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Abstract

Interactive multiview video applications endow users withthe freedom to navigate through neighboring viewpoints in a3D
scene. To enable such interactive navigation with a minimumview-switching delay, multiple camera views are sent to theusers,
which are used as reference images to synthesize additionalvirtual views via depth-image-based rendering. In practice, bandwidth
constraints may however restrict the number of reference views sent to clients per time unit, which may in turn limit the quality
of the synthesized viewpoints. We argue that the reference view selection should ideally be performed close to the users, and
we study the problem of in-network reference view synthesissuch that the navigation quality is maximized at the clients. We
consider a distributed cloud network architecture where data stored in a main cloud is delivered to end users with the help of
cloudlets, i.e., resource-rich proxies close to the users.In order to satisfy last-hop bandwidth constraints from thecloudlet to
the users, a cloudletre-samples viewpoints of the 3D scene into a discrete set of views (combination of received camera views
and virtual views synthesized) to be used as reference for the synthesis of additional virtual views at the client. This in-network
synthesis leads to better viewpoint sampling given a bandwidth constraint compared to simple selection of camera views, but
it may however carry a distortion penalty in the cloudlet-synthesized reference views. We therefore cast a new reference view
selection problem where the best subset of views is defined asthe one minimizing the distortion over a view navigation window
defined by the user under some transmission bandwidth constraints. We show that the view selection problem is NP-hard, and
propose an effective polynomial time algorithm using dynamic programming to solve the optimization problem under general
assumptions that cover most of the multiview scenarios in practice. Simulation results finally confirm the performance gain offered
by virtual view synthesis in the network. It shows that cloudcomputing resources provide important benefits in resourcegreedy
applications such as interactive multiview video.

Index Terms

Depth-image-based rendering, network processing, cloud-assisted applications, interactive systems.

I. I NTRODUCTION

Interactive free viewpoint video systems [1] endow users with the ability to choose and display any virtual view of a 3D
scene, given original viewpoint images captured by multiple cameras. In particular, a virtual view image can be synthesized
by the decoder viadepth-image-based rendering (DIBR) [2] using texture and depth images of two neighboringviews that act
as reference viewpoints. One of the key challenges ininteractive multiview video streaming (IMVS) [3] systems is to transmit
an appropriate subset of reference views from a potentiallylarge number of camera-captured views such that the client enjoys
high quality and low delay view navigation even in resource-constrained environments [4]–[6].

In this paper, we propose a new paradigm to solve the reference view selection problem and capitalize on cloud computing
resources to perform fine adaptation close to the clients. Weconsider a hierarchical cloud framework, where the selection of
reference views is performed by anetwork of cloudlets, i.e., resource-rich proxies that can perform personalized processing at
the edges of the core network [7], [8]. An adaptation at the cloudlets results in a smaller round-trip time (RTT), hence more
reactivity than in more centralized architectures. Specifically, we consider the scenario depicted in Fig. 1, where a main cloud
stores pre-encoded video from different cameras, which arethen transmitted to the edge cloudlets that act as proxies for final
delivery to users. We assume that there is sufficient networkcapacity between the main cloud and the edge cloudlets for the
transmission of all camera views, but there exists however abottleneck of limited capacity between a cloudlet and a nearby
user1. In this scenario, each cloudlet sends to a client the set of reference views that respect bandwidth capacities and enable
synthesis of all viewpoints in the client’s navigation window. This window is defined as the range of viewpoints in which the
user can navigate during the RTT and enables zero-delay view-switching at the client.

We argue that, in resource-constrained networks,re-sampling the viewpoints of the 3D scene in the network— i.e., syn-
thesizing novel virtual views in the cloudlets that are transmitted as new references to the decoder—is beneficial compared
to the mere subsampling of the original set of camera views. We illustrate this in Fig. 1, where the main cloud stores three
coded camera views:{v1, v2, v3} while the bottleneck links between cloudlet-user pairs cansupport the transmission of only
two views. 2 If user 1 requests a navigation window[u2.4, u2.8], the cloudlet can simply forward the closest camera views
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Fig. 1. Considered scenario. Green lines represent no bandwidth constrained channels, red lines are bottleneck channels.

v2 and v3. However, if user 2 requests the navigation window[u1.8, u2.2], transmitting camera viewsv1 and v3 results in
large synthesized view distortions due to the large distance between reference and virtual views (calledreference view distance
in the sequel). Instead, the cloudlet can synthesize virtual views u1.8 andu2.2 using camera viewsv1, v2, v3 and send these
virtual views to the user 2 as new reference views for the navigation window[u1.8, u2.2]. This strategy may result in smaller
synthesized view distortion due to the smaller distance to the reference views. However, the in-network virtual view synthesis
may also introduce distortion into the new reference viewsu1.8 andu2.2, which results in a tradeoff that should be carefully
considered when choosing the views to be synthesized in the cloudlet.

Equipped with the above intuitions, we study the main tradeoff between reference distortion and bandwidth gain. Using a
Gauss-Markov model, we first analyze the benefit of synthesizing new reference images in the network. We then formulate a
new synthesized reference view selection optimization problem. It consists in selecting or constructing the optimal reference
views that lead to the minimum distortion for all synthesized virtual views in the user’s navigation window subject to a
bandwidth constraint between the cloudlet and the user. We show that this combinatorial problem can be solved optimallybut
that it is NP-hard. We then introduce a generic assumption onthe view synthesis distortion which leads to a polynomial time
solution with a dynamic programming (DP) algorithm. We thenprovide extensive simulation results for synthetic and natural
sequences. They confirm the quality gain experienced by the IMVS clients when synthesis is allowed in the network, with
respect to scenarios whose edge cloudlets can only transmitcamera views. They also show that synthesis in the network allows
to maintain good navigation quality when reducing the number of cameras as well as when cameras are not ideally positioned
in the 3D scene. This is an important advantage in practical settings, which confirms that cloud processing resources canbe
judiciously used to improve the performance of applications that are a priori quite greedy in terms of network resources.

The remainder of this paper is organized as follows. Relatedworks are described in Section II. In Section III, we provide
a system overview and analyze the benefit of in-network view synthesis via a Gauss-Markov model to impart intuitions. The
reference view selection optimization problem is then formulated in Section IV. We propose general assumptions on view
synthesis distortion in Section V and derive an additional polynomial time view selection algorithm. In Section VI, we discuss
the simulation results, and we conclude in Section VII.

II. RELATED WORK

Prior studies addressed the problem of providing interactivity in selecting views in IMVS, while saving on transmitted
bandwidth and view-switching delay [3], [9]–[15]. These works are mainly focused on optimizing the frame coding structure
to improve interactive media services. In the case of pre-stored camera views, however, rather than optimal frame coding
structures, interactivity in network-constrained scenario can be addressed by studying optimal camera selection strategies,
where a subset of selected camera views is actually transmitted to clients such that the navigation quality is maximizedand
resource constraints are satisfied [4]–[6], [16]–[18]. In [19], an optimal camera view selection algorithm in resource-constrained
networks has been proposed based on the users’ navigation paths. In [20] a bit allocation algorithm over an optimal subset of
camera views is proposed for optimizing the visual distortion of reconstructed views in interactive systems. Finally,in [21],
[22] authors optimally organize camera views into layered subsets that are coded and delivered to clients in a prioritized fashion
to accommodates for the network and clients heterogeneity and to effectively exploit the resources of the overlay network.
While in these works the selection is limited to camera views, in our work we rather assume in-network processing able to
synthesize virtual viewpoints in the cloud network.

