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ABSTRACT 

Evolutionary Search Techniques with Strong Heuristics for Multi-Objective Feature 

Selection in Software Product Lines 

 

Abdel Salam Sayyad 

 

Software design is a process of trading off competing objectives. If the user objective 

space is rich, then we should use optimizers that can fully exploit that richness. For 

example, this study configures software product lines (expressed as feature models) using 

various search-based software engineering methods. Our main result is that as we 

increase the number of optimization objectives, the methods in widespread use (e.g. 

NSGA-II, SPEA2) perform much worse than IBEA (Indicator-Based Evolutionary 

Algorithm). IBEA works best since it makes most use of user preference knowledge. 

Hence it does better on the standard measures (hypervolume and spread) but it also 

generates far more products with 0 violations of domain constraints. We also present 

significant improvements to IBEA’s performance by employing three strong heuristic 

techniques that we call PUSH, PULL, and seeding. The PUSH technique forces the 

evolutionary search to respect certain rules and dependencies defined by the feature 

models, while the PULL technique gives higher weight to constraint satisfaction as an 

optimization objective and thus achieves a higher percentage of fully-compliant 

configurations within shorter runtimes. The seeding technique helps in guiding very large 

feature models to correct configurations very early in the optimization process. Our 

conclusion is that the methods we apply in search-based software engineering need to be 

carefully chosen, particularly when studying complex decision spaces with many 

optimization objectives. Also, we conclude that search methods must be customized to fit 

the problem at hand. Specifically, the evolutionary search must respect domain 

constraints.  
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1 

Chapter 1: Introduction to the Study 
 

Software engineering technologies are increasingly having a direct impact on 

business outcomes, so much so that software decisions must be value-driven early on, i.e. 

business concerns ought to play a central role in the selection of software tools, 

technologies and processes. Barry Boehm states that: “software has a major influence on 

most systems’ cost, schedule, and value; and value-neutral software decisions can 

seriously degrade project outcomes.” [16] This comment is most relevant to the subject of 

this thesis, in which we choose our evolutionary optimization algorithm to best exploit 

the user preferences in search for optimized feature selections in a software product line 

(SPL). This problem entails searching the space of possible feature configurations for sets 

of feature selections that conform to domain constraints, but another goal is to 

increasingly optimize the objectives that the user cares about, such as cost and reliability 

metrics. 

The global information technology infrastructure is becoming increasingly reliant 

on increasingly complex software. This study is about the way to rapidly explore and 

configure such complexity. Feature models allow visualization, reasoning, and 

configuration of large and complex software product lines (SPLs). Common SPLs now 

consist of hundreds (even thousands) of features, with complex dependencies and 

constraints that govern which features can or cannot live and interact with other features. 

For instance, according to [14], the Linux model has 6320 features, of which 86% declare 



 

 

 

 

 

2 

constraints of some sort, and most features refer to 2-4 other features. Such level of 

complexity surely requires automated reasoning and configuration techniques, especially 

if the intricacies of the feature model are combined with further user preferences and 

priorities, such as those related to cost and reliability. In that case, the job of offering 

product variants with guaranteed conformance to the feature model and efficiency 

according to user preferences becomes monumental, requiring tool assistance. 

Many Search-Based Software Engineering (SBSE) researchers who seek to apply 

metaheuristic search methods to their problems choose the algorithms based on 

popularity of the algorithm in the SE literature, or its wide usage in other fields. Harman 

makes the following comment regarding the choice of evolutionary search algorithms 

over non-evolutionary ones: “We must be wary of the unquestioning adoption of 

evolutionary algorithms merely because they are popular and widely applicable or 

because, historically, other researchers have adopted them for SBSE problems; none of 

these are scientific motivations for adoption.” [46] We believe the same comment applies 

to choosing certain evolutionary algorithms over others.  

Most importantly, the chosen algorithms have to accommodate both the user 

preferences and the structure of the decision space. In [86] and [85], we use IBEA 

(Indicator-Based Evolutionary Algorithm) to best exploit user preference knowledge, but 

the search takes hours to produce a significant amount of model-conforming solutions. In 

more recent results, we quickly achieve 100% fully-conformant solutions, and the 

remaining time is spent on further optimizing solutions according to user preferences. We 
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accomplish this remarkable gain by introducing three strong heuristic techniques: PUSH, 

PULL, and population seeding. The PUSH technique first learns certain rules from static 

analysis of the feature model, and then forces the evolutionary process to respect those 

rules. The PULL technique gives more weight to constraint satisfaction in the 

optimization process, and thus achieves full conformance in all solutions within shorter 

time. The seeding technique pre-computes one valid configuration and then implants it in 

the initial population as a model for the other individuals to follow, which helps find 

many good solutions sooner in many-objective optimization of feature models with 

thousands of features and hundreds of thousands of constraints. We demonstrate the 

usefulness of our methods by optimizing the configuration of 20 medium-sized academic 

feature models from the SPLOT repository (Software Product Line Online Tools)
1
, in 

addition to 7 large real feature models from the LVAT repository (Linux Variability 

Analysis Tools)
2
. 

The scalability of our results to large feature models derived from actual software 

systems (LVAT) is of significant importance. Scalability of SBSE methods can mean the 

difference between theoretical obscurity and industrial adoption. The larger and more 

complex the application examples are, the closer they resemble practical applications, 

and the more believable the result will be. Yet the lack of scalability of results is one of 

the biggest problems facing software engineers, according to Harman et al. [50]. They 

                                                 
1
 http://www.splot-research.org 

2
 https://code.google.com/p/linux-variability-analysis-tools/source/browse/?repo=formulas 

https://code.google.com/p/linux-variability-analysis-tools/source/browse/?repo=formulas
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state that: “Many approaches that are attractive and elegant in the laboratory turn out to 

be inapplicable in the field, because they lack scalability.” 

A case in point is the subject of this paper: the many-objective optimum feature 

selection in software product lines. Many results in the automated analysis of software 

product lines were validated using feature models published in online feature model 

repositories such as SPLOT [68]. Examples are: Pohl et al. [75], Lopez-Herrejon and 

Egyed [64], Johansen et al. [55], Mendonca et al. [70] and our own previous work [86], 

[84]. Most of the feature models in SPLOT were produced for academic purposes without 

representing actual systems. One such model is “Electronic Shopping,” designed by Lau 

[62], the largest in SPLOT with 290 features. While it might be a “best effort” in 

emulating a real system, it does not represent an actual project. Berger et al. [15] explain 

in detail the differences in properties between SPLOT feature models and the large 

feature models that they developed by reverse-engineering real systems, and published in 

the LVAT (Linux Variability Analysis Tools) repository. In short, SPLOT models had 

significantly smaller and less constrained models with lower branching factors, but they 

also had higher ratios of feature groups and deeper leaves than LVAT models. This 

shows an underlying gap between academic assumptions and actual properties of 

software product lines. 

The only two studies we know that experimented with the LVAT feature models 

were done by Johansen et al. [55] who generated test covering arrays for feature models, 

and Henard et al. [54] who worked on prioritizing t-wise test suites. Both experimented 



 

 

 

 

 

5 

with three very large models from the LVAT repository (Linux, eCos, and FreeBSD), in 

addition to models from SPLOT and other sources. Our work is the first to attempt the 

many objective optimization of product line configuration. 

Other researchers attempted to prove scalability of their methods using randomly-

generated feature models that followed a set of assumed characteristics. Examples are: 

White et al. [105] [104] [103] [106], Shi et al. [88], Guo et al. [45], and Mendonca et al. 

[70]. While those randomly-generated models can be larger in size than published 

models, they still suffer from the same assumptions that diverge from the properties of 

real systems. 

1.1 Contributions of This Work 

The overall contributions of our work in optimum feature selection in software 

product lines are summarized as follows: 

1- The formulation of this problem as a multi-objective optimization problem 

which requires a Pareto-efficient set of solutions. Although related work (see section 3.2) 

also defined secondary objectives in feature model configuration, they aggregated the 

multiple objectives into a single fitness function, and searched for a single optimum 

solution, which is of less benefit to the end user. 

2- We use Multi-Objective Evolutionary Algorithms (MOEAs) for the first 

time to provide solutions for this problem, and comparing the performance of multiple 

MOEAs based on quality indicators and the amount of solutions that conform to the 

feature models. We demonstrate the remarkable advantage of the Indicator-Bases 
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Evolutionary Algorithm (IBEA). Wagner et al. [98] show that Indicator-Based algorithms 

(such as IBEA) perform remarkably better than Pareto-Based algorithms (such as NSGA-

II) when applied to many-objective problems. Our research was the first to confirm that 

result in software engineering. 

3- We validate our results using 20 medium-sized feature models developed 

as academic examples and 7 large feature models that were reverse-engineered from 

actual projects. The total number of features ranged between 43 and 6888 features. 

4- We achieve fast run times which allow the practical use of IBEA in 

interactive configuration of feature models. Within 1 second, we are able to provide the 

user with a wide range of model-conforming solutions. This is possible with the help of 

the PUSH and PULL techniques, and with better-tuned evolutionary parameters. 

5- A breakthrough scalability result. Using the population seeding technique 

we now show that it is possible to configure product lines as large as 6000+ features, and 

344,000 constraints. 

1.2 Published Results 

In our earliest work [86] we tackled the problem of configuring software product 

lines as a high-dimensional multi-objective search problem, and we compared Pareto-

optimal solutions from several algorithms to show the superiority of IBEA. In that paper, 

we only used two feature models, and we experienced long run times which can only 

correspond with offline optimization. 
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In [84] and [83], we improved the performance of IBEA with regard to 

configuration of feature models by reducing the rates of crossover and mutation. We 

found that the “rule-of-thumb” rates often used with evolutionary algorithms amount to 

lengthening the duration of the search. This highlights the fine-grained structure of the 

feature models, where small changes in features have great effects on other features, and 

thus the search needs to proceed slowly for better exploration of the decision space. 

In [85], we compare the performance of IBEA against NSGA-II when applied to 

large feature models from the LVAT (Linux Tools) repository. We utilize “feature 

fixing” as a way to force the search to respect certain rules that we learn from the feature 

models. We also report on an early result using the “population seeding” heuristic, which 

we expand in this document. 

1.3 Recent Results 

Here, we introduce the “Tree Mutation” operator which only mutates (flips) a 

feature selection decision if that mutation is allowed by the tree structure, i.e. the 

mutation is not allowed to override parent-child dependencies or group selection 

restrictions. Tree mutation is only applied to SPLOT models since they explicitly 

represent the feature tree. For LVAT models, we employ “feature fixing” which was 

introduced in [85]. Together, “tree mutation” and “feature fixing” are called the PUSH 

technique in this paper; since they both restrict the evolutionary process using pre-learned 

knowledge about feature model structure. 
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We also introduce the PULL technique, which give more weight to constraint 

violation as a minimization objective; thus achieving significant amounts of model-

conforming configurations sooner and accelerating the multi-objective search. Together, 

the PUSH and PULL techniques achieve runtime improvement of over 16,000 times for 

the E-Shopping feature model than achieved in [86]. 

We present the results of an extensive experiment comparing five different 

algorithms applied to 27 software product lines. IBEA with PUSH and PULL emerged, 

as expected, as the ultimate optimization tool with regard to the configuration of 

hierarchically-modeled software systems. 

1.4 Statement of Thesis 

We propose that the optimizers we choose must be considered according to the 

nature of the problem at hand; for example, when the user preference space is rich, 

choose an optimizer that exploits that richness. In particular, we find that an optimizer 

which uses continuous dominance for its fitness raking is better at many-objective 

optimization than those depending on Boolean dominance. 

In addition, we advocate the customization of our optimizers to the problem 

domain such that it searches for solutions while respecting domain constraints. This calls 

for the deployment of strong heuristics which guide the search algorithm into promoting 

solutions that are close to domain conformance; rather than spending search and 

evaluation time on less conforming solutions. 
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1.5 Organization of This Document 

The rest of this document is organized as follows: Chapter 2 provides background 

material on software product lines, genetic algorithms, and MOEAs. Chapter 3 introduces 

the problem formulation. Chapter 4 reviews related work in the use of MOEAs in 

software engineering. Chapter 5 describes the experimental setup, and chapter 6 presents 

the experimental results. Chapter 7 presents the threats to validity. In chapter 8, we 

discuss our findings and their implications. Finally, chapter 9 presents conclusions and 

future work. 
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Chapter 2: Background 
 

2.1 Software Product Line Engineering (SPLE) 

Increasingly, software engineers spend their time creating software families 

consisting of similar systems with many variations [26]. Many researchers in industry 

and academia started using a feature-oriented approach to commonality and variability 

analysis after the Software Engineering Institute introduced Feature-Oriented Domain 

Analysis (FODA) in 1990 [56]. Software product line engineering is a paradigm to 

develop software applications using platforms and mass customization. Benefits of SPLE 

include reduction of development costs, enhancement of quality, reduction of time to 

market, reduction of maintenance effort, coping with evolution and complexity [74], and 

identifying opportunities for automating the creation of family members [26]. 

2.2 Feature Models 

A feature is an end-user-visible behavior of a software product that is of interest 

to some stakeholder. A feature model represents the information of all possible products 

of a software product line in terms of features and relationships among them. Feature 

models are a special type of information model widely used in software product line 

engineering. A feature model is represented as a hierarchically arranged set of features 

composed by: 
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1. Relationships between a parent feature and its child features (or 

subfeatures).  

2. Cross-tree constraints that are typically inclusion or exclusion statements 

in the form: if feature F is included, then features A and B must also be included (or 

excluded).  

