14 research outputs found

    The role of Artificial Intelligence in Software Engineering

    Full text link
    There has been a recent surge in interest in the application of Artificial Intelligence (AI) techniques to Software Engineering (SE) problems. The work is typified by recent advances in Search Based Software Engineering, but also by long established work in Probabilistic reasoning and machine learning for Software Engineering. This paper explores some of the relationships between these strands of closely related work, arguing that they have much in common and sets out some future challenges in the area of AI for SE. © 2012 IEEE

    Model-based source code refactoring with interaction and visual cues

    Get PDF
    Refactoring source code involves the developer in a myriad of program detail that can obscure the design changes that they actually wish to bring about. On the other hand, refactoring a UML model of the code makes it easier to focus on the program design, but the burdensome task of applying the refactorings to the source code is left to the developer. In an attempt to obtain the advantages of both approaches, we propose a refactoring approach where the interaction with the developer takes place at the model level, but the actual refactoring occurs on the source code itself. We call this approach model-based source code refactoring and implement it in this paper using two tools: (1) Design-Imp enables the developer to use interactive search-based design exploration to create a UML-based desired design from an initial design extracted from the source code. It also provides visual cues to improve developer comprehension during the design-level refactoring process and to help the developer to discern between promising and poor refactoring solutions. (2) Code-Imp then refactors the original source so that it has the same functional behavior as the original program, and a design close to the one produced in the design exploration phase, that is, a design that has been confirmed as “desirable” by the developer. We evaluated our approach involving interaction and visual cues with industrial developers refactoring three Java projects, comparing it with an approach using interaction without visual cues and a fully automated approach. The results show that our approach yields refactoring sequences that are more acceptable both to the individual developer and to a set of independent expert refactoring evaluators. Furthermore, our approach removed more code smells and was evaluated very positively by the experiment participants.</p

    Evolutionary Search Techniques with Strong Heuristics for Multi-Objective Feature Selection in Software Product Lines

    Get PDF
    Software design is a process of trading off competing objectives. If the user objective space is rich, then we should use optimizers that can fully exploit that richness. For example, this study configures software product lines (expressed as feature models) using various search-based software engineering methods. Our main result is that as we increase the number of optimization objectives, the methods in widespread use (e.g. NSGA-II, SPEA2) perform much worse than IBEA (Indicator-Based Evolutionary Algorithm). IBEA works best since it makes most use of user preference knowledge. Hence it does better on the standard measures (hypervolume and spread) but it also generates far more products with 0 violations of domain constraints. We also present significant improvements to IBEA\u27s performance by employing three strong heuristic techniques that we call PUSH, PULL, and seeding. The PUSH technique forces the evolutionary search to respect certain rules and dependencies defined by the feature models, while the PULL technique gives higher weight to constraint satisfaction as an optimization objective and thus achieves a higher percentage of fully-compliant configurations within shorter runtimes. The seeding technique helps in guiding very large feature models to correct configurations very early in the optimization process. Our conclusion is that the methods we apply in search-based software engineering need to be carefully chosen, particularly when studying complex decision spaces with many optimization objectives. Also, we conclude that search methods must be customized to fit the problem at hand. Specifically, the evolutionary search must respect domain constraints

    How to Evaluate Solutions in Pareto-based Search-Based Software Engineering? A Critical Review and Methodological Guidance

    Full text link
    With modern requirements, there is an increasing tendency of considering multiple objectives/criteria simultaneously in many Software Engineering (SE) scenarios. Such a multi-objective optimization scenario comes with an important issue -- how to evaluate the outcome of optimization algorithms, which typically is a set of incomparable solutions (i.e., being Pareto non-dominated to each other). This issue can be challenging for the SE community, particularly for practitioners of Search-Based SE (SBSE). On one hand, multi-objective optimization could still be relatively new to SE/SBSE researchers, who may not be able to identify the right evaluation methods for their problems. On the other hand, simply following the evaluation methods for general multi-objective optimization problems may not be appropriate for specific SE problems, especially when the problem nature or decision maker's preferences are explicitly/implicitly available. This has been well echoed in the literature by various inappropriate/inadequate selection and inaccurate/misleading use of evaluation methods. In this paper, we first carry out a systematic and critical review of quality evaluation for multi-objective optimization in SBSE. We survey 717 papers published between 2009 and 2019 from 36 venues in seven repositories, and select 95 prominent studies, through which we identify five important but overlooked issues in the area. We then conduct an in-depth analysis of quality evaluation indicators/methods and general situations in SBSE, which, together with the identified issues, enables us to codify a methodological guidance for selecting and using evaluation methods in different SBSE scenarios.Comment: This paper has been accepted by IEEE Transactions on Software Engineering, available as full OA: https://ieeexplore.ieee.org/document/925218