In-network adaptation strategies allow to cope with network resource constraints and are mainly categorized ini) packet-level
processing andii) modification of the source information. In the first category, packet filtering, routing strategies [23], [24] or
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caching of media content information [25], [26] allow to save network resources while improving the quality experienced by
clients. To better address media delivery services in highly heterogenous scenarios, network coding strategies for multimedia
streaming have been also proposed [27]–[29]. In the second category — in-network processing at the source level — the main
objective is usually to avoid transmitting large amounts ofraw streams to the clients by processing the source data in the
network to reduce both the communication volume and the processing required at the client side. Transcoding strategiesmight
be collaboratively performed in peer-to-peer networks [30] or in the cloud [31]. Furthermore, source data can be compressed
in the cloud [30], [32], [33] to efficiently address users’ requests. Rather than media processing in the main cloud, offloading
resources to a cloudlet, i.e., a resource-rich machine in the proximity of the users, might reduce the transmission latency [7],
[8]. This is beneficial for delay-sensitive / interactive applications [34]–[36]. Because of the proximity of cloudlets to users,
cloudlet computing has been under intense investigation for cloud-gaming applications, as shown in [37] and references there
in. The above works are mainly focused on multimedia processing, rather than on specific multiview scenarios. However, the
use of cloudlets in delay sensitive applications motivatesthe idea of cloudlet-based view synthesis for IMVS.

Cloud processing for multiview system is considered in [38]–[40]. In [39] authors mainly address the cloud-based processing
from a security perspective. In [40], view synthesis in the network has been introduced for cloud networks to offload clients’
terminals (in terms of complexity). The desired view is synthesized in the cloud and then sent directly to clients. However,
only the view requested by the client is synthesized. This means that either the desired view is a priori known at the source or
a switching delay is experienced by the clients. To the best of our knowledge, none of the work investigating cloud processing
have considered the problem of multi-view interactive streaming under network resource constraints. In our work, we propose
view synthesis in the network mainly to both overcome uncertainty of users’ requests in interactive systems and to cope with
limited network resources.

III. B ACKGROUND

A. System Model

Let V = {v1, . . . , vN} be the set of theN camera viewpoints captured by the multiview system. For allcamera-captured
views, compressed texture and depth maps are stored at the main cloud, with each texture/depth map pair encoded at the same
rate using standard video coding tools like H.264 [41] or HEVC [42]. The possible viewpoints offered to the users are denoted
by U = {u1, u1+δ, . . . , uN}. The setU contains both synthesized views and camera views for navigation between the leftmost
and rightmost camera views,v1 and vN . It is equivalent to offering viewsu = kδ, wherek is a positive integer andδ is a
pre-determined fraction that describes the minimum view spacing between neighboring virtual views. We consider that any
virtual viewpointu ∈ U can be synthesized using a pair of left and right reference view imagesvL andvR, vL < u < vR, via
a known DIBR technique such as 3D warping3 [43].

Each user is served by an assigned cloudlet through a bottleneck link of capacityC, expressed in number of views. Assuming
a RTT ofT seconds between the cloudlet and the user, and a maximum speed ρ at which a user can navigate to neighboring
virtual views, one can compute anavigation window W (u) = [u− ρT, u+ ρT ], given that the user has selected virtual view
u at some timet0. The goal of the cloudlet is to serve the user with the best subset ofC viewpoints inU that synthesize the
best quality virtual views inW (u). In this way, the user can experience zero-delay view navigation at timet0 + T (see [14]
for details) with optimized visual quality.

B. Analysis of Cloudlet-based Synthesized Reference View

To impart intuition of why synthesizing new references at in-network cloudlets may improve rendered view quality at an
end user, we consider a simple model among neighboring views. Similarly to [44], [45], we assume a Gauss-Markov model,
where variablexv at view v is correlated withxv−1:

xv = xv−1 + ev, ∀v ≥ 2 (1)

whereev is a zero-mean independent Gaussian variable with varianceσ2
v , andx1 = e1. A largeσ2

v would mean viewsxv and
xv−1 are not similar. We can writeN variablesx1, . . . , xN in matrix form:

Fx = e, x = F−1e (2)

where

F =










1 0 . . .
−1 1 0 . . .
0 −1 1 0 . . .
...

. . .
. . .

0 . . . 0 −1 1










, x =






x1

...
xN




 , e =






e1
...
eN




 (3)

3Note that view synthesis can be performed in-network (to generate new reference views) or at the user side (to render desired views for observation). In
both cases, the same rendering method and distortion model apply.
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Givenx is zero-mean, thecovariance matrix C can be computed as:

C = E[xxT ] = F−1E[eeT ](F−1)T (4)

whereE[eeT ] = diag(σ2
1 , . . . , σ

2
N ) is a diagonal matrix. Theprecision matrix Q is the inverse ofC and can be derived as

follows:

Q = C−1 =
(
F−1 diag(σ2

1 , . . . , σ
2
N ) (F−1)T

)−1

= FT diag(σ2
1 , . . . , σ

2
N )−1 F

=











1
σ2

1

+ 1
σ2

2

− 1
σ2

2

0 . . .

− 1
σ2

2

1
σ2

2

+ 1
σ2

3

− 1
σ2

3

0 . . .

0 − 1
σ2

3

1
σ2

3

+ 1
σ2

4

− 1
σ2

4

...
. . .

. . .
. . .

0 − 1
σ2

N

1
σ2

N











(5)

which is a tridiagonal matrix.
When synthesizing a viewxn using its neighborsxn−1 andxn+1, we would like to know the resulting precision. Without

loss of generality, we writex as a concatenation of two sets of variables,i.e. x = [y z]. It can be shown [46] that the
conditional mean and precision matrix ofy given z are:

µy|z = µy −Q−1
yy

Qyz (z− µz)

Qy|z = Qyy (6)

Consider now a set of four viewsx1, x2, x3, x4, where x1, x2, x4 are camera views transmitted from the main cloud.
Suppose further that the user window is[1.8, 2.2], and the cloudlet has to choose between using receivedx4 as right reference,
or synthesizing new referencex3 using receivedx2 andx4. Using the discussed Gauss-Markov model (1) and the conditionals
(6), we see that synthesizingx3 using referencex2 andx4 results in precision:

Q3|(2,4) = Q33 =
1

σ2
3

+
1

σ2
4

(7)

1/Q33 is thus the additional noise variance when using new referencex3̄ to synthesizex2. We can then compute the conditional
precisionQ2|(1,3̄) given new referencex3̄:

