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Abstract

Image segmentation is a fundamental problem in Computer Vision which involves seg-

menting an image into two or more segments. These segments usually correspond to

objects of interest in the image, i.e. liver, kidney’s etc. The classic approach to this

problem segments the image into mutually exclusive segments. However, this approach

is not well-suited when segmenting overlapping objects, e.g. cells, or when segmenting a

single object into multiple parts that are not necessarily mutually exclusive. Moreover,

we show that optimization methods for multi-part object segmentation with different

priors/constraints may better avoid local minima in case of a relaxation allowing parts

to overlap.

We propose a novel segmentation model, i.e. Segmentation with Overlapping Labels

(SOL), which allows for the objects’ multiple parts to overlap. This aids in overcom-

ing the aforementioned issue of local minima with standard optimization approaches.

We prove that SOL is an NP-hard problem, as well as introduce a novel move-making

optimization framework to find an approximate solution to SOL. Our qualitative and

quantitative results show that our proposed method outperforms state-of-the-art algo-

rithms for multi-part segmentation.

Keywords: Computer vision, image segmentation, discrete optimization, graph cuts,

shape priors

ii



Acknowlegements

This work was partially supported by NIH grants R01-EB004640, P50-CA174521, and

R01-CA167632. We thank Drs. S. O’Dorisio and Y. Menda for providing the liver data

(NIH grant U01-CA140206). This work was also supported by NSERC Discovery and

RTI grants (Canada) for Y. Boykov and O. Veksler.

iii



Contents

Abstract ii

Acknowledgements iii

List of Figures vi

List of Tables x

1 Introduction 1

1.1 Image Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Binary Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Optimization via Graph Cuts . . . . . . . . . . . . . . . . . . . . 5

1.2.3 Submodularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Multi-Label Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.2 Optimization via α-Expansion . . . . . . . . . . . . . . . . . . . 9

1.3.3 Optimizable Energies via α-Expansion . . . . . . . . . . . . . . . 10

1.4 Second-Order Shape Priors . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.1 Hedgehog Shape Prior . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Prior Work Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.7 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 SOL: Segmentation with Overlapping Labels 16

2.1 Overview and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 SOL Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 SOL Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Binary Optimization Moves . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 α-Expansion Move: . . . . . . . . . . . . . . . . . . . . . . . . . . 24

iv



Submodularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.2 α-Contraction Move: . . . . . . . . . . . . . . . . . . . . . . . . . 26

Submodularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 NP-Hardness Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Experiments 31

3.1 Synthetic Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Liver Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Future Work and Conclusion 45

Bibliography 47

Curriculum Vitae 49

v



List of Figures

1.1 Classical image segmentation. (a) depicts a binary segmentation of a tiger

from its background and (b) depicts multiple objects segmented from the

background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Example of graph-cut segmentation. From left to right: (a) base image,

(b) only using the data term, (c) data and smoothness term. . . . . . . . 4

1.3 An example of a graph construction and segmentation. (a) shows the

graph nodes. (b) and (c) show the edges corresponding to the unary and

pairwise potentials of energy (1.1), respectively. The fully constructed

graph G is shown in (d). (e) shows a possible s/t-cut and the severed

edges by the s/t-cut are shown in grey. (f) shows the corresponding pixel

labeling of the s/t-cut in (e). . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Example of a graph with a path from the source s to the sink t. . . . . . 7

1.5 Image restoration using α-expansion [4]. The noisy image (b) is taken in as

the input, and α-expansion returns an estimated image (c) as the output. 10

1.6 (a) shows an example of a shape that is star-convex w.r.t. the center c and

(b) is an example of a shape that is not star-convex. Note that in (b), the

pixel q is on the line between c and p but does not lie inside the shape. . 11

1.7 Hedgehog constraints [18] for segment S. (a) user-seed defines a signed dis-

tance map d. (b) surface normals n̄Sp of S are constrained by ∠(n̄Sp ,∇dp) ≤ θ. 12

1.8 shows how to approximate hedgehog constraint at pixel p. Cone Cθ(p) of

the allowed surface normals (blue) is enforced by ensuring that all the

neighbouring pixels in the corresponding polar cone Ĉθ(p) (red) lie inside
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2 Chapter 1. Introduction

1.1 Image Segmentation

A fundamental problem in Computer Vision is image segmentation. Classical image

segmentation is the process of taking in an image as an input and segmenting the image

into two or more non-overlapping segments, see Fig. 1.1. Each segment/label corresponds

to an object of interest in the image. The simplest form of image segmentation is binary

segmentation. This involves segmenting the image into a foreground (usually representing

some object) and a background (representing every other part of the image that is not

the object).

(a) binary segmentation

(b) multi-label segmentation

Figure 1.1: Classical image segmentation. (a) depicts a binary segmentation of a tiger

from its background and (b) depicts multiple objects segmented from the background.

There are many applications of binary segmentation. For example, segmenting body

parts (e.g. kidney) in a Computed Tomography (CT) scan or a Magnetic Resonance

Image (MRI) is of interest to the medical field [5]. Self-driving cars require the ability

to segment road signs or obstacles from the background [20]. Image segmentation is also

used extensively in commercial photo-editing tools [1].

While binary segmentation has its uses, it can only be used to segment one object of

interest at a time. In practice, we often need to segment multiple objects from a single

image simultaneously. For example in biomedical imaging, segmenting multiple organs

is a problem with considerable clinical significance. Instead of segmenting each object

individually via binary segmentation, it is possible to formulate the problem as a multi-
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label segmentation problem. In multi-label segmentation the objective is to partition the

image into n separate segments with unique labels. Each label corresponds to a different

object of interest in the image. It is common to refer to segmentation as an image labeling

problem.

There have been numerous approaches to solve the problem of image segmentation

(binary or multi-label) utilizing different priors and optimization techniques. Priors refer

to some prior knowledge used to guide the segmentation process. For example, by using

the smoothness prior [4], segmentation with fewer discontinuities becomes preferable.

There are a wide range of other priors that could be used in segmentation, e.g. shape

prior [25], convexity prior [14] or structural-prior [8, 17]. In terms of optimization, it is

possible to use continuous optimization methods such as convex relaxation [7] or TV-

based methods [22], or discrete methods such as graph-cuts [4]. In this work we will focus

on the latter approach.

We will start by discussing the simplest form of segmentation, i.e. binary segmenta-

tion, then cover multi-label segmentation and star shape priors [25, 18]. Afterwards, we

will highlight some of the drawbacks of the classical segmentation model which assumes

that segments (or labels) are mutually exclusive.

1.2 Binary Segmentation

As previously mentioned, the binary segmentation problem involves segmenting an image

into a foreground and background. This can be solved by minimizing an energy.

1.2.1 Energy

The energy that is composed of (a) a term to account for the information (e.g. color/intensity)

in the image (data term), and (b) a term to discourage discontinuities (smoothness term).

Before formulating the binary segmentation problem as an energy function, we will first

introduce some notation. Let Ω denote the set of image pixels, N denote some pixel

neighbourhood1, and the set of labels L = {0, 1} where 0 is the background and 1 is the

foreground. Let fp ∈ L be the label variable of pixel p ∈ Ω such that f = {fp | ∀p ∈ Ω}
is an image labeling. Given these variables, the binary segmentation problem [5, 4] can

1Two commonly used neighbourhoods in computer vision for 2D images are the 4-neighbourhood and

8-neighbourhood where a pixel is considered in the neighbourhood of its 4 (or 8) nearest pixels
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be formualted as follows

E(f) =

Data Term︷ ︸︸ ︷∑
p∈Ω

Dγp (fp) +

Smoothness Term︷ ︸︸ ︷
λ

∑
p,q∈N

V (fp, fq) (1.1)

where λ is a normalization term, and the “unary” data D and “pairwise” smoothness V

functions will be explained shortly.

