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Abstract 

Free-viewpoint video (FVV) is a promising approach that allows users to control their viewpoint and generate virtual views from any 

desired perspective. The individual user viewpoints are synthetized from two or more camera streams and correspondent depth sequences.  
In case of continuous viewpoint changes, the camera inputs of the view synthesis process must be changed in a seamless way, in order to 

avoid the starvation of the viewpoint synthesizer algorithm. Starvation occurs when the desired user viewpoint cannot be synthetized with 

the currently streamed camera views, thus the FVV playout interrupts. In this paper we proposed three camera handover schemes (TCC, 

MA, SA) based on viewpoint prediction in order to minimize the probability of playout stalls and find the tradeoff between the image 

quality and the camera handover frequency . Our simulation results show that the introduced camera switching methods can reduce the 
handover frequency with more than 40%, hence the viewpoint synthesis starvation and the playout interruption can be minimized. By 

providing seamless viewpoint changes, the quality of experience can be significantly improved, making the new FVV service more 

attractive in the future.  
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1. Introduction 

Free-viewpoint video (FVV) is a promising approach to 

offer freedom to users’ perspective selection while 

watching multiview video streams. The new type of 

interactive FVV multimedia service allows users to control 

their viewpoint and generate new views of a dynamic scene 

from any desired perspective. The interactive free 

navigation within a visual scene is similar to the 

experiment known in 3D computer graphics applications. 

The main difference is that FVV targets real world scenes, 

captured by real cameras, without using 3D graphical 

models. Different views can be synthetized depending on 

the requested user specific perspective that can be 

controlled e.g. by moving or turning their head or changing 

position in a room. Free-viewpoint streaming with its 

advanced features is foreseen as the next big step in 3D 

video technology. These functionalities can be used for 

various services, such as visual communication, media 

broadcast and education. However, a commercial free-

viewpoint television (FTV) service will be similar to the 

IPTV solutions, the difference is that not only one stream 

belongs to a TV channel, but several video streams [1]. The 

other difference is that the displayed media content is also 

dissimilar due the individual user viewpoints.  

The uniquely generated and displayed user views are 

composed from two or more high bitrate color and 

corresponding depth camera streams that must be delivered 

to the users depending on their continuously changing 

perspective. By increasing the number of the deployed 

cameras and the density of the camera setup, the free-

viewpoint video experience becomes more realistic. But on 

the other hand, more camera streams requires higher 

network capacity. Without advanced camera handover 

schemes the increased network traffic load and latency can 

disturb the user experience. Instead of forwarding all 

camera streams, it is a reasonable solution to deliver only 

those camera views that are required for the viewpoint 

synthesis. The intelligent camera selection is an efficient 

solution to reduce the network load, however other 

difficulties appears regarding to camera switches. Due to 

continuous viewpoint changes the camera inputs of the 

view synthesis process must be also changed with short 

time constrains in order to avoid the starvation of the 

viewpoint synthesizer algorithm. Starvation occurs when 

the desired user viewpoint cannot be synthetized with the 

currently streamed camera views, but the newly requested 

camera views are still missing. In case of an intensively 

changing user viewpoint, the seamless camera handover 

can be very challenging. 

 The research activity on FVV topic is very intensive 

and focusing mainly on coding and viewpoint rendering 

issues, while network delivery was investigated with lower 

intensity. However, it is true that the key techniques of 

FVV are still not efficient enough to provide services with 

acceptable quality. Viewpoint synthesis is a very 

computational hungry process  and the existing algorithms 

are still trying to find the tradeoff between the video quality 

of the synthetized view and the rendering time of the FVV 

algorithms. Basically, two image-based viewpoint synthesis 

methods can be used to generate an individual viewpoint 

from the camera sequences.  

The first method is the Light Field Rendering (LFR) [2] 

algorithm that interpolates a virtual view from multi-
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camera images, therefore sufficiently large number of 

cameras have to be set up to achieve high performance 

rendering, and a tremendous amount of image data needs to 

be processed. The camera streams can be only transmitted 

in broadband IP network even the streams are compressed. 

Contrariwise, if the number of used cameras is too low, 

interpolation and occlusion artifacts will appear in the 

synthesized images, possibly affecting the quality. 

The other method is the Depth Image Based Rendering 

(DIBR) [3] that uses fewer images and corresponding depth 

maps to render new views. The basic idea of the DIBR 

methods is to perform 3D warping to the virtual viewpoint 

using texture and depth information of the reference 

cameras. Based on the depth information artifacts are 

removed by post-processing the projected images. These 

images are then blended together and the remaining 

disocclusions are filled in by inpainting techniques [4]. In 

case of DIBR the amount of data that must be delivered 

through the network is significantly lower compared to the 

LFR solution, so it can be used even in lower bandwidth 

networks. If the depth images are generated offline, DIBR 

based FVV cannot support live streaming. Fortunately, 

real-time depth cameras, such as Microsoft Kinect or 

Creative Senz3D, appeared on the market, thus 

implementing live DIBR FVV streaming service became 

possible with the new generation of depth cameras [5]. 

