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A bstract

We present recent results in the application of distributed shared memory to image 
parallel ray tracing on clusters. Image parallel rendering is traditionally limited to 
scenes that are small enough to be replicated in the memory of each node, because 
any processor may require access to any piece of the scene. We solve this problem 
by making all of a cluster’s memory available through software distributed shared 
memory layers. With gigabit ethernet connections, this mechanism is sufficiently 
fast for interactive rendering of multi-gigabyte datasets. Object- and page-based 
distributed shared memories are compared, and optimizations for efficient memory 
use are discussed.

Key words: scientific visualization, out-of-core rendering, distributed shared 
memory, ray tracing, cache miss reduction

1 Introduction

Computer graphics and visualization practitioners often desire the ability to 
render da ta  th a t exceeds the limitations of the available memory and pro­
cessing resources. Parallel processing is one solution to this problem because 
it has the potential to multiply the available memory and computing power. 
Recently, the cluster parallel computing organization has become popular be­
cause of the low cost and high performance it affords. Our work utilizes mem­
ory sharing techniques th a t make it possible to render, at interactive rates, 
datasets larger than  those previously possible using affordable computing plat­
forms.

The ray tracing algorithm proceeds by casting a ray into the scene for each 
pixel P  and determining which of the N  scene primitives the ray hits first. The
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pixel takes the color of th a t primitive. If the primitive is reflective or translu­
cent, secondary rays are spawned from the point of intersection to determine 
additional color contributions. The algorithm is versatile, any data  type tha t 
can be intersected with a line segment can be drawn, and any degree of fidelity 
can be achieved by tracing additional rays.

The prim ary drawback of ray tracing is its high com putational cost. Spatial 
sorting allows the algorithm described above to run in 0 ( P  log N )  time. How­
ever, because both P  and N  are large, parallel processing is essential to allow 
interactive inspection of large datasets.

Parallel rendering is often classified in terms of a geometry-sorting pipeline [1]. 
The classification scheme is divided according to the point in the pipeline 
where scene primitives are assigned to individual processors. In sort-first (im­
age parallel) rendering, each processor is responsible for a different subset of 
the image space, while in sort-last (data parallel) rendering, each processor is 
responsible for a different subset of the data. In ray tracing, every prim ary ray 
can be computed concurrently, so image parallelism is the natural choice to ac­
celerate rendering. Figure 1 shows a diagnostic image of a teapot in which the 
pixels rendered by three nodes in our cluster have been saturated differently 
to show workload subdivision.

Fig. 1. Pixel Distribution. An image showing which processors rendered which pixels. 
Three processors add different gray levels to their pixels to create this diagnostic 
image.

A problem inherent in image parallel rendering is th a t a processing element 
may require access to the entire scene database. Each processor is responsible 
for computing the color of its assigned pixels, and these pixels may contain 
contributions from any portion of the data. Consequently, image parallel ren­
dering has typically been restricted to small scenes th a t can be replicated in 
the memories of every processing element.

In sort-last parallel rendering, each processor is assigned a different portion 
of the data, so the available memory resources are multiplied. The same goal
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can be achieved for image parallel rendering when a mechanism is provided 
to share data  on demand. We leverage a software layer th a t manages access 
to scene data  and fetches missing pieces over the network as required. In our 
system, each node runs one or more ray tracing threads and is responsible for 
managing a different subset of the scene database. To exploit da ta  coherence, 
the shared memory system caches the remote data  locally for later use. Careful 
attention to memory access patterns, da ta  layout and task distribution can 
lead to increased locality of reference, higher hit rates and, as a result, better 
performance.

2 R elated Work

Our work stems from th a t of Parker et al. [2], which dem onstrated one of the 
first interactive ray tracing systems. By exploiting the capabilities of the SGI 
Origin series of shared memory supercomputers, they were able to achieve 
interactive frame rates using a brute force implementation of the ray trac­
ing algorithm. On these systems, the problem of da ta  sharing is solved by the 
ccNUMA interconnection layer. Our work explores the mechanisms th a t can be 
used to replace this hardware layer with a software-based distributed shared 
memory (DSM). A key aspect by which the distributed application is able 
to maintain interactivity is tha t, in the rendering context, a writable shared 
memory space is not required. For this reason, we omit expensive consistency 
maintenance algorithms. Quarks [3] and Midway [4] are representative exam­
ples of full-featured page- and object-based DSMs th a t handle write access to 
memory efficiently.