Figure 1, adapted from [11], depicts a simplified feature model inspired by the 

mobile phone industry. 

Figure 1: Feature model for mobile phone product line, adopted from [3] 
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<feature_model name="Mobile-Phone"> 
<meta> 
<data name="description">Mobile Phone</data> … 
</meta> 
<feature_tree> 
:r Mobile Phone(root) 
 :m calls(calls) 
 :o GPS(gps) 
 :m screen(screen) 
  :g (_g_1) [1,1]  
   : basic(basic) 
   : color(color) 
   : high-resolution(hi_res) 
 :o media(media) 
  :g (_g_2) [1,*]  
   : camera(camera) 
   : mp3(mp3) 
</feature_tree> 
<constraints> 
constraint_1: ~gps or ~basic 
constraint_2: camera or ~hi_res 
</constraints> 

</feature_model> 

The Simple XML Feature Model (SXFM) format was defined by the SPLOT 

website [68], which was launched in May 2009. SPLOT is host to a feature model 

repository which adheres to the SXFM format. Figure 2 shows the SXFM format for the 

mobile phone feature model from Figure 1. It shows the root feature (marked with :r), the 

mandatory features (marked with :m), the optional features (marked with :o), and the 

group features (marked with :g). The cross-tree constraints are listed at the bottom in 

Conjunctive Normal Form (CNF). 

 

 

Figure 2: Mobile phone feature model in SXFM format 
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The full set of rules in a feature model can be captured in a Boolean expression. 

In [8] and [29], a procedure is provided for converting feature models into propositional 

formulas, where the features are treated as propositional variables, and the relationships 

are expressed in terms of conjunction ˄, disjunction ˅, negation ¬, implication →, and bi-

implication ↔. Figure 3 above shows the mobile phone feature model of Figure 1 

converted into a propositional formula. The last two lines represent the cross-tree 

constraints (CTCs) in the model. 

From Figure 3 we can conclude that the total number of rules in this feature 

model is 16, including the following: 

1. The root feature is mandatory. 

2. Every child requires its own parent. 

3. If the child is mandatory, then the parent requires the child. 

4. Every group adds a rule about how many members can be chosen. 

FM = (Mobile Phone ↔ Calls) 

      ˄ (Mobile Phone ↔ Screen) 

      ˄ (GPS → Mobile Phone) 

      ˄ (Media → Mobile Phone) 

      ˄ (Screen ↔ XOR (Basic, Color, High resolution)) 

      ˄ (Media ↔ Camera ˅ MP3) 

      ˄ (Camera → High resolution) 

      ˄ ¬(GPS ˄ Basic) 

Figure 3: Mobile phone feature model as a Boolean expression 
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5. Every cross-tree constraint (CTC) is a rule. 

The total number of rules will be used as the “full correctness” score in this study, 

thus making “correctness” one of the optimization objectives. (see section 3.4) 

Another source of feature models used in this study was the Linux Variability 

Analysis Tools (LVAT) feature model repository, which resulted from the works of 

Berger et al. [15], [87], [14], [13], [12]. The models were reverse-engineered from open-

source code, comments, and documentation of such projects as the Linux kernel, eCos 

and FreeBSD operating systems, and other large projects. The resulting feature models 

had distinctly different properties than models published by academic researchers, such 

as those in SPLOT [68]. The LVAT models are significantly larger in size, more 

constrained, and have higher branching factors than academic models, but they also had 

lower ratios of feature groups and, in general, shallower leaves. The models downloaded 

from LVAT website had the DIMACS format, which expresses each model as a formula 

in the Conjunctive Normal Form (CNF). 

2.3 Tools for Automated Analysis of Feature Models 

Here we describe the conventional formula solvers (a.k.a. theorem provers) that 

are traditionally used for analyzing feature models. Those solvers include BDD (Binary 

Decision Diagram) solvers, SAT (Satisfiability) solvers, and CSP (Constraint Satisfaction 

Problem) solvers. We also discuss an SMT (Satisfiability Modulo Theories) solver that 

was more recently used for the same purpose. 
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2.3.1 Binary Decision Diagrams (BDD) 

Binary Decision Diagrams are compact data structures for Boolean expressions 

widely studied in the hardware verification community [80]. A BDD is a directed acyclic 

graph that represents a Boolean expression.  

For example, the expression  

(k → p)∧ (p → c) 

is represented by the BDD in Figure 4. [29] 

 
 

Figure 4: Example Binary Decision Diagram 

 

Using a BDD, the Boolean expression can efficiently be evaluated to find valid 

solutions. For instance, it is possible to test in constant time whether a BDD is constantly 

true or false, although for Boolean expressions this problem is NP-complete [1]. 

2.3.2 The Satisfiability (SAT) Problem 

The problem of determining the Satisfiability of sentences in propositional logic 

is called the SAT problem [80]. It was the first problem proved to be NP-complete [25]. 

Boolean Satisfiability is a decision problem to check whether a Boolean formula 
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evaluates to true for any of the assignments to its variables. If there is such assignment 

the formula is said to be satisfiable, otherwise it is unsatisfiable. For instance, (a ∧  b) is 

satisfiable as witnessed by the assignment {a=true, b=true}. Formula (a ∧  b ∧  ￢a) is 

unsatisfiable: no value for variable a causes the formula to evaluate to true [75]. 

2.3.3 The Constraint Satisfaction Problem (CSP) 

The constraint satisfaction problem includes a set of variables, each having a 

range of allowable values. A problem is solved when each variable has a value that 

satisfies all the constraints on the variable. CSP search algorithms enable the solution of 

complex problems by eliminating large portions of the search space all at once by 

identifying variable/value combinations that violate the constraints. [80] A CSP – in 

contrary to a SAT– includes constraints containing integer and interval values [69]. The 

algorithm to transform a feature model into a CSP was introduced in [10]. 

2.3.4 Satisfiability Modulo Theories (SMT) 

Satisfiability modulo theories (SMT) generalizes Boolean satisfiability (SAT) by 

adding equality reasoning, arithmetic, fixed-size bit-vectors, arrays, quantifiers, and other 

useful first-order theories. An SMT solver is a tool for deciding the satisfiability (i.e. 

validity) of formulas in these theories. Z3 is an efficient SMT Solver freely available 

from Microsoft Research. It is used in various software verification and analysis 

applications. [31] 
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2.3.5 The Infeasibility of Exhaustive Search for Optimal Configuration 

All the methods discussed above (BDD, SAT, CSP, and SMT) are concerned with 

finding correct solutions to logic expressions in the shortest time possible. Nevertheless, 

when searching for optimal configuration options with multiple quality attributes (as in 

the problem addressed by this study, see section 3.1), it is required that all correct 

solutions be found and evaluated, which becomes an infeasible task as feature models 

grow in size and complexity. 

For example, Pohl et al. [75], who experimented with finding solutions for feature 

models using BDD, SAT, and CSP solvers, ruled that the task of finding all solutions for 

a feature model becomes infeasible when the cardinal (number of valid solutions) is over 

3 million, hence excluding feature models as small as 90 features in size. 

Olaechea Velazco [96] used Z3 SMT solver to find optimal solutions to the two 

feature models and quality attributes that we used in [86]. For the smaller model with 43 

features only, the process took 1.65 hours. As for the larger model, with 290 features, the 

process timed out and was stopped after 15 days. The cardinal for this 290-feature model 

is 2.26x10
49

 [75]. 

Other examples that show the hardness of exhaustive search for large feature 

models are mentioned in section 4.1. 

Hence we resorted to heuristic methods for this task, namely multi-objective 

evolutionary algorithms (MOEAs) that are explained in the following sections. 
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2.4  Genetic Algorithm 

All MOEA’s used in this study have Genetic Algorithm at their core. The original 

Genetic Algorithm (GA) was developed with a single fitness value in mind, i.e. a single 

optimization objective. Figure 5 lists an outline of the Genetic Algorithm, adapted from 

[65]. 

The MatingSelection() function selects individuals from the population with a 

probability proportionate with their fitness. An individual may, by chance, be chosen for 

breeding multiple times. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

Initialization   
popsize ← desired population size  
P ← {}  
for popsize times do 

           P ← P ∪ {new random individual} 
Best ← null 

Repeat until Termination 

        for each individual Pi ∈ P do 
 AssignFitness(Pi) 

if Best = null or Fitness(Pi) > Fitness(Best) then 
        Best ← Pi 

        Q←{} 
        for popsize/2 times do 

Parent Pa ← MatingSelection(P) 
Parent Pb ← MatingSelection (P) 
Children Ca,Cb ← Crossover(Copy(Pa),Copy(Pb)) 

Q ← Q ∪{Mutate(Ca),Mutate(Cb)} 
        P ← Q  
Termination Best is ideal solution or we’ve run out of 
time 

return Best 

Figure 5: Genetic Algorithm, adapted from [22] 
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The individual solutions are of the Boolean string type. The Crossover() function 

performs a single-point crossover, where a point is chosen randomly, and the bits are 

swapped between the two parents as shown in Figure 6 [65]. Crossover between two 

parents is performed with a predetermined probability. 

The Mutate() function performs bit-flip mutation, where each bit in the string 

may be flipped at a predetermined probability. 

 

 

Figure 6: Example of a single-point crossover, from [22] 

 

2.5 Multi-Objective Evolutionary Algorithms (MOEAs) 

Many real-world problems involve simultaneous optimization of several 

incommensurable and often competing objectives. Often, there is no single optimal 

solution, but rather a set of alternative solutions. These solutions are optimal in the wider 

sense that no other solutions in the search space are superior to them when all objectives 

are considered [118].  

Formally, we define two types of Pareto Dominance: Boolean Dominance is 

defined as follows: A vector u =  {u1, . . . , uk} is said to be dominated by a vector 



 

 

 

 

 

20 

v =  {v1, . . . , vk} if and only if u is partially less than v, i.e. 

∀i ∈ {1,… , k}, ui ≤ vi and ∃ i ∈ {1, … , k} ∶  ui < vi              (1) 

whereas Continuous Dominance is measured with a continuous function, such as 

equation 2 in Figure 7. 

The Pareto Front is the set of all points in the objective space that are not 

dominated by any other points. 

Many algorithms have been suggested over the past two decades for multi-

objective optimization based on evolutionary algorithms that were designed primarily for 

single-objective optimization, such as Genetic Algorithms, Evolutionary Strategies, 

Particle Swarm Optimization, and Differential Evolution.  

The algorithms we used in this study were already implemented in the jMetal 

framework [34]. They are: 

1. IBEA: Indicator-Based Evolutionary Algorithm [116]. 

2. NSGA-II: Nondominated Sorting Genetic Algorithm, version 2 [33]. 

3. SPEA2: Strength Pareto Evolutionary Algorithm, version 2 [117].  

4. FastPGA: Fast Pareto Genetic Algorithm [38]. 

5. MOCell: A Cellular Genetic Algorithm for Multi-objective Optimization [71]. 

2.6 Indicator-Based Evolutionary Algorithm (IBEA) 

Of the 5 algorithms listed above, IBEA achieved the best results, and that was due 

to its unique fitness ranking criteria. In Figure 7, we provide an outline of the IBEA 

algorithm. The details can be found in [116]. In the following section, we explain the 
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fitness ranking criteria in each of the 5 algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input:  α (population size) 
N (maximum number of generations) 
κ (fitness scaling factor) 

Output:  A (Pareto set approximation) 
 
Step 1: Initialize: Generate an initial population P of size α; and an 
initial mating pool P’ of size α; append P’ to P; set the generation 
counter m to 0. 
Step 2: Assign Fitness: Calculate fitness values of individuals in P, 

i.e., for all x1 ∈ P set  

   ( 1) =  ∑       (  ,  )    ∈    {  }                           (2) 

Where IHD(.) is a dominance-preserving binary indicator. Specifically: 

     (  ,  1) =  {
  ( 1)     (  )                  1
  (    1)     (  ),          

  (3) 

Where IH is the Hypervolume defined in section 3.6 below. 
 
Step 3: Environmental selection: Iterate the following three steps until 
the size of population P does not exceed α: 

1. Choose an individual x∗ ∈ P with the smallest fitness value, i.e., 
F(x∗) ≤ F(x) for all x ∈ P. 

2. Remove x∗ from the population. 
3. Update the fitness values of the remaining individuals, i.e. 

F(x) = F(x) +    ({  },{  })   for all x ∈ P. 

Step 4: Termination: If m ≥ N or another stopping criterion is satisfied 
then set A to the set of decision vectors represented by the 
nondominated individuals in P. Stop. 
Step 5: Mating selection: Perform binary tournament selection with 
replacement on P in order to fill the temp mating pool P’. 
Step 6: Variation: Apply crossover and mutation operators to the 
mating pool P’ and add the resulting offspring to P. Increment the 
generation counter (m = m + 1) and go to Step 2. 

