
Optimized Camera Handover Scheme in Free Viewpoint Video

Streaming

Balázs Háló, Árpád Huszák

Department of Networked Systems and Services, Multimedia Networks and Services Laboratory
 Budapest University of Technology and Economics, Magyar Tudósok krt.2., H-1117 Budapest, Hungary

{halo, huszak}@hit.bme.hu

Abstract

Free-viewpoint video (FVV) is a promising approach that allows users to control their viewpoint and generate virtual views from any

desired perspective. The individual user viewpoints are synthetized from two or more camera streams and correspondent depth sequences.
In case of continuous viewpoint changes, the camera inputs of the view synthesis process must be changed in a seamless way, in order to

avoid the starvation of the viewpoint synthesizer algorithm. Starvation occurs when the desired user viewpoint cannot be synthetized with

the currently streamed camera views, thus the FVV playout interrupts. In this paper we proposed three camera handover schemes (TCC,

MA, SA) based on viewpoint prediction in order to minimize the probability of playout stalls and find the tradeoff between the image

quality and the camera handover frequency . Our simulation results show that the introduced camera switching methods can reduce the
handover frequency with more than 40%, hence the viewpoint synthesis starvation and the playout interruption can be minimized. By

providing seamless viewpoint changes, the quality of experience can be significantly improved, making the new FVV service more

attractive in the future.

Keywords: free viewpoint video; streaming; viewpoint prediction

1. Introduction

Free-viewpoint video (FVV) is a promising approach to

offer freedom to users’ perspective selection while

watching multiview video streams. The new type of

interactive FVV multimedia service allows users to control

their viewpoint and generate new views of a dynamic scene

from any desired perspective. The interactive free

navigation within a visual scene is similar to the

experiment known in 3D computer graphics applications.

The main difference is that FVV targets real world scenes,

captured by real cameras, without using 3D graphical

models. Different views can be synthetized depending on

the requested user specific perspective that can be

controlled e.g. by moving or turning their head or changing

position in a room. Free-viewpoint streaming with its

advanced features is foreseen as the next big step in 3D

video technology. These functionalities can be used for

various services, such as visual communication, media

broadcast and education. However, a commercial free-

viewpoint television (FTV) service will be similar to the

IPTV solutions, the difference is that not only one stream

belongs to a TV channel, but several video streams [1]. The

other difference is that the displayed media content is also

dissimilar due the individual user viewpoints.

The uniquely generated and displayed user views are

composed from two or more high bitrate color and

corresponding depth camera streams that must be delivered

to the users depending on their continuously changing

perspective. By increasing the number of the deployed

cameras and the density of the camera setup, the free-

viewpoint video experience becomes more realistic. But on

the other hand, more camera streams requires higher

network capacity. Without advanced camera handover

schemes the increased network traffic load and latency can

disturb the user experience. Instead of forwarding all

camera streams, it is a reasonable solution to deliver only

those camera views that are required for the viewpoint

synthesis. The intelligent camera selection is an efficient

solution to reduce the network load, however other

difficulties appears regarding to camera switches. Due to

continuous viewpoint changes the camera inputs of the

view synthesis process must be also changed with short

time constrains in order to avoid the starvation of the

viewpoint synthesizer algorithm. Starvation occurs when

the desired user viewpoint cannot be synthetized with the

currently streamed camera views, but the newly requested

camera views are still missing. In case of an intensively

changing user viewpoint, the seamless camera handover

can be very challenging.

 The research activity on FVV topic is very intensive

and focusing mainly on coding and viewpoint rendering

issues, while network delivery was investigated with lower

intensity. However, it is true that the key techniques of

FVV are still not efficient enough to provide services with

acceptable quality. Viewpoint synthesis is a very

computational hungry process and the existing algorithms

are still trying to find the tradeoff between the video quality

of the synthetized view and the rendering time of the FVV

algorithms. Basically, two image-based viewpoint synthesis

methods can be used to generate an individual viewpoint

from the camera sequences.

The first method is the Light Field Rendering (LFR) [2]

algorithm that interpolates a virtual view from multi-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/42937922?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

camera images, therefore sufficiently large number of

cameras have to be set up to achieve high performance

rendering, and a tremendous amount of image data needs to

be processed. The camera streams can be only transmitted

in broadband IP network even the streams are compressed.

Contrariwise, if the number of used cameras is too low,

interpolation and occlusion artifacts will appear in the

synthesized images, possibly affecting the quality.

The other method is the Depth Image Based Rendering

(DIBR) [3] that uses fewer images and corresponding depth

maps to render new views. The basic idea of the DIBR

methods is to perform 3D warping to the virtual viewpoint

using texture and depth information of the reference

cameras. Based on the depth information artifacts are

removed by post-processing the projected images. These

images are then blended together and the remaining

disocclusions are filled in by inpainting techniques [4]. In

case of DIBR the amount of data that must be delivered

through the network is significantly lower compared to the

LFR solution, so it can be used even in lower bandwidth

networks. If the depth images are generated offline, DIBR

based FVV cannot support live streaming. Fortunately,

real-time depth cameras, such as Microsoft Kinect or

Creative Senz3D, appeared on the market, thus

implementing live DIBR FVV streaming service became

possible with the new generation of depth cameras [5].

From the network delivery point of view, FVV is

different from traditional video streaming. An FVV service

requires several video streams and depth images captured

by cameras and depth sensors that are deployed in different

locations. The rendering process requires two or three

camera streams to synthetize the individual viewpoint , but

if the viewpoint is changing, camera handovers may be

requested, too. The required camera streams may change

continuously due to the free navigation of viewpoint, hence

effective camera switching schemes are required to avoid

starvation of the viewpoint synthesizer algorithm.

