudlets éor th
transmission of all camera views, but there exists howeveoteneck of limited capacity between a cloudlet and a mgar
usell. In this scenario, each cloudlet sends to a client the se¢fefence views that respect bandwidth capacities and enabl
synthesis of all viewpoints in the client’s navigation wiivd This window is defined as the range of viewpoints in which t
user can navigate during the RTT and enables zero-delayswidtehing at the client.

We argue that, in resource-constrained networksampling the viewpoints of the 3D scene in the network— i.e., syn-
thesizing novel virtual views in the cloudlets that are smitted as new references to the decoder—is beneficial amupa
to the mere subsampling of the original set of camera views.illéstrate this in Fig[1l, where the main cloud stores three
coded camera viewgwy, v2, v3} While the bottleneck links between cloudlet-user pairs sapport the transmission of only
two views.E If user 1 requests a navigation winddws 4, us 5], the cloudlet can simply forward the closest camera views
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in practice, the last-mile access network is often the @tttk in real-time media distribution.

2We consider integer indek for any camera view, while we assume that a virtual view carekmnon-integer index.z, which corresponds to a position
between camera views; andv; 1.
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Fig. 1. Considered scenario. Green lines represent no bdtideonstrained channels, red lines are bottleneck ch&nne

vy and vs. However, if user 2 requests the navigation windpw s, us 5], transmitting camera views; and vs results in
large synthesized view distortions due to the large digtdatween reference and virtual views (caltefitrence view distance

in the sequel). Instead, the cloudlet can synthesize Vixigavs u; s and us o USINg camera views,, vo, v3 and send these
virtual views to the user 2 as new reference views for thegaiion window[u; s, us 2|. This strategy may result in smaller
synthesized view distortion due to the smaller distancénéoréference views. However, the in-network virtual viewtsgsis
may also introduce distortion into the new reference views andus 2, which results in a tradeoff that should be carefully
considered when choosing the views to be synthesized inlthellet.

Equipped with the above intuitions, we study the main tréfdeetween reference distortion and bandwidth gain. Using a
Gauss-Markov model, we first analyze the benefit of syntivegsizew reference images in the network. We then formulate a
new synthesized reference view selection optimization problem. It consists in selecting or constructing the optimal refiee
views that lead to the minimum distortion for all synthesizartual views in the user’'s navigation window subject to a
bandwidth constraint between the cloudlet and the user.Wfer shat this combinatorial problem can be solved optimhily
that it is NP-hard. We then introduce a generic assumptiotherview synthesis distortion which leads to a polynomialeti
solution with a dynamic programming (DP) algorithm. We th@ovide extensive simulation results for synthetic andiredt
sequences. They confirm the quality gain experienced by Nh\éSI clients when synthesis is allowed in the network, with
respect to scenarios whose edge cloudlets can only tranamitra views. They also show that synthesis in the netwolwsl
to maintain good navigation quality when reducing the nundfecameras as well as when cameras are not ideally positione
in the 3D scene. This is an important advantage in practietéihgs, which confirms that cloud processing resourcesbean
judiciously used to improve the performance of applicatitimat are a priori quite greedy in terms of network resources

The remainder of this paper is organized as follows. Relaterks are described in Secti@d II. In Sectioq Ill, we provide
a system overview and analyze the benefit of in-network vigmtresis via a Gauss-Markov model to impart intuitions. The
reference view selection optimization problem is then falated in Sectiofi IV. We propose general assumptions on view
synthesis distortion in Sectidn V and derive an additiormdypomial time view selection algorithm. In Sectibnl VI, wesclss
the simulation results, and we conclude in Secfiod VII.

II. RELATED WORK

Prior studies addressed the problem of providing interégtin selecting views in IMVS, while saving on transmitted
bandwidth and view-switching delay][3].][9]=[15]. Thesen® are mainly focused on optimizing the frame coding struect
to improve interactive media services. In the case of pvesdt camera views, however, rather than optimal frame godin
structures, interactivity in network-constrained scemaan be addressed by studying optimal camera selectiategtes,
where a subset of selected camera views is actually trateshih clients such that the navigation quality is maximized
resource constraints are satisfied [4]—[6]. [16]+-[18].[18][ an optimal camera view selection algorithm in resowmestrained
networks has been proposed based on the users’ navigatien pa [20] a bit allocation algorithm over an optimal subst
camera views is proposed for optimizing the visual distortof reconstructed views in interactive systems. Finatyj21],
[22] authors optimally organize camera views into layengloisets that are coded and delivered to clients in a priedtfashion
to accommodates for the network and clients heterogenaityta effectively exploit the resources of the overlay netwo
While in these works the selection is limited to camera vielwsour work we rather assume in-network processing able to
synthesize virtual viewpoints in the cloud network.

In-network adaptation strategies allow to cope with nelwesource constraints and are mainly categorized packet-level
processing andi) maodification of the source information. In the first categqacket filtering, routing strategies [23], [24] or



caching of media content information [25], [26] allow to sawetwork resources while improving the quality experiehiog
clients. To better address media delivery services in hifeterogenous scenarios, network coding strategies fdtrmadia
streaming have been also propoded [27]H29]. In the secatedjary — in-network processing at the source level — thexmai
objective is usually to avoid transmitting large amountsraf streams to the clients by processing the source dataein th
network to reduce both the communication volume and thegssing required at the client side. Transcoding strategight

be collaboratively performed in peer-to-peer netwofkq [&@0in the cloud [[31]. Furthermore, source data can be coagge
in the cloud [30], [32], [33] to efficiently address usersguests. Rather than media processing in the main cloudadifig
resources to a cloudlet, i.e., a resource-rich machinedmptbximity of the users, might reduce the transmissiomtate7],
[8]. This is beneficial for delay-sensitive / interactivepéipations [34]-[36]. Because of the proximity of cloudléb users,
cloudlet computing has been under intense investigatioeltmid-gaming applications, as shown [in1[37] and refersrthere
in. The above works are mainly focused on multimedia prangssather than on specific multiview scenarios. Howeues, t
use of cloudlets in delay sensitive applications motivaltesidea of cloudlet-based view synthesis for IMVS.