Our approach to memory sharing is similar to the work of Corrie and Mack­
erras [5]. They implemented volume rendering on the Fujitsu AP1000, a dis­
tributed memory, message passing parallel computer. They dem onstrated tha t 
volume rendering datasets th a t are too large for the memory of any one com­
puting element is feasible with caching. Badouel et al. [6] used a page-based 
distributed shared memory, similar to one described here, and compared data  
parallel and image parallel ray tracing programs. They concluded th a t image 
parallel rendering with shared memory will scale better than  object parallel 
rendering because of the increased processing and communication overhead 
th a t results from more finely dividing the objects in space. Our approach im­
plements similar algorithms on modern commodity hardware and compares 
object- and page-based memory organizations. In addition, we present tech­
niques for reducing the number of shared data  accesses, improving the hit rate 
and decreasing the access time.

Several works by Wald et al. [7-9] dem onstrate interactive ray tracing of large 
models in both single PC and distributed cluster environments. Their first
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system [7] traced four rays at a time using SIMD instructions to accelerate 
the rendering process. An additional benefit of this technique is th a t the data  
coherence of prim ary rays is automatically exploited. O ther early work by 
Wald et al. [8] addressed the challenges of interactively rendering large, com­
plex models by combining centralized data  access and client-side caching of 
geometry voxels. Their system takes pains to exploit spatial coherence within 
BSP tree nodes and tem poral coherence between subsequent frames. More 
recently, they have exploited the 64-bit PC address space to combine asyn­
chronous out-of-core data  fetching and approximate transitory geometry to 
render massive polygonal models on a single workstation [9].

In contrast, our work has primarily focused on developing a flexible interactive 
rendering engine for scientific visualization applications. Though performance 
benefits may result, we have not restricted our system to any one type of 
scene primitive (for example, triangles). Instead, we are exploring more general 
memory management techniques th a t can be exploited for any type of scene 
data, including volumetric and polygonal data.

The designers of the Kilauea ray tracing engine [10] chose the data  parallel 
approach to image rendering. Rather than  divide the image into separate ar­
eas for each processor, they distribute large scenes among the processors, each 
of which traces a set of identical rays. Results are merged to determine the 
primitive th a t is hit first. They use ray postponement in a queuing system 
combined with very efficient sub-thread process management to achieve good 
performance. The Kilauea engine is designed for high-quality global illumi­
nation, so the system is not interactive. For our system, in which interactive 
frame rates are a prim ary goal, the cost of constantly transporting large num­
bers of rays across a high latency network was deemed less practicable than  
occasionally transporting a few large blocks of memory.

Our system can be classified as a hybrid approach th a t is closer to image 
parallel rendering than  to data  parallel rendering. Reinhard et al. [11] describe 
a different hybrid approach th a t is closer to object parallel rendering. The 
design of their system was motivated by the need to evenly balance the load 
while improving memory coherence. In this system, a grid-based acceleration 
structure was used to partition the objects in the scene. The demand driven 
task of determining the set of cells traversed in the grid and finding initial 
intersections was done in parallel using a da ta  cache for fetched remote objects. 
Secondary rays spawned from intersection points were sent to remote nodes in 
a da ta  parallel fashion. Our rendering system differs in th a t we do not transfer 
ray ownership and th a t we reorganize individual meshes to gain the memory 
coherence benefits implicit in the data  parallel approach.
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3 D istributed Shared M em ory

In all versions of our distributed shared memory, each of the N  rendering nodes 
is assigned 1 /N  of the to tal da ta  size. The initial assignment of blocks to nodes 
is arbitrary because we do not know, a priori, which data  will contribute to 
which pixels of the image. Similarly, we do not have advance knowledge of 
which pixels will be assigned to which nodes during rendering. To keep a 
balanced distribution, we make the individual blocks small relative to the 
whole scene, for example, 32 KB per block when rendering a multi-gigabyte 
dataset. We can then assign many blocks to each node using a simple round 
robin placement scheme, and each node is given a fair initial sampling of 
the entire scene. In this scheme, block number n  is owned by node number 
n  mod #  o f  nodes. The set of blocks th a t each node is given at program 
initialization is constant throughout the session, and this portion of a node’s 
memory is called the resident set. Figure 2 illustrates da ta  ownership in a 
rendering of an isosurface of a volumetric model of the implicit equation x 2 +  
y2 +  z 2 +  noise — C.

Fig. 2. Data Distribution. Voxels originating in each of three nodes’ resident sets 
are colored differently in this diagnostic view of an isosurface rendering.

In addition to its own resident set, a node may need to access da ta  in the 
other nodes’ resident sets. The separate memory layers are connected via the 
cluster’s interconnection network, over which the nodes send and respond to 
memory block request messages.