In this work we were focusing on camera selection and

camera handover process in case of DIBR view synthesis

method. During the user viewpoint changes, new camera

and depth video streams may be required, however it is not

obvious which camera set will lead to highest user quality.

The simplest solution is to choose those neighboring

cameras that are closest to the desired viewpoint. In this

case the image quality will be the highest, but on the other

hand frequent camera handovers are necessary to serve the

user with continuously changing viewpoint. During a

camera handover the user disconnects from the unrequired

camera source and attaches to a new one that will be used

for the new viewpoint synthesis. Depending on the network

latency conditions, the duration of the handover process

can be too long and lead to playout interruption. Our aim

was to find the tradeoff between the image quality and the

camera handover frequency by proposing a novel FVV

camera set selection methods. If the cameras are selected

optimally based on the user viewpoint movement behavior,

the handover frequency can be significantly reduced, hence

the viewpoint synthesis starvation and so the playout

interruption can be minimized. In order to analyze the

performance of the proposed camera handover scheme a

Java simulation environment was implemented.

The rest of this paper is organized as follows. The

background of free viewpoint video viewpoint synthesis

and streaming methods are presented in Section II. In

Section III, the proposed camera set selection scheme based

on user behavior is introduced. The evaluation of the

optimized camera handover scheme and the overview of

the obtained performance results are presented in Section

IV. Finally, the summary of the paper and the conclusions

can be found in the last section.

2. Related works on Free Viewpoint Video streaming

Delivery of multimedia content generally requires high

link capacity and low latency in order to provide acceptable

quality of media streams. The transmission of traditional

high resolution single-view video is still challenging, but in

case of multi-view videos this challenge becomes more

complex. A DIBR-based free viewpoint video service

model is built from five main components: scene capturing,

video coding, streaming, viewpoint synthesis and display.

Scene capturing

FVV service relies on special acquisition systems that

use multiple cameras to capture real world scenery. In order

to capture scene geometry, the general color cameras are

combined with active depth sensors. Different camera array

layouts can be used e.g., linear (1D), plane (2D) or dome

type (3D) that impose practical limitations on navigation

(Fig. 1). The camera density is the other important feature

of a FVV system that has significant impact on the

achievable quality of the synthetized view. Unfortunately,

the more cameras are deployed, the more processing is

required to take advantage of all the cameras and the

system becomes more sensitive to camera calibration

inaccuracies. Therefore, the classical trade-off must be

consider between costs, complexity and quality (navigation

range, quality of virtual views, etc.).

Fig. 1. Dome, plane and line camera array layouts

Free navigation has already been demonstrated in sport

applications [6], where the user experience approaches the

feeling of being present in the field. A DIBR-based solution

was introduced by C. Kuster et al. [7]. Their FreeCam

systems was built from few static color video cameras and

Kinect depth sensors. The implemented FreeCam solution

provided live free-viewpoint video at interactive rates using

a small number of off-the-shelf sensor components and

quite standard computing power.

Multi-view video coding

Multi-view video storage and network delivery is not

possible without efficient data compression. To synthetize a

virtual viewpoint from existing camera views, the camera

streams must be forwarded to the renderer that can be

deployed in the user equipment, in a media server, or

distributed in the network. Depending on the image-based

3D representation format, three different categories can be

distinguished: two-view stereo video, multi-view video and

multi-view video plus depth (MVD).

The two-view stereo (stereoscopic) video is the simplest

scenario that consists of two videos representing the left

and right views from two slightly different viewpoints.

Besides the temporal correlation of the frames the spatial

redundancy is also utilized in the coding process.

The same approach can be followed in the case of multi-

view video that uses set of synchronized cameras, which

are capturing the same scene from different viewpoints. An

efficient way to encode two or more videos showing the

same scenery from different viewpoints is known as multi-

view video coding (MVC) [8][9]. MVC is an extension of

H.264/AVC that exploits both inter-view and temporal

redundancies for efficient compression and keeps full

resolution of all views (Fig. 2.).

Fig. 2. MVC spatial and temporal frame dependencies

Multi-view video plus depth (MVD) [10] representation

uses per-pixel depth map sequences associated with multi-

view texture video. Similarly to MVC, each stream can be

encoded by considering the inter-view and intra-view

coherences among all frames in the depth and color

information from different views to remove the temporal

and spatial redundancy. Depth maps are captured originally

via depth or infrared cameras simultaneously with ordinary

camera array. Continuous depth data is very important in

3D warping algorithms for high quality virtual image

interpolation. The depth information is generally

transformed to a monochromatic, luminance-only image

taking values between 0 and 255 as shown in Fig. 3. In

general, the depth channel requires an extra 10–20% of

bitrates to encode the depth information [11]. The coding

standard that supports video plus depth is known as MPEG-

C Part 3 [12].

0

255

zfar

znear

Fig. 3. Video-plus-depth representation

Viewpoint synthesis

Image based view synthesis in real time is still an open

research problem that gains a lot of attention. The

intermediate virtual views are generated from available

natural camera views by interpolation without 3D geometry

models. However, dense sampling of the real world with a

sufficiently large number of natural cameras is necessary.

Hence, tremendous amount of image data needs to be

processed. If the number of used cameras is too low,

interpolation and occlusion artifacts will appear in the

synthesized views causing reduced quality. Several image

based solutions have been proposed [15][16][17] that often

have problems in terms of both computation time and

perceptual quality of synthesized views.

In case of Depth Image Based Rendering (DIBR)

approach [3][18] at least two camera streams and the

corresponding depth map sequences must be available at

the renderer to generate an individual viewpoint. The color

image and the associated depth map along with camera

calibration information, any pixel of the image can be

projected into the 3D space and then projected back onto an

arbitrary virtual camera plane, creating a virtual image.