Data Term : D
γ
p (fp) is a function that measures how well pixel p fits label fp. One of

the most commonly used data terms is the negative log likelihood of the probability of

pixels’ features given a label’s feature model

Dγp (fp) = − ln Pr(Ip | γfp) (1.2)

where Ip represents the information at pixel p and { γi | i ∈ L} represents the parameter

of the probability distribution Pr(x | γi) for pixel features in different segments, e.g. in-

tensity, colour, etc. Sometimes the parameter γ is already known and can simply be

passed into the data term. However, many problems require the parameter to first be

estimated. A common example of this is the gaussian mixture model (GMM) of the

feature information (e.g. colour gaussian mixture model). These distributions may be

estimated using the standard expectation-maximization (EM) procedure [2]. The input

to calculate the models are often the initial seeds/scribbles provided by the user.

(a) (b) (c)

Figure 1.2: Example of graph-cut segmentation. From left to right: (a) base image, (b)

only using the data term, (c) data and smoothness term.

While the data term encodes the information as to whether or not a particular pixel

is more likely to be foreground or background, it is not sufficient to acquire an accurate

segmentation. This is demonstrated in Fig. 1.2(b), where only the first “unary”-term on

(1.1) is minimized by the simple log likelihood test
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fp =

1 if -ln
Pr(Ip | γ1)

Pr(Ip | γ0)
> 0

0 otherwise.

This example shows the effect of having background pixels similar to the foreground

pixels and how it results in a non-smooth segmentation. The smoothness term in the

energy (1.1) is used to encourage spatially coherent segmentation. The improvement in

the segmentation when using the smoothness term can be seen in Fig. 1.2(c).

Smoothness Term : The smoothness function V (fp, fq) in equation (1.1) is used to

penalize discontinuities in the segmentation. A common smoothness function is

V (fp, fq) =

1 fp 6= fq

0 fp = fq
(1.3)

which is known as the “Ising model” [4] for binary problems and the “Potts model”

for multi-label problems. This terminology comes from Markov Random Fields and

statistical physics [23]. The smoothness parameter λ is a measure of how important the

smoothness penalty is w.r.t. the data term. If λ is set to∞ then all pixels will be assigned

to the same label. If λ is set to 0 the segmentation will be entirely dependent on the

data term.

1.2.2 Optimization via Graph Cuts

Energy (1.1) can be globally optimized in polynomial time via graph cuts [4]. This can

be done by constructing a graph with two special nodes, i.e. source s and sink t, and

encoding the unary and pairwise potentials of (1.1) as edge weights. In the constructed

graph, s and t represent the foreground and background labels, respectively. The optimal

segmentation can be computed as a partition of the graph into two disjoint subsets2 that

minimizes the sum of edge weights between them. This partitioning problem is commonly

referred to as the min-cut problem. Now we will briefly cover the graph construction and

how to find its min-cut.

Graph Construction:

Unary Potentials (t-links): To construct the graph we begin by adding a node for

each image pixel, see Fig. 1.3(a). Each node is then connected to both s and t via t-links

as illustrated in Fig. 1.3(b). The t-link (s, p) encodes the penalty for assigning p to the

2One contains the source while the other contains the sink.
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background, while t-link (p, t) encodes the penalty for assigning p to the foreground.

The min-cut will sever one of the two t-links attached to p which defines whether p is

connected to the s or t nodes, i.e. p is a foreground or background pixel. For example, if

the t-link from the s is severed, the node will only be connected to t and its final labeling

will be background.

Pairwise Potentials (n-links): To encode the discontinuity penalties, for each pair

of neighbouring pixels/nodes p and q in N we will add an undirected edge, Fig. 1.3(c).

Those undirected edges are commonly referred to as n-links. The weight associated with

each n-link is λ.

(a) graph nodes (b) unary potentials (c) pairwise potentials

(d) full graph (e) possible min-cut (f) final segmentation

Figure 1.3: An example of a graph construction and segmentation. (a) shows the graph

nodes. (b) and (c) show the edges corresponding to the unary and pairwise potentials

of energy (1.1), respectively. The fully constructed graph G is shown in (d). (e) shows

a possible s/t-cut and the severed edges by the s/t-cut are shown in grey. (f) shows the

corresponding pixel labeling of the s/t-cut in (e).
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Figure 1.4: Example of a graph with a path from the source s to the sink t.

Min-Cut:

Finding the total weight of the edges in a minimum cut is equivalent to finding the

maximum flow in a flow network [10]. Therefore, any maximum flow algorithm can be

used to help us solve our binary graph cut problem. In this Section we will explore

various maximum flow algorithms.

One of the first maximum flow algorithms developed is Ford-Fulkerson [11]. It is a

greedy algorithm that finds and saturates paths (i.e. no more flow can be pushed through

the path) from s to t, see Fig. 1.4. The algorithm terminates once all paths are saturated.

A downside of Ford-Fulkerson is its time complexity of O(mf ∗), where m is the number

of edges in the graph, and f ∗ is the maximum flow when capacities are integers. Notice

that the time complexity depends on the maximum flow value which could be arbitrarily

large depending on the edge weights. Thus, a max-flow algorithm that depends only on

the structure of the graph is more preferable than Ford-Fulkerson.

There have been a number of successful attempts to develop algorithms with better

time bounds such as Push-Relabel [13], with a time complexity of O(n2m) where n is

the number of vertices and m is the number of edges. While there are standard choices

for general problems with good theoretical bounds, in practice, it has been found that

different algorithms perform better for specific applications. In Computer Vision, the

Boykov-Kolmogorov (BK) algorithm [3] has been shown to outperform general-purpose

methods. Despite the lack of a polynomial time bound, BK has been extensively used by

the vision community. Recently, an extension of BK was developed that has polynomial

time, named Incremental Breadth First Search (IBFS), which has been shown to be faster

than BK in general [12].

Not every pairwise energy (e.g. smoothness term) can be globally optimized via graph
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cuts. As a matter of fact, only a subset of pairwise energies can be represented as a graph

for which we can compute the max-flow [21, 4]. This subset of energies is commonly

referred to as submodular energies. We cover this subset in more detail in Section 1.2.3.

1.2.3 Submodularity

A pairwise energy function is considered submodular if it satisfies the submodularity

condition

V (0, 0) + V (1, 1) ≤ V (1, 0) + V (0, 1) ∀(p, q) ∈ N . (1.4)

The submodularity condition is of significance because submodular pairwise energies can

be globally optimized in polynomial time via graph cuts [21]. Moreover, it has been

shown in [21] that optimizing non-submodular energies is an intractable problem for

general graphs (e.g. on trees it is solvable via dynamic programming).

To prove that energy (1.1) is submodular, we need to show that condition (1.4) is

satisfied. By substituting (1.3) into (1.4) we acquire the following inequality

0 + 0 ≤ 1 + 1

which holds for all (p, q) in N . It is well known that energy (1.1) is submodular for the

Ising model (1.3).

1.3 Multi-Label Segmentation

As previously discussed, binary segmentation is limited by its ability to only segment

a single object in an image. On the other hand, multi-label segmentation explores the

concept of segmenting an image into more than two segments. More precisely, the label

set for multi-label segmentation is L = {l1, l2, . . . , ln}, where n > 2.