Figure 7: Indicator-Based Evolutionary Algorithm (IBEA) 
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2.7 Fitness Ranking Criteria in MOEAs 

All MOEAs used in this study are based on Genetic Algorithms. They share some 

basic qualities, such as: single-point crossover, bit-flip mutation, binary tournament for 

mating selection, and elitism. They also have differences, the most relevant to mention 

here being the ranking criterion (i.e. fitness assignment) used to determine which 

individuals have stronger chance to survive to the next generation. Those criteria are 

detailed here: 

1. NSGA-II: The sorting procedure in NSGA-II is depicted in Figure 8, 

adopted from [33]. It shows how the combined primary population (Pt) and secondary 

population (Qt) gets sorted according to domination, where F1 contains all nondominated 

solutions; F2 contains all nondominated solutions after excluding F1 and so on. When the 

Figure 8: NSGA-II sorting procedure, from [13] 
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solutions within F3 need to be sorted for truncation, they are ranked according to 

crowding distance, a value calculated from distances to nearest neighbors in all objective 

values. Thus diversity preservation is the second criterion to determine fitness for 

survival. [33] 

2. SPEA2: The sorting procedure in SPEA2 is somewhat similar to that 

depicted in Figure 8, with two differences. First, domination sorting only takes place 

once, thus dividing the population into F1 and F2. Second, the ranking criterion for 

individuals in F2 is based on the strength of each solution, defined as the number of 

solutions that are dominated by it. The fitness value of a point is the sum of strengths of 

all solutions that dominate that point added to a density estimation that works to prioritize 

points with less proximity to nearest neighbors. [117] 

3. FastPGA: The fitness of the nondominated solutions is calculated using 

the crowding distance as in NSGA-II. The fitness of dominated solution is the number of 

solutions it dominates, similar to SPEA2. Ranking is according to both domination and 

fitness. [38] 

4. MOCell: The solutions are ordered using a ranking and a crowding 

distance estimator similar to NSGA-II. Bigger distance values are favored. [71] 

5. IBEA: Equation 2 in Figure 7 shows IBEA's fitness assignment. Each 

solution is given a weight based on IHD(.), a dominance-preserving quality indicator, thus 

factoring in more of the optimization objectives of the user. The authors of IBEA, Zitzler 

and Kunzli, designed the algorithm such that “preference information of the decision 
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maker” can be “integrated into multiobjective search” [116]. It is noticed here that the 

ranking criteria in IBEA place no emphasis on diversity of solutions, thus diverging from 

the conventional trend set by NSGA-II and SPEA2, and followed by others. 

2.8 Summary 

In this chapter, we introduced all the background material necessary to move 

forward. In the majority of previous work on automated analysis of feature models, only 

one dimension is explored, namely the correctness dimension, such as checking the 

soundness of the model, and deriving correct configurations. There wasn’t enough 

exploration of multiple dimensions that address user preferences such as cost, reliability, 

etc. 

Going forward, we will examine feature models with added quality attributes that 

express stakeholder interests, and we will use MOEAs to find near optimal feature 

selection that conform with the dependencies and constraints laid out in the feature 

models. 
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Chapter 3: Problem Formulation 
 

In this chapter, we define our problem, i.e. multi-objective configuration of 

software product lines, and we place it within the context of related work in reasoning 

about feature attributes and user preferences in feature models. In addition, we highlight 

the relationship of this problem with interactive or “user-in-the-loop” configuration. 

3.1 Problem Definition 

The problem of multi-objective feature selection in software product lines in 

formally defined as follows. 

Suppose a feature model is composed of n features, denoted as F = {F1, F2, …, 

Fn}, that the features are subject to a set of m constraints (including all dependencies, see 

Fig. 3), denoted as C = {C1, C2, …, Cm}, a set of k user objectives OSi = {OSi1, OSi2, …, 

OSik} where each objective is calculated for a given subset of features Si, and a search 

budget of T seconds. Find a group of feature subsets Si ⊂ F, such that: 

a- C1 = C2 = … = Cm = TRUE 

b- OSi is not dominated by any OSj found up to time T, ∀ i,j 

(domination defined in equation 1, section 2.5). 

3.2 Extending Feature Models with Attributes 

The idea of extending (or augmenting) feature models with quality attributes was 

proposed by many, among them Czarnecki et al. [28], Zhang et al. [115] and Cordy et al. 
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[27]. Many researchers used feature models with attached attributes and synthetic data to 

experiment with optimizing feature selection in Software Product Lines, including 

Benavides et al. [9], White et al. [103], [104], Bagheri et al. [6] Soltani et al. [91] and 

Guo et al. [45] as will be detailed in section 4.2. 

3.3 Our Approach to Assigning Feature Attributes 

In order to accommodate user business concerns in the process of product 

customization, we augmented the feature model with 3 attributes per feature: COST, 

USED_BEFORE, and DEFECTS. COST takes real values distributed normally between 

5.0 and 15.0, USED_BEFORE takes Boolean values distributed uniformly, and 

DEFECTS takes integer values distributed normally between 0 and 10. The only 

dependency among these qualities is: 

   if (not USED_BEFORE) then DEFECTS = 0      (4) 

Table 1 shows a sample of the attributes given to the “Web Portal” feature model. 

Table 1: Sample attributes added to feature models 

Feature USED_BEFORE DEFECTS COST 

add_services FALSE 0 5.0 

site_stats TRUE 7 15.0 

Logging TRUE 6 9.8 

db TRUE 5 11.4 

 

 

This provides three of the five optimization objectives: to minimize total cost, to 

maximize feature that were used before, and to minimize the total number of known 
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defects. The two remaining objectives are: to maximize correctness, i.e. minimize rule 

violations, and to maximize the number of offered features. 

3.4 Defining the Optimization Objectives 

In this work we optimize the following objectives: 

1. Correctness; i.e. compliance to the relationships and constraints defined in the 

feature model. Since the tools we used (jMetal) treats all optimization objectives as 

minimization objectives, we seek to minimize rule violations. 

2. Richness of features; we seek to minimize the number of deselected features. 

3. Features that were used before; we seek to minimize the features that weren’t used 

before. 

4. Known defects; which we seek to minimize. 

5. Cost; which we seek to minimize. 

3.5 Why Maximize the Number of Features? 

Some have looked at the second objective above and questioned its merit; does 

the user really seek to maximize the number of features in a product? Our answer takes a 

holistic look at the goal of our optimization: to provide the user with a wide range of 

Pareto-optimal solutions that explore as many feature configuration choices as possible, 

and then let the user make their own decisions. If the “feature-richness” objective is 

removed, the other four objectives would push the solutions toward minimizing the 

number of features, since that area of the decision space tends to minimize violations, 
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new features, known defects, and cost. Such formulation would defeat the purpose of 

offering a diverse set of valid products. 

3.6 Quality of Pareto Front 

Quality indicators can be calculated to assess the performance of multi-objective 

metaheuristics. In this study, we used three indicators: 

1. Hypervolume (HV): defined in [118] as a measure of the size of the space 

covered, as follows: Let (x1, x2, …, xk) be a set of decision vectors. The hypervolume is 

the volume enclosed by the union of the polytopes (p1, p2, …, pk) where each pi is formed 

by the intersections of the following hyperplanes arising out of xi, along with the axes: 

for each axis in the objective space, there exists a hyperplane perpendicular to the axis 

and passing through the point (f1(xi), f2(xi), …, fn(xi)). In the two-dimensional (2-D) case, 

each pi represents a rectangle defined by the points (0,0) and (f1(xi), f2(xi)). In jMetal, all 

objectives are minimized, but the Pareto front is inverted before calculating hypervolume, 

thus the preferred Pareto front would be that with the most hypervolume. 

2. Spread: defined in [33], measures the extent of spread in the obtained 

solutions. It is found with the formula: 

            r ad =  
d   d   ∑   di   d̅  

  1
i 1

d   d  (  1)d̅ 
                      ( ) 

where: 

N is the number of points in the Pareto front, 
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di is Euclidean distance among consecutive points, 

d̅ is Average of di’s, and 

df and dl are the Euclidean distances between the extreme and boundary solutions 

of Pareto front. 

3. %Correct: i.e. the percentage of fully-correct solutions, which is an 

indicator particular to this problem. Since correctness is an optimization objective that 

evolves over time, there maybe points in the final Pareto front that have rule violations. 

Such points are not likely to be useful to the user. We are interested in percentage of 

points within the Pareto front that have zero violations, and thus a full-correctness score. 

For instance, if %Correct = 70% then we have 70 fully-compliant configurations out of 

100 members of the final population. 

3.7 Run Time versus Number of Evaluations; Which One Shall Be 
Fixed? 

In [86], we compared MOEAs by allowing each to perform a fixed number of 

fitness function evaluations, which is the commonly used approach.  The number of 

evaluations is proportional to the total run time and the required CPU power. Yet, the 

total run time is affected by many other algorithm-dependent operations, including the 

fitness ranking of individuals in each generation. This leads to varying runtimes with the 

same number of evaluations. For instance, we noticed that IBEA took five times longer 

than NSGA-II to perform 50K evaluations on 5 objectives for the E-Shop feature model, 
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which meant that IBEA spent far more time in fitness ranking than NSGA-II. This was 

expected from our study of the fitness ranking criterion in section 2.7. 

The question here is: which criterion shall we fix in order to have a fair 

comparison among algorithms? We have come to the opinion that each algorithm should 

be given a fixed amount of time to calculate its best approximation of the Pareto front. A 

better algorithm should score better on the quality indicators (HV, Spread, %correct) 

within that duration of time. Going back to the comparison between IBEA and NSGA-II, 

if both are given the same duration of time, then NSGA-II would perform far more 

evaluations than IBEA, and thus would be given a better chance to improve its results. As 

we will see in the coming section, providing NSGA-II with the chance to evolve more 

generations did not help it to overcome IBEA at producing more correct solutions or 

better HV. 

In addition, the user should be more concerned with the amount of time it takes to 

optimize, than with the number of evaluations. CPU power is often available at the user’s 

disposal, and the algorithms should utilize that CPU power to produce the best results in 

the least amount of time, regardless of number of evaluations or number of evolved 

generations. 

Therefore, in the this paper’s experiments we make our comparisons of the results 

after limiting the amount of time given to each algorithm, regardless of number of 

evaluations each algorithm were able to perform. 
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3.8 Relationship with Interactive Configuration 

This problem of feature selection in software product lines has the most practical 

application in user-interactive tools for product configuration. Such tools usually begin 

with the “bare-bone” product, which has the essential or mandatory features, then allows 

the user to fix some of the optional features, and makes recommendations regarding the 

choices to make next. The user may also be prompted to limit the objective space to the 

levels that they can afford, such as a maximum cost. The tool would periodically take 

user input and run optimization cycles and come back with recommendations. Multi-

objective approaches are best suited for this paradigm since they provide the user with a 

set of Pareto-optimal choices each with its own trade-offs. 

The problem that we attempt to solve in this paper is the most complex form of 

user-interactive configuration, since we deal with optimum feature selections before the 

user makes any feature choices or limits the objective space. As the user makes periodic 

choices, the space of options becomes smaller and smaller, and the tools would perform 

faster than in the most general case. 
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Chapter 4: Related Work 
 

4.1 Automated Analysis of Feature Models 

In [75], a large experiment was performed to measure the efficiency of available 

BDD, SAT and CSP solvers to perform four analysis operations on 90 feature models 

from the SPLOT repository. They reported long run times for certain operations, and they 

cancelled certain runs with the larger feature models when the run time exceeded three 

hours. An exponential runtime increase with the number of features for non-BDD solvers 

on the “valid” operation was also reported. The “product enumeration” operation was not 

attempted for feature models with more than 3 million valid products, since this operation 

was not feasible. This left out the largest 12 models out of 90, and thus the remaining 

models were all below 90 features in size. 

In [64], a basic search method (Breadth-First Search) is used to find feature model 

inconsistencies and suggest fixing sets. The method was run with 60 feature models from 

the SPLOT website, the largest being 94 features. They report that computation time 

increases steadily as the number of features increases; for instance, the operation took 

about 27 minutes for a size of 94 features. 

In [70], efficient ordering heuristics are proposed for BDDs that represent feature 

models. Such ordering can dramatically reduce the size of BDDs, thus allowing fast 

processing for interactive configuration algorithms. The proposed heuristics were tested 
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with five realistic feature models, in addition to randomly-generated feature models with 

larger sizes. It was shown that the heuristics produce high quality variable orders that 

enable the compilation of large feature models with up to 2,000 features. 

In [69], it is shown that the task of satisfiability (SAT) solving of realistic models 

is easy. In particular, the phenomenon of phase transition is not observed for realistic 

feature models. The explanation for this is that many real world problems are either over-

constrained (in terms of variability: they have no realizable products) or under-

constrained (they have many easily identifiable realizations). For instance, consistency 

checks on randomly-generated models with up to 10,000 features and a large number of 

cross-tree constraints took about 0.4 seconds. In addition, computing valid domains was 

completed in about 22 seconds for models with 5,000 features and a fairly large number 

of cross-tree constraints. 

The only two studies we know that experimented with the LVAT (Linux 

Variability Analysis Tools) feature models were done by Johansen et al. [55] who 

generated test covering arrays for feature models, and Henard et al. [54] who worked on 

prioritizing t-wise test suites. Both experimented with three very large models from the 

LVAT repository (Linux, eCos, and FreeBSD), in addition to models from SPLOT and 

other sources. All of the experiments in [55] timed out for the largest model (Linux 

Kernel with 6888 features), and some timed out for even smaller models. In [54], the 6-

wise coverage experiment took 20 hours for the Linux Kernel feature model. 
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4.2 Optimizing Feature Models with Attributes 

The idea of extending (or augmenting) feature models with quality attributes was 

proposed by many, among them Czarnecki et al. [28], Zhang et al. [115] and Cordy et al. 

[27]. The following papers used feature models with attached attributes and synthetic data 

to experiment with optimizing feature selection in Software Product Lines. 

Benavides et al. [9] assigned feature attributes such as price range and time range. 

They modeled the problem as a Constraint Satisfaction Problem, and solved it using CSP 

solvers to return a set of features which satisfy the stakeholders’ criteria. Clearly, they 

converted a multi-objective optimization problem into single-objective by combining all 

the objectives in one formula. They experimented with small models of sizes up to 25 

features, and experienced exponentially increasing runtimes. 