Cloud processing for multiview system is considered ir {§&0]. In [39] authors mainly address the cloud-based msiog
from a security perspective. I1-[40], view synthesis in tleéwork has been introduced for cloud networks to offloadnttie
terminals (in terms of complexity). The desired view is $gsized in the cloud and then sent directly to clients. Haxev
only the view requested by the client is synthesized. Thiameehat either the desired view is a priori known at the soorc
a switching delay is experienced by the clients. To the bestioknowledge, none of the work investigating cloud preoes
have considered the problem of multi-view interactive atnerg under network resource constraints. In our work, veppse
view synthesis in the network mainly to both overcome uraiety of users’ requests in interactive systems and to cdfie w
limited network resources.

IIl. BACKGROUND
A. System Model

LetV = {v1,...,un} be the set of théV camera viewpoints captured by the multiview system. Forcathera-captured
views, compressed texture and depth maps are stored at theclmad, with each texture/depth map pair encoded at theesam
rate using standard video coding tools like H.264 [41] or HEMZ]. The possible viewpoints offered to the users are tiho
by U = {uy,u14s,...,un}. The setd contains both synthesized views and camera views for néwighetween the leftmost
and rightmost camera views; andvy. It is equivalent to offering views: = kd, wherek is a positive integer and is a
pre-determined fraction that describes the minimum vieacsm between neighboring virtual views. We consider thgt a
virtual viewpointu € U can be synthesized using a pair of left and right referene® Wnagesy;, andvg, v < u < vg, via
a known DIBR technique such as 3D warirg3].

Each user is served by an assigned cloudlet through a betitdimk of capacityC', expressed in number of views. Assuming
a RTT of T' seconds between the cloudlet and the user, and a maximurd g@evhich a user can navigate to neighboring
virtual views, one can computeravigation window W (u) = [u — pT,u + pT], given that the user has selected virtual view
u at some time,. The goal of the cloudlet is to serve the user with the bessetubfC' viewpoints inl{ that synthesize the
best quality virtual views if¥ (u). In this way, the user can experience zero-delay view névigat timet, + 7' (see [14]
for details) with optimized visual quality.

B. Analysis of Cloudlet-based Synthesized Reference View

To impart intuition of why synthesizing new references ahatwork cloudlets may improve rendered view quality at an
end user, we consider a simple model among neighboring viSimsilarly to [44], [45], we assume a Gauss-Markov model,
where variabler, at view v is correlated withz,_:

Ty = Ty_1+ €y, Yv>2 (1)
wheree, is a zero-mean independent Gaussian variable with variapcandz; = e;. A large s would mean views:, and
x,_1 are not similar. We can writév variablesz, ..., zy in matrix form:

Fx=e, x=FTle (2)
where
1 0o ...
-1 1 0 T (5]
F=| 0 -1 1 0 , x= , e= 3)
: TN eN
0 0o -1 1

SNote that view synthesis can be performed in-network (toegetie new reference views) or at the user side (to renderedegiews for observation). In
both cases, the same rendering method and distortion mpgsl a



Givenx is zero-mean, theovariance matrix C can be computed as:
C=Exx"]=F 'Elee’|(F )T 4)

where Elee’] = diag(o?,...,0%) is a diagonal matrix. Th@recision matrix Q is the inverse ofC and can be derived as
follows:

1 1 1
Tz oz 0
1 2 2
S S S T 0
o3 o5 ' o} o3
0 SR T U
= o3 o5 | o} ol )
1 1
0 el »

N

which is a tridiagonal matrix.

When synthesizing a view,, using its neighbors:,,_; andzx, 1, we would like to know the resulting precision. Without
loss of generality, we writex as a concatenation of two sets of variables, x = [y z]. It can be shown[[46] that the
conditional mean and precision matrix pfgivenz are:

Hylz = Hy — Q;;Qyz (Z - Nz)
Qy\z = ny (6)

Consider now a set of four views,, s, x3, x4, Wherex,, s, x4 are camera views transmitted from the main cloud.
Suppose further that the user window[is3, 2.2], and the cloudlet has to choose between using receiyet right reference,
or synthesizing new referenag using receivedr; andz,. Using the discussed Gauss-Markov mofél (1) and the condis
(6), we see that synthesizing using reference, andx, results in precision:

1 1
= = — —_— 7
Q3)(2,4) = @33 p + p (7)
1/Qs3 is thus the additional noise variance when using new referegto synthesize:;. We can then compute the conditional
precisionQy(1 3y given new references:

Q21,3 = 2 + . 11 T (8)
A+ (% + %)
In comparison, if a user uses receivedas right referencey, will accumulate two noise terms frony, to x4:
T4 = X9 + €3+ €4 (9)
The resulting conditional precision af givenx; andzy is:
Q21(1,4) = ig ﬁ (20)

—1
We now compare),(; 3, in @) with Qs)(1.4) in (I0). We see that i3 is very large relative ta}, then( + 0—12 ~ 07,

and Qa(1,3) = Q2(1,4)- That means that if views is very different fromzs, then synthesizing new referenﬁ:g does not

-1
help improving precision of,. However, |f— < oo, then( = + 0_—12 < o3, and@s)(1,3) > @2(1,4), Which means that in

general it is worth to synthesize new referen:geThe reason can be interpreted from the derivation aboveyb;hesamgzzg

using bothz, andz,, the uncertainty (variance) for the right reference hasreduced fronv? to (U% + a_lg) , improving

the precision of the subsequent view synthesis.

IV. REFERENCEVIEW SELECTION PROBLEM

In this section, we first formalize the synthesized refeeeview selection problem. We then describe an assumptioh®n t
distortion of synthesized viewpoints. We conclude by smguthat under the considered assumption the optimizatiohl@m
is NP-hard.