Q2|(1,3̄) =
1

σ2
2

+
1

σ2
3 +

(
1
σ2

3

+ 1
σ2

4

)−1 (8)

In comparison, if a user uses receivedx4 as right reference,x4 will accumulate two noise terms fromx2 to x4:

x4 = x2 + e3 + e4 (9)

The resulting conditional precision ofx2 givenx1 andx4 is:

Q2|(1,4) =
1

σ2
2

+
1

σ2
3 + σ2

4

(10)

We now compareQ2|(1,3̄) in (8) with Q2|(1,4) in (10). We see that ifσ2
3 is very large relative toσ2

4 , then
(

1
σ2

3

+ 1
σ2

4

)−1

≈ σ2
4 ,

andQ2|(1,3̄) ≈ Q2|(1,4). That means that if viewx3 is very different fromx2, then synthesizing new referencex3 does not

help improving precision ofx2. However, if 1
σ2

3

< ∞, then
(

1
σ2

3

+ 1
σ2

4

)−1

< σ2
4 , andQ2|(1,3̄) > Q2|(1,4), which means that in

general it is worth to synthesize new referencex3. The reason can be interpreted from the derivation above: bysynthesizingx3

using bothx2 andx4, the uncertainty (variance) for the right reference has been reduced fromσ2
4 to

(
1
σ2

3

+ 1
σ2

4

)−1

, improving
the precision of the subsequent view synthesis.

IV. REFERENCEV IEW SELECTION PROBLEM

In this section, we first formalize the synthesized reference view selection problem. We then describe an assumption on the
distortion of synthesized viewpoints. We conclude by showing that under the considered assumption the optimization problem
is NP-hard.
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A. Problem Formulation

Interactive view navigation means that a user can constructany virtual view within a specified navigation window with zero
view-switching delay, using viewpoint images transmittedfrom the main cloud as reference [14]. We denote this navigation
window by [U0

L, U
0
R] that depends on the user’s current observed viewpoint. If bandwidth is not a concern, for best synthesized

view quality the edge cloudlet would send to the user all camera-captured views inV as reference to synthesize virtual view
u, ∀u ∈ [U0

L, U
0
R]. When this is not feasible due to limited bandwidthC between the serving cloudlet and the user, among all

subsetsT ⊂ U of synthesized and camera-captured views that satisfy the bandwidth constraint, the cloudlet must select the
best subsetT ∗ that minimizes the aggregate distortionD(T ) of all virtual viewsu ∈ [U0

L, U
0
R], i.e.,

T ⋆ : argmin
T

D(T ) (11)

s.t |T | ≤ C

T ⊆ U

We note that (11) differs from existing reference view selection formulations [17], [18], [22] in that the cloudlet has the extra
degree of freedom to synthesize novel virtual view(s) as newreference(s) for transmission to the user.

Denote byD(v) the distortion of viewpoint imagev, due to lossy compression for a camera-captured view, or by DIBR
synthesis for a virtual view. The distortionD(T ) experienced over the navigation window at the user is then given by

D(T ) =
∑

u∈[U0

L
,U0

R
]

min
vL,vR∈T

{du(vL, vR, D(vL), D(vR))} (12)

whereD(vL) andD(vR) are the respective distortions of the left and right reference views anddu(vL, vR, DL, DR) is the
distortion of the virtual viewu synthesized using left and right reference viewsvL and vR with distortionsDL and DR,
respectively. In (12), for each virtual viewu the best reference pair inT is selected for synthesis. Note that, unlike [17], the
best reference pair may not be the closest references, sincethe quality of synthesizedu depends not only on the view distance
between the synthesized and reference views, but also on thedistortions of the references.

B. Distortion of virtual viewpoints

We consider first an assumption on the synthesized view distortion du( ) called theshared optimality of reference views:

if du(vL, vR, D(vL), D(vR)) ≤ du(v
′
L, v

′
R, D(v′L), D(v′R)) (13)

thendu′(vL, vR, D(vL), D(vR)) ≤ du′(v′L, v
′
R, D(v′L), D(v′R))

for max{vL, v
′
L} ≤ u, u′ ≤ min{vR, v

′
R}. In words, this assumption (13) states that if the virtual view u is better synthesized

using the reference pair(vL, vR) than (v′L, v
′
R), then another virtual viewu′ is also better synthesized using(vL, vR) than

(v′L, v
′
R).

We see intuitively that this assumption is reasonable for smooth 3D scenes; a virtual viewu tends to be similar to its
neighboru′, so a good reference pair(vL, vR) for u should also be good foru′. We can also argue for the plausibility of this
assumption as a consequence of two functional trends in the synthesized view distortiondv( ) that are observed empirically to
be generally true. For simplicity, consider for now the casewhere the reference viewsvL, vR, v′L, v

′
R have zero distortion,i.e.

D(vL) = D(vR) = D(v′L) = D(v′R) = 0. The first trend is themonotonicity in predictor’s distance [20]; i.e., the further-away
are the reference views to the target synthesized view, the worse is the resulting synthesized view distortion. This trend has
been successively exploited for efficient bit allocation algorithms [20], [47]. In our scenario, this trend implies that reference
pair (vL, vR) is better than(v′L, v

′
R) at synthesizing viewu because the pair is closer tou, i.e.

|u− vL|+ |vR − u| ≤ |u− v′L|+ |v′R − u| (14)

wheremax{vL, v
′
L} < u < min{vR, v

′
R}.

It is easy to see that if reference pair(vL, vR) is closer tou than(v′L, v
′
R), it is also closer tou′, thus better at synthesizing

u′. Without loss of generality, we write new virtual viewu′ asu′ = u+ δ. We can then write:

|(u+ δ)− vL|+ |vR − (u+ δ)| = u− vL + vR − u

≤ u− v′L + v′R − u

≤ |(u + δ)− v′L|+ |v′R − (u+ δ)| (15)

wheremax{vL, v
′
L} < u′ < min{vR, v

′
R}.

Consider now the case where the reference viewsvL, vR, v
′
L, v

′
R have non-zero distortions. In [48], another functional trend is

empirically demonstrated, where a reference viewvL with distortionD(vL) was well approximated as a further-awayequivalent
reference view v#L < vL with no distortionD(v#L ) = 0. Thus a better reference pair(vL, vR) than (v′L, v

′
R) at synthesizingu
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(a) (b)

Fig. 2. Reference view assignment in (a) contradicts the shared reference assumption. Reference view assignment in (b)respects the shared reference
assumption but contradicts the independence of reference optimality assumption.

just means that the equivalent reference pair for(vL, vR) are closer tou than the equivalent reference pair for(v′L, v
′
R). Using

the same previous argument, we see that the equivalent reference pair for(vL, vR) are also closer tou′ than(v′L, v
′
R), resulting

in a smaller synthesized distortion. Hence, we can concludethat the assumption of shared optimality of reference viewsis a
consequence of these two functional trends.