1.3.1 Energy

Like binary segmentation, multi-label segmentation also involves minimizing an energy

with a data term and a smoothness term. Unlike binary segmentation minimizing the

energy for multi-label segmentation, even with Potts model (1.3), is NP-hard [4]. The

energy for multi-label segmentation is

E(f) =

Data Term︷ ︸︸ ︷∑
p∈Ω

Dp(fp) +

Smoothness Term︷ ︸︸ ︷
λ

∑
p,q∈N

V (fp, fq) (1.5)
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where f = {fp ∈ L | ∀p ∈ Ω}.
The data term is similar to the one defined for binary segmentation (1.2). In terms

of pairwise potentials, the greater number of labels corresponds to the possibility of

comparing labels in an unordered or ordered fashion. That is, comparing ordered labels

may have different costs depending on where the labels lie in the order. Potts model (1.3)

is an example of an unordered label comparison. In Potts model the cost of assigning

a pair of neighbouring pixels to any two different labels is the same. Potts model could

be seen as the generalization of the Ising model to multi-labeling. In the case of ordered

labels, e.g. for 1D labels L ⊂ R1, there are pairwise potentials V (x, y) = g(x − y) such

that energy (1.1) can be optimized for convex [19] functions g : R1 → R1. For non-

convex g, e.g. Potts model g(t) = [t 6= 0] [4] (where [ ] are the Iverson brackets) or

truncated quadratic g(t) = min(t2, T ) [26] (where T is some threshold), optimization of

(1.1) becomes NP-hard on the multi-label cost.

As the multi-label segmentation problem is NP-hard, there are a number of algorithms

that attempt to find an approximate solution. One such example is α-expansion [4] which

is covered in Section 1.3.2 below.

1.3.2 Optimization via α-Expansion

One of the most commonly used algorithms to find an approximate solution to multi-label

energies in computer vision is α-expansion [4], Alg. 1.

Algorithm 1: α-expansion

1 f̂ ← arbitrary labeling

2 repeat

3 for any (randomly) chosen α ∈ L
4 fα ← arg minf E(f) where f is an α-expansion of f̂

5 if E(fα) < E(f̂)

6 f̂ ← fα

7 until no expansion move reduces E

The α-expansion algorithm begins with an arbitrary labeling f̂ . At each iteration, a

label α is chosen at random. On line 4, label α is given the opportunity to expand its

support region, i.e. every pixel is given the binary choice to either keep its current labeling

or switch to α. The expansion move on line 4 can be formulated as fp = α·xp+f̂p ·(1−xp)
using the binary labeling x = {xp ∈ {0, 1} | p ∈ Ω} that can be solved optimally for

“metric” interaction potentials [4], see Section 1.3.3. Once the labeling f̂ can no longer
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be improved upon, the algorithm has converged.

There are a number of applications for multi-label segmentation. One such application

is image restoration. The problem of image restoration consists of taking a noisy image

as input and estimating the original noise-free image. Noise in an image is possible due

to many factors, e.g. low light. By using all image intensities as labels, it is possible to

“restore” the image using α-expansion as illustrated in Fig. 1.5.

(a) original image (b) noisy image (c) “restored” image

Figure 1.5: Image restoration using α-expansion [4]. The noisy image (b) is taken in as

the input, and α-expansion returns an estimated image (c) as the output.

Similar to binary segmentation, not every multi-label pairwise energy can be opti-

mized via graph cuts. In Section 1.3.3, we present the conditions under which a multi-

label energy can be optimized via α-expansion. In Section 1.4, we present some shape

priors used in addition to the smoothness prior to improve segmentation accuracy.

1.3.3 Optimizable Energies via α-Expansion

In Section 1.2.3, the concept of submodularity was covered as an indicator as to whether

a binary pairwise energy function could be optimized in polynomial time or not. With

multi-label energy, we are exposed to more general smoothness functions (e.g. convex,

truncated convex, etc.). As shown in [4], for such functions to be optimized via α-

expansion, the pairwise function must be metric. A function V (fp, fq) is metric on the

set of labels L if it satisfies three constraints:

V (α, β) = 0⇔ α = β ∀α, β ∈ L (1.6)

V (α, β) = V (β, α) ≥ 0 ∀α, β ∈ L (1.7)

V (α, β) ≤ V (α, γ) + V (γ, β) ∀α, β, γ ∈ L. (1.8)
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These constraints guarantee that the binary expansion moves are submodular and

aids in determining if utilizing a particular algorithm is feasible or not. For example,

the α-expansion algorithm is only viable for pairwise functions that are metric. Other

algorithms, such as the α-β-swap algorithm [4], are more general and could be used for

semi-metric energy functions. A semi-metric function is a function that only satisfies

(1.6) and (1.7).

There are various shape priors that can be represented as metric pairwise potentials.

Examples include star [25] and hedgehog [18] shape priors that will be examined in

Section 1.4 below.

1.4 Second-Order Shape Priors

We have covered energy functions that use the image data and smoothness prior. How-

ever, users may have further knowledge about the shape of the object to be segmented.

It is possible to incorporate that information into the energy function for more accurate

results. A common shape prior is the star-shape prior [25] which allows the user to pro-

vide information about the shape of the object of interest via a single click identifying

its center c. The star-shape prior guarantees that the segmentation will result in a star-

convex shape w.r.t. the center c. A star-convex shape w.r.t. c means that for any pixel p

in the shape, all the pixels along the line between c and p must also belong to the shape,

see illustration in Fig. 1.6.

(a) star-convex shape (b) not star-convex shape

Figure 1.6: (a) shows an example of a shape that is star-convex w.r.t. the center c and

(b) is an example of a shape that is not star-convex. Note that in (b), the pixel q is on

the line between c and p but does not lie inside the shape.
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Not all objects can be represented using the star-shape prior. Alternatively, the

hedgehog shape prior [18] is capable of representing a larger set of shapes. We will give

a brief overview of the hedgehog shape prior in Section 1.4.1, since our work extends it.

1.4.1 Hedgehog Shape Prior

The hedgehog shape prior locally constrains normals of points on the surface of the

segment using a reference vector field. As explored in [18] there is more than one way

to generate the reference vector field. For example in [18], the reference vector field was

the gradient of the distance map of the user-scribble/seed. Unlike the star-shape prior, a

hedgehog seed is not restricted to being a single point. In contrast to the star-shape prior,

the hedgehog prior utilizes a shape tightness parameter θ that gives the user control over

the set of feasible shapes.

(a) user-seed & its distance map d (b) Hedgehog constraint ∠(n̄Sp ,∇dp) ≤ θ

Figure 1.7: Hedgehog constraints [18] for segment S. (a) user-seed defines a signed

distance map d. (b) surface normals n̄Sp of S are constrained by ∠(n̄Sp ,∇dp) ≤ θ.

Figure 1.7 illustrates the hedgehog constraint:

∠(n̄Sp ,∇dp) ≤ θ ∀p ∈ ∂S, (1.9)

where n̄Sp is the normal of the surface of segment S at p, ∇dp is the reference vector field

at p and ∂S is the boundary of S. Now we will give a brief overview on how the hedgehog

constraints (1.9) were formulated as pairwise potentials in [18].

Let us consider the area in which the surface normal may fall as the cone of allowed

surface normals Cθ(p),

Cθ(p) : ∠(n̄Sp ,∇dp) ≤ θ ∀p ∈ ∂S (1.10)
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(a) wide cone of normals Cθ (b) tight cone of normals Cθ

Figure 1.8: shows how to approximate hedgehog constraint at pixel p. Cone Cθ(p) of the

allowed surface normals (blue) is enforced by ensuring that all the neighbouring pixels in

the corresponding polar cone Ĉθ(p) (red) lie inside S if p ∈ S.

at some pixel p, see the illustration in Fig. 1.8 for two different values of θ. It is easy to

see that the boundary of segment S at p has normal n̄Sp ∈ Cθ(p) iff the surface of S does

not pass through the corresponding polar cone Ĉθ(p),

Ĉθ(p) := { y | 〈(p, y), (p, z)〉 ≤ 0 ∀z ∈ Cθ(p) }. (1.11)

With this in mind, it is easy to approximate the hedgehog constraint (1.9) as pairwise

potentials. Simply, the hedgehog constraint at p boils down to the following: if p belongs

to segment S then all neighbouring points of p that lie in Ĉθ(p) must also lie inside S.