A. Problem Formulation

Interactive view navigation means that a user can consaémgtvirtual view within a specified navigation window withrae
view-switching delay, using viewpoint images transmitfeaim the main cloud as referende [14]. We denote this naicigat
window by [U?, U}] that depends on the user’s current observed viewpoint.néiwath is not a concern, for best synthesized
view quality the edge cloudlet would send to the user all carvaptured views iV as reference to synthesize virtual view
u, Vu € [UD,U%]. When this is not feasible due to limited bandwidihbetween the serving cloudlet and the user, among all
subsets] C U of synthesized and camera-captured views that satisfy dnevbidth constraint, the cloudlet must select the
best subsef™* that minimizes the aggregate distorti®?{(7) of all virtual viewsw € [U?, U], i.e,

T* :arg m7i_n D(T) (11)
st|T|<C
TCuUu

We note that[(T]1) differs from existing reference view setecformulations[[17],[[18],[[2R] in that the cloudlet hdset extra
degree of freedom to synthesize novel virtual view(s) as reference(s) for transmission to the user.
Denote byD(v) the distortion of viewpoint image, due to lossy compression for a camera-captured view, or IBRD
synthesis for a virtual view. The distortid®(7 ) experienced over the navigation window at the user is theangby
D(T) = i dy(vp,vr, D ,D 12
(T) > min _{dy(vz,vr, D(vr), D(vr))} (12)

we[U9,U9)] VEURE
where D(vy) and D(vg) are the respective distortions of the left and right refeeeviews andi, (v.,vr, D1, Dr) is the
distortion of the virtual viewu synthesized using left and right reference viewsand vy with distortions D, and Dg,
respectively. In[{IR), for each virtual view the best reference pair it is selected for synthesis. Note that, unlike|[17], the
best reference pair may not be the closest references, thiaapiality of synthesized depends not only on the view distance
between the synthesized and reference views, but also odigteations of the references.

B. Distortion of virtual viewpoints
We consider first an assumption on the synthesized viewrtlstod, () called theshared optimality of reference views:

if du(vr,vr, D(vr), D(vR)) < dy(v], vk, D(v]), D(vER)) (13)
thend, (v, vr, D(vy), D(vR)) < dy (v}, v, D(v}), D(vg))

for max{vr, v} } < w, v < min{vg,v}. In words, this assumptiofi {IL3) states that if the virtua\wi, is better synthesized
using the reference paiv.,vr) than (v7,v%), then another virtual view.' is also better synthesized usitigr, vz) than
(v, V).

We see intuitively that this assumption is reasonable fooatim 3D scenes; a virtual view tends to be similar to its
neighboru’, so a good reference pdio.,, vr) for « should also be good far'. We can also argue for the plausibility of this
assumption as a consequence of two functional trends inytitbesized view distortiod, () that are observed empirically to
be generally true. For simplicity, consider for now the cesere the reference views,, vg, v, v, have zero distortion,e.
D(vr) = D(vg) = D(v}) = D(vy) = 0. The first trend is thenonotonicity in predictor’s distance [20]; i.e., the further-away
are the reference views to the target synthesized view, threenis the resulting synthesized view distortion. Thisdr&éas
been successively exploited for efficient bit allocatiogaaithms [20], [47]. In our scenario, this trend implies ttheference
pair (vz,vg) is better thanv} , v};) at synthesizing view: because the pair is closer g i.e.

lu—vr|+ vk —ul < Ju—vi|+ vk — ul (14)

wheremax{vz, v} } < u < min{vg, vz}
It is easy to see that if reference péit;,, vr) is closer tou than (v} ,v%), it is also closer tay/, thus better at synthesizing
u’. Without loss of generality, we write new virtual view asu’ = u + 6. We can then write:

[(u+8)—vp|+ |vg — (u+ )| =u—vp +vr—u
<u-—vp +vR—u
<|(u+0) —vi| + [vg — (u+9)| (15)
wheremax{vr, v} } < v’ < min{ug, v}
Consider now the case where the reference viewsr, v} , v}; have non-zero distortions. In [48], another functionahtrés

empirically demonstrated, where a reference vigwvith distortionD(v;,) was well approximated as a further-awnemyival ent
reference view vf < v, with no distortionD(vf) = 0. Thus a better reference pairz, vr) than (v}, v};) at synthesizing:
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Fig. 2. Reference view assignment in (a) contradicts theesheeference assumption. Reference view assignment imefipects the shared reference
assumption but contradicts the independence of referepitaality assumption.

just means that the equivalent reference pair(for, vr) are closer ta: than the equivalent reference pair faf; , v;). Using
the same previous argument, we see that the equivalenénefepair for(v., vr) are also closer ta’ than (v}, v%), resulting
in a smaller synthesized distortion. Hence, we can condhdethe assumption of shared optimality of reference viesaes
consequence of these two functional trends.

We can graphically illustrate possible solutions to theimjatation problem[{Il1) under the assumption of shared adttyn
of reference views. Fifj. 2(a) depicts the selected referef@ws for virtual views in the navigation window. In the figu
the z-axis represents the virtual views in the wind@#?, U%] that require synthesis. Correspondingly, on thaxis are two
piecewise constant (PWC) functions representing the reftraght reference views selected for synthesis of eachalistiew u
in the window, assuming that for eaehe [U?, U] there must be one selected reference fait vz) such that, < u < vg.

A constant line segmenteg., v = v; for U? < u < v3 in Fig.[2(@}—means that the same reference is used for a m@inge
virtual views. This graphical representation results i tAWC functions—Ileft and right reference views—above andvbe
the w = v line. The set of selected reference views are the unionseotdmstant step locations in the two PWC functions.

Under the assumption of shared reference optimality we Isaethe selected reference views in [Fig.R(a) cannot be an
optimal solution. Specifically, virtual views; — 1/L andvs employ referencef;, v4] and [vs, v5] respectively. However, if
referencegu;, vy4] are better tharws, vs] for virtual view vz — 1/L, they should be better for virtual view; also according
to shared reference optimality ih {13). An example of anmptisolution candidate under the assumption of sharedemter

optimality is shown in Fig. 2(b).

C. NP-hard Proof

We now outline a proof-by-construction that shows the rfee view selection probleri{11) is NP-hard under the shared
optimality assumption. We show it by reducing the known Nfehset cover (SC) problem[[4DB] to a special case of the
reference view selection problem. In SC, a set of ite¥n&alled the universe) are given, together with a definedecttin
C of subsets of items 5. The SC problem is to identify at mo#& subsets from collectiod that coversS, i.e, a smaller
collectionC’ C C with |C’| < K such that every item i belongs to at least one subset in collectitin

We construct a corresponding special case of our refereieve selection problem as follows. For each iténin S =
{1,...,]8|} in the SC problem, we first construct an undistorted refezemew:. In addition, we construct a default undistorted
right reference viewS| + 1, and the navigation window is set {6/?, U%] = [1,|S| + 1] and L = 2. Further, for each item
in S, we construct a virtual view + % that requires the selection of left referencen combination of default right reference
|S| + 1, for the resulting synthesized view distortid@+%(i, |S| + 1,0,0) to achieve distortionD < co. Thus the selection
of |S| left references and one default right referen§g+ 1 consumesS| + 1 views worth of bandwidth already. See Hig. 3
for an illustration. Note that given this selection of leffference views, any selection of right reference views sdtisfy the
shared optimality of reference views assumption.