These request and reply messages are handled by a lightweight message pass­
ing layer called Ice [12]. Ice utilizes either TC P sockets or the Message Passing 
Interface (MPI) to connect the nodes in the cluster. An im portant feature of 
Ice is asynchronous message retrieval. Com putation threads never call the
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receive operation directly. Instead, a dedicated thread handles incoming mes­
sages. W hen one arrives, the communication thread wakes and processes the 
message. The advantage of this approach is th a t if computation threads have 
a sufficient backlog of da ta  to process, they do not spend any time waiting on 
communication.

The DSM would be very slow if every access to a non-resident block resulted 
in network messages. To avoid this situation, we rely on coherence. Coherence 
is the property th a t once a portion of the scene is used, it and nearby portions 
are likely be used again in the near future. We therefore set aside a portion 
of the memory in each node to cache non-local blocks. In Section 4, we ex­
plain optimizations th a t increase the probability of loaded data  being reused, 
making caching more effective.

There are two prim ary types of distributed shared memory: object-based 
DSM (ODSM) and page-based DSM (PDSM). ODSMs share the memory of 
arbitrarily sized software objects. These objects are accessed through m eth­
ods th a t signal the DSM layer to make the requested memory available to the 
caller. PDSMs, in contrast, share pages of system memory, where the page size 
is a fixed, machine dependent number of bytes. Rather than  utilize function 
calls to access memory, the program simply accesses the normal virtual ad­
dress space, and the DSM layer independently ensures th a t the needed pages 
are made available.

We have experimented with both memory organizations. We discuss our im­
plementations of each DSM below, and compare the performance of the two 
in Section 3.3.

3.1 ODSM

In our ODSM implementation each node creates a DataServer object at 
startup. This object is responsible for managing the node’s resident and cached 
blocks. The ray tracing threads access the shared memory blocks through the 
DataServer’s acquire and release methods. Each call takes an integer handle 
th a t selects a particular block of memory from the global memory space. W hen 
the renderer accesses a block th a t belongs to the local node’s resident set, the 
ODSM layer simply returns th a t block’s starting address. W hen the renderer 
accesses a non-local block, the ODSM layer must first search the cache for the 
block and, if it is found, return its local address. If the block is not cached, 
the ODSM must send a message to the node th a t owns the block and wait 
for th a t node’s response. W hen the requested block arrives, the ODSM places 
the remote data  in the local cache, possibly evicting another block to reclaim 
space. W hen a thread finishes using the block, the release m ethod notifies
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the DataServer th a t the space used for the block is now available for use by 
another block.

The ODSM architecture has two im portant advantages. First, because accesses 
to the blocks are bounded by acquire and release operations, it is relatively easy 
to make the ODSM thread-safe. The ODSM protects each block with a count­
ing semaphore th a t allows multiple render threads to access a block simulta­
neously. The semaphore also prevents th a t block from being evicted while it 
is still in use. Second, because the blocks are accessed indirectly through a 
handle, the 4 GB address lim itation of 32-bit machines no longer applies. The 
maximum addressable memory is now the size of the integer handle times the 
size of the block. Taken together, the ODSM makes the aggregate physical 
memory space of the cluster accessible to any thread.

Although the ODSM makes a large amount of memory available to the ap­
plication, it may cause difficulties for the application programmer. Figure 3 
shows pseudo-code for the process by which the ray tracing application ac­
cesses the ODSM memory space. Because the scene data  is accessed through 
handles, the ray tracing threads must map graphics primitives (for example, 
voxels and triangles) to block handles and offsets within blocks. The mapping 
process is difficult for many data  representations, and the address arithm etic 
consumes valuable processing time. Thus, with the ODSM, some time is lost 
accessing the shared data, even in the event of a memory hit.

// Locate data

handle, offset = ODSM_location(datum); 

block_start_addr = ODSM_acquire(handle);

// Use data

datum = * (block_start_addr + offset); 

test_ray_intersection(datum);

// Relinquish space 

ODSM_release(handle);

Fig. 3. Object-Based DSM Usage. With the ODSM, the ray tracing threads must 
explicitly access the shared data space.

3.2 PDSM

In a PDSM, the implementation of the shared memory is pushed away from 
the application, closer to the OS and hardware levels. There are no explicit 
acquire and release operations. Instead, the shared address space is simply a 
special region of the machine’s local virtual address space. Shared objects are 
created with an overloaded new operator th a t simply ensures th a t the shared
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objects are created in the PDSM address range. The ray tracing threads need 
only call test-ray-intersection(datum ) , as they would for any other piece of 
da ta  in the node’s local memory

Our implementation divides the PDSM ’s range of addresses into blocks tha t 
are multiples of the operating system ’s native page size. Each block is assigned 
to a node in the same round robin fashion as was the resident set of the 
ODSM. The rest of the pages in the PDSM memory are initially unmapped 
on each node. The virtual addresses are protected by a segmentation fault 
signal handler. This routine is called whenever the ray tracing threads access 
missing, non-local pages. In this case, the handler issues a request to the owner 
node in a manner similar to th a t of the ODSM. Figure 4 presents an overview 
of our PDSM memory access protocol.

