
PARALLEL RAY TRACING IN SCIENTIFIC

VISUALIZATION

by

Carson Brownlee

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

School of Computing

The University of Utah

December 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276264886?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright © Carson Brownlee 2012

All Rights Reserved

The Un i ve r s i t y of Utah Graduat e School

STATEMENT OF DISSERTATION APPROVAL

The dissertation of Carson Brownlee

has been approved by the following supervisory committee members:

Charles D. Hansen

Steven G. Parker

Chair

Member

9/14/12
Date Approved

9/14/12
Date Approved

Peter Shirley

Claudio T. Silva

Member

Member

9/14/12
Date Approved

9/19/12
Date Approved

James Ahrens Member 9/14/12
Date Approved

and by Alan Davis

the Department of School of Computing

Chair of

and by Charles A. Wight, Dean of The Graduate School.

ABSTRACT

Ray tracing presents an efficient rendering algorithm for scientific visualization using

common visualization tools and scales with increasingly large geometry counts while

allowing for accurate physically-based visualization and analysis, which enables enhanced

rendering and new visualization techniques. Interactivity is of great importance for data

exploration and analysis in order to gain insight into large-scale data. Increasingly large

data sizes are pushing the limits of brute-force rasterization algorithms present in the

most widely-used visualization software. Interactive ray tracing presents an alternative

rendering solution which scales well on multicore shared memory machines and multinode

distributed systems while scaling with increasing geometry counts through logarithmic

acceleration structure traversals. Ray tracing within existing tools also provides enhanced

rendering options over current implementations, giving users additional insight from

better depth cues while also enabling publication-quality rendering and new models of

visualization such as replicating photographic visualization techniques.

For my parents, advisors, coworkers and everyone who has provided guidance and

encouragement throughout this endeavor.

CONTENTS

ABSTRACT.. iii

LIST OF F IG U R E S.. vii

LIST OF TA BLES.. x

ACKNOWLEDGEMENTS .. xi

CHAPTERS

1......INTRODUCTION... 1
1.1 Motivation.. 1

1.1.1 Interactive Ray Tracing... 2
1.1.2 Ray Tracing in Parallel Visualization Applications 3
1.1.3 Ray Tracing using OpenGL Interception.. 4
1.1.4 Physically-based Rendering .. 5
1.1.5 Thesis Statement.. 6
1.1.6 Thesis Contributions... 6
1.1.7 Outline... 7

2. RELATED W O R K ... 8
2.1 Parallel Ray Tracing in Scientific Visualization.. 11
2.2 OpenGL Interception in Scientific Visualization .. 12
2.3 Computational Photographic Visualization ... 13

3. PARALLEL RAY TRACING IN EXISTING VISUALIZATION TOOLS 15
3.1 Rendering M ethods.. 15
3.2 Ray Tracing Implementation ... 16

3.2.1 Data Distribution .. 17
3.2.2 Synchronization.. 18
3.2.3 Depth Buffer... 19
3.2.4 Acceleration Structures... 19
3.2.5 Color M apping.. 19
3.2.6 VTK Factory Overrides ... 20
3.2.7 ParaView and VisIt ... 20
3.2.8 Advanced Rendering... 21

3.3 Results .. 22
3.3.1 Datasets ... 22
3.3.2 Cluster Timings .. 23

3.3.3 Weak Scaling.. 24
3.3.4 Strong Scaling .. 25

3.4 Summary.. 27

4. RAY TRACING THROUGH OPENGL IN TER C EPTIO N 35
4.1 Interception Implementation... 35

4.1.1 Intercepting OpenGL calls .. 35
4.1.2 Asynchronous Rendering.. 36
4.1.3 High Quality Rendering... 37

4.2 Results .. 38
4.2.1 D atasets... 39
4.2.2 Scientific Visualization Program s... 39
4.2.3 Performance Scaling... 40

4.3 Summary.. 44

5. COMPUTATIONAL PHOTOGRAPHIC M ETH ODS................................. 52
5.1 Background .. 52
5.2 Computational Methods .. 55
5.3 Precomputation ... 55

5.3.1 Computing the Refractive In d ex ... 56
5.3.2 Octree.. 57

5.4 Image Generation ... 58
5.4.1 Emitting Photons from the Light Source .. 58
5.4.2 Adaptively Tracing Rays through the Flow 58
5.4.3 Reproducing the Cutoff... 59
5.4.4 Interferometry.. 61

5.5 Filtering .. 62
5.6 Interactive Cutoff Creation... 62
5.7 Multifield Flow Analysis ... 63
5.8 Results .. 64
5.9 Summary.. 67

6. CONCLUSION AND FUTURE W O R K .. 77
6.1 Distributed Ray Tracing in Existing Visualization Tools 77
6.2 Ray Tracing Through OpenGL Interception ... 82
6.3 Computational Photographic Methods ... 85
6.4 Summary.. 86

APPENDIX: PUBLICATIONS... 88

REFERENCES ... 90

vi

LIST OF FIGURES

3.1 In the top row, we show renderings of the RM dataset with OpenGL on the
left and Manta on the right using ambient occlusion and reflections. In the
bottom row, VisIt is shown rendering a molecule plot with OpenGL on the
left and an enhanced rendering with Manta on the right................................ 28

3.2 Manta rendering within ParaView on a single multicore machine using
shadows and reflections, showing a dataset of the impact of an aluminum
ball on an aluminum plate.. 29

3.3 Manta rendering a version of the RM dataset within VisIt. Ambient occlu
sion provides additional insight to users by adding occlusion information
from nearby geometry... 30

3.4 The datasets used for benchmarking. RMI: RM isosurface zoomed out
(a), RMI: RM isosurface closeup (b), VPIC dataset with isosurface and
streamlines (c) and a wavelet contour with 16 million triangles (d)............. 31

3.5 Frames per second from compositing using the binary-swap and IceT
reduce compositors for a 10242 image from 2 to 128 nodes......................... 32

3.6 Weak scaling timings of an isosurface of the RMO dataset in ParaView.
Geometry is added with each additional node so that the geometry per node
remains roughly constant.. 32

3.7 Strong scaling timings of an isosurface of the RMO dataset......................... 33

3.8 Strong scaling timings of an isosurface of the RMI dataset.......................... 33

3.9 Strong scaling timings of the VPIC dataset.. 34

3.10 Strong scaling timings of the wavelet dataset... 34

4.1 Sequential architecture of GLuRay.. 46

4.2 Parallel architecture of GluRay.. 47

4.3 GLuRay running within ParaView (a) and an external GUI (b).................... 47

4.4 Shading effects such as ambient occlusion shown in (b) add more depth
cues compared to a standard phong shading technique (a)............................ 48

4.5 Rendering of an impact dataset with ParaView using OpenGL (a) and a ren
dering using GLuRay demonstrating secondary effects such as reflections,
shadows and ambient occlusion (b)... 48

4.6 Magnetic fields from an astrophysics simulation colored with streamlines
(a), the astrophysics dataset rendered with advanced effects (b), a wavelet
contour (c), VPIC Plamsa simulation (d), RMI (e), and RMO (f) datasets
used for benchmarking... 49

4.7 BVH build times for the wavelet dataset compared to Mesa rendering time
for a single frame.. 50

4.8 Gantt charts showing a rendering of a wavelet dataset with 8 million
triangles. An overall view of setup time, geometry transfer, acceleration
builds and rendering is shown in the top runs while a closeup of the
rendering is shown in the bottom. The gold color displays the efficiency of
the asynchronous renderer, while the blue displays the cost of BVH builds
in relation to data loading and geometry specification through OpenGL,
shown in brown... 50

4.9 Performance timings for increasing triangle counts for a wavelet dataset as
seen in Figure 4.6(c)... 51

4.10 Rendering times for the RMO dataset in ParaView using the Longhorn
visualization cluster. Avg denotes the averaged render times across every
node while Max designates the maximum render time across all nodes. . . . 51

5.1 2D illustration of the shadowgraph optical setup...68

5.2 2D illustration of the schlieren optical setup..68

5.3 A typical color filter used in schlieren optical setups...69

5.4 2D illustration of the interferometry optical setup...69

5.5 Infinite-fringe interferometry image computed using our method................69

5.6 Illustration of the rendering pipeline...70

5.7 A heptane dataset rendered using refractive indices calculated from tem
perature and pressure with a knife-edge cutoff (a), a simulated combustion
dataset rendered using a schlieren knife-edge cutoff to enhance the flow
(b), color filter (c), shadowgraph image (d), a circular cutoff (e), and using
a complemented circular cutoff (f).. 70

5.8 An illustration of a traversal through the octree. P\ and P2 are two rays
traversing through the flow. Pi is in a homogeneous region of the data and
in a cell of the octree texture that will report a level number of 1 allowing
Pi to skip to the edge of that level. P2, on the other hand, is at the lowest
level of the acceleration structure and will only traverse to the next voxel. 71

5.9 Creating a custom color filter by painting on the schlieren image. The
corresponding region on the color filter is looked up by calculating where
that pixel lies on the color filter and coloring the filter red in this case. . . . 71

viii

5.10 Demonstration of multifield data rendered using a schlieren knife-edge
cutoff: (a) shows a combination of five different data fields and (b), (c),
(d), (e), and (f) show individual renderings of scalar dissipation rate, heat
release, vorticity, hydrogen oxygen mass fraction, and mixture fractions,
respectively.. 72

5.11 On the left, results of a combustion dataset of dimensions 480x720x100
seen in Figure 5.7 rendered with 10 iterations of progressive refinement
per frame using cone filtering on a GeForce GTX 280 card at 512x512
resolution. Results of a coal fire with 5 iterations of progressive refinement
per frame on a GeForce GTX 280 card at 512x512 resolution are shown on
the right.. 73

5.12 Comparison of volume rendering (a) with a line of sight schlieren approxi
mation (b) and with our method (c)... 74

5.13 Comparison of our method using a shadowgraph (a), a knife-edge cutoff
(b), and a color filter (c).. 74

5.14 Comparison of unfiltered film plane with 1, 10, 100, and 1000 samples per
pixel (a, c ,e, g) and the corresponding images of the film plane filtered
with a cone filter in (b, d, f, h).. 75

ix

LIST OF TABLES

4.1 Performance timings for various datasets across different applications with
varying amounts of triangles specified in the millions. PV signifies Par-
aView and VI refers to VisIt. RMI and RMO are the Richtmyer-Meshkov
datasets zoomed in and out, respectively. GLuRay achieves significant
speedups in all runs tested with large polygon counts................................... 46

5.1 Video memory usage and octree construction time for various datasets.. . . 76

ACKNOWLEDGEMENTS

This endeavor would not have been possible without the significant support from

several people and institutions which guided me along the way. Principally, Charles

Hansen proved an enthusiastic and patient advisor who introduced me to the field

of scientific visualization while incorporating my interest in graphics and ray tracing.

Through his expert guidance in the field of scientific visualization I was able to utilize my

knowledge of ray tracing in research which could help scientists working in various fields

that I initially knew very little about. Beyond giving valuable insight for my research, he

also provided essential guidance on technical writing for academic papers and making it

through graduate school.

Steven Parker proved a valuable asset as an initial advisor and lead designer and

creator of many of the works at the University of Utah such as the Manta ray tracer. I

would like to thank Patrick McCormick for mentoring me for two summers at Los Alamos

National Laboratory. Through his mentorship I learned a great deal about working with

scientists connected to the expiremental side of visualization. This collaboration led

to two publications on the subject and a new interest in physically-based rendering for

visualization. James Ahrens would prove instrumental in guiding work on integrating ray

tracing into visualization systems and without his guidance much of this work would not

be possible—as well as the considerable efforts of Li-Ta Lo, John Patchet, David Demarle

and many others. Hank Childs at Lawrence Berkeley National Labs was an insightful

mentor who helped incorporate my work into the VisIt visualization tool.

Karen Feinauer, Ann Carlstrom, and the rest of the staff at the School of Computing

worked diligently to address administrative headaches throughout my program and their

help and support is greatly appreciated. The contribution of Chris Johnson in founding

the Scientific Computing and Imaging Institute (SCI) can not be understated. SCI

presented an ideal atmosphere for student and faculty research that fostered collaboration

between researchers working in diverse fields. Chris provided all of those at SCI with a

great building, an ideal work environment, talks, conferences, social events, and most

importantly: a continuous source of caffeine.

Working with Kadi Bouatouch at the “Institut National de Recherche en Informatique

et en Automatique” (INRIA) in France proved a great experience and I would like to

thank all of those in Rennes that welcomed me to their group. Additionally, I had the

great fortune of working with a number of collaborators at the University of Utah and

other institutions including Vincent Pegoraro, Thomas Fogal, Christiaan Gribble, Thiago

Ize, John Patchett, and David DeMarle who proved a great help in formulating ideas,

implementating complex systems, or improving my technical writing. I would also like to

thank the St. Catherine of Sienna Newman Center at the University of Utah for providing

an enriching center for faith and fellowship with a welcoming group of fellow students.

Lastly, I appreciate the support of my family through a long graduate career who,

though far away from home, were always there for me.

xii

CHAPTER 1

INTRODUCTION

1.1 Motivation
Advances in computational science have produced a wealth of data in applications

ranging from aircraft design to combustion analysis [14, 26, 41, 42, 69]. For scientists

working in these domains, exploring simulation data in a visual way allows for an intuitive

analysis for feature extraction and debugging. Interactivity is of great importance for

data exploration because it allows for rapid changes to camera views and parameters

for analysis and simulation steering. As the size of simulations continues to increase,

establishing rendering techniques that can display data accurately and that scale well

with increasingly parallel architectures becomes essential for understanding complex

simulations. Ray tracing presents a viable interactive rendering technique for emerging

architectures; it scales well with increasing amounts of geometry and compute cores on

compute clusters that are lacking hardware-acceleration, while also providing a straight

forward method for generating physically-accurate images for analysis and validation.

Integration of ray tracing into existing visualization tools allows scientists to use ray

tracing without modifying their workflow by having to learn new tools and transfer

data across programs. This dissertation presents such an implementation in the two

most widely used open-source visualization tools: ParaView and VisIt [11, 47]. This

allows for interactive ray tracing while working with many of the same visualization

and analysis options present in the original programs. Such implementations present

many engineering challenges for rendering modules which were initially designed for

rasterization. This difficulty prompted the development of a ray tracing implementation

which intercepts OpenGL API calls, allowing for a program-agnostic method of using

ray tracing across many visualization tools without any source code modification to the

visualization tool. These two different methods of ray tracing in widely used visualization

2

tools present the option of developing an integrated renderer which can have ray tracing

specific parameters coded into the tools, or a program-agnostic option which requires no

modifications to the original tools but does not allow for rendering enhancements exclusive

to ray tracing. Additionally, to demonstrate the benefits of using ray tracing in enabling

new visualization methods for domain scientists, a method for interactively rendering

computational photography techniques for fluid flow visualization was developed.

1.1.1 Interactive Ray Tracing

Ray casting as first presented by Appel [3] presented a straightforward method for

computing surface visibility by calculating ray paths from a virtual camera plane to scene

objects. This techinque was extended by Whitted [82] to incorporate secondary rays

to simulate reflections, refractions and shadow rays in what is commonly known as ray

tracing. Kajiya et al. [43] proposed a more advanced illumination model, which better

approximates the rendering equation by computing the irradiance at surface points from

light reflecting off incident surfaces, when this is computed recursively, an approximation

of global lighting is generated. In many common visualization tools, Phong shading is

often utilized using only local illumination where surface color is computed from the

direct light contribution from emissive light sources such as point lights. This contribution

is a function of the surface normal and the angle of incidence between the viewer and

the light. Such shading techniques ignore objects that occlude light and inter-reflection

between surfaces. Tracing rays allows for the computation of complex light transfer in the

form of shadows, inter-reflection, refraction, and scattering through participating media

in a more accurate fashion than approximations through rasterization approaches [79].

Monte Carlo techniques using ray tracing allow unbiased representations of real-world

lighting effects through sampling of light propagation. While physical simulation of

light is often not as imperative as user comprehension in scientific visualization, realistic

lighting models which incorporate global lighting effects have been shown to enhance user

insight by providing additional cues for determining spatial proximity between adjacent

objects [29]. To achieve advanced rendering effects, scientists must often use custom

rendering software which provides ray tracing capabilities [66, 6]; however, end users are

3

often reluctant to learn new tools which are nontypical in their workflows.

In addition to accurate lighting computations, ray tracing provides an intuitive imple

mentation of acceleration methods for achieving interactive rendering with massive

polygonal models. Occlusion culling is gained implicitly by utilizing acceleration

structures in a nearest-hit algorithm. Subpixel geometry is subsampled in screen-space,

negating the necessity for geometry simplification at the cost of aliasing. Ray tracing has

proven to scale well on increasingly parallel architectures. Parker et al. demonstrated a ray

tracing system similar to Whitted’s [82] with interactive frame rates for large data sizes

on shared-memory systems [65]. Wald et al. later developed an interactive ray tracing

solution for distributed-memory systems [79] using commodity desktop hardware and

network infrastructures. Implementations of ray tracing on distributed-memory systems

can split up data and rays by image-space or data-space or hybrid approaches incorporating

both methods. The former relies on rays in spatially coherent portions of image space

requesting similar regions of data as adjacent rays. Data is paged into local caches on

demand during scene traversal. In highly efficient implementations, the same page faults

used by the operating system can be remapped to network requests instead of disk reads

[20]. Ize et al. [38] expanded upon this work by creating a distributed-memory ray tracing

solution which paged BVH nodes to a local cache on each node in a ray-parallel fashion.

This implementation approached 100 frames-per-second on two megapixel images of

complex models.

1.1.2 Ray Tracing in Parallel Visualization Applications

To demonstrate that interactive ray tracing presents a viable rendering technique for

visualization, this dissertation presents an implementation of ray tracing integrated into

the VTK framework and a scaling study exploring the existing behavior of two widely

used visualization applications, ParaView and VisIt, on large distributed-memory systems

using CPU and GPU accelerated rasterization which is then compared to CPU ray casting

in Chapter 3. These common visualization tools rely on software rasterization through

Mesa3D and brute-force GPU rasterization without occlusion culling methods or advanced

rendering features. Integrating a software ray tracing solution within VTK provides a

4

common code base for use across programs built on top of the VTK framework such as

ParaView and VisIt. A depth-buffer is generated for compositing operations, allowing the

ray tracing implementation to use the existing data-parallel work distribution and sort-last

image compositing methods for running on parallel architectures. Interactive rendering

performance is achieved for large datasets using basic lighting models while advanced

rendering techniques such as reflections, shadows, and ambient occlusion are supported

on shared-memory machines and are rendered interactively or off-line depending on the

scene and the number of rays per-pixel needed. High quality offline renderings using

multiple samples per-pixel and more realistic rendering parameters can be computed

within the visualization tools for publication quality images without resorting to external

rendering tools such as Maya.

Results are presented using the unmodified open source visualization tools ParaView

and VisIt with scientific and synthetic datasets scaling into billions of triangles and up

to 128 nodes of a GPU-accelerated rendering cluster. These results are then compared

with integrated ray tracing solutions which were built-into the same visualization tools

through modifications to the underlying VTK framework. These studies identify common

bottlenecks and areas for improvement for rendering on distributed-memory systems

where existing distribution methods are not always ideal for rendering implementations,

since problem complexity is often very view-dependent. In many cases this solution

provides increased rendering performance over the previous hardware or software based

brute-force rasterization, especially on systems lacking hardware-acceleration.