Let E(θ) be the set of hedgehog constraints edges,

E(θ) = { (p, q) | (p, q) ∈ Ĉθ(p) ∀(p, q) ∈ N}. (1.12)

The shape tightness parameter θ is used to control how close the final segmentation

is to the level sets of the distance map of the seed. When θ is 0, the set of feasible shapes

will be the levels sets of the distance map d. As θ increases, the set of feasible shapes

increases, see [18] for more details.

The hedgehog shape prior can be added to (1.5) as follows:

E(f) =

Data Term︷ ︸︸ ︷∑
p∈P

Dp(fp) +

Smoothness Term︷ ︸︸ ︷
λ

∑
p,q∈N

V (fp, fq) +

Shape Prior Term︷ ︸︸ ︷
Hθ(f) (1.13)

where

Hθ(f) =
∑
k∈L

∑
(p,q)∈Ek(θ)

w∞ [fp = k, fq 6= k] (1.14)
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and [ ] are the Iverson brackets, w∞ is a prohibitively expensive weight, and Ek corre-

sponds to the hedgehog shape prior for the boundary of label (object) k. If the proposition

inside the Iverson bracket is true it returns 1 and 0 otherwise.

1.5 Prior Work Limitations

In previous sections, we explored the concepts of binary and multi-label segmentation.

We now look at the drawbacks of the corresponding optimization algorithms in light of

the hedgehog prior. For simplicity, we will focus on binary segmentation but the findings

extend to multi-label segmentation as well.

In the context of binary segmentation with hedgehogs, a problem arises when the user

seeds/scribbles are complex, e.g. a seed with multiple disconnected parts, see Fig. 1.9(a).

As reported in [16], such complex seeds usually results in a non-smooth vector field which

leads to segmentation errors, see Fig. 1.9(c), due to conflicting hedgehog constraints along

the vector field discontinuities, see Fig. 1.9(b).

(a) original image with seeds (b) conflicting vector field (c) segmented image

Figure 1.9: (a) synthetic example with a complex seed (red). (b) non-smooth vector field

that leads to conflicting hedgehog constraints (highlighted by the red lines). Note that

due to over-constraints, no segmentation can pass through the red lines on (b) leading

to (c) incorrect segmentation of [18].

To overcome the issue of conflicting constraints, we propose using multiple smooth

vector fields to constrain the shape of the foreground segment, as presented in Section

2.1, instead of using a single non-smooth vector field [18].
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1.6 Thesis Contributions

The main contributions of this thesis are:

• A new segmentation model that allows overlapping labels, namely Segmentation

with Overlapping Labels (SOL). This model is well-suited for segmenting multi-

part foreground objects where each part has an independent shape prior. We show

that solving image segmentation while allowing labels to overlap is an NP-hard

problem.

• To approximately optimize SOL, we propose an optimization framework that uses

our novel combinatorial moves, Expansion-Contraction moves (EC-moves).

• We evaluate our approach on synthetic examples and real data, i.e. liver segmenta-

tion in CT-scans. We also compare our results to state of the art algorithms using

Potts model (α-expansion with and without the Hedgehog shape prior).

1.7 Thesis Outline

In Chapter 2 we introduce SOL and its optimization framework that utilizes our novel

EC-moves. In addition, we prove that SOL is NP-Hard. In Chapter 3 we evaluate our

approach on synthetic and real data. We qualitatively and quantitatively compare our

approach to state of the art algorithms [18, 4]. Chapter 4 concludes the thesis and

offers possible future research directions.



Chapter 2

SOL: Segmentation with

Overlapping Labels

16
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2.1 Overview and Motivation

In Section 1.5, we exposed some issues with the classical segmentation model where

segments are mutually exclusive. To summarize, using complex seeds (e.g. disjoint seeds)

for a hedgehog shape prior [18] often results in a segmentation that does not accurately

cover the object [18, 16] as illustrated in Fig. 2.1. More precisely, for complex seeds,

e.g. multi-part seed shown in Fig. 2.1(a), the resulting distance map is not continuous

as shown in Fig. 2.1(b). Thus, the gradient of the distance map is a non-smooth vector

field, see Fig. 2.1(c). Using a non-smooth vector field to impose the hedgehog constraints

(1.9) results in conflicting constraints along the distance map discontinuities, which in

turn results in an incorrect segmentation, see Fig. 2.1(d).

(a) complex seed (b) distance transform

(c) non-smooth vector field (d) segmentation result [18]

Figure 2.1: illustrates the negative effect of using complex seeds [18, 16]. (a) the image

to be segmented and the foreground seeds (shown in red), (b) distance map of the seeds,

(c) the non-smooth gradient of the distance map, and (d) segmentation result of [18].

The segmentation artifacts in (d) are due to conflicting hedgehog constraints caused by

the non-smooth vector field (c).
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In an attempt to avoid discontinuities in the distance map, we explored the idea of

splitting complex seeds into multiple simple ones with different labels resulting in contin-

uous distance maps. Instead of segmenting one foreground label using complex seeds, we

propose separately segmenting n foreground parts/labels, each with a simple seed. For

instance, the complex seed shown in Fig.2.1(a) could be split into three parts/labels, as

shown in Fig. 2.2, top row. As you can see the resulting independent vector fields are

smooth and do not lead to conflicting hedgehog constraints.

Figure 2.2: top row shows how we split the complex seed in Fig. 2.1 into three simple

ones. Middle row shows the distance map for each seed. Bottom row shows the field of

gradients for the distance maps. Notice these distance maps and vector fields are smooth.
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On the one hand, splitting complex seeds into multiple simple ones eliminates the

issue of conflicting hedgehog constraints. On the other hand, the globally optimizable

binary segmentation problem transforms into an NP-hard multi-labeling problem, see

Section 1.3. It is possible to use α-expansion to obtain an approximate solution. How-

ever, in practice we found that α-expansion usually converges to poor local minima, see

Figure 2.3(b). We mainly attribute this poor performance to using the classical segmen-

tation model that assumes independent mutually exclusive labels. In the context of our

application, the independence assumption does not hold. This is due to the fact that our

foreground labels/parts represent the same foreground object but each label has its own

hedgehog constraints.

(a) seeds (b) local minima of α-expansion (depending on the initialization)

(c) seeds (b) different local minima of our proposed method

Figure 2.3: (b) shows the three different local minima found by α-expansion with the

Hedgehog constraint when enforcing mutually exclusive foreground labels. Note the over-

segmentation of the first expansion and under-segmentation of subsequent expansions.

(d) shows the three different local minima of our proposed method (allowing foreground

labels to overlap) with the Hedgehog constraint.

In this work we propose a novel segmentation model which allows labels to overlap. We

will refer to this model as Segmentation with Overlapping Labels (SOL). SOL allows for

a single object to be segmented using multiple labels representing different non-mutually-

exclusive parts. Intuitively, such labels/parts are no longer independent. We will provide

an energy formulation of the SOL problem and show that it is NP-Hard. We will also

introduce an optimization framework for finding an approximate solution to SOL.
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2.2 SOL Energy

We will start by redefining some notation. Let Ω be the set of all image pixels, and

L = {B, F1, . . . , Fn} be set of all labels where B and Fi are the background and the ith

foreground part, respectively. Let γB and γF denote the Gaussian mixture color model

of the background and foreground labels, respectively. In the context of our application,

all foreground parts have the same color model but they could be different if needed.

Figure 2.4: depicts a possible segmentation with three foreground labels (F1, F2, F3) and

one background label B, represented by fkp for each pixel p. Furthermore, the hatched

area corresponds to the foreground segment and the dotted area corresponds to the

background, represented by fp.
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Let f = {fkp | ∀p ∈ Ω, k ∈ L} be a labeling of Ω where fkp is a binary variable that

indicates whether pixel p is assigned to label k or not, i.e.

fkp =

1 pixel p is assigned to k ∈ L

0 otherwise.

By defintion, f allows a pixel to be assigned to more than one label. However, in the

context of our application we only allow a pixel to be assigned to either the background

or at least one of the foreground labels, i.e.

fBp =
n∏
i=1

(1− fFip ) ∀p ∈ Ω.

