1,718 research outputs found

    Distributed interactive ray tracing for large volume visualization

    Get PDF
    Journal ArticleWe have constructed a distributed parallel ray tracing system that interactively produces isosurface renderings from large data sets on a cluster of commodity PCs. The program was derived from the SCI Institute's interactive ray tracer (*-Ray), which utilizes small to large shared memory platforms, such as the SGI Origin series, to interact with very large-scale data sets. Making this approach work efficiently on a cluster requires attention to numerous system-level issues, especially when rendering data sets larger than the address space of each cluster node

    Experiences with Mesh-like computations using Prediction Binary Trees

    Get PDF
    In this paper we aim at exploiting the temporal coherence among successive phases of a computation, in order to implement a load-balancing technique in mesh-like computations to be mapped on a cluster of processors. A key concept, on which the load balancing schema is built on, is the use of a Predictor component that is in charge of providing an estimation of the unbalancing between successive phases. By using this information, our method partitions the computation in balanced tasks through the Prediction Binary Tree (PBT). At each new phase, current PBT is updated by using previous phase computing time for each task as next phase's cost estimate. The PBT is designed so that it balances the load across the tasks as well as reduces {\em dependency} among processors for higher performances. Reducing dependency is obtained by using rectangular tiles of the mesh, of almost-square shape (i. e. one dimension is at most twice the other). By reducing dependency, one can reduce inter-processors communication or exploit local dependencies among tasks (such as data locality). Furthermore, we also provide two heuristics which take advantage of data-locality. Our strategy has been assessed on a significant problem, Parallel Ray Tracing. Our implementation shows a good scalability, and improves performance in both cheaper commodity cluster and high performance clusters with low latency networks. We report different measurements showing that tasks granularity is a key point for the performances of our decomposition/mapping strategy

    Doctor of Philosophy

    Get PDF
    dissertationRay tracing presents an efficient rendering algorithm for scientific visualization using common visualization tools and scales with increasingly large geometry counts while allowing for accurate physically-based visualization and analysis, which enables enhanced rendering and new visualization techniques. Interactivity is of great importance for data exploration and analysis in order to gain insight into large-scale data. Increasingly large data sizes are pushing the limits of brute-force rasterization algorithms present in the most widely-used visualization software. Interactive ray tracing presents an alternative rendering solution which scales well on multicore shared memory machines and multinode distributed systems while scaling with increasing geometry counts through logarithmic acceleration structure traversals. Ray tracing within existing tools also provides enhanced rendering options over current implementations, giving users additional insight from better depth cues while also enabling publication-quality rendering and new models of visualization such as replicating photographic visualization techniques

    Terrain guided multi-level instancing of highly complex plant populations

    Get PDF

    Memory sharing for interactive ray tracing on clusters

    Get PDF
    ManuscriptWe present recent results in the application of distributed shared memory to image parallel ray tracing on clusters. Image parallel rendering is traditionally limited to scenes that are small enough to be replicated in the memory of each node, because any processor may require access to any piece of the scene. We solve this problem by making all of a cluster's memory available through software distributed shared memory layers. With gigabit ethernet connections, this mechanism is sufficiently fast for interactive rendering of multi-gigabyte datasets. Object- and page-based distributed shared memories are compared, and optimizations for efficient memory use are discussed

    A survey of techniques and technologies for web-based real-time interactive rendering

    Get PDF
    When exploring a virtual environment, realism depends mainly on two factors: realistic images and real-time feedback (motions, behaviour etc.). In this context, photo realism and physical validity of computer generated images required by emerging applications, such as advanced e-commerce, still impose major challenges in the area of rendering research whereas the complexity of lighting phenomena further requires powerful and predictable computing if time constraints must be attained. In this technical report we address the state-of-the-art on rendering, trying to put the focus on approaches, techniques and technologies that might enable real-time interactive web-based clientserver rendering systems. The focus is on the end-systems and not the networking technologies used to interconnect client(s) and server(s).Siemens; Bertelsmann mediaSystems GmbH; Eptron Multimedia; Instituto Politécnico do Porto - ISEP-IPP; Institute Laboratory for Mixed Realities at the Academy of Media Arts Cologne, LMR; Mälardalen Real-Time Research Centre (MRTC) at Mälardalen University in Västerås; Q-Systems

    Practical global illumination for interactive particle visualization

    Get PDF
    ManuscriptParticle-based simulation methods are used to model a wide range of complex phenomena and to solve time-dependent problems of various scales. Effective visualizations of the resulting state will communicate subtle changes in the three-dimensional structure, spatial organization, and qualitative trends within a simulation as it evolves. We present two algorithms targeting upcoming, highly parallel multicore desktop systems to enable interactive navigation and exploration of large particle datasets with global illumination effects. Monte Carlo path tracing and texture mapping are used to capture computationally expensive illumination effects such as soft shadows and diffuse interreflection. The first approach is based on precomputation of luminance textures and removes expensive illumination calculations from the interactive rendering pipeline. The second approach is based on dynamic luminance texture generation and decouples interactive rendering from the computation of global illumination effects. These algorithms provide visual cues that enhance the ability to perform analysis and feature detection tasks while interrogating the data at interactive rates. We explore the performance of these algorithms and demonstrate their effectiveness using several large datasets

    TetSplat: Real-time Rendering and Volume Clipping of Large Unstructured Tetrahedral Meshes

    Get PDF
    We present a novel approach to interactive visualization and exploration of large unstructured tetrahedral meshes. These massive 3D meshes are used in mission-critical CFD and structural mechanics simulations, and typically sample multiple field values on several millions of unstructured grid points. Our method relies on the pre-processing of the tetrahedral mesh to partition it into non-convex boundaries and internal fragments that are subsequently encoded into compressed multi-resolution data representations. These compact hierarchical data structures are then adaptively rendered and probed in real-time on a commodity PC. Our point-based rendering algorithm, which is inspired by QSplat, employs a simple but highly efficient splatting technique that guarantees interactive frame-rates regardless of the size of the input mesh and the available rendering hardware. It furthermore allows for real-time probing of the volumetric data-set through constructive solid geometry operations as well as interactive editing of color transfer functions for an arbitrary number of field values. Thus, the presented visualization technique allows end-users for the first time to interactively render and explore very large unstructured tetrahedral meshes on relatively inexpensive hardware
    • …
    corecore