1.1.3 Ray Tracing using OpenGL Interception

Integrating ray tracing into scientific visualization programs designed for rasterization

algorithms is often a major engineering effort. Updates to the tools often require

subsequent modifications to the ray tracing implementations. Additionally, making such

modifications necessitates access to the source code of the initial tool. This dissertation

presents an implementation of interactive software ray tracing which requires no source

code modifications to underlying tools by intercepting OpenGL calls and mapping

them to appropriate ray tracing calls to render out identical or improved renderings

5

to that of fixed-function OpenGL. Interactive performance is often achieved for camera

manipulations by instantiating specified geometry with acceleration structures using

current transform matrices and material properties specified through OpenGL.

In Chapter 4 we describe the implementation of our system, GLuRay, describing

OpenGL interception, asynchronous rendering, and generating high quality images. To

understand the trade-offs of our system for dealing with extremely large datasets, we have

employed an in depth timing study of three different rendering methods for large polygonal

data: software-based ray tracing, software-based rasterization, and hardware-accelerated

rasterization. We use four different datasets: one synthetic, and three scientific. Through

these studies we show that our system can handle large datasets of various types across

multiple applications with vastly improved interactive rendering times, scalability, and

enhanced quality over their built-in rendering engines.

1.1.4 Physically-based Rendering

The introduction of physically-based rendering in scientific visualization allows the

replication of optical properties that scientists are used to seeing from experimental

setups while additionally enabling validation against real-world photographs by repli

cating optical apparatuses. Shadowgraph, schlieren, and interferometry are common

techniques used in experimental flow visualization to analyze features such as shock or

heat transfer. These techniques rely on light refracting through a participating medium

due to heterogeneous indices of refraction or phase-shifting. The refracted light is then

filtered through a cutoff and shown on an image plane which gives a visual representation

of light refraction, allowing the visualization of phenomena otherwise often invisible to

the naked eye. In Chapter 5, this dissertation proposes a physically-based approach to

simulate such experimental setups in an interactive and intuitive fashion by tracing light

paths through time-varying scalar fields of computed flows on GPUs.

Recreating these experimental techniques computationally with the simulated physical

constraints presents scientists used to schlieren photography a familiar and intuitive

visualization method. Conversely, replicating these systems on the computer allows

additional degrees of control in the visualization that would be difficult or impossible due

to the physical configuration of experiments. This freedom allows for useful features such

6

as displaying silhouettes around edges or selectively culling ranges in the data. While

methods have been developed for approximating schlieren images without refracting light

[84, 75], they are not well suited for all data sets, such as shock waves or mixed materials

with large changes in refractive indices, which results in divergent light paths.

Calculating light refracting through a flow presents a number of challenges. Light

paths must be recomputed whenever the viewpoint changes, thus an interactive method

for determining them at each frame is introduced. Graphics hardware is used to trace

refraction through inhomogeneous datasets, employ acceleration structures for adaptively

sampling data, computationally replicate schlieren cutoffs, and filter out noise. By

utilizing these techniques, it is possible to simulate realistic light transport through a

flow at interactive rates. To our knowledge this is the first technique to computationally

replicate schlieren images by generating piecewise-linear light paths at interactive rates.

For further study into the applicability of such methods in scientific visualization, this

dissertation also explores interferometry visualization, interactive color filter editing, and

an exploration of multifield data visualization. Interferometry allows a different view of

data by tracking phase-shift through the flow producing visual bands. Custom color filters

allow for exploring specific regions in the flow. Multifield data presents a difficult problem

and an interesting exploration of the use of schlieren visualization as a new method for

understanding complex data.

1.1.5 Thesis Statement

Ray tracing presents an efficient rendering algorithm for scientific visualization using

common visualization tools and scales with increasingly large geometry counts while

allowing for accurate physically-based visualization and analysis, which enables enhanced

rendering and new visualization techniques.

1.1.6 Thesis Contributions

The main contributions of this work are:

• An integration of ray tracing into existing widely-used parallel visualization tools

and a study of comparisons with native rendering methods.

7

• A method of ray tracing traditional rasterization programs through OpenGL inter

ception which does not require source code modification to underlying programs.

• Physically-based interactive ray casting techniques to compute photographic visual

ization methods such as schlieren, shadowgraph, and interferometry.

1.1.7 Outline

This dissertation presents related work in Chapter 2, followed by our integration

of ray tracing into common scientific visualization tools in Chapter 3 followed by our

implementation of ray tracing through OpenGL interception in Chapter 4. Ray casting

techniques for computing physically-based photographic visualizations from experimental

methods are presented in Chapter 5. Finally, a conclusion and future work are given in

Chapter 6.

CHAPTER 2

RELATED WORK

There have been many strategies developed to visualize large-scale data with post

processing techniques. Transferring data to a GPU cluster for rendering is a well developed

practice capable of displaying large datasets at very high frame rates by distributing

data for rendering [25] and compositing the resulting images together using algorithms

such as the binary-swap method [53]. To facilitate such techniques, many tools have

been developed for rendering large-scale scientific data using polygonal representations.

VAPOR was developed as a serial visualization tool by Clyne et al. for atmospheric

scientists to explore data using isosurfaces, streamlines and volumetric representations

[76]. Programs such as ParaView, VisIt and EnSight present visualization solutions across

large heterogeneous cluster environments for data which are often too large to fit or

be rendered efficiently on a single node [44, 48, 13]. Many of these systems utilize a

client/server architecture with a single client interface utilizing multiple server nodes

made up of render or data servers for rendering and analysis. ParaView and VisIt share a

common code base called the visualization toolkit, VTK. These real-world applications

often do not have the latest compositing or rendering algorithms implemented, nor do they

have application specific optimizations. As node counts are scaled up, a larger percentage

of time is often devoted to disk and network I/O than rendering a single image as shown by

Childs et al. [16]; however, when interacting and exploring data, users may be rendering

hundreds or thousands of frames and their rendering times for viewing isosurfaces were

noninteractive. Our end goal is to utilize a rendering method which can achieve interactive

rendering rates with software rendering on both GPU and compute clusters.

Massive polygon rendering presents challenges for traditional rasterization methods

such as those used in VTK. OpenGL relies on hidden surface removal with a simple

9

Z-buffer test to determine visibility. This not only requires transforming vertex coordinates

but also unnecessarily shading fragments that may be rendered back-to-front along the

camera axis. When dealing with millions of triangles, many of which are likely obscured

behind other triangles, these unnecessary transforms and shading operations degrade

performance, resulting in a linear or greater decrease in speed in relation to the number

of triangles. With rasterization there are two main methods of gaining better scaling

performance: occlusion techniques and surface approximations. Occlusion methods

include spatial subdivision schemes, which are used for occlusion culling hidden triangles

that lie behind other triangles or are not in the view-frustum. A simple but common

occlusion technique is back-face culling where triangles facing the other direction are

simply ignored with a simple dot product calculation. For more advanced occlusion

culling in scenes with higher depth complexity an acceleration structure’s nodes are

traversed front-to back and rendered in a multipass rendering process. If the current

Z-buffer’s values are less than the Z value of the next node, then that node is occluded and

can be skipped. Implementations of these methods include the hierarchical Z-buffer [28]

and the hierarchical occlusion map [87] which optimize performance through hierarchical

Z-Pyramids. Prioritized-layered projection also provides an approximate version for

instances where exact results are not required [45]. GPU optimized occlusion queries

allow for querying faces of the acceleration structure, which may lie behind the current

depth value stored in the Z-buffer in hardware [7].

Model simplification becomes essential for GPU rasterization to scale with large

geometry counts. Rendering large amounts of subpixel geometry is slow and often

unnecessary when multiple polygons are shading a single pixel. One method for looking

at large datasets remotely is to use levels of detail, LOD, techniques first proposed by

Clark et al. [18, 52]. Coarser levels of detail can be rendered for distant parts of the scene

[24]. For remote rendering, smaller amounts of data can be used by streaming in coarse

data and sending finer levels of detail over time [23]. Areas of the data immediately

around the camera are streamed in at high detail and areas in the distance are initially very

coarse. Over time the coarse areas become refined as more data is streamed in. This works

particularly well for data where large portions of the data are obscured behind other parts

10

of the scene, such as terrain rendering. The Gigawalk system combines occlusion culling,

hierarchical level of detail (HLOD), and view frustum culling to view large static scenes

[5]. Gigawalk reported a 30x increase in performance from the combination of techniques

over using just view frustum culling alone. Their system did not support dynamic loading

of out-of-core data sets and suffered from popping from the HLOD system. They also

had a noticeable loss in fidelity due to the HLOD system they were using. This method

was improved upon in the vLOD system by Chhugani et al. in both out-of-core rendering

and better fidelity in the LOD system by using precomputed visibility sets [15]. These

techniques have also been adapted to distributed-memory systems [83]. The GoLD system

by Borgeat et al. attempted to reduce popping artifacts from LOD transitions by using a

geomorphing technique; however, performance suffered as a result [8]. An inherent issue

with these HLOD systems is how to represent clusters of data as they take up less and less

screen space. At some point, even taken to the extreme this merely becomes rendering

clusters of objects as a single triangle or patch which does not necessarily give a good

representation of mixed material and surface properties. To ameliorate these problems,

point representations of geometry or sample based techniques can be utilized. Point based

techniques can represent triangles or clusters of triangles as points [50]. This method

makes very good sense for representing subpixel triangles but it is difficult to match

the same level of fidelity as a triangle representation [27]. Markus Gross discusses this

technique in detail in his book [30].

Mitra and Chiueh [58] developed a parallel Mesa software rasterization implementa

tion by running Mesa in parallel in the background through a serial interface. In order to

provide scalability they utilized compositing operations for each running instance of Mesa.

Nouanesengsy et al. [60] explored the current performance of Mesa software rasterization

on large shared memory machines using various compositing methods. Their tests showed

that nearly-linear speedups could be achieved with the number of threads using a hybrid

sort-first and sort-last compositing step; however, running multiple instances of ParaView

by spawning additional MPI processes failed to scale well in their tests and we focus on

performance in existing real-world programs. Howison et al. [33] found that running

with a single MPI process with 6 threads in a hybrid parallelism setup was significantly

11

faster on a 12 core node than an MPI only approach. Therefore, we focus our scaling

studies (Chapter 3) on performance timings from a single running program instance, and

use multithreaded hybrid parallelism to achieve scaling in our ray tracing implementation.

2.1 Parallel Ray Tracing in Scientific Visualization
Ray tracing on clusters for visualizing large-scale datasets is a well developed field

with several benefits over brute-force rasterization methods without advanced techniques.

Occlusion culling is gained through the use of visibility tests utilizing acceleration

structures. Subpixel geometry is subsampled in screen-space, negating the necessity

for geometry simplification at the cost of aliasing. Ray tracing performance has been

shown to scale very linearly from one to hundreds of processors on large shared-memory

machines [63]. Tracing rays scales well with the amount of geometry in the scene due

to the logarithmic acceleration structures used [54, 79], for which we use a packet based

traversal of a Bounding Volume Hierarchy, BVH [78]. Cluster based ray tracing methods

for distributed-memory systems can split up data and rays by image-space or data-space.

The former relies on rays in spatially coherent portions of the image space requesting the

same data as their neighbors. When a node needs a new part of the scene, portions of data

are paged in on demand. In highly efficient implementations, the same page faults used

by the operating system can be remapped to network requests instead of disk reads [20].

Ize et al. expanded upon this work by creating a version of the Manta ray tracer which

can run on distributed memory systems by paging in and out cache-aligned BVH nodes

in a ray-parallel fashion [38]. Ray parallelism is efficient for out-of-core rendering but

not possible within VisIt and ParaView’s sort-last distribution and compositing, which

distributes data independent of the view. This limitation can lead to suboptimal work

distribution with respect to the view which limits rendering performance; however, we

have found that this can still provide interactive frame rates for many of our tests while

efficiently distributing data analysis and loading.

R-LODs presented a similar system that built LOD representations into a kd-tree,

which led to large performance gains in some cases over not using an LOD system;

however, their render times for a 128 million polygon dataset was still often subinteractive,

12

attaining interactive performance only when zoomed out when approximate representa

tions of the data were used [85]. Another limitation of their system is that secondary rays

could not always be handled, especially refraction and nonplanar reflections. Stephens et

al. showed that the Manta ray tracer could achieve real-time frame rates with shadows on

larger datasets such as the Boeing 777 by using large shared-memory systems [72]. Their

system also displayed the speed at which semitransparent surfaces could be rendered with

ray tracing which is often a difficult and slow process in rasterization methods which

require depth-ordered rendering of scene geometry. Their method did not rely on LOD

techniques and showed up to 93% efficiency when scaling up to 60 processors resulting

in superior image quality and better performance than the Far Voxels technique. This

was a clear advantage of using a software ray tracing system when geometry counts are

very large, as out-of-core rasterization techniques on the GPU can be very complicated,

slower, and be prone to approximation errors as seen in various point-based or voxel-based

surface representations.

Current implementations and scaling studies of ray tracing employ a custom rendering

framework as opposed to standard visualization tools such as ParaView or VisIt. Marsalek

et al. recently implemented a ray tracing engine into a molecular rendering tool for

advanced shading effects for the purpose of producing publication images [56]. We have

integrated a ray tracing engine into a general purpose visualization tool that can use

advanced rendering effects; however, we focus on ray tracing’s logarithmic performance

with large data rendering as the primary motivation for this dissertation. The Manta

real-time ray tracing software provides an efficient rendering solution, but is not a full

featured visualization package [72]. Thus, combining CPU rendering using Manta is

ideal when combined with other cluster based visualization tools such as ParaView and

VisIt, which handle geometry creation, analysis, data distribution, and image compositing

within tools which users are accustomed to.

2.2 OpenGL Interception in Scientific Visualization
There have been many ray tracing implementations developed for high performance

parallel rendering; however, these are often created for a specific paper and only exist as

13

a one-off implementation or an API which must be integrated into tools to be of much

use to computational scientists. RTRT was developed for interactive ray tracing but was

never expanded into an API for use as a rendering engine in other programs [79]. Wald

et al. later introduced a ray tracing API called OpenRT which gave an API interface

similar to OpenGL and was shown to scale well using commodity PC clusters [77]. The

approach discussed in Chapter 4 intercepts OpenGL API calls from existing programs,

instead of creating another API which requires developers to rewrite their visualization

implementation. This enables ray tracing to be used in a program-agnostic fashion without

having to develop custom renderers for each visualization tool.

OpenGL interception is a common method used for debugging and profiling OpenGL

applications with programs such as glTrace [70]. WireGL and Chromium took OpenGL

interception a step further by modifying the behavior of the OpenGL calls into a stream

processing framework to support functions such as distributed rendering with sort-first and

sort-last compositing operations [34, 35]. While there are implementations of Chromium

that alter the rendering behavior of OpenGL, no ray tracing support has been integrated

into such a system. The main contribution outlined in Chapter 4 is the presentation of

a ray tracing implementation using OpenGL interception with interactive performance

and advanced rendering effects for scientific visualization applications. Presently this

implementation only translated fixed-function OpenGL commands and does not support

shaders. Parker et al. developed RTSL [64], a shading language for Manta which was

largely a superset of GLSL. This provides the potential to translate GLSL shaders for use

with GLuRay; however, such an implementation was not explored for this dissertation. A

scaling study is also presented in Chapter 4 which demonstrates GLuRay performance

scaling over multiple nodes with ParaView using data-parallel work distribution.

2.3 Computational Photographic Visualization
Computational schlieren images of three-dimensional fluid flows have been computed

noninteractively using a ray tracing method by Anyoji et al. [2, 73]. Such techniques pro

duce an accurate image but are not ideal for data exploration. A nonphotorealistic method

for producing schlieren-like images using line of sight ray traversals for visualization was

14

recently introduced [75], but without calculating light paths from refraction. In order to

reproduce an accurate physically-based representation, tracing refracted light trajectories

is necessary for flows with large variations in refractive index such as shock waves or

flows with multiple materials. Ray tracing also allows for the reproduction of the optics

used in an experimental setup. The inverse of the problem was achieved by Atcheson et al.

[4] by using schlieren photographs to compute a three-dimensional scalar field; however,

we focus on visualizing simulated flows.

Algorithms for computing caustics have been developed over the past two decades

in the computer graphics community. Photon maps were introduced as a method for

computing caustic and global illumination effects offline [39]. Photon maps were later

extended to volumetric photon mapping to compute scattering effects and caustics through

inhomogeneous media [31, 40]. Although these offline methods are not directly applicable

to our work, they present filtering techniques for reducing noise in regions of low photon

density as well as equations for computing light paths. Tracing light refraction through

volumes at interactive rates was introduced with Eikonal rendering, which relied on

precomputing wavefront propagation through a grid [36]. Eikonal rendering relies on

a long precomputation step that is not feasible for schlieren systems where the light

source changes relative to the volume whenever the camera rotates. Sun et al. presented a

technique [74] that calculated single-scattering effects through a volume. Viewing rays

were then computed as a separate pass for interactive light refraction. In a typical schlieren

setup the film plane is directly facing the light source, so computing a separate pass for

light scattering and viewing rays is unnecessary. Chapter 5 introduces a novel method

for using ray tracing to reproduce both schlieren and interferometry imagery. Scattering

effects can play a role in some flows but Chapter 5 focuses purely on refraction in media

such as air.

CHAPTER 3

PARALLEL RAY TRACING IN EXISTING

VISUALIZATION TOOLS

As computing power increases, the computational sciences are continuing to provide

ever larger datasets that are challenging the brute-force rasterization architectures present

in the most common open-source scientific visualization tools such as ParaView and

VisIt. Ray tracing presents a rendering solution capable of attaining interactive rendering

rates on supercomputing platforms, which often lack rendering hardware, through the

efficient use of acceleration structures. Integrating ray tracing into existing widely used

tools demonstrates the potential of using ray tracing as a primary rendering method for

scientific visualization on emergent compute clusters for large-scale in situ renderings.

We chose to implement our system on top of the Visualization Toolkit, VTK, to create

an intermediary layer which could be implemented across multiple programs that use

VTK such as ParaView and VisIt with limited modifications. In this chapter we show

that our implementation achieves interactive rendering rates for large data sizes, scales

within existing work, and data distribution methods on multicore machines and across

distributed-memory clusters, and achieves high-quality renderings without requiring the

use of external rendering tools.

3.1 Rendering Methods
Our approach to comparing visualization methods on large distributed systems was to

evaluate three rendering techniques within two commonly used visualization applications

(ParaView and VisIt): hardware-accelerated rasterization, software-based rasterization,

and software-based ray tracing. Each method has its advantages and drawbacks.

Hardware-accelerated rasterization has proven to be fast for modest data sizes and is

widely used and heavily supported. The disadvantages are the requirement for additional

16

hardware, small memory sizes on the GPU, and, due to the nature of rasterization,

rendering times that scale linearly with the amount of geometry in the scene. Advanced

rasterization techniques such as hierarchical level-of-detail methods, HLOD, are not

currently implemented in widely used visualization tools such as ParaView or VisIt.

Therefore, we do not consider them in our study. ParaView does support a single level

of detail which can be toggled when the user interacts with the camera; however, this

degrades the quality of the entire model and thus is not considered for our tests.

Software rasterization through Mesa is a build option for both ParaView and VisIt

and is a common method used on supercomputers when GPU hardware is not available.