From the network delivery point of view, FVV is 

different from traditional video streaming. An FVV service 

requires several video streams and depth images captured 

by cameras and depth sensors that are deployed in different 

locations. The rendering process requires two or three 

camera streams to synthetize the individual viewpoint , but 

if the viewpoint is changing, camera handovers may be 

requested, too.  The required camera streams may change 

continuously due to the free navigation of viewpoint, hence 

effective camera switching schemes are required to avoid 

starvation of the viewpoint synthesizer algorithm. 

In this work we were focusing on camera selection and 

camera handover process in case of DIBR view synthesis 

method. During the user viewpoint changes, new camera 

and depth video streams may be required, however it is not 

obvious which camera set will lead to highest user quality. 

The simplest solution is to choose those neighboring 

cameras that are closest to the desired viewpoint. In this 

case the image quality will be the highest, but on the other 

hand frequent camera handovers are necessary to serve the 

user with continuously changing viewpoint. During a 

camera handover the user disconnects from the unrequired 

camera source and attaches to a new one that will be used 

for the new viewpoint synthesis. Depending on the network 

latency conditions, the duration of the handover process 

can be too long and lead to playout interruption. Our aim 

was to find the tradeoff between the image quality and the 

camera handover frequency by proposing a novel FVV 

camera set selection methods. If the cameras are selected 

optimally based on the user viewpoint movement behavior, 

the handover frequency can be significantly reduced, hence 

the viewpoint synthesis starvation and so the playout 

interruption can be minimized. In order to analyze the 

performance of the proposed camera handover scheme a 

Java simulation environment was implemented. 

The rest of this paper is organized as follows. The 

background of free viewpoint video viewpoint synthesis 

and streaming methods are presented in Section II. In 

Section III, the proposed camera set selection scheme based 

on user behavior is introduced. The evaluation of the 

optimized camera handover scheme and the overview of 

the obtained performance results are presented in Section 

IV. Finally, the summary of the paper and the conclusions 

can be found in the last section. 

 

2. Related works on Free Viewpoint Video streaming 

Delivery of multimedia content generally requires high 

link capacity and low latency in order to provide acceptable 

quality of media streams. The transmission of traditional 

high resolution single-view video is still challenging, but in 

case of multi-view videos this challenge becomes more 

complex. A DIBR-based free viewpoint video service 

model is built from five main components: scene capturing, 

video coding, streaming, viewpoint synthesis and display. 

Scene capturing 

FVV service relies on special acquisition systems that 

use multiple cameras to capture real world scenery. In order 

to capture scene geometry, the general color cameras are 

combined with active depth sensors. Different camera array 

layouts can be used e.g., linear (1D), plane (2D) or dome 

type (3D) that impose practical limitations on navigation 

(Fig. 1). The camera density is the other important feature 

of a FVV system that has significant impact on the 

achievable quality of the synthetized view. Unfortunately, 

the more cameras are deployed, the more processing is 

required to take advantage of all the cameras and the 

system becomes more sensitive to camera calibration 

inaccuracies. Therefore, the classical trade-off must be 

consider between costs, complexity and quality (navigation 

range, quality of virtual views, etc.). 

 

 

Fig. 1. Dome, plane and line camera array layouts  

Free navigation has already been demonstrated in sport 

applications [6], where the user experience approaches the 

feeling of being present in the field. A DIBR-based solution 

was introduced by C. Kuster et al. [7]. Their FreeCam 

systems was built from few static color video cameras and 

Kinect depth sensors. The implemented FreeCam solution 

provided live free-viewpoint video at interactive rates using 



a small number of off-the-shelf sensor components and 

quite standard computing power.  

Multi-view video coding 

Multi-view video storage and network delivery is not 

possible without efficient data compression. To synthetize a 

virtual viewpoint from existing camera views, the camera 

streams must be forwarded to the renderer that can be 

deployed in the user equipment, in a media server, or 

distributed in the network. Depending on the image-based 

3D representation format, three different categories can be 

distinguished: two-view stereo video, multi-view video and 

multi-view video plus depth (MVD). 

The two-view stereo (stereoscopic) video is the simplest 

scenario that consists of two videos representing the left 

and right views from two slightly different viewpoints. 

Besides the temporal correlation of the frames the spatial 

redundancy is also utilized in the coding process.  

The same approach can be followed in the case of multi-

view video that uses set of synchronized cameras, which 

are capturing the same scene from different viewpoints. An 

efficient way to encode two or more videos showing the 

same scenery from different viewpoints is known as multi-

view video coding (MVC) [8][9]. MVC is an extension of 

H.264/AVC that exploits both inter-view and temporal 

redundancies for efficient compression and keeps full 

resolution of all views (Fig. 2.). 

