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A bstract

Particle-based simulation methods are used to model a wide range of complex phe
nomena and to solve time-dependent problems of various scales. Effective visualiza
tions of the resulting state will communicate subtle changes in the three-dimensional 
structure, spatial organization, and qualitative trends within a simulation as it 
evolves. We present two algorithms targeting upcoming, highly parallel multicore 
desktop systems to enable interactive navigation and exploration of large particle 
datasets with global illumination effects. Monte Carlo path tracing and texture 
mapping are used to capture computationally expensive illumination effects such as 
soft shadows and diffuse interreflection. The first approach is based on precompu
tation of luminance textures and removes expensive illumination calculations from 
the interactive rendering pipeline. The second approach is based on dynamic lumi
nance texture generation and decouples interactive rendering from the computation 
of global illumination effects. These algorithms provide visual cues that enhance the 
ability to perform analysis and feature detection tasks while interrogating the data 
at interactive rates. We explore the performance of these algorithms and demon
strate their effectiveness using several large datasets.

Key words: interactive particle visualization, global illumination, ray tracing

1 In trodu ction

Particle methods are commonly used to simulate complex phenomena in a wide 
variety of scientific domains. Using these techniques, computational scientists 
model such phenomena as a system of discrete particles th a t obey certain laws 
and possess certain properties. Particle-based simulation methods are partic
ularly attractive because they can be used to solve time-dependent problems 
on scales from the atomic to the cosmological.
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Fig. I. Global illumination in particle visualization. Shadows help to disambiguate 
the relative position of objects in complex particle datasets (left). Although the 
crude approximation to indirect illumination used by local shading models tends to 
obscure geometric detail in shadowed regions, these details can be restored by using 
more advanced shading models (right).

Frequently, millions of particles are required to capture the behavior of a 
system accurately. Such massive simulations lead to very large, very complex 
datasets, making interactive visualization a difficult task. Moreover, the need 
to simultaneously visualize both the large- and small-scale features within the 
data  further exacerbate these issues.

An effective particle visualization m ethod will communicate subtle changes in 
the three-dimensional structure, spatial organization, and qualitative trends 
within the data  as a simulation evolves, as well as enable interactive navigation 
and exploration of the da ta  through interactivity. However, as particle-based 
simulations continue to grow in size and complexity, effective visualization of 
the resulting state becomes increasingly problematic. First, these datasets are 
difficult to visualize interactively because of their size. An effective visualiza
tion algorithm must be capable of rendering such a large number of particles 
efficiently. Second, the intricacies of complex data  are difficult to convey sensi
bly. Particle methods often simulate complex objects with subtle features tha t 
interact in complex ways, and detecting the salient features within the da ta  is 
a critical step in correctly interpreting the simulation results. Unfortunately, 
the proper way to communicate this information is not well-understood by the 
visualization or perception communities.

A recent psychophysical study has dem onstrated th a t advanced illumination 
effects can aid attem pts to comprehend im portant features within complex 
particle datasets [8]. In contrast to purely local models, advanced shading 
models such as ambient occlusion and physically based diffuse interreflection 
provide more accurate approximations to the light transport equation [11 ,12] 
and capture illumination effects th a t can enhance the perception of complex 
shapes with subtle features (see Fig. 1).

Unfortunately, advance shading models th a t simulate global effects are com
putationally expensive, and current algorithms are not particularly well-suited 
to interactive use. We introduce two algorithms th a t alleviate these issues and 
make global illumination effects practical for interactive particle visualization.

The first approach, which we call precomputed luminance textures (PLTs),
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overcomes the com putational limitations of advanced shading models by re
moving the illumination calculation from the interactive rendering pipeline. In 
a preprocessing phase, the illumination across each particle is sampled using 
Monte Carlo path  tracing and the results are stored in a luminance texture. 
To reduce the memory requirements imposed by this approach, either vector 
quantization (VQ) or principal component analysis (PCA) is used to compress 
the textures into a more manageable representation. During interactive ren
dering, the compressed textures are reconstructed (if necessary) and mapped 
to the particles, providing an approximation to the illumination in the scene. 
This simple, effective process enables the interactive navigation and explo
ration of large particle datasets with effects from advanced shading models.

