2,182 research outputs found

    Robust ordinal regression for value functions handling interacting criteria

    Get PDF
    International audienceWe present a new method called UTAGMS–INT for ranking a finite set of alternatives evaluated on multiple criteria. It belongs to the family of Robust Ordinal Regression (ROR) methods which build a set of preference models compatible with preference information elicited by the Decision Maker (DM). The preference model used by UTAGMS–INT is a general additive value function augmented by two types of components corresponding to ‘‘bonus’’ or ‘‘penalty’’ values for positively or negatively interacting pairs of criteria, respectively. When calculating value of a particular alternative, a bonus is added to the additive component of the value function if a given pair of criteria is in a positive synergy for performances of this alternative on the two criteria. Similarly, a penalty is subtracted from the additive component of the value function if a given pair of criteria is in a negative synergy for performances of the considered alternative on the two criteria. The preference information elicited by the DM is composed of pairwise comparisons of some reference alternatives, as well as of comparisons of some pairs of reference alternatives with respect to intensity of preference, either comprehensively or on a particular criterion. In UTAGMS–INT, ROR starts with identification of pairs of interacting criteria for given preference information by solving a mixed-integer linear program. Once the interacting pairs are validated by the DM, ROR continues calculations with the whole set of compatible value functions handling the interacting criteria, to get necessary and possible preference relations in the considered set of alternatives. A single representative value function can be calculated to attribute specific scores to alternatives. It also gives values to bonuses and penalties. UTAGMS–INT handles quite general interactions among criteria and provides an interesting alternative to the Choquet integral

    SOL: Segmentation with Overlapping Labels

    Get PDF
    Image segmentation is a fundamental problem in Computer Vision which involves segmenting an image into two or more segments. These segments usually correspond to objects of interest in the image, i.e. liver, kidney’s etc. The classic approach to this problem segments the image into mutually exclusive segments. However, this approach is not well-suited when segmenting overlapping objects, e.g. cells, or when segmenting a single object into multiple parts that are not necessarily mutually exclusive. Moreover, we show that optimization methods for multi-part object segmentation with different priors/constraints may better avoid local minima in case of a relaxation allowing parts to overlap. We propose a novel segmentation model, i.e. Segmentation with Overlapping Labels (SOL), which allows for the objects’ multiple parts to overlap. This aids in overcoming the aforementioned issue of local minima with standard optimization approaches. We prove that SOL is an NP-hard problem, as well as introduce a novel move-making optimization framework to find an approximate solution to SOL. Our qualitative and quantitative results show that our proposed method outperforms state-of-the-art algorithms for multi-part segmentation

    Sparse Volumetric Deformation

    Get PDF
    Volume rendering is becoming increasingly popular as applications require realistic solid shape representations with seamless texture mapping and accurate filtering. However rendering sparse volumetric data is difficult because of the limited memory and processing capabilities of current hardware. To address these limitations, the volumetric information can be stored at progressive resolutions in the hierarchical branches of a tree structure, and sampled according to the region of interest. This means that only a partial region of the full dataset is processed, and therefore massive volumetric scenes can be rendered efficiently. The problem with this approach is that it currently only supports static scenes. This is because it is difficult to accurately deform massive amounts of volume elements and reconstruct the scene hierarchy in real-time. Another problem is that deformation operations distort the shape where more than one volume element tries to occupy the same location, and similarly gaps occur where deformation stretches the elements further than one discrete location. It is also challenging to efficiently support sophisticated deformations at hierarchical resolutions, such as character skinning or physically based animation. These types of deformation are expensive and require a control structure (for example a cage or skeleton) that maps to a set of features to accelerate the deformation process. The problems with this technique are that the varying volume hierarchy reflects different feature sizes, and manipulating the features at the original resolution is too expensive; therefore the control structure must also hierarchically capture features according to the varying volumetric resolution. This thesis investigates the area of deforming and rendering massive amounts of dynamic volumetric content. The proposed approach efficiently deforms hierarchical volume elements without introducing artifacts and supports both ray casting and rasterization renderers. This enables light transport to be modeled both accurately and efficiently with applications in the fields of real-time rendering and computer animation. Sophisticated volumetric deformation, including character animation, is also supported in real-time. This is achieved by automatically generating a control skeleton which is mapped to the varying feature resolution of the volume hierarchy. The output deformations are demonstrated in massive dynamic volumetric scenes