For each subset in collectionC = {1,...,|C|} in the SC problem, we construct a right reference vj&iv+ 1 + j, such
that if item ¢ belongs to subset in the SC problem, the synthesized distortifqg%(z’, |S]+144,0,0) at virtual view1 + %
will be reduced toD — A given right reference viewS| + 1 + j is used. The corresponding binary decision we ask is: given
channel bandwidth ofS| + 1 + K, is there a reference view selection such that the resultymghesized view distortion is
|S|(D — A) or less?

From construction, it is clear that to minimize overall digion, left reference views, ..., |S| and default right reference
view |S| 4+ 1 must be first selected in any solution with distortienco. Given remaining budget o additional views, if
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Fig. 3. Example of items sef and collection of set€, with |S| =5 and|C| = 4.

distortion of |S|(D — A) is achieved, that meari§ or fewer additional right reference views are selected tuce synthesized
distortion fromD to D — A at each of the virtual view + £, i € {1,...,|S|}. Thus these additionalljk or fewer selected
right reference views correspond exactly to the subsetsdrSIC problem that covers all items in the SetThis solving this
special case of the reference view selection problem is seerethan solving the SC problem, and therefore the referenc
view selection problem is also NP-haid.

V. OPTIMAL VIEW SELECTION ALGORITHM

Given that the reference view selection probléml (11) is MRttunder the assumption of shared optimality of reference
views, in this section we introduce another assumption ensymthesized view distortion that holds in most common 3D
scenes. Given these two assumptions, we show[that (11) sab@solved optimally in polynomial time by a DP algorithm.
We also analyze the DP algorithm’s computation complexity.

A. Independence of reference optimality assumption

The second assumption on the synthesized view distodtjon is theindependence of reference optimality, stated formally
as follows:

if dy(vr,vr, D(ve), D(vgr)) < dy(v],vr, D(v}), D(vR)) (16)
thend,, (vr, vi, D(vr), D(vg)) < du(vy, v, D(vy), D(vR))

for max{vy, v} } <u < min{vg, vz}. In words, the assumptiofi {[L6) states that,ifis a better left reference tharj, when
synthesizing virtual viewu usingvg as right reference, then;, remains the better left reference to synthesizeven if a
different right reference’, is used. This assumption essentially states that conwitsitowards the synthesized image from
the two references are independent from each other, whickasonable since each rendered pixel in the synthesizedisie
typically copied from one of the two references, but not bdtle can also argue for the plausibility of this assumptioraas
consequence of the two aforementioned functional trendlsersynthesized view distortiafy, () in SectionIV. Consider first
the case where the reference views vg, v} , vy, have zero distortion. Theonotonicity in predictor’s distance in (14) for a
common right reference view becomes

lu—vp| + |vr —ul <|u—v] |+ |vg — ul —  Ju—vp| < |u—0%) 17)

wheremax{vy, v} } < u < vg. Thus ifvy, is preferred taw}, for vg > w, it will hold also for v, as long as/, > «. Consider
now the case where the reference viewswvrg, v}, v; have non-zero distortions. Introducing tbguivalent reference views
vf < wvr with no distortionD(vf) = 0, the same argument of {117) holds for the equivalent referenews, leading to
|u — vf| <|u-— U/L#|, Yog > u.

We illustrate different optimal solution candidates ffo))(hbw under both virtual view distortion assumptions to impa
intuition. We see that the assumption of independence efreate optimality would prevent the reference view sebecin
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Fig. 4. Reference view assignments in (a) and (b) are optsohltion candidates under both assumptions. We name thesedses “shared-left” and
“shared-right”, respectively.

Fig.[2(B) from being an optimal solution. Specifically, we ghat bothv; andv, are feasible right reference views for virtual
views v, — 1/L andvs. Regardless of which left references are selected for ttvesevirtual views, ifvs is a strictly better
right reference than,, then having both virtual views select as right reference will result in a lower overall distortion
(and vice versa). If)3 and v, areequally good right reference views resulting in tkame synthesized view distortion, then
selecting justy, without v3 can achieve the same distortion with one fewer right refeganew. Thus the selected reference
views in Fig[2(b) cannot be optimal.

We can thus make the following observation: as virtual vieimcreases, an optimal solution cannot switch right refegen
view from currentvg earlier thanu = vgr. Conversely, as virtual view decreases, an optimal solution cannot switch left
reference view from current;, earlier thanu = vy, — 1/L. As examples, Fid.l4 provides solutions of left and righerehce
views for virtual views in the navigation window. In the figyron thez-axis are the virtual views in the window[U?, U9]
that require synthesis. Correspondingly, on thexis are the left and right reference views (blue and red PWtions
respectively) selected to synthesize each virtual vieim the window. We see that the reference view selections gn[#g)
and Fig[4(0) are optimal solution candidatedtd (11). Tthespptimal reference view selections must be graphicalfymosed
of “staircase” virtual view ranges as shown in [fig. #(a) amgl[#Db]. In other words, either a shared left reference vigw
is used for multiple virtual view rangels;, u;4+1) where each range has the sanjeas left reference (“shared-left” case),
or a shared right reference view, is used for multiple rangeB:;, u;1+1), Where each range hasg, as its right reference
(“shared-right” case). This motivates us to design an efficDP algorithm to solvé (11) optimally in polynomial time.

B. DP Algorithm

We first define a recursive functieh(uy,, vy, k) as the minimum aggregate synthesized view distortion afvieetween.,
andU}, givenuvy, is the selected left reference view for synthesizing view and there is a budget @f additional reference
views. To analys®(ur, vy, k), we consider the two “staircase” cases identified by[Fig] 4¢al Fig[4(H) separately, and show
how ®(uy, vy, k) can be evaluated in each of the cases.