    Acta Cybernetica : Volume 21. Number 2.

    Get PDF

    Interactive, evolutionary search in upstream Object-oriented class design

    No full text
    Although much evidence exists to suggest that early life cycle software engineering design is a difficult task for software engineers to perform, current computational tool support for software engineers is limited. To address this limitation, interactive search-based approaches using evolutionary computation and software agents are investigated in experimental upstream design episodes for two example design domains. Results show that interactive evolutionary search, supported by software agents, appears highly promising. As an open system, search is steered jointly by designer preferences and software agents. Directly traceable to the design problem domain, a mass of useful and interesting class designs is arrived at which may be visualized by the designer with quantitative measures of structural integrity, such as design coupling and class cohesion. The class designs are found to be of equivalent or better coupling and cohesion when compared to a manual class design for the example design domains, and by exploiting concurrent execution, the runtime performance of the software agents is highly favorable. © 2010 IEEE

    Metaheuristic models for decision support in the software construction process

    Get PDF
    En la actualidad, los ingenieros software no solo tienen la responsabilidad de construir sistemas que desempe~nen una determinada funcionalidad, sino que cada vez es más importante que dichos sistemas también cumplan con requisitos no funcionales como alta disponibilidad, efciencia o seguridad, entre otros. Para lograrlo, los ingenieros se enfrentan a un proceso continuo de decisión, pues deben estudiar las necesidades del sistema a desarrollar y las alternativas tecnológicas existentes para implementarlo. Todo este proceso debe estar encaminado a la obtención de sistemas software de gran calidad, reutilizables y que faciliten su mantenimiento y modificación en un escenario tan exigente y competitivo. La ingeniería del software, como método sistemático para la construcción de software, ha aportado una serie de pautas y tareas que, realizadas de forma disciplinada y adaptadas al contexto de desarrollo, posibilitan la obtención de software de calidad. En concreto, el proceso de análisis y diseño del software ha adquirido una gran importancia, pues en ella se concibe la estructura del sistema, en términos de sus bloques funcionales y las interacciones entre ellos. Es en este momento cuando se toman las decisiones acerca de la arquitectura, incluyendo los componentes que la conforman, que mejor se adapta a los requisitos, tanto funcionales como no funcionales, que presenta el sistema y que claramente repercuten en su posterior desarrollo. Por tanto, es necesario que el ingeniero analice rigurosamente las alternativas existentes, sus implicaciones en los criterios de calidad impuestos y la necesidad de establecer compromisos entre ellos. En este contexto, los ingenieros se guían principalmente por sus habilidades y experiencia, por lo que dotarles de métodos de apoyo a la decisión representaría un avance significativo en el área. La aplicación de técnicas de inteligencia artificial en este ámbito ha despertado un gran interés en los últimos años. En particular, la inteligencia artificial ha encontrado en la ingeniería del software un ámbito de aplicación complejo, donde diferentes técnicas pueden ayudar a conseguir la semi-automatización de tareas tradicionalmente realizadas de forma manual. De la unión de ambas áreas surge la denominada ingeniería del software basada en búsqueda, que propone la reformulación de las actividades propias de la ingeniería del software como problemas de optimización. A continuación, estos problemas podrían ser resueltos mediante técnicas de búsqueda como las metaheurísticas. Este tipo de técnicas se caracterizan por explorar el espacio de posibles soluciones de una manera \inteligente", a menudo simulando procesos naturales como es el caso de los algoritmos evolutivos. A pesar de ser un campo de investigación muy reciente, es posible encontrar propuestas para automatizar una gran variedad de tareas dentro del ciclo de vida del software, como son la priorización de requisitos, la planifcación de recursos, la refactorización del código fuente o la generación de casos de prueba. En el ámbito del análisis y diseño de software, cuyas tareas requieren de creatividad y experiencia, conseguir una automatización completa resulta poco realista. Es por ello por lo que la resolución de sus tareas mediante enfoques de búsqueda debe ser tratada desde la perspectiva del ingeniero, promoviendo incluso la interacción con ellos. Además, el alto grado de abstracción de algunas de sus tareas y la dificultad de evaluar cuantitativamente la calidad de un diseño software, suponen grandes retos en la aplicación de técnicas de búsqueda durante las fases tempranas del proceso de construcción de software. Esta tesis doctoral busca realizar aportaciones significativas al campo de la ingeniería del software basada en búsqueda y, más concretamente, al área de la optimización de arquitecturas software. Aunque se están realizando importantes avances en este área, la mayoría de propuestas se centran en la obtención de arquitecturas de bajo nivel o en la selección y despliegue de artefactos software ya desarrollados. Por tanto, no existen propuestas que aborden el