Conceptually, this method can be understood as a two-step

process [19]: (1) 3D image warping: it uses depth data and

associated camera parameters to back-project pixel samples

from reference images to the proper 3D locations and re-

project them onto the new synthesized image space; (2)

reconstruction and re-sampling: determination of pixel

sample values in the synthesized image.

The accuracy of the depth data significantly impacts the

quality of the generated virtual view. The amount of

distortion increases with the difference of the virtual view

and the original perspective, drastically limiting the

potential navigation range using single video plus depth.

The synthesis ability of image based representation has

limitations on the range of view change.

Streaming

Three FVV service models can be distinguished based

on the viewpoint synthesis process location in the network:

server-based, client-based and distributed model. In a

server-based model all the camera views and corresponding

depth map sequences are handled by a media server that

receives the desired viewpoint coordinates from the

customers and syntheses unique virtual viewpoint stream

for each user. The drawback of the server-based solution is

that the computational capacity of the media server may

limit the scalability of this approach. In the client-based

approach camera streams and depth sequences are

delivered to the clients to generate their own virtual views

independently, so the limited resource capacity problem of

the centralized media server can be avoided, but huge

network traffic must be delivered in the network.

Fortunately, multicast delivery can reduce the overall

network traffic, however the requested camera streams by a

user is changing continuously that must be also handled

using advanced multicast group management methods. In

our previous work we proposed such solutions [20].

Finally, the third model is a distributed approach, where the

viewpoint rendering is done in distributed locations in the

network that was studied in [21].

In most of the FVV related works client-based streaming

model was assumed. Authors of [22] proposed a QoS aware

FVV streaming solution for light field rendering (LFR)

algorithm. The paper focuses on I-frame retransmission and

jump frame techniques in the application layer based on

RTP/RTCP streaming protocols to support different level

of QoS. A streaming system for DIBR based FVV over IP

networks was introduced in [23]. The proposed solution

divides video streams into depth video, texture video and

common video, and transmits them in individual

RTP/RTSP streams, making the service more robust against

transfer errors, however it did not solve view switching and

synchronization problems.

Camera stream selection is an efficient method to reduce

the bandwidth requirements of multi-view video, where

only a subset of views is streamed depending on the user’s

current viewing angle. To select which views should be

delivered, the viewer’s current viewpoint is tracked and a

prediction of future perspective is calculated [20][24][25].

Kurutepe et al. [26] presented a multi-view streaming

framework using separate RTSP sessions to deliver camera

views allowing the client to choose only the required

number of sessions. To the best of our knowledge, previous

research on camera stream selection was focusing on linear

camera array, while plane or dome camera layout was not

investigated before.

3. Camera selection and handover scheme

The viewpoint synthesis is based on two or three real

cameras depending on the deployed FVV system layout. If

the cameras are deployed in line, the user can move his/her

perspective only on straight trajectory. If the FVV service

provider wants to offer more freedom in viewpoint

selection, plane camera layout is preferred. However, in

this case three camera streams are required for the

viewpoint synthesis. In this work, we are focusing on plane

camera layout.

The viewpoint must be always within the area

determined by the three selected cameras that are used for

the vie synthesis . When a FVV user freely changes his/her

desired viewpoint, the requested real camera streams may

also change, triggering camera selection process. Each

change interrupts the streaming of the previous camera and

initializes the delivery of the new one. Due to network

bandwidth limitations, sending all images to every client is

not possible, thus the number of camera streams must be

minimized. In case of client based or distributed viewpoint

synthesis approach, the late arrival of the new camera

stream can interrupt the viewpoint rendering and the video

playout. If the user changes the viewpoint too fast, the

required camera flows will not arrive in time due to

network delivery delay. Therefore, our aim was to

minimize the number of camera changes avoiding

interruptions (camera starving), but still offer high video

quality.

If we choose the closest cameras to the desired

viewpoint, the synthetized image quality will be the best,

but on the other hand frequent camera changes will occur.

Hence, the camera change minimization approach has the

opposite effect on the rendered virtual view: the less

camera streams are used, the more inaccurate the produced

images will be. One of our main goals was to find the

optimum number of cameras, which can be streamed

without disruption to the playout and also provides an

adequate quality of rendered images.

In order to find the tradeoff between the synthetized

video quality and the playout interruption, we proposed

new algorithms that minimizes the following values:

 number of camera changes (handover)

 average distances between cameras in a group of three

(this is a kind of qualitative parameter, because better

images can be produced using cameras located close to

the selected viewpoint)

 starvation of the viewpoint rendering process (by using

viewpoint prediction, the probability of a required

camera image being late can be reduced) (Fig. 4.)

Fig. 4. Starvation of the viewpoint rendering process

Different approaches can be considered in order to build

a FVV streaming service offering seamless viewpoint

changes. The seamlessness relies on the camera switching

performance, so in this paper three competing camera

selection algorithms are proposed that can be also extended

with viewpoint prediction. Of course each one has benefits

and drawback that can be less or more important depending

on the user behavior.

Three Closest Cameras approach (TCC)

The simplest approach and also the principle for all

further algorithms is to find the closest cameras (Fig. 5.).

This procedure includes three minimum search algorithms

that pick out the three cameras with the shortest distance to

the viewpoint. At lower viewpoint movement speed this

algorithm will cause only one camera stream to be

replaced, but with the speed increasing this value can reach

a maximum of three camera handovers . On the other hand,

this algorithm always finds the closest cameras, so in terms

of quality (estimated from the sum of the distances between

cameras) it provides the best possible image quality in

every case. Nevertheless, due to the small distance of the

cameras causing frequent camera handovers , starvation can

occur more frequently interrupting the production of the

FVV stream.