We will further introduce an indicator variable fp ∈ {B,F} to indicate whether p is

assigned to the background label or not, refer to Figure 2.4. More specifically, if a pixel

is assigned to any number of foreground labels, fp = F , and if a pixel is assigned to

the background label, fp = B. Technically fp is equivalent to fBp as fBp = 0 means that

fp = B. However, we use the symbols B and F instead of 0 and 1 for notational clarity.

Our multi-part foreground segmentation energy of SOL is

E(f ,γB,γF) =

data term︷ ︸︸ ︷∑
p∈Ω

Dγp (fp) +

smoothness term︷ ︸︸ ︷
λ

∑
p,q∈N

wpq[fp 6= fq] +

hedgehog constraints︷ ︸︸ ︷
Hθ(f), (2.1)

where λ is a normalization constant, N is the pixels’ neighbour system, wpq is the dis-

continuity cost, [ ] are the Iverson brackets, and Hθ(f) represents the hedgehog shape

constraints. For SOL we define the hedgehog constraints as:

Hθ(f) =
∑
k∈L\B

∑
(p,q)∈Ek(θ)

w∞ [fkp = 1, fkq 6= 1], (2.2)

where w∞ is a very large constant, Ek(θ) is the set of edges used to approximate the

hedgehog shape prior constraint (1.12) for label k, and θ is the tightness of the hedgehog

constraints (1.9). The three terms of our energy are discussed in further details below.

The first term in our energy is usually referred to as the data term or the regional

term. D
γ
p (fp) is the cost of assigning pixel p to label fp and usually computed as:

Dγp (fp) = − ln Pr(Ip | γfp), (2.3)

where Pr is the probability of the color intensity Ip at pixel p given the color model γfp .

Although, a pixel may be assigned to more than one foreground label in SOL, it will
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only pay the cost of being assigned to the foreground once. It will use a color model

derived from all the foreground seeds. Conceptually, a pixel with multiple foreground

labels simply reduces to a pixel labeled foreground.

The smoothness term in (2.1) is used to discourage label discontinuities between

neighbouring pixels. Our smoothness term is somewhat different from the commonly

used Potts model [4] for multi-label segmentation. In Potts model, a pair of neighbouring

pixels pays for a discontinuity if they are assigned to two different labels. In contrast,

in our smoothness model, a pair of neighbouring pixels pays for a discontinuity only

between background and non-background labels. The discontinuity cost wpq between p

and q is a non-negative weight that is application specific.

The final term in our energy imposes hedgehog constraints on each foreground label

individually. Each foreground label has its surface normals locally constrained by a vector

field1. This is in contrast to [18] where the foreground was restricted by a single vector

field which occasionally resulted in segmentation errors, see Fig. 2.1.

2.3 SOL Optimization

We propose Grabcut for Overlapping-Labels (GOL), Alg. 2, to find an approximate

solution to (2.1). Initially, the user provides seeds denoting each individual foreground

label and the background. Similar to [24], we start from a trivial solution2 and optimize

(2.1) in block-coordinate descent. Specifically, our framework alternates between (a)

fixing current labeling f̂ and optimizing color models γB and γF , and (b) fixing the

color models and optimizing labeling f . Our framework stops when both steps no longer

decrease (2.1).

As shown in GOL step 4, given current labeling f̂ , we use the EM-Algorithm [9] to

re-estimate the foreground and background color models. In step 5, given γB and γF ,

optimizing (2.1) reduces to a multi-labeling problem that allows labels to overlap which

is NP-hard, see proof in Section 2.5. One of the main contributions of this work and a

key step in GOL is Alg. 3 Expansion-Contraction Moves (EC-Moves). Given γB and

γF , EC-Moves finds an approximate labeling to energy (2.1) via a series of binary moves.

1In our case, it is the gradient of the user-scribble’s distance map.
2All pixels are background except for the user seeds, they are assigned to their corresponding labels.
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Algorithm 2: Grabcut for Overlapping-Labels (GOL)

1 Input: f̂ ← trivial initial labeling (user-seeds)

2 E∗ ← ∞
3 repeat

4 γB, γF ← Re-estimate color models given f̂ using EM

5 f t ← arg minf E(f , γB, γF ) given γB and γF using EC-Moves (Alg. 3)

6 if E(f t, γB, γF ) < E∗

7 f̂ ← f t

8 E∗ ← E(f t, γB, γF )

9 until converged (no decrease in E)

10 return f̂

Algorithm 3: Expansion-Contraction Moves (EC-Moves)

1 Input: f̂ ← current labeling

2 repeat

3 α ← random label ∈ L \ B ≡ {F1, · · · , Fn}
4 if coin toss is heads

5 fα ← arg minf E(f) where f is an α-expansion of f̂

6 else

7 fα ← arg minf E(f) where f is an α-contraction of f̂

8 if fα < f̂

9 f̂ ← fα

10 until converged (no decrease for all α ∈ L)

The EC-Moves Alg. randomly traverses the foreground labels. At every iteration, an

arbitrarily label α randomly chooses to either expand or contract its support region. The

current labeling is updated if the expansion (or contraction) results in a lower energy.

EC-Moves terminates when no move leads to a new labeling with a lower energy. The

expansion and contraction moves used in EC-Moves are elaborated on in Section 2.4.

2.4 Binary Optimization Moves

In this Section we explain the binary expansion and contraction moves used in EC-Moves.

We only expand (or contract) a foreground label by casting the move as a binary move

(i.e. pixels have the binary choice to gain/lose a label or stay the same). Our reasoning for

eliminating background contraction is that it is not a binary move as the background has

more than one foreground label it may switch to. This contrasts the binary foreground
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contraction which may only switch to the single background label (or stay the same).

Although background expansion is a binary move, utilizing it did not affect the results

in practice.

2.4.1 α-Expansion Move:

(a) current segmentation (b) a feasible α-expansion move on F1

Figure 2.5: (a) shows a sample of a current segmentation. (b) shows a feasible expansion

for label F1. Notice how F1 expands while F2 and F3 remain unaffected.

In an expansion move on a foreground label α ∈ L \B ≡ {F1, · · · , Fn}, a pixel is given a

binary choice that depends on whether it is currently a background or foreground pixel.

A currently labeled background pixel is given the choice to either stay the same or switch

to α. A currently labeled foreground pixel is given the choice to either stay the same or

add α to its set of foreground labels.

Figure 2.5 illustrates an example of a possible expansion on the label F1. There

are three things to note about pixels that were affected by the expansion. First, some

background pixels decided to switch to F1. Secondly, some foreground pixels that did

not include F1 added F1 to their list of foreground labels. Lastly, no other foreground

label, i.e. F2 and F3, gained or lost any pixels.

Given the current labeling f̂ and color models γF and γB, an expansion move on

α ∈ {F1, · · · , Fn} can be formulated as a binary energy as follows:

Ee
α(x) =

∑
p∈Ω

Dγp (f̂p)xp +Dγp (α)xp + λ
∑
p,q∈N

wpqV (xp, xq) +
∑

(p,q)∈Eα(θ)

Spq(xp, xq), (2.4)
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where x = {xp ∈ {0, 1} | ∀p ∈ Ω}, if xp is 1 then a pixel switches to α,

V (xp, xq) =


[f̂p 6= f̂q] if xp = 0, xq = 0

[B = f̂q] if xp = 1, xq = 0

[f̂p = B] if xp = 0, xq = 1

0 if xp = 1, xq = 1

(2.5)

and

S(u, v) =

{
w∞ if u = 1, v = 0

0 otherwise.
(2.6)

Submodularity

To prove that (2.4) is submodular we need to prove that V (xp, xq) and S(u, v) are sub-

modular for any α ∈ L \B ≡ {F1, · · · , Fn}. We will first consider V (xp, xq) as defined in

(2.5). For V to be submodular it must satisfy the submodularity condition (1.4), i.e.