Consider first the “shared-left” case (Hig.4(a)) where aeathdeft reference view is employed in a sequence of virtighv
ranges. A view range represents a contiguous range of virteapoints that employ the same left and right referenaavgi
The algorithm selects a new right reference view > uy, creating a new range of virtual viewsy,v). Virtual views in
rangefur,,v) are synthesized using a shared left referemcand the newly selected reference viewresulting in distortion
dy(vr,v,D(v), D(v)) for each virtual viewu, u;, < u < v. The aggregate distortion functiob(ur,, vy, k) for this case
is the distortion of views inuy,v) plus a recursive tern®(v, A(vy,,v),k — 1) to account for aggregate synthesized view
distortions to the right ob:

Y

L
> du(vr,v, D(vg), D(v)) + ®(v, A(vr,v), k — 1) (18)
u=ur,
wherek — 1 is the remaining budget of additional reference views, Afd , v2) chooses the better of the two left reference
views, v; and vy, for the recursive functio®( ). In particular, using any right reference view and virtual viewu, where
max{vy,va} < u < vg, we setA(vy,vy) = vy if virtual view u is better synthesized using as left reference than, (and
setA(vy,v2) = vy Otherwise). Formally, the left reference selection fumeth (v, v2) is defined as:
Aoy, v2) = { vy if du(vi,vr, D(v), D(vgr)) < dy(v2,vR, D(v2), D(vR))

v2  O.W. (19)



Given our two assumptions, we know that the selected leéiresiceA (v1, v2) remains better for all other virtual viewsin
[max{vy, v}, vR].

We now consider the “shared-right” case (Fig.-#(b)) whereealy selected view is actually a common right reference
view for a sequence of virtual view ranges frarp to v. We first define a companion recursive funct®ur,, vy, vg, n) that
returns the minimum aggregate synthesized view distofftiom view u, to vg, given thatvy, is the selected left reference
view, vg is the common right reference view, and there is a budget other left reference views in addition tg,. We can
write ¥ (ur, v, vr,n) recursively as follows:

1
vT T

rr>11n > dy(vp,vr, D(v), D(vg)) + ¥(v,v,vg,n—1) if k>1
U(ug,vp,vp,n) =4 5 (20)

VR—T

L
Z du(’l}L,UR,D(’UL),D(’UR)) 0.Ww.
U=vp,
In more details, the equation(20) states tét.., v.,vr, n) is the synthesized view distortion of views in the rangg, v),
plus the recursive distortiol (v, v, vg,n — 1) from view v to vz with a reduced reference view budget- 1.
We can now put the two cases together into a complete defintfiab(uy,, vy, k) as follows:

v-1
(I)(uLv'ULak) = H>1Hl min Z du(vava(vL)vD(v)) +(I)(1),A(1)L,’U),l€— 1)a (21)
v>vUg,
U=ury,

“shared-left” case

in U d k—n-—-1
1§£Ln§11k1_1 (’LLL,UL,U,TL) + (U,U, n )

“shared-right” case

The relation[(2l) states thdt(uy, vy, k) examines each candidate reference view > v, which can be used either as right
reference for synthesizing virtual views jnz,v) with left referencev;, (“shared-left” case), or as a common right reference
for a sequence of + 1 virtual view ranges within the interval.;, v) (“shared-right” case).

When the remaining view budget is= 1, the relation in[(2L)p(u ., v, 1) simply selects a right reference viewv > U%,
which minimizes the aggregate synthesized view distorftrthe rangeu,, UY)]:

Ug
®(ur,vr,1) = min dy(vr,v, D(vy), D(v)) (22)
UZUIO% R

Having defined®(ur, vz, k), we can identify the besk™ reference views by callin@(U?, v, K') repeatedly to identify the
best leftmost reference view, v < U?, and start the selection of th€ — 1 remaining reference views as follows
min ®(UY v, K — 1) (23)

ngg

C. Computation Complexity

Our proposed DP algorithm requires two different tableseéstored. The first tim& (uy,, vr,, vr, n) is computed, the result
can be stored in entri(u, — UY)/L][(vr, — U?)/L][(ve — U?)/L][n] of a DP table®*, so that subsequent calls with the
same arguments can be simply looked up. Analogously, thetifine ®(uy,, vy, k) is called, the computed value is stored in
entry [(u, — U?)/L][(vr, — U?)/L][k] of another DP tablé* to avoid repeated computation in future recursive calls.

We bound the computation complexity of our proposed algorif21) by computing a bound on the sizes of the required DP
tables and the cost in computing each table entry. For ootatbnvenience, let the number of reference views and syiztd
views beS, = (V —1)/L and S, = (U} — U?)/L, respectively. The size of DP tabfe* is no larger thanS, x S, x K.
The cost of computing an entry i@* using [21) over all possible reference viewsnvolves the computation of the “shared-
left” case with complexityO(S,,) and the one of the “shared-right” case with complexityK'). Thus, each table entry has
complexity O(S, S, + S, K). Hence the complexity of completing the DP taldé is O(S2S?K + S,S52K?). Given that in
typical settingS,, > K, the complexity for computing DT tabl@™ is thusO(S2S2K).

We can perform similar procedure to estimate the complerityomputing DP tableP*. The size of the table in this case
is upper-bounded by, x S, x S, x K. The complexity in computing each entry¥.S,,). Thus the complexity of computing
DP table®* is O(S2S2K). which is the same as DP tab#". Thus the overall computation complexity of our solution in
1) is alsoO(S%S2K).
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TABLE |
VIEWPOINTS NOTATION.

Camera ID as in[50], “Statue” [| 50 51 52 53 54 55 56 57 58 59 .. | 98
Camera ID as in_[50], “Mansion™|| 25 26 27 28 29 30 31 32 33 34 .. 73
| Camera ID in our work [ 0 11125 125 1375 [ 1.5 [1.625 [ 1.756 [ 1.875 [ 1 [2125 [ ... [ 6 |