Fig. 5. Three Closest Cameras (TCC) algorithm

Scaling algorithm (SA)

The main purpose of the Scaling algorithm is to improve

the TCC approach by estimating future viewpoint

coordinates and the potential viewpoint route. Instead of

selecting the closet cameras (TCC), the SA approach will

choose further cameras if the user viewpoint is moving fast .

The SA-based camera selection depends on the viewpoint

change velocity and its direction, so we have differentiated

three basic instances of viewpoint change behavior:

1. slow: the algorithm is not scaling (same as TCC)

2. normal: adds +1 camera distance to the nearest

group of three

3. fast: adds +2 camera distances to the nearest group

of three

The algorithmic structure behind scaling is the

following. The potential layouts how the camera triangle

can be scaled are determined by both the velocity vector

and the three closest camera triangle. The SA algorithm

examines the closest camera coordinates and decides,

whether another camera should be selected, located further

from the viewpoint. In this decision procedure each three

cameras must be examined and find which one will be the

reference point of the scaling. The camera in the reference

point will remain unchanged, while the other two closest

camera can be replaced by other ones, depending on the

velocity vector (Fig. 6.).

reference
point
xr,yr

xwp,ywp

Fig. 6. Reference camera position in SA

This reference point (black point on Fig. 7.) can be

calculated by subtracting the coordinates of the camera

from the viewpoint’s coordinates. The sign (sgn(xwp-xr) and

sgn(ywp-yr)) of the values are then compared with the signs

of the velocity vector coordinates. If the signs are the same,

scaling is not used on the examined camera, but performed

on every other point at the same time. It is highly important

to scale only two of the points, as scaling all vertices can

cause the viewpoint to slip out from the camera triangle

causing starvation in the viewpoint synthesis process.

Once the fixed reference point is chosen, scaling can be

applied to other vertices. As shown in Fig. 7, the potential

replacements of the points are given by the area marked by

the rectangles. It can be a one-dimensional camera row or a

two-dimensional camera block depending on the scaling

factor determined by x and y axes values of the viewpoint

velocity vector.

Fig. 7. The Scaling algorithm (SA)

The signs of the viewpoint velocity vector coordinates

(sgn(xwp), sgn(ywp)) shows in which direction it is possible

to scale. After finding the fixed reference point, the

following action is to perform on the other cameras : a

vector (vx,vy) is calculated by subtracting the coordinates of

the camera (xcam,ycam) from the coordinates of the

viewpoint.

    , ,
x y wp cam wp cam

v v x x y y   (1)

Thereafter a comparison is performed between the signs

of the vector given above and the sign of the velocity

vector. If the signs do not match, the scale value with the

sign of the velocity vector is to be added to the selected

camera’s coordinate.

    

    

if sgn() 0 & & sgn() 0 then

if sgn() 0 & &s gn() 0 then

vel wp cam cam cam x

vel wp cam cam cam x

x x x x x v

x x x x x v

    

    

 (2)

Likewise process must be performed in all other cases

(Table 1) depending on the velocity vector, fixed point and

the scalable cameras.
Table 1

Finding fixed point from velocity vectors and scale values

velocity vector camera xcam scale ycam scale

x: +, y: + x: +, y: + x: -  x+v y: -  y+v

x: +, y: - x: +, y: - x: -  x+v y: +  y-v

x: -, y: + x: -, y: + x: +  x-v y: -  y+v

x: -, y: - x: -, y: - x: +  x-v y: +  y-v

With the SA extension, the cameras covers larger area

depending on the viewpoint velocity. Larger area means

that the number of camera handovers is lower, but on the

other hand the cameras used for the viewpoint synthesis are

further. Therefore, the composed image quality will be

lower. The operation of this method requires viewpoint

velocity values calculated from previous viewpoint

coordinates, thus the free viewpoint video service must

begin with the TCC camera selection approach and switch

to SA later when historical viewpoint coordinates can be

used for the velocity vector determination.

Mirroring algorithm (MA)

We have investigated another camera selection approach

based on our observation during the TCC performance

evaluation. In cases when the predicted viewpoint slipped

out from the camera triangle during the simulation of TCC

algorithm, typically only one change of camera streams

happens. In SA, only the fixed reference camera remains

unchanged, while the two other cameras are replaced.

However, it is true that camera handover process happens

rarer compared to TCC. Our purpose was combine the

benefits of TCC and SA by having only one camera

handover in the same time, but also decreasing the

frequency of camera handovers. Therefore, in cases of

starvation the three cameras are not entirely replaced using

the Mirroring Algorithm (MA), but only one of them as far

as possible. The benefit of this method is that the streamed

camera needs to be interrupted and replaced by only one

other camera, therefore the probability of starvation is

lower.

In case of the MA approach, the camera is reflected

symmetrically in the center point of one of the edges

defined by the camera’s vertices (Fig. 8.). To do this, the

camera that will replaced needs to be identified.

2

1

3

4

E

e12e13
s1

e23

s2s3

Fig. 8. Mirroring algorithm (MA)

Finding the camera to be mirrored goes as follows. First,

all cameras needs to be connected to each other with edges

(e12, e13, e23), while the predicted viewpoint is connected

with a segment (s1, s2, s3) as shown on Fig. 8. The

intersection of these edges and segment (E) is now to be

examined in order to find the camera to reflect. Three cases

can be differentiated according to this examination:

1. no intersection point found: the camera which is

currently linked to the viewpoint will not be

reflected in this case. For example: no intersection

of the edge e13 and the segment (s1)

2. the intersection point (E) is on the segment: the

camera is to be mirrored on the center point of the

edge linking the other cameras . For example: the

intersection of the edge e23 and the segment s1.

