56,005 research outputs found

    TRECVid 2005 experiments at Dublin City University

    Get PDF
    In this paper we describe our experiments in the automatic and interactive search tasks and the BBC rushes pilot task of TRECVid 2005. Our approach this year is somewhat different than previous submissions in that we have implemented a multi-user search system using a DiamondTouch tabletop device from Mitsubishi Electric Research Labs (MERL).We developed two versions of oursystem one with emphasis on efficient completion of the search task (FĂ­schlĂĄr-DT Efficiency) and the other with more emphasis on increasing awareness among searchers (FĂ­schlĂĄr-DT Awareness). We supplemented these runs with a further two runs one for each of the two systems, in which we augmented the initial results with results from an automatic run. In addition to these interactive submissions we also submitted three fully automatic runs. We also took part in the BBC rushes pilot task where we indexed the video by semi-automatic segmentation of objects appearing in the video and our search/browsing system allows full keyframe and/or object-based searching. In the interactive search experiments we found that the awareness system outperformed the efficiency system. We also found that supplementing the interactive results with results of an automatic run improves both the Mean Average Precision and Recall values for both system variants. Our results suggest that providing awareness cues in a collaborative search setting improves retrieval performance. We also learned that multi-user searching is a viable alternative to the traditional single searcher paradigm, provided the system is designed to effectively support collaboration

    A probabilistic approach for cluster based polyrepresentative information retrieval

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial ful lment of the requirements for the degree of Doctor of PhilosophyDocument clustering in information retrieval (IR) is considered an alternative to rank-based retrieval approaches, because of its potential to support user interactions beyond just typing in queries. Similarly, the Principle of Polyrepresentation (multi-evidence: combining multiple cognitively and/or functionally diff erent information need or information object representations for improving an IR system's performance) is an established approach in cognitive IR with plausible applicability in the domain of information seeking and retrieval. The combination of these two approaches can assimilate their respective individual strengths in order to further improve the performance of IR systems. The main goal of this study is to combine cognitive and cluster-based IR approaches for improving the eff ectiveness of (interactive) information retrieval systems. In order to achieve this goal, polyrepresentative information retrieval strategies for cluster browsing and retrieval have been designed, focusing on the evaluation aspect of such strategies. This thesis addresses the challenge of designing and evaluating an Optimum Clustering Framework (OCF) based model, implementing probabilistic document clustering for interactive IR. Thus, polyrepresentative cluster browsing strategies have been devised. With these strategies a simulated user based method has been adopted for evaluating the polyrepresentative cluster browsing and searching strategies. The proposed approaches are evaluated for information need based polyrepresentative clustering as well as document based polyrepresentation and the combination thereof. For document-based polyrepresentation, the notion of citation context is exploited, which has special applications in scientometrics and bibliometrics for science literature modelling. The information need polyrepresentation, on the other hand, utilizes the various aspects of user information need, which is crucial for enhancing the retrieval performance. Besides describing a probabilistic framework for polyrepresentative document clustering, one of the main fi ndings of this work is that the proposed combination of the Principle of Polyrepresentation with document clustering has the potential of enhancing the user interactions with an IR system, provided that the various representations of information need and information objects are utilized. The thesis also explores interactive IR approaches in the context of polyrepresentative interactive information retrieval when it is combined with document clustering methods. Experiments suggest there is a potential in the proposed cluster-based polyrepresentation approach, since statistically signifi cant improvements were found when comparing the approach to a BM25-based baseline in an ideal scenario. Further marginal improvements were observed when cluster-based re-ranking and cluster-ranking based comparisons were made. The performance of the approach depends on the underlying information object and information need representations used, which confi rms fi ndings of previous studies where the Principle of Polyrepresentation was applied in diff erent ways

    Interactive retrieval of video using pre-computed shot-shot similarities

    Get PDF
    A probabilistic framework for content-based interactive video retrieval is described. The developed indexing of video fragments originates from the probability of the user's positive judgment about key-frames of video shots. Initial estimates of the probabilities are obtained from low-level feature representation. Only statistically significant estimates are picked out, the rest are replaced by an appropriate constant allowing efficient access at search time without loss of search quality and leading to improvement in most experiments. With time, these probability estimates are updated from the relevance judgment of users performing searches, resulting in further substantial increases in mean average precision