We can graphically illustrate possible solutions to the optimization problem (11) under the assumption of shared optimality
of reference views. Fig. 2(a) depicts the selected reference views for virtual views in the navigation window. In the figure,
thex-axis represents the virtual views in the window[U0

L, U
0
R] that require synthesis. Correspondingly, on they-axis are two

piecewise constant (PWC) functions representing the left and right reference views selected for synthesis of each virtual viewu
in the window, assuming that for eachu ∈ [U0

L, U
0
R] there must be one selected reference pair(vL, vR) such thatvL ≤ u ≤ vR.

A constant line segment—e.g., v = v1 for U0
L ≤ u ≤ v3 in Fig. 2(a)—means that the same reference is used for a rangeof

virtual views. This graphical representation results in two PWC functions—left and right reference views—above and below
the u = v line. The set of selected reference views are the unions of the constant step locations in the two PWC functions.

Under the assumption of shared reference optimality we see that the selected reference views in Fig. 2(a) cannot be an
optimal solution. Specifically, virtual viewsv3 − 1/L andv3 employ references[v1, v4] and [v2, v5] respectively. However, if
references[v1, v4] are better than[v2, v5] for virtual view v3 − 1/L, they should be better for virtual viewv3 also according
to shared reference optimality in (13). An example of an optimal solution candidate under the assumption of shared reference
optimality is shown in Fig. 2(b).

C. NP-hard Proof

We now outline a proof-by-construction that shows the reference view selection problem (11) is NP-hard under the shared
optimality assumption. We show it by reducing the known NP-hard set cover (SC) problem [49] to a special case of the
reference view selection problem. In SC, a set of itemsS (called the universe) are given, together with a defined collection
C of subsets of items inS. The SC problem is to identify at mostK subsets from collectionC that coversS, i.e., a smaller
collectionC′ ⊆ C with |C′| ≤ K such that every item inS belongs to at least one subset in collectionC′.

We construct a corresponding special case of our reference view selection problem as follows. For each itemi in S =
{1, . . . , |S|} in the SC problem, we first construct an undistorted reference viewi. In addition, we construct a default undistorted
right reference view|S|+ 1, and the navigation window is set to[U0

L, U
0
R] = [1, |S|+ 1] andL = 2. Further, for each itemi

in S, we construct a virtual viewi+ 1
2 that requires the selection of left referencei, in combination of default right reference

|S| + 1, for the resulting synthesized view distortiondi+ 1

2

(i, |S| + 1, 0, 0) to achieve distortionD̄ < ∞. Thus the selection
of |S| left references and one default right reference|S|+ 1 consumes|S|+ 1 views worth of bandwidth already. See Fig. 3
for an illustration. Note that given this selection of left reference views, any selection of right reference views willsatisfy the
shared optimality of reference views assumption.

For each subsetj in collectionC = {1, . . . , |C|} in the SC problem, we construct a right reference view|S| + 1 + j, such
that if item i belongs to subsetj in the SC problem, the synthesized distortiondi+ 1

2

(i, |S|+ 1+ j, 0, 0) at virtual view1 + 1
2

will be reduced toD̄−∆ given right reference view|S|+ 1+ j is used. The corresponding binary decision we ask is: given
channel bandwidth of|S| + 1 +K, is there a reference view selection such that the resultingsynthesized view distortion is
|S|(D̄ −∆) or less?

From construction, it is clear that to minimize overall distortion, left reference views1, . . . , |S| and default right reference
view |S| + 1 must be first selected in any solution with distortion< ∞. Given remaining budget ofK additional views, if
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Fig. 3. Example of items setS and collection of setsC, with |S| = 5 and |C| = 4.

distortion of|S|(D̄−∆) is achieved, that meansK or fewer additional right reference views are selected to reduce synthesized
distortion fromD̄ to D̄ −∆ at each of the virtual viewi + 1

2 , i ∈ {1, . . . , |S|}. Thus these additionallyK or fewer selected
right reference views correspond exactly to the subsets in the SC problem that covers all items in the setS. This solving this
special case of the reference view selection problem is no easier than solving the SC problem, and therefore the reference
view selection problem is also NP-hard.�

V. OPTIMAL V IEW SELECTION ALGORITHM

Given that the reference view selection problem (11) is NP-hard under the assumption of shared optimality of reference
views, in this section we introduce another assumption on the synthesized view distortion that holds in most common 3D
scenes. Given these two assumptions, we show that (11) can now be solved optimally in polynomial time by a DP algorithm.
We also analyze the DP algorithm’s computation complexity.

A. Independence of reference optimality assumption

The second assumption on the synthesized view distortiondu( ) is the independence of reference optimality, stated formally
as follows:

if du(vL, vR, D(vL), D(vR)) ≤ du(v
′
L, vR, D(v′L), D(vR)) (16)

thendu(vL, v′R, D(vL), D(v′R)) ≤ du(v
′
L, v

′
R, D(v′L), D(v′R))

for max{vL, v
′
L} ≤ u ≤ min{vR, v

′
R}. In words, the assumption (16) states that ifvL is a better left reference thanv′L when

synthesizing virtual viewu using vR as right reference, thenvL remains the better left reference to synthesizeu even if a
different right referencev′R is used. This assumption essentially states that contributions towards the synthesized image from
the two references are independent from each other, which isreasonable since each rendered pixel in the synthesized view is
typically copied from one of the two references, but not both. We can also argue for the plausibility of this assumption asa
consequence of the two aforementioned functional trends inthe synthesized view distortiondv( ) in Section IV. Consider first
the case where the reference viewsvL, vR, v

′
L, v

′
R have zero distortion. Themonotonicity in predictor’s distance in (14) for a

common right reference view becomes

|u− vL|+ |vR − u| ≤ |u− v′L|+ |vR − u| −→ |u− vL| ≤ |u− v′L| (17)

wheremax{vL, v
′
L} < u < vR. Thus if vL is preferred tov′L for vR > u, it will hold also for v′R as long asv′R > u. Consider

now the case where the reference viewsvL, vR, v
′
L, v

′
R have non-zero distortions. Introducing theequivalent reference views

v#L < vL with no distortionD(v#L ) = 0, the same argument of (17) holds for the equivalent reference views, leading to
|u− v#L | ≤ |u− v′#L |, ∀vR > u.

We illustrate different optimal solution candidates to (11) now under both virtual view distortion assumptions to impart
intuition. We see that the assumption of independence of reference optimality would prevent the reference view selection in
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(a) (b)

Fig. 4. Reference view assignments in (a) and (b) are optimalsolution candidates under both assumptions. We name these two cases “shared-left” and
“shared-right”, respectively.

Fig. 2(b) from being an optimal solution. Specifically, we see that bothv3 andv4 are feasible right reference views for virtual
views v2 − 1/L andv2. Regardless of which left references are selected for thesetwo virtual views, if v3 is a strictly better
right reference thanv4, then having both virtual views selectv3 as right reference will result in a lower overall distortion
(and vice versa). Ifv3 andv4 are equally good right reference views resulting in thesame synthesized view distortion, then
selecting justv4 without v3 can achieve the same distortion with one fewer right reference view. Thus the selected reference
views in Fig. 2(b) cannot be optimal.