3. parallel: same as in the first case.

After finding the right camera to be mirrored, the

position of the new camera needs to be calculated. Adding

the difference between the coordinates of the two other

cameras and the initial camera to the coordinates of the

initial one gives the new camera triangle.

Viewpoint prediction methods

One main requirement of FVV systems is the fast

cameras switchover, in order to avoid starvation of the

viewpoint synthesis process. To do that, potential

viewpoints have to be predicted. The efficiency of camera

selection algorithms is highly influenced by the accuracy of

this prediction. We used two basic methods of prediction

and tested via simulations.

The first method is based on averaging the viewpoint

motion parameters. We differentiated two variants ,

depending on the amount of previous viewpoint

coordinates used for the estimation:

1. using all former data

2. using only the latest n viewpoint coordinates

In the first case the next viewpoint coordinates

(xwp,n,ywp,n) are estimated by calculating the average of all

displacements so far. The second case shows high

similarity to the first one. However, it includes a window

(w), which limits the inputs used for the average

calculations:

 
, , 1

1

, , 1

w

wp n i wp n i

i

wp n wp n

x y

x x
w

  







 


 (3)

 
, , 1

1

, , 1

w

wp n i wp n i

i

wp n wp n

y y

y y
w

  







 


 (4)

This method can be more efficient when patterns are

alternating on a high degree as it ignores old input data.

The second method is based on Kalman-filter. The

Kalman-filter provides an optimal estimate for a state of a

variable system through series of measurements with the

confounding factors being taken into account. The

advantage of the model is that it finds the optimal

averaging factor for each state based on past events. The

algorithm works in two steps: Time Update – Predict,

Measurement Update – Correct. In the first step (Predict)

the state and error covariance ahead are projected. In the

second step (Correct) the Kalman gain is computed first.

The Kalman gain is then used to update the estimation

along with the next measurement input. Thereafter the error

covariance is updated similarly. The output of Correct is

always the input of Predict. In the beginning it is an

estimated initial value.

Fig. 9. The Kalman-filter

We used an open-source JAVA implementation of

Kalman-filter (JKalman) for our simulation. This way, we

were able to specify the number of dynamic parameters and

the number of measured data. Four dynamic parameters

were added, so the distances in the system could be tracked

as well (by each coordinate). We selected the number of

measured data to be two as our aim was to predict the

viewpoint x and y coordinate.

4. Evaluation

In order to test the algorithms introduced previously, a

simulation environment was implemented, where the

proposed algorithms can be evaluated. The simulation

framework and the algorithms were implemented in JAVA

language. The implemented framework captures the path of

the viewpoint movement and determines which cameras

must be used for the viewpoint synthesis in order to

minimize the camera handover frequency, but also

maximize the quality of the rendered stream. In an

advanced solution head tracking can be used to determinate

the current viewpoint coordinates, however we emulated

the viewpoint changes by fixed viewpoint trajectories .

In order to compare the different camera switch

strategies, the viewpoint coordinates were captured and

stored in xml format, so the same viewpoint trajectory was

used for each camera selection algorithm. Every step of the

viewpoint movement is required to be given in xml format,

containing the time elapsed since the start of the movement

(timestamp) and the coordinate of x and y axis. The

description of the camera network was also done in xml

format similarly to the definition of movement series. The

location of each camera was given with its x and y

coordinates.

To implemented simulation tool records the particular

viewpoint and its estimated value. Thus occurrences of

starvation can be detected by comparing the particular

viewpoint coordinates and the estimated ones. If the real

and the estimated viewpoint cannot be served with the

same three cameras, starvation occurs. Both the number of

camera switches in the last step and the overall number of

switches in the movement series are also counted. The

quality parameters of the three cameras are given calculated

as the average distance from the actual viewpoint.

In the analyzed FVV service 100 cameras were

deployed in a 10×10 grid. Different predefined viewpoint

trajectories were used in order to simulate different user

behaviors.

Predefined viewpoint trajectories

We captured three viewpoint movement series in order

to simulate user perspective changes. Each one contains

hundred viewpoint positions, describing a slow, a normal

and a high-intensity movement. In our measurements the

reference distance was the distance between two adjacent

cameras (hereinafter referred as camera unit, CU). Time,

similarly to distance was not given in exact units . The time

unit (hereinafter referred to as TU) was the duration of one

viewpoint movement step. In our measurements we

simulated 100 TU long viewpoint movements that

represents a viewpoint trajectory with 100 viewpoint

coordinates as shown in Fig. 10.

Fig. 10. Defined viewpoint trajectories

Fig. 11. Viewpoint prediction of move01, move02 and move03 trajectories

The average and maximum speed values were

determined using the absolute values of the speed

parameter, keeping it independent from its direction. Thus

the minimum speed is 0 CU/TU in all three instances. The

characteristics of the three different viewpoint movement

series (move01, move02 and move03) are presented in

Table 2, where move01 has the lowest and move03 has the

highest displacement behavior.

Table 2

Parameters of predefined viewpoint movements

 move01 move02 move03

number of

viewpoints

100 steps 100 steps 100 steps

components x y x y x y

average speed

(CU/TU)

0.028 0.25 0.042 0.047 0.066 0.052

maximum speed

(CU/TU)

0.1 0.1 0.16 0.136 0.194 0.226

In a realistic scenario only the current viewpoint and the

viewpoint history is known, however the knowledge of

future perspectives are required to make optimal camera

selection decision. In order to estimate future viewpoint

positions different prediction methods can be used.