    AXES at TRECVID 2012: KIS, INS, and MED

    Get PDF
    The AXES project participated in the interactive instance search task (INS), the known-item search task (KIS), and the multimedia event detection task (MED) for TRECVid 2012. As in our TRECVid 2011 system, we used nearly identical search systems and user interfaces for both INS and KIS. Our interactive INS and KIS systems focused this year on using classifiers trained at query time with positive examples collected from external search engines. Participants in our KIS experiments were media professionals from the BBC; our INS experiments were carried out by students and researchers at Dublin City University. We performed comparatively well in both experiments. Our best KIS run found 13 of the 25 topics, and our best INS runs outperformed all other submitted runs in terms of P@100. For MED, the system presented was based on a minimal number of low-level descriptors, which we chose to be as large as computationally feasible. These descriptors are aggregated to produce high-dimensional video-level signatures, which are used to train a set of linear classifiers. Our MED system achieved the second-best score of all submitted runs in the main track, and best score in the ad-hoc track, suggesting that a simple system based on state-of-the-art low-level descriptors can give relatively high performance. This paper describes in detail our KIS, INS, and MED systems and the results and findings of our experiments

    Vision systems with the human in the loop

    Get PDF
    The emerging cognitive vision paradigm deals with vision systems that apply machine learning and automatic reasoning in order to learn from what they perceive. Cognitive vision systems can rate the relevance and consistency of newly acquired knowledge, they can adapt to their environment and thus will exhibit high robustness. This contribution presents vision systems that aim at flexibility and robustness. One is tailored for content-based image retrieval, the others are cognitive vision systems that constitute prototypes of visual active memories which evaluate, gather, and integrate contextual knowledge for visual analysis. All three systems are designed to interact with human users. After we will have discussed adaptive content-based image retrieval and object and action recognition in an office environment, the issue of assessing cognitive systems will be raised. Experiences from psychologically evaluated human-machine interactions will be reported and the promising potential of psychologically-based usability experiments will be stressed

    A comparative evaluation of interactive segmentation algorithms

    Get PDF
    In this paper we present a comparative evaluation of four popular interactive segmentation algorithms. The evaluation was carried out as a series of user-experiments, in which participants were tasked with extracting 100 objects from a common dataset: 25 with each algorithm, constrained within a time limit of 2 min for each object. To facilitate the experiments, a “scribble-driven” segmentation tool was developed to enable interactive image segmentation by simply marking areas of foreground and background with the mouse. As the participants refined and improved their respective segmentations, the corresponding updated segmentation mask was stored along with the elapsed time. We then collected and evaluated each recorded mask against a manually segmented ground truth, thus allowing us to gauge segmentation accuracy over time. Two benchmarks were used for the evaluation: the well-known Jaccard index for measuring object accuracy, and a new fuzzy metric, proposed in this paper, designed for measuring boundary accuracy. Analysis of the experimental results demonstrates the effectiveness of the suggested measures and provides valuable insights into the performance and characteristics of the evaluated algorithms

    Region-Based Image Retrieval Revisited

    Full text link
    Region-based image retrieval (RBIR) technique is revisited. In early attempts at RBIR in the late 90s, researchers found many ways to specify region-based queries and spatial relationships; however, the way to characterize the regions, such as by using color histograms, were very poor at that time. Here, we revisit RBIR by incorporating semantic specification of objects and intuitive specification of spatial relationships. Our contributions are the following. First, to support multiple aspects of semantic object specification (category, instance, and attribute), we propose a multitask CNN feature that allows us to use deep learning technique and to jointly handle multi-aspect object specification. Second, to help users specify spatial relationships among objects in an intuitive way, we propose recommendation techniques of spatial relationships. In particular, by mining the search results, a system can recommend feasible spatial relationships among the objects. The system also can recommend likely spatial relationships by assigned object category names based on language prior. Moreover, object-level inverted indexing supports very fast shortlist generation, and re-ranking based on spatial constraints provides users with instant RBIR experiences.Comment: To appear in ACM Multimedia 2017 (Oral

    AXES at TRECVid 2011

    Get PDF
    The AXES project participated in the interactive known-item search task (KIS) and the interactive instance search task (INS) for TRECVid 2011. We used the same system architecture and a nearly identical user interface for both the KIS and INS tasks. Both systems made use of text search on ASR, visual concept detectors, and visual similarity search. The user experiments were carried out with media professionals and media students at the Netherlands Institute for Sound and Vision, with media professionals performing the KIS task and media students participating in the INS task. This paper describes the results and findings of our experiments

    Active Boosting for Interactive Object Retrieval

    Full text link
    International audienceThis paper presents a new algorithm based on boost- ing for interactive object retrieval in images. Recent works propose ”online boosting” algorithms where weak classiïŹer sets are iteratively trained from data. These algorithms are proposed for visual tracking in videos, and are not well adapted to ”online boosting” for interactive retrieval. We propose in this paper to iteratively build weak classiïŹers from images, labeled as positive by the user during a retrieval session. A novel active learning strategy for the selection of im- ages for user annotation is also proposed. This strategy is used to enhance the strong classiïŹer resulting from ”boosting” process, but also to build new weak classi- ïŹers. Experiments have been carried out on a generalist database in order to compare the proposed method to a SVM based reference approach
    • 

    corecore