Node l's Memory Node 2's Memory Node 3's Memory

Fig. 4. Page-Based DSM Architecture. The virtual memory hardware detects misses, 
and the PDSM layer causes remote references to be paged from across the network.

The PDSM layer makes the application program m er’s task easier, and the 
application generally operates more quickly. However, the size of the shared 
memory space is constrained by the 4 GB limit inherent to 32-bit address 
machines. In practice, the actual limit is less than  4 GB because some of the 
virtual address space is reserved for the operating system (addresses above 
OxCOOOOOO), as well as the program ’s executable code and free storage space 
(addresses near 0x4000000). This arrangement leaves at most 2 GB of address­
able shared memory. Despite this limitation, the technique provides a useful 
way to extend the to tal da ta  size when the installed physical memory on any 
node in the cluster is less than  2 GB. W ith the wider availability of 64-bit 
machines, it is likely th a t this lim itation will become less severe and th a t the 
technique will become more useful.
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Another drawback to our PDSM implementation is tha t, unlike the ODSM, it 
is not currently thread-safe. The PDSM lacks the semantics of explicit acquire 
and release operations, and exhibits a race condition whenever the user-level 
communication thread fills a requested page of memory received from a remote 
node. W ithout kernel modifications, there is no way to reserve a particular 
page of memory for a particular thread, so there is some chance th a t additional 
ray tracing threads could access the page while it is being filled. For this reason, 
all of the PDSM tests reported here use only a single ray tracing thread per 
node.

3.3 O D SM /PDSM  Comparison

To compare the performance of the two DSM implementations, we render 
isosurfaces of a 512 MB scalar volume created from a computed tomogra­
phy scan of a child’s toy. The test machine is a 32-node cluster consisting of 
dual 1.7 GHz Xeon PCs with 1 GB of RAM, connected via switched gigabit 
ethernet. All rendering tests report the average frame rate  during interactive 
sessions using a 512x512 pixel view port. The images are composed of 16x16 
pixel tiles. Thirty-one rendering nodes are used, with one rendering and one 
communication thread per node, except where noted.

In this test, we examine the cost of using a shared memory space by restricting 
the DSM layers to store only 81 MB on each node. Because the viewpoint and 
isosurface selection change throughout, the working set varies frequently, and 
the DSM layers must do extra work to obtain the needed data.

Figure 5 shows the recorded frame rates from the test and a sampling of 
rendered frames. The test is started  with a cold cache. In the first half of the 
test, the entire volume is in view, while in the second, only a small portion 
of the dataset is visible. Both DSM layers struggle to keep the caches full 
during the first part of the test. However, the lack of memory indirection 
gives the PDSM a lower hit time, so it outperforms the ODSM throughout. In 
later frames, most memory accesses hit in the cache, so the PDSM adds little 
overhead to data  replication. Overall, the average frame rates for this test are 
3.74 fps with replication, 3.06 with the PDSM and 1.22 with the ODSM. The 
PDSM layer is clearly preferable to the ODSM layer as long as the to tal data  
size can be addressed by the nodes in the cluster.
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Fig. 5. Comparing Memory Organization. Frame rates are above and images from 
the test are below. The page-based DSM outperforms the object-based DSM in 
all cases. Moreover, its performance is competitive with full data replication, even 
though the local memory size is reduced to 16% of the total.

4 M em ory O ptim izations

In this section we describe the optimizations we have made to improve the 
hit rate of our rendering application. Table 1 gives the measured hit and miss 
penalties for our object- and page-based DSMs recorded in a random access 
test. The disparity between the hit and miss times under both DSMs justifies 
our search for optimizations which target increased hit rates. The optimiza­
tions include the use of spatial sorting structures, da ta  bricking, access penalty 
amortization, and a load balancer th a t exploits frame-to-frame coherence.

Hit Time Miss Time

Object-based DSM 10.2 629

Page-based DSM 4.97 632
Table 1
DSM Access Penalties. Average access penalties, in fis, over 1 million random ac­
cesses to a 128 MB address space on five nodes.
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4-1 Optimizations for Volumetric Data

Our application focus has been rendering the isosurfaces contained within reg­
ular volumetric datasets, a common task in scientific visualization. To render 
this type of data, we utilize the macrocell and bricking acceleration techniques 
described by Parker et al. [13] and DeMarle et al. [14].