Viewpoint prediction comparison

We have implemented five viewpoint prediction

algorithms and tested for all three movement series:

averaging based on the entire history, 1-windowed

averaging, 3-windowed averaging, 6-windowed averaging

and Kalman-filter based prediction (Fig. 11.). We were

looking for the most accurate viewpoint movement

prediction method for further simulations by comparing the

performance of the prediction methods . Comparison was

done based on the following parameters:

1. avg.: average difference between measured and

predicted data (lower the better)

2. avg.(abs): average of absolute values of differences

between measured and predicted data (lower the

better)

3. max.(abs): maximum value of absolute values of

differences between measured and predicted data

(lower the better)

4. min.(abs): minimum value of absolute values of

differences between measured and predicted data

(lower the better)

Due to low viewpoint movement values, the 6-

windowed averaging scheme achieved the best results in

case of the first movement series (move01). Although

averaging based on the entire history gave more accurate

values in the parameters of minimum and maximum

difference, but it has the worst averaging absolute

difference values. Our results show that the averaging

window length is poorly correlating with the average values

of estimation errors, e.g. the minimum value of

1-windowed prediction is the most accurate among all.

Fig. 11. shows that Kalman-filter predicts smooth

viewpoint path similarly to a long term trendline. In our

FVV viewpoint prediction application Kalman-filter did not

achieved an outstanding result, although the efficiency of

prediction (average, minimum /maximum of prediction

errors) is not extremely wrong. The prediction errors of

different schemes for move01 viewpoint trajectory are

introduced in Table 3.

Table 3

Comparing viewpoint prediction algorithms used on move01 trajectory

 full

averaging

1-windowed 3-windowed 6-windowed Kalman-

filter

avg. -0.07/-0.088 -0.05/-0.037 -0.05/-0.037 -0.05/-0.037 0.07/-0.038

avg.

(abs)
0.070/0.088 0.139/0.124 0.134/0.122 0.128/0.121 0.159/0.147

max.

(abs)
0.107/0.140 0.5/0.5 0.443/0.363 0.395/0.281 0.51/0.479

min.

(abs)
0.023/0.032 0/0 0.003/0.006 0.001/0 0.001/0.004

The higher speed of viewpoints in case of move02

trajectory amplified the measured differences between

prediction methods (Fig. 11.). The 3-windowed and

6-windowed averaging methods achieved the best results in

both minimum and maximum values of prediction errors.

The prediction errors of full averaging and Kalman-filter

based estimation had almost doubled in many cases, while

window based averaging methods show a much slighter

increase in the prediction error.

The prediction error statistics related to move02

viewpoint trajectory are presented in Table 4.

Table 4

Comparing viewpoint prediction algorithms used on move02 trajectory

 full

averaging

1-windowed 3-windowed 6-windowed Kalman-

filter

avg. -0.14/-0.148 -0.08/-0.073 -0.08/-0.769 -0.09/-0.081 -0.09/-0.103

avg.

(abs)
0.149/0.148 0.208/0.234 0.203/0.227 0.193/0.220 0.263/0.284

max.

(abs)
0.55/0.303 0.8/0.68 0.65/0.52 0.55/0.5 1.001/0.915

min.

(abs)
0.051/0.033 0/0 0.01/0.01 0.006/0.003 0.022/0.001

In case of move03 (Fig. 11.) viewpoint movement the

differences of prediction method’s efficiencies are even

more apparent. The best results were achieved by the 3-

windowed averaging method. We had observed that these

results stay in midrange without showing extremely high or

low prediction error values. Also, Kalman-filter showed the

same „smoothing” effect as it did in cases of move01 and

move02 viewpoint trajectories . The measured prediction

error results of move03 are shown in Table 5.

Table 5

Comparing viewpoint prediction algorithms used on move03 trajectory

 full

averaging

1-windowed 3-windowed 6-windowed Kalman-

filter

avg. -0.15/-0.188 -0.03/-0.043 -0.04/-0.051 -0.05/-0.063 -0.107/-0.13

avg.

(abs)
0.151/0.188 0.326/0.259 0.308/0.252 0.289/0.251 0.453/0.372

max.

(abs)
0.84/0.7 0.97/1.13 0.84/0.853 0.84/0.7 1.296/1.017

min.

(abs)
0.01/0.035 0.01/0 0.016/0.003 0.04/0.001 0.021/0.013

Based on obtained prediction error results of different

schemes, we decided to keep only three of the methods to

work further with: full average, 3-windowed average and

Kalman-filter. The 1-windowed and 6-windowed averaging

methods were eliminated due to the dichotomy of having a

good average value, but a bad maximum value and vice

versa.

Testing camera handovers

The main goal of the proposed camera switching

schemes is to reduce the number of camera handovers, but

on the other hand choose cameras that are close to the

current FVV perspective in order to gain higher synthetized

video quality. We have analyzed numerous scenarios and

measured the performance of the introduced camera

switching schemes (TCC, SA, MA) in case of different

viewpoint trajectory behaviors (move01, move02, move03)

and prediction methods. According to our expectations, the

more accurate the predictive algorithm is, the less camera

handover occurs during the viewpoint movement. The

results of camera change frequency measurements are

presented in the following figures (Fig. 12-14.).

Fig. 12. The number of handovers using full averaging

Fig. 13. The number of handovers using 3-windowed averaging

Fig. 14. The number of handovers using Kalman-filter

The obtained results show that in case of Kalman-filter

and full averaging based viewpoint predictions the SA and

TCC algorithms resulted higher number of camera changes.

The reason is that in case of viewpoint synthesis process

starvation (when the desired user viewpoint cannot be

synthetized with the current camera set), the SA will

probably choose the three closest cameras as new ones,

which basically means three camera handovers. Although

in case of TCC scheme two cameras can remain the same

and only one needs to be replaced. The number of

handovers can be kept low with the MA, but using Kalman-

filter prediction it is not able to keep it lower than TCC.