We can thus make the following observation: as virtual viewu increases, an optimal solution cannot switch right reference
view from currentvR earlier thanu = vR. Conversely, as virtual viewu decreases, an optimal solution cannot switch left
reference view from currentvL earlier thanu = vL − 1/L. As examples, Fig. 4 provides solutions of left and right reference
views for virtual views in the navigation window. In the figure, on thex-axis are the virtual viewsu in the window[U0

L, U
0
R]

that require synthesis. Correspondingly, on they-axis are the left and right reference views (blue and red PWCfunctions
respectively) selected to synthesize each virtual viewu in the window. We see that the reference view selections in Fig. 4(a)
and Fig. 4(b) are optimal solution candidates to (11). Thus,the optimal reference view selections must be graphically composed
of “staircase” virtual view ranges as shown in Fig. 4(a) and Fig. 4(b). In other words, either a shared left reference viewvsL
is used for multiple virtual view ranges[ui, ui+1) where each range has the samevsL as left reference (“shared-left” case),
or a shared right reference viewvsR is used for multiple ranges[ui, ui+1), where each range hasvsR as its right reference
(“shared-right” case). This motivates us to design an efficient DP algorithm to solve (11) optimally in polynomial time.

B. DP Algorithm

We first define a recursive functionΦ(uL, vL, k) as the minimum aggregate synthesized view distortion of views betweenuL

andU0
R, givenvL is the selected left reference view for synthesizing viewuL, and there is a budget ofk additional reference

views. To analyseΦ(uL, vL, k), we consider the two “staircase” cases identified by Fig. 4(a) and Fig. 4(b) separately, and show
how Φ(uL, vL, k) can be evaluated in each of the cases.

Consider first the “shared-left” case (Fig. 4(a)) where a shared left reference view is employed in a sequence of virtual view
ranges. A view range represents a contiguous range of virtual viewpoints that employ the same left and right reference views.
The algorithm selects a new right reference viewv, v > uL, creating a new range of virtual views[uL, v). Virtual views in
range[uL, v) are synthesized using a shared left referencevL and the newly selected reference viewv, resulting in distortion
du(vL, v,D(vL), D(v)) for each virtual viewu, uL ≤ u < v. The aggregate distortion functionΦ(uL, vL, k) for this case
is the distortion of views in[uL, v) plus a recursive termΦ(v,Λ(vL, v), k − 1) to account for aggregate synthesized view
distortions to the right ofv:

v− 1

L∑

u=uL

du(vL, v,D(vL), D(v)) + Φ(v,Λ(vL, v), k − 1) (18)

wherek − 1 is the remaining budget of additional reference views, andΛ(v1, v2) chooses the better of the two left reference
views, v1 andv2, for the recursive functionΦ( ). In particular, using any right reference viewvR and virtual viewu, where
max{v1, v2} < u < vR, we setΛ(v1, v2) = v1 if virtual view u is better synthesized usingv1 as left reference thanv2 (and
setΛ(v1, v2) = v2 otherwise). Formally, the left reference selection function Λ(v1, v2) is defined as:

Λ(v1, v2) =

{
v1 if du(v1, vR, D(vl), D(vR)) ≤ du(v2, vR, D(v2), D(vR))
v2 o.w.

(19)
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Given our two assumptions, we know that the selected left referenceΛ(v1, v2) remains better for all other virtual viewsu in
[max{v1, v2}, vR].

We now consider the “shared-right” case (Fig. 4(b)) where a newly selected viewv is actually a common right reference
view for a sequence of virtual view ranges fromuL to v. We first define a companion recursive functionΨ(uL, vL, vR, n) that
returns the minimum aggregate synthesized view distortionfrom view uL to vR, given thatvL is the selected left reference
view, vR is the common right reference view, and there is a budget ofn other left reference views in addition tovL. We can
write Ψ(uL, vL, vR, n) recursively as follows:

Ψ(uL, vL, vR, n) =







min
v>uL

v− 1

L∑

u=vL

du(vL, vR, D(vL), D(vR)) + Ψ(v, v, vR, n− 1) if k ≥ 1

vR− 1

L∑

u=vL

du(vL, vR, D(vL), D(vR)) o.w.

(20)

In more details, the equation (20) states thatΨ(uL, vL, vR, n) is the synthesized view distortion of views in the range[uL, v),
plus the recursive distortionΨ(v, v, vR, n− 1) from view v to vR with a reduced reference view budgetn− 1.

We can now put the two cases together into a complete definition of Φ(uL, vL, k) as follows:

Φ(uL, vL, k) = min
v>vL







min









v− 1

L∑

u=uL

du(vL, v,D(vL), D(v)) + Φ(v,Λ(vL, v), k − 1)

︸ ︷︷ ︸

“shared-left” case

, (21)

min
1≤n≤k−1

Ψ(uL, vL, v, n) + Φ(v, v, k − n− 1)

︸ ︷︷ ︸

“shared-right” case














The relation (21) states thatΦ(uL, vL, k) examines each candidate reference viewv, v > vL, which can be used either as right
reference for synthesizing virtual views in[uL, v) with left referencevL (“shared-left” case), or as a common right reference
for a sequence ofn+ 1 virtual view ranges within the interval[uL, v) (“shared-right” case).

When the remaining view budget isk = 1, the relation in (21)Φ(uL, vL, 1) simply selects a right reference viewv, v ≥ U0
R,

which minimizes the aggregate synthesized view distortionfor the range[uL, U
0
R]:

Φ(uL, vL, 1) = min
v≥U0

R

U0

R∑

u=uL

du(vL, v,D(vL), D(v)) (22)

Having definedΦ(uL, vL, k), we can identify the bestK reference views by callingΦ(U0
L, v,K) repeatedly to identify the

best leftmost reference viewv, v ≤ U0
L, and start the selection of theK − 1 remaining reference views as follows

min
v≤U0

L

Φ(U0
L, v,K − 1) (23)

C. Computation Complexity

Our proposed DP algorithm requires two different tables to be stored. The first timeΨ(uL, vL, vR, n) is computed, the result
can be stored in entry[(uL − U0

L)/L][(vL − U0
L)/L][(vR − U0

L)/L][n] of a DP tableΨ∗, so that subsequent calls with the
same arguments can be simply looked up. Analogously, the first time Φ(uL, vL, k) is called, the computed value is stored in
entry [(uL − U0

L)/L][(vL − U0
L)/L][k] of another DP tableΦ∗ to avoid repeated computation in future recursive calls.

We bound the computation complexity of our proposed algorithm (21) by computing a bound on the sizes of the required DP
tables and the cost in computing each table entry. For notation convenience, let the number of reference views and synthesized
views beSv = (V − 1)/L andSu = (U0

R − U0
L)/L, respectively. The size of DP tableΦ∗ is no larger thanSu × Sv ×K.