White et al. [103] used feature attributes related to resource consumption, cost and 

accuracy. They mapped the feature selection problem to a multidimensional multi-choice 

knapsack problem, and apply Filtered Cartesian Flattening to provide partially optimal 

feature selection. Then in [104], they introduced the MUSCLE tool, which provided a 

formal model for multistep configuration and mapped it to constraint satisfaction 

problems (CSPs). Hence, CSP solvers were used to determine the path from the start of 

the configuration to the desired final configuration. A sequence of minimal feature 

adaptations is calculated to reach from the initial to the desired feature model 

configurations. 

Bagheri et al. [6] proposed a Stratified Analytic Hierarchy Process, which first 
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helps to rank and select the most relevant high level business objectives for the target 

stakeholders (e.g., security over implementation costs), and then helps to rank and select 

the most relevant features from the feature model to be used as the starting point in the 

staged configuration process. 

Soltani et al. [91] annotated features with business concerns and attached a cost to 

each feature, then employed Hierarchical Task Network (HTN) planning to automatically 

select suitable features that satisfy the stakeholders’ business concerns and resource 

limitations. 

Shi et al. [88] utilize a knapsack approximation algorithm along with greedy 

search and a constraint solver to select features based on customer requirements. They 

experiment with randomly-generated feature models with various sizes. 

More recently, Guo et al. [45] augmented feature models with attributes such as 

memory and CPU usage, and used a Genetic Algorithm to provide an optimum feature 

selection, thus aggregating all objectives into one formula with preset weights. 

In all the works mentioned above (sections 4.1 and 4.2), the testing was done with 

relatively small feature models published in academic repositories like SPLOT, or with 

large feature model that were randomly-generated based on the same characteristics as 

SPLOT models. Large feature models that represent actual code (such as those published 

in LVAT) have not yet been used to test out automated analysis and configuration 

methods. 
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4.3 Pareto-Optimal Search-Based Software Engineering 

This section is extracted from a recent survey by Sayyad and Ammar [82]. 

Historically, the field of Search-Based Software Engineering (SBSE) has seen a 

slow adoption of Pareto optimization techniques, generally known as multiobjective 

optimization techniques. Back in 2001, when Harman and Jones coined the term SBSE 

[48], all surveyed and suggested techniques were based on single-valued fitness 

functions. In 2007, Harman commented on the current state and future of SBSE [47], and 

in the “Road-map for Future Work” section he suggested using multiobjective 

optimization. Then in 2009, Harman et al. [50] were able to cite several works in which 

multiobjective optimization techniques were deployed. Still, most of the work reviewed 

therein, as well as work done thereafter, optimized two objectives only, while higher 

numbers appeared only occasionally. Also, the typical tendency was to use algorithms 

that are popular in other domains, such as NSGA-II and SPEA2. In this survey, we 

attempt to systematically identify these trends. 

Several surveys and review papers were published in the field of SBSE [47], [50], 

[51], [30]. Some surveys focused on subfields, such as search-based software design [77], 

and search-based test data generation [67]. This survey is the first of its kind, in which we 

survey SBSE research work that employed Pareto optimization techniques.  

The total number of surveyed papers was 51. Figure 9 breaks them down by area 

of application, while Figure 10 classifies them by year of publication. 
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Figure 9: Pareto-Optimal SBSE papers by area of application 
 

 
 
 

Tables 2-5 list all the surveyed papers, along with the multiobjective algorithms, 

the number of objectives, tools and quality indicators. The surveyed papers are divided 

according to the application areas of software requirements, design, testing, and 

management. 
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Table 2: List of surveyed Pareto-Optimal SBSE works in software requirements 
 

Ref Author(s) Year 
Number of 
Objectives 

Algorithm 
(s) 

Tool 
Quality 

Indicator 
(s) 

[114] 
Y. Zhang, M. 
Harman, S. A. 
Mansouri 

2007 2 
NSGA-II, 
Pareto GA 

-- -- 

[41] 

A. Finkelstein, M. 
Harman, S 
Mansouri, J Ren, 
Y Zhang 

2008 2 NSGA-II -- -- 

[36] 
J. J. Durillo, Y. 
Zhang, E. Alba, A. 
J. Nebro 

2009 2 
NSGA-II, 
MOCell 

jMetal 
HV, 

Spread 

[113] 
Y. Zhang, E. Alba, 
J. J. Durillo, S. 
Eldh, M. Harman 

2010 3 NSGA-II -- -- 

[35] 

J. J. Durillo, Y. 
Zhang, E. Alba, 
M. Harman, A. J. 
Nebro 

2011 2 
NSGA-II, 
MOCell, 

PAES 
jMetal 

HV, 
Spread 

[18] 

M. M. A. Brasil, 
T. G. N. da Silva, 
F. G. de Freitas, J. 
T. de Souza, M. I. 
Cortés 

2011 3 
NSGA-II, 
MOCell 

jMetal 
HV, 

Spread 

[53] 
W. Heaven, E. 
Letier 

2011 2 NSGA-II Matlab -- 

[95] 
V. Veerappa, E. 
Letier 

2011 2 
GA with 

Clustering 
Matlab -- 

[60] 
A.C. Kumari, K. 
Srinivas, M.P. 
Gupta 

2012 2 QEMEA -- 

HV, 
Spread, 

Convergenc
e 

[86] 
A. S. Sayyad,  
T. Menzies,  
H. Ammar 

2013 2, 3, 4, 5 

IBEA, 
NSGA-II, 

ssNSGA-II, 
SPEA2, 

FastPGA, 
MOCell, 
MOCHC 

jMetal 
HV, 

Spread 
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Table 3: List of surveyed Pareto-Optimal SBSE works in software design 

Ref Author(s) Year 
Number of 
Objectives 

Algorithm 
(s) 

Tool 
Quality 

Indicator 
(s) 

[58] 
T. Khoshgoftaar, 
Y. Liu, N. Seliya 

2004 4 NSGA-II -- -- 

[43] L. Grunske 2006 2 MOGA -- -- 

[63] 
Z. Liu, H. Guo, D. 
Li, T. Han, J. 
Zhang 

2007 5 MOGA Frontier -- 

[52] 
M. Harman, L. 
Tratt 

2007 2 
Pareto Hill 
Climbing 

-- -- 

[4] 
A. Arcuri, D. 
White, J. Clark, X. 
Yao 

2008 2 SPEA2 -- -- 

[100
] 

J. Wang, Y. Hou 2008 2 MOGA -- -- 

[97] 
H. Wada, P. 
Champrasert, J. 
Suzuki, K. Oba 

2008 10 E
3
-MOGA -- -- 

[89] 
C. L. Simons, I. C. 
Parmee 

2008 2 NSGA-II -- -- 

[90] 
C. L. Simons, I. C. 
Parmee, R. 
Gwynllyw 

2010 3 NSGA-II -- -- 

[17] 
M. 

Bowman, L. C. 
Briand, Y. Labiche 

2010 5 SPEA2 -- -- 

[78] 
O. Räihä, K. 
Koskimies, E. 
Mäkinen 

2011 2 MOGA -- -- 

[76] 
K. Praditwong, M. 
Harman, X. Yao 

2011 5 
Two-

Archive 
MOEA 

-- -- 

[7] M. O. Barros 2012 4, 5 NSGA-II jMetal 
GD, Error 

Ratio 

[24] 
T. E. Colanzi, S.R. 
Vergilio 

2012 5 NSGA-II -- -- 

[107
] 

J. L. Wilkerson, D. 
R. Tauritz, J. M. 
Bridges 

2102 4 NSGA-II -- -- 

[42] 
S. Frey, F. Fittkau, 
W. Hasselbring 

2013 3 NSGA-II Opt4J HV, IGD 
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Table 4: List of surveyed Pareto-Optimal SBSE works in software testing 

 

 

 

Ref Author(s) Year 
Number of 
Objectives 

Algorithm 
(s) 

Tool 
Quality 

Indicator 
(s) 

[109] S. Yoo, M. Harman 2007 2, 3 
NSGA-II, 
vNSGA-II 

-- -- 

[49] 
M. Harman, K. 
Lakhotia, P. 
McMinn 

2007 2 NSGA-II -- -- 

[101] 
Z. Wang, K. Tang, 
X. Yao 

2008 2, 3 
NSGA-II, 
MODE 

-- -- 

[66] 
C. Maia, R. Carmo, 
F. Freitas, G. 
Campos, J. Souza 

2009 3 NSGA-II jMetal -- 

[108] 
T. Yano, E. Martins, 
F. Sousa 

2010 2 M-GEOvsl -- -- 

[73] 
G. H. L. Pinto, S. R. 
Vergilio 

2010 3 NSGA-II -- -- 

[61] 
W. Langdon, M. 
Harman, Y. Jia 

2010 2 NSGA-II -- -- 

[110] S. Yoo, M. Harman 2010 2, 3 HNSGA-II -- -- 

[102] 
Z. Wang, K. Tang, 
X. Yao 

2010 2, 3 
NSGA-II, 

HaD-MOEA 
-- HV 

[20] 
R. Cabral, A. T. R. 
Pozo, S. R. Vergilio 

2010 2 
Pareto Ant 

Colony 
-- -- 

[23] 
T. E. Colanzi, W. 
Assuncao, S. R. 
Vergilio, A. Pozo 

2011 2 
NSGA-II, 

SPEA2 
jMetal GD, ED 

[5] 
W. K. G. Assunção, 
T. E. Colanzi, A. T. 
R. Pozo, S. Vergilio 

2011 4 
NSGA-II, 

SPEA2 
jMetal 

GD, IGD, 
Coverage, 

ED 

[112] 
S. Yoo, R. Nilsson, 
M. Harman 

2011 3 
Two-Arch-
ive MOEA 

-- -- 

[111] 
S. Yoo, M. Harman, 
S. Ur 

2011 2 NSGA-II jMetal -- 

[39] 
J. Ferrer, F. Chicano, 
E. Alba 

2011 2 

NSGA-II, 
SPEA2, 
PAES, 

MOCell, 
Random 

jMetal 

HV, 
attain-
ment 

surfaces 
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Table 5: List of surveyed Pareto-Optimal SBSE works in project management 

Ref Author(s) Year 
Number of 
Objectives 

Algorithm 
(s) 

Tool 
Quality 

Indicator 
(s) 

[
57] 

T. Khoshgoftaar, 
Y. Liu 

2007 3 NSGA-II -- -- 

[44] 
S. Gueorguiev, M. 
Harman, G. 
Antoniol 

2009 2 SPEA2 -- -- 

[99] 
Z. Wang, T. Chen, 
K. Tang, X. Yao 

2009 2 NSGA-II -- -- 

[59] 
T. Kremmel, J. 
Kubalik, S. Biffl 

2011 5 
mPOEMS, 
NSGA-II, 

SPEA2 
-- 

HV, 
Coverage 

[32] 

J. T. de Souza, C. 
L. Maia, F. G. de 
Freitas, D. P. 
Coutinho 

2010 2 
NSGA-II, 
MOCell, 
Random 

jMetal 
HV, 

Spread, 
Coverage 

[22] 
F. Chicano, F. 
Luna, A. J. Nebro, 
E. Alba 

2011 2 

NSGA-II, 
SPEA2, 
PAES, 

MOCell, 
GDE3 

jMetal 
HV, 

attainment 
surfaces 

[79] 

D. Rodríguez, M. 
Ruiz, J. C. 
Riquelme, R. 
Harrison 

2011 2, 3, 5 NSGA-II jMetal -- 

[19] 

R. Britto, P. S. 
Neto, R. Rabelo, 
W. Ayala, T. 
Soares 

2012 2 NSGA-II -- -- 

[81] 
F. Sarro, F. 
Ferrucci, C. 
Gravino 

2012 5 MOGP -- -- 

[40] 
F. Ferrucci, M. 
Harman, J. Ren, F. 
Sarro 

2013 3 
NSGA-II, 
NSGA-IIv 

-- 
HV, GD, 
Coverage 

http://scholar.google.com/citations?user=6LDD4w0AAAAJ&hl=en&oi=sra
http://scholar.google.com/citations?user=IwSN8IgAAAAJ&hl=en&oi=sra
http://scholar.google.com/citations?user=IwSN8IgAAAAJ&hl=en&oi=sra
http://scholar.google.com/citations?user=BX_2SMsAAAAJ&hl=en&oi=sra
http://scholar.google.com/citations?user=nW9MDIQAAAAJ&hl=en&oi=sra
http://scholar.google.com/citations?user=nW9MDIQAAAAJ&hl=en&oi=sra
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We now analyze and provide commentary about the data collected from the 

surveyed papers with regard to algorithms, number of objectives, tools, and quality 

indicators. 

4.3.1 Algorithms 

 

The total number of different algorithms used in all 51 papers was 25 algorithms. 

Figure 11 shows the frequency of use for each of the most used algorithms. The “other” 

category includes 20 algorithms that were used only once or twice in all the surveyed 

papers. 

 
Figure 11: Pareto-Optimal SBSE algorithms by frequency of use 

 
 

We observe that 36 papers (70%) used a single algorithm, whereas 15 papers 

(30%) used multiple algorithms for comparison purposes. 

Figure 12 shows the frequency of use in the papers that only used a single Pareto 

optimization algorithm. NSGA-II was the algorithm of choice in 53% of those papers. 
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The “other” category includes 9 algorithms that were used only once or twice in this 

category of papers. 

 

 
Figure 12: Pareto-Optimal SBSE algorithms by frequency of use (single-algo. 

papers) 

 

We notice that MOCell and PAES appear nowhere in this category. They were 

only used in comparison to other algorithms, but never alone as the algorithm of choice. 