It offers the same support for programs that would normally use hardware-acceleration

methods. The main drawback of this method is speed, as Mesa remains single threaded

and delivers very slow performance even for low geometry counts. A benefit over

hardware-accelerated rasterization, however, is that it does not require additional graphics

hardware and can utilize large system (CPU) memory.

Software ray tracing provides a rendering method that scales in k * O(log(n)) where

k is image size and n is the number of polygons. This scaling performance assumes

nonoverlapping polygons and a well-balanced acceleration structure. Because of the

screen space dependent performance with logarithmic scaling to geometry, ray tracing

provides efficient performance which scales well with increasingly large geometry counts,

especially for subpixel geometry. Using an acceleration structure to test ray intersections

also allows easy and straightforward visibility tests where only the nearest geometry needs

to be shaded once for each pixel. Hardware ray tracing also exists, but we chose to focus

only on software ray tracing. We have implemented ray tracing as a rendering mode for

polygon data within ParaView and VisIt.

3.2 Ray Tracing Implementation
ParaView and VisIt are open-source visualization frameworks designed for local

and remote visualization of a large variety of datasets. They are designed to run on

architectures from a single PC desktop up to large cluster arrays using client/server

separation and parallel processing. VisIt operates with a client/server architecture to run

17

multiple servers for data analysis and rendering on large clusters. Server/data separation

allows ParaView to be broken into three main components: data servers, render servers,

and a client [12]. This separation allows for varying numbers of servers to be used for data

or rendering depending on the need. Much of the actual rendering code is based around

the Visualization Toolkit (VTK) while much of the client/server model is unique to either

ParaView or VisIt. This common base allows us to to implement ray tracing using the

open-source ray tracer Manta in VTK and integrate the VTK ray tracer into ParaView and

VisIt with only minor modifications specific to each program. Manta was chosen as a

ray tracing engine for its open source distribution, real-time rendering performance, and

use of advanced acceleration methods such as packet tracing and parallelized bounding

volume hierarchy, BVH, builds.

3.2.1 Data Distribution

ParaView and VisIt both utilize client/server models for running on large, distributed-

memory systems. VisIt launches a viewer client and multiple servers which are used for

data loading and rendering. A single server processes is responsable for communicating

with the viewer. ParaView’s data server abstraction layer differs slightly by allowing for

operations such as processing data on one node and sending the resulting geometry to

another node or multiple nodes for rendering instead of each server processes devoted

to loading, processing, and rendering a portion of the data. This allows for changing the

data processing and rendering pipeline across heterogeneous architectures for balanced

workload distribution when more or fewer rendering servers are needed than data servers.

When rendering on multiple nodes, sort-last compositing is required to combine images

from multiple nodes. Data-parallel data distribution is good for rasterization, but not

necessarily optimal for ray tracing where render time is dependent more on work dis

tributed over the viewing frustum. When zoomed out over an entire model, distributed

cluster-based ray-tracing often produces a sufficiently balanced workload distribution;

however, if a small portion of the data is taking up the majority of screen space then the

majority of work is being done by a limited number of nodes which contain data within

the viewing frustum. Despite this, we have found our solution within the existing work

18

distribution to be usable in practice as shown in section 4.2. Distributing the compositing

work across a cluster is vital for efficient cluster utilization. For this we use a binary-swap

[53] implementation and use the IceT compositing library with default settings, which can

be enabled for both VisIt and ParaView. binary-swap is a parallel compositing algorithm

that exchanges portions of images between processes to distribute the workload. Because

binary-swap composites the entire image, empty portions of the scene are needlessly

composited together. IceT allows for variably sized compositing windows, encapsulating

only portions of the scene which contain rendered geometry. This has the potential to

vastly decrease the amount of image data sent across the network for our applications as

more nodes are used for rendering.

3.2.2 Synchronization

The Manta ray tracing library was originally designed for large shared memory

systems. To achieve the highest possible frame rate possible, multiple rendering threads

are launched on a single process and the renderer sequentially renders frames as fast as

possible. VTK was designed for event driven rendering where one frame is rendered

after user interaction. The threaded nature of Manta also presented a thread safety issue:

Manta’s state can only be accessed and modified at certain points in its pipeline through

callbacks called transactions. In order to safely halt Manta between user interactions,

synchronization was added through semaphores in the display phase. While each render

thread renders the scene, the first thread displays the previously rendered frame and then

continues ray tracing in order to utilize all threads. At the end of a rendering step, the

threads are synchronized and state is updated. This is where state can safely be accessed

and modified outside of Manta through transactions. The default Manta behavior results

in a one frame delay between rendering and display of the current scene because of the

display synchronization.

The rendering architecture of Manta was modified slightly to have the image display

outside of the rendering stage as a separate synchronization step, which is only released

upon a render event in VTK. This eliminates unnecessary rendering before or after

a render event. A rendering call triggers Manta to release its rendering lock in the

19

display phase, process transactions, and render a frame, which is then copied back to the

vtkRenderWindow instance. Due to the differences in how an image is stored between

VTK and Manta, this requires an image conversion step. ParaView or VisIt then display

the rendered image or send the image out for compositing if it is being rendered remotely

through a cluster.

3.2.3 Depth Buffer

Sort-last rendering requires a depth buffer in order to determine an ordering for

overlapping geometry in the compositing step. In order to work inside VTK, Manta

required a depth buffer to be implemented, ray tracing typically does not require one.

Depth values, or rather closest hit values, are typically kept per ray, which meant that for

our implementation all that was needed was a separate buffer and a simple write operation

for each ray. This results in additional memory overhead with one float per image pixel

for the buffer.

3.2.4 Acceleration Structures

Ray tracing uses acceleration structures to compute hit points efficiently. This means

that a new acceleration structure needs to be built with each change in geometry within

VTK. Generating a new acceleration structure each time a new vtkActor is added or

updated in the pipeline with a custom vtkActor override facilitates this. For very large

scenes consisting of millions of triangles this can take several seconds of precomputation

time. The amount of time also depends on the acceleration structure used. Grid based

acceleration structures can be faster to update; however, we chose to use a Bounding

Volume Hierarchy, BVH, as it gave similar performance to a kd-tree while benefiting from

faster build times [37].

3.2.5 Color Mapping

In Manta, assigning a per-vertex color would require creating a material for each

triangle which would entail a large memory overhead. There was also no support for

per-vertex materials, thus, we chose to implement colors through a 1D colormap. In

Manta, texture coordinates are weighted by the barycentric coordinates of the interior

20

point as a weight. This provides a smooth coloration and little overhead since texture

coordinates are computed for each intersection point even for constant colors. Both VisIt

and ParaView support texture colormaps which are implemented through the same texture

colormap used for singular color values in Manta.

3.2.6 VTK Factory Overrides

The Manta context is created in VTK through a custom factory object which overrides

many common VTK objects. A vtkRenderWindow overrides other windows to keep track

of updates to image size. A vtkPolyDataMapper keeps track of updates to geometry which

then sends a group of polygons, usually a triangular mesh, to the active vtkActor. vtkActors

are overloaded to track material properties and to maintain acceleration structures needed

for rendering. When an actor is updated, so is its corresponding acceleration structure.

Unfortunately, because of the differences in how meshes are represented between Manta

and VTK, there is currently additional memory overhead due to geometry duplication.

Lights are overloaded with custom vtkLight objects which are stored as either directional

or point lights. Ambient occlusion is treated as an ambient light source in Manta, and

so it is added to the actor through custom options specific to the application. Finally, a

custom vtkRenderer synchronizes the Manta display with VTK render calls and sends

image data to the active window for compositing or display. This integration allows for

Manta to behave identically to the OpenGL render engine for polygonal rendering within

VTK. Figure 3.1 shows an isosurface of the Richtmyer-Meshkov instability rendered

with OpenGL on the left and Manta on the right, using ambient occlusion with the same

material and camera information provided by VTK.

3.2.7 ParaView and VisIt

VisIt and ParaView are both built on top of the VTK framework which allowed our

VTK implementation to integrate into their rendering pipelines with little modification.

Activating factory overrides to use the Manta ray tracer is handled through ParaView’s

plugin interface or Visit is commandline interface. These mechanisms allow for ease of

activating or deactivating the Manta renderer; however, both implementations require

closing other rendering windows before launching Manta. A Manta IceT rendering pass

21

was created for ParaView that sends image buffers directly to IceT for faster compositing.

This modification has not yet been transfered over to Visit is implementation and instead,

VisIt sends image data to the active render window which currently is not a custom Manta

version for VisIt; this can limit performance in some cases. A custom implementation

of some annotation objects, such as axes, were overridden to prevent them from sending

significant amounts of geometry every frame; however, these could be reimplemented to

maintain their geometry from frame to frame. In ParaView, most polygonal rendering

modes are supported. Volume rendering is not currently supported in Manta-enabled

VisIt or ParaView. While implementing Manta-based volume rendering for VisIt and

ParaView is highly desired and implementations for this already exist within Manta, a

VTK integration remains as future work.

3.2.8 Advanced Rendering

Ray tracing allows for additional scene and material properties from those previously

found in VisIt and ParaView. These additional options include such materials as dielectrics

or transparencies as well as multisampling and threading options to specify the number

of threads the ray tracer will launch for rendering. The result of such rendering options

is shown in Figures 3.1, 3.2, and 3.3. Figure 3.2 displays an aluminum ball hitting an

aluminum plate with shadows and reflections. Figure 3.3 shows an isosurface of the RM

dataset rendered with Manta within VisIt. Ambient occlusion provides additional insight

to the viewer by shading by occlusion from neighboring polygons, pulling out features

at the surface of the isosurface. Advanced shading effects such as shadows, ambient

occlusion and reflections can only be rendered when running on a shared memory system

because of the need to access global scene geometry. VTK has no way to handle fetching

distributed data for such information in the middle of a rendering. Ambient occlusion

will work with local data; however, due to data distribution regions bordering blocks of

data will be missing occlusion information. This could be resolved by duplicating borders

of data blocks for each node and only considering polygons a small distance from ray

hit points. This would require rewriting the data distribution within ParaView and was

beyond the scope of this work. In order to expose these options to the user, GUI elements

22

were added to ParaView. These options are expected to also be included with VisIt in a

future release.

3.3 Results
We evaluated the rendering performance of various methods on Longhorn, an NSF

XD visualization and data analysis cluster located at the Texas Advanced Computing

Center (TACC). Longhorn has 256 4X QDR InfiniBand connected nodes, each with 2

Intel Nehalem quad core CPUs (model E5540) at 2.53 GHz and between 48-144 GB

of RAM. Each node of Longhorn also has two NVidia FX 5800 GPUs. We used three

datasets of varying sizes: a synthetic wavelet dataset, and a dataset from Los Alamos’s

plasma simulation code VPIC, and a timestep from a Richtmyer-Meshkov instability

simulation rendered with two different views. We used ParaView 3.11 and VisIt 2.4 for

all timings with three different rendering modes: Manta, an open-source ray tracer, Mesa,

a software OpenGL rasterizer, and hardware-accelerated OpenGL. ParaView and VisIt

were built with the IceT library and use Mvapich2 1.4. Additional code for timing was

added for ParaView and VisIt. Mesa is not multithreaded nor the fastest available software

rasterization package; however, it is the only one supported internally within ParaView and

VisIt and is commonly used when GPUs are not available. The OpenGL implementation

within VTK is also a brute-force implementation with no advanced acceleration methods

used. This study is therefore not a comparison of the potential of these algorithms, but

rather a real-world study of their existing performance within common visualization tools.

To test the scaling of these packages we ran a series of weak and strong scaling studies up

to 128 nodes on Longhorn.

3.3.1 Datasets

• Richtmyer-Meshkov Instability We created a polygonal model from an isosurface

of time-step 273 of the Richtmyer-Meshkov instability (RM) simulation, resulting

in 316 million triangles. To better understand the behavior of the data distribution

in ParaView and VisIt, we have rendered both a zoomed out view of the RM dataset,

RMO, seen in Figure 3.4(a) and a closeup view, RMI, in Figure 3.4(b). The closeup

view should expose the behavior of sort-last rendering when the data being rendered

23

on screen belongs to only a small portion of the overall nodes.

• VPIC Visualization Using a single time-step from the VPIC plasma simulation,

we calculated an isosurface and extracted streamtubes that combined, totaled 102

million polygons. A view of this data set can be seen in Figure 3.4(c).

• Wavelet The wavelet triangle dataset is a computed synthetic dataset source

released with ParaView. We generated a 2013 dataset and then calculated as many

isosurfaces as needed to produce a certain quantity of triangles. The isosurfaces are

nested within each other. Images produced with 16 million triangles are shown in

Figure 3.4(d).

3.3.2 Cluster Timings

To test the performance of the three rendering modes with large-scale data we

conducted a series of timing studies on the rendering cluster Longhorn that look at how

performance behaves with varying numbers of cluster nodes using a single process per

node of ParaView and VisIt. A window size of 10242 was used with offscreen rendering

for both ParaView and VisIt. We investigate two types of performance: strong and weak

scaling. A strong scaling study keeps the problem size constant while increasing resources

to solve the problem. As the number of nodes increases, the data being loaded and rendered

per node decreases. A weak scaling study keeps the problem size constant per node as

the number of nodes increase. The total frame time is dominated by a combination of the

rendering time and the compositing time where ttotai = tcomposite + trender. An alternative

method would be to have a frame delay, where the last frame is displayed and thus the total

time would be ttotal = max(tcomposite, trender). However, this would require a reworking of

the VTK pipeline in order to be able to push rendered frames after user interaction was

finished and was not implemented for this study.

In order to determine bottlenecks from compositing, Figure 3.5 displays total frames

per second using binary-swap running in ParaView with an empty scene to show perfor

mance where the entire image from each node must be composited. With binary-swap,

pixels generated by rendering empty portions of the scene are needlessly sent over the

network. To show a more practical example, frames per second from the VPIC dataset

24

using IceT are presented. The IceT frames per second were calculated as the inverse of

the reported composite and render times for the client node on processor zero subtracted

from the maximum rendering time across all nodes. From these runs we can see that on

the InfiniBand cluster used in our testing, the worst performance we could expect with

binary-swap is over 20 fps on 128 nodes; however, in some cases IceT achieves nearly

100 fps by only compositing small portions of the image. Our goal is then to achieve

rendering speeds which can match or exceed the maximum binary-swap compositing

times.

3.3.3 Weak Scaling

In a weak scaling study the problem size scales with the processor resources. For our

testing, we conducted a weak scaling benchmark studying rendering times for a scientific

dataset. Figure 3.6 shows a weak scaling study conducted using the Richtmyer-Meshkov

instability zoomed out, RMO, dataset and scaled up by adding additional isosurfaces

to increase the number of polygons as more nodes were added. In total, the polygon

count ranged from around 49 million triangles for a single node up to over 1.6 billion for

128 nodes. Hardware and software-based OpenGL times remain above 1 second while

ray tracing times decrease with more nodes. This shows that the rendering time of the

brute-force rasterization algorithm is fairly constant with geometry count regardless of

the distribution of the data in the scene. Our ray tracing implementation, however, ignores

occluded geometry and is bounded by k * log(n). Empty space is easily skipped over

by tracing rays in packets and testing the bound box of the scene. With weak scaling,

geometry count, n, remains fairly constant while the effective rendered area, k , shrinks

as the scene is broken up to be distributed among more nodes. It is not clear how the

GPU performance could replicate this, except with the use of an intelligent hierarchical

level-of-detail, HLOD, algorithm that averages subpixel geometry in a preprocessing

step, such as with GigaVoxels [19]. The maximum rendering times are shown with the

Max designation in Figures 3.6-3.10. These times display the average of the maximum

times over all the nodes for each run. Ray tracing displays a large difference between

the average and maximum render times as the data-parallel scene distribution is not ideal

25

for ray tracing and some nodes finish significantly faster than others. In cases where we

achieve perfect work distribution the average and maximum average numbers would be

identical and it is clear that increasing the number of nodes increases variance between

render times. Manta displays superior performance on a single node as it uses a BVH to

accelerate over large amounts of geometry and skip over occluded geometry.

In our tests the main performance bottleneck for the hardware-accelerated rasterization

renderings appear to be due to a single display list being compiled over immediate

mode rendering calls. This means that updates to a color require rebuilding the display

list. Display lists can easily be disabled; however, this results in a drop in rendering

performance. We found that a single display list resulted in poor performance with

large data counts and in some cases would even crash the program requiring immediate

mode rendering to be used for large polygon counts. Splitting up the display lists in

our tests showed over 10x performance increases in some cases; however, results varied

across different hardware and drivers. Using vertex and color buffers would result in

significantly fewer draw calls per update which could drastically decrease rendering times.

However, this would not affect the asymptotic runtime of the underlying algorithm and

these methods are not used in released VisIt or ParaView versions.

3.3.4 Strong Scaling

Figure 3.7 shows strong scaling of the 316 million-triangle contour from timestep 273

of the Richtmyer-Meshkov instability simulation. At a single node the benefit of the BVH

in Manta can clearly be seen as the ray tracer attains several times the performance of the

brute-force OpenGL implementation, rendering in about .1 seconds with just two nodes.

VisIt is slightly slower than ParaView in many of our runs. Through testing we

found this is likely because VisIt uses a texture map for colors instead of a single call to

glColor as in ParaView and ParaView uses triangle strips whereas VisIt does not. Manta

in VisIt does not scale as well in higher node counts as our ParaView implementation

because our current VisIt implementation uses the current vtkRenderWindow rather than

a custom Manta render window which limits performance to around .05 seconds from

calls to glDrawPixels to copy the image buffer into the OpenGL context. Since the

VisIt bottleneck results in a maximum of about 20 fps, which is the compositing limit of

26

binary-swap, this is not a significant issue that inhibits interactivity, and one that is likely

to be fixed in a future update.

Figure 3.8 displays strong scaling numbers for a zoomed in view of the RM dataset,

RMI, as seen in Figure 3.8. While this has little to no affect on the rasterization algorithm,

in ray tracing this results in different scaling performance. While the dataset is broken

up and distributed across nodes, only a few of those nodes actually have a portion of the

visible data. The ray tracer was already culling out the nonvisible data when the entire

dataset was rendered on a single node. Thus, roughly the same amount of visible data

was being rendered on a single or small number of nodes. The average render times drop

similarly to the RMO render times; however, the maximum render times are generally

worse for the RMI renderings than for the RMO renderings at 8, 16, 32 and 64 nodes.

This increase in maximum render time shows the effects of data-parallel rendering work

distribution as a few nodes do more work. The maximum time eventually drops, which is

likely when the data subsets per node were small enough to split up most of the visible

geometry. Ize et al. [38] reported roughly linear scaling behavior through ray-parallel

work distribution up to 60 fps until approaching a bottleneck introduced by sending

pixels over the InifiniBand network at around 127 fps. A reworking of ParaView’s work

distribution could show similar scaling performance; however, our timings suggest that

a data-parallel implementation within the existing framework scales to interactive rates.

Figure 3.9 shows timings for the VPIC dataset which is made up of 102 million triangles.

In this dataset, the GPU accelerated OpenGL render times for ParaView achieve below

the .1 second mark needed for 10fps interaction, but only at 64 to 128 nodes when the

effective triangle count per node is around a million triangles per node.

