10,526 research outputs found

    New interaction models for 360º video

    Get PDF
    Esta dissertação tem como principal objectivo a incorporação de um mecanismo de buffering num sistema de multimídia, capaz de oferecer experiências multivista adaptáveis. A incorporação deste mecanismo vem provocar melhorias na qualidade de serviço e na qualidade de experiência. O sistema recorre ao protocolo MPEG-DASH e a uma câmara convencional para detecção dos movimentos da cabeça do utilizador. O sistema incorpora ainda um mecanismo de adaptação automática da qualidade, ajustável às condições da rede. O mecanismo desenvolvido é composto por um proxy e tem o objectivo de minimizar o atraso existente na transição de vistas. O proxy será capaz de enviar três vistas em simultâneo, duas em baixa qualidade, enquanto a vista principal será enviada e apresenta ao utilizador em alta qualidade.Sempre que existe um novo pedido por parte do utilizador, o mecanismo irá comutar entre as vistas enviadas até receber a resposta por parte do servidor. Deste modo, esta dissertação pretende identificar as dificuldades que se colocam relativamente à disponibilização e transmissão eficiente deste tipo de conteúdos, assim como os compromissos necessários ao nível da qualidade de experiência do utilizador.Today, the fast technological evolution and the significant increase in the demand for multimedia content has boosted the development of the transmission mechanisms used for this purpose.This development had repercussions in several areas, such as the immersive experiences that include the 360º contents. Whether through live streaming or using on demand services, the quality of service and experience have become two points whose development has assumed high importance. The capture and reproduction of 360º content allows transmitting an immersive view of reality at a given moment. With this approach, the industry intends to provide a product with better audiovisual quality, more comfortable for the user and that allows a better interaction with the same. An example of this is the choice of the view that most appeals to us in a given event (for example, football matches or concerts). This dissertation has as main objective the incorporation of a buffering mechanism in a multimedia system, able to offer adaptive multivista experiments. The system uses the MPEG-DASH protocol for efficient use of network resources and a conventional camera for detecting the movements of the user's head, selecting the points of view that one wishes to visualize in real time. The system also incorporates an automatic quality adjustment mechanism, adjustable to the network conditions. The buffering mechanism is intended to increase the quality of experience and the quality of service, minimizing the delay in the transition of views. The mechanism will consist of a proxy capable of sending three views simultaneously. Of these views, two will be sent in low quality, while the main view will be sent and presented to the user in high quality. Whenever there is a new request from the user, the mechanism will switch between sent views until it receives the response from the server. Based on these assumptions, the dissertation intends to identify the challenges that are posed regarding the availability and efficient transmission of 360º content, as well as the necessary commitments regarding the quality of user experience. This last point is particularly significant, taking into account the network requirements and the volume of data presented by the transmissions of this type of content

    Optimized Camera Handover Scheme in Free Viewpoint Video Streaming

    Get PDF
    Free-viewpoint video (FVV) is a promising approach that allows users to control their viewpoint and generate virtual views from any desired perspective. The individual user viewpoints are synthetized from two or more camera streams and correspondent depth sequences. In case of continuous viewpoint changes, the camera inputs of the view synthesis process must be changed in a seamless way, in order to avoid the starvation of the viewpoint synthesizer algorithm. Starvation occurs when the desired user viewpoint cannot be synthetized with the currently streamed camera views, thus the FVV playout interrupts. In this paper we proposed three camera handover schemes (TCC, MA, SA) based on viewpoint prediction in order to minimize the probability of playout stalls and find the tradeoff between the image quality and the camera handover frequency. Our simulation results show that the introduced camera switching methods can reduce the handover frequency with more than 40%, hence the viewpoint synthesis starvation and the playout interruption can be minimized. By providing seamless viewpoint changes, the quality of experience can be significantly improved, making the new FVV service more attractive in the future

    Prediction of Visual Behaviour in Immersive Contents

    Get PDF
    In the world of broadcasting and streaming, multi-view video provides the ability to present multiple perspectives of the same video sequence, therefore providing to the viewer a sense of immersion in the real-world scene. It can be compared to VR and 360° video, still, there are significant differences, notably in the way that images are acquired: instead of placing the user at the center, presenting the scene around the user in a 360° circle, it uses multiple cameras placed in a 360° circle around the real-world scene of interest, capturing all of the possible perspectives of that scene. Additionally, in relation to VR, it uses natural video sequences and displays. One issue which plagues content streaming of all kinds is the bandwidth requirement which, particularly on VR and multi-view applications, translates into an increase of the required data transmission rate. A possible solution to lower the required bandwidth, would be to limit the number of views to be streamed fully, focusing on those surrounding the area at which the user is keeping his sight. This is proposed by SmoothMV, a multi-view system that uses a non-intrusive head tracking approach to enhance navigation and Quality of Experience (QoE) of the viewer. This system relies on a novel "Hot&Cold" matrix concept to translate head positioning data into viewing angle selections. The main goal of this dissertation focus on the transformation and storage of the data acquired using SmoothMV into datasets. These will be used as training data for a proposed Neural Network, fully integrated within SmoothMV, with the purpose of predicting the interest points on the screen of the users during the playback of multi-view content. The goal behind this effort is to predict possible viewing interests from the user in the near future and optimize bandwidth usage through buffering of adjacent views which could possibly be requested by the user. After concluding the development of this dataset, work in this dissertation will focus on the formulation of a solution to present generated heatmaps of the most viewed areas per video, previously captured using SmoothMV