 

 

Fig. 2. MVC spatial and temporal frame dependencies  

Multi-view video plus depth (MVD) [10] representation 

uses per-pixel depth map sequences associated with multi-

view texture video. Similarly to MVC, each stream can be 

encoded by considering the inter-view and intra-view 

coherences among all frames in the depth and color 

information from different views to remove the temporal 

and spatial redundancy. Depth maps are captured originally 

via depth or infrared cameras simultaneously with ordinary 

camera array. Continuous depth data is very important in 

3D warping algorithms for high quality virtual image 

interpolation. The depth information is generally 

transformed to a monochromatic, luminance-only image 

taking values between 0 and 255 as shown in Fig. 3. In 

general, the depth channel requires an extra 10–20% of 

bitrates to encode the depth information [11]. The coding 

standard that supports video plus depth is known as MPEG-

C Part 3 [12].  
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Fig. 3. Video-plus-depth representation  

Viewpoint synthesis 

Image based view synthesis in real time is still an open 

research problem that gains a lot of attention. The 

intermediate virtual views are generated from available 

natural camera views by interpolation without 3D geometry 

models. However, dense sampling of the real world with a 

sufficiently large number of natural cameras is necessary. 

Hence, tremendous amount of image data needs to be 

processed. If the number of used cameras is too low, 

interpolation and occlusion artifacts will appear in the 

synthesized views causing reduced quality. Several image 

based solutions have been proposed [15][16][17] that often 

have problems in terms of both computation time and 

perceptual quality of synthesized views. 

In case of Depth Image Based Rendering (DIBR) 

approach [3][18] at least two camera streams and the 

corresponding depth map sequences must be available at 

the renderer to generate an individual viewpoint. The color 

image and the associated depth map along with camera 

calibration information, any pixel of the image can be 

projected into the 3D space and then projected back onto an 

arbitrary virtual camera plane, creating a virtual image. 

Conceptually, this method can be understood as a two-step 

process [19]: (1) 3D image warping: it uses depth data and 

associated camera parameters to back-project pixel samples 

from reference images to the proper 3D locations and re-

project them onto the new synthesized image space; (2) 

reconstruction and re-sampling: determination of pixel 

sample values in the synthesized image. 

The accuracy of the depth data significantly impacts the 

quality of the generated virtual view. The amount of 

distortion increases with the difference of the virtual view 

and the original perspective, drastically limiting the 

potential navigation range using single video plus depth. 

The synthesis ability of image based representation has 

limitations on the range of view change.  

Streaming 

Three FVV service models can be distinguished based 

on the viewpoint synthesis process location in the network: 

server-based, client-based and distributed model. In a 

server-based model all the camera views and corresponding 

depth map sequences are handled by a media server that 

receives the desired viewpoint coordinates from the 



customers and syntheses  unique virtual viewpoint stream 

for each user. The drawback of the server-based solution is 

that the computational capacity of the media server may 

limit the scalability of this approach. In the client-based 

approach camera streams and depth sequences are 

delivered to the clients to generate their own virtual views 

independently, so the limited resource capacity problem of 

the centralized media server can be avoided, but huge 

network traffic must be delivered in the network. 

Fortunately, multicast delivery can reduce the overall 

network traffic, however the requested camera streams by a 

user is changing continuously that must be also handled 

using advanced multicast group management methods. In 

our previous work we proposed such solutions [20]. 

Finally, the third model is a distributed approach, where the 

viewpoint rendering is done in distributed locations in the 

network that was studied in [21]. 

In most of the FVV related works client-based streaming 

model was assumed. Authors of [22] proposed a QoS aware 

FVV streaming solution for light field rendering (LFR) 

algorithm. The paper focuses on I-frame retransmission and 

jump frame techniques in the application layer based on  

RTP/RTCP streaming protocols to support different level 

of QoS. A streaming system for DIBR based FVV over IP 

networks was introduced in [23]. The proposed solution 

divides video streams into depth video, texture video and 

common video, and transmits them in individual 

RTP/RTSP streams, making the service more robust against 

transfer errors, however it did not solve view switching and 

synchronization problems. 

Camera stream selection is an efficient method to reduce 

the bandwidth requirements of multi-view video, where 

only a subset of views is streamed depending on the user’s 

current viewing angle. To select which views should be 

delivered, the viewer’s current viewpoint is tracked and a 

prediction of future perspective is calculated [20][24][25]. 

Kurutepe et al. [26] presented a multi-view streaming 

framework using separate RTSP sessions to deliver camera 

views allowing the client to choose only the required 

number of sessions. To the best of our knowledge, previous 

research on camera stream selection was focusing on linear 

camera array, while plane or dome camera layout was not 

investigated before. 

 

3. Camera selection and handover scheme 

The viewpoint synthesis is based on two or three real 

cameras depending on the deployed FVV system layout. If 

the cameras are deployed in line, the user can move his/her 

perspective only on straight trajectory. If the FVV service 

provider wants to offer more freedom in viewpoint 

selection, plane camera layout is preferred. However, in 

this case three camera streams are required for the 

viewpoint synthesis. In this work, we are focusing on plane 

camera layout. 