A contour of a wavelet was created to test performance with occluded geometry in a

predictable fashion through 27 overlapping isosurfaces. While the RM and VPIC datasets

contain a lot of overlapping geometry, each uses a single isosurface. Performance for the

16 million triangle wavelet dataset is shown in Figure 3.10. Manta rendering times are

below .1 seconds on a single node and rendering time drops significantly with additional

nodes; however, the rendering times appear to reach a bottleneck at eight nodes which

is showing the bottleneck introduced from rendering a mostly empty scene and copying

27

image buffers from Manta into VTK. Some spikes in timings are seen at higher node

counts, this is likely from a single node or a few nodes running slower due to the high

maximum render time at 128 nodes for ParaView Manta.

3.4 Summary
We have demonstrated through our timing results that ray tracing implemented into

the two most widely used open-source visualization tools in scientific visualization

presents an alternative rendering implementation that often outperforms existing hardware

and software rasterization implementations while also enabling advanced rendering

effects. Rendering on compute clusters, which before may have utilized Mesa software

rasterization and failed to achieve interactive rendering rates, can now be used interactively

with our system, and in many cases, enhancing data exploration for computational

scientists. This implementation is especially promising for in situ visualization where

rendering is conducted on the same compute clusters as simulation that often lack hardware

acceleration.

28

Figure 3.1. In the top row, we show renderings of the RM dataset with OpenGL on
the left and Manta on the right using ambient occlusion and reflections. In the bottom
row, VisIt is shown rendering a molecule plot with OpenGL on the left and an enhanced
rendering with Manta on the right.

29

Figure 3.2. Manta rendering within ParaView on a single multicore machine using
shadows and reflections, showing a dataset of the impact of an aluminum ball on an
aluminum plate.

30

H Winduu 1

| | [0 □ i§] [U f a m e b ™ ™ h I k I l f s ' f < * H ® 1!T ”
Uf¥^ +» +. f e s \ > V 9 I I I

Figure 3.3. Manta rendering a version of the RM dataset within VisIt. Ambient
occlusion provides additional insight to users by adding occlusion information from
nearby geometry.

31

Figure 3.4. The datasets used for benchmarking. RMI: RM isosurface zoomed out (a),
RMI: RM isosurface closeup (b), VPIC dataset with isosurface and streamlines (c) and a
wavelet contour with 16 million triangles (d).

32

Compositing benchm arks for binary-swap and IceT

nodes

Figure 3.5. Frames per second from compositing using the binary-swap and IceT reduce
compositors for a 10242 image from 2 to 128 nodes.

Render Time Weak Scaling for RMO

nodes

Figure 3.6. Weak scaling timings of an isosurface of the RMO dataset in ParaView.
Geometry is added with each additional node so that the geometry per node remains
roughly constant.

se
co

nd
s

e
se

co
nd

s

33

Render Time Strong Scaling for RMO

nodes

3.7. Strong scaling timings of an isosurface of the RMO dataset.

Render Time Strong Scaling for rm_zoomed_in

nodes

Figure 3.8. Strong scaling timings of an isosurface of the RMI dataset.

se
co

nd
s

e
se

co
nd

s

34

Render Time Strong Scaling for Daughton

1000

100

10

1

0.1

0.01

1 2 4 8 16 32 64 128

nodes

3.9. Strong scaling timings of the VPIC dataset.

Render Time Strong Scaling for Wavelet

100

10

1

0.1

0.01

1 2 4 8 16 32 64 128

nodes

Figure 3.10. Strong scaling timings of the wavelet dataset.

CHAPTER 4

RAY TRACING THROUGH OPENGL

INTERCEPTION

4.1 Interception Implementation
In the previous chapter we demonstrated that ray tracing integrated into common visu

alization tools presents a workable interactive rendering solution with many advantages

over the existing rendering pipeline in terms of speed and rendering quality. Developing

these implementations for each visualization tool is often a daunting development effort

and updates to the tools often require considerable modifications to the the ray tracing

implementation. Furthermore, some visualization tools such as EnSight are not open-

source and thus, modifying the rendering back-end is infeasible. We therefore present a

program-agnostic implementation of OpenGL using ray tracing, GLuRay, which does not

require code modification by interpreting calls to the OpenGL library. With GLuRay, CPU

ray tracing in visualization tools is a scalable, interactive, and high quality alternative

rendering solution which can currently be used across a wide range of tools with no

additional development effort by simply linking with a different library.

4.1.1 Intercepting OpenGL calls

GLuRay operates as a ray tracer that runs with existing OpenGL programs. Imple

menting GLuRay required creating a false OpenGL library and dynamically linking it

with a host program at run-time using LD.PRELOAD or dlopen. This library maps calls

from the rasterization algorithm present in OpenGL into a ray tracer.

In order to capture OpenGL API calls, an OpenGL implementation was created based

on the official OpenGL specification. The open-source OpenGL debugging tool SpyGLass

was used as a basis for the program [55]. Some calls are ignored with no direct mapping

such as clearing the depth buffer, some are passed on to the system’s implementation

36

library such as GLX calls, and some are sent to GLuRay’s ray tracing implementation

for tracking state or rendering. Function calls, which are mapped to ray tracing, include

calls to modify transformation matrices, material properties, light properties, geometry

information, and rendering attributes. Calls which are passed to the normal OpenGL

library include calls such as glDrawPixels and glXSwapBuffers. When tracking these

calls, it helps to think of OpenGL as a state machine. Each call either affects some given

state or returns information about the given state. In OpenGL, this state affects how a

polygon is drawn each time a draw call is made using either glVertex calls in immediate

mode, glCallList for display lists, or a more modern glDrawArrays or equivalent call.

When ray tracing, multiple draw calls need to be avoided as much as possible as the

rendering time is k • O(log(n)), where n is the amount of geometry and k is the screen

size. For each draw call, the time complexity roughly linearly increases as k expands.

Therefore, each draw call is recorded and not rendered until the system determines a draw

is required for the entire scene. This is determined through calls to glXSwapBuffers,

glFlush, glFinish, or glClear depending on the application. This has the potential to break

certain behaviors such as depth-ordered blending modes; however, common uses of this

are for transparency which can be handled by using transparent material properties with

ray tracing and have not posed a problem for our current implementation.

In the serial implementation of GLuRay, rendering occurs as soon as a draw is required.

Acceleration structures are built as needed which are instanced with their transforms,

lighting information, material parameters, and geometry. When a render is requested

by the host program, the rendered scene is drawn into the OpenGL context, and data is

cleared as shown in Figure 4.1.

4.1.2 Asynchronous Rendering

To speed up interactive rendering, the option to add a one frame lag between rendering

calls was added. This alleviates the idle time of GLuRay waiting for rendering calls from

single-threaded applications. When a draw call is made, the previous frame is copied to

the framebuffer and returns. While the next batch of OpenGL calls are being made, the

multithreaded system is rendering and building acceleration structures for the previous

37

frame. For this we use a packet based Bounding Volume Hierarchy, BVH [78]. To further

decrease the time to build acceleration structures, an approximate BVH can be used

which builds faster but gives moderately slower runtime performance. This effectively

gives a variable which can be changed depending on whether a system needs to be more

interactive for updates to the underlying geometry or faster for changes to the camera.

This system is shown in Figure 4.2.

4.1.3 High Quality Rendering

Ray tracing allows for advanced effects such as global illumination, accurate reflec

tions, depth of field, soft shadows, transparency, and refraction to name a few. These

techniques can be handled through other means; however, our implementation provides

an intuitive implementation of the rendering equation using light rays which can be

used for publication quality images. Manta supports path tracing; however, it was not

used in our testing. Figure 4.3(a) shows GLuRay running within the visualization tool

ParaView rendering a Richtmyer-Meshkov instability with ambient occlusion. Camera

manipulations operate just as they would with OpenGL and material and light properties

are updated whenever OpenGL state changes are made in the host program. Not all

material properties can be provided through OpenGL alone, such as refractive indices of

glass objects or ambient occlusion options. Such additional material properties proprietary

to GLuRay are exposed through an external GUI application shown in Figure 4.3(b).

Changes are applied globally to all objects in the current scene. Modifications are

broadcast to running programs through TCP sockets over the localhost.

Figure 4.4 shows the comparison between a phong shading of a human skull and the

same rendering with ambient occlusion added. Ambient occlusion provides depth cues

not present in the phong shaded image by occluding light blocked by nearby geometry.

Perceptual user studies have validated that more realistic lighting using approximations of

global light can aid comprehension of complex features in data [29] when compared to

purely local lighting algorithms such as phong shading. Figure 4.5 shows a side-by-side

comparison of an OpenGL rendering within ParaView of an aluminum ball hitting an

aluminum plate and GLuRay rendering the same dataset within the same program using

38

additional effects. Data loading, interaction, and rendering calls, were all done within

the host program without noticeable differences to the user until special rendering modes

were selected. Figure 4.6(b) shows an astrophysics simulation of magnetic reversal in a

solar-type star rendered within VAPOR using GLuRay [10]. Ambient occlusion enhances

streamlines while reflections and soft shadows add to the realism of the rendered image

compared to only using local lighting as shown in Figure 4.6(a). Secondary rays are only

supported on shared-memory systems or GLuRay’s ray-parallel distributed mode which

was implemented similar to Ize et al. [38] but as of this writing this implementation only

works with replicated data on each node.

4.2 Results
We evaluated the rendering performance of GLuRay compared to hardware-accelerated

OpenGL and software OpenGL rendering using Mesa on a single node of the rendering

cluster Longhorn, an NSF XD visualization and data analysis cluster located at the Texas

Advanced Computing Center (TACC). Longhorn has 256 4X QDR InfiniBand connected

nodes, each with 2 Intel Nehalem quad core CPUs (model E5540) at 2.53 GHz and

48-144 GB of RAM. Each node of Longhorn also has 2 NVidia FX 5800 GPUs. We

used datasets of varying sizes, including a synthetic wavelet dataset, a dataset from Los

Alamos’s plasma simulation code VPIC, a simulation of magnetic reversal in a solar-type

star, and a timestep from a Richtmyer-Meshkov instability (RM) simulation rendered

with two different views. All images were rendered at 1024x1024 resolution with the

same settings and views across VisIt and ParaView, where applicable. ParaView, VisIt

and Ensight are built with Mvapich2 1.4 which is provided on Longhorn. ParaView was

run on Longhorn using taccxrun, pvbatch, and offscreen rendering for the GPU and Mesa

render timings. GLuRay was run using vglrun, except for the scaling study in which

case pvbatch, taccxrun and offscreen rendering were used. All benchmarked timings

for GLuRay have the same illumination model as OpenGL with local lighting only and

no shadows computed. Benchmarks were conducted with up to 6000 frames and an

initial warmup period. This shows an expected frame rate from camera exploration of

an isosurface which is the focus of our study, but not necessarily what may be achieved

39

when exploring isosurface values or other updates which require rebuilding acceleration

structures each frame.

4.2.1 Datasets

• Astrophysics The astrophysics dataset shows a sun-like star visualized with 48000

streamlines representing magnetic field lines [10]. Figure 4.6(a) shows a rendering

of this dataset in VAPOR.

• Wavelet The wavelet triangle dataset is a computed synthetic dataset source

released with ParaView. We generated a 2013 dataset and then calculated as many

isosurfaces as needed to produce a certain quantity of triangles. The isosurfaces are

nested within each other. Images produced with 16 million triangles are shown in

Figure 4.6(c).

• VPIC Visualization Using a single time-step from the VPIC plasma simulation,

we calculated an isosurface and extracted streamtubes that combined, totaled 102

million polygons. A view of this dataset rendered in ParaView can be seen in

Figure 4.6(d).

• Richtmyer-Meshkov Instability The Richtmyer-Meshkov instability simulation,

RM, presents a commonly used scientific dataset. We created a polygonal represen

tation with an isosurface from a single time-step resulting in 316 million triangles.

To understand the behavior of the ray tracer we have rendered both a zoomed out

view of the RM dataset, RMO, seen in Figure 4.6(f) and a closeup view in Figure

4.6(e), RMI. The closeup view shows a smaller portion of the overall data, however

it also takes up more screen space.

4.2.2 Scientific Visualization Programs

• VAPOR VAPOR is a visualization program developed by NCAR and designed

for oceanic, atmospheric, and solar research focusing on isosurfaces, volumes and

streamlines. Rendering is done through vertex arrays and display lists. Version

2.0.2 was used in our timing study.

• EnSight EnSight is an in depth commercial visualization package featuring volume

rendering, streamlines, glyphs, and contours to name a few of the rendering modes

40

supported. Rendering uses immediate mode rendering or display lists. Version 9.2

was used for our benchmarks.

• ParaView ParaView is a distributed visualization program built around VTK

and designed for use on large cluster environments. Rendering is done through

immediate mode rendering in OpenGL or display lists. For our tests we used the

most recent available version when our tests were conducted, 3.11.0.

• VisIt VisIt is a distributed visualization program built around VTK for use on large

clusters similar to ParaView. We utilized visit 2.4.0 for our tests.

4.2.3 Performance Scaling

We tested four visualization programs with three different rendering modes: software

ray tracing using GLuRay, OpenGL software rasterization using Mesa, and hardware-

accelerated OpenGL. Mesa is not multithreaded nor the fastest available software rasteri

zation package; however, it is the only one supported as build options with ParaView and

VisIt and is commonly used when GPUs are not available. The OpenGL implementation

within these programs is a brute-force implementation with no advanced acceleration

methods used. This comparison is therefore, not a comparison of the ultimate potential of

rasterization versus ray tracing algorithms, but rather a real-world study of their existing

performance in commonly utilized tools with real world problems.

To test the scaling of these methods, the synthetic wavelet dataset was scaled from 1 to

256 million triangles in ParaView and VisIt. The dataset is shown with 16 million triangles

in Figure 4.6(c). Mesa manages over one fps in ParaView only when the triangle count

remains under 2 million triangles. The hardware-accelerated OpenGL implementation

retains interactive performance at 1 to 2 million triangles in ParaView and VisIt; however,

performance degrades roughly linearly with triangle count. Slow GPU performance may

be due to ParaView’s rendering code which was built around immediate mode rendering

and accelerated through a display list. This leads to a large number of function calls for

the initial build and updates compared with using vertex buffers, which can specify large

numbers of vertices with a single function call. We found rendering performance to be

roughly a tenth of what it could be by using vertex buffer objects or multiple display lists

41

in our tests. Another issue is that display lists on Longhorn crash after about 32 million

triangles. This could be fixed by splitting up the data across multiple display lists in a

custom implementation; however, immediate mode rendering was used above 32 million

triangles for the hardware-accelerated runs in our tests as this method worked with an

unaltered code base. VisIt was slower than ParaView at lower geometry counts in our tests

due to increased overhead for each frame, which accounts for the slightly slower GLuRay

performance with VisIt. Additionally, VisIt uses a textured colormap which was set to

interpolate between two identical colors for our tests whereas, ParaView uses a single solid

color resulting in fewer OpenGL calls. GluRay shows sublinear performance degradation

when the triangle count increases, scaling well into the hundreds of millions of triangles

and only dropping below 5 fps past 128 million triangles in ParaView. Performance

sometimes decreases with increased geometry counts. This may be a caching issue

with some data sizes exhibiting better caching behavior than smaller triangle counts and

differences in background space around the datasets which can be easily culled by the ray

tracer.

Table 4.1 shows timings for various datasets over multiple applications. All times

are averages of several render frame times after a few initial warmup frames and include

all host program overhead which is the most accurate view of performance for an

asynchronous renderer. Seven render threads were used on an 8-core node, leaving

one main thread for processing OpenGL state changes and image display. GLuRay is

faster in all cases we tested with and achieves better than 300x speedup over Mesa for the

RMO dataset and a 62x speedup over the GPU implementation for VPIC in ParaView.

GLuRay has at least a 90x performance increase over Mesa while speedup over the GPU

ranges from 3.57x speedup rendering the astrophysics dataset in VAPOR, up to a 123.85x

speedup over the GPU rendering the RMO dataset when zoomed out in ParaView. The

RM dataset zoomed in and out achieved similar performance for each view when rendered

with the GPU. GLuRay and Mesa, however, have differing results between the two views

of the RM dataset. This is because the geometry took up a larger portion of the scene

in GLuRay when zoomed in, and in Mesa this is likely showing that clipping triangles

outside of the viewport gave a greater speedup for Mesa than for the GPU. GLuRay is

42

the only rendering method to achieve above 5-10 fps for interactive rendering for the

16M triangle wavelet dataset with 12.33 fps in ParaView and 9.69 fps in VisIt. GLuRay

achieved 5.02, 6.94, and 2.55 fps rendering the VPIC datasets in ParaView, EnSight, and

VisIt which was as much as a 62.75x performance improvement over OpenGL. Timings

of the same dataset are different across different programs as each program incurs its own

overhead as well as differing OpenGL calls per frame which affects the GPU, GLuRay,

and to a lesser extent, the Mesa performance. In the case of the astrophysics dataset with

VAPOR, only a 3.57x speedup was achieved over the GPU. This is likely due to VAPOR’s

use of vertex buffers instead of the glVertex calls used by the other programs which greatly

accelerated the GPU rendering.

The time to render the first frame is usually a combination of data loading, geometry

generation, passing data to GLuRay, and finally, acceleration structure construction and

rendering. Approximate acceleration structure builds decrease rendering performance

but speed up build times. The overhead from the acceleration structure builds using

approximate builds for the wavelet dataset is shown in Figure 4.7. This overhead varies

from less than a second at 1 million triangles to over a minute with 256 million triangles;

however, this time is still less than rendering a single frame with software Mesa in all

cases. Users of visualization programs typically generate an isosurface of data which is

then explored through transformations to the camera. A duration of 10 seconds moving

the camera with a render time of less than 0.1s per frame thus produces over a 100

rendered frames, making the time to process a single acceleration structure insignificant

in overall runtime. Cases where geometry is animated, however, could need to build

acceleration structures for each rendered frame which could limit performance for our

program. When textures or color arrays are used in OpenGL, updating colormaps does

not require rebuilding geometry. However, when colors are built into display lists those

display lists must be rebuilt, which requires acceleration structures to be updated.

The overall build and runtime behavior of GLuRay is shown through Gantt charts in

Figure 4.8, which illustrate a run from program start to end in ParaView with an 8 million

triangle wavelet dataset and a closeup of rendering behavior from the same run at the

bottom. There are nine rows in total, one for the main thread at the top and eight render

43

threads below. The empty space at the beginning shows program startup and idle GLuRay

threads waiting on the host program to send data through OpenGL function calls. The

brown line after data loading shows the host program making millions of OpenGL calls

such as glVertex and glNormal, which copy geometry into GLuRay. The following blue

bars display the construction of acceleration structures and then turn gold for rendering.

A lazy system was used for BVH construction, resulting in some of the rendering time

being used for additional BVH processing which can be seen in the initial setup phase. As

shown in the Gantt chart, the time to build acceleration structures and setup the first frame

in the rendering threads is roughly equivalent to the time the program spends specifying

the geometry through OpenGL. Grey denotes time spent waiting for the render threads to

finish in the main thread. In between each render call, global acceleration structures must

be updated and images copied to the framebuffer. The global acceleration structure takes

into account the transforms applied to each stored set of geometry, such as changes to the

ModelView matrix applied to the geometry from glCallList in OpenGL. The closeup of

rendering performance at the bottom shows that the rendering threads are well utilized

with very little overhead for building acceleration structures in between rendering or

downtime waiting for updates.

In order to benchmark strong scaling across multiple nodes, the 316 million triangle

RMO dataset was rendered on 1 to 64 nodes using the Longhorn visualization cluster

and the parallel visualization tool, ParaView, using the same camera position shown in

Figure 4.6(f). For parallel rendering, ParaView uses sort-last compositing through the

IceT library, which introduces an additional compositing step at the end of every frame.