VI. SIMULATION RESULTS
A. Settings

We study the performance of our algorithm and we show theodish gains offered by cloudlets-based virtual view
synthesis. For a given navigation windd&w?, U%], we provide the average quality at which viewpoints in thg}igmion
window is synthesized. This means that we evaluate the gwedastortion of the navigation window 43 /N) Zgﬁm dy,
with N being the number of synthesized viewpoints in the navigatimdow, and we then compute the correspondiﬁg PSNR.
In our algorithm, we have considered the following model ftoe distortion of the synthesized viewpoiatfrom reference
views Vr, Vg

du(VL, VR, DL, DR) = aDpin + (1 — Ol)ﬂDmam + [1 - — (1 — Oé)ﬂ] Dy (24)

where D,,;, = min{Dy,, Dr}, Dmar = max{Dy, Dr}, Dy is the inpainted distortion, and = exp (—y|u — Vinin|d) , 8 =
exp (—v|u — Vinaz|d) with d is the distance between two consecutive camera vievedv; + 1, Vi, = Vi, if Dy, < Dp,
Vinin = Vg otherwise, and/,,,. = Vi if Dy > DR, Vinee = Vr. The model can be explained as follows. A virtual synthesis
u, when reconstructed frorV/;,, Vi) has a relative portiom € [0, 1] that is reconstructed at a distortidn,,,;,,, from the
dominant reference view, defined as the one with minimunodish. The remaining portion of the image, i.&¢+ «, is either
reconstructed by the non-dominant reference view for aopgii at a distortionD,,,..;, Or it is inpainted, at a distortio®;.

The results have been carried out using 3D sequences “Statde“Mansion” [50], where51 cameras acquire the scene
with uniform spacing between the camera positions. Theisgdietween camera positionsigs3 mm and10 mm for “Statue”
and “Mansion”, respectively. Among all camera views pr@ddor both sequences, only a subset represents the set efacam
views V available at the cloudlet, while the remaining are virtuews to be synthesized. Talle | depicts how the camera
notation used in[50] is adapted to our notation. Finally,tfee “Mansion” sequence, in the theoretical modelin (24)used
8 =0.2, Dya. = 450, andd = 50, while for the “Statue” sequence we usgd= 0.2, D,,., = 100, andd = 25.

In the following, we compare the performance achieved bygirview synthesis in the cloudlets with respect to the aden
in which cloudlets only send to users a subset of camera vidlgsdenote by7, the subset of selected reference views when
synthesis is allowed in the network, and By, the subset of selected reference views when only camera\daw be sent as
reference views, i.e., when synthesis is not allowed in tstsvark. For both the cases of network synthesis and no nktwor
synthesis, the best subset of reference views is evaluatiowith the proposed view selection algorithm and with aaogx
solution, i.e., an exhaustive search of all possible coatinins of reference views. For the proposed algorithm, teidion
is evaluated both with experimental computation of theadigin, where the results are labeled “Proposed Alg. (Expental
Dist)”, and with the model in{(24), results labeled “Propib#dg. (Theoretical Dist)”. For all three algorithms, ondetoptimal
subset of reference view is selected, the full navigationdew is reconstructed experimentally and the mean PSNReof th
actual reconstructed sequence is computed.

In the following, we first validate the distortion model in4j2as well as the proposed optimization algorithm. Then, we
provide simulation using the model if{24) and study the gsfered by network synthesis. For the sake of clarity in the
notation, in the following we identify the viewpoints by thendexes only. This means that the set of camera viewsv,, vs },
for example, is denoted in the following by, 1,3}. Analogously for the navigation windowg 75, us.25] is denoted in the
following by [0.75, 5.25].

B. Performance of the view selection algorithm

In Fig.[3, we provide the mean PSNR as a function of the availaandwidthC' in the setting of a regular spaced cameras
setV ={0,1,2,...,5,6}, and a navigation windoW).75, 5.25] requested by the user. Results are provided for the “Mahsion
and the “Statue” sequences in Hig. 5(a) and Fig.]5(b), reispéc For the “Mansion” sequence, the proposed algorithiti
experimental distortion perfectly matches the exhauste&rch. Also the proposed algorithm based on theoretistbrtion
nicely matches the exhaustive search method, with the @roepf the experimental point &' = 4 in the network synthesis
case. In that experiment, the algorithm selects as besesdbs= {0.75,2,4,5.25} rather than7; = {0.75,2,3,5.25}
selected by the exhaustive search. Beyond the good matefeéetexhaustive search and proposed algorithm,[Fig. 5¢e) al
shows the gain achieved in synthesizing reference viewseatlioudlets. FoC' = 2, the optimal sets of reference views are
Ts = {0.75,5.25} and 7, = {0,6}. The possibility of selecting the view at position75 as reference view reduced the
reference view distance for viewpoints (175, 5.25] compared to the case in which camera vievws selected. Thus, as long
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Fig. 5. Validation of the proposed optimization model wittuelly spaced cameras sgt= {0,1,2,...,5,6}, and a navigation window0.75, 5.25] for
“Mansion” and “Statue” sequences.
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Fig. 6. Validation of the proposed optimization model fortd®ie” sequence with unequally spaced camatas {0, 1.5,2,2.75,4,5,6} and a navigation
window [0.75, 5.25].

as the viewpoinD.75 is synthesized at a good quality in the network, synthegiginthe network improves the quality of the
reconstructed region of interest, when the bandwidtlis limited. Increasing the channel capacity reduces thditguzain
between synthesis and no synthesis at the cloudletsCFoer4, for example, the virtual viewpoint.75 is used to reconstruct
the views rangé0.75, 2) of the navigation window. Thus, the benefit of selectih@b rather thar is limited to a portion of
the navigation window and this portion usually decreasedai@e C'. Similar considerations can be derived from Fig. b(b),
for the “Statue” sequence. We observe a very good match ketife proposed algorithm and the exhaustive search one.

We then compare in Fifl] 6 the performance of the exhaustarekelgorithm with our optimization method in the case of
non-equally spaced cameras. The “Statue” sequence igdevadiwith unequally spaced camerasiset {0, 1.5,2,2.75,4,5,6},
and a navigation window0.75,5.25] at the client. Similarly to the equally spaced scenario, peeformance of proposed
optimization algorithm matches the one of the exhaustivercde This confirms the validity of our assumptions and the
optimality of the DP optimization solution. Also in this @s quality gain is offered by virtual view synthesis in tregwork,
with a maximum gain achieved far' = 2, with optimal reference view§, = {0.75,5.25} and 7, = {0,6}.



12

PSNR [dB]
w w w B N
N (o] (0] o N

w
N

30F —— Network Synthesis g
[ —a— No Network Synthesis

28 L L L L
2 3 4 5 6 7

C

Fig. 7. PSNR (in dB) as a function of the channel capacityor different channel capacity valu&s for a regular spaced camera set with varying distance
among camerasy = 0.3, Dy = 300, navigation window{0.75, 5.25], and camera s&¥ = {0, 1,2,...,5,6} (equally spaced cameras).