modelado arquitectónico a un nivel de abstracción elevado, donde aún no existe un conocimiento profundo sobre cómo será el sistema y, por tanto, es más difícil asistir al ingeniero. Como problema de estudio, se ha abordado principalmente la tarea del descubrimiento de arquitecturas software basadas en componentes. El objetivo de este problema consiste en abstraer los bloques arquitectónicos que mejor definen la estructura actual del software, así como sus interacciones, con el fin de facilitar al ingeniero su posterior análisis y mejora. Durante el desarrollo de esta tesis doctoral se ha explorado el uso de una gran variedad de técnicas de búsqueda, estudiando su idoneidad y realizando las adaptaciones necesarias para hacer frente a los retos mencionados anteriormente. La primera propuesta se ha centrado en la formulación del descubrimiento de arquitecturas como problema de optimización, abordando la representación computacional de los artefactos software que deben ser modelados y definiendo medidas software para evaluar su calidad durante el proceso de búsqueda. Además, se ha desarrollado un primer modelo basado en algoritmos evolutivos mono-objetivo para su resolución, el cual ha sido validado experimentalmente con sistemas software reales. Dicho modelo se caracteriza por ser comprensible y exible, pues sus componentes han sido diseñados considerando estándares y herramientas del ámbito de la ingeniería del software, siendo además configurable en función de las necesidades del ingeniero. A continuación, el descubrimiento de arquitecturas ha sido tratado desde una perspectiva multiobjetivo, donde varias medidas software, a menudo en con icto, deben ser simultáneamente optimizadas. En este caso, la resolución del problema se ha llevado a cabo mediante ocho algoritmos del estado del arte, incluyendo propuestas recientes del ámbito de la optimización de muchos objetivos. Tras ser adaptados al problema, estos algoritmos han sido comparados mediante un extenso estudio experimental con el objetivo de analizar la ifnuencia que tiene el número y la elección de las métricas a la hora de guiar el proceso de búsqueda. Además de realizar una validación del rendimiento de estos algoritmos siguiendo las prácticas habituales del área, este estudio aporta un análisis detallado de las implicaciones que supone la optimización de múltiples objetivos en la obtención de modelos de soporte a la decisión. La última propuesta en el contexto del descubrimiento de arquitecturas software se centra en la incorporación de la opinión del ingeniero al proceso de búsqueda. Para ello se ha diseñado un mecanismo de interacción que permite al ingeniero indicar tanto las características deseables en las soluciones arquitectónicas (preferencias positivas) como aquellos aspectos que deben evitarse (preferencias negativas). Esta información es combinada con las medidas software utilizadas hasta el momento, permitiendo al algoritmo evolutivo adaptar la búsqueda conforme el ingeniero interactúe. Dadas las características del modelo, su validación se ha realizado con la participación de ingenieros con distinta experiencia en desarrollo software, a fin de demostrar la idoneidad y utilidad de la propuesta. En el transcurso de la tesis doctoral, los conocimientos adquiridos y las técnicas desarrolladas también han sido extrapolados a otros ámbitos de la ingeniería del software basada en búsqueda mediante colaboraciones con investigadores del área. Cabe destacar especialmente la formalización de una nueva disciplina transversal, denominada ingeniería del software basada en búsqueda interactiva, cuyo fin es promover la participación activa del ingeniero durante el proceso de búsqueda. Además, se ha explorado la aplicación de algoritmos de muchos objetivos a un problema clásico de la computación orientada a servicios, como es la composición de servicios web.Nowadays, software engineers have not only the responsibility of building systems that provide a particular functionality, but they also have to guarantee that these systems ful l demanding non-functional requirements like high availability, e ciency or security. To achieve this, software engineers face a continuous decision process, as they have to evaluate system needs and existing technological alternatives to implement it. All this process should be oriented towards obtaining high-quality and reusable systems, also making future modi cations and maintenance easier in such a competitive scenario. Software engineering, as a systematic method to build software, has provided a number of guidelines and tasks that, when done in a disciplinarily manner and properly adapted to the development context, allow the creation of high-quality software. More speci cally, software analysis and design has acquired great relevance, being the phase in which the software structure is conceived in terms of its functional blocks and their interactions. In this phase, engineers have to make decisions about the most suitable architecture, including its constituent components. Such decisions are made according to the system requirements, either functional or non-functional, and will have a great impact on its future development. Therefore, the engineer has to rigorously analyse existing alternatives, their implications on the imposed quality criteria and the need of establishing trade-o s among them. In this context, engineers are mostly guided by their own capabilities and experience, so providing them with decision support methods would