Howison et al. [33] used a sort-last compositing algorithm on the Jaguar supercomputer,

where they found that compositing was their biggest bottleneck for a high resolution image.

Their maximum achieved frame rate was 2 fps for a 21 million pixel image over 216,000

cores. Assuming this performance scales down to a 1 million pixel image, the maximum

frame rate from compositing would be approximately 42 fps. We, therefore, aim to

approach real-time rendering rates using our method for image sizes of 10242. Render

times are reported from hardware-accelerated OpenGL and GLuRay in Figure 4.10. In

comparison to the single node timings shown in Table 4.1, the scaling runs for ParaView

44

use the parallel version of ParaView, pvbatch, with offscreen rendering enabled and

Longhorn’s batch configuration script which decreases overhead from image display. To

generate the correct image when needed by the compositor, rendering for GLuRay was

modified to render upon calls to glCallList or glReadPixels, which IceT uses to gather the

rendered scene for compositing. Enabling GLuRay’s frame lag would result in a frame

rate that is approximately equal to the maximum of the render time and the compositing

time instead of the aggregate of the two. Therefore, in order to time just rendering,

GLuRay was run without a frame lag such that asynchronous rendering was not utilized.

In our strong scaling study, GPU-accelerated average render times drop from 29.46

seconds to 0.28 seconds from 1 to 64 nodes, respectively, as the average triangle count

drops from 316 million triangles to about 5 million triangles per node. Rendering times

for GLuRay start at 0.21 seconds on a single node and decrease to 0.037 seconds for 64

nodes, which resulted in an overall frame rate of 18.47 fps on 64 nodes with compositing

and other overhead within ParaView. The GPU render times at 64 nodes do not reach

the performance of a single node with GLuRay, while GLuRay continues to increase in

performance with each node added. GLuRay render times do not decrease as dramatically

as the GPU render times with each node added because the acceleration structures used

scale well with increasingly large amounts of geometry as seen in Figure 4.9. Therefore,

decreasing the triangle count per node does not impact performance as much as OpenGL.

In order to achieve better work distribution with GLuRay, view-dependent distribution

of the data would be needed. Running GLuRay over programs which utilize sort-first

data distribution, or a hybrid technique such as the one used by Nouanesengsy et al. [60],

could provide better scaling behavior for ray tracing. Ize et al. used a paging approach

which achieved up to 100 fps for a two megapixel rendering of the RM dataset using 60

nodes of a cluster using ray-parallel work distribution [38].

4.3 Summary
In this chapter we have shown that current rendering algorithms used in many

common scientific visualization tools do not scale with increasingly large geometry

counts and often fail to provide interactive rendering rates that facilitate data exploration

45

on machines lacking hardware acceleration and in some cases, even with hardware

accelerated rendering. In the previous chapter we described an implementation of ray

tracing integrated into the source code of two visualization tools. In this chapter we

have shown that interactive performance with ray tracing in these and other tools can be

achieved without code modification by using an OpenGL interception library. In some

cases, GLuRay achieved over 300x the performance over software rasterization using

Mesa and in many cases we gained significant speedups over even hardware accelerated

display lists within several of the most commonly used visualization tools. This solution

further enables the rendering of publication quality images without the need to export data

to rendering tools, which are foreign to users and interrupt their workflow. GLuRay does

not enable ray tracing specific features outside of the fixed-function OpenGL pipeline

from the host programs that custom software integration may otherwise provide. However,

GLuRay gives the benefits of fast, high quality rendering with no additional effort and

presents a workable solution with little performance overhead where code modification is

not possible or desired.

46

Figure 4.1. Sequential architecture of GLuRay.

DataSet Triangles (M) FPS Mesa GPU Speedup vs. Mesa vs. GPU

PV-Wavelet 16 12.33 0.13 1.22 94.85 10.11
Vl-Wavelet 16 9.69 0.085 0.79 113.99 12.27
PV-VPIC 102 5.02 0.026 0.08 193.08 62.75
VI-VPIC 102 2.55 0.012 0.069 212.49 39.96
Ensight-VPIC 102 6.94 0.02 0.23 347.15 30.19
PV-RMI 316 2.53 0.001 0.03 180.71 93.70
PV-RMO 316 3.22 0.009 0.03 357.78 123.85
VAPOR-Star 86 2.39 0.03 0.67 95.60 3.57

Table 4.1. Performance timings for various datasets across different applications with
varying amounts of triangles specified in the millions. PV signifies ParaView and VI
refers to Visit. RMI and RMO are the Richtmyer-Meshkov datasets zoomed in and out,
respectively. GLuRay achieves significant speedups in all runs tested with large polygon
counts.

47

Figure 4.2. Parallel architecture of GluRay.

(a) (b)

Figure 4.3. GLuRay running within ParaView (a) and an external GUI (b).

48

Figure 4.4. Shading effects such as ambient occlusion shown in (b) add more depth cues
compared to a standard phong shading technique (a).

Figure 4.5. Rendering of an impact dataset with ParaView using OpenGL (a) and a
rendering using GLuRay demonstrating secondary effects such as reflections, shadows
and ambient occlusion (b).

49

Figure 4.6. Magnetic fields from an astrophysics simulation colored with streamlines (a),
the astrophysics dataset rendered with advanced effects (b), a wavelet contour (c), VPIC
Plamsa simulation (d), RMI (e), and RMO (f) datasets used for benchmarking.

50

BVH Build T im es vs Mesa Render T im es

Triangles (Million)

Figure 4.7. BVH build times for the wavelet dataset compared to Mesa rendering time
for a single frame.

Figure 4.8. Gantt charts showing a rendering of a wavelet dataset with 8 million triangles.
An overall view of setup time, geometry transfer, acceleration builds and rendering is
shown in the top runs while a closeup of the rendering is shown in the bottom. The gold
color displays the efficiency of the asynchronous renderer, while the blue displays the cost
of BVH builds in relation to data loading and geometry specification through OpenGL,
shown in brown.

51

Polygon Count Scaling w ith W avelet

Triangles (Million)

Figure 4.9. Performance timings for increasing triangle counts for a wavelet dataset as
seen in Figure 4.6(c).

Rendering T im e Scaling from 1 to 64 Nodes

Nodes

Figure 4.10. Rendering times for the RMO dataset in ParaView using the Longhorn
visualization cluster. Avg denotes the averaged render times across every node while Max
designates the maximum render time across all nodes.

CHAPTER 5

COMPUTATIONAL PHOTOGRAPHIC

METHODS

In the previous chapters we have shown that ray tracing in visualization tools enables

interactive rendering of large-scale data while also providing the utilization of lighting

models which more closely simulate real-world lighting. Physically-accurate rendering

allows for enhanced understanding of underlying data with enhanced depth-cues to users,

but also enables the synthesis of visualization techniques used in experimental fluid flow

such as schlieren, shadowgraph, and interferometry. These techniques trace light refracting

or phase-shifting through inhomogeneities in media, giving an overall picture of changes

in data. Previous interactive implementations of these techniques have used slice-based

rasterization volume rendering techniques without calculating light paths, providing an

inaccurate approximation of the technique. Tracing light through the media allows for

physically-accurate reproduction of experimental techniques giving domain scientists

working in fluid flow visualization a familiar rendering technique for simulated data. This

chapter presents an implementation of ray casting several photographic techniques on

GPUs achieving interactive rendering rates for rapid changes to rendering and viewing

parameters with progressive refinement.

5.1 Background
Shadowgraph techniques have been used for centuries to look at flows that are not

visible to the human eye, such as heat dissipation or shock waves [69]. Small changes in

inhomogeneous media do not scatter light to a large degree but it was noticed that shining

a bright light through the disturbance will produce a clear image of the flow by looking at

the shadows formed from light refraction. In a shadowgraph system, this refracted light

is imaged on a film plane. Figure 5.1 shows the optical setup of a typical shadowgraph

53

system. A light source is filtered through a slit apparatus, thus producing a small point

light source. Nearly parallel rays are sent through the test area and focused onto a film

plane. Light that was refracted in the test area will group together to produce bright areas

in the film plane or disperse and create darker regions. Shadowgraphs only look at changes

in the second derivative and are a poor indicator of the amount or direction of refraction.

If all rays were refracted the same amount in the same direction, then the resulting image

would be identical to a translated image of no refraction at all. Schlieren photographic

techniques provide additional information by introducing a one dimensional cutoff that

shifts intensity values based on the amount and direction of displacement at the focused

cutoff region. In Figure 5.2, light rays traverse the flow from a light source similarly

to the shadowgraph setup. In the schlieren system the light source is then refocused in

a small area and a cutoff is inserted to reduce light from the light source. A vertical

knife-edge is inserted at the center of the refocused light source. If no light is refracted,

the knife-edge reduces the light source by half, resulting in a gray image. Refracted light

causes shifts in the focused image of the original light source resulting in more or less of

the focused light being blocked by the cutoff. If the focused image is shifted down the

resulting region is darker, and if shifted up, then more of the original light gets through to

the film plane. A knife-edge cutoff thus provides information about the amount of light

shifted along a single axis. Another common type of cutoff is a circular cutoff that shades

the image based on the amount of displacement without the directional information of

the knife-edge. Color filters can also be used as a cutoff to produce colors based on the

direction of displacement. An illustration of a color filter is shown in Figure 5.3. Whereas

a knife-edge cutoff only gives information about the amount of displacement along one

axis, color can give two dimensional information about the direction of displacement.

Interferometry differs from schlieren and shadowgraph images by looking at phase

shift instead of refraction. When light travels through a disturbance and encounters a

change in refractive index, the speed of that light changes resulting in a phase shift [71].

The idea behind interferometry is to directly measure this phase shift and display it,

providing a picture of changes in refractive index. On the experimental side, this method

allows for the direct calculation of refractive indices instead of looking at changes in

54

gradient values as in schlieren and shadowgraph images. The optical setup required is

described in Figure 5.4. The setup starts with a beam of light typically generated by a

laser because of the polarized parallel light at homogeneous frequencies. A reference

beam is also created by splitting the light beam before hitting the inhomogeneity. This

reference beam can be used to measure the phase shift of the main beam by comparison

to the reference beam. The main light beam is sent through the inhomogeneity where

differences in refraction will produce phase shifts. Where the phases line up, bright bands

are created and where they conflict, dark bands emerge. In Figure 5.5 this is demonstrated

by our computed image of a coal fire through the tight small bands in the center of the

coal fire and larger dissipated fringes as the flame disperses.

In the perfect case, where the test beam and reference beam are perfectly aligned and

no disturbances are intercepted, no fringes should appear. This is known as infinite-fringe

interferometry. Finite-fringe interferometry puts the test beam and reference beam at

slight angles, producing fringes even when there is no difference in the phases of the two

beams. This is a more commonly used technique as finite-fringe interferometry allows

for the determination of the phase shift from the images produced on the experimental

side. The spacing of these beams produced through finite-fringe interferometry can be

calculated as a measurement of c by:

where l is the wavelength of the light and g the angle of beam intersection [71]. The

phase shift, f can be calculated as a function over the refractive index field n as:

where n0 is the reference refractive index, which is the refractive index that the reference

beam is hitting [84]. In many cases this is simply the refractive index of air. This equation

assumes a line of sight traversal with no refraction; however, in the computed case the

integration over the z axis is easily adapted to the integration over a bending light path

(5.2)

55

using a piecewise linear approximation [57]. A fringe is produced whenever a phase shift

of 2p or an optical distance of l is encountered for the infinite-fringe case [80]. For the

finite-fringe case the phase shift and the angle between beams must be taken into account

to calculate the resulting fringes.

5.2 Computational Methods
Our method for computing schlieren images relies on a number of acceleration

techniques for tracing photons through inhomogeneous media. The overall series of

steps used by our rendering pipeline are presented in Figure 5.6. The precomputation

steps utilize the CPU while the photon tracing and filtering stages are done on the GPU

using CUDA [61], which gives us the flexibility to arbitrarily store array values (a scatter

operation) without relying on the framebuffer. This is important for our technique as the

final photon positions cannot be predicted. The ray casting algorithm is ideally suited

for the GPU, since each ray can run concurrently in its own thread and data locality can

be exploited from nearby rays. This coherency benefits from CUDA’s single instruction

multiple thread (SIMT) architecture as many threads operate on the same data. The

parallel nature of the computation benefits from the GPU’s parallel architecture as long as

the data can be stored on chip. CUDA’s OpenGL interoperability also allows us to filter

the resulting image and display to the screen without copying it back to the host CPU.

Time-varying flow fields are rendered one frame at a time with precomputation being

computed before each frame.

5.3 Precomputation
The precomputation stages are required to compute the refractive indices and gradient

from related fields as well as construct an octree to accelerate ray traversals during runtime.

These stages allow accurate and fast computations of light refraction through the flow at

later stages of the pipeline. The precomputed data needed to be passed to the GPU for

rendering consists of a 3D texture of refractive indices, a 3D texture of gradient values,

and an array of randomly generated floats.

56

5.3.1 Computing the Refractive Index

In order to accurately simulate a schlieren photograph, it is important to use correct

indices of refraction. The indices of refraction in a medium can be computed from a

combination of several other scalar fields such as temperature, pressure, and humidity

using Ciddor’s method [17]. Ciddor’s method has been adopted by the International

Association of Geodesy (IAG) as a standard method for computing index of refraction.

It will not be reproduced in its entirety here, due to the complexity of the method, but

we provide a brief overview. Ciddor presents a method for computing accurate refractive

indices from air [17]. The method is composed of a 10 step process that calculates the

densities and compressibility of air at certain conditions in order to compute the refractive

index. While it is beyond the scope of this dissertation to reproduce the entire derivation

here the method is largely governed by Equation 5.3:

nprop - 1 = (pa/Paxs)(naxs - 1) + (Pw/Pws)(nws - 1) (5.3)

This equation calculates the refractive index by multiplying the proportion of dry air by

the refractivity of dry air and adding in the portion of wator vapor by the refractivity of

pure wator vapor. In Equation 5.3, nprop is the refractive index that is being calculated,

p axs is the density of dry air at 15 °C, and p ws is the density of pure water vapor at 20 °C.

p a and p w are the densities of the dry air and water vapor components. naxs and nws are

the refractivity of dry air and pure water vapor.

Figure 5.7(a) shows a heptane data set with indices of refraction computed from

pressure and temperature fields. The resulting time-varying scalar fields of refractive

indices, f , will later be used for computing light paths through the flow. The gradient of

f , Vf , is also computed as a preprocessing step using finite differences.

Alternatively, the Gladstone-Dale relation provides a method for computing the

refractive indices from density fields [57]. Because we are working with gasses we

use the abbreviated form:

n — 1 = Kp (5.4)

K defines the Gladstone-Dale constant, p the sample density and n is the refractive index

57

we want to compute. For data with more than one material type, the Gladstone-Dale

constant will need to be interpolated between the different materials using a mixture

fraction field. As an example, one can vary the value from pure air to pure helium

based on a provided mixture fraction. K varies by temperature and wavelength but with

the temperature around 290 Kelvin and assuming our light has a constant wavelength

of 0.633^m, we then know that Kh for helium is approximately 0.196cm3/g and Ka is

0.226cm3/ g for air. If mh is the volume fraction of helium in the mixture and ma is the

fraction of air, then n can be found by:

n = (Kh • mh + Ka • ma) • p + 1 (5.5)

5.3.2 Octree

Many flow datasets contain large regions of nearly homogeneous refractive indices

but only changes in the refractive index are of interest to schlieren and shadowgraph

imaging. A computational schlieren system can attain significant speedup by utilizing

space-skipping techniques similar to empty space-skipping commonly employed in

volume rendering as shown by Sun et al. [74]. Instead of skipping over empty-space in

the data, we compute regions of nearly homogeneous refractive indices in the data, which

determine how big of a step through the data can be taken before reaching a significantly

large change in refractive index.

The octree is computed as a min-max octree with a tolerance value, t , that determines

the level of each region and thus, the size of the area that can be skipped over. Only the

octree level values, j, are stored in the resulting 3D texture, which has the same dimensions

as f . The min-max octree structure is built to determine how large the homogeneous

regions are but no intermediary nodes are stored in a texture so that lookups into the

acceleration structure will not require a tree traversal. When traversing through the data, a

lookup into the texture will return the octree level for a sample. For example, if a lookup

returns a level j = 2, then the homogeneous region is of size 22x the texel size and this

entire region can be skipped without encountering a refractive index value that is more

than t from the current voxel’s refractive index. This behavior is illustrated in Figure 5.8,

which shows two different rays that lie in different levels of the octree. The distance to

58

the edge of the octree level is calculated to avoid overstepping homogenous regions.

5.4 Image Generation
The image generation stage computes light paths from the light source to the film

plane. This process starts with generating parallel rays from the light source, which

are then traversed through the refracting flow using a precomputed gradient and the

acceleration structure discussed in Section 5.3.2. Finally, the rays are weighted by a cutoff

for a schlieren image and projected to the film plane.

5.4.1 Emitting Photons from the Light Source

Photons are emitted along a grid to simulate the light source. Ideally the rays

are parallel, but the behavior of any given optical setup can be replicated by making

modifications to the ray tracer. The system relies on progressive rendering to show

increased detail over time. Banding effects from the volume can be smoothed by using

jittered sampling to alter the starting positions of rays. The cost of computing three

random numbers for jittered sampling for each ray at each pass is prohibitive. Instead,

an array of random floats is precomputed. This array can be any size; however, for this

dissertation an array that is three times the size of the image is used so that each thread

can access three different random numbers. At the start of each rendering pass, only

three random numbers are generated and passed to all threads. Each thread then adds

these numbers to their thread ids to obtain a unique lookup into the precomputed array of

random floats. Thus, the system only needs to generate three random numbers at each

pass instead of thousands or millions.

5.4.2 Adaptively Tracing Rays through the Flow

Photons typically trace curved paths through a medium with spatially varying indices

of refraction. Although the trajectory can be approximated using Snell’s law, which is

intended for refraction through discrete surfaces [67], it may produce undesirable artifacts

when used to compute a ray moving through a compressible gas with no discernible

surface. Snell’s law also requires a significant amount of floating point arithmetic in

three dimensions. In contrast, the ray equation of geometric optics based on Fermat’s

59

principle presents a very fast and accurate approximation of the ray curve x(s) through

inhomogeneous materials [9].

In order to simulate x(s), Equation 5.6 is discretized using piece-wise linear approxima

tions. The position xi is updated according to the ray direction vi, the refractive index f ,

and the step size As. The direction is updated according to the gradient of the scalar field

of refractive indices V f .

The step size, As, can vary to adapt to the homogeneity of the refractive indices by using

the acceleration structure computed in the precomputation step described in Section

5.3.2. The step size is modified to be the maximum of the base step size and the largest

A typical setup may have a knife-edge in the center of the focal region to reduce any

unaltered light by half. This allows both brighter and darker displaced regions to show up

in the resulting image. This intensity value is accumulated from the number of photons

that reach the film plane and a Monte Carlo Russian roulette style termination of photons

leads to a realistic simulation of this process. A better solution is to assign an energy value

instead, which can be weighted by the probability of being killed, significantly reducing

noise and requiring fewer photons to be traced. If d is the resulting ray direction at the

cutoff region, and do is the original ray direction from when the ray was first generated,

then the resulting displacement is:

(5.6)

(5.7)

Vi+ 1 = vi + A sV f (5.8)

homogeneous region that can be skipped over. The homogeneous region will be 2j times

the size of a voxel, where j is the octree level stored at the current location xi.