TABLE I
OPTIMAL SUBSETS FOR THE SCENARIO OFIG.E.
LC ] 7s I Tns |
2 10.75,5.25] 10,67
3 10.75,3,5.25] 10,36}
1 || {0.75,2,4,5.25} 10,2,4,6]
5 || {0.75,2,3,4,5.95] 10,2,3,4,6]
6 || {0,1,2,3,4,5.25} 10,1,2,3,4,6]
7 | {0.1,2.3.456} || {0,1,2,3.4,5.6)

C. Network synthesis gain

Now, we aim at studying the performance gain due to synthedise network for different scenarios. However, multiview
video sequences (with both texture and depth maps) cuyrawilable as test sequences have a very limited numbeewafsvi
(e.g.,8 views in the Ballet video sequenﬁyasBecause of the lack of test sequences, we consider sim#oenarios and we
adopt the distortion model il (P4) both for solving the opfiation algorithm and evaluating the system performande T
following results are meaningful since we already validaterr synthetic distortion model in the previous subsection

We consider the cases of equally spaced cam@tas {0, 1,2, ...,5,6}) and unequally spaced camefas= {0, 1,3,5,7,8}
and V = {0,2,3,4,7,8}) capturing the scene of interest. In Hig. 7, we show the meaiRP&s a function of the available
channel capacity” when the navigation window requested by the use€f0ig5,5.25] and cameras are equally spaced. The
distortion of the synthesized viewpoints is evaluated W#H), with v = 0.2, D; = 200, andd = 25. The case of synthesis
in the network is compared with the one in which only camegavgi can be sent to clients. In Tablke I, we show the optimal
subsetsT, and 7,,, associated to each simulation point in Hig. 7, where cam@wasvindexes are highlighted in bold. We
observe that the case with synthesis in the network perfoessin terms of quality over the navigation window. WHegn= 2,

Ts - {0.75,5.25} for the network synthesis case, afgl, : {0, 6}, otherwise. However, the larger the channel capacity tbe le
the need for sending virtual viewpoints. Whéh= 6, for example, both camera vievisand 1 can be sent, thus there is no
gain in transmitting only view.75. Finally, whenC = 7 and all camera views can be sent to clieffis= 7,s = V, with V
being the set of camera views. As expected, sending sym#tesiewpoints as reference views leads to a quality gaip ionl
constrained scenarios in which the channel capacity doealioav to send all views required for reconstructing theigation
window of interest.

We now study the gain in allowing network synthesis when cam&ws are not equally spaced. In Tablé Ill, we provide the
optimal subsets of reference views for both sets of unegsaticed camerg® = {0,1,3,5,7,8} and V = {0, 2, 3,4,7,8}).
Similarly to the case of equally spaced cameras, we obshatevirtual viewpoints are selected as reference views (hey
are in the best subs#&t) when the bandwidtl®” is limited. For the camera sej the virtual view0.75 is selected as reference
view also forC' = 4, while the camera séf) prefers to select the camera vies2 at C' = 4. This is justified by the fact that

4http://research.microsoft.com/en-us/um/people/spiaavideodownload/
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TABLE Il
SELECTED SUBSET OF REFERENCE VIEWS AND ASSOCIATED QUALITY ROSCENARIOS WITH[U?, U%] = [0.75,7.25] ,d = 25 MM, v = 0.2,

Daz = 200.
Vv ={0,1,3,5,7,8}, casea) Vv ={0,2,3,4,7,8}, caseb)
C || Ts | PSNR | Tns | PSNR || C | Ts | PSNR | Tns | PSNR
2 {0.75,7.25} 29.39 {0,8} 28.04 2 {0.75,7.25} 29.08 {0,8} 28.04
3 {0.75,3,7.25} 32.35 {0,3,8} 31.13 3 | {0.75,4,7.25} | 32.33 {0,4,8} 31.49
4 {0.75,3,5,7.25} | 35.24 {0,3,5,8} 33.87 4 {0,2,4,7.25} 34.18 {0,2,4,8} 33.21
5 {0,1,3,5,7.25} 35.85 | {0,1,3,5,8} | 35.017 5 {0,2,4,7,8} 34.92 0,2,4,7,8} | 34.92
6 {0,1,3,5,7,8} 36.56 {0,8} 36.56 6 | {0,2,3,4,7,8} | 35.60 0,2,4,7,8} | 35.60
34 T T

—e— Network Synthesis — C=2
~0 No Network Synthesis — C=2
[ | —— Network Synthesis— C=3
----- No Network Synthesis — C=3
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Fig. 8. PSNR (in dB) vsU? for a camera seV’ = {0, 2,3, 4}, navigation window[U?, 4], with d = 50, v = 0.2, and D; = 200.

in the latter scenario, the viewpoifit75 is synthesized frontVz, Vi) = (0,2) thus at a larger distortion than the viewpoint
0.75 in scenarioa), where the viewpoint is synthesized froffi,, Vi) = (0, 1). This distortion penalty makes the synthesis
worthy when the channel bandwidth is highly constrain€d= 2, 3), but not in the other cases.

In Fig.[8, the average quality of the client navigation isvyided as a function of the left extreme viéW of the navigation
window [U?, 4] with the camera se¥ = {0, 2, 3,4} with d = 50, v = 0.2, and D; = 200 in (Z4). It is worth noting that/}
ranges from to 1.875 and only view0 is a camera view in this range. Whéif = 0 andC = 2, the reference views and
4 perfectly cover the entire navigation window requestedh®y user, so there is no need for sending any virtual viewgasnt
reference view. This is no more true fof? > 0. When the channel capacity @8 = 2, the gain in allowing synthesis at the
cloudlets increases with'?. This is justified by the fact that in a very challenging seémé.e., limited channel capacity), the
largerUY the less efficient is it is to send the reference vieto reconstruct images ifU/?, 4]. At the same time, sendin
and4 as reference views would not allow to reconstruct the viemggdower than2. This gain in allowing network synthesis
is reflected in the PSNR curves of Fig. 8, where we can obseriacaeasing gap between the case of synthesis allowed and
not allowed forC' = 2. This gap is however reduced for the scenari@of 3. This is expected since the navigation window
is a limited one, at most ranging frothto 4 and 3 reference views cover the navigation window pretty well.