The viewpoint must be always within the area 

determined by the three selected cameras  that are used for 

the vie synthesis . When a FVV user freely changes his/her 

desired viewpoint, the requested real camera streams may 

also change, triggering camera selection process. Each 

change interrupts the streaming of the previous camera and 

initializes the delivery of the new one. Due to network 

bandwidth limitations, sending all images to every client is 

not possible, thus the number of camera streams must be 

minimized. In case of client based or distributed viewpoint 

synthesis approach, the late arrival of the new camera 

stream can interrupt the viewpoint rendering and the video 

playout. If the user changes the viewpoint too fast, the 

required camera flows will not arrive in time due to 

network delivery delay.  Therefore, our aim was to 

minimize the number of camera changes avoiding 

interruptions (camera starving), but still offer high video 

quality. 

If we choose the closest cameras to the desired 

viewpoint, the synthetized image quality will be the best, 

but on the other hand frequent camera changes will occur. 

Hence, the camera change minimization approach has the 

opposite effect on the rendered virtual view: the less 

camera streams are used, the more inaccurate the produced 

images will be. One of our main goals was to find the 

optimum number of cameras, which can be streamed 

without disruption to the playout and also provides an 

adequate quality of rendered images. 

In order to find the tradeoff between the synthetized 

video quality and the playout interruption, we proposed 

new algorithms that minimizes the following values: 

 number of camera changes (handover) 

 average distances between cameras in a group of three 

(this is a kind of qualitative parameter, because better 

images can be produced using cameras located close to 

the selected viewpoint) 

 starvation of the viewpoint rendering process (by using 

viewpoint prediction, the probability of a required 

camera image being late can be reduced) (Fig. 4.) 

 

 

Fig. 4. Starvation of the viewpoint rendering process 

Different approaches can be considered in order to build 

a FVV streaming service offering seamless viewpoint 

changes. The seamlessness relies on the camera switching 

performance, so in this paper three competing camera 

selection algorithms are proposed that can be also extended 

with viewpoint prediction. Of course each one has benefits 

and drawback that can be less or more important depending 

on the user behavior. 



Three Closest Cameras approach (TCC) 

The simplest approach and also the principle for all 

further algorithms is to find the closest cameras (Fig. 5.). 

This procedure includes three minimum search algorithms 

that pick out the three cameras with the shortest distance to 

the viewpoint. At lower viewpoint movement speed this 

algorithm will cause only one camera stream to be 

replaced, but with the speed increasing this value can reach 

a maximum of three camera handovers . On the other hand, 

this algorithm always finds the closest cameras, so in terms 

of quality (estimated from the sum of the distances between 

cameras) it provides the best possible image quality in 

every case. Nevertheless, due to the small distance of the 

cameras causing frequent camera handovers , starvation can 

occur more frequently interrupting the production of the 

FVV stream. 

 

 

Fig. 5. Three Closest Cameras (TCC) algorithm 

Scaling algorithm (SA) 

The main purpose of the Scaling algorithm is to improve 

the TCC approach by estimating future viewpoint 

coordinates and the potential viewpoint route. Instead of 

selecting the closet cameras (TCC), the SA approach will 

choose further cameras if the user viewpoint is moving fast . 

The SA-based camera selection depends on the viewpoint 

change velocity and its direction, so we have differentiated 

three basic instances of viewpoint change behavior: 

1. slow: the algorithm is not scaling (same as TCC) 

2. normal: adds +1 camera distance to the nearest 

group of three 

3. fast: adds +2 camera distances to the nearest group 

of three 

 

The algorithmic structure behind scaling is the 

following. The potential layouts how the camera triangle 

can be scaled are determined by both the velocity vector 

and the three closest camera triangle. The SA algorithm 

examines the closest camera coordinates and decides, 

whether another camera should be selected, located further 

from the viewpoint. In this decision procedure each three 

cameras must be examined and find which one will be the 

reference point of the scaling. The camera in the reference 

point will remain unchanged, while the other two closest 

camera can be replaced by other ones, depending on the 

velocity vector (Fig. 6.). 
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Fig. 6. Reference camera position in SA 

This reference point (black point on Fig. 7.) can be 

calculated by subtracting the coordinates of the camera 

from the viewpoint’s coordinates. The sign (sgn(xwp-xr) and 

sgn(ywp-yr)) of the values are then compared with the signs 

of the velocity vector coordinates. If the signs are the same, 

scaling is not used on the examined camera, but performed 

on every other point at the same time. It is highly important 

to scale only two of the points, as scaling all vertices can 

cause the viewpoint to slip out from the camera triangle 

causing starvation in the viewpoint synthesis process. 

Once the fixed reference point is chosen, scaling can be 

applied to other vertices. As shown in Fig. 7, the potential 

replacements of the points are given by the area marked by 

the rectangles. It can be a one-dimensional camera row or a 

two-dimensional camera block depending on the scaling 

factor determined by x and y axes values of the viewpoint 

velocity vector. 

 

 

Fig. 7. The Scaling algorithm (SA) 

The signs of the viewpoint velocity vector coordinates 

(sgn(xwp), sgn(ywp)) shows in which direction it is possible 

to scale. After finding the fixed reference point, the 

following action is to perform on the other cameras : a 

vector (vx,vy) is calculated by subtracting the coordinates of 

the camera (xcam,ycam) from the coordinates of the 

viewpoint. 