5.4.3 Reproducing the Cutoff

60

e = (d — do) (5.9)

ex = e • camerax (5.10)

ey = e • cameray (5.11)

where ex and ey are displacements along the camera axis camerax and cameray. If e is the

displacement from the original direction relative to the camera angle, then the resulting

change in illumination I from a vertical knife-edge cutoff is:

where c2 is the focal distance of the lens projecting light onto the cutoff, K is the Gladstone-

Dale constant, and the displacement is iterated over the focal region with the integral

where 81 and 8 2 are the z coordinates of the ray entering and leaving the medium and p

is the density [57, 71]. In the experimental setup, the focal distance or the cutoff can be

altered in order to intensify the change in illumination. In a computer simulation the same

effect can be achieved by replacing c2 , K , and the integration over the focal region by a

scalar value, k. This value can be altered to correspond to an optical setup or modified to

fit a desired range of intensities.

In the case of computing interferometry, the phase shift must be computed at each

step in a piecewise linear fashion in order to approximate Equation 5.2. At each step we

compute nsum = nsum + (n — n0) * As. At the end of the traversal the intensity is computed

as the following:

(5.12)

I = 0.5 — ey • k (horizontal knife-edge) (5.13)

I = 0.5 — ex • k (vertical knife-edge) (5.14)

I = 1 — | e |- k (circular cutoff) (5.15)

I = H SV(cos(d,do) • k, 1, |e|- k) (color filter) (5.16)

61

The value k typically maps to the largest expected displacement as to yield normalized

intensities without clamping [69]. The knife-edge can be flipped or rotated as desired

and the circular cutoff can become a complement circular cutoff by complementing the

equations. Where a circular cutoff will show regions with more displacement as darker,

a complement cutoff shows regions with higher displacement as brighter. Once the

intensities have been weighted according to the cutoff they are projected to the film plane

and their values are accumulated. This leads to a potential race condition as different

threads try to write to the same regions of the film plane at the same time. CUDA provides

atomic operations that result in a slight speed decrease, but overall we find that this

occurrence is sufficiently rare enough to ignore without introducing noticeable error for

most instances. In cases where there is a great deal of refraction, synchronization may be

necessary to avoid artifacts. For such cases we store values and the window coordinates

in shared memory where each thread has its own separate index into a shared memory

buffer. At the end of the CUDA kernel the threads synchronize and thread zero writes the

values from shared memory out to the pixel buffer.

5.4.4 Interferometry

Interferometry relies on an unaltered reference beam separate from the beam traced

through the inhomogeneity and does not have a physical cutoff. In the experimental

domain this necessitates tracking wavelengths generated from the beam source by splitting

the original source beam; however, the tracing of the reference beam is extraneous

in the computational domain. Phase-shift is computed at each sample point over the

inhomogeneity and bands appear from alterations in the phase-shift from the reference

beam. This banding pattern is produced from the equation:

/2 p \
I = sin (i nsum\ (infinite-fringe interferometry) (5.17)

where l is the wavelength of the light.

62

5.5 Filtering
Once a sufficient number of photons have been traced, the resulting image is filtered

for noise and rendered to the screen. A simple Gaussian filter helps reduce noise while

smoothing over gradations in luminance values. While a mean filter is better suited for

reducing noise, it blurs out many of the small details.

Several methods exist for smoothing images generated with a limited number of

photons. Jensen et al. [39] presented a cone filtering method weighting a given area by a

sphere that encapsulates a set number of photons for use in photon mapping. Low density

regions have a large filter width, while areas with high sample density have smaller filter

width leading to a crisper image. This works well for caustics where large numbers of

samples concentrate in a small area but may not always be the best approach for rendering

high frequency schlieren images where dark crisp lines may be desirable.

In practice, only limited filtering is necessary as long as the photons are produced on a

regular grid and the photons are given a weighted energy corresponding to the cutoff. The

filter width should be decreased as more passes in the progressive rendering system are

computed. This will lead to an initially blurry image but ultimately yield a better resolved

image after sufficient passes of the renderer.

5.6 Interactive Cutoff Creation
In a schlieren optical setup if regions of the data need to be shaded in a certain way a

custom cutoff can be created through a painstaking process involving a lot of trial and

error. Fortunately this becomes easy on the computer. The ability to paint directly into a

color filter and see the results in real-time becomes instrumental in pulling out regions of

data. To eliminate the need to determine where to paint we have also enabled the user to

paint on the color filter by clicking on a pixel of the resultant image. That pixel is then

traced through the schlieren system to determine where it lies on the color filter and the

appropriate region of the color filter is then colored in as demonstrated in Figure 5.9. This

helps remove the guess work of where to color the filter. Additional aid to the user can

be given by displaying a histogram of where light is hitting the color filter, thus showing

where high frequencies of photons are gathering in specific regions, which the user can

63

then focus on and paint accordingly. These methods allow for high frequency informative

color filters to be created very easily through interaction with the program.

5.7 Multifield Flow Analysis
The techniques presented in this chapter are focused on accurate reproduction of

physical methods; however, the visualization of data with no direct mapping to a real

world experiment is possible. One such example is the visualization of multifield data.

Figure 5.10 demonstrates a schlieren image of a 5-field CFD combustion simulation

that combines the scalar dissipation rate, hydrogen oxygen mass fraction, vorticity, heat

release, and mixture fraction fields together [51]. This combination of data fields allows

us to look at several possible features at once, such as the high frequency mixing inside

the jet as well as the large features of the outer flame surrounding the jet. Since there is no

real world correlation to this combination of data fields there is also no direct computation

of refractive indices and so a mapping was created from the data values to refractive

indices that could highlight the respective areas of interest in the data without drowning

out other data fields.

The refractive index then becomes n = f (r1, r2, r3, r4, r5) where f is a function

combining each resultant partial refractive index, r where ri = ti(si) and s is the scalar

field. Here, ti is a function that maps each scalar value from a data field into a partial

refractive index. This mapping should put the scalar value within some limits depending

on the results desired. For our simulation a ti that mapped each data field with the

refractive index of air was chosen. In order to bring out features each ti can be computed

through a simple 1-dimensional transfer function specific to that field. For our example

we used a simple average where n = r1 + r2 + r3 + r4 + r5 and each ri = si/ 5. Instead of

specifying opacity values in a traditional transfer function used with volume rendering,

the x-axis of our transfer functions specified the original normalized data values and the

y-axis maps to the resultant altered refractive indices. As such, an unaltered transfer

function starts out with a simple diagonal line. Because a schlieren image is altered

according to the derivative of the data, setting uninteresting regions to the lowest value in

the transfer function might not have the desired result. Instead, straight lines result in no

64

refraction and larger changes in the transfer function result in more pronounced regions in

the resulting image.

As expected the final image is much higher frequency than any of the individual fields

as it is a convolution of multiple fields. One issue with this is that it becomes hard to tell

which feature corresponds to which data field. One possible way to ameliorate this would

be to accumulate a color when sampling along the ray according to the data field being

used, which is then weighted by the magnitude of the gradient such that the data field

with the larger gradient will contribute more color. When the schlieren cutoff is applied

the resulting image then attains both a global view of the flow through the schlieren cutoff

as well as color information pertaining to each field. In practice we found that the colors

become mixed together and unhelpful when dealing with more than three data fields at

once.

5.8 Results
The method allows for high photon counts per second on approximately 2563 sized

datasets, as shown in Figure 5.11(a) and 5.11(b). An NVIDIA GeForce GTX 280

GPU with 1 GB VRAM was used for timings. Thirty-five million photons allow for a

nearly interactive 13 fps on a 512x512 image with 10 samples per pixel (10 iterations

of progressive refinement) on the combustion dataset, as demonstrated in Figure5.11(a)

and 5.11(b). The frame rate varies based on the frequency of the data due to the adaptive

step sizes through the volume and the size of the overall dataset. The frame rate is further

influenced by the image size. This compares favorably as a visualization method to the

images generated by Anyoji et al. [2], who reported rendering times of about 20 minutes.

Figure 5.11(a) shows a moderate impact of using a cutoff with a shadowgraph performing

slightly faster than a knife-edge cutoff and noticeably faster than the circular cutoff due to

the normalization required in Equation 5.15.

Figure 5.12(a) shows a helium plume rendered using a traditional volume rendering

technique that uses a one-dimensional transfer function over the density scalar field. This

is compared against an approximation of schlieren imaging without computing refraction

in 5.12(b), and our method shown in 5.12(c). The refractive indices were computed from

65

density measurements using the Gladstone-Dale relation, as shown in Section 5.3.1, with

a Gladstone-Dale constant of 0.233cm3/g for air and helium due to a lack of mixture

fractions. The volume rendered image using a transfer function provides a good indication

of the shape of the flow by showing a discrete surface where the helium meets the

surrounding air. The schlieren rendering in Figure 5.12(b) gives no indication of depth

but gives a detailed rendering of the underlying changes in the flow by shading the degree

of change in the flow rather than a set density value. This is similar to a technique of

shading a volume based on the magnitude of a gradient except that the shading conforms

to a cutoff value and alters according to the ray direction. The fringes of features are

pulled out giving a silhouette to areas of the flow where large changes in the flow meet

with orthogonal viewing rays. The technique also alleviates the need to tweak a transfer

function as both large and small changes in the data are displayed and shaded according to

their values, akin to an accumulative maximum intensity projection. A transfer function

can still be used to pull out certain parts of the data using the technique, though the

resulting image will no longer match the actual experimental schlieren image. Figure

5.12(c) gives further information and an accurate reproduction of what a real schlieren

photograph would show by tracing refraction through the data. The bottom of the plume

shows sharp features where the helium is emanating, resulting in significant changes in

refractive indices. The rays cluster or disperse around the incoming helium resulting in

sharp areas in the flow instead of the area clamping to white as seen in 5.12(b) without

refraction. This becomes less severe towards the top of the plume, which shows that

the helium is mixing with the air resulting in less light refraction. Edges of the flow are

further enhanced as light in those areas bends around large changes in refractive indices.

Figure 5.13(a-c) shows a series of images from a simulation of the X38 aircraft on

reentry comparing our method with various types of filters. Our method provides a clear

image of the airflow around the body and bow of the plane, as well as vortices formed

around the tail fins of the plane. The coloring over the density field shows distinct regions

by showing differences in direction that a one-dimensional knife-edge cutoff might miss.

Coloring a more detailed image such as the coal fire or heptane datasets as in Figure

5.7(c), results in more information but users may prefer to see only intensity variations.

66

Figure 5.14(a-h) shows a series of images of a combustion dataset rendered with and

without filtering at different samples-per-pixel (spp). The left column is without filtering

while the right column is filtered using a cone filter as described in Section 5.5. For the

unfiltered images the root means square differences, RMS, between 1 and 10 spp, Figure

5.14(a) and Figure 5.14(c) is 7.75% while the RMS is between 10 and 100 spp, Figure

5.14(c) and Figure 5.14(e) is 2.78%. The RMS between 100 and 1000 spp, Figure 5.14(e)

and Figure 5.14(g) is just 0.91% revealing a very small change beyond 100 spp. Filtering

is very beneficial when rendering with a small photon count. To illustrate this, the RMS

between 1 and 10 spp filtered, Figure 5.14(b) and Figure 5.14(d) is 0.83% while the RMS

is between 10 and 100 spp filtered, Figure 5.14(d) and Figure 5.14(f) is 2.55%. The RMS

between 10 to 100 spp filtered, Figure 5.14(f) and Figure 5.14(h) is only 0.176%. Recall

that the cone filter expands its width to encapsulate a set number of samples. Thus, as the

sample rate increases, the blurring cone decreases. In effect, above 100 spp, there is little

or no blurring taking place.

The progressive rendering system displays a blurry image while rotating but a very

crisp image with fine details when the mouse is released, which works very well in practice.

The amount of time for the image to converge varies, but when generating the images and

videos for this dissertation we found that typically, after approximately 1 second (at least

100 iterations or samples-per-pixel) there was little discernible improvement in image

quality with additional time for 512x512 images as supported by the RMS terms.

Video memory usage and octree construction time on the CPU are listed in Table

5.1. The memory requirements are made up of the pixel buffer for a 512x512 image, the

random number array, the gradient and the refractive indices. Single variables passed to

the GPU and locally declared variables are ignored in the memory requirements. When

working with large datasets memory usage can be mitigated by computing gradient values

on the GPU at runtime as the gradient makes up a large portion of the memory usage. The

octree construction times are for single-threaded calculation and memory allocation on

the CPU.

67

5.9 Summary
In this work we have shown that in addition to interactive rendering of large-scale

data, ray tracing solutions in scientific visualization allow for new methods of visual

izing simulated data through manipulations to ray paths giving accurate simulations of

real-world optical setups. Utilizing acceleration techniques on GPUs has allowed our

simulation of schlieren, shadowgraph, and interferometry imaging to achieve interactive

speeds with progressive refinement. These techniques provide a similar visualization

to what scientists are used to seeing on the experimental side and differ from previous

interactive computational schlieren rendering techniques by tracing light paths instead of

line-of-sight approximations through inhomogeneous data. Tracing rays also allows an

intuitive method of replicating optical setups, paving the way for validation of simulations

by comparing accurate renderings against real-world photographs.

68

Figure 5.1. 2D illustration of the shadowgraph optical setup.

Image displacement
from inhomogeneity

Film Plane

Figure 5.2. 2D illustration of the schlieren optical setup.

69

Figure 5.3. A typical color filter used in schlieren optical setups.

Inhomogeneity
Lens / Lens

Figure 5.4. 2D illustration of the interferometry optical setup.

Figure 5.5. Infinite-fringe interferometry image computed using our method.

70

Compute
refractive index

Compute
gradient

Compute
octree

Pre-computation

Emit photon from
light source

Adaptively trace
ray through
volume

Intersect with film
plane

Intersect photon
with volume

Photon Tracing

Figure 5.6. Illustration of the rendering pipeline.

(a) (b) (c)

/ I S

/ M l

(d) (e) (f)

Figure 5.7. A heptane dataset rendered using refractive indices calculated from tempera
ture and pressure with a knife-edge cutoff (a), a simulated combustion dataset rendered
using a schlieren knife-edge cutoff to enhance the flow (b), color filter (c), shadowgraph
image (d), a circular cutoff (e), and using a complemented circular cutoff (f).

71

1 1 0 0

p — — 1 1 1 0 0

0
p——-[?

Q 0 0

0 0 0 0

Figure 5.8. An illustration of a traversal through the octree. P1 and P2 are two rays
traversing through the flow. P1 is in a homogeneous region of the data and in a cell of the
octree texture that will report a level number of 1 allowing P1 to skip to the edge of that
level. P2, on the other hand, is at the lowest level of the acceleration structure and will
only traverse to the next voxel.

r :

EDI &—

Color...

Figure 5.9. Creating a custom color filter by painting on the schlieren image. The
corresponding region on the color filter is looked up by calculating where that pixel lies
on the color filter and coloring the filter red in this case.

72

% % V' ^
' 1

' '-N ̂%/ - ̂* * k %
; \
; \j ^
^ V ./pr . . ^ ;

f ^
! r

(d) (e) (f)

Figure 5.10. Demonstration of multifield data rendered using a schlieren knife-edge
cutoff: (a) shows a combination of five different data fields and (b), (c), (d), (e), and (f)
show individual renderings of scalar dissipation rate, heat release, vorticity, hydrogen
oxygen mass fraction, and mixture fractions, respectively.

73

(a)

(b)

Figure 5.11. On the left, results of a combustion dataset of dimensions 480x720x100 seen
in Figure 5.7 rendered with 10 iterations of progressive refinement per frame using cone
filtering on a GeForce GTX 280 card at 512x512 resolution. Results of a coal fire with 5
iterations of progressive refinement per frame on a GeForce GTX 280 card at 512x512
resolution are shown on the right.

74

A

m

Figure 5.12. Comparison of volume rendering (a) with a line of sight schlieren
approximation (b) and with our method (c).

Figure 5.13. Comparison of our method using a shadowgraph (a), a knife-edge cutoff (b),
and a color filter (c).

75

Figure 5.14. Comparison of unfiltered film plane with 1, 10, 100, and 1000 samples per
pixel (a, c ,e, g) and the corresponding images of the film plane filtered with a cone filter
in (b, d, f, h).

76

Table 5.1. Video memory usage and octree construction time for various datasets.

Dataset Data Size
(Megabytes)

Memory
(Megabytes)

Octree Build
(Seconds)

Combustion
(480x720x100) 138.24 589.62 3.12

Heptane
(293x293x293)

100.62 429.71 0.45

Helium
(227x302x302) 82.81 354.05 0.40

Coal Fire
(402x162x162) 42.20 181.45 0.59

X38
(256x256x256) 67.11 287.31 0.16

CHAPTER 6

CONCLUSION AND FUTURE WORK

In this dissertation, implementations of ray tracing in scientific visualization tools

using both software integration and OpenGL interception were presented as well as

studies showing the scaling behavior of ray tracing in distributed-memory systems. These

studies showed that not only did our implementations provide users with significantly

improved rendering quality, but they also enabled interactive rendering of large datasets

with software rendering in cases where the native programs failed to attain interactive

rendering rates even with hardware acceleration. Interactivity is an important feature

for data exploration of simulations which are producing increasingly large data sizes;

developing ray tracing solutions which can provide interactive visualization for large

data and scale with increasingly parallel compute clusters while also allowing advanced

illumination models demonstrates that ray tracing is a promising rendering algorithm for

current and emergent architectures. We demonstrate two methods of using ray tracing

solutions within existing tools: through custom source code modifications to VTK and

through OpenGL interception, which does not require program-specific source code

changes. By using common visualization tools, we have shown that ray tracing can

provide a working solution within users’ existing workflows without having to resort to

external stand-alone ray tracing programs. Additionally, novel methods of interactively

computing physically-based photographic visualization techniques were presented to

demonstrate that the capabilities present in ray tracing can facilitate new methods of

scientific visualization.

6.1 Distributed Ray Tracing in Existing Visualization Tools
With this dissertation we have shown timings of widely used visualization tools on

real-world datasets with weak-scaling and strong-scaling studies on distributed-memory

78

systems. In order to explore alternative rendering algorithms, we have integrated a soft

ware ray tracing solution into common tools which has demonstrated superior rendering

performance with large polygon counts over the built-in OpenGL hardware rendering

and Mesa software rendering methods. VisIt and ParaView have shown rendering times

decrease by as much as 100x in our tests compared to brute-force rasterization and can

achieve interactive rendering performance for large geometry counts on large cluster

environments without the need for specialized hardware acceleration. Furthermore, our

ray tracing solution provides scientists enhanced rendering quality. By integrating such

systems into popular visualization tools, scientists may use the system without having

to resort to external ray tracing tools. Using external stand-alone programs inhibits user

adoption due to the complexities of exporting data and learning new tools but also disrupts

the workflow of users already using common visualization and analysis tools such as

ParaView and VisIt. Our Manta plugin is currently available in the source version of

ParaView and was released in the binary distributions for Linux and Mac OS in version

3.10. Our VisIt implementation is expected to be released to the public in VisIt 2.5.2.

Current trends in super computers at the petascale have shown compute and memory

bandwidth far out pacing I/O bandwidth. Whitlock et al. [81] demonstrated that I/O to

compute is expected to be a thousandth of a percent in the upcoming Sequoia supercom

puter. In order to reach exaflop levels of performance, concurrency will increase a factor

of 40,000 to 400,000 times current petascale machines [1]. Memory, on the other hand, is

only expected to increase about 100 to 200 times current levels resulting in a factor of

100 decrease in memory-per-compute thread. Postprocessing routines including rendering

and analysis techniques can be conducted at varying stages of the data pipeline and

with different representations of the data. Visualization and analysis of large-scale data

on such emergent architectures presents a number of challenges over existing methods

currently used for smaller-scale datasets. Saving simulation results at full resolution for

later rendering and analysis on desktop machines is increasingly infeasible. Simulations

run at the petascale are also increasingly difficult to save to disk as increases in compute

power out-pace growth in disk space. There are a number of different methods designed

to provide feasible solutions to these issues.