For those 35 papers that only used one algorithm, we pose an important question: 

why choose that particular algorithm?  The answers are charted in Figure 13. 

Most researchers didn’t state any reason for adopting a certain MOEA (42%) or 

stated popularity of the algorithm (particularly NSGA-II) as the sole reason (25%). This 

is usually justified by the fact that many of those papers introduced Pareto-optimal 

solutions to their problems for the first time, which in itself is considered a contribution. 

A sizeable portion of these papers (10, 28%) introduced new MOEAs to solve a problem, 

but only compared their outcome with that of single-objective algorithms. Looking at the 
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15 papers that actually compared MOEAs to one another, 5 of them introduced new 

MOEAs and compared their outcomes with popular MOEAs. 

 

Figure 13: Reasons for adopting an algorithm in Pareto-Optimal SBSE 

 

In the single-MOEA papers, only one stated that the MOEA was chosen because 

it was more suitable for the particular problem, and one paper stated that the chosen 

algorithm had been reported to have better performance in higher-dimension objective 

spaces. 

4.3.2 Number of Objectives 

The first step in Pareto optimization is to re-formulate the problem to bring out 

the competing objectives. Although the objectives were known all along, legacy research 

combined them into one fitness function. Pareto optimization researchers then had to 

decide which objectives to represent as separate, which to combine into one, and which to 
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ignore; thus a different number of objectives may have been defined for the same 

problem. Figure 14 shows the variety of “number of objectives in the surveyed papers. 

There were 7 papers that presented different formulations for each problem, with a 

different number of objectives in each formulation. 

4.3.3 Tools/Frameworks 

17 papers (33%) reported using implementations of the algorithms that are 

available in tools such as jMetal (13 papers) and Matlab (2 papers). Two thirds of the 

time, the researchers had to code their own implementations, which is the assumption we 

made when tools weren’t mentioned. 

 
Figure 14: Number of objectives by frequency of use in Pareto-Optimal SBSE 

 

4.3.4 Quality Indicators 

15 papers (30%) used quality indicators to assess the quality of the Pareto fronts 

and, most of the time (12 papers), to compare the performance of various MOEAs against 
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one another. Hypervolume (HV) was the most widely used indicator (12 papers), while 

there was lesser agreement on the use of other indicators. 

Quality indicators are useful as aggregate measures for large sets of solutions, 

especially with higher dimensions in the objective space. Skipping the computation of 

quality indicators is understandable when it’s possible to directly assess the objective 

values, which is the case when the Pareto front can be charted in 2-D or 3-D. 

4.3.5 Survey Summary 

We surveyed 51 research papers that applied multiobjective search-based 

optimization methods to software engineering problems. This being a relatively young 

trend in SBSE, we have observed certain shortcomings in many papers: 

1. Lack of clarity regarding the reasons why an algorithm is chosen for a 

problem (Figure 5).  

2. Tendency to simplify problems by specifying fewer objectives to evaluate 

(Figure 6), 

3. Heavy reliance on personal implementations of widely-used algorithms 

(Table 1, the “Tool” column). 

4. Lack of agreement on whether to utilize quality indicators, and which 

indicators to use (Table 1, the “Quality Indicators” column). 

But we also noticed some promising directions: 
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1. Researchers are comparing algorithms against one another to discover 

better performance, and to reason about suitability of the algorithms to the problems at 

hand (15 papers out of 51). 

2. Some papers are exploring different formulations of their problems 

wherein the complexity is increased and more objectives are evaluated (7 papers out of 

51). 

3. Increasing use of the open-source jMetal framework with its rich set of 

MOEAs and quality indicators (13 papers out of 51). 
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Chapter 5: Experimental Setup 
 

5.1 Feature Models Used in this Study 

The feature models used in this study belong to two feature model repositories: 

SPLOT [68] and LVAT [12]. From SPLOT, we chose 20 non-trivial feature models with 

varying sizes (between 43 and 290 features), and we made sure that we chose models 

with cross-tree constraints (CTCs). The majority of feature models in SPLOT are below 

43 features in size, and many do not have any CTCs. 

Table 6 shows the feature models, along with their sizes (number of features), 

CTCs, and total number of rules. For an explanation of “features”, “CTCs”, and “total 

rules”, please refer to section 2.2. 

Table 6: SPLOT feature models used in the study 

ID Feature model Features CTCs Total rules 

FM-43 Web portal 43 6 63 
FM-43B Mobile Media 2 43 3 65 
FM-44 Documentation Generation 44 8 68 
FM-45 Android SPL 45 5 74 
FM-46 DELL Notebook Computers 46 110 171 
FM-52 Linea de Experimentos 52 4 87 
FM-53 Video Player 53 2 78 
FM-60 Smart Home v2.2 60 2 82 
FM-61 Arcade Game PL 61 34 122 
FM-63 OW2-FraSCAti-1.4 63 46 129 
FM-66 bCMS system 66 2 109 
FM-67 HIS 67 4 121 
FM-70 DATABASE TOOLS 70 2 82 
FM-72 Car Selection 72 18 123 

FM-72B Reuso - UFRJ - Eclipse1 72 1 97 
FM-88 Billing 88 59 160 
FM-94 Coche ecologico 94 2 151 
FM-97 UP structural 97 1 138 

FM-137 xtext 137 1 179 
FM-290 E-Shop 290 21 426 

http://gsd.uwaterloo.ca:8088/SPLOT/SplotAnalysesServlet?action=show_model_details&modelFile=model_20101115_2000504462.xml
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From LVAT, we apply our methods to 7 models with sizes between 544 and 6888 

features, as shown in Table 7. 

Table 7: LVAT feature models used in the study 

Model Version Features Rules 

ToyBox 0.1.0 544 1020 

axTLS 1.2.7 684 2155 

eCos 3.0 1244 3146 

FreeBSD 8.0.0 1396 62183 

Fiasco 2011081207 1638 5228 

uClinux 20100825 1850 2468 

Linux Kernel 2.6.28 6888 343944 

5.2 Problem Encoding 

For the purpose of running the MOEAs to configure the feature models, the 

feature models were represented as binary strings, where the number of bits is equal to 

the number of features. If the bit value is TRUE then the feature is selected, otherwise the 

feature is removed. 

5.3 Algorithm Implementation 

We utilized the implementations of metaheuristic algorithms within the jMetal 

framework [34], an open-source package in Java with a rich set of multi-objective 

evolutionary algorithms, benchmark problems, quality indicators, and experimentation 

routines. 
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5.4 Strong Heuristics to Improve Performance 

Next we describe the three strong heuristic techniques that we utilized to help the 

MOEAs arrive faster at correct configurations and thus save on computation time and 

improve performance. Those strong heuristics are: PUSH, PULL, and population seeding. 

5.4.1 The PUSH Technique 

In the PUSH technique, we use knowledge of the feature models structure to 

restrict the evolutions process. Since the SPLOT models are represented differently from 

the LVAT models, the PUSH technique is manifested differently. For SPLOT, we “Tree 

Mutation,” whereas for LVAT we use “feature fixing.” 

Figure 15 lists the procedure for tree mutation, used with SPLOT feature models. 

This new operator honors and preserves the tree structure in the feature model.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

For each bit in the decision string 
   if rand(0,1) < mutation_probability:   
       Don't mutate if: 
           1) deselecting root feature, 
           2) selecting feature whose parent is not selected, 
           3) deselecting a mandatory child feature whose                              

parent is selected, or 
           4) group cardinality is violated 
       Otherwise: 
           flip this bit, and        
           if selecting (turning on) a feature then:      
                    turn on children (a minimum skeleton) 
           else if deselecting (turning off) a feature then: 
             turn off all children 

 

Figure 15: Tree mutation procedure 
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Violations of cross-tree constraints (CTCs) still need to be minimized by the 

MOEA as an optimization objective. Thus the fitness evaluation function only checks 

violations of the CTCs, as opposed to our original approach [86] of counting violations of 

all the rules in the feature model, including the CTCs. 

Feature fixing was introduced in [85]. In the DIMACS formulas representing 

LVAT feature models, certain disjunctions (rules) only include one feature, which means 

that the feature is either mandatory (a commonality) which must always be selected, or a 

dead feature which must always be deselected. Also, we looked for disjunctions (rules) 

that included two features but one of them is fixed in the first round, and thus the second 

one was fixed as well. Once a feature is detected as fixed, we fix it in the initial 

population, while all other features are subject to random configuration, and we restrict 

the bit mutation operator to only flipping features that are not fixed. 

Table 8 shows the amount of fixed features detected in each model. It also shows 

the amount of “skipped rules”, i.e. the rules that we stop checking in our fitness 

evaluation since they only include fixed features. 

5.4.2 The PULL Technique 

In the PULL technique, we give constraint violations 4 times the weight as each 

one of the other 4 objectives, thus “pulling” the optimization process towards satisfying 

the feature model constraints first, then proceeding to find Pareto-optimal configurations 

according to the user preferences from within the space of valid solutions. 
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Table 8: Fixed features and skipped rules for LVAT models 

 

 

5.4.3 Population Seeding 

This additional strong heuristic builds on the ability of “fit” individuals to 

influence other individuals in the population towards learning the desired qualities. In this 

approach, one correct configuration is pre-computed and then planted in the initial 

population for the 5-objective optimization. The desired effect is to guide an MOEA into 

finding a range of solutions that can be suggested to the user in the initial stage of 

interactive configuration. Different techniques were employed to generate correct seeds, 

with varying results, as will be shown in the next chapter. 

  

Model 
Total 

Features 

Fixed 

Features 
Total Rules Skipped Rules 

ToyBox 544 363 1020 394 

axTLS 684 384 2155 259 

eCos 1244 19 3146 11 

FreeBSD 1396 3 62183 20 

Fiasco 1638 995 5228 553 

uClinux 1850 1244 2468 1850 

Linux Kernel 6888 94 343944 699 
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Chapter 6: Results 
 

6.1 Increasing the Number of Optimization Objectives 

Our first experiment was reported in [86], where we examined the effect of 

varying the number of optimization objectives on the performance of Multi-Objective 

Evolutionary Algorithms (MOEAs).  

Table 9 lists the configuration parameters that were used in this experiment. The 

settings used here were mostly the default setting in jMetal. The focus was on comparing 

MOEAs to one another, rather than tuning the parameters to achieve the best 

performance, which is explored in the next experiment. 

Table 9: Parameter settings for first experiment 

Parameter Setting 

Population size 100 

Crossover type Single-Point Crossover 

Crossover probability 0.9 

Mutation type Bit-Flip Mutation 

Mutation probability 0.05 

 

As listed in section 3.4, the optimization objectives are:  

1. Correctness; i.e. compliance to the relationships and constraints defined in the 

feature model. Since the tools we used (jMetal) treats all optimization objectives 

as minimization objectives, we seek to minimize rule violations. 

2. Richness of features; we seek to minimize the number of deselected features. 

3. Features that were used before; we seek to minimize the features that weren’t used 
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before. 

4. Known defects; which we seek to minimize. 

5. Cost; which we seek to minimize. 

The variation of “number of objectives” in this experiment was as follows: 

1. In the two-objective run, we optimize objectives 1 and 2 above, i.e. correctness 

and number of features. 

2. In the three-objective run, we optimize objectives 1, 2 and 5 above. 

3. In the four-objective run, we optimize objectives 1, 2, 3 and 5 above. 

4. In the five-objective run, we optimize all the objectives mentioned above. 

The results of the experiment are shown in Tables 10 and 11. In the 50-K runs, 

each algorithm run is repeated 10 times, each time making 50,000 evaluations of the 

objective functions. The median of the quality indicators (HV, Spread and %Correct) is 

reported. In the 50-M runs, each algorithms is run only once with 50 Million evaluations. 

Black cells with white font indicate results where IBEA performed much better than 

other algorithms, as discussed below. 

Looking at the results in Tables 10 and 11, we make the following observations: 

1- IBEA stands out in terms of HV, spread, and percentage of fully-correct 

solutions, as can be seen in the black cells with white font. The remarkable gains with 

this algorithm become obvious with the bigger, more complex E-Shop feature model, and 

with more objectives. 
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Table 10: Comparison of quality indicators, 2 and 3 objectives 

FM ALGORITHM 
3 Objectives 2 Objectives 

HV SPRD % CR HV SPRD % CR 

Web 
Portal 
(50K 
evals) 

IBEA 0.56 1.33 82% 1.00 1.04 14% 

NSGA-II 0.57 1.03 24% 1.00 1.04 14% 

MOCell 0.57 1.07 27% 1.00 0.95 20% 

FastPGA 0.57 1.13 34% 1.00 1.04 14% 

SPEA2 0.57 0.86 13% 1.00 1.04 14% 

E-Shop 
(50M 
evals) 

IBEA 0.52 1.08 80% 1.00 1.00 100% 

NSGA-II 0.42 0.93 1% 1.00 1.00 100% 

MOCell 0.43 0.76 1% 1.00 1.00 100% 

FastPGA 0.42 0.85 1% 1.00 1.00 100% 

SPEA2 0.39 0.60 0% 1.00 1.00 100% 
 

Table 11: Comparison of quality indicators, 4 and 5 objectives 

FM ALGORITHM 
5 Objectives 4 Objectives 

HV SPRD % CR HV SPRD % CR 

Web 
Portal 
(50K 
evals) 

IBEA 0.34 0.79 73% 0.43 1.18 56% 

NSGA-II 0.27 0.68 8% 0.39 0.74 8% 

MOCell 0.27 0.65 4% 0.38 0.68 8% 

FastPGA 0.27 0.68 7% 0.40 0.71 9% 

SPEA2 0.27 0.54 0% 0.40 0.62 2% 

E-Shop 
(50M 
evals) 

IBEA 0.28 0.88 52% 0.37 1.15 42% 

NSGA-II 0.23 0.75 1% 0.25 0.81 1% 

MOCell 0.23 0.82 1% 0.25 0.86 1% 

FastPGA 0.22 0.82 0% 0.25 0.81 1% 

SPEA2 0.20 0.55 0% 0.23 0.64 0% 

 
 

2- We pay special attention to the better spread results that IBEA achieves, 

although IBEA does not incorporate crowd pruning measures in its dominance criteria. It 

outperforms the very algorithms that depend on crowd pruning.  
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3- The remaining algorithms (NSGA-II, SPEA2, FastPGA, and MOCell) 

perform moderately with the smaller Web Portal feature model with 2 and 3 objectives. 