    , ,
x y wp cam wp cam

v v x x y y    (1) 



Thereafter a comparison is performed between the signs 

of the vector given above and the sign of the velocity 

vector. If the signs do not match, the scale value with the 

sign of the velocity vector is to be added to the selected 

camera’s coordinate. 

    

    

if sgn( ) 0 & & sgn( ) 0 then 

if sgn( ) 0 & &s gn( ) 0 then 

vel wp cam cam cam x

vel wp cam cam cam x

x x x x x v

x x x x x v

    

    

 (2) 

Likewise process must be performed in all other cases 

(Table 1) depending on the velocity vector, fixed point and 

the scalable cameras. 
Table 1 

Finding fixed point from velocity vectors and scale values 

velocity vector camera xcam scale ycam scale 

x: +, y: + x: +, y: + x: -  x+v y: -  y+v 

x: +, y: - x: +, y: - x: -  x+v y: +  y-v 

x: -, y: + x: -, y: + x: +  x-v y: -  y+v 

x: -, y: - x: -, y: - x: +  x-v y: +  y-v 

 

With the SA extension, the cameras covers larger area 

depending on the viewpoint velocity. Larger area means 

that the number of camera handovers is lower, but on the 

other hand the cameras used for the viewpoint synthesis are 

further. Therefore, the composed image quality will be 

lower. The operation of this method requires viewpoint 

velocity values calculated from previous viewpoint 

coordinates, thus the free viewpoint video service must 

begin with the TCC camera selection approach and switch 

to SA later when historical viewpoint coordinates can be 

used for the velocity vector determination.  

Mirroring algorithm (MA) 

We have investigated another camera selection approach 

based on our observation during the TCC performance 

evaluation. In cases when the predicted viewpoint slipped 

out from the camera triangle during the simulation of TCC 

algorithm, typically only one change of camera streams 

happens. In SA, only the fixed reference camera remains 

unchanged, while the two other cameras are replaced. 

However, it is true that camera handover process happens 

rarer compared to TCC. Our purpose was combine the 

benefits of TCC and SA by having only one camera 

handover in the same time, but also decreasing the 

frequency of camera handovers. Therefore, in cases of 

starvation the three cameras are not entirely replaced using 

the Mirroring Algorithm (MA), but only one of them as far 

as possible. The benefit of this method is that the streamed 

camera needs to be interrupted and replaced by only one 

other camera, therefore the probability of starvation is 

lower. 

In case of the MA approach, the camera is reflected 

symmetrically in the center point of one of the edges 

defined by the camera’s vertices  (Fig. 8.). To do this, the 

camera that will replaced needs to be identified. 
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Fig. 8. Mirroring algorithm (MA) 

Finding the camera to be mirrored goes as follows. First, 

all cameras needs to be connected to each other with edges 

(e12, e13, e23), while the predicted viewpoint is connected 

with a segment (s1, s2, s3) as shown on Fig. 8. The 

intersection of these edges and segment (E) is now to be 

examined in order to find the camera to reflect. Three cases 

can be differentiated according to this examination: 

1. no intersection point found: the camera which is 

currently linked to the viewpoint will not be 

reflected in this case. For example: no intersection 

of the edge e13 and the segment (s1) 

2. the intersection point (E) is on the segment: the 

camera is to be mirrored on the center point of the 

edge linking the other cameras . For example: the 

intersection of the edge e23 and the segment s1. 

3. parallel: same as in the first case. 

After finding the right camera to be mirrored, the 

position of the new camera needs to be calculated. Adding 

the difference between the coordinates of the two other 

cameras and the initial camera to the coordinates of the 

initial one gives the new camera triangle. 

Viewpoint prediction methods 

One main requirement of FVV systems is the fast 

cameras switchover, in order to avoid starvation of the 

viewpoint synthesis process. To do that, potential 

viewpoints have to be predicted. The efficiency of camera 

selection algorithms is highly influenced by the accuracy of 

this prediction. We used two basic methods of prediction 

and tested via simulations. 

The first method is based on averaging the viewpoint 

motion parameters. We differentiated two variants , 

depending on the amount of previous viewpoint 

coordinates used for the estimation: 

1. using all former data 

2. using only the latest n viewpoint coordinates  

In the first case the next viewpoint coordinates 

(xwp,n,ywp,n) are estimated by calculating the average of all 

displacements so far. The second case shows high 

similarity to the first one. However, it includes a window 

(w), which limits the inputs used for the average 

calculations:  
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This method can be more efficient when patterns are 

alternating on a high degree as it ignores old input data. 

The second method is based on Kalman-filter. The 

Kalman-filter provides an optimal estimate for a state of a 

variable system through series of measurements with the 

confounding factors being taken into account. The 

advantage of the model is that it finds the optimal 

averaging factor for each state based on past events. The 

algorithm works in two steps: Time Update – Predict, 

Measurement Update – Correct. In the first step (Predict) 

the state and error covariance ahead are projected. In the 

second step (Correct) the Kalman gain is computed first. 

The Kalman gain is then used to update the estimation 

along with the next measurement input. Thereafter the error 

covariance is updated similarly. The output of Correct is 

always the input of Predict. In the beginning it is an 

estimated initial value. 