The cost of computing an entry inΦ∗ using (21) over all possible reference viewsv involves the computation of the “shared-
left” case with complexityO(Su) and the one of the “shared-right” case with complexityO(K). Thus, each table entry has
complexityO(SvSu + SvK). Hence the complexity of completing the DP tableΦ∗ is O(S2

uS
2
vK + SuS

2
vK

2). Given that in
typical settingSu ≫ K, the complexity for computing DT tableΦ∗ is thusO(S2

uS
2
vK).

We can perform similar procedure to estimate the complexityin computing DP tableΨ∗. The size of the table in this case
is upper-bounded bySu×Sv ×Sv×K. The complexity in computing each entry isO(Su). Thus the complexity of computing
DP tableΨ∗ is O(S2

uS
2
vK). which is the same as DP tableΦ∗. Thus the overall computation complexity of our solution in

(21) is alsoO(S2
uS

2
vK).
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TABLE I
V IEWPOINTS NOTATION.

Camera ID as in [50], “Statue” 50 51 52 53 54 55 56 57 58 59 . . . 98
Camera ID as in [50], “Mansion” 25 26 27 28 29 30 31 32 33 34 . . . 73

Camera ID in our work 0 1.125 1.25 1.375 1.5 1.625 1.75 1.875 1 2.125 . . . 6

VI. SIMULATION RESULTS

A. Settings

We study the performance of our algorithm and we show the distortion gains offered by cloudlets-based virtual view
synthesis. For a given navigation window[U0

L, U
0
R], we provide the average quality at which viewpoints in the navigation

window is synthesized. This means that we evaluate the average distortion of the navigation window as(1/N)
∑U0

R

u=U0

L

du,
with N being the number of synthesized viewpoints in the navigation window, and we then compute the corresponding PSNR.
In our algorithm, we have considered the following model forthe distortion of the synthesized viewpointu from reference
views VL, VR

du(VL, VR, DL, DR) = αDmin + (1− α)βDmax + [1− α− (1 − α)β]DI (24)

whereDmin = min{DL, DR}, Dmax = max{DL, DR}, DI is the inpainted distortion, andα = exp (−γ|u− Vmin|d) , β =
exp (−γ|u− Vmax|d) with d is the distance between two consecutive camera viewsvi andvi + 1, Vmin = VL if DL ≤ DR,
Vmin = VR otherwise, andVmax = VL if DL > DR, Vmax = VR. The model can be explained as follows. A virtual synthesis
u, when reconstructed from(VL, VR) has a relative portionα ∈ [0, 1] that is reconstructed at a distortionDmin, from the
dominant reference view, defined as the one with minimum distortion. The remaining portion of the image, i.e.,1−α, is either
reconstructed by the non-dominant reference view for a potion β, at a distortionDmax, or it is inpainted, at a distortionDI .

The results have been carried out using 3D sequences “Statue” and “Mansion” [50], where51 cameras acquire the scene
with uniform spacing between the camera positions. The spacing between camera positions is5.33 mm and10 mm for “Statue”
and “Mansion”, respectively. Among all camera views provided for both sequences, only a subset represents the set of camera
views V available at the cloudlet, while the remaining are virtual views to be synthesized. Table I depicts how the camera
notation used in [50] is adapted to our notation. Finally, for the “Mansion” sequence, in the theoretical model in (24) weused
β = 0.2, Dmax = 450, andd = 50, while for the “Statue” sequence we usedβ = 0.2, Dmax = 100, andd = 25.

In the following, we compare the performance achieved by virtual view synthesis in the cloudlets with respect to the scenario
in which cloudlets only send to users a subset of camera views. We denote byTs the subset of selected reference views when
synthesis is allowed in the network, and byTns the subset of selected reference views when only camera views can be sent as
reference views, i.e., when synthesis is not allowed in the network. For both the cases of network synthesis and no network
synthesis, the best subset of reference views is evaluated both with the proposed view selection algorithm and with an exact
solution, i.e., an exhaustive search of all possible combinations of reference views. For the proposed algorithm, the distortion
is evaluated both with experimental computation of the distortion, where the results are labeled “Proposed Alg. (Experimental
Dist)”, and with the model in (24), results labeled “Proposed Alg. (Theoretical Dist)”. For all three algorithms, once the optimal
subset of reference view is selected, the full navigation window is reconstructed experimentally and the mean PSNR of the
actual reconstructed sequence is computed.

In the following, we first validate the distortion model in (24) as well as the proposed optimization algorithm. Then, we
provide simulation using the model in (24) and study the gainoffered by network synthesis. For the sake of clarity in the
notation, in the following we identify the viewpoints by their indexes only. This means that the set of camera views{v0, v1, v3},
for example, is denoted in the following by{0, 1, 3}. Analogously for the navigation window[u0.75, u5.25] is denoted in the
following by [0.75, 5.25].

B. Performance of the view selection algorithm

In Fig. 5, we provide the mean PSNR as a function of the available bandwidthC in the setting of a regular spaced cameras
setV = {0, 1, 2, . . . , 5, 6}, and a navigation window[0.75, 5.25] requested by the user. Results are provided for the “Mansion”
and the “Statue” sequences in Fig. 5(a) and Fig. 5(b), respectively. For the “Mansion” sequence, the proposed algorithmwith
experimental distortion perfectly matches the exhaustivesearch. Also the proposed algorithm based on theoretical distortion
nicely matches the exhaustive search method, with the exception of the experimental point atC = 4 in the network synthesis
case. In that experiment, the algorithm selects as best subset Ts = {0.75, 2, 4, 5.25} rather thanTs = {0.75, 2, 3, 5.25}
selected by the exhaustive search. Beyond the good match between exhaustive search and proposed algorithm, Fig. 5(a) also
shows the gain achieved in synthesizing reference views at the cloudlets. ForC = 2, the optimal sets of reference views are
Ts = {0.75, 5.25} and Tns = {0, 6}. The possibility of selecting the view at position0.75 as reference view reduced the
reference view distance for viewpoints in[0.75, 5.25] compared to the case in which camera view0 is selected. Thus, as long



11

2 3 4 5
21

21.5

22

22.5

23

23.5

24

24.5

25

25.5

C

P
S

N
R

 

 

Exhaustive Search
Proposed Alg. (Theoretical Dist)
Proposed Alg. (Experimental Dist)

Network
Synthxesis

No Network
Synthesis

(a) Mansion

2 3 4 5
29

30

31

32

33

34

35

C

P
S

N
R

 

 

Exhaustive Search
Proposed Alg. (Theoretical Dist)
Proposed Alg. (Experimental Dist)

Network
Synthesis

No Network
Synthesis

(b) Statue

Fig. 5. Validation of the proposed optimization model with equally spaced cameras setV = {0, 1, 2, . . . , 5, 6}, and a navigation window[0.75, 5.25] for
“Mansion” and “Statue” sequences.
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Fig. 6. Validation of the proposed optimization model for “Statue” sequence with unequally spaced camerasV = {0, 1.5, 2, 2.75, 4, 5, 6} and a navigation
window [0.75, 5.25].

as the viewpoint0.75 is synthesized at a good quality in the network, synthesizing in the network improves the quality of the
reconstructed region of interest, when the bandwidthC is limited. Increasing the channel capacity reduces the quality gain
between synthesis and no synthesis at the cloudlets. ForC = 4, for example, the virtual viewpoint0.75 is used to reconstruct
the views range[0.75, 2) of the navigation window. Thus, the benefit of selecting0.75 rather than0 is limited to a portion of
the navigation window and this portion usually decreases for largeC. Similar considerations can be derived from Fig. 5(b),
for the “Statue” sequence. We observe a very good match between the proposed algorithm and the exhaustive search one.