The second approach, which we call dynamic luminance textures (DLTs), lazily 
evaluates advanced illumination effects by decoupling high quality rendering 
from interactive display. During rendering, requests for computationally ex
pensive illumination effects are generated for the currently visible particles. A 
Monte Carlo path  tracer satisfies these requests by sampling the illumination 
across the requested particles and storing the results in luminance textures. 
These textures are cached throughout a given interactive session and reused by 
the interactive renderer when appropriate. Textures are generated and stored 
for only visible particles, so the memory required by this approach is consid
erably less than  th a t of the PLT approach. As a result, dynamically generated 
textures need not be compressed.

These algorithms offer not only enhanced visual cues, but also provide a 
testbed for future studies examining the perceptual impact of advanced shad
ing modes on an interactive particle visualization process.

2 B ackground and R ela ted  W ork

Our algorithms are motivated by the need to visualize data  from a particle- 
based simulation technique called the m aterial point m ethod (MPM) [21,22], 
MPM is a particle-in-cell simulation technique th a t is particularly well-suited 
to problems with high deformations and complex geometries. Although we 
evaluate our algorithms using MPM data  from simulations of structural me
chanics problems, both approaches are applicable to particle da ta  from other 
simulation methods and other application domains as well.

P artic le  v isu alization . Investigators typically use particle visualization to 
assist efforts in da ta  analysis and feature detection, as well as in debugging ill- 
behaved solutions. One approach to particle visualization projects the particle 
values to a grid, and the transformed data  is then visualized using techniques 
such as isosurface rendering [16] and direct volume rendering [14].

Grid-based representations are suitable for some, but not all, particle visu
alization tasks. The limited resolution of the grid itself can be problematic:
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fine structural details within the data  may be lost. To alleviate this issue, the 
grid can be refined, either uniformly or adaptively. However, investigators are 
often interested in simultaneously examining both  the large- and small-scale 
structures within the data, so grid-based visualization techniques may not be 
appropriate. Moreover, interpolation may hide features or problems present in 
the original particle data, and isosurface extraction can be a time-consuming 
task, particularly for large datasets.

Particles can also be represented directly by simple, iconic shapes called glyphs. 
For many applications, a sphere or an ellipsoid is a natural representation of an 
individual particle. Glyph-based representations are able to preserve the fine 
details within the data  while maintaining the large-scale three-dimensional 
structure of the entire domain. This representation is particularly useful for 
the data  analysis and code development tasks th a t investigators often perform.

Several efforts have explored techniques to render large numbers of spheres 
efficiently, from rasterization on massively parallel processors [13], visualiza
tion clusters [15], programmable graphics hardware [9], and special-purpose 
hardware [28], to interactive ray tracing on tightly coupled supercomputers [3] 
and highly parallel multicore systems [7]. The algorithms we describe in this 
work target upcoming, highly parallel multicore desktop systems.

In teractive global illum ination . Interactively rendering images of complex 
environments with full global illumination computed in every frame currently 
remains out of reach. However, several algorithms offer alternatives for effi
cient com putation of global illumination effects. These techniques generally 
query data  structures th a t store illumination samples of the environment, or 
m aintain interactivity by limiting the number of paths traced in each frame.

For example, systems based on ray tracing or rasterization can include global 
illumination by precomputing and storing the effects, and later using the re
sults during interactive rendering. Such an approach requires a representation 
of the precomputed solution th a t is appropriate for use in an interactive ren
derer. Several such representations have appeared in the literature, ranging 
from illumination maps [1] and grid-based structures [6] to representations in 
complex bases like spherical harmonics [19] and non-linear wavelets [17].

Advanced illumination effects can also be sampled lazily during interactive 
rendering, and the samples can then be cached and reused when appropriate. 
As with precomputation, this m ethod requires a representation of the com
puted results th a t is suitable for caching, as well as the ability to reuse the 
cached samples. Additionally, these techniques require the ability to detect 
out-of-date samples th a t must be recomputed. Methods such as the irradiance 
volume [6], the render cache [26], and several others utilize this approach.

O ther algorithms decouple parts of the rendering process to facilitate better
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user interaction and faster image generation [2,26]. Typically these methods 
decompose the interactive pipeline into two asynchronous components: an in
teraction loop th a t responds to user input, and a high quality rendering engine 
th a t continually updates the image as quickly as possible. These approaches 
provide a responsive environment with which the user interacts, but maintain 
image quality by employing an expensive rendering engine.