represent a signi cant contribution. The application of arti cial intelligent techniques in this area has experienced a growing interest in the last years. Particularly, software engineering represents a complex application domain to arti cial intelligence, whose diverse techniques can help in the semi-automation of tasks traditionally performed manually. The union of both elds has led to the appearance of search-based software engineering, which proposes reformulating software engineering activities as optimisation problems. For their resolution, search techniques like metaheuristics can be then applied. This type of technique performs an \intelligent" exploration of the space of candidate solutions, often inspired by natural processes as happens with evolutionary algorithms. Despite the novelty of this research eld, there are proposals to automate a great variety of tasks within the software lifecycle, such as requirement prioritisation, resource planning, code refactoring or test case generation. Focusing on analysis and design, whose tasks require creativity and experience, trying to achieve full automation is not realistic. Therefore, solving design tasks by means of search approaches should be oriented towards the engineer's perspective, even promoting their interaction. Furthermore, design tasks are also characterised by a high level of abstraction and the di culty of quantitatively evaluating design quality. All these aspects represent key challenges for the application of search techniques in early phases of the software construction process. The aim of this Ph.D. Thesis is to make signi cant contributions in search-based software engineering and, specially, in the area of software architecture optimisation. Although it is an area in which signi cant progress is being done, most of the current proposals are focused on generating low-level architectures or selecting and deploying already developed artefacts. Therefore, there is a lack of proposals dealing with architectural modelling at a high level of abstraction. At this level, engineers do not have a deep understanding of the system yet, meaning that assisting them is even more di cult. As case study, the discovery of component-based software architectures has been primary addressed. The objective for this problem consists in the abstraction of the architectural blocks, and their interactions, that best de ne the current structure of a software system. This can be viewed as the rst step an engineer would perform in order to further analyse and improve the system architecture. In this Ph.D. Thesis, the use of a great variety of search techniques has been explored. The suitability of these techniques has been studied, also making the necessary adaptations to cope with the aforementioned challenges. A rst proposal has been focused on the formulation of software architecture discovery as an optimisation problem, which consists in the computational representation of its software artefacts and the de nition of software metrics to evaluate their quality during the search process. Moreover, a single-objective evolutionary algorithm has been designed for its resolution, which has been validated using real software systems. The resulting model is comprehensible and exible, since its components have been designed under software engineering standards and tools and are also con gurable according to engineer's needs. Next, the discovery of software architectures has been tackled from a multi-objective perspective, in which several software metrics, often in con ict, have to be simultaneously optimised. In this case, the problem is solved by applying eight state-of-theart algorithms, including some recent many-objective approaches. These algorithms have been adapted to the problem and compared in an extensive experimental study, whose purpose is to analyse the in uence of the number and combination of metrics when guiding the search process. Apart from the performance validation following usual practices within the eld, this study provides a detailed analysis of the practical implications behind the optimisation of multiple objectives in the context of decision support. The last proposal is focused on interactively including the engineer's opinion in the search-based architecture discovery process. To do this, an interaction mechanism has been designed, which allows the engineer to express desired characteristics for the solutions (positive preferences), as well as those aspects that should be avoided (negative preferences). The gathered information is combined with the software metrics used until the moment, thus making possible to adapt the search as the engineer interacts. Due to the characteristics of the proposed model, engineers of di erent expertise in software development have participated in its validation with the aim of showing the suitability and utility of the approach. The knowledge acquired along the development of the Thesis, as well as the proposed approaches, have also been transferred to other search-based software engineering areas as a result of research collaborations. In this sense, it is worth noting the formalisation of interactive search-based software engineering as a cross-cutting discipline, which aims at promoting the active participation of the engineer during the search process. Furthermore, the use of many-objective algorithms has been explored in the context of service-oriented computing to address the so-called web service composition problem