With 4 or 5 objectives, or when applied to the bigger E-Shop feature model, these 

algorithms do not perform nearly acceptably when compared with the IBEA results. The 

least performing among these was SPEA2, especially with 4 and 5 objectives. 

4- In the 2-objective run for E-Shop, with 50 Million evaluations, all 

algorithms seem to yield the same results, with 100% of the Pareto front having zero 

violations. After examining the resulting Pareto fronts, we find that IBEA outperforms in 

this category as well; since IBEA is able to find 3 solutions, each having zero violations 

and only one missing feature. Other algorithms only found one or two solutions, and 

some solutions had two missing features. 

In order to get a rough idea about how soon IBEA arrives at fully-correct 

solutions, we performed further runs on the E-Shop feature model with 5 objectives. The 

results are shown in Table 12. 

Table 12: Various runs with IBEA on E-Shop, 5 objectives 

Evals. 
Run 

Time 
HV Spread % Correct 

50,000 12.3 sec 0.21 0.77 0% 

1 Million 4 min 0.25 0.77 0% 

2 Million 8 min 0.25 0.98 3% 

5 Million 20 min 0.27 1.00 16% 

10 Million 38 min 0.28 0.86 16% 

20 Million 81 min 0.28 0.91 30% 

50 Million ~ 3 hours 0.28 0.88 52% 
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The quickest results were 3 compliant configurations obtained within 8 minutes. 

Such results can be useful when a reasoned argument is needed quickly (e.g. at a 

meeting). Longer runs would be needed to get more optimized and better diversified 

results. While IBEA achieved 3 acceptable configuration in about 8 minutes, other 

algorithms took 50 million evaluations (about 3 hours) to find just one acceptable 

configuration. 

6.2 Parameter Tuning 

Next we present a parameter tuning experiment which was reported in [83], where 

we examined the effect of different combinations of parameters on the performance of 

IBEA and NSGA-II. 

As mentioned in the previous section, the parameter settings used were the default 

settings in jMetal, which conform with the usual default setting recommended in the 

literature, such as in [37]. Researchers tend to take the default settings for granted, but 

recent studies have shown the importance of parameter tuning and the influence of 

parameter choice on performance, such as the study by Arcuri and Fraser [3].  

In this experiment, we consider 3 research questions. RQ1 and RQ2 were 

considered by Arcuri and Fraser [2]. We added RQ3 since we’re interested in comparing 

IBEA to NSGA-II. 

RQ1: How Large is the Potential Impact of a Wrong Choice of Parameter Settings? 

RQ2: How Does a “Default” Setting Compare to the Best and Worst Achievable 

Performance? 
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RQ3: How does the performance of IBEA’s best tuning compare to NSGA-II’s best 

tuning? 

Next, we explain the experimental setup and the value choices for the different 

parameters. Where possible, we used the same parameter levels that were used by Arcuri 

and Fraser. In some cases, we used fixed values because the value levels were not 

available in jMetal. Table 13 shows the similarities and differences between Arcuri and 

Fraser and this study. 

Table 13: Experimental setup for parameter tuning 

Parameter Arcuri and Fraser [2] This experiment 

Algorithm Genetic Algorithm NSGA-II, IBEA 

Mutation rate 0.1 {0, 0.5, 1, 1.5, 2}/Features 

Crossover 

rate 

{0 , .2 , .5 , .8 , 1} {0 , .2 , .5 , .8 , 1} 

Population 

size 

{4 , 10, 50 , 100 , 200} {10, 50 , 100 , 150, 200} 

Elitism rate {0 , 1, 10% , 50%} or steady 

state 

Elitism rate does not apply to 

either NSGA-II or IBEA. Steady 

state is implemented in jMetal 

for NSGA-II but not IBEA. Thus 

no variation will be considered. 

Selection 

 

roulette wheel, tournament 

with size either 2 or 7, and rank 

selection with bias either 1.2 or 

1.7 

Binary tournament only. 

Repeats 15 15 

Test bed 20 classes 20 feature models 

Number of 

configurations 

5 x 5 x 5 x 5 x 2 = 1250 2 x 5 x 5 x 5 = 250 
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Each feature model (FM) was operated on for 10 seconds. The overall time to 

execute our experiment was = 250 configurations x 15 runs x 20 FMs x 10 sec = 12500 

minutes = 208.3 hours = ~8.7 days. 

The default parameter values according to jMetal are: Population = 100, 

Crossover rate = 0.8, and Mutation rate = 1/FEATURES. 

In this experiment, we restrict each algorithm to 10 seconds per feature model, 

rather than restricting the number of objective function evaluations. For justification of 

this, please refer to section 3.7. 

We performed the same analysis done by Arcuri and Fraser [2], in which they 

performed two-way comparisons composed of two parts: effect size and statistical 

significance. 

For effect size, the Vargha-Delaney A measure [94] was used, as implemented in 

R by Thomas et al [93]. It tells us how often, on average, one technique outperforms the 

other. When applied to two populations such as the results of two techniques, 

the A measure is a value between 0 and 1: when the A measure is exactly 0.5, then the 

two techniques achieve equal performance; when A is less than 0.5, the first technique is 

worse; and when A is more than 0.5, the second technique is worse. The closer to 0.5, the 

smaller the difference between the techniques; the farther from 0.5, the larger the 

difference. [93] 

For statistical significance, the Mann-Whitney test was used as implemented in R. 

http://doofussoftware.blogspot.com/2012/07/measuring-effect-size-with-vargha.html
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Table 14 shows a summary of the parameter tuning results. For each feature 

model (FM), we show the average over 15 runs of the percentage of correct 

configurations (%correct) found by best parameter setting and the default parameter 

setting for both IBEA and NSGA-II. Then we calculate three effect size values: 

1. ÂBDI: Vargha-Delaney effect size of best compared to default for IBEA. 

2. ÂBDN: Vargha-Delaney effect size of best compared to default for NSGA-II. 

3. ÂBIN: Vargha-Delaney effect size of best IBEA compared to best NSGA-II. 

We also calculate the Mann-Whitney statistical significance measure, and we 

highlight the A-measure in bold when the Mann-Whitney p-value is less than 5%. 

The results in table 3 show the following: 

4. For both IBEA and NSGA-II, the best parameter tuning beats the default 

parameter values by a large and significant amount in 15 out of 20 models. For the other 5 

models there is improvement, but it is neither large nor statistically significant. 

5. The best IBEA results beat the best NSGA-II results in 19 out of 20 models. The 

improvement was large and significant in 17 out of 19 models. In the one case where 

NSGA-II results beat IBEA results, the improvement was neither large nor significant. 

Thus we are able to answer the first 3 research questions: 

RQ1: How Large is the Potential Impact of a Wrong Choice of Parameter 

Settings? 

We confirm Arcuri and Fraser’s [2] conclusion: Different parameter settings 

cause very large variance in the performance. 
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Table 14: Summary of parameter tuning results 

FM Best 

IBEA 

Default 

IBEA 

Best 

NSGA-II 

Default 

NSGA-II 

ÂBDI ÂBDN ÂBIN 

FM-43 98% 91% 20% 7% 0.63 1 1 

FM-43B 48% 43% 14% 1.3% 0.58 1 1 

FM-44 60% 51% 13% 1.4% 0.76 1 1 

FM-45 27% 11% 9% 0.8% 0.88 1 1 

FM-46 5% 0% 0.3% 0% 0.8 0.80 0.68 

FM-52 22% 2% 23% 7% 0.95 1 0.55 

FM-53 79% 71% 27% 16% 0.53 1 1 

FM-60 85% 62% 14% 11% 0.61 0.86 1 

FM-61 39% 9% 21% 5% 0.90 1 0.86 

FM-63 54% 19% 11% 1.0% 0.98 1 1 

FM-66 14% 0% 5% 0.3% 0.9 0.66 0.85 

FM-67 14% 0% 5% 0.6% 0.93 0.59 0.86 

FM-70 100% 100% 10% 2% 0.5 1 1 

FM-72 27% 13% 0.7% 0.2% 0.82 0.47 1 

FM-72B 97% 66% 10% 1.0% 0.64 1 1 

FM-88 27% 0% 12% 0.3% 0.90 1 0.80 

FM-94 14% 0% 0.7% 0% 0.97 0.53 0.95 

FM-97 67% 22% 3% 0.1% 0.82 0.61 0.96 

FM-137 96% 23% 23% 0.3% 0.86 1 1 

FM-290 37% 0% 22% 0% 0.73 1 0.45 

 

RQ2: How Does a “Default” Setting Compare to the Best and Worst Achievable 

Performance? 

Arcuri and Fraser [2] concluded that: Default parameter settings perform 

relatively well, but are far from optimal on individual problem instances. 
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With our results from table 3, we are able to make a stronger conclusion: Default 

parameter settings perform generally poorly, but might perform relatively well on 

individual problem instances. 

RQ3: How does the performance of IBEA’s best tuning compare to NSGA-II’s best 

tuning? 

Our results show that IBEA’s best tuning performs generally much better than 

NSGA-II’s best tuning. This RQ is of no concern to Arcuri and Fraser [2], but it confirms 

our early findings (section 6.1). Specifically, we verify here that no parameter settings 

enable NSGA-II to achieve acceptable levels of correctness and optimality for the leaned 

configurations. This result was expected since we have identified the core fitness 

assignment method as the reason for IBEA’s advantage over NSGA-II and other Pareto-

based algorithms. IBEA is able to exploit the user preferences in ranking the solutions for 

selection to generate new solutions and to survive through the evolutionary process; 

whereas NSGA-II depends on absolute dominance as the deciding criterion, coupled with 

crowd pruning as a mechanism to force solution diversity, which ignores rich details from 

the user preferences. This was explained in section 2.7. 

In addition to the assertions above, we found that the best parameter tuning when 

all 20 feature models are considered is: {IBEA, Population = 50, Crossover rate = 0, 

Mutation rate = 0.5/FEATURES}. This suggests that crossover does more harm than 

good, since it does not conform with the tree structure of the feature models, i.e. 

crossover can add a subfeature to a solution in which the parent feature is not selected, 

and so forth. It also suggests a very low rate for mutation, 0.5/FEATURES, which means 
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to change one feature only in half the population on average. This supports more 

exploitation of the model than exploration, and emphasizes the fine grained nature of the 

feature models, where small changes can have large effects in the optimization process. 

6.3 Using Strong Heuristics: PUSH and PULL 

So far we have not used any techniques to help IBEA (or other algorithms) to 

converge faster to correct configurations. In this section, we will apply the PUSH 

technique (described in subsection 5.4.1) and the PULL technique (described in 

subsection 5.4.2). We apply IBEA and NSGA-II to all 27 feature models, 20 from 

SPLOT and 7 from LVAT, as listed in section 5.1. 

Table 15 shows the parameter settings used in this experiment: 

Table 15: Parameter settings used for experiment with PUSH and PULL 

Parameter Setting 

Population size 100 

Archive size 100 

Crossover type No Crossover 

Mutation type Bit-Flip Mutation 

Mutation  probability 1/Number of Features 

Runtime 5 minutes 

Independent runs 10 

 

First, we show the results of applying PUSH without PULL. Table 16 shows the 

median values for the quality indicators (%Correct, Hypervolume, and Spread) after 

applying IBEA and NSGA-II to each of the feature models 10 independent times, each 

time stopping after 5 minutes. The median value is highlighted in bold if it is statistically   
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Table 16: Results of 5-objective optimization; PUSH without PULL 

FM 
IBEA NSGA-II 

%CR HV SPRD %CR HV SPRD 

FM-43 100% 0.31 0.81 54% 0.31 0.88 

FM43B 100% 0.23 0.76 59% 0.22 0.84 

FM-44 100% 0.25 0.75 34% 0.25 0.83 

FM-45 100% 0.15 0.85 51% 0.15 0.73 

FM-46 98% 0.25 1.03 46% 0.26 0.74 

FM-52 100% 0.03 0.63 100% 0.04 1.04 

FM-53 100% 0.22 0.64 61% 0.21 0.91 

FM-60 100% 0.28 0.60 73% 0.27 0.95 

FM-61 63% 0.12 0.99 23% 0.12 0.87 

FM-63 100% 0.20 0.62 30% 0.18 0.91 

FM-66 100% 0.05 1.03 100% 0.09 1.26 

FM-67 100% 0.08 0.78 51% 0.08 0.79 

FM-70 100% 0.35 0.66 82% 0.30 0.98 

FM-72 100% 0.30 0.71 42% 0.29 0.95 

FM72B 100% 0.32 0.58 68% 0.30 1.01 

FM-88 20% 0.24 0.96 4% 0.23 0.89 

FM-94 100% 0.17 0.64 55% 0.17 0.85 

FM-97 100% 0.27 0.58 94% 0.26 0.95 

FM137 100% 0.32 0.62 75% 0.28 0.94 

FM290 100% 0.24 0.65 8% 0.21 1.01 

ToyBox 100% 0.18 0.63 5% 0.20 0.91 

axTLS 100% 0.20 0.62 6% 0.20 0.90 

eCos 100% 0.30 0.69 3% 0.10 0.98 

FreeBSD 54% 0.18 1.22 0% 0.00 1.13 

Fiasco 100% 0.18 0.67 4% 0.17 0.95 

uClinux 33% 0.28 0.59 6% 0.14 1.03 

Linux 

Kernel 
0% 0.021 1.08 0% 0 1.09 

 

better than its counterparts for other algorithms applied to the same feature model, 

according to the Mann-Whitney test with 95% strength.  