V (0, 0) + V (1, 1) ≤ V (0, 1) + V (1, 0) (2.7)

[f̂p 6= f̂q] + 0 ≤ [f̂p = B] + [f̂q = B] by substituting (2.5). (2.8)

Inequality (2.8) depends on the current labeling of pixels p and q, i.e. f̂p and f̂q. As

such, to show that (2.8) always holds we will consider all possible variations of f̂p and

f̂q. As a pixel’s labeling can be either F or B, we have the following cases to consider

if f̂p = B, f̂q = B then 0 + 0 ≤ 1 + 1

if f̂p = F , f̂q = B then 1 + 0 ≤ 0 + 1

if f̂p = B, f̂q = F then 1 + 0 ≤ 1 + 0

if f̂p = F , f̂q = F then 0 + 0 ≤ 0 + 0.

For all possible cases, we can see that the submodularity constraint holds so we can claim

that V (xp, xq) is submodular.

To prove that S(u, v) is submodular the submodularity constraint (2.8) must hold

S(0, 0) + S(1, 1) ≤ S(0, 1) + S(1, 0) (2.9)

0 + 0 ≤ 0 + 1 by substituting (2.6). (2.10)

Therefore, S(u, v) is submodular. Since both V (xp, xq) and S(u, v) are submodular then

their sum is also submodular and we can claim that (2.4) is submodular as well.
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2.4.2 α-Contraction Move:

(a) current segmentation (b) a feasible α-contraction move on F1

Figure 2.6: (a) shows a sample of a current segmentation. (b) shows a feasible contrac-

tion for label F1. Notice how F1 loses pixel support while F2 and F3 remain unaffected.

In a contraction move on any foreground label α ∈ L \B ≡ {F1, · · · , Fn}, every pixel

has a binary choice depending on its current labelling. On the one hand, a pixel only

labeled α is given the choice to either stay the same or switch to the background label.

On the other hand, any other pixel is given the choice to either stay the same or remove

α from its set of labels, if it was there.

Figure 2.6 illustrates an example of a possible contraction on the label F1. There

are three things to note about pixels that were affected by the contraction. First, some

pixels that were only labeled F1 decided to switch to the background label. Secondly,

some pixels that were assigned to multiple foreground labels including α lost their α

label but maintained their other foreground labels. Lastly, no other foreground label

gained or lost any pixels (i.e. their labeling stayed the same). It is worth mentioning that

pixels with multiple foreground labels that did not include α would not be affected by

the contraction.

To simplify our notation, we use an indicator variable δp that depends on the current

labeling to indicate whether a pixel p is only labeled α or not:

δp =

{
1 ∀k ∈ L \ α, f̂kp = 0

0 ∃k ∈ L \ α s.t. f̂kp = 1.
(2.11)
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Given current labeling f̂ , a contraction move on α can be formulated as:

Ec
α(x) =

pixels assigned only to α︷ ︸︸ ︷∑
p∈Ω
δp=1

Dγp (f̂p)x̄p +Dγp (B)xp +

other pixels︷ ︸︸ ︷∑
p∈Ω
δp=0

Dγp (f̂p) +

λ
∑
p,q∈N

wpqV (xp, xq) +
∑

(p,q)∈Eα(θ)

S(xq, xp) (2.12)

where S(u, v) is as previously defined in (2.6) and V (xp, xq) is a binary pairwise potential

defined as

V (xp, xq)=


[f̂p 6= f̂q] if xp = 0, xq = 0

[f̂p 6= B] δq + [f̂p 6= f̂q] δ̄q if xp = 0, xq = 1

[B 6= f̂q] δp + [f̂p 6= f̂q] δ̄p if xp = 1, xq = 0

[f̂p 6= f̂q] δ̄pδ̄q + [B 6= f̂q] δpδ̄q + [f̂p 6= B] δ̄pδq if xp = 1, xq = 1.

(2.13)

Figure 2.7: (a) the hatched area shows the pixels that may change their data term in

a contraction (i.e. switch from foreground to background). Pixel p is a part of this set

and pixel q is not. (b) shows an example of a feasible contraction. Notice that for pixel

p, the data term changed to background while pixel q remained foreground.

Figure 2.7 illustrates the different choices given to pixels p and q during an α = F1

contraction. Pixel p falls under the set of pixels that are only labeled F1, i.e. the hatched

area in Fig. 2.7(a). Pixels in this area have the option to switch from F1 to the background

or to stay the same. Pixel q is not only labeled F1 and thus, it is given the option to

either stay the same or lose the F1 label. Figure 2.7(b) shows a possible contraction in
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which both pixel p and pixel q decided to lose their the F1 label. Pixel p switched to

background while q remained foreground but F1 is no longer part of its foreground label

set.

Submodularity

To prove that (2.12) is submodular we need to prove that V (xp, xq) and S(u, v) are

submodular. In order for V (xp, xq) to be submodular it must satisfy the submodularity

condition (1.4), i.e.

V (0, 0) + V (1, 1) ≤ V (0, 1) + V (1, 0). (2.14)

By substituting (2.13) in (2.14)

[f̂p 6= f̂q] + [f̂p 6= f̂q]δ̄pδ̄q + [B 6= f̂q]δpδ̄q + [f̂p 6= B]δ̄pδq ≤

[B 6= f̂q]δp + [f̂p 6= f̂q]δ̄p + [f̂p 6= B]δq + [f̂p 6= f̂q]δ̄q. (2.15)

Inequality (2.15) depends on the current labeling of p and q, i.e. f̂p and f̂q. Further-

more, (2.15) also depends on the indicator variables δp and δq. Thus, to show that (2.15)

always hold will consider all possibilities of f̂p, f̂q, δp and δq. There are only 9 cases to

check as the other remaining cases will lead to invalid configuration, e.g. f̂p = B while

δp = 1. The 9 valid cases are

if f̂p = B, f̂q = B, δp = 0, δq = 0 then 0 + 0 + 0 + 0 ≤ 0 + 0 + 0 + 0

if f̂p = F , f̂q = B, δp = 1, δq = 0 then 1 + 0 + 0 + 0 ≤ 0 + 0 + 0 + 1

if f̂p = F , f̂q = B, δp = 0, δq = 0 then 1 + 1 + 0 + 0 ≤ 0 + 1 + 0 + 1

if f̂p = B, f̂q = F , δp = 0, δq = 1 then 1 + 0 + 0 + 0 ≤ 0 + 1 + 0 + 0

if f̂p = B, f̂q = F , δp = 0, δq = 0 then 1 + 1 + 0 + 0 ≤ 0 + 1 + 0 + 1

if f̂p = F , f̂q = F , δp = 1, δq = 1 then 0 + 0 + 0 + 0 ≤ 1 + 0 + 1 + 0

if f̂p = F , f̂q = F , δp = 1, δq = 0 then 0 + 0 + 1 + 0 ≤ 1 + 0 + 0 + 0

if f̂p = F , f̂q = F , δp = 0, δq = 1 then 0 + 0 + 0 + 1 ≤ 0 + 0 + 1 + 0

if f̂p = F , f̂q = F , δp = 0, δq = 0 then 0 + 0 + 0 + 0 ≤ 0 + 0 + 0 + 0.

We can see that the submodularty condition (1.4) holds for all the possible valid cases.

Thus, we conclude that V (u, v) is submodular. Since V (u, v) is submodular and S(u, v)

is submodular, as previously shown in Section 2.4.1, then their sum is also submodular.

Thus, energy (2.12) is submodular.
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2.5 NP-Hardness Proof

In general, the SOL problem is NP-hard. To prove this we will reduce the Set Cover

problem instance to SOL in polynomial time, i.e. Set Cover ≤P SOL. In a Set Cover

problem we are given a set of n elements that forms universe U = {u1, u2, . . . un}, and

a set of m subsets S = {Si ⊆ U | ∀i ∈ [1,m]}. The aim is to find the least number of

subsets such that their union covers the universe U .