To accelerate rendering, our system uses a macrocell hierarchy th a t enables 
space leaping. The hierarchy is an octree-like spatial sorting structure tha t 
contains, at each level, a grid of cells storing the minimum and maximum 
values of the subcells at the next lower level. By traversing the macrocell hi­
erarchy, we need not consider much of the data  th a t is contained within the 
shared memory space. For non-volumetric data, we use efficient bounding vol­
ume hierarchy and hierarchical grid-based data  structures [15,16] for a similar 
purpose.

D ata bricking [17], or three-dimensional tiling, reorganizes the 3D array of 
da ta  in memory to keep proximate volume elements together in address space. 
Rather than  traverse each row of the data  in memory before proceeding to 
the next column and eventually slab, we group neighboring cells in small 
bricks. The sizes of the bricks are chosen to be aligned on memory hierarchy 
boundaries. We repeat the process with the bricks to obtain the same benefits 
on cache line, OS page, and network transfer memory block levels.

4-2 ODSM Access Consolidation

W ith the structures described above, the ray tracing threads tend to access 
only a small fraction of the data, and they tend to do so repeatedly. The 
structures are effective enough tha t, in the isosurface rendering application, 
we typically have hit rates of greater than  95%. In this situation, the hit times 
are a limiting factor. The PDSM memory layer is an option for moderately 
sized volume data, but for very large data  we are forced to use the ODSM. To 
achieve better performance from the ODSM, we reduce the number of accesses 
and amortize the cost of each hit over multiple data  values.

Our approach is to consolidate accesses to da ta  at the bottom  level of the 
acceleration structure. Rather than  perform an acquire operation to obtain 
each scalar value, we acquire a block and obtain all of the scalar values needed 
to construct the required voxels within the block. Every ray first traverses the 
bottom-level macrocells to construct a list of required blocks. The ray then 
acquires each touched block in turn, copying all of the intersected voxels before 
releasing the block and moving to the next one.
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Figure 6 gives a 2D example of the simple acquire-on-demand and consolidated 
access strategies. In the simple approach, the ray must perform 28 acquires 
to obtain data  for the 7 voxels th a t are required. Most of these acquires are 
redundant. In the consolidated approach, only 2 acquires are needed. The first 
retrieves 6 scalar values, the second retrieves 10.

Fig. 6. Consolidating Access to Shared Memory. Because distributed shared memory 
is slow, it is beneficial to reduce the number of accesses. By examining the ray 
segment within the bottom-level macrocell, all of the voxels touched inside a block 
can be obtained at one time.

We experimentally examine the effectiveness of the access consolidation stra t­
egy in an isosurface rendering test of a 7.5 GB volume. Table 2 shows the 
average number of accesses per worker per frame and the average frame rate 
for a test using three consolidation patterns. The first and last rows correspond 
to the patterns described above. The second row is an intermediate option in 
which the renderer acquires and releases the blocks touched by the 8 corners 
of a voxel in turn, usually retrieving all eight values in one access. In each 
case, the increase in frame rate  is inversely proportional to the decrease in the 
number of accesses, minus the overhead of the block pre-traversal process.

Pattern Accesses Frame Rate

[f/s]

Access 1 3279000 .1149

Access 8 453400 .7090

Access Many 53290 1.686
Table 2
Consolidated Access Test Results. Amortizing access to the ODSM is essential for 
interactivity.

4-3 Mesh Reorganization

We also apply the concept of da ta  bricking to polygonal mesh data. W hen 
spatially proximate primitives are sorted in memory so th a t they become 
proximate in address space as well, pages are more likely to be reused and
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hit rates are likely to increase. Given our image tile access pattern, the ideal 
mesh for our purposes is one with large patches of triangles th a t reside on the 
same page in memory. The goal of making the scene data  more coherent by 
reorganization is similar to th a t achieved by Pharr et al. [18] for disk cached 
ray tracing, and by Hoppe [19] and Isenburg et al. [20] for scan line rendering.

The memory layout of our input da ta  is reorganized using a preprocessing 
program. The program uses an octree to sort the vertices and triangles of the 
input mesh in space. The program reads each vertex from disk and inserts it, 
along with its index in the input file, into one of eight children of the octree’s 
top level cell. We repeat the process within each cell recursively sorting until 
each subcell contains no more than  a small, user-defined number of vertices. 
In the end all of the vertices within each cell are guaranteed to be close to one 
another. After the vertices are inserted into the tree, we perform a depth first 
traversal to append the sorted vertices onto an output file.