To better show this tradeoff between distortion of the wttteference view and the bandwidth gain, we introduce the
thresholding channel value, denoted @Y. The latter is defined as the value of channel bandwidth béyamch no gain
is experienced in allowing synthesis in the network comgdoea case of no synthesis. In Fid. 9, we provide the behavior
of the thresholding channel value as a function the nawgatiindow, for different cameras set. In particular, we ¢des
U? = 0.5 and we letU}, varies from5 to 10. Also, we simulate three different scenarios that differ tfee available camera
set. In particular, we hav® = {0,1,2,3,...}, V = {0,2,3,4,...}, andV = {0,3,4,5,...}. The main difference is then
in the reference views that can be used to synthesize thealiviewpoint0.5. In the first case(.5 is reconstructed from
camera views0, 1) while in the last case fron0, 3) increasing then the distortion of the synthesis. Becaushisfncreased
distortion of 0.5, the virtual viewpoint is not always sent as reference viewparticular, we can observe that the larger the
distortion of the virtual viewpoint, the lower the threstiiolg channel value. This means that even in challengingastes
as for example in the case 6f, = 7 andC = 3, if V = {0,3,4,5,...} then there is no gain in synthesize in the network,
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Fig. 10. PSNR gain (in dB) vs. the navigation window siXxg, for different channel capacity constrainfswhend = 50mm, v = 0.2, and D; = 200.

while we still have a gain it = {0,1,2,3,...}. In Fig.[10, we provide the mean PSNR as a function of the sfzéheo
navigation window, namely\,,. More in details, for each value a&,, we define the navigation window @B’g, Ug + Ayl

The starting viewpointU? is randomly selected. For each realization of the navigatindow, the best subset is evaluated
(both when synthesis is allowed and when it is not) and thditguzf the reconstructed viewpoint in the navigation wimndo

is evaluated. For eachA,, we average the quality simulating all possibi@ starting viewpoint within a total range ¢, 12].

In the results we provide the PSNR gain, defined as the diféerdoetween the mean PSNR (in dB) when the synthesis is
allowed and the mean PSNR (in dB) when only camera views amsidered as reference views. Thus, the figure shows the
gain in synthesizing for different sizes of the navigatioimdow. As general trend, we observe that the quality gainesses
with A,,. This is due to the fact that the gain mainly comes from therddtreference views, that are usually virtual viewpoints
if synthesis is allowed. This leads to a gain that is howeegduced for large sizes of the navigation window. Finally, al&o
observe that the gain does not necessarily depends on theah@nstrainC.

We now consider a scenario in which the camera views positiamot a priori given. In Fig[Z1, we provide the mean
PSNR as a function of the variane€, which defines the randomness of the camera views positidren acquiring the
scene. More in details, we consider a navigation windoy, U] = [2,6]. We then define a deterministic camera views set
Vp ={0,1,2,...,6,7}, which is the best camera view set since it is aligned withrézgiested viewpoint navigation window.
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For each value of2, we generate a random cameras¥ets) = Vp + [ng, n1, - . ., n7], where each; is a gaussian random
variable with zero mean and variane@ with n; andn; mutually independent foi # j. Thus, the larger?, the larger
the probability for the camera view set to be not aligned wlith navigation window. For each realization¥Wf we run our
optimization for both the cases of allowed and not allowentisgsis and we evaluate the experienced quality. For edch
value we simulatet00 runs and we provide in Fig._11 the averaged quality. What intieresting to observe is that even if
camera views are not perfectly aligned with the navigatiomdaw of interest (i.e., even for large variance values)dbality
degradation with respect to the casesgf= 0 is limited, about0.5 dB for C' = 3, when network synthesis is allowed. On the
contrary, when synthesis is not allowed in the cloudlet,¢helity substantially decreases witj, experiencing a PSNR loss
of almost1.5dB. This means that network synthesis can compensate foereanmot ideally positioned in the 3D scene, as in
the case of user generated content systems.

Finally, we study performance of the cloudlet-based vientlsgsis for a varying number of acquiring cameras. In paldic
given the set of equally spaced viewpoibts we assume that one evefyviewpoints ini/ is a camera view, i.e., there are
L — 1 virtual viewpoints between consecutive camerasview. B#ire viewpoints iri/ equally spaced, say at distanéeLd is
the distance between consecutive cameras. In the follgwirgprovide the quality behavior fat ranging from1 to 12. For
each value of the sampling distanée we simulate a navigation window spanning a range@{f. The navigation window
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is selected uniformly at random and the optimization akjjoni evaluates the best subset of reference views. The expged
quality is averaged ovet00 runs and evaluated for different values bf In Fig.[12, we show the mean quality for the
navigation as a function of the sampling distargefor the scenario with fot” = 2, d = 50, v = 0.2, and D; = 200 in (24).

It is worth noting that for a user to navigate at given quaktymuch higher value of sampling distantecan be used when
network synthesis is allowed, with respect to the valud. aequired with no network synthesis. For example, a meanitgual

in the navigation o83 dB is achieved withl, = 5 when network synthesis is not allowed as opposed to 10 when allowing
network synthesis. This means that when synthesis is alloha&f of the number of camera views can be used respect to the
case in which no synthesis is allowed. Thus, view synthesthe network allows to maintain a good navigation qualityewh
reducing the number of cameras.

VIlI. CONCLUSION

When interactive multiview video systems face limited baitih constraints, we argue that synthesizing referenee/wiin
the cloud improve the quality of navigation at the clientesith particular, we propose a synthesized reference viésetsen
optimization problem aimed at finding the best subset of pmwts to be transmitted to the decoder as reference views.
This subset is not limited to captured camera views as inipusvapproaches but it can also include virtual viewpoimtse
problem is formalized as a combinatorial optimization peofn, which is shown to be NP-hard. However, we show that, unde
the general assumption that the distortion of synthesiz@dpoints is well-behaved, the problem can be solved in patyial
time via a dynamic programming algorithm. Simulation réswhlidate the performance gain of the proposed methodlamd s
that synthesizing reference views can improve image qualithe client by up t@.1dB in PSNR. We finally demonstrate that
view synthesis in the network obviates to non optimal cansarapling and permits to increase the distance between aamer
views without affecting the quality of the navigation.
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