A SOL problem (2.1) is defined by the pixel set Ω, the label set L, the data term

D
γ
p (fp), the neighbourhood system N , and the set of hedgehog constraints E . Given

U and S of a Set Cover problem we can construct the corresponding SOL problem as

follows:

Pixel set: Ω := {U ∪ A} where A = {ai | ∀i ∈ [1,m]}. A is a set of auxiliary

pixels/nodes. In this section will refer to pixels as nodes. For each set Si, we introduce

an auxiliary node ai that will be used as an indicator of whether Si is one of the selected

sets to cover U or not.

Label set: L := {B ∪ {Fi | ∀i ∈ [1,m]}} where the label Fi corresponds to subset Si

and B is the background label. In the context of the Set Cover problem the background

label serves no purpose but it was kept for ease of juxtaposition to the SOL problem.

Data term: We define the data term as follows

Dγu (`) =



∞ ∀u ∈ Ω, ` = B (2.16)

0 ∀u ∈ Si, ` = Fi ∀i ∈ [1,m] (2.17)

∞ ∀u 6∈ Si, ` = Fi ∀i ∈ [1,m] (2.18)

1 u = ai, ` = Fi ∀i ∈ [1,m] (2.19)

0 u = ai, ` = Fj ∀i, j ∈ [1,m], i 6= j. (2.20)

In (2.16) the data term prohibits any node to be assigned to the background label B. In

(2.17) and (2.18) the data term prohibits a node u 6∈ Si to be given the label Fi. In (2.19)

and (2.20) the data term ensures that our energy increases by 1 if ai is give the label Fi.

Nodes’ neighbour system: In Set Cover there no notion of neighbourhood between

the nodes, thus N := φ.
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Hedgehog constraints: For a given set Si we define the corresponding hedgehog con-

straints EFi of label Fi as follows:

EFi := CFi ∪ IFi

, where the set of connectedness constraints is CFi := {(u, v) | ∀u, v ∈ Si, u 6= v} and the

set of indicator constraints is IFi := {(u, ai) | ∀u ∈ Si, ai ∈ A}. The edges3 in CFi ensure

that if a node u ∈ Si is given the label Fi then every other node in the set Si will also

be given label Fi. The edges in IFi ensures that if any node u ∈ Si is given the label Fi

then the corresponding auxiliary node ai of Si is given the label Fi as well.

Objective: The objective in Set Cover is to minimize the number of selected subsets

to cover U , which is the energy of the corresponding SOL problem. Notice that if a node

u ∈ Si decides to be given the label Fi then ai will be will also be given the label Fi.

And, since D
γ
ai(Fi) = 1 by definition then we can conclude that our energy counts the

number of subsets appearing in the final solution. Recall that there is no smoothness

term and that the hedgehog term is 0 or ∞.

3We refer to an ordered pair nodes (u, v) as an edge.
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Our experiments were conducted on both synthetic examples as well as real data

(CT scans of the liver). We used these examples to compare α-expansion [4] and its

various modifications (i.e. adding a shape prior [18], allowing overlapping labels) with

our approach. The same parameters were used for all approaches to ensure an accurate

comparison. Further, this guaranteed that our final energy would be comparable.

3.1 Synthetic Example

We compare our approach for segmenting the synthetic example shown in Fig. 3.1 to

[4, 18]. For all methods we utilized the same parameters, namely, θ = 20, N was

the 4-neighbourhood system, and λ = 2. The initial foreground and background color

models were calculated using user-seeds. The pairwise discontinuity penalty between

neighbouring pixels p and q, i.e. wpq, was set to 1.

(a) original image (b) ground truth

Figure 3.1: (a) depicts our original synthetic image while (b) displays the ground-truth

segmentation.

In Figure 3.2, we display the segmentation results of the various approaches. The

first row of Figure 3.2 corresponds to the classical binary segmentation using a complex

seed [5, 18]. The first column depicts the multi-part seed. The second column illus-

trates the erroneous segmentation due to conflicting shape constraints as illustrated in

Section 1.5. In this case, we only show one solution because binary segmentation can be

solved optimally in polynomial time, see Section 1.2.3.
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Figure 3.2: compares the results and energy of a synthetic example segmentation. Each

row corresponds to a different segmentation model/optimization framework. The first

two rows correspond to classical segmentation while the last two correspond to SOL.

Columns 2-4 corresponds to different local minima by varying the order of expanding

labels, if applicable. Note that the first row only has one segmentation because binary

segmentation can be globally optimized. As you can see, our approach EC-moves achieves

the best results.
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The second row in Figure 3.2 corresponds to the classical α-expansion [4]. The first

column depicts the initial seeds. In contrast to the binary segmentation, the seeds are

assigned to separate labels. The following columns show three different local minimas

depending on the order of the expanding labels. It can be seen that this algorithm suffers

from local minima in which the first expanding label attempts to cover the entire object,

preventing the other labels from expanding.

The third row in Figure 3.2 corresponds to a modification of α-expansion in which

foreground labels are given the freedom to overlap. As the idea of overlapping labels

has not been previously explored, we used our own implementation for this experiment

and cover the results for the sake of comparison. It can be seen that allowing labels

to overlap alleviates the local minima issue by allowing subsequent labels to expand

further but the segmentation is still sensitive w.r.t. the order of expanding labels. This

is due to a limitation in the background expansion, i.e. it does not allow pixels with

multiple foreground labels to lose one of those foreground labels. The contraction moves

we propose overcomes this problem by replacing the background expansion by a series of

foreground labels contractions.

The final row in Figure 3.2 corresponds to our approach that uses the novel contraction

moves. It can be seen that this provides a segmentation that is more robust towards the

order of the expansion sequence. It is visually clear that our approach results in a better

segmentation overall as labels are not expanding further than the edge of the object. As

all experiments were run with the same parameters, the final energy is comparable across

the different segmentation models/optimization frameworks and it can be seen that our

approach finds the solution with lowest energy amongst them.

3.2 Liver Segmentation

Given a 2D CT slice, we compare the segmentation of the liver from the rest of the

organs. We examined 6 separate subjects, comparing three different approaches:

• Approach 1 (A1): α-expansion (without overlapping labels) [4]

• Approach 2 (A2): α-expansion (without overlapping labels) with a shape prior

[4, 18]

• Approach 3 (A3): our approach

To ensure that the comparison focuses on the performance of the clustering aspect

of Alg. 3, we used the ground truth segmentation to obtain the gaussian mixture color
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models. For the shape prior we used hedgehog with θ = 30. Finally, the smoothness

term λ was set to 5 and we used canny edges to derive the discontinuity cost wpq.

Canny-edges [6] is an edge detection operator, see Fig. 3.3. Canny-edges provides

valuable information as to where the object boundary should occur, which may be incor-

porated into the pairwise discontinuity cost. The idea is to have a smaller discontinuity

penalty along canny edges in comparison to discontinuities elsewhere. That is, if E is

the set of edge pixels detected by Canny-edges then

wpq =

0.25 (p ∈ E, q /∈ E) ∨ (q ∈ E, p /∈ E)

1 (p ∈ E, q ∈ E) ∨ (p /∈ E, q /∈ E)
(3.1)

where the 0.25 penalty is heuristically chosen. Decreasing the heuristically chosen weight

encourages discontinuities to occur along the Canny-edges.

(a) original image (b) set of Canny-edges pixels show in white

Figure 3.3: (a) is the input image. (b) shows the output of the Canny-edges algorithm [6],

the set of edge pixels, E, is shown in white.