According the simulation results, using 3-windowed

averaging the number of handovers was decreased due to

its more accurate prediction efficiency. We measured the

best performance in case of MA, resulting an average

decrease of 26% compared to TCC.

In the tested scenarios we have analyzed perspective

trajectories containing 100 viewpoint coordinates. The

number of camera handovers in each state of the move02

viewpoint trajectory and using the 3-windowed prediction

model are shown in Fig. 15. By using other viewpoint

prediction methods, the number of overall camera switches

was higher in all of the cases.

 Fig. 15. Movement series move02 with 3-windowed averaging

Examination of FVV synthesis process starvations

Due to viewpoint changes , the camera view synthesis

process must continuously change the input camera streams

without interrupting the playout. Starvation occurs when

the desired user viewpoint cannot be synthetized with the

currently streamed camera views and the required camera

streams are still not available at FVV processor. We had

tested starvation frequency for different camera switching

schemes (TCC, SA, MA), viewpoint trajectory behavior

(move01, move02, move03) and prediction methods (Fig.

16-18.). The results show that the best performance for all

movement series was achieved using the 3-windowed

averaging prediction scheme and the worst with Kalman-

filter.

The efficiency of starvation reduction is effected by the

combination of the prediction method and the speed of the

viewpoint movement. The obtained results show that

compared to TCC method, the MA camera selection

scheme produced 46% less starvations, while SA reduced

the starvation occurrence with 42% in average. The

following figures show the number of FVV process

starvations that causes playout interruptions while the

missing camera stream is not delivered to the FVV

synthesizer entity (Fig. 16-18.).

Fig. 16. The number of starvations using full averaging prediction

Fig. 17. The number of starvations using of 3-windowed averaging
prediction

Fig. 18. The number of starvations using 6-windowed averaging
prediction

Examination of video quality parameters

Generally, different video quality measurement metrics

(e.g PSNR, VQM, SSIM) are used to evaluate the video

quality by comparing the analyzed video to a reference

video stream. In case of FVV, the virtual view is

synthetized from two or three camera images, therefore no

reference image can be used for video quality

measurements. In our previous work we have shown that

the distance between the desired viewpoint and the cameras

used for the synthesis are strongly correlating to the

rendered video quality. The best synthetized video quality

can be achieved if the virtual view is generated using the

closes camera images. In order to evaluate the performance

of the proposed camera selection schemes, we used the

average camera distance as a quality metric, which is a

lower-the-better value.

cam1

cam2 cam3

Fig. 19. Distance based quality metric

 1 2 3

3

d d d
Q

 
 (5)

According the nature of the viewpoint prediction

algorithms, we expected TCC to perform better than the

MA and the SA, because as further the selected cameras

are, the lower the synthetized virtual view quality will be.

As the method of 3-windowed averaging seemed to be the

best viewpoint prediction method so far, we decided to test

the qualitative parameter with it, using a variety of

movement series and algorithms. The obtained results are

presented in Fig.20.

Fig. 20. The average of qualitative parameter with different combinations

of algorithms and movements

The results of the SA camera handover algorithm

showed an average increase of 106% in terms of the Q

metric (average camera distance), while the Q quality

metric of MA was 110% compared to TCC. Although, MA

and SA schemes were selecting camera from more than two

times higher distance, the frequency of FVV synthesis

process starvations was the half compared to TCC method.

In our opinion the starvation rate has higher impact on the

experienced user quality than the view synthesis distortion

due to higher camera distances.

The measured Q parameter is continuously changing

depending on the current viewpoint position in the

trajectory. The graph below shows the measured values of

the qualitative parameter for each viewpoint position in

case of move02 trajectory (Fig. 21).

Fig. 21. Movement series move02

5. Conclusions

Free-viewpoint video is a promising approach that

allows users to control their viewpoint and generate virtual

views from any desired perspective. In order to change the

viewpoint in a plane, each viewpoint must be synthetized

from at least three high bitrate color cameras and

corresponding depth sequences that are used to capture the

scene from different locations. Continuous change of the

viewpoint can cause frequent camera handovers that can

lead to the starvation of the view synthesis process.

Starvation occurs when the desired user viewpoint cannot

be synthetized with the currently streamed camera views

causing interruption in the playout. In order to minimize the

number of camera handover occurrences, we proposed

novel camera switching schemes based on viewpoint

prediction. Our aim was to find the tradeoff between the

image quality and the camera handover frequency,

therefore three different camera selection algorithms were

presented and analyzed by simulations. According to the

obtained results, SA and MA were performing similarly

showing 42-46% decrease in the number of camera

switches. The price of the good performance was that each

algorithm selected cameras that are located further from the

current viewpoint. Thus, the quality of the synthetized

images were lower, however it can be proved that reduced

playout interruption frequency has higher impact on the

experienced user quality than the view synthesis distortion

due to higher camera distances.

Acknowledgement

The authors are grateful for the support of the Hungarian

Academy of Sciences through the Bolyai János Research

Fellowship.

References

[1] L Chiariglione, Cs. A. Szabó, “Multimedia Communications:
Technologies, Services, Perspectives, Part II: Applications, Services
and Future Directions”, Infocommunications Journal VI:(3) pp. 51-
59., 2014

[2] M. Levoy and P. Hanrahan., "Light field rendering", Computer
Graphics, Proceedings. SIGGRAPH96, August 1996

[3] Christoph Fehn, “Depth-image-based rendering (DIBR),
compression, and transmission for a new approach on 3D-TV”, Proc.
of SPIE, Vol. 5291, Stereoscopic Displays and Virtual Reality
Systems, May 2004, pp. 93-104

[4] Aljoscha Smolic, “3D video and free viewpoint video-From capture
to display”, Pattern Recognition Vol. 44 (9), pp. 1958-1968.,
September 2011

[5] Claudia Kuster, T iberiu Popa, Christopher Zach, Craig Gotsman,
Markus Gross, Peter Eisert, Joachim Hornegger, and Konrad
Polthier, “Freecam: A hybrid camera system for interactive free-
viewpoint video,” in Proceedings of vision, modeling, and
visualization (VMV), 2011.