    Scalarized Preferences in Multi-objective Optimization

    Get PDF
    Multikriterielle Optimierungsprobleme verfĂŒgen ĂŒber keine Lösung, die optimal in jeder Zielfunktion ist. Die Schwierigkeit solcher Probleme liegt darin eine Kompromisslösung zu finden, die den PrĂ€ferenzen des Entscheiders genĂŒgen, der den Kompromiss implementiert. Skalarisierung – die Abbildung des Vektors der Zielfunktionswerte auf eine reelle Zahl – identifiziert eine einzige Lösung als globales PrĂ€ferenzenoptimum um diese Probleme zu lösen. Allerdings generieren Skalarisierungsmethoden keine zusĂ€tzlichen Informationen ĂŒber andere Kompromisslösungen, die die PrĂ€ferenzen des Entscheiders bezĂŒglich des globalen Optimums verĂ€ndern könnten. Um dieses Problem anzugehen stellt diese Dissertation eine theoretische und algorithmische Analyse skalarisierter PrĂ€ferenzen bereit. Die theoretische Analyse besteht aus der Entwicklung eines Ordnungsrahmens, der PrĂ€ferenzen als Problemtransformationen charakterisiert, die prĂ€ferierte Untermengen der Paretofront definieren. Skalarisierung wird als Transformation der Zielmenge in diesem Ordnungsrahmen dargestellt. Des Weiteren werden Axiome vorgeschlagen, die wĂŒnschenswerte Eigenschaften von Skalarisierungsfunktionen darstellen. Es wird gezeigt unter welchen Bedingungen existierende Skalarisierungsfunktionen diese Axiome erfĂŒllen. Die algorithmische Analyse kennzeichnet PrĂ€ferenzen anhand des Resultats, das ein Optimierungsalgorithmus generiert. Zwei neue Paradigmen werden innerhalb dieser Analyse identifiziert. FĂŒr beide Paradigmen werden Algorithmen entworfen, die skalarisierte PrĂ€ferenzeninformationen verwenden: PrĂ€ferenzen-verzerrte Paretofrontapproximationen verteilen Punkte ĂŒber die gesamte Paretofront, fokussieren aber mehr Punkte in Regionen mit besseren Skalarisierungswerten; multimodale PrĂ€ferenzenoptima sind Punkte, die lokale Skalarisierungsoptima im Zielraum darstellen. Ein Drei-Stufen-Algorith\-mus wird entwickelt, der lokale Skalarisierungsoptima approximiert und verschiedene Methoden werden fĂŒr die unterschiedlichen Stufen evaluiert. Zwei Realweltprobleme werden vorgestellt, die die NĂŒtzlichkeit der beiden Algorithmen illustrieren. Das erste Problem besteht darin FahrplĂ€ne fĂŒr ein Blockheizkraftwerk zu finden, die die erzeugte ElektrizitĂ€t und WĂ€rme maximieren und den Kraftstoffverbrauch minimiert. PrĂ€ferenzen-verzerrte Approximationen generieren mehr Energie-effiziente Lösungen, unter denen der Entscheider seine favorisierte Lösung auswĂ€hlen kann, indem er die Konflikte zwischen den drei Zielen abwĂ€gt. Das zweite Problem beschĂ€ftigt sich mit der Erstellung von FahrplĂ€nen fĂŒr GerĂ€te in einem WohngebĂ€ude, so dass Energiekosten, Kohlenstoffdioxidemissionen und thermisches Unbehagen minimiert werden. Es wird gezeigt, dass lokale Skalarisierungsoptima FahrplĂ€ne darstellen, die eine gute Balance zwischen den drei Zielen bieten. Die Analyse und die Experimente, die in dieser Arbeit vorgestellt werden, ermöglichen es Entscheidern bessere Entscheidungen zu treffen indem Methoden angewendet werden, die mehr Optionen generieren, die mit den PrĂ€ferenzen der Entscheider ĂŒbereinstimmen

    Geometric guides for interactive evolutionary design

    Get PDF
    This thesis describes the addition of novel Geometric Guides to a generative Computer-Aided Design (CAD) application that supports early-stage concept generation. The application generates and evolves abstract 3D shapes, used to inspire the form of new product concepts. It was previously a conventional Interactive Evolutionary system where users selected shapes from evolving populations. However, design industry users wanted more control over the shapes, for example by allowing the system to influence the proportions of evolving forms. The solution researched, developed, integrated and tested is a more cooperative human-machine system combining classic user interaction with innovative geometric analysis. In the literature review, different types of Interactive Evolutionary Computation (IEC), Pose Normalisation (PN), Shape Comparison, and Minimum-Volume Bounding Box approaches are compared, with some of these technologies identified as applicable for this research. Using its Application Programming Interface, add-ins for the Siemens NX CAD system have been developed and integrated with an existing Interactive Evolutionary CAD system. These add-ins allow users to create a Geometric Guide (GG) at the start of a shape exploration session. Before evolving shapes can be compared with the GG, they must be aligned and scaled (known as Pose Normalisation in the literature). Computationally-efficient PN has been achieved using geometric functions such as Bounding Box for translation and scaling, and Principle Axes for the orientation. A shape comparison algorithm has been developed that is based on the principle of non-intersecting volumes. This algorithm is also implemented with standard, readily available geometric functions, is conceptually simple, accessible to other researchers and also offers appropriate efficacy. Objective geometric testing showed that the PN and Shape Comparison methods developed are suitable for this guiding application and can be efficiently adapted to enhance an Interactive Evolutionary Design system. System performance with different population sizes was examined to indicate how best to use the new guiding capabilities to assist users in evolutionary shape searching. This was backed up by participant testing research into two user interaction strategies. A Large Background Population (LBP) approach where the GG is used to select a sub-set of shapes to show to the user was shown to be the most effective. The inclusion of Geometric Guides has taken the research from the existing aesthetic focused tool to a system capable of application to a wider range of engineering design problems. This system supports earlier design processes and ideation in conceptual design and allows a designer to experiment with ideas freely to interactively explore populations of evolving solutions. The design approach has been further improved, and expanded beyond the previous quite limited scope of form exploration

    Fast GPU-Based Two-Way Continuous Collision Handling

    Full text link
    Step-and-project is a popular way to simulate non-penetrated deformable bodies in physically-based animation. First integrating the system in time regardless of contacts and post resolving potential intersections practically strike a good balance between plausibility and efficiency. However, existing methods could be defective and unsafe when the time step is large, taking risks of failures or demands of repetitive collision testing and resolving that severely degrade performance. In this paper, we propose a novel two-way method for fast and reliable continuous collision handling. Our method launches the optimization at both ends of the intermediate time-integrated state and the previous intersection-free state, progressively generating a piecewise-linear path and finally reaching a feasible solution for the next time step. Technically, our method interleaves between a forward step and a backward step at a low cost, until the result is conditionally converged. Due to a set of unified volume-based contact constraints, our method can flexibly and reliably handle a variety of codimensional deformable bodies, including volumetric bodies, cloth, hair and sand. The experiments show that our method is safe, robust, physically faithful and numerically efficient, especially suitable for large deformations or large time steps
    • 

    corecore