The PLT and DLT algorithms described in this work leverage these ideas to 
make computationally expensive global illumination effects practical for an 
interactive particle visualization process.

3 L um inance T extures

Texture mapping is a well-known technique in computer graphics th a t is used 
to add surface detail to the objects in a scene w ithout explicitly modeling these 
details. Typically, an image (texture) is applied (mapped) to a surface in a 
process similar to pasting a decal onto the surface. Texture mapping often 
reduces the level of geometric detail th a t must be explicitly modeled while 
producing visually compelling results by encoding these details in an image.

Illumination maps [1] are simply texture maps th a t encode computationally 
expensive illumination effects such as diffuse or specular interreflection. These 
texture maps are created by computing the light th a t reaches a particular 
point in the scene and storing the result in the texel th a t maps to th a t point. 
In this way, global illumination effects can be computed and applied to the 
objects, adding illumination detail to  the scene.

3.1 Perceptual Concerns

Shadows have been shown to provide im portant visual cues about the relative 
position of the objects within a scene. Understanding spatial relationships 
within complex particle datasets is a fundamental task in the data  analysis 
process, but concerns about the use of shadows arise for two reasons. First, 
when used with local shading models, shadows often introduce ambiguities 
th a t result from the crude approximation to indirect illumination employed by 
these models. Second, discontinuities in shading resulting from hard shadows 
can be mistakenly interpreted as discontinuities in the underlying data.

We use soft shadows from area light sources to alleviate these concerns. Al
though soft shadows require integration of the incident illumination over the 
area of the light sources, Monte Carlo path  tracing easily captures soft shadows 
in addition to other global illumination effects like indirect illumination.

The second potential artifact arises from the interplay of color mapping and 
illumination effects from advanced shading models. Color mapping is an effec
tive way to communicate pertinent information beyond the spatial organiza
tion of objects within complex datasets [24]. Scalar values from the simulation
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Fig. 2. Generating luminance textures. Jittered samples in the («, v) parameter space 
of the texture are mapped to the particle surfaces. Rays originating at these points 
are traced through the scene, and the results are stored in the corresponding texel.

da ta  associated with each particle are assigned a color th a t is used as the 
surface color during shading to convey these values. W hen color mapping is 
used, effects from color bleeding become a concern with shading models tha t 
include diffuse interreflection. For example, a white particle may appear pink 
if it reflects light from a nearby red particle. The reflection of red light from a 
white surface may misrepresent the values associated with the white particle, 
resulting in confusion or m isinterpretation during data  analysis.

To mitigate this issue, the algorithms we describe ignore the color of a par
ticle during illumination com putation and consider only reflected luminance. 
Luminance is simply the amount of light th a t passes through or is emitted 
from a particular area within a given solid angle, and does not account for 
the chromaticity of a surface; th a t is, luminance acts only as an indicator of 
how bright a surface appears. By computing only reflected luminance, our 
particle visualization algorithms avoid the potential problems associated with 
color bleeding. Moreover, both the color map and the particular da ta  value 
used to determine surface color can be changed during rendering because these 
elements do not affect the reflected luminance within a scene.

3.2 Texture Generation

Luminance textures are simply illumination maps th a t store reflected lumi
nance as described above. To compute the luminance textures, jittered  samples 
in the (u, v) param eter space of a particular texture are generated and mapped 
to the current particle, as illustrated in Fig. 2. Rays originating at these points 
are traced through the scene according to the user-specified shading model, 
and the resulting luminance values are stored in the corresponding texel. This 
process continues until a texture has been generated for each particle.

We use a straightforward latitude-longitude mapping from the (u ,v )  parame
ter space of the textures to the world space coordinates of the particle surfaces. 
This mapping was chosen because of its simplicity and low overhead. We have
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found th a t a relatively low resolution texture (16 x 16 texels) with a small
number of samples per texel (typically 25-49 samples) and 8-bit luminance 
values capture the illumination adequately. A uniform area mapping [20] may 
perm it fewer samples to be used; however, for 16 x 16 textures, at most 65% 
more samples would be required under the current mapping to achieve an 
equivalent or better sampling density for all texels.

3.3 Texture Compression

Luminance textures may require a large amount of memory, even for rela
tively low resolution textures. For example, using a 16 x 16 texture and 8-bit 
luminance values, the textures for a single time step consisting of one mil
lion particles will consume over 244 MB of memory, or more than  20 times 
th a t consumed by the particle positions. The requirements for datasets with 
multiple time steps quickly become prohibitive.