For qualitative comparison, we show the segmentation results of the various ap-

proaches. Figures 3.4 – 3.9 correspond to each of our 6 subjects, where each figure

provides the seeds, the segmentation results of the three approaches, and the ground

truth. For all subjects, it can be seen that our approach (A3) returns the most accurate

segmentations, avoiding the over-segmenting issues of A1 and the under-segmenting is-

sues of A2. This is further evidenced by how A3 consistently returns the lowest energy,

corresponding with a segmentation that adheres to the colour models and stays within

the liver edges.
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(a)

(b) A1 Energy = 6163304098 (c) A2 Energy = 6374004875

(d) A3 Energy = 5328368114 (e)

Figure 3.4: Experiment results for subject 1. (a) depicts the seeds where the teal circles

are background seeds and the lines correspond to the separate foreground seeds. (b)

shows the results of α-expansion [A1], (c) shows the results of α-expansion using the

hedgehog shape prior [A2], and (d) shows the results of our approach [A3]. Finally, (e)

is the ground truth.
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(a)

(b) A1 Energy = 3863877887 (c) A2 Energy = 3952234448

(d) A3 Energy = 3360526210 (e)

Figure 3.5: Experiment results for subject 2. (a) depicts the seeds where the teal circles

are background seeds and the lines correspond to the separate foreground seeds. (b)

shows the results of α-expansion [A1], (c) shows the results of α-expansion using the

hedgehog shape prior [A2], and (d) shows the results of our approach [A3]. Finally, (e)

is the ground truth.
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(a)

(b) A1 Energy = 4724347356 (c) A2 Energy = 4851990077

(d) A3 Energy = 4122849903 (e)

Figure 3.6: Experiment results for subject 3. (a) depicts the seeds where the teal circles

are background seeds and the lines correspond to the separate foreground seeds. (b)

shows the results of α-expansion [A1], (c) shows the results of α-expansion using the

hedgehog shape prior [A2], and (d) shows the results of our approach [A3]. Finally, (e)

is the ground truth.
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(a)

(b) A1 Energy = 7140357521 (c) A2 Energy = 7294224267

(d) A3 Energy = 6149069898 (e)

Figure 3.7: Experiment results for subject 4. (a) depicts the seeds where the teal circles

are background seeds and the lines correspond to the separate foreground seeds. (b)

shows the results of α-expansion [A1], (c) shows the results of α-expansion using the

hedgehog shape prior [A2], and (d) shows the results of our approach [A3]. Finally, (e)

is the ground truth.
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(a)

(b) A1 Energy = 7492917309 (c) A2 Energy = 7703908000

(d) A3 Energy = 6427667575 (e)

Figure 3.8: Experiment results for subject 5. (a) depicts the seeds where the teal circles

are background seeds and the lines correspond to the separate foreground seeds. (b)

shows the results of α-expansion [A1], (c) shows the results of α-expansion using the

hedgehog shape prior [A2], and (d) shows the results of our approach [A3]. Finally, (e)

is the ground truth.
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(a)

(b) A1 Energy = 5375392212 (c) A2 Energy = 5468661120

(d) A3 Energy = 4654115540 (e)

Figure 3.9: Experiments results for subject 6. (a) depicts the seeds where the teal

circles are background seeds and the lines correspond to the separate foreground seeds.

(b) shows the results of α-expansion [A1], (c) shows the results of α-expansion using the

hedgehog shape prior [A2], and (d) shows the results of our approach [A3]. Finally, (e)

is the ground truth.
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For quantitative comparison, we calculate the precision and recall for each segmenta-

tion which are reported in Table 3.1. We calculate these values in relation to a manually

segmented ground truth. Precision calculates the ratio between the number of true pos-

itives versus the total number of positives, i.e

Precision =
true positive

true positive + false positive.

Recall calculates the ratio between the number of true positives versus the total number

of labeled pixels, i.e.

Recall =
true positive

true positive + false negative.

Subject Metric
classic segmentation SOL

A1 [4] A2 [4, 18] A3 (Ours)

Subject 1
Precision 0.690 0.935 0.971

Recall 0.989 0.660 0.973

Subject 2
Precision 0.383 0.672 0.929

Recall 0.998 0.844 0.941

Subject 3
Precision 0.438 0.806 0.832

Recall 0.999 0.893 0.970

Subject 4
Precision 0.535 0.928 0.975

Recall 0.991 0.863 0.977

Subject 5
Precision 0.647 0.728 0.911

Recall 0.991 0.821 0.976

Subject 6
Precision 0.628 0.792 0.916

Recall 0.995 0.981 0.965

Table 3.1: Precision and Recall values for the various subjects (subjects 1 - 6) and

approaches (A1 - A3).

In Table 3.1, it can be seen that A1 consistently has the highest recall values while

maintaining consistently low precision values. This is compatible with what can be seen

in the figures where A1 over-segments the image such that much of the liver is properly

labeled, but many portions of the scan are incorrectly labeled as liver. It should be noted

that it is possible to fine-tune λ to acquire better results for A1 but we used the same λ

for all our liver experiments.
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While the segmentation for A2 improves the precision values, the recall values de-

crease. It can be seen that this is due to the local minima issues that were explained in

Section 3.1, causing the liver to be under-segmented.

Finally, A3 not only has the highest precision values, but also maintains recall values

which are comparable to A1. As with A2, A3 benefits from the shape prior, resulting

in high precision values. However, as it allows overlaps between the foreground labels,

it avoids weak local minima. For ease of comparison, Figure 3.10 displays a graphical

representation of the precision vs. recall for each algorithm and shows how A3 consistently

outperforms both A1 and A2.

Figure 3.10: Graphical representation of precision vs. recall values for the three ap-

proaches (A1 - A3).

Lastly, Table 3.2 displays the F1 score. The F1 Score is a common metric to quantify

the closeness of the segmentation to the ground truth. It combines the precision and

recall values into a single value where an exact correspondence to the ground truth is 1.

It is calculated as

F1 Score = 2 · precision · recall

precision + recall.
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Sub. 1 Sub. 2 Sub. 3 Sub. 4 Sub. 5 Sub. 6

A1 [4] 0.812 0.554 0.609 0.695 0.783 0.770

A2 [4, 18] 0.774 0.749 0.847 0.894 0.772 0.877

A3 (Ours) 0.972 0.935 0.896 0.976 0.942 0.940

Table 3.2: F1 Score for the various subjects (subjects 1 - 6) and approaches (A1 - A3).
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In this work. we have introduced the concept of segmentation with overlapping labels,

a segmentation model that excels at segmenting translucent objects, occluded objects,

and objects that require multiple seeds. Specifically, we have shown that SOL is an effec-

tive segmentation model for segmenting complex objects with multiple parts. Further,

we have proved that SOL is an NP-hard problem and provided an iterative algorithm to

find an approximate solution.

Our approach was inspired by the α-expansion [4] and grab-cut algorithms [24]. How-

ever, our optimization framework utilizes the novel expansion and contraction moves. To

test our algorithm, we ran several experiments on both synthetic images as well as medi-

cal images. The results of these experiments display the advantage of using our approach

in comparison to the state-of-the-art methods.

(a) source image (b) expected SOL segmentation

Figure 4.1: (a) depicts an image of cells that may benefit from SOL over mutually

exclusive labels. (b) shows an expected SOL segmentation.

Cell segmentation is a possible application of SOL. The concept of overlapping labels

is particularly useful in medical imaging where objects are translucent, see in Fig. 4.1.

This property make it difficult, if not impossible, for the classic segmentation model to

properly segment each cell as a separate label.

Convexity [15] is an emerging prior and it has been recently extended to segment a

non-convex object as a set of multiple convex parts. A possible future direction of our

work would be to apply SOL to segment non-convex shapes consisting of multiple convex

parts. Allowing the convex shape parts to overlap could potentially avoid local minima.

Lastly, our current application of SOL only takes into account one object with multiple

parts. However, there are often times in which an image may have multiple complex

objects, each composed of multiple parts. Another possible extension of SOL would be

to handle such a problem. This would involve segmenting multiple foreground objects,

each with its own set of overlapping labels.
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