We repeat the process for the triangles in the mesh, using the centroid of each 
triangle to determine the octant in which the triangle should be placed. Once 
the triangles are sorted, we fix the vertex references of each triangle to index 
the correct position in the newly sorted vertex list by creating an oldJndex-to- 
newJndex  lookup table. The table is constructed by reading the sorted vertex 
list and storing a vertex’s new index in the table at the vertex’s saved original 
location.

Figure 7 shows graphically what it means to group triangles in the shared 
address space according to spatial locality. W ith a sorted mesh layout, neigh­
boring rays are more likely to find the data  they need within an already 
referenced page and throughout the lower levels of the memory hierarchy.

We analyze the effectiveness of the sorting routine with another experimental 
test. In this case, we place mesh data  and a hierarchical grid acceleration struc­
ture into the PDSM memory space. This test uses Stanford’s Lucy model [21], 
which has 14027872 vertices and 28055742 triangles. We selected the finest res­
olution acceleration structure tha t would fit within the PDSM memory space 
(3 hierarchical levels, 5 cells per level), because it is the most selective and 
yields the best performance. The original and sorted Lucy meshes each con­
sume 481.6 MB, and the hierarchical grid of each mesh consumes 1149.1 MB. 
The to tal da ta  size in each case was 1630.7 MB.

In the test, we compare the frame rate of a recorded interactive session con­
sisting of a series of camera motions around the model. We run the test with 
the original and sorted meshes, gradually decreasing the available memory 
size by reducing the local cache param eter of our PDSM. This simulates the 
anticipated memory configuration when rendering large models on a 64-bit ar­
chitecture in which the physical memory size is likely to be much smaller than
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(c) (d)

Fig. 7. Improving Coherence via Data Reorganization. On the left, the first triangle 
in the mesh is colored white and the last black. On the right, pages of triangles 
in the DSM space are colored to identify node ownership. In (a), the input mesh 
exhibits regions where nearby triangles are far apart in address space. In (b), the 
pages take the form of thin strips. In (c) and (d), the sorted mesh exhibits fewer 
address discontinuities, and pages of memory now form patches on the surface.

the virtual memory size. To dem onstrate the importance of memory locality 
in general, we also repeat the test with a randomized mesh, where the trian­
gles and vertices are placed randomly into memory. Figure 8 shows the results 
of the test. Initially, all three meshes run at approximately the same speed. 
As the memory becomes more restricted, the randomized mesh performance 
quickly degrades due to thrashing while our sorted mesh results in the best 
performance.
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Fig. 8. Mesh Reorganization Results. As the memory space available for rendering 
falls, the improved coherency in the sorted mesh produces fewer misses (top) and, 
as a result, higher frame rates (bottom).

4-4 Distributed Load Balancing

We have also experimented with two types of load balancing in our parallel 
renderer: a centralized task queue and distributed load balancing. In the cen­
tralized task queue, the supervisor node maintains a work queue, and workers 
implicitly request new tiles from the supervisor when they return completed 
assignments. In the distributed load balancer, the workers instead obtain tile 
assignments from each other.
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This centralized design worked well in the original hardware shared mem­
ory implementation of the ray tracer. However, the higher network latency 
and slower shared memory access times in the cluster have introduced per­
formance penalties for this load balancing scheme. For example, although the 
central work queue quickly achieves a well-balanced workload, it results in 
poor memory coherence because tile assignments are essentially random and 
change every frame. In a cluster with severe memory access miss penalties, 
there is an interesting trade-off between a more balanced workload and higher 
hit rates.

W ith our distributed load balancer, each ray tracing thread starts frame t with 
the assignments it completed in frame t — 1. This pseudo-static assignment 
scheme increases hit rates because the data  used to render frame t — 1 will 
likely be needed when rendering frame t. The goal of this approach is similar 
to the scheduling heuristic described by Wald et al. [8].

The distributed load balancer uses a combination of receiver- and sender- 
initiated task migration in an a ttem pt to prevent the load from becoming 
unbalanced when the scene or viewpoint changes. Once a worker finishes its 
assignments for a given frame, it picks a peer at random and requests more 
work. If th a t peer has work available, it responds. To improve the rate of 
convergence toward a balanced load, heavily loaded workers can also release 
work without being queried. In our current implementation, for example, the 
node th a t required the most time to complete its assignments will send a task 
to a randomly selected peer at the beginning of the next frame.