Particles within some local vicinity typically exhibit similar illumination p a t
terns, so we explore two texture compression schemes th a t exploit this redun
dancy. One is based on vector quantization, the other on principal component 
analysis.

V ector quantization . VQ maps A;-dimensional vectors in the space R fc to 
a set of fc-dimensional vectors C  — {ci : i — 1 ,2 , . . . ,  N } .  The set of vectors 
C  is called the codebook, and each q  is a codeword. Associated with each 
codeword is a Voronoi region defined by:

Vi — {x  e R k : ||:r — q || <  ||:r — Cj\\ \/i ^  j } .

We use VQ to compress the luminance textures by treating each texture as 
a /c-dimensional vector, where k  corresponds to the product of the width and 
height of the texture.

There are two basic steps to compressing textures using VQ. First, vector 
pairs th a t minimize the distortion among the input vectors are found. The 
distortion is simply a measure of the distance between two vectors, x  and y:

k
d (x ,y )  = ~  V if-  

1 = 1

Next, the minimum distortion pair is merged by computing the centroid of its 
vectors. The set of vectors th a t remain is then used in subsequent iterations. 
These steps are repeated until the desired number of codewords or a user- 
specified error threshold has been reached.

P rin cip al com ponen t analysis. Texture compression based on PC A is an
other alternative. PCA uses statistical techniques to compute an orthonormal 
set of basis vectors in which the textures, treated as fc-dimensional vectors, 
can be expressed. By storing only a subset of these vectors, the mean vector,
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(a) Uncompressed vs. VQ

(b) Uncompressed vs. PC A

Fig. 3. Comparing compression schemes. VQ and PC A are both effective compres
sion schemes. The first column shows the original textures, the second column de
picts the textures compressed with VQ (a) and PC A (b), and the third column 
is a difference image of the results. There is little noticeable difference among the 
images, even though the texture data has been reduced by a factor of four.

and the associated per-object coefficients, an approximation to the original 
collection of textures can be reconstructed during interactive rendering.

The algorithm consists of three basic steps. First, the mean vector, m x — 
E { x } ,  and the covariance matrix, Cx =  E { ( x  — m x) ( x  — m x) T }, are computed. 
An ordered set of (A*, e*) pairs, where A* is the eigenvalue th a t corresponds to 
the eigenvector e ,̂ are computed from Cx using singular value decomposition. 
These eigenvectors serve as the basis vectors. Finally, the per-object coeffi
cients are determined by computing the dot product of each input vector with 
each basis vector.

Using these compression schemes, reasonable reconstructions of the original 
textures can be obtained while dramatically and efficiently reducing the stor
age requirements. Though compression introduces an additional element of 
approximation, we have not found this approximation to be noticeable (see 
Fig. 3).

3-4 Using Luminance Textures

Any particle visualization system capable of applying luminance textures to 
the particles can be used for interactive rendering. Texture mapping proceeds 
by calculating the appropriate (u , v ) texture space coordinate of a visible point, 
querying the four values required to bilinearly interpolate the final luminance 
value at th a t point, and multiplying the resulting value by the color of the 
particle.
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Fig. 4. Visualizations of a particle dataset using PLTs. The size and depth of the 
crack in this dataset are difficult to judge under Lambertian shading and shadows 
(left), but become more clear with diffuse interreflection captured by luminance 
textures (right).

Compressed textures impose some additional computations. VQ maps the 
original textures to a smaller set of codeword vectors using an integer index. 
In this case, the four luminance values are obtained by first determining the 
index of the codeword to which the texture of a particular particle has been 
mapped. The appropriate values of the codeword are then interpolated, and 
texture mapping proceeds normally. This simple indexing operation imposes 
no measurable impact on rendering performance with respect to using un
compressed luminance textures. In contrast, PC A computes an orthonormal 
basis th a t represents the axes of variation within the original textures, so the 
appropriate texels must be reconstructed before interpolating their values and 
assigning a color to the given pixel. Reconstruction requires a dot product be
tween the per-object coefficients and the basis vectors. While this additional 
com putation introduces some overhead, the impact on interactive performance 
is relatively small.