 

 

Fig. 9. The Kalman-filter  

We used an open-source JAVA implementation of 

Kalman-filter (JKalman) for our simulation. This way, we 

were able to specify the number of dynamic parameters and 

the number of measured data. Four dynamic parameters 

were added, so the distances in the system could be tracked 

as well (by each coordinate). We selected the number of 

measured data to be two as our aim was to predict the 

viewpoint x and y coordinate. 

 

4. Evaluation 

In order to test the algorithms introduced previously, a 

simulation environment was implemented, where the 

proposed algorithms can be evaluated. The simulation 

framework and the algorithms were implemented in JAVA 

language. The implemented framework captures the path of 

the viewpoint movement and determines which cameras 

must be used for the viewpoint synthesis in order to 

minimize the camera handover frequency, but also 

maximize the quality of the rendered stream. In an 

advanced solution head tracking can be used to determinate 

the current viewpoint coordinates, however we emulated 

the viewpoint changes by fixed viewpoint trajectories . 

In order to compare the different camera switch 

strategies, the viewpoint coordinates were captured and 

stored in xml format, so the same viewpoint trajectory was 

used for each camera selection algorithm. Every step of the 

viewpoint movement is required to be given in xml format, 

containing the time elapsed since the start of the movement 

(timestamp) and the coordinate of x and y axis. The 

description of the camera network was also done in xml 

format similarly to the definition of movement series. The 

location of each camera was given with its x and y 

coordinates. 

To implemented simulation tool records the particular 

viewpoint and its estimated value. Thus occurrences of 

starvation can be detected by comparing the particular 

viewpoint coordinates and the estimated ones. If the real 

and the estimated viewpoint cannot be served with the 

same three cameras, starvation occurs. Both the number of 

camera switches in the last step and the overall number of 

switches in the movement series  are also counted. The 

quality parameters of the three cameras are given calculated 

as the average distance from the actual viewpoint. 

In the analyzed FVV service 100 cameras were 

deployed in a 10×10 grid. Different predefined viewpoint 

trajectories were used in order to simulate different user 

behaviors. 

Predefined viewpoint trajectories 

We captured three viewpoint movement series in order 

to simulate user perspective changes. Each one contains 

hundred viewpoint positions, describing a slow, a normal 

and a high-intensity movement. In our measurements the 

reference distance was the distance between two adjacent 

cameras (hereinafter referred as camera unit, CU). Time, 

similarly to distance was not given in exact units . The time 

unit (hereinafter referred to as TU) was the duration of one 

viewpoint movement step. In our measurements we 

simulated 100 TU long viewpoint movements that 

represents a viewpoint trajectory with 100 viewpoint 

coordinates as shown in Fig. 10. 

 

 

Fig. 10. Defined viewpoint trajectories 



 

 
 

Fig. 11. Viewpoint prediction of move01, move02 and move03 trajectories 

 

The average and maximum speed values were 

determined using the absolute values of the speed 

parameter, keeping it independent from its direction. Thus 

the minimum speed is 0 CU/TU in all three instances. The 

characteristics of the three different viewpoint movement 

series (move01, move02 and move03) are presented in 

Table 2, where move01 has the lowest and move03 has the 

highest displacement behavior. 
 

Table 2 

Parameters of predefined viewpoint movements 

 move01 move02 move03 

number of 

viewpoints 

100 steps 100 steps 100 steps 

components x y x y x y 

average speed 

(CU/TU) 

0.028 0.25 0.042 0.047 0.066 0.052 

maximum speed 

(CU/TU) 

0.1 0.1 0.16 0.136 0.194 0.226 

 

In a realistic scenario only the current viewpoint and the 

viewpoint history is known, however the knowledge of 

future perspectives are required to make optimal camera 

selection decision. In order to estimate future viewpoint 

positions different prediction methods can be used. 

 

Viewpoint prediction comparison 

We have implemented five viewpoint prediction 

algorithms and tested for all three movement series: 

averaging based on the entire history, 1-windowed 

averaging, 3-windowed averaging, 6-windowed averaging 

and Kalman-filter based prediction (Fig. 11.). We were 

looking for the most accurate viewpoint movement 

prediction method for further simulations  by comparing the 

performance of the prediction methods . Comparison was 

done based on the following parameters: 

1. avg.: average difference between measured and 

predicted data (lower the better) 

2. avg.(abs): average of absolute values of differences 

between measured and predicted data (lower the 

better ) 

3. max.(abs): maximum value of absolute values of 

differences between measured and predicted data 

(lower the better ) 

4. min.(abs): minimum value of absolute values of 

differences between measured and predicted data 

(lower the better ) 

Due to low viewpoint movement values, the 6-

windowed averaging scheme achieved the best results in 

case of the first movement series  (move01). Although 



averaging based on the entire history gave more accurate 

values in the parameters of minimum and maximum 

difference, but it has the worst averaging absolute 

difference values. Our results show that the averaging 

window length is poorly correlating with the average values 

of estimation errors, e.g. the minimum value of 

1-windowed prediction is the most accurate among all. 