We then compare in Fig. 6 the performance of the exhaustive search algorithm with our optimization method in the case of
non-equally spaced cameras. The “Statue” sequence is considered with unequally spaced cameras setV = {0, 1.5, 2, 2.75, 4, 5, 6},
and a navigation window[0.75, 5.25] at the client. Similarly to the equally spaced scenario, theperformance of proposed
optimization algorithm matches the one of the exhaustive search. This confirms the validity of our assumptions and the
optimality of the DP optimization solution. Also in this case, a quality gain is offered by virtual view synthesis in the network,
with a maximum gain achieved forC = 2, with optimal reference viewsTs = {0.75, 5.25} andTns = {0, 6}.
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Fig. 7. PSNR (in dB) as a function of the channel capacityC for different channel capacity valuesC for a regular spaced camera set with varying distance
among cameras,γ = 0.3, DI = 300, navigation window[0.75, 5.25], and camera setV = {0, 1, 2, . . . , 5, 6} (equally spaced cameras).

TABLE II
OPTIMAL SUBSETS FOR THE SCENARIO OFFIG. 7.

C Ts Tns

2 {0.75, 5.25} {000,666}
3 {0.75,333, 5.25} {000,333,666}
4 {0.75,222,444, 5.25} {000,222,444,666}
5 {0.75,222,333,444, 5.25} {000,222,333,444,666}
6 {000,111,222,333,444, 5.25} {000,111,222,333,444,666}
7 {000,111,222,333,444,555,666} {000,111,222,333,444,555,666}

C. Network synthesis gain

Now, we aim at studying the performance gain due to synthesisin the network for different scenarios. However, multiview
video sequences (with both texture and depth maps) currently available as test sequences have a very limited number of views
(e.g.,8 views in the Ballet video sequences4). Because of the lack of test sequences, we consider synthetic scenarios and we
adopt the distortion model in (24) both for solving the optimization algorithm and evaluating the system performance. The
following results are meaningful since we already validated our synthetic distortion model in the previous subsection.

We consider the cases of equally spaced cameras(V = {0, 1, 2, . . . , 5, 6}) and unequally spaced cameras(V = {0, 1, 3, 5, 7, 8}
and V = {0, 2, 3, 4, 7, 8}) capturing the scene of interest. In Fig. 7, we show the mean PSNR as a function of the available
channel capacityC when the navigation window requested by the user is[0.75, 5.25] and cameras are equally spaced. The
distortion of the synthesized viewpoints is evaluated with(24), with γ = 0.2, DI = 200, andd = 25. The case of synthesis
in the network is compared with the one in which only camera views can be sent to clients. In Table II, we show the optimal
subsetsTs and Tns associated to each simulation point in Fig. 7, where camera views indexes are highlighted in bold. We
observe that the case with synthesis in the network performsbest in terms of quality over the navigation window. WhenC = 2,
Ts : {0.75, 5.25} for the network synthesis case, andTns : {0, 6}, otherwise. However, the larger the channel capacity the less
the need for sending virtual viewpoints. WhenC = 6, for example, both camera views0 and1 can be sent, thus there is no
gain in transmitting only view0.75. Finally, whenC = 7 and all camera views can be sent to clients,Ts = Tns = V , with V
being the set of camera views. As expected, sending synthesized viewpoints as reference views leads to a quality gain only in
constrained scenarios in which the channel capacity does not allow to send all views required for reconstructing the navigation
window of interest.

We now study the gain in allowing network synthesis when camera views are not equally spaced. In Table III, we provide the
optimal subsets of reference views for both sets of unequally spaced cameras(V = {0, 1, 3, 5, 7, 8} and V = {0, 2, 3, 4, 7, 8}).
Similarly to the case of equally spaced cameras, we observe that virtual viewpoints are selected as reference views (i.e., they
are in the best subsetTs) when the bandwidthC is limited. For the camera seta) the virtual view0.75 is selected as reference
view also forC = 4, while the camera setb) prefers to select the camera views0, 2 at C = 4. This is justified by the fact that

4http://research.microsoft.com/en-us/um/people/sbkang/3dvideodownload/
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TABLE III
SELECTED SUBSET OF REFERENCE VIEWS AND ASSOCIATED QUALITY FOR SCENARIOS WITH[U0

L
, U0

R
] = [0.75, 7.25] , d = 25 MM , γ = 0.2,

Dmax = 200.

V = {0, 1, 3, 5, 7, 8}, casea) V = {0, 2, 3, 4, 7, 8}, caseb)
C Ts PSNR Tns PSNR C Ts PSNR Tns PSNR

2 {0.75, 7.25} 29.39 {000,888} 28.04 2 {0.75, 7.25} 29.08 {000,888} 28.04
3 {0.75,333, 7.25} 32.35 {000,333,888} 31.13 3 {0.75,444, 7.25} 32.33 {000,444,888} 31.49
4 {0.75,333,555, 7.25} 35.24 {000,333,555,888} 33.87 4 {000,222,444, 7.25} 34.18 {000,222,444,888} 33.21
5 {000,111,333,555, 7.25} 35.85 {000,111,333,555,888} 35.017 5 {000,222,444,777,888} 34.92 {000,222,444,777,888} 34.92
6 {000,111,333,555,777,888} 36.56 {000,888} 36.56 6 {000,222,333,444,777,888} 35.60 {000,222,444,777,888} 35.60
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Fig. 8. PSNR (in dB) vs.U0
L

for a camera setV = {0, 2, 3, 4}, navigation window[U0
L
, 4], with d = 50, γ = 0.2, andDI = 200.

in the latter scenario, the viewpoint0.75 is synthesized from(VL, VR) = (0, 2) thus at a larger distortion than the viewpoint
0.75 in scenarioa), where the viewpoint is synthesized from(VL, VR) = (0, 1). This distortion penalty makes the synthesis
worthy when the channel bandwidth is highly constrained (C = 2, 3), but not in the other cases.