Fig. 4 compares the results of typical visualization using Lambertian shading 
and shadows with those obtained using luminance textures. The size and depth 
of the crack in this dataset become much more clear with diffuse interreflection 
effects captured by luminance textures.

4 P artic le  V isu alization  A lgorithm s

Our interactive particle visualization algorithms leverage the luminance tex
tures described above to make the use of computationally expensive global 
illumination effects practical for interactive rendering.

4-1 Precomputed Luminance Textures

Precomputed luminance textures overcome the computational limitations of 
advanced shading models by removing expensive illumination calculations 
from the interactive rendering pipeline. In a preprocessing phase, the illumina-
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Fig. 5. Using PLTs with programmable graphics hardware. Precomputed luminance 
textures that have been compressed with PCA can be reconstructed and applied to 
the particles during interactive rendering using multipass fragment processing.

tion across each particle is sampled using Monte Carlo path  tracing and stored 
in a luminance texture. To reduce the memory requirements imposed by this 
approach, either vector quantization (VQ) or principal component analysis 
(PCA) is used to compress the textures into a more manageable representa
tion as described above. Then, during interactive rendering, the textures are 
mapped to the particles, approximating the illumination in the scene.

We have implemented two interactive particle visualization systems th a t sup
port PLTs, one based on programmable graphics hardware, the other on in
teractive ray tracing.

Program m able graphics hardware. We extend the interactive particle vi
sualization system described by Gribble et al. [9] to support PCA compressed 
PLTs. Using multipass fragment processing, texture coordinates are computed 
for each particle, and the PLTs are reconstructed from the compressed repre
sentation to produce the final image (see Fig. 5).

In teractive ray tracing. We also extend the basic particle visualization 
components of the Real-Time Ray Tracer (RTRT) [18] to support PLTs. RTRT 
efficiently determines the currently visible particles by traversing a multilevel 
grid, and the PLTs are then applied to these particles during shading.

PLT resu lts. The datasets depicted in Table 1 are used to quantify the 
performance of the PLT approach. The results reported in this section were 
gathered by rendering 1024 x 1024 images using a 16 core Opteron machine 
with 2.4 GHz processors and 64 GB of physical memory.

Textures were generated using physically based diffuse interreflection, 16 x 16 
texels, and 49 samples per texel with 16 threads on the test machine. Pre
processing times are reasonable, despite the unoptimized path  tracing engine 
used in our current implementation (see Table 2, Appendix A).

The size of the resulting texture collections motivates the need for texture 
compression. Many simulations contain tens or hundreds of time steps, so the 
memory demands imposed by the PLT approach will quickly overwhelm all 
but the most resourceful machines. To alleviate this issue, textures are com
pressed using either VQ or PCA and a user-specified compression ratio. Both 
VQ and PCA are effective compression schemes (see Table 3, Appendix A).

10
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Table 1
Particle datasets used to evaluate our algorithms. These datasets exhibit a wide 
variety of sizes and geometric complexity, and each represents a single time step of 
the full simulation. We evaluate our algorithms using the viewpoints shown below.

Bullet-2 Bullet-7 Cylinder-6 Cylinder-22

#  particles 569523 549128 214036 212980

Data size 13.04 MB 12.57 MB 6.53 MB 6.50 MB

Fireball-10 Fireball-12 JP8-128 JP8-173

#  particles 954903 951449 834271 809533

Data size 14.57 MB 14.52 MB 22.28 MB 21.62 MB

Although textures compressed with VQ exhibit a lower mean distortion than  
those compressed with PCA, this quality comes at a price: VQ requires tens 
of hours to achieve even m oderate compression ratios. Fortunately, execution 
times for PCA compression are very reasonable, typically just tens of seconds. 
Though the mean distortion exhibited by the PCA compressed textures is 
somewhat higher, this error does not have a noticeable impact (see Fig. 3).

Finally, we examine the impact of PLTs on interactive visualization perfor
mance using RTRT. Lambertian shading with shadows serves as the baseline. 
Frame rates were measured by rendering a series of 100 frames at 1024 x 1024 
resolution with 16 threads on the test machine. Rendering performance im
proves by a factor of 1.14-1.91 when using PLTs (see Table 4, Appendix A). 
Our technique captures both shadows and diffuse interreflection during tex
ture generation, which obviates the need for shadow computations during 
interactive rendering.