The results of Table 16 show the following: 

1- Comparing the %Correct columns, we find that IBEA, which employs 



 

 

 

 

 

65 

continuous dominance criteria, outperforms NSGA-II, which relies on Boolean 

dominance. This is true for 24 out of 27 models, and becomes more obvious as models 

increase in size and complexity, except for the largest model (Linux Kernel) where no 

correct solutions are found within 5 minutes. Overall, IBEA is able to achieve 100% 

correctness (100 fully-compliant solutions in the final population) in 21 out of 27 models, 

and the IBEA advantage is statistically significant in 21 out of 27 models. NSGA-II is 

only able to achieve 100% correctness for 2 models, and produces higher HV for these 

two models (FM-52 and FM-66). 

2- IBEA also achieves significantly better HV in 8 models out of the 27. For 

the remaining 18 models, NSGA-II achieves better HV in only 2, and the values are close 

for the rest. 

3- NSGA-II takes the lead on the spread indicator, which measures diversity 

of solutions, for 19 out of 27 models, while IBEA prevails for 5 models, and no winner 

emerges for the remaining 3 models. But there is no point in comparing HV and spread 

when %Correct is far below 100%, since HV and spread can have better values due to 

closeness to optimality in the number of features, defects, used before, and cost, while 

still having many constraint violations. Hence, there is no significance when HV and 

spread values achieved by NSGA-II are close to or better than IBEA, while IBEA yields 

far more valid solutions. 

4- In our earlier results (section 6.1), it took IBEA 3 hours to achieve 52% 

correctness for FM-290 (Electronic Shopping feature model). In this experiment, we are 
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able to achieve 100% correctness within 5 minutes. This is due to 2 factors: the PUSH 

technique, and better-tuned parameters. The runtime improvement is more than 36-fold 

(3 hours / 5 minutes). In fact, we will show a much higher runtime improvement in the 

next section when we add the PULL method. 

Table 17 is similar to Table 16, only this time both PUSH and PULL are 

employed. With PULL, the correctness objective takes 4 times higher priority than each 

one of the other 4 objectives. Like we did in Table 16, the median value is highlighted in 

bold if it is statistically better than its counterpart for other algorithms applied to the same 

feature model, according to the Mann-Whitney test with 95% strength. 

The results of Table 17 show the following: 

1- The IBEA advantage is maintained, in addition to a significant 

improvement in %Correct for 3 models, and among them are 2 of the large LVAT models. 

In fact, we now achieve 100% correctness within the first 5 minutes for all models except 

FM-88. For that model, %Correct remains at 20% (20 correct configurations out of 100 

members in the final population) no matter how long we run IBEA, which tells of an 

intrinsic complexity and thus a limitation on the number of valid solutions. 

2- NSGA-II does not improve when PULL is introduced, since it relies on 

Boolean dominance criteria which do not account for varying objective weights. The only 

advantage NSGA-II has here is in the same 2 models as in the previous table, i.e. FM-52 

and FM-66. 
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Table 17: Results of 5-objective optimization; PUSH and PULL 

FM 
IBEA NSGA-II 

%CR HV SPRD %CR HV SPRD 

FM-43 100% 0.31 0.95 55% 0.31 0.90 

FM43B 100% 0.22 0.88 60% 0.22 0.86 

FM-44 100% 0.25 0.83 35% 0.24 0.85 

FM-45 100% 0.15 0.92 53% 0.15 0.78 

FM-46 100% 0.24 1.03 48% 0.26 0.77 

FM-52 100% 0.03 0.74 100% 0.04 1.01 

FM-53 100% 0.22 0.71 64% 0.21 0.93 

FM-60 100% 0.28 0.70 77% 0.27 0.89 

FM-61 100% 0.07 1.02 19% 0.11 0.87 

FM-63 100% 0.20 0.70 27% 0.17 0.88 

FM-66 100% 0.05 1.03 100% 0.09 1.14 

FM-67 100% 0.08 0.89 50% 0.08 0.82 

FM-70 100% 0.35 0.73 84% 0.30 0.98 

FM-72 100% 0.30 0.77 41% 0.28 0.98 

FM72B 100% 0.31 0.74 67% 0.30 0.97 

FM-88 20% 0.16 1.07 3% 0.14 0.91 

FM-94 100% 0.17 0.76 56% 0.17 0.89 

FM-97 100% 0.26 0.66 93% 0.25 0.96 

FM137 100% 0.31 0.69 75% 0.28 0.95 

FM290 100% 0.22 0.76 7% 0.20 1.00 

ToyBox 100% 0.22 0.73 4% 0.21 0.87 

axTLS 100% 0.33 0.71 3% 0.27 0.83 

eCos 100% 0.23 0.84 3% 0.00 0.88 

FreeBSD 100% 0.22 0.96 0% 0.02 0.98 

Fiasco 100% 0.19 0.81 3% 0.16 0.87 

uClinux 100% 0.17 0.74 4% 0.08 0.98 

Linux 

Kernel 
0% 0 1.0 0% 0 0.95 

 

3- The HV values in Table 17 cannot be compared to those in Table 16, 

because of the difference in dimensionality in the objective space. When constraint 

satisfaction is given 4 times the weight as other objectives, the objective space become 8-

dimansional, and HV is calculated as such. 
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4- In this table, IBEA achieves spread values that are closer to those achieved 

by NSGA-II. Thus NSGA-II only leads in spread values for 14 models (compared to 19 

in Table 16). IBEA leads in 6 models (compared to 5 in Table 6), but also makes better 

spread values that cancel NSGA-II’s lead in the remaining 6 models. This shows that the 

PULL method not only allows IBEA to achieve correctness faster, but also to achieve 

more diversity of solutions within the space of valid solutions. 

5- The results for the Linux Kernel feature model (6888 features) are not 

satisfactory, as we do not achieve any correct configurations or any sizeable HV within 

the first 5 minutes. It is evidenced that we will need a more innovative approach to be 

able to configure such large model. In [85] we achieved a promising result with the Linux 

Kernel model using a “population seeding” approach. We will expand on this approach in 

future work and combine it with the PUSH and PULL techniques. 

In order to further assess the advantage of the PULL method in improving the 

performance of IBEA, we chart the median values for TT100% (time to 100%), which is 

the runtime that it takes IBEA to achieve 100% correctness before and after adding 

PULL. In Figure 16, the feature models are ordered according to increasing TT100% for 

IBEA with PUSH but no PULL. FM-88 is missing from the chart because 100% 

correctness is never achieved for it.   

We make the following observations: 

1- For the first 17 models in the chart (FM-70 through FM-290), we achieve 

100% correctness within 1 second before adding PULL, and stay within 1 second after 
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adding PULL, although TT100% grows longer with PULL for 12 out of those 17 models. 

This observation is especially significant for FM-290, for which it took 3 hours to 

achieve 52% correctness in our original work [86] before introducing PUSH or PULL. 

With both PUSH and PULL, IBEA achieves 100% correctness in 0.665 second; an 

improvement of over 16,000 times. 

2- For the next 5 models (FM-46 through Fiasco), 100% correctness is 

originally achieved in 3 seconds to 2 minutes. With PULL, TT100% is reduced to 

between 0.34 and 52 seconds. 

 

Figure 16: Comparison of TT100% for IBEA with and without the PULL method 
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3- For the remaining 3 models, 100% correctness is not achieved within the 

first 5 minutes before PULL (hence the bars extend to 1000 sec). With PULL, IBEA was 

able to achieve 100% correctness within a median value of 0.52 sec for FM-61, 15 sec for 

uClinux, and 135 sec for FreeBSD. 

6.4 Objective Development over Time 

In this section, we show the objective values develop over time as opposed to the 

development of quality indicators. The objectives, not the quality indicators, represent the 

user’s business concerns and must be the subject of communication with the customer to 

demonstrate the usefulness of configuration tools.  

Figure 17 shows the time development of the quality indicators when applying 

IBEA to FM-290 (Electronic Shopping) with PUSH and PULL, while Figure 18 shows 

the time development of the normalized means of objective values. The means are 

computed for each objective value over all members in the population at each milestone, 

and normalization is performed in order to visualize all objective values in one graph. 

The graph shows how the mean number of violations decreases to zero in under a second, 

and %Correct climbs to 100%. Afterwards, HV climbs until it levels off around the 1-

minute mark, indicating that little further optimization is possible beyond that point. 

Nevertheless, looking at Figure 18, we can see that all objectives bottom out at the 1-

minute mark, except for the “Missing Features” objective, which means that the 

population has reached a milestone in terms of minimizing all the objectives except that  
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Figure 17: Development of quality indicators over time for E-Shopping 

 

 
Figure 18: Development of normalized mean values over time for E-Shopping 
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the number of offered features is also minimized. This means that further optimization 

would offer more options that push towards increasing offered features, as shown in the 

development of objective values after the 1-minute mark. 

Figures 19 and 20 show the same graphs as Figures 17 and 18, respectively, for 

IBEA with PUSH and PULL applied to uClinux feature model from the LVAT database. 

They show that 100% correctness (and zero violations) is achieved at 16 seconds. 

Afterwards, the population trends toward minimizing the number of missing features, 

until it bottoms out around the 4-minute mark, after which evolution trends towards less 

features and thus minimizing the other objectives. 

In both cases shown in the Figures 17-20, it can be concluded from observing the 

mean objective values over time that evolution tends to reach a point after which the 

objectives continue to play trade-offs against one another. In practice, the user must step 

in at a certain point and make partial decisions regarding feature selections and 

acceptable objective values. The optimization tool would then use the user’s input and 

focus the subsequent computation on offering configuration choices that comply with 

user preferences. 

6.5 Population Seeding 

The results in section 6.3 show that IBEA was not able to achieve any acceptable 

configurations within the given 5 minutes for the Linux Kernel feature model composed 

of 6888 features and about 344,000 rules. We introduce here another strong heuristic to 

assist IBEA in finding good solutions for the Linux Kernel FM within reasonable time. 



 

 

 

 

 

73 

 
Figure 19: Development of quality indicators over time for uClinux 

 

 
Figure 20: Development of normalized mean values over time for uClinux 
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Our next strong heuristic technique was to pre-compute a correct configuration 

and plant it like a seed in the initial population of the evolutionary algorithm. The 

intuition behind this was that the randomly-generated members of the initial population 

are highly likely to violate thousands of feature model rules and be punished for that in 

the fitness assignments. When an individual in the initial population stands out as a fully-

correct solution, then it should be promoted more often than others for crossover with 

other individuals, and would survive through successive generations due to elitism. Thus 

the “seed” acts as a role model to the “chaotic” members of the population. This 

technique proved to be useful as we will see next. 

6.5.1 Parameter Settings 

 

Table 18 shows the parameter values used in this experiment. Notice that a small 

crossover rate was used in this experiment, although we abandoned crossover altogether 

in the previous experiment (section 6.3, Table 15). The reason is that crossover is needed 

to enable the seeding heuristic; otherwise, the population would not be able to learn from 

the correct seed. 

Table 18: Parameter settings for seeding experiment 

Parameter Setting 

Population size 300 

Archive size 300 

Crossover type Single-Point Crossover 

Crossover probability 0.05 

Mutation type Bit-Flip Mutation 

Mutation  probability 0.001 
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6.5.2 Method for Generating a Correct Seed 

First, we present the way we pre-computed a correct solution using 2-objective 

optimization with IBEA, where one objective is to minimize rule violations, while the 

other objective is to maximize the number of selected features. This technique can be 

time-consuming for very large feature models, but it produces a high number of enabled 

(selected) features, which is more challenging to evolutionary algorithms than finding 

correct configurations with minimum selected features. 

Table 19 shows the time it took this technique to generate a correct solution for 

each of the 7 LVAT feature models, and the number of selected features within each 

solution.  

Table 19: Time and number of selected features for generated seed 

 

 

 

 

 

 

 

 

6.5.3 Result of Using PUSH and Seeding (no PULL) 

The initial result, which appeared in [85], shows the result of applying IBEA with 

feature fixing to the Linux X86 feature model, with the full 5 optimization objectives. 

Model 
Total 

Features 
Time (sec) 

Selected 
Features 

ToyBox 544 10.5 145 

axTLS 684 16.5 245 

eCos 1244 56 967 

FreeBSD 1396 205 946 

Fiasco 1638 42 575 

uClinux 1850 23 455 

Linux X86 6888 
11,000  

(~3 hours) 
5704 



 

 

 

 

 

76 

Three different runs were tried separately, for one hour each: 

1. No seeding, i.e. all 300 individuals are randomly generated in the initial 

population. 

2. One “feature-rich” seed generated using 2-objective IBEA, along with 299 

random solutions. 

3. Thirty different fully-correct seeds, generated in a previous run of 5-objective 

IBEA, along with 270 random solutions. 