Figure 9 contains difference images between two successive frames in a test 
session run under each load balancer. The difference images show the tiles tha t 
change ownership between the frames on each run. W ith the work stealing load 
balancer, very few tiles were rendered by different nodes in the second frame, 
as is typical in our experience.

We now analyze the extent to which decentralized load balancing improves per­
formance. For this test, we rendered two more of Stanford’s scanned meshes, 
the dragon and bunny models, which together contain 1.2 million triangles and
0.6 million vertices. The to ta l size of the mesh data  is 28.76 MB, and we access 
the data  through a highly efficient hierarchical grid acceleration structure th a t 
is 187.7 MB in size. As before, we vary the local cache size, this time analyzing 
how each load balancing algorithm impacts the caching performance.

Figure 10 shows the results. As memory becomes restricted, the work stealing 
scheme maintains interactivity better because it is able to reuse cached data  
more often and yields fewer misses. However, when memory is plentiful, either 
approach works well. In practice, it is the trade-off between increased load 
imbalance and improved hit rates th a t determines which option will perform
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Fig. 9. Comparing Task Assignment Strategies. Difference images computed from 
two subsequent frames. Results from the demand driven load balancer are on the 
left, work stealing results are on the right. The task stealing heuristic changes tile 
assignments much less frequently.

better. However, as the memory constraints become more restrictive, the work 
stealing load balancer tends to perform better.

A decentralized scheme also eliminates a synchronization bottleneck at the su­
pervisor th a t is amplified by the network transmission delay. Unless frameless 
rendering is used, a frame cannot be completed until all image tiles have been 
assigned and returned. Asynchronous task assignment can hide the problem, 
but as processors are added, message start-up costs will determine the min­
imum rendering time. W hen this happens, the rendering time is at least the 
product of the message latency and twice the number of task assignments in a 
frame. For 512x512 images composed from 16x16 tiles the maximum achiev­
able frame rate is 34 frames per second on our cluster.

Work stealing eliminates all task assignment messages from the supervisor and 
allows workers to assign tasks independently. In other words a decentralized 
task assignment scheme takes advantage of the fact th a t on a switch-based 
network nodes B  and C  can communicate at the same time as nodes D  and E. 
W hen the system is network bound, this approach can increase the achievable 
frame rate  by a factor of two.

5 Scalability Analysis

In a renderer designed for interactive visualization of large scientific datasets, 
it is im portant to understand the processor and data  scaling behavior. T hat 
is, given a constant da ta  size, we want to know if it can be rendered more 
quickly by using more processors. We also want to know how the rendering 
speed changes with a fixed number of processors as the size of the dataset

17
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Fig. 10. Effect of Task Reuse with Limited Local Memory. Each node exhibits fewer 
misses when computing pixels from previous tasks (top). As a result, work stealing 
improves frame rates when the local memory is limited (middle), despite exhibiting 
a more imbalanced workload (bottom).

increases.

In an image parallel ray tracer, one can expect th a t when the program is 
compute-bound, because there are many independent pixels in the image,
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processor scaling behavior will be quite good. Because of hierarchical acceler­
ation structures, we can also expect th a t da ta  scaling behavior will be good, 
as these structures tu rn  the ray tracing algorithm into an 0 { P  log N )  sorted 
search problem.

In practice, when rendering small da ta  sets th a t can be replicated in each 
node’s memory we have found th a t these scaling characteristics accurately 
model our program ’s behavior. The application tends to scale nearly lin­
early until com putation time falls below network communication time, at 
which point we can no longer overlap computation and communication. W hen 
enough processors are applied to overcome the computational bottleneck, im­
age tile communication time eventually becomes the limiting factor as de­
scribed in Section 4.4.

W hen rendering large amounts of data, it is more often the case th a t memory 
access times are the most significant bottleneck. For example, if a node misses 
in the cache and needs to fetch remote data  on average 100 times per frame, 
and each one of these requests takes 1 ms, then one can not expect to reach 
more than  10 frames per second.

The number of da ta  accesses and the ratio of local to remote memory refer­
ences is dependent on the number of workers and on the size of the data. To 
examine the behavior of our system in practice, we perform another bench­
mark, in this case rendering the volume shown in Figure 11. This volume is 
time step 225 of a Richtmyer-Meshkov instability dataset from Lawrence Liv­
ermore National Laboratory. The complicated surfaces in this dataset make 
the renderer processor- and memory-bound well before it becomes network- 
bound.

Fig. 11. Richtmyer-Meshkov Instability. The computational fluid dynamics dataset 
used for the scalability tests.
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We measure processor scaling performance by varying the number of render­
ing nodes. We measure memory scaling performance by down-sampling the 
original 7.5 GB volume repeatedly, and recording the running time over an 
interactive session. To make a fair comparison, we place all volumes in the 
ODSM space despite the fact th a t the smaller volumes can be rendered more 
quickly in the PDSM space or by replication. The result of the scaling tests 
are given in Figure 12, and a selection of memory access measurements are 
given in Table 3.