4-2 Dynamic Luminance Textures

Our second algorithm, which we call dynamic luminance textures (DLTs), is 
motivated by lazy evaluation of global illumination effects. As before, we use 
texture maps to capture global illumination effects, but these effects are now 
computed on-the-fly during interactive rendering.
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Fig. 6. Interactive rendering and asynchronous texture generation. The interactive 
rendering engine responds to user input, displays the currently visible particles, 
and generates luminance texture requests for these particles on-the-fly. The texture 
generation engine asynchronously satisfies these requests as quickly as possible.

Advanced illumination effects are evaluated lazily by decoupling high qual
ity rendering from interactive display. Requests for computationally expensive 
effects such as soft shadows and diffuse interreflection are generated for the 
currently visible particles during interactive rendering. These requests are sat
isfied asynchronously by a Monte Carlo path  tracing engine. The illumination 
across the visible particles is sampled and the results are stored in dynami
cally allocated luminance textures. These textures are cached throughout an 
interactive session and reused when appropriate.

In teractive rendering engine. The interactive front-end is responsible for 
responding to user input and displaying the currently visible particles. During 
rendering, the status of the texture corresponding to a visible particle is de
termined by first querying the luminance texture cache. If the texture is valid, 
it is applied to the particle. Otherwise, a request is subm itted to the texture 
cache and the particle is temporarily shaded using the Lambertian shading 
model (see Fig. 6).

The M anta interactive ray tracing system [4] serves as the front-end in our 
current implementation. A front-end based on graphics hardware, similar to 
the one described above, could be modified to support DLTs as well.

T exture generation  engine. Textures are generated using the process de
scribed above. However, the engine is implemented using either a collection 
of dedicated threads or a per-frame callback mechanism (see Fig. 7). In either 
case, when work is available, requests are dequeued and memory is allocated 
for the textures as necessary. W hen complete, the status of the corresponding 
entries in the texture cache is updated, and the textures become available for 
use in subsequent frames.

Using dedicated threads potentially reduces the latency between texture re
quests and completion because they continually satisfy outstanding requests 
and update the texture cache as quickly as possible; however, this approach 
will limit the achievable frame rate  because the to tal number of threads in the 
system must be divided between texture generation and interactive rendering.

12
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| |  Generate textures Q  Render frame 

| ]  Display Irame J  Frame barrier

Fig. 7. The texture generation engine. Texture generation requests are processed 
either by a collection of dedicated threads (left) or by a per-frame callback executed 
within the interactive rendering pipeline (right).

Generating textures using a callback mechanism also imposes an upper bound 
on the achievable frame rate. For example, if each thread dedicates ^  seconds 
to texture generation, the frame rate  will necessarily be less than  30 frames per 
second. Similarly, this approach places a lower bound on the texture generation 
latency; in this example, the minimum latency will be ^  seconds.

L um inance tex tu re  cache. The luminance texture cache manages the state 
related to dynamically generated textures. In particular, the cache stores com
pleted textures and makes the results available for use by the interactive front- 
end.

Requests for new luminance textures are also managed by the cache, and are 
communicated to the texture generation engine via the request queue. W hen 
the interactive front-end encounters a visible particle, the cache is queried 
concerning the state of the corresponding texture. If the texture is invalid, 
a prioritized request is subm itted to the queue and awaits processing. The 
following heuristic determines the priority of each request:

P (x )  = f ( T ( x )  -  D (x )) ,

where the priority P {x)  of a request for particle £ is a function of the differ
ence between the time T (x )  th a t request is generated and the distance D (x)  
from the particle to the current viewpoint. This simple metric biases request 
ordering towards recently encountered particles th a t are close to the current 
viewpoint. While several other priority metrics can be used, this heuristic pro
duces enough randomization to avoid distracting artifacts and ensures tha t 
recently encountered particles are given preference.

DLT resu lts. The datasets depicted in Table 1 are used to quantify the 
performance of the DLT approach. The results reported in this section were
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gathered by rendering 512x512 images using a 16 core Opteron machine with
2.6 GHz processors and 64 GB of physical memory.

The DLT approach generates and caches textures for only the particles tha t 
are visible throughout an interactive session. The number of visible particles 
is significantly less than  the to ta l number of particles in each dataset (ranging 
from 2.38% to roughly 12%; see Table 5, Appendix A). Thus, the memory 
consumed by uncompressed PLTs can be reduced by factor of 8.24-42.03 using 
uncompressed, dynamically generated luminance textures. These requirements 
are thus comparable to those of PC A compressed PLTs.