In Fig. 8, the average quality of the client navigation is provided as a function of the left extreme viewU0
L of the navigation

window [U0
L, 4] with the camera setV = {0, 2, 3, 4} with d = 50, γ = 0.2, andDI = 200 in (24). It is worth noting thatU0

L

ranges from0 to 1.875 and only view0 is a camera view in this range. WhenU0
L = 0 andC = 2, the reference views0 and

4 perfectly cover the entire navigation window requested by the user, so there is no need for sending any virtual viewpointas
reference view. This is no more true forU0

L > 0. When the channel capacity isC = 2, the gain in allowing synthesis at the
cloudlets increases withU0

L. This is justified by the fact that in a very challenging scenario (i.e., limited channel capacity), the
largerU0

L the less efficient is it is to send the reference view0 to reconstruct images in[U0
L, 4]. At the same time, sending2

and4 as reference views would not allow to reconstruct the viewpoints lower than2. This gain in allowing network synthesis
is reflected in the PSNR curves of Fig. 8, where we can observe an increasing gap between the case of synthesis allowed and
not allowed forC = 2. This gap is however reduced for the scenario ofC = 3. This is expected since the navigation window
is a limited one, at most ranging from0 to 4 and3 reference views cover the navigation window pretty well.

To better show this tradeoff between distortion of the virtual reference view and the bandwidth gain, we introduce the
thresholding channel value, denoted byC⋆. The latter is defined as the value of channel bandwidth beyond which no gain
is experienced in allowing synthesis in the network compared to a case of no synthesis. In Fig. 9, we provide the behavior
of the thresholding channel value as a function the navigation window, for different cameras set. In particular, we consider
U0
L = 0.5 and we letU0

R varies from5 to 10. Also, we simulate three different scenarios that differ for the available camera
set. In particular, we haveV = {0, 1, 2, 3, . . .}, V = {0, 2, 3, 4, . . .}, andV = {0, 3, 4, 5, . . .}. The main difference is then
in the reference views that can be used to synthesize the virtual viewpoint0.5. In the first case,0.5 is reconstructed from
camera views(0, 1) while in the last case from(0, 3) increasing then the distortion of the synthesis. Because ofthis increased
distortion of0.5, the virtual viewpoint is not always sent as reference view.In particular, we can observe that the larger the
distortion of the virtual viewpoint, the lower the thresholding channel value. This means that even in challenging scenarios,
as for example in the case ofU0

R = 7 andC = 3, if V = {0, 3, 4, 5, . . .} then there is no gain in synthesize in the network,
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Fig. 10. PSNR gain (in dB) vs. the navigation window size∆u, for different channel capacity constraintsC whend = 50mm, γ = 0.2, andDI = 200.

while we still have a gain ifV = {0, 1, 2, 3, . . .}. In Fig. 10, we provide the mean PSNR as a function of the size of the
navigation window, namely∆u. More in details, for each value of∆u, we define the navigation window as[U0

L, U
0
L + ∆u].

The starting viewpointU0
L is randomly selected. For each realization of the navigation window, the best subset is evaluated

(both when synthesis is allowed and when it is not) and the quality of the reconstructed viewpoint in the navigation window
is evaluated. For each∆u, we average the quality simulating all possibleU0

L starting viewpoint within a total range of[0, 12].
In the results we provide the PSNR gain, defined as the difference between the mean PSNR (in dB) when the synthesis is
allowed and the mean PSNR (in dB) when only camera views are considered as reference views. Thus, the figure shows the
gain in synthesizing for different sizes of the navigation window. As general trend, we observe that the quality gain decreases
with ∆u. This is due to the fact that the gain mainly comes from the lateral reference views, that are usually virtual viewpoints
if synthesis is allowed. This leads to a gain that is however reduced for large sizes of the navigation window. Finally, wealso
observe that the gain does not necessarily depends on the channel constraintC.

We now consider a scenario in which the camera views positionis not a priori given. In Fig. 11, we provide the mean
PSNR as a function of the varianceσ2

v , which defines the randomness of the camera views positions when acquiring the
scene. More in details, we consider a navigation window[U0

L, U
0
R] = [2, 6]. We then define a deterministic camera views set

VD = {0, 1, 2, . . . , 6, 7}, which is the best camera view set since it is aligned with therequested viewpoint navigation window.
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For each value ofσ2
v , we generate a random cameras setV asV = VD + [n0, n1, . . . , n7], where eachni is a gaussian random

variable with zero mean and varianceσ2
v with ni and nj mutually independent fori 6= j. Thus, the largerσ2

v , the larger
the probability for the camera view set to be not aligned withthe navigation window. For each realization ofV , we run our
optimization for both the cases of allowed and not allowed synthesis and we evaluate the experienced quality. For eachσ2

v

value we simulate400 runs and we provide in Fig. 11 the averaged quality. What it isinteresting to observe is that even if
camera views are not perfectly aligned with the navigation window of interest (i.e., even for large variance values) thequality
degradation with respect to the case ofσ2

v = 0 is limited, about0.5 dB for C = 3, when network synthesis is allowed. On the
contrary, when synthesis is not allowed in the cloudlet, thequality substantially decreases withσ2

v , experiencing a PSNR loss
of almost1.5dB. This means that network synthesis can compensate for cameras not ideally positioned in the 3D scene, as in
the case of user generated content systems.

Finally, we study performance of the cloudlet-based view synthesis for a varying number of acquiring cameras. In particular,
given the set of equally spaced viewpointsU , we assume that one everyL viewpoints inU is a camera view, i.e., there are
L− 1 virtual viewpoints between consecutive camerasview. Being the viewpoints inU equally spaced, say at distanced, Ld is
the distance between consecutive cameras. In the following, we provide the quality behavior forL ranging from1 to 12. For
each value of the sampling distanceL, we simulate a navigation window spanning a range of20d. The navigation window
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is selected uniformly at random and the optimization algorithm evaluates the best subset of reference views. The experienced
quality is averaged over400 runs and evaluated for different values ofL. In Fig. 12, we show the mean quality for the
navigation as a function of the sampling distanceL, for the scenario with forC = 2, d = 50, γ = 0.2, andDI = 200 in (24).
It is worth noting that for a user to navigate at given quality, a much higher value of sampling distanceL can be used when
network synthesis is allowed, with respect to the value ofL required with no network synthesis. For example, a mean quality
in the navigation of33 dB is achieved withL = 5 when network synthesis is not allowed as opposed toL = 10 when allowing
network synthesis. This means that when synthesis is allowed, half of the number of camera views can be used respect to the
case in which no synthesis is allowed. Thus, view synthesis in the network allows to maintain a good navigation quality when
reducing the number of cameras.

VII. C ONCLUSION

When interactive multiview video systems face limited bandwidth constraints, we argue that synthesizing reference views in
the cloud improve the quality of navigation at the client side. In particular, we propose a synthesized reference view selection
optimization problem aimed at finding the best subset of viewpoints to be transmitted to the decoder as reference views.
This subset is not limited to captured camera views as in previous approaches but it can also include virtual viewpoints.The
problem is formalized as a combinatorial optimization problem, which is shown to be NP-hard. However, we show that, under
the general assumption that the distortion of synthesized viewpoints is well-behaved, the problem can be solved in polynomial
time via a dynamic programming algorithm. Simulation results validate the performance gain of the proposed method and show
that synthesizing reference views can improve image quality at the client by up to2.1dB in PSNR. We finally demonstrate that
view synthesis in the network obviates to non optimal camerasampling and permits to increase the distance between camera
views without affecting the quality of the navigation.
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