    Uma abordagem de otimização multiobjetivo para projeto arquitetural de linha de produto de software

    Get PDF
    Resumo: A indústria de software tem adotado a abordagem de Linha de Produto de Software (LPS) com o objetivo de aumentar o reúso de software e diminuir o tempo de produção e os custos de desenvolvimento dos produtos. Nessa abordagem, o principal artefato e a arquitetura de LPS (PLA - Product Line Architecture). No entanto, obter uma PLA modular, extensível e reusável e uma tarefa não trivial. O arquiteto pode se apoiar em métricas arquiteturais para definir e melhorar o projeto da PLA. Contudo, essa tarefa pode envolver vários fatores, muitas vezes conflitantes entre si, e encontrar o melhor trade-off entre as métricas utilizadas para avaliar o projeto transforma o projeto de PLA em uma tarefa que demanda grande esforço humano. Nesse contexto, o projeto de PLA pode ser formulado como um problema de otimização com varios fatores. Porém, elaborar um projeto que atenda a todos os fatores envolvidos pode ser mais difícil do que reconhecer um bom projeto. Problemas da Engenharia de Software similares a esse tem sido eficientemente resolvidos com algoritmos de busca em um campo de pesquisa conhecido como Engenharia de Software Baseada em Busca (SBSE - Search Based Software Engineering). Entretanto, as abordagens existentes utilizadas para otimizar arquiteturas de software nãao são apropriadas para projeto de PLAs, pois não consideram características específicas de LPS. Desse modo, este trabalho propõe uma abordagem de otimização multiobjetivo automatizada para avaliar e melhorar um projeto de PLA no que tange a modularização de características, estabilidade do projeto e extensibilidade de LPS. A abordagem proposta inclui: (a) um processo sistemático para conduzir a otimização de projeto de PLA por meio de algoritmos de busca; (b) um metamodelo que permite que esses algoritmos manipulem projetos de PLA; (c) novos operadores de busca para evoluir projetos de PLA em termos de modularização de características; e (d) um tratamento multiobjetivo para o problema de projeto de PLA. Esse tratamento multiobjetivo engloba métricas que indicam a modularização de características e a extensibilidade de LPS, além de métricas convencionais para medir princípios básicos de projeto como coesão e acoplamento. Ao final do processo de otimização, um conjunto de possíveis soluções de projeto de PLA que representam os melhores trade-off entre os objetivos otimizados e retornado. O arquiteto deve selecionar uma solução de acordo com as suas prioridades. A ferramenta OPLA-Tool foi desenvolvida para instanciar a abordagem usando algoritmos evolutivos multiobjetivos, os quais tem sido usados com sucesso na área de SBSE. Utilizando a OPLA-Tool, quatro estudos empíricos foram realizados com nove PLAs para avaliar: os operadores de busca propostos; o uso das métricas de LPS; e os algoritmos escolhidos. Em comparação às PLAs originais, os resultados mostraram que a abordagem proposta consegue gerar projetos mais estáveis, mais elegantes e com melhor modularização de características
    corecore