[6] A. Ishikawa, M. Panahpour Tehrani, S. Naito, S. Sakazawa A.
Koike, “Free Viewpoint Video Generation for Walk-through
Experience Using Image-based Rendering”, 16th ACM international
conference on Multimedia, pp. 1007-1008., 2008

[7] C. Kuster, T . Popa, C. Zach, C. Gotsman, and M. Gross, "FreeCam:
A Hybrid Camera System for Interactive Free-Viewpoint Video,"
Proc. Int 'l Workshop Vision, Modeling, and Visualization, 2011.

[8] K. Mueller, P. Merkle, A. Smolic, and T .Wiegand, “Multiview
coding using AVC,” MPEG2006/m12945, 75th MPEG meeting,
Bangkok, Thailand, Jan. 2006

[9] P. Merkle, A. Smolic, K. Mueller, T. Wiegand, “Efficient prediction
structures for multiview video coding”, IEEE Transactions on
Circuits and Systems for Video Technology, Special Issue on
Multiview Video Coding and 3DTV, 2007

[10] Merkle P, Morvan Y, Smolic A, Farin D, Muller K, Wiegand T ,
“The effects of multiview depth video compression on multiview
rendering”, Signal Processing: Image Communication 2009,
24(1):73–88.

[11] Guan-Ming Su, Yu-Chi Lai, Andres Kwasinski, and Haohong Wang,
“3D video communications: Challenges and opportunities”,
nternational Journal of Communication Systems, Vol. 24/10, pp.
1261-1281., October 2011

[12] ISO/IEC JTC 1/SC 29/WG 11. Committee Draft of ISO/IEC 23002-
3 Auxiliary Video Data Representations. WG 11 Doc. N8038.
Montreux, Switzerland, April 2006.

[13] Christoph Fehn, “Depth-image-based rendering (DIBR),
compression, and transmission for a new approach on 3D-TV”, Proc.
of SPIE, Vol. 5291, Stereoscopic Displays and Virtual Reality
Systems, May 2004, pp. 93-104

[14] Fehn C. “3D-TV using depth-image-based rendering (DIBR)”,
Proceedings of Picture Coding Symposium, San Francisco, CA,
U.S.A., December 2004.

[15] M. Domański, M. Gotfryd, and K. Wegner, "View synthesis for
multiview video transmission," in The 2009 International
Conference on Image Processing, Computer Vision, and Pattern
Recognition, Las Vegas, USA, 2009, pp. 1-4.

[16] S. Jo, D. Lee, Y. Kim, Ch. Yoo, “Development of a simple
viewpoint video system”, IEEE Int. Conf. Multimedia and Expo,
Hannover, June 2008, pp. 1577-1580.

[17] H. Kimata, S. Shimizu, Y. Kunita, M. Isogai, K. Kamikura, Y.
Yashima, “Real-time MVC viewer for free viewpoint navigation”,
IEEE Int. Conf. Multimedia

[18] J. Starck, J. Kilner, and A. Hilton, “A Free-Viewpoint Video
Renderer”, Journal of Graphics, GPU and Game Tools, 14(3):57-72,
Jan. 2009.

[19] Zefeng Ni; Dong Tian; Bhagavathy, S.; Llach, J.; Manjunath, B.S.,
"Improving the quality of depth image based rendering for 3D Video
systems," Conf. on Image Processing (ICIP), 2009, 7-10 Nov. 2009

[20] Árpád Huszák, "Predictive Multicast Group Management for Free
Viewpoint Video Streaming", International Conference on
Telecommunications and Multimedia (TEMU 2014), ISBN 978-1-
4799-3199-6, Heraklion, Greece, 28-30 July 2014

[21] Árpád Huszák, "Optimization of Distributed Free-viewpoint Video
Synthesis", 3DTV-Conference: The True Vision - Capture,
Transmission and Display of 3D Video (3DTV-CON), Budapest,
Hungary, July 2-4 2014

[22] Zhun Han; Qionghai Dai, "A New Scalable Free Viewpoint Video
Streaming System Over IP Network," Acoustics, Speech and Signal
Processing, ICASSP 2007, pp.II-773,II-776, 15-20 April 2007

[23] Goran Petrovicand Peter H. N. de With, “Near-future Streaming
Framework for 3D-TV Applications”, ICME2006

[24] Gürler, C.G.; Görkemli, B.; Saygili, G.; Tekalp, A.M., "Flexible
Transport of 3-D Video Over Networks," Proceedings of the IEEE ,
vol.99, no.4, pp.694-707, April 2011

[25] C. De Raffaele, C.J. Debono, "A Comparison of the Performance of
Prediction Techniques in Curtailing Uplink Transmission and
Energy Requirements in Mobile Free-Viewpoint Video
Applications," International Journal on Advances in
Telecommunications, vol. 4, no. 1 & 2, September 2011, pp. 1 - 11.

[26] E. Kurutepe, A. Aksay, C. Bilen, C. G. Gurler, T . Sikora, G. B.
Akar, and A. M. Tekalp, “A standards-based, flexible, end-to-end
multi-view video streaming architecture”, in Proc. Int. Packet Video
Workshop, Lausanne, Switzerland, Nov. 2007, pp. 302–307