We also examine the impact of DLTs on interactive visualization performance 
using M anta and per-frame callbacks for texture generation. Lambertian shad
ing with shadows serves as the baseline. Frame rates were measured by render
ing a series of 100 frames at 512 x 512 resolution with 16 threads on the test 
machine. The operations required to m aintain the luminance texture cache 
reduce performance by roughly a factor of three (see Table 6, Appendix A). 
Performance drops by an additional factor of 2.81-6.06 while outstanding tex
ture generation requests are processed, but still permits fluid interaction with 
the data. However, when all outstanding requests have been satisfied, per
formance increases dramatically, achieving frame rates th a t are a factor of 
1.10-1.58 higher than  Lambertian shading with shadows.

Finally, Fig. 8 summarizes the scaling characteristics of the DLT algorithm. 
While the number of textures generated in each frame scales roughly linearly 
with the number of threads, interactive performance does not improve sub
stantially when using a large number of threads. The operations imposed by 
texture generation and cache updates constitute a bottleneck and do not per
mit interactive rendering performance to scale efficiently. Once these requests 
have been satisfied, however, the algorithm scales to 16 threads with approx
imately 80% efficiency.

5 C onclusions and Future W ork

The algorithms described above make perceptually beneficial effects from 
global illumination practical for an interactive visualization process. Using 
these methods, investigators can interact with the whole dataset and achieve 
a better understanding of the state of each particle, as well as its relationship 
to the full com putational domain. In fact, informal feedback from applica
tion scientists indicates th a t the results of these algorithms enhance the data  
analysis tasks necessary for understanding complex particle datasets.

D iscu ssion . The implementations described above do not leverage coherent 
grid traversal for particle visualization (PCGT) [7]; instead, they are based 
on highly optimized single ray traversal for multilevel grids [18]. Although 
RTRT does not facilitate packet-based ray tracing, M anta has been explicitly
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Number of threads

Fig. 8. Average efficiency achieved by the DLT algorithm. Frame rates do not im
prove while servicing texture generation requests, but the algorithm scales efficiently 
once these requests have been satisfied.

designed for such algorithms, and we have begun to explore the impact of 
PC G T on our algorithms.

Using PC G T to determine the currently visible particles is straightforward, 
and our algorithms simply proceed as described above. The performance im
provements we observe are commensurate with the packet-based traversal 
scheme [7]. However, the constraints of PC G T limit its utility in texture gen
eration: performance is dependent on packets of highly coherent rays, which 
Monte Carlo path  tracing tends not to produce. We are currently investigating 
coherent path tracing using SIMD ray stream tracing [25], which extracts and 
exploits the coherence in arbitrarily sized groups of arbitrary rays.

Computing an accurate solution to the light transport equation at highly in
teractive rates currently remains out of reach, even on multicore platforms 
like the test machines used to evaluate our algorithms. However, with the ad
vent of massively multicore processors like the CELL Broadband Engine [10], 
it is only a m atter of time before compute power exceeding th a t of the test 
machines is available on commodity desktop systems. Our algorithms are de
signed for such highly parallel architectures, and can be adapted to future 
systems in a straightforward manner. The anticipated architectures thus sug
gest th a t these algorithms may facilitate interactive particle visualization with 
global illumination effects on a single, very inexpensive processor.

Future work. Some aspects of these algorithms warrant further investigation.
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For example, improving the performance of texture generation by aggressive 
optimization of the path  tracing engine would be valuable. As noted above, 
methods for coherent path  tracing offer one promising direction. Texture level- 
of-detail could also be used to reduce texture generation time for perceptually 
unim portant particles. Such an approach would require a human behavior 
model incorporating factors from both  space navigation [5] and visual atten
tion [23]. Additionally, alternate representations for storing illumination effects 
may provide more accurate or more compact results. Spherical harmonics is 
just one of several alternatives th a t could be explored.

As discussed above, the memory required by the DLT approach is significantly 
less than  th a t required by uncompressed PLTs, so we have not explored texture 
compression in this context. However, there is nothing inherent to the algo
rithm  th a t precludes the use of texture compression with dynamically gener
ated textures. Incremental compression schemes, for example, those based on 
PCA [27,29], could be used to further reduce the DLT memory requirements.