Fig. 11. shows that Kalman-filter predicts smooth 

viewpoint path similarly to a long term trendline. In our 

FVV viewpoint prediction application Kalman-filter did not 

achieved an outstanding result, although the efficiency of 

prediction (average, minimum /maximum of prediction 

errors) is not extremely wrong. The prediction errors of 

different schemes for move01 viewpoint trajectory are 

introduced in Table 3. 

 
Table 3 

Comparing viewpoint prediction algorithms used on move01 trajectory 

 full 

averaging 

1-windowed 3-windowed 6-windowed Kalman-

filter 

avg. -0.07/-0.088 -0.05/-0.037 -0.05/-0.037 -0.05/-0.037 0.07/-0.038 

avg. 

(abs) 
0.070/0.088 0.139/0.124 0.134/0.122 0.128/0.121 0.159/0.147 

max. 

(abs) 
0.107/0.140 0.5/0.5 0.443/0.363 0.395/0.281 0.51/0.479 

min. 

(abs) 
0.023/0.032 0/0 0.003/0.006 0.001/0 0.001/0.004 

 

The higher speed of viewpoints in case of move02 

trajectory amplified the measured differences between 

prediction methods (Fig. 11.). The 3-windowed and 

6-windowed averaging methods achieved the best results in 

both minimum and maximum values of prediction errors. 

The prediction errors of full averaging and Kalman-filter 

based estimation had almost doubled in many cases, while 

window based averaging methods show a much slighter 

increase in the prediction error. 
 

The prediction error statistics related to move02 

viewpoint trajectory are presented in Table 4. 

 
Table 4 

Comparing viewpoint prediction algorithms used on move02 trajectory 

 full 

averaging 

1-windowed 3-windowed 6-windowed Kalman-

filter 

avg. -0.14/-0.148 -0.08/-0.073 -0.08/-0.769 -0.09/-0.081 -0.09/-0.103 

avg. 

(abs) 
0.149/0.148 0.208/0.234 0.203/0.227 0.193/0.220 0.263/0.284 

max. 

(abs) 
0.55/0.303 0.8/0.68 0.65/0.52 0.55/0.5 1.001/0.915 

min. 

(abs) 
0.051/0.033 0/0 0.01/0.01 0.006/0.003 0.022/0.001 

 

In case of move03 (Fig. 11.) viewpoint movement the 

differences of prediction method’s efficiencies are even 

more apparent. The best results were achieved by the 3-

windowed averaging method. We had observed that these 

results stay in midrange without showing extremely high or 

low prediction error values. Also, Kalman-filter showed the 

same „smoothing” effect as it did in cases of move01 and 

move02 viewpoint trajectories . The measured prediction 

error results of move03 are shown in Table 5. 

 

Table 5 

Comparing viewpoint prediction algorithms used on move03 trajectory 

 full 

averaging 

1-windowed 3-windowed 6-windowed Kalman-

filter 

avg. -0.15/-0.188 -0.03/-0.043 -0.04/-0.051 -0.05/-0.063 -0.107/-0.13 

avg. 

(abs) 
0.151/0.188 0.326/0.259 0.308/0.252 0.289/0.251 0.453/0.372 

max. 

(abs) 
0.84/0.7 0.97/1.13 0.84/0.853 0.84/0.7 1.296/1.017 

min. 

(abs) 
0.01/0.035 0.01/0 0.016/0.003 0.04/0.001 0.021/0.013 

 

Based on obtained prediction error results of different 

schemes, we decided to keep only three of the methods to 

work further with: full average, 3-windowed average and 

Kalman-filter. The 1-windowed and 6-windowed averaging 

methods were eliminated due to the dichotomy of having a 

good average value, but a bad maximum value and vice 

versa. 

Testing camera handovers 

The main goal of the proposed camera switching 

schemes is to reduce the number of camera handovers, but 

on the other hand choose cameras that are close to the 

current FVV perspective in order to gain higher synthetized 

video quality. We have analyzed numerous scenarios and 

measured the performance of the introduced camera 

switching schemes (TCC, SA, MA) in case of  different 

viewpoint trajectory behaviors (move01, move02, move03) 

and prediction methods. According to our expectations, the 

more accurate the predictive algorithm is, the less camera 

handover occurs during the viewpoint movement.  The 

results of camera change frequency measurements are 

presented in the following figures (Fig. 12-14.). 

 

 

Fig. 12. The number of handovers using full averaging 



 

Fig. 13. The number of handovers using 3-windowed averaging 

 

Fig. 14. The number of handovers using Kalman-filter 

The obtained results show that in case of Kalman-filter 

and full averaging based viewpoint predictions the SA and 

TCC algorithms resulted higher number of camera changes. 

The reason is that in case of viewpoint synthesis process 

starvation (when the desired user viewpoint cannot be 

synthetized with the current camera set), the SA will 

probably choose the three closest cameras  as new ones, 

which basically means three camera handovers. Although 

in case of TCC scheme two cameras can remain the same 

and only one needs to be replaced. The number of 

handovers can be kept low with the MA, but using Kalman-

filter prediction it is not able to keep it lower than TCC. 