79

• Out-of-core

Out-of-core postprocessing methods read in sections of larger out-of-core datasets

on smaller machines for noninteractive processing. This allows for visualization

and analysis of large data on a single machine without necessary modification

of frameworks for large-scale systems. This technique is increasingly infeasible

for increasingly large data where exascale runs may not even fit on disk and are

generated on supercomputers with millions of compute threads.

• Rendering Cluster-based Visualization

Rendering cluster-based visualization is a commonly used technique where a render

ing cluster can be used for postprocessing. As visualization and analysis typically

requires less processing than simulation, the rendering cluster is often significantly

smaller than the larger compute cluster used to produce the original dataset. As data

sizes increase disproportionately to disk and network IO, transferring full resolution

datasets to external rendering clusters becomes prohibitive.

• Multiresolution

Multiresolution techniques reduce data by calculating coarser representations of

most of the data, with finer representations of particular portions of the data which

are of interest to the user. This technique has the advantage of saving considerably

on I/O by discarding finer resolutions of the data, but it must be known a priori

which sections of the data can be safely down-sampled without losing necessary

information for later analysis.

• In Situ

Recent trends in supercomputers have shown that they are increasing in FLOPs

faster than I/O bandwidth for writing out and reading in stored datasets. Peterka et

al. [68] demonstrated postprocessing on a volume rendering application where data

was saved and loaded for postprocessing where I/O made up over 90% of overall

runtime. As saving out a full resolution dataset becomes increasingly infeasible,

data must then be processed and compressed in some fashion on the fly while

the simulation is running. In situ techniques couple visualization and analysis

with running simulation code and utilizes the same supercomputing machine or a

80

subset of the same resources used for simulation. This has the benefit of giving the

postprocessing code access to the full resolution dataset while it is already in system

memory. Features can be analyzed and extracted from the full resolution dataset or

an image generated, drastically reducing overall I/O to disk. Visualization done at

simulation time also has the benefit of simulation steering where simulations can be

altered and rerun based on the output of the last rendered image.

In situ processing is still seldom utilized for a variety of reasons. Running routines

in situ over a running simulation requires a considerable software developement effort.

To ease the combination of simulation and analysis code, common visualization tools

such as ParaView and VisIt have been adapted to support in situ processing. Moreland

et al. [59] developed a coprocessing framework within VTK and ParaView; however,

this implementation still has drawbacks. Data adapters must be developed to translate

simulation data into VTK formats. Furthermore only portions of ParaView were built

with the coprocessing library, such as GUI dependent functions. An inherent problem

with all in situ implementations exists in which only a single timestep of the simulation

is available at any given time, breaking any time dependent filters. Whitlock et al. [81]

developed a similar coprocessing system for VisIt. In their implementation, data must be

mapped and accessible through application specific callbacks. This system additionally

allowed for the computational steering through a GUI interface in VisIt, which further

complicates simulation implementations.

Interactive in situ visualization is often hampered by current rendering and compositing

algorithms which do not scale. The work of Moreland et al. did not achieve above 1fps in

rendering time alone at 500 cores even when data sizes were less than a million polygons

per core. Additionally, running marching cubes to generate isosurfaces often took several

seconds which inhibited interactive isosurface value editing. The implementations are also

often geared toward rendering a single frame, where interactive visualization often requires

the full resolution dataset to remain loaded across the simulation for data exploration. In

large simulations with runs taking over large numbers of cores this could make interactive

exploration prohibitively expensive. Yu et al. [86] developed an in situ visualization

system for combustion simulations which achieved interactive rates for modestly sized

81

volume rendering; however, their naive compositing implementation impaired interactive

rates.

While the scaling performance is currently dependent on the view and data distri

bution, integrating view-dependent data partitioning into VTK or using a system such

as Chromium [35] could potentially alleviate a lot of compositing work and suboptimal

data distribution present in ParaView and VisIt. Much work still needs to be done to

accommodate visualization, including maximizing single node performance for other

parts of the visualization pipeline such as reading, isosurfacing, calculator operations, and

building acceleration structures. GPU accelerated ray tracing is another avenue of research

which was not considered for this dissertation, but it is worth further study. The design of

Manta has differing data representation and frame behavior resulting in wasted memory

and a total frame time of the aggregate of compositing and rendering times instead of the

maximum of the two. Solving these issues could result in decreased memory usage and

increased rendering time.

The existing data flow of running a simulation as a separate entity and saving

results independent of analysis for future postprocessing is no longer a feasible luxury.

Predetermined coupling of simulation, analysis and visualization is increasingly necessary

as abstracted modular steps in the dataflow pipeline consume disk space and memory that

is no longer keeping pace with computing power. Increases in concurrency at factors of

400,000 also challenge existing sort-last compositing algorithms as compute becomes

very cheap but data movement will prove prohibitively expensive. Even at the petascale,

the limits of the human visual system and the limited set of information in a 2M pixel

image are well below the amount of data generated and this problem of human perception

will increase significantly at the exascale.

Visual analytics may prove a necessity for understanding datasets at the exascale for

both data compression of large time-varying data and complexity reduction for human

comprehension. For interactive debugging purposes, exploration of exascale sized data

may prove infeasible for a user without analytically computed areas of interest and

simplifications for determining faults. Data compression techniques allow saving results

to disk for later postprocessing. Time-dependent feature extraction techniques [49] reduce

82

large time-varying datasets into a single manageable visualization. Topological feature

extraction allows for reduction of complexity and data sizes of large scalar fields [32].

For interactive visualization, brute-force rendering algorithms utilized by programs

such as VisIt and ParaView are no longer justifiable at the exascale. As data sizes increase

drastically, but image resolutions remain roughly fixed, it no longer makes sense to have

each node render full resolution versions of local data. In sort-last compositing, it is a

severe waste of network bandwidth to have hundreds of thousands of cores rendering and

sending imagery which is occluded or imperceptible to the user. Generating polygonal

representations of implicit surfaces which are already stored in memory for in situ

visualization such as generating isosurfaces in volume rendering also makes increasingly

less sense as the memory per thread decreases. Knoll et al. demonstrated that high

definition images of highly detailed direct volume rendered images can already be done

interactively on a single machine [46], making a data streaming framework utilizing a

few select compute nodes paging in multiresolution versions of the overall dataset for

rendering seem like a very viable solution. When a single machine can render imagery

which stretches the limits of human perception it becomes less of a question of how to

render exabytes of data but rather why render it at all. This does not apply to rendering out

image sizes beyond human perception for off-line exploration. Interactive visualization

would still require maintaining the full dataset across the network in order to be able to

stream in the highest resolution of data when users zoom into them. This may be solved

in part through temporary storage in faster nonvolatile SSD drives. In cases where the

simulation can be selectively rerun at higher resolutions for a few select nodes, adaptively

rerunning portions of the simulation may make more sense.

6.2 Ray Tracing Through OpenGL Interception
We have shown that current rendering algorithms utilized in many scientific visualiza

tion tools do not achieve sufficient performance to interactively render large polygonal

models in many cases. With GLuRay, we have proven that by intercepting OpenGL calls

and using an optimized software ray tracer, we can achieve significant improvements

in rendering performance in some of our tests using millions of polygons over several

83

common scientific visualization programs which otherwise fail to achieve interactivity

on the Longhorn visualization cluster. Through a strong-scaling study, we have shown

that GLuRay’s performance scales on a distributed-memory cluster using ParaView’s

data-parallel work distribution and sort-last compositing.

Since interactive rendering for gigatriangle sized datasets is already possible using

GLuRay with current systems, we believe frame rates will improve on future machines as

the number of cores per node increases. For users who do not need increased performance,

we have also presented advanced rendering for publication quality images and enhanced

insight within existing tools without the need for learning additional rendering programs.

The main limitations of our approach include decreased performance from building

acceleration structures each frame with dynamic data, memory consumption, and a lack

of support for shaders.

Ray tracing by intercepting OpenGL calls produces a few limitations. GLuRay usually

relies entirely on the data distribution of the host program and since that host program

typically relies on data-parallel distribution, there is no way to access other portions of the

scene from remote nodes for secondary effects such as shadows at run-time. Adjacent areas

can be duplicated across nodes for some effects such as distance-limited ambient occlusion;

however, this is not common in the programs we have tested with. Data distribution in

distributed-memory systems may be solved by implementing distribution through GLuRay

in the background similar to such programs as Pomegranate or Chromium [22, 35].

Currently a ray-parallel work distribution similar to Ize et al. [38] was implemented for

GLuRay but as of this writing only supports replicated data on each node and has been

tested with ParaView, where data distributed by ParaView is sent to each node and only

node 0 sends image data to ParaView. An out-of-core solution where nodes can page

in data as needed is in developement. Stephens et al. showed Manta scaling very well

on a large shared-memory system using transparency and other effects [72]. The main

limitation of GLuRay is the memory overhead incurred by storing geometry and building

acceleration structures. For a dataset with n polygons a typical BVH will be bounded by

2(n — 1) BVH nodes. In clusters where memory is at a premium and compute is cheap, a

slower but less memory intensive implementation may be ideal; however, system memory

84

is often much larger than that found on GPUs. The additional time to build acceleration

structures is also a concern, but in exploratory visualization, a user will typically generate

an isosurface to be interactively viewed resulting in many renderings for each update to

geometry.

GLuRay is not a full mapping of OpenGL. Shaders are not supported yet and multipass

rendering can significantly slow down the running system. Multiple passes are often

used for effects such as shadows. In our testing many of the scientific visualization

packages do not use such techniques and if they did, such systems could likely be turned

off and their intended purpose replicated through the ray tracer in a single pass for

performance considerations. There are many operations within OpenGL which may

break the current program architecture and are not currently supported, such as blending

functions or state changes beyond geometry, texture or materials within display lists.

Programs which use OpenGL to render out GUI elements could prove problematic;

however, none of the production level visualization tools we tested with use this method.

None of these shortcomings have proven problematic for the generally simplistic rendering

implementations within the tools we have tested with.

There is significant future work which could benefit ray tracing through OpenGL.

Knoll et al. [46] recently demonstrated that direct volume rendering through CPU ray

casting presents a very efficient approach for volume and isosurface rendering with large

speed advantages compared to out-of-core GPU rendering. Supporting volume rendering

and shaders would be highly beneficial and would be interesting future work. GPU ray

tracing using an implementation such as Optix could provide increased performance on

machines with hardware acceleration [62]. Another avenue of future work that was not

explored in this dissertation is the use of GLuRay to optimize OpenGL code using the

existing rasterization pipeline. Similar work was conducted with Chromium looking

at optimizing redundant immediate mode OpenGL API calls across subsequent frames

[21]. Through our own tests large speedups could be attained by splitting up display

lists or implementing display lists as vertex buffer objects through OpenGL interception.

Various culling methods such as frustum or occlusion culling could also be implemented

through such a system for better scaling performance. Much work still needs to be done

85

to accommodate visualization, including maximizing single node performance for other

parts of the visualization pipeline such as IO, isosurfacing, calculator operations, and

implicit geometry rendering without using additional memory for geometry generation

and storage. GPU accelerated ray tracing is another avenue of future research which was

not considered for this dissertation but worth further study. Using GLuRay to provide

acceleration techniques for poorly-optimized OpenGL code is another avenue of research

worth exploring. Although we have shown the capability of GLuRay to scale when running

ParaView on a cluster, an in depth study of render times in cluster environments would

be worthwhile to determine the compositing and data-distribution impact of programs

intended for rasterization.

6.3 Computational Photographic Methods
We have demonstrated that reproducing light paths for computing schlieren pho

tographs is possible at interactive frame rates by intelligently combining various ac

celeration techniques and exploring the computational resources of modern graphics

hardware. This method provides scientists with an accurate tool for simulating familiar

visualization techniques in a computational environment, which requires far less resources

and time than an experimental setup with physical constraints and complicated optics. The

approach also opens the door for making a sufficiently accurate reproduction of real-world

photographs that can be used to validate simulation data by simulating optical apparatuses

in a straightforward manner.

Reproducing an exact replication of schlieren photographs’ error presents several

challenges. One source of error comes from one of the many cutoffs used and the artifacts

they may produce. It is not clear to what degree these artifacts contribute to the overall

image but the various cutoffs used may present undesirable refraction themselves [69].

Additionally, the light source could be faithfully reproduced as well as the amount of

luminance over the length of the exposure.

Combining multiple data fields into a single refractive index has been explored;

however, there are other possible methods that might be used. One such method of

exploring multifield data may be to accumulate a color value per field similarly to a

86

volume renderer. Refraction could then be based on another field with a simple grayscale

modifier such as a knife-edge cutoff applied such that one field produces a color value

while the other produces a shadowgraph or schlieren effect and the resulting image is

a convolution of the two techniques. Yet another method would be to have each data

field traced independently with separate cutoffs applied and then the resulting images

combined later on. These are merely some of the proposed methods for such a complex

topic which might be usefully investigated.

The system assumes a constant wavelength across photons. Visible light waves have

wavelengths across the visible spectrum and will refract differently producing various

effects such as chromatic aberration. This is especially important for interferometry where

a light source with uniform wavelength should be chosen. Finally, only purely refractive

flows have been investigated so far, but simulating scattering effects, emission, absorption

and polarization may also be necessary depending on the materials used in the simulation.

Some materials, such as fire, may even need emissive calculations. Future work could

explore all of the above issues for faithfully reproducing an experimental setup.

6.4 Summary
In Chapter 3, an integration of ray tracing into widely used parallel visualization

tools was presented as well as weak- and strong-scaling studies on distributed-memory

systems. By using an efficient CPU ray caster, orders of magnitude improvements were

observed over existing brute-force OpenGL implementations, and in many cases over

both CPU and hardware-accelerated rasterization algorithms. Through a series of weak-

and strong-scaling studies, it was proven that CPU ray casting provides an interactive

visualization experience which can work within existing data-parallel work distribution

systems with varying, yet promising, scaling results related to the view-dependent nature

of ray tracing. Implementation within the intermediary VTK library allowed the use of

a common code base across multiple VTK-based programs with little modification. By

integrating ray tracing in widely-used tools we have presented a working solution to users’

existing workflows. This enables easy adoption of our solutions for existing users of these

tools.

87

In Chapter 4, a program-agnostic ray tracing solution called GLuRay was presented

that could run on top of existing visualization tools without modification by intercepting

calls to the OpenGL rendering API. This solution could trap for both rendering calls and

MPI calls for changes to the underlying rendering algorithm and distribution methods

across programs. Mappings between OpenGL and the utilized Manta ray tracing library

and acceleration structure generation proved minimal compared to data loading, spec

ification, and Mesa based render times. GLuRay also allowed for advanced rendering

models to compute secondary ray bounces, enabling the generation of publication quality

images within existing programs. This allows for the generation of high quality images

without interrupting users workflows, since currently, users often must export their data

to external rendering programs to generate publication images which also often requires

additional training to use.

A new method for interactively rendering photographic visualization techniques

relying on accurate computation of light refraction was presented in Chapter 5, improving

upon methods which computed straight ray paths through the medium. A temporally

progressive rendering step allows for real-time exploration of data and quickly converging

high quality renderings. User editable filters were presented allowing for new exploration

techniques utilizing physically-based techniques that scientists are used to from exper

imental apparatuses. Multifield data exploration using schlieren techniques were also

presented, which investigated using a physically inspired method for visualizing complex

data with no real-world basis.

APPENDIX

PUBLICATIONS

• Book (To Appear): High Performance Visualization: Enabling Extreme-Scale

Scientific Insight Editors: Wes Bethel, Hank Childs, Charles Hansen Chapter Title:

Rendering, Authors: Charles Hansen, Wes Bethel, Thiago Ize, Carson Brownlee

• Carson Brownlee, Thomas Fogal, and Charles D. Hansen. GLuRay: Ray Tracing

in Scientific Visualization Applications using OpenGL Interception, Proceedings of

Eurographics Parallel Graphics and Visualization 2012, 41-50, 2012.

• Carson Brownlee, John Patchett, Li-Ta Lo , David DeMarle , Christopher Mitchell

, James Ahrens , and Charles D. Hansen. A Study o f Ray Tracing Large-scale

Scientific Data in Parallel Visualization Applications, Proceedings of Eurographics

Parallel Graphics and Visualization 2012, 51-60, 2012.

• M. Schott, T. Martin, A.V.P. Grosset, C. Brownlee. Combined Surface and Volu

metric Occlusion Shading, Proceedings of Pacific Vis 2012, 169-176, 2012.

• Ize, Thiago, Brownlee, Carson, Hansen, Chuck. Real-time ray tracer for visualizing

massive models on a cluster. Proceedings of Eurographics Parallel Graphics and

Visualization 2011, 61-69, 2011.

• Carson Brownlee, Vincent Pegoraro, Siddharth Shankar, Patrick McCormick, Charles

Hansen. Physically-Based Interactive Flow Visualization Based on Schlieren and

Interferometry Experimental Techniques. ACM Transaction on Visualization and

Computer Graphics, 17(11), 1574-1586, 2011.

• Carson Brownlee, Vincent Pegoraro, Siddharth Shankar, Patrick McCormick, Charles

Hansen. Physically-Based Interactive Schlieren Flow Visualization. Proceedings of

IEEE Pacic Visualization, 145-152, 2011. Best Paper Award.

• Vincent Pegoraro, Carson Brownlee, Peter S. Shirley, Steven G. Parker. Towards

interactive global illumination effects via sequential Monte Carlo adaptation. IEEE

89

Symposium on Interactive Ray Tracing, 107-114, 2008.

• Patrick McCormick, Erik Anderson, Steven Martin, Carson Brownlee, Jeff Inman,

Mathew Maltrud, Mark Kim, James Ahrens and Lee Nau. Quantitatively driven

visualization and analysis on emerging architectures. SciDAC (2008), Journal of

Physics: Conference Series 125, 125(1), 12-95, 2008.

• Christiaan P. Gribble, Carson Brownlee, and Steven G. Parker. Practical Global

Illumination fo r Interactive Particle Visualization. Computers & Graphics (2007),

vol. 32, 14-24, 2007.

REFERENCES

[1] A h e r n , S., S h o s h a n i , A., M a , K.-L., C h o u d h a r y , A., C r i t c h l o w , T.,
K l a s k y , S., a n d Pa s c u c c i , V. Scientific discover at the exascale: Report
from the doe ascr 2011 workshop on exascale data management, analysis, and
visualization. Technical report, 2011. ASCR.

[2] ANYOJI, M., AND SUN, M. Computer analysis of the schlieren optical setup. In
Proc. o f SPIE (2007), vol. 6279, 62790M.