Although the number of texture requests satisfied in a given frame scales 
roughly linearly with the number of texture generation threads, analysis indi
cates th a t the luminance texture cache represents a bottleneck in our current 
implementation. A decentralized caching scheme in which each thread man
ages some part of the cache may help to alleviate the bottleneck, particularly 
as more and more processing cores become available.

Parts of this work were funded by the DOE ASC program.
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A p p en d ix  A

The tables below present detailed results concerning various aspects of our 
interactive particle visualization algorithms. The main body of the text refer
ences these tables where appropriate.

Table 2
Texture generation statistics. Texture sizes (MB) and run times (hh:mm) for the test 
datasets. Preprocessing times are reasonable, despite the unoptimized path tracing 
engine used in our current implementation.

Dataset #  particles Texture size Run tim e

Bullet-2 569523 139.04 1:27

Bullet-7 549128 134.06 1:13

Cylinder-6 214036 52.26 0:24

Cylinder-22 212980 52.00 0:26

Fireball-10 954903 233.13 3:53

Fireball-12 951449 232.39 6:07

JP8-128 834271 203.68 2:01

JP8-173 809533 197.64 2:07

Table 3
Texture compression statistics for JP8-173 using VQ/PCA. VQ typically leads to a 
lower mean distortion than PCA, but requires tens of hours to achieve the desired 
compression ratios. PCA typically requires just tens of seconds, however.

Ratio #  textures Run tim e D istortion

2:1 126979 /  122 21 h /  15 s 11.63 /  91.22

4:1 57165 /  55 34 h /  12 s 29.81 /  109.86

16:1 4171 /  10 30 h /  10 s 59.33 /  210.63
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Table 4
Impact of PLTs on interactive visualization performance. Rendering performance 
improves by a factor of 1.14-1.91 when using PLTs. (The PCA compressed PLTs 
used in these tests store eight basis textures.)

Dataset Lambertian Uncompressed VQ PCA Speedup

Bullet-2 5.21 6.89 6.89 6.15 1.32/1.18

Bullet-7 6.01 7.82 7.82 6.87 1.30/1.14

Cylinder-6 3.60 6.57 6.57 5.89 1.82/1.64

Cylinder-22 3.12 5.34 5.34 4.88 1.71/1.56

Fireball-10 1.54 2.91 2.91 2.79 1.89/1.81

Fireball-12 0.67 1.28 1.28 1.25 1.91/1.87

JP8-128 0.73 1.12 1.12 1.11 1.53/1.52

JP8-173 0.73 1.11 1.11 1.01 1.52/1.38

Table 5
Memory requirements for our algorithms. The memory, in megabytes, consumed 
by DLTs is 8.24-42.03 times less than that consumed by uncompressed PLTs, and 
are thus comparable to the requirements of PCA compressed PLTs that store eight 
basis textures.

Dataset #  particles % visible DLT PLT PCA

Bullet-2 569523 4.53% 6.31 139.04 4.35

Bullet-7 549128 2.38% 3.19 134.06 4.19

Cylinder-6 214036 11.64% 6.34 52.26 1.64

Cylinder-22 212980 11.93% 6.21 52.00 1.63

Fireball-10 954903 8.07% 18.84 233.13 7.29

Fireball-12 951449 7.32% 17.01 232.39 7.26

JP8-128 834271 7.66% 15.61 203.68 6.37

JP8-173 809533 8.91% 17.62 197.64 6.18
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Table 6
Impact of DLTs on interactive visualization performance. Operations related to the 
DLT caching mechanisms reduce performance by roughly a factor of three, and 
texture generation has an additional impact. However, once outstanding texture 
generation requests have been satisfied, frame rates improve significantly.

Dataset Lambertian Query only Outstanding Completed

Bullet-2 46.13 17.44 5.20 72.95

Bullet-7 26.22 13.63 3.59 37.75

Cylinder-6 29.84 9.23 2.74 39.59

Cylinder-22 26.56 8.50 2.46 37.90

Fireball-10 59.17 21.44 3.54 65.37

Fireball-12 44.92 16.75 3.11 55.24

JP8-128 25.71 9.55 3.40 38.79

JP8-173 24.78 8.85 2.85 35.81
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