According the simulation results, using 3-windowed 

averaging the number of handovers was decreased due to 

its more accurate prediction efficiency. We measured the 

best performance in case of MA, resulting an average 

decrease of 26% compared to TCC.  

In the tested scenarios we have analyzed perspective 

trajectories containing 100 viewpoint coordinates. The 

number of camera handovers in each state of the move02 

viewpoint trajectory and using the 3-windowed prediction 

model are shown in Fig. 15. By using other viewpoint 

prediction methods, the number of overall camera switches 

was higher in all of the cases. 

 

 Fig. 15. Movement series move02 with 3-windowed averaging 

Examination of FVV synthesis process starvations 

Due to viewpoint changes , the camera view synthesis 

process must continuously change the input camera streams 

without interrupting the playout. Starvation occurs when 

the desired user viewpoint cannot be synthetized with the 

currently streamed camera views and the required camera 

streams are still not available at FVV processor. We had 

tested starvation frequency for different camera switching 

schemes (TCC, SA, MA), viewpoint trajectory behavior 

(move01, move02, move03) and prediction methods (Fig. 

16-18.). The results show that the best performance for all 

movement series was achieved using the 3-windowed 

averaging prediction scheme and the worst with Kalman-

filter.  

The efficiency of starvation reduction is effected by the 

combination of the prediction method and the speed of the 

viewpoint movement. The obtained results show that 

compared to TCC method, the MA camera selection 

scheme produced 46% less starvations, while SA reduced 

the starvation occurrence with 42% in average. The 

following figures show the number of FVV process 

starvations that causes playout interruptions while the 

missing camera stream is not delivered to the FVV 

synthesizer entity (Fig. 16-18.). 

 

 

Fig. 16. The number of starvations using full averaging prediction 



 

Fig. 17. The number of starvations using of 3-windowed averaging 
prediction 

 

Fig. 18. The number of starvations using 6-windowed averaging 
prediction 

Examination of video quality parameters 

Generally, different video quality measurement metrics 

(e.g PSNR, VQM, SSIM) are used to evaluate the video 

quality by comparing the analyzed video to a reference 

video stream. In case of FVV, the virtual view is 

synthetized from two or three camera images, therefore no 

reference image can be used for video quality 

measurements. In our previous work we have shown that 

the distance between the desired viewpoint and the cameras 

used for the synthesis are strongly correlating to the 

rendered video quality. The best synthetized video quality 

can be achieved if the virtual view is generated using the 

closes camera images. In order to evaluate the performance 

of the proposed camera selection schemes, we used the 

average camera distance as a quality metric, which is a 

lower-the-better value. 

 

cam1

cam2 cam3
 

Fig. 19. Distance based quality metric 
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According the nature of the viewpoint prediction 

algorithms, we expected TCC to perform better than the 

MA and the SA, because as further the selected cameras 

are, the lower the synthetized virtual view quality will be. 

As the method of 3-windowed averaging seemed to be the 

best viewpoint prediction method so far, we decided to test 

the qualitative parameter with it, using a variety of 

movement series and algorithms. The obtained results are 

presented in Fig.20. 

 

 

Fig. 20. The average of qualitative parameter with different combinations 

of algorithms and movements 

The results of the SA camera handover algorithm 

showed an average increase of 106% in terms of the Q 

metric (average camera distance), while the Q quality 

metric of MA was 110% compared to TCC. Although, MA 

and SA schemes were selecting camera from more than two 

times higher distance, the frequency of FVV synthesis 

process starvations was the half compared to TCC method. 

In our opinion the starvation rate has higher impact on the 

experienced user quality than the view synthesis distortion 

due to higher camera distances. 

The measured Q parameter is continuously changing 

depending on the current viewpoint position in the 

trajectory. The graph below shows the measured values of 

the qualitative parameter for each viewpoint position in 

case of move02 trajectory (Fig. 21). 

 
 

Fig. 21. Movement series move02 



5. Conclusions 

Free-viewpoint video is a promising approach that 

allows users to control their viewpoint and generate virtual 

views from any desired perspective. In order to change the 

viewpoint in a plane, each viewpoint must be synthetized 

from at least three high bitrate color cameras and 

corresponding depth sequences that are used to capture the 

scene from different locations. Continuous change of the 

viewpoint can cause frequent camera handovers  that can 

lead to the starvation of the view synthesis process. 

Starvation occurs when the desired user viewpoint cannot 

be synthetized with the currently streamed camera views 

causing interruption in the playout. In order to minimize the 

number of camera handover occurrences, we proposed 

novel camera switching schemes based on viewpoint 

prediction. Our aim was to find the tradeoff between the 

image quality and the camera handover frequency, 

therefore three different camera selection algorithms were 

presented and analyzed by simulations. According to the 

obtained results, SA and MA were performing similarly 

showing 42-46% decrease in the number of camera 

switches. The price of the good performance was that each 

algorithm selected cameras that are located further from the 

current viewpoint. Thus, the quality of the synthetized 

images were lower, however it can be proved that reduced 

playout interruption frequency has higher impact on the 

experienced user quality than the view synthesis distortion 

due to higher camera distances. 
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