[3] A p p e l , A. Some techniques for shading machine renderings of solids. In
Proceedings o f the April 30-May 2, 1968, Spring Joint Computer Conference (New
York, NY, USA, 1968), AFIPS ’68 (Spring), ACM, 37-45.

[4] At c h e s o n , B., I r k h e , I., H e i d r i c h , W., T e v s , A., B r a d l e y , D., M a g n o r ,
M., a n d S e i d e l , H.-P. Time resolved 3d capture of non-stationary gas flows.
ACM Transaction on Graphics 25, 5 (December 2008), 132.

[5] B a x t e r , III, W. V., S u d , A., G o v i n d a r a j u , N. K., a n d M a n o c h a , D.
Gigawalk: Interactive walkthrough of complex environments. In Proceedings o f the
13th Eurographics Workshop on Rendering (Aire-la-Ville, Switzerland, Switzerland,
2002), Eurographics Association, 203-214.

[6] B i g l e r , J., S t e p h e n s , A., a n d P a r k e r , S. Design for parallel interactive ray
tracing systems. In Interactive Ray Tracing 2006, IEEE Symposium on (September
2006), 187-196.

[7] B i t t n e r , J., W i m m e r , M., a n d P u r g a t h o f e r , H. P. W. Coherent hierarchical
culling: Hardware occlusion queries made useful. Computer Graphics Forum 23, 3
(2004).

[8] B o r g e a t , L., G o d i n , G., B l a i s , F., M a s s i c o t t e , P., a n d L a h a n i e r , C.
Gold: Interactive display of huge colored and textured models. ACM Trans. Graph.
24 (July 2005), 869-877.

[9] B o r n , M., W o l f , E., a n d B h a t i a , A. B. Principles o f Optics (7th edition), 7 ed.
Cambridge University Press, New York, 1999.

[10] B r o w n , B. P., M i e s c h , M. S., B r o w n i n g , M. K., B r u n , A. S., a n d T o o m r e ,
J. Magnetic Cycles in a Convective Dynamo Simulation of a Young Solar-type Star.
Astrophysical Journal 731 (2011), 69.

91

[11] B r o w n l e e , C., P a t c h e t t , J., L o , L.-T., D e M a r l e , D., M i t c h e l l , C.,
A h r e n s , J., a n d H a n s e n , C. D. A study of ray tracing large-scale scientific data
in two widely used parallel visualization applications. In Eurographics Symposium
on Parallel Graphics and Visualization (EGPGV ’12) (2012), 51-60.

[12] C e d i l n i k , A., G e v e c i , B., A h r e n s , J., a n d F a v r e , J. Remote large data
visualization in the paraview framework. Eurographics Symposium on Parallel
Graphics and Visualization (2006), 162-170.

[13] CEI. Cei-creators of ensight visualization software, 2010. http://www.ensight.com/.

[14] C h e n , J. H., C h o u d h a r y , A., d e S u p i n s k i , B., D e V r i e s , M., H a w k e s , E. R.,
K l a s k y , S., L i a o , W. K., M a , K. L., M e l l o r - C r u m m e y , J., P o d h o r s z k i ,
N., S a n k a r a n , R., S h e n d e , S., a n d Y o o , C. S. Terascale direct numerical sim
ulations of turbulent combustion using s3d. Computational Science and Discovery 2
(2009), 1-3.

[15] C h h u g a n i , J., P u r n o m o , B., K r i s h n a n , S., C o h e n , J., V e n k a t a s u b r a m a -
n i a n , S., J o h n s o n , D. S., a n d K u m a r , S. Vlod: High-fidelity walkthrough
of large virtual environments. IEEE Transactions on Visualization and Computer
Graphics 11 (2005), 35-47.

[16] C h i l d s , H., P u g m i r e , D., A h e r n , S., W h i t l o c k , B., H o w i s o n , M.,
P r a b h a t , W e b e r , G. H., a n d B e t h e l , E. W. Extreme scaling of production
visualization software on diverse architectures. IEEE Computer Graphics and
Applications 30 (2010), 22-31.

[17] CIDDOR, P. E. Refractive index of air: New equations for the visible and near
infrared. Applied Optics 35 (1996), 1566.

[18] C l a r k , J. H. Hierarchical geometric models for visible surface algorithms.
Commun. ACM 19 (October 1976), 547-554.

[19] C r a s s i n , C., N e y r e t , F., L e f e b v r e , S., a n d E i s e m a n n , E. Gigavoxels:
Ray-guided streaming for efficient and detailed voxel rendering. In Proceedings
o f the 2009 Symposium on Interactive 3D Graphics and Games (2009), I3D ’09,
15-22.

[20] D e M a r l e , D. E., G r i b b l e , C., a n d P a r k e r , S. Memory-savvy distributed
interactive ray tracing. In Proc. o f Eurographics Symposium on Parallel Graphics
and Visualization (2004), 93-100.

[21] DUCA, N., KIRCHNER, P., AND KLOSOWSKI, J. Stream caching: Optimizing data
flow within commodity visualization clusters. In Workshop on Commodity-Based
Visualization Clusters (October 2002).

[22] E l d r i d g e , M., I g e h y , H., a n d H a n r a h a n , P. Pomegranate: A fully scalable
graphics architecture. In Proceedings o f the 27th annual conference on Computer
graphics and interactive techniques (New York, NY, USA, 2000), SIGGRAPH 00,
ACM Press/Addison-Wesley Publishing Co., 443-454.

http://www.ensight.com/

92

[23] E n g e l , K., S o m m e r , O., a n d E r t l , T. Remote 3d visualization using image-
streaming techniques. Advances in Intelligent Computing and Multimedia Systems
(1999), 91-96.

[24] E r i k s o n , C., M a n o c h a , D., a n d B a x t e r , III, W. V. Hlods for faster display
of large static and dynamic environments. In I3D ’01: Proceedings o f the 2001
Symposium on Interactive 3D Graphics (2001), 111-120.

[25] Fa n , Z., Q i u , F., a n d K a u f m a n , A. E. Zippy: A framework for computation and
visualization on a gpu cluster. Computer Graphics Forum 27 ,2 (2008), 341-350.

[26] G a i t h e r , K. Visualization’s role in analyzing computational fluid dynamics data.
IEEE Computer Graphics 24, 3 (2004), 13-15.

[27] G o b b e t t i , E., a n d M a r t o n , F. Layered point clouds: A simple and efficient
multiresolution structure for distributing and rendering gigantic point-sampled
models. Comput. Graph. 28, 6 (2004), 815-826.

[28] G r e e n e , N., K a s s , M., a n d M i l l e r , G. Hierarchical z-buffer visibility. In
SIGGRAPH ’93: Proceedings o f the 20th Annual Conference on Computer Graphics
and Interactive Techniques (New York, NY, USA, 1993), ACM, 231-238.

[29] G r i b b l e , C. P., a n d Pa r k e r , S. G. Enhancing interactive particle visualization
with advanced shading models. In Proceedings o f the 3rd Symposium on Applied
Perception in Graphics and Visualization (New York, NY, USA, 2006), APGV ’06,
ACM, 111-118.

[30] G r o s s , M., a n d P f i s t e r , H.-P. Point-based Graphics. Elsevier Sciences Ltd.,
2007.

[31] G u t i e r r e z , D., S e r o n , F. J., A n s o n , O., a n d M u n o z , A. Chasing the green
flash: A global illumination solution for inhomogeneous media. Spring Conference
on Computer Graphics 2004 (2004), 97-105.

[32] G y u l a s s y , A., a n d N a t a r a j a n , V. Topology-based simplification for feature
extraction from 3d scalar fields. In Visualization, 2005. VIS 05. IEEE (October
2005), 535-542.

[33] H o w i s o n , M., B e t h e l , E., a n d C h i l d s , H. Mpi-hybrid parallelism for volume
rendering on large, multi-core systems. In Eurographics Symposium on Parallel
Graphics and Visualization (EGPGV) (May 2010).

[34] H u m p h r e y s , G., E l d r i d g e , M., B u c k , I., S t o l l , G., E v e r e t t , M., a n d
H a n r a h a n , P. Wiregl: A scalable graphics system for clusters. In Proceedings
o f the 28th Annual Conference on Computer Graphics and Interactive Techniques
(New York, NY, USA, 2001), SIGGRAPH ’01, ACM, 129-140.

[35] H u m p h r e y s , G., H o u s t o n , M., N g , R., F r a n k , R., A h e r n , s ., K i r c h n e r ,
P. D., AND K l o s o w s k i , J. T. Chromium: A stream-processing framework for
interactive rendering on clusters. In Proceedings o f the 29th Annual Conference

93

on Computer Graphics and Interactive Techniques (New York, NY, USA, 2002),
SIGGRAPH ’02, ACM, 693-702.

[36] I h r k e , I., Z i e g l e r , G., T e v s , A., T h e o b a l t , C., M a g n o r , M., a n d S e i d e l ,
H.-P. Eikonal rendering: Efficient light transport in refractive objects. ACM Trans.
on Graphics (Siggraph’07) (2007), 59:1-9.

[37] Iz e , T. Efficient Acceleration Structures for Ray Tracing Static and Dynamic Scenes.
PhD thesis, University of Utah, 2009.

[38] I z e , T., B r o w n l e e , C., a n d H a n s e n , C. D. Revisiting parallel rendering for
shared memory machines. In Proceedings o f Eurographics Symposium on Parallel
Graphics and Visualization (2011), 61-69.

[39] JENSEN, H. W. Global illumination using photon maps. In Proceedings o f the
Seventh Eurographics Workshop on Rendering (1996), 21-30.

[40] J e n s e n , H. W., a n d C h r i s t e n s e n , P. H. Efficient simulation of light transport in
scenes with participating media using photon maps. Proceedings o f ACM Siggraph
98 (1998), 311-320.

[41] J o h n s o n , C., R o s s , R., A h e r n , S., A h r e n s , J., B e t h e l , W., M a , K.-L.,
Pa p k a , M., v a n R o s e n d a l e , J., S h e n , H.-W., a n d T h o m a s , J. Visualization
and knowledge discovery: Report from the doe/ascr. Workshop on Visual Analysis
and Data Exploration at Extreme Scale (October 2007).

[42] J o h n s o n , F. T., T i n o c o , E. N., a n d Y u , N. J. Thirty years of development and
application of cfd at Boeing Commercial Airplanes, Seattle. Computers and Fluids
34 (2005), 1115-1117.

[43] K a j i y a , J. T. The rendering equation. In Proceedings o f the 13th Annual
Conference on Computer Graphics and Interactive Techniques (New York, NY,
USA, 1986), SIGGRAPH ’86, ACM, 143-150.

[44] K i t w a r e In c o r p o r a t e d . Paraview - open source scientific visualization, January
2010. http://www.paraview.org/.

[45] K l o s o w s k i , J. T., a n d S i l v a , C. T. The prioritized-layered projection algorithm
for visible set estimation. IEEE Transactions on Visualization and Computer
Graphics 6, 2 (2000), 108-123.

[46] K n o l l , A., T h e l e n , S., W a l d , I., H a n s e n , C. D., H a g e n , H., a n d P a p k a ,
M. E. Full-resolution interactive cpu volume rendering with coherent bvh traversal.
In Proceedings o f the 2011 IEEE Pacific Visualization Symposium (Washington, DC,
USA, 2011), PACIFICVIS ’11, IEEE Computer Society, 3-10.

[47] L a b o r a t o r y , U. A. R. Arl dsrc - data anaylsis, May 2012.

[48] L a w r e n c e L i v e r m o r e N a t i o n a l L a b o r a t o r y . VisIt Visualization Tool, 2010.
https://wci.llnl.gov/codes/visit/.

http://www.paraview.org/
https://wci.llnl.gov/codes/visit/

94

[49] L e e , T.-Y., AND S h e n , H.-W. Visualizing time-varying features with tac-based
distance fields. In Visualization Symposium, 2009. PacificVis ’09. IEEE Pacific
(April 2009), 1-8.

[50] LEVOY, M., AND WHITTED, T. The Use of Points as a Display Primitive. Computer
Science Department, University o f North Carolina at Chapel Hill Technical Report
85-022 (1985), 132-142.

[51] L i u , S., H e w s o n , J. C., C h e n , J. H., a n d P i t s c h , H. Effects of strain rate on
high-pressure nonpremixed n-heptane autoignition in counterflow. Combustion and
Flame 137 (May 2004), 320-339.

[52] LUEBKE, D. A developer’s survey of polygonal simplification algorithms. Com
puter Graphics and Applications, IEEE 21 (2001), 24 -35.

[53] M a , K.-L., Pa i n t e r , J. S., a n d H a n s e n , C. D. Parallel volume rendering using
binary-swap compositing. IEEE Computer Graphics and Applications 14 (1994),
59-68.

[54] M a , K.-L., a n d Pa r k e r , S. Massively parallel software rendering for visualizing
large-scale data sets. IEEE Computer Graphics and Applications 21 (2001), 72-83.

[55] M a g a l l o n , M. E. spyglass: an opengl call tracer and debugging tool, 2011.
http://spyglass.sourceforge.net/.

[56] M a r s a l e k , L., D e h o f , A., G e o r g i e v , I., L e n h o f , H.-P., S l u s a l l e k , P.,
a n d H i l d e b r a n d t , A. Real-time ray tracing of complex molecular scenes. In
Information Visualization: Information Visualization in Biomedical Informatics
(IVBI) (2010).

[57] M e r z k i r c h , W. Flow Visualization. Academic Press, 1987.

[58] M i t r a , T., a n d C h i u e h , T. C. Implementation and evaluation of the parallel
mesa library. In Parallel and Distributed Systems, 1998. Proceedings. (December
1998), 84-91.

[59] M o r e l a n d , K., F a b i a n , N., M a r i o n , P., a n d G e v e c i , B. Visualization
on supercomputing platform level ii asc milestone (3537-1b) results from sandia.
Technical report, 2010. Sandia National Laboratories.

[60] N o u a n e s e n g s y , B., A h r e n s , J., a n d W o o d r i n g , J. Revisiting parallel
rendering for shared memory machines. In Proceedings o f Eurographics Symposium
on Parallel Graphics and Visualization (2011), 31-40.

[61] NVIDIA. Cuda programming guide, January 2009.

[62] NVIDIA. Nvidia optix ray tracing engine programming guide, 2010.

[63] Pa r k e r , S. Practical parallel rendering. A. K. Peters, Ltd., Natick, MA, USA,
2002, ch. Interactive ray tracing on a supercomputer, 187-194.

http://spyglass.sourceforge.net/

95

[64] Pa r k e r , S., B o u l o s , S., B i g l e r , J., a n d R o b i s o n , A. Rtsl: A ray tracing
shading language. In IEEE Symposium on Interactive Ray Tracing, 2007. RT '07.
(September 2007), 149 -160.

[65] Pa r k e r , S., P a r k e r , M., L i v n a t , Y., S l o a n , P.-P., H a n s e n , C., a n d
S h i r l e y , P. Interactive ray tracing for volume visualization. Visualization and
Computer Graphics, IEEE Transactions on 5, 3 (July 1999), 238-250.

[66] Pa r k e r , S., S h i r l e y , P., L i v n a t , Y., H a n s e n , C., a n d S l o a n , P.-P. Interac
tive ray tracing for isosurface rendering. In Visualization '98. Proceedings (October
1998), 233-238.

[67] P e g o r a r o , V., a n d P a r k e r , S. G. Physically-Based Realistic Fire Rendering.
In Proceedings o f the 2nd Eurographics Workshop on Natural Phenomena (2006),
51-59.

[68] P e t e r k a , T., Y u , H., R o s s , R., a n d M a , K.-L. Parallel volume rendering
on the ibm blue gene/p. In Eurographics Symposium on Parallel Graphics and
Visualization (EGPGV ’08) (2008), 73-80.

[69] S e t t l e s , G. Schlieren and Shadowgraph Techniques, Visualizing Phenomena in
Transparent Media. Springer, New York, 2001.

[70] SGI, a n d M i l e s , J. Gltrace, 1997. http://reality.sgi.com/opengl/gltrace/.

[71] S m i t s , A. J., a n d L i m , T. T. Flow Visualization: Techniques and Examples.
Imperial College Press, London, 2000.

[72] S t e p h e n s , A., B o u l o s , S., B i g l e r , J., W a l d , I., a n d P a r k e r , S. G. An
application of scalable massive model interaction using shared memory systems. In
Proceedings o f the Eurographics Symposium on Parallel Graphics and Visualization
(2006), 19-26.

[73] S u n , M. Computer modeling of shadowgraph optical setup. In Proceedings o f
SPIE (2007), vol. 6279, 62790L.

[74] SUN, X., Z h o u , K., S t o l l n i t z , E., S h i , J., a n d G u o , B. Interactive relighting
of dynamic refractive objects. ACM Transaction on Graphics 27, 3 (2008), 35:1-9.

[75] S v a k h i n e , N. A., Ja n g , Y., E b e r t , D., a n d G a i t h e r , K. Illustration and
photography inspired visualization of flows and volumes. IEEE Visualization 2005
(2005), 687-694.

[76] UCAR. Vapor, 2009. http://www.vapor.ucar.edu/.

[77] W a l d , I., B e n t h i n , C., D i e t r i c h , A., a n d S l u s a l l e k , P. Interactive ray
tracing on commodity pc clusters. Lecture Notes in Computer Science (2003),
499-508.

[78] W a l d , I., B o u l o s , S., a n d S h i r l e y , P. Ray tracing deformable scenes using
dynamic bounding volume hierarchies. ACM Trans. Graph. 26, 1 (2007).

http://reality.sgi.com/opengl/gltrace/
http://www.vapor.ucar.edu/

96

[79] W a l d , I., S l u s a l l e k , P., a n d B e n t h i n , C. Interactive distributed ray tracing
of highly complex models. In Proc. o f Eurographics Workshop on Rendering (2001),
274-285.

[80] W e i n b e r g , F. J. Optics o f Flames. Butterworths, London, 1963.

[81] W h i t l o c k , B., Fa v r e , J. M., a n d M e r e d i t h , J. S. Parallel in situ coupling of
simulation with a fully featured visualization system. In Eurographics Symposium
on Parallel Graphics and Visualization (EGPGV) (2011), 101-109.

[82] WHITTED, T. An improved illumination model for shaded display. Commun. ACM
23, 6 (June 1980), 343-349.

[83] X i o n g , H., P e n g , H., Q i n , A., a n d S h i , J. Parallel strategies of occlusion
culling on cluster of gpus. Computer Animation and Virtual Worlds 18, 3 (2007),
165-177.

[84] Ya t e s , L. A. Images constructed from computed flow fields. American Institute o f
Aeronautics and Astronautics (AIAA) 31, 10 (1993), 1877-1884.

[85] Y o o n , S.-E., L a u t e r b a c h , C., a n d M a n o c h a , D. R-lods: Fast lod-based
ray tracing of massive models. The Visual Computer 22 (2006), 772-784.
10.1007/s00371-006-0062-y.

[86] Y u , H., W a n g , C., G r o u t , R. W., C h e n , J. H., a n d M a , K.-L. In situ
visualization for large-scale combustion simulations. IEEE Comput. Graph. Appl.
30 (May 2010), 45-57.

[87] Z h a n g , H., M a n o c h a , D., H u d s o n , T., a n d H o f f , III, K. E. Visibility culling
using hierarchical occlusion maps. In SIGGRAPH ’97: Proceedings o f the 24th
Annual Conference on Computer Graphics and Interactive Techniques (New York,
NY, USA, 1997), ACM Press/Addison-Wesley Publishing Co., 77-88.