Number of Nodes

Memory Size [MB]

Fig. 12. Processor and Memory Scaling Behavior.

As the number of nodes increases, the data  sets th a t are small enough to be 
cached entirely in the physical memory of each node exhibit close to ideal 
scaling. The largest datasets cannot be cached entirely on any one node which 
makes scaling more complicated.

W ith large data, as the number of nodes increases, the dominant component 
of runtim e change is a decrease in the number of accesses per node. This 
happens because increasing the number of workers decreases the amount of 
the screen th a t is rendered on any one node. Meanwhile, for the large datasets 
the number of misses drops substantially, as more of each node’s memory is
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120 MB 960 MB 8 GB

8 nodes accesses

misses

265211

2.16

245444

14.7

221667

5933

16 nodes accesses

misses

132605

2.31

123250

15.7

110903

529

31 nodes accesses

misses

68600

2.38

63611

16.1

57189

251
Table 3
Selected Rendering Statistics. Average number of memory accesses and DSM cache 
level misses per worker per frame recorded in nine of the test sessions.

available to use as a cache. Overall the trend is still towards linear scaling, 
with a tem porary benefit due to the caching and memory access factors.

From the memory scaling figure it is clear th a t the macrocell hierarchy gives 
us very good data  scaling behavior. Holding the number of nodes constant, 
multiplying the data  size by powers of 8 decreases the frame rate very little. 
The hierarchy keeps the number of accesses roughly constant as the data  size 
explodes. Unfortunately increasing the data  size does increase the miss rate, 
which makes the rendering time more influenced by the long miss penalty. If 
the local memory is insufficient to hold the working set, as is the case for 8 
nodes on the 8 GB data, thrashing results and the miss penalty dominates.

6 Conclusions

We have found th a t it is possible to render large datasets quickly using read­
ily available cluster technology. Our solution adds a top-level memory layer 
in which all cluster nodes share their local memory contents via the network. 
Our shared memory layer can use either an object-based or page-based orga­
nization. The object-based layer makes the aggregate physical memory space 
of the cluster available to all rendering threads. On 32-bit clusters, the page- 
based layer is more limited in term s of addressable data  size, but it adds less 
overhead to the cost of purely local da ta  access.

W ith our shared memory, we are able to ray trace scenes th a t are too large to 
be replicated in each node’s memory. Ray tracing is the classic image parallel 
rendering algorithm. All pixels can be computed concurrently so it usually 
exhibits very good processor scalability. The use of acceleration structure hi­
erarchies allows us to consider only a fraction of the elements of the scene 
when rendering an image, which gives the program good memory scalability.
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The miss penalty in a network shared memory system using commodity in­
terconnection hardware is quite high. For this reason caching is an essential 
component of our network memory system. We have discussed several memory 
access optimizations th a t we have used, all of which increase the percentage of 
cache hits. The optimizations extend the memory size to which we can achieve 
interactive rendering.

7 Future Work

Higher performing interconnect architectures are becoming widely available. 
Both Myrinet and Infiniband, for example, reduce message latency and in­
crease network bandwidth substantially. We have recently adapted our sys­
tem  to make use of M PI to allow us to take advantage of these networks and 
increase our scalability. Our preliminary analysis has found th a t our asyn­
chronous message handling makes a thread-safe M PI layer of tantam ount 
importance. Lacking such a layer, efficiency-reducing thread barriers are re­
quired. These barriers usually negate any performance improvement th a t the 
high performance interconnect may yield.

For some datasets, the to tal physical memory space of the cluster is not suffi­
cient. Terabyte-scale, time varying volumetric datasets are an example. We are 
currently working to render from the combined disk space of all of the nodes 
in our cluster by fetching scene contents on demand from disk. We plan to use 
the network memory discussed here as an intermediate level in the memory 
hierarchy, inserted before the final disk-mapped layer. Preliminary tests have 
shown th a t such a system is possible, and we are currently studying further 
optimizations, such as those described by Correa [22], for this new memory 
organization.

Additional efficiency may be available if we can better exploit the processing 
elements in more recent PC architectures. W ith increasingly available SMP 
and simultaneous m ultithreading capable nodes, it is im portant to use hybrid 
parallel architectures efficiently. For this reason, we plan to address the lack 
of thread safety in our PDSM networked memory layer and to test it on 64-bit 
architectures.
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