    HbbTV-compliant Platform for Hybrid Media Delivery and Synchronization on Single- and Multi-Device Scenarios

    Full text link
    [EN] The combination of broadcast and broadband (hybrid) technologies for delivering TV related media contents can bring fascinating opportunities. It is motivated by the large amount and diversity of media contents, together with the ubiquity and multiple connectivity capabilities of modern consumption devices. This paper presents an end-to-end platform for the preparation, delivery, and synchronized consumption of related hybrid (broadcast/broadband) media contents on a single device and/or on multiple close-by devices (i.e., a multi-device scenario). It is compatible with the latest version of the Hybrid Broadcast Broadband TV (HbbTV) standard (version 2.0.1). Additionally, it provides adaptive and efficient solutions for key issues not specified in that standard, but that are necessary to successfully deploy hybrid and multidevice media services. Moreover, apart from MPEG-DASH and HTML5, which are the broadband technologies adopted by HbbTV, the platform also provides support for using HTTP Live Streaming and Real-time Transport Protocol and its companion RTP Control Protocol broadband technologies. The presented platform can provide support for many hybrid media services. In this paper, in order to evaluate it, the use case of multi-device and multi-view TV service has been selected. The results of both objective and subjective assessments have been very satisfactory, in terms of performance (stability, smooth playout, delays, and sync accuracy), usability of the platform, usefulness of its functionalities, and the awaken interest in these kinds of platforms.This work was supported in part by the "Fondo Europeo de Desarrollo Regional" and in part by the Spanish Ministry of Economy and Competitiveness through R&D&I Support Program under Grant TEC2013-45492-R.Boronat, F.; Marfil-Reguero, D.; Montagud, M.; Pastor Castillo, FJ. (2017). HbbTV-compliant Platform for Hybrid Media Delivery and Synchronization on Single- and Multi-Device Scenarios. IEEE Transactions on Broadcasting. 1-26. https://doi.org/10.1109/TBC.2017.2781124S12

    LiveVV: Human-Centered Live Volumetric Video Streaming System

    Full text link
    Volumetric video has emerged as a prominent medium within the realm of eXtended Reality (XR) with the advancements in computer graphics and depth capture hardware. Users can fully immersive themselves in volumetric video with the ability to switch their viewport in six degree-of-freedom (DOF), including three rotational dimensions (yaw, pitch, roll) and three translational dimensions (X, Y, Z). Different from traditional 2D videos that are composed of pixel matrices, volumetric videos employ point clouds, meshes, or voxels to represent a volumetric scene, resulting in significantly larger data sizes. While previous works have successfully achieved volumetric video streaming in video-on-demand scenarios, the live streaming of volumetric video remains an unresolved challenge due to the limited network bandwidth and stringent latency constraints. In this paper, we for the first time propose a holistic live volumetric video streaming system, LiveVV, which achieves multi-view capture, scene segmentation \& reuse, adaptive transmission, and rendering. LiveVV contains multiple lightweight volumetric video capture modules that are capable of being deployed without prior preparation. To reduce bandwidth consumption, LiveVV processes static and dynamic volumetric content separately by reusing static data with low disparity and decimating data with low visual saliency. Besides, to deal with network fluctuation, LiveVV integrates a volumetric video adaptive bitrate streaming algorithm (VABR) to enable fluent playback with the maximum quality of experience. Extensive real-world experiment shows that LiveVV can achieve live volumetric video streaming at a frame rate of 24 fps with a latency of less than 350ms

    Proceedings of the NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications

    Get PDF
    The proceedings of the National Space Science Data Center Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications held July 23 through 25, 1991 at the NASA/Goddard Space Flight Center are presented. The program includes a keynote address, invited technical papers, and selected technical presentations to provide a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include magnetic disk and tape technologies, optical disk and tape, software storage and file management systems, and experiences with the use of a large, distributed storage system. The technical presentations describe integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990's

    Satellite Networks: Architectures, Applications, and Technologies

    Get PDF
    Since global satellite networks are moving to the forefront in enhancing the national and global information infrastructures due to communication satellites' unique networking characteristics, a workshop was organized to assess the progress made to date and chart the future. This workshop provided the forum to assess the current state-of-the-art, identify key issues, and highlight the emerging trends in the next-generation architectures, data protocol development, communication interoperability, and applications. Presentations on overview, state-of-the-art in research, development, deployment and applications and future trends on satellite networks are assembled
    corecore