The number of valid configurations in each of the 3 runs is shown in Figure 21. At 

the end of 1 hour, the “no seeding” run produced no valid solutions, whereas the two 

other runs produced about the same number of valid solutions; i.e. 36 solutions due to 1 

seed, and 38 solutions due to 30 seeds. 

 

Figure 21: Number of valid configuration due to seeding with PUSH 
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For the 30 seeds planted along with 270 random solutions, the population had 49 

fully-correct configurations at 10 seconds, but the number dropped as the 5-objective 

optimization continued, down to 29 valid solutions at 30 minutes, and then back up to 38 

after 1 hour. This shows that the outcome of 1 feature-rich seed is compatible with that of 

30 seeds. 

6.5.4 Result of Using PUSH, PULL, and Seeding 

Next we show the result of adding the PULL heuristic to PUSH and seeding (with 

1 seed only). 

Figure 22 shows the number of correct configurations (out of 300 candidates in 

each generation) due to each crossover rate, over the course of 10 hours of 5-objective 

optimization. We observe that the number of valid configurations increases more rapidly 

than in Figure 21; and by the 1-hour mark we achieve 167 solutions, compare with 36 

valid configurations achieved when PULL is not employed. This clearly shows the 

advantage of the PULL heuristic in promoting conformance with the feature model. 

We also notice that the number of valid configurations begins to level off after 3 

hours, when it reaches 250 solutions (about 83% of the population.) At the end of 10 

hours, the number goes up to 282 solutions (94% of the population.)  

Next, we present the result of a larger experiment involving all 7 feature models 

from the LVAT repository, and focusing on the overall quality indicators for resulting 

Pareto Front after 5 minutes of 5-objective optimization. The results are shown in Table 

20, where the median values of %Correct, HV, and Spread are reported for 10 indepen- 
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Figure 22: Number of valid configuration due to seeding with PUSH and PULL 

 

 

Table 20: Results of 5-objective optimization; PUSH, PULL, and Seeding 

Feature 

Model 

IBEA with PUSH, PULL,  

And NO Seeding 

(Results from Table 17) 

IBEA with PUSH, PULL, 

And Seeding 

%CR HV SPRD %CR HV SPRD 

ToyBox 100% 0.22 0.73 100% 0.21 0.74 

axTLS 100% 0.33 0.71 100% 0.33 0.73 

eCos 100% 0.23 0.84 100% 0.23 0.84 

FreeBSD 100% 0.22 0.96 100% 0.22 0.96 

Fiasco 100% 0.19 0.81 100% 0.20 0.77 

uClinux 100% 0.17 0.74 100% 0.18 0.70 

Linux 

Kernel 
0% 0 1.0 43% 0.0015 1.01 
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dent runs with Seeding, and compared with previous results from Table 17. 

We make the following observations: 

1- The overall HV and Spread are the same or close with or without seeding. The 

only exception is the Linux Kernel feature model, for which a nonzero HV is 

achieved for the first time since we are now able to find valid configurations and 

optimize around them. 

2- We still achieve 100% population without any violations for the first 6 feature 

models. The Linux Kernel model now achieves 43% of its final 300-member 

population as valid configurations, which is a large and significant achievement. 

6.5.5 Investigating the Diversity of Solutions Achieved with Seeding 

The seeding technique is expected to produce solutions that are close together, 

since the population is “infected” with one strong seed that gets implanted in the initial 

generation. In order to see how closely the resulting configurations resemble the seed, we 

look at box plots of the objective values for those correct configurations achieved at each 

time milestone. 

Figure 23 shows the box plot against time for the number of selected features 

when examining the valid configurations alone. Figure 24 shows the box plot against 

time for the features used before. Figure 25 shows the box plot against time for the total 

number of known defects. Figure 26 shows the box plot against time for the total cost. 
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Figure 23: Box plot against time for the number of selected features. 
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Figure 24: Box plot against time for the number of features used before. 



 

 

 

 

 

82 

 
Figure 25: Box plot against time for the number of known defects. 
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Figure 26: Box plot against time for the total cost. 

 

We make the following observations regarding the box plots in Figures 23-26: 

1- The valid configurations are strongly influenced by the seed, which is represented 

by the single valid configuration found at 1 second. This is evident in the way the 
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objective values develop slowly afterwards and do not deviate far away from the 

objective values for the seed. 

2- The evolutionary process slows down after the first few hours, which suggests 

that running the algorithms for longer than 10 hours is less likely to result in 

finding new and higher optimized configurations. 

3- Nevertheless, this observation can be exploited in the following manner: suppose 

we obtain prior knowledge of the user’s preferences in terms of a desired 

maximum cost or defect that they can tolerate; if we compute a seed that falls 

within that preference area we can use it to bias the search in the 5-objective 

space towards optimizing solutions within a narrow area that is of most interest to 

the user, rather than present a Pareto Front that is far stretched across an ocean of 

possible configurations. This idea is left for future work. 
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Chapter 7: Threats to Validity 
 

Validity of research results has four components: construct, internal, conclusion, 

and external validity. 

7.1 Threats to Construct Validity 

Construct validity refers to the extent to which a piece of research actually 

investigates what the researcher purports to investigate. An examples of threat to 

construct validity is the confounding factors that are not considered in the study. In our 

study, possible factors that may affect construct validity are: 

7.1.1 Sampling Bias 

Sampling bias refers to the choice of subject data for the experiments. We used 20 

feature models from SPLOT and 7 from LVAT. SPLOT has hundreds of feature models, 

but most of them are small and simple, not posing much challenge to the problem of 

optimum feature selection. For example, SPLOT as of today (April 2014) hosts 481 

feature models, the smallest containing 10 features, while the largest having 366 features. 

Out of 481 models, only 7 models have more than 100 features. We chose 20 feature 

model that varied in size from medium (43 features) to large (290 features—the largest in 

SPLOT until lately.) We also made sure to exclude feature models that did not include 

any cross-tree constraints, because we believed they were far removed from the reality of 

software product lines. From LVAT, which is host to 15 very large feature models that 

were reverse-engineered from Linux software packages, we chose 7 models going up to 

6888 features, which was the most challenging to our tools. We excluded larger feature 
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models because they did not match the published data about the underlying software 

packages. 

Another subject bias is the use of synthetic data as attributes of features, i.e. 

COST, DEFECTS, and USED_BEFORE. The use of synthetic data is common in 

software engineering literature. The difficulty of obtaining real data comes from the fact 

that such numbers are usually associated with software components, not features. When 

available, such data is often proprietary and not published. Nevertheless, the results we 

obtained have such a large margin of superiority achieved by continuous dominance 

(IBEA) over Boolean dominance algorithms which couldn’t possibly be biased by the 

synthetic data. Future work should attempt to collect real data for use with other MOEAs 

to optimize product configuration. 

7.1.2 Treatment Bias 

Treatment Bias refers to the limited set of treatments that are applied and 

compared in the experiments, since questions might arise about other treatments and how 

they might have performed when applied to the experiment subjects. Many algorithms 

exist in the world of multi-objective optimization, and many fall in the category of 

MOEAs. The “Algorithm” columns in Tables 2-5 of this study show the variety of 

MOEAs applied in search-based software engineering (SBSE). When we started 

experimenting with feature models, we tried to include every algorithm that was available 

to us, but it quickly became clear that any algorithm that is based on Boolean dominance 

was yielding the same poor results when the number of objectives is increased (Tables 10 
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and 11) and with larger feature models. The continuous dominance algorithm (IBEA) was 

the only one that gave satisfactory results. This was the reason why we limited our 

subsequent experiments to comparing IBEA with NSGA-II, the most widely-used of 

Boolean dominance MOEA. Nevertheless, we welcome our colleagues in SBSE to try 

different algorithms to this domain and others, in order to confirm, refute or improve the 

results we achieved with continuous dominance. 

7.1.3 Parameter Bias 

Back in section 6.2, we proved the importance of parameter tuning in SBSE, as 

did others before us [3]. We also showed that continuous dominance (e.g. IBEA) was still 

the optimizer of choice no matter what parameters were used. Therefore, we did not 

perform the same type of rigorous parameter tuning for the remaining experiments, rather 

we made parameter choices based on experience. We acknowledge that the best practice 

to account for the variability of performance with parameters is adaptive parameter 

control, where the parameters are changed dynamically according to the performance 

they yield in each generation in the evolutionary process. 

7.1.4 Measurement Bias 

Measurement bias refers to the metrics we use to assess which methods are better 

than others. The essence of multi-objective optimization is not being able to use a single 

objective (or an aggregation of objectives into one metric) for assessing the final solution. 

Rather, the resulting Pareto Front as a whole is assessed using quality measures such as 

the hypervolume (HV), Spread, Generational Distance (GD), etc. The two indicators that 
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we used are representative of the qualities that are sought in a Pareto Front; HV measures 

closeness to optimality, while Spread measures the diversity of solutions. We added the 

%Correct measure to assess how many solutions in the Pareto Front completely conform 

to the rules in the feature model, which is an essential indicator of success in product 

configuration. In addition, we made sure to look at the development of individual; 

objectives over time (Figures 17-20, and Figures 23-26) in order to show how the user’s 

preferences get optimized as they compete against each other. Nevertheless, the choice of 

quality indicators and success measures when dealing with a Pareto Front remains an 

open question worthy of further examination. 

7.2 Threats to Internal Validity 

Internal validity is concerned with influences that may affect the independent 

variables or measurements without the researcher’s knowledge. One possible threat to 

internal validity in our study is the fact that we relied on jMetal’s implementation of the 

MOEAs, since efficiency can vary among different implementations. Furthermore, the 

MOEAs were implemented in Java with its garbage collection utility, which lies outside 

of any programmer’s control. Nevertheless, our use of multiple runs and statistical testing 

should alleviate this threat and assure the strength of conclusions. 

7.3 Threats to Conclusion Validity 

In comparing the performance of MOEAs, we performed statistical significance 

testing (Mann-Whitney U test) on 10 different runs of each MOEA. The goal was to 
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remove the randomized nature of the algorithms as a confounding factor. It may be 

argued that 10 runs are not enough for a strong conclusion, but the high significance 

achieved in the tests (≥ 95% strength) supports our conclusions. 

7.4 Threats to External Validity 

A threat to external validity is that we are unable to generalize our findings to 

other software engineering problems, since the scope of any experiment needs to be 

defined for practical reasons. Nevertheless, we do provide a discussion of the problem 

characteristics that make continuous dominance (IBEA) perform best for software feature 

models, and we anticipate the same performance advantage when applying IBEA to 

problems with high complexity and dimensionality, because of the way continuous 

dominance makes use of all the knowledge in the objective values that the user cares 

about. In order to assess this claim, we invite researchers in SBSE to consider continuous 

dominance algorithms (e.g. IBEA) when choosing MOEAs for multi-objective problems. 
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Chapter 8: Discussion 
 

In this chapter, we reason about the findings of this paper and their implications. 

8.1 Method for Achieving Correct Configurations 

In this work, we were able to generate many acceptable configurations with the 

help of evolutionary algorithms via defining correctness as one of the optimization 

objectives. Other researchers [10] included a repair operator to guarantee that each 

candidate solution conformed with the feature model before evaluating it for promotion 

to the next generation. They refrained from designing the objective function so that 

invalid solutions always score lower than valid solutions, because it was hard to do so 

with a single-objective fitness function. Having attempted the inclusion of correctness 

within another objective in order to guarantee correctness, we recognize this hardship. It 

was much easier for us to obtain correct solutions (especially with IBEA) by defining 

correctness as an objective of its own. 

Furthermore, we were able to accelerate the search for correct configurations by 

restricting the evolutionary operators to the dependencies defined in the tree structure of 

the feature models (the PUSH method). Additionally, the PULL technique gave more 

weight to minimizing rule violations in the optimization process; improving performance. 

8.2 Indicator-Based Evolutionary Algorithm (IBEA) vs. Other MOEAs 

IBEA performs much better than commonly used algorithms because of the 

difference in fitness ranking criteria which was explained in section 2.7. In [98], it is 
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experimentally demonstrated with real-valued test functions that the performance of 

NSGA-II and SPEA2 rapidly deteriorates with increasing dimension, and that other 

algorithms like ε-MOEA, MSOPS, IBEA and SMS-EMOA cope very well with high-

dimensional objective spaces. It is argued that NSGA-II and SPEA2 tend to “increase the 

distance to the Pareto front in the first generations because the diversity-based selection 

criteria favor higher distances between solutions. Special emphasis is given to extremal 

solutions with values near zero in one or more objectives. These solutions remain non-

dominated and the distance cannot be reduced thereafter.” Those results were obtained 

with nonlinear function solving. Our work verified the same results. 

All other algorithms used in this study (except IBEA) depend on evaluation 

criteria similar to NSGA-II or SPEA2, thus inheriting the same handicap at higher 

dimension; they tended to prune out solutions that crowded towards the much-desired 

zero-violation point, thus achieving low scores on the %Correct measure. 

IBEA, on the other hand, calculates a dominance value based on quality indicators 

that depend primarily on the user preferences. Thus IBEA has no need for a secondary 

evaluation criterion such as diversity of solutions. This enabled IBEA to explore the 

various optimal solutions with zero-violations of model constraints. 

This actually highlights IBEA’s ability to find correct as well as optimal solutions. 

Other algorithms focused on finding optimal and diversified solutions, but failed in both, 

because they couldn’t explore the fully-correct solution space. Evolutionary search 

algorithms are not only meant for optimization, although they’re mostly used for it, but 
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they’re also meant to find feasible solutions from a large space of possible combinations 

that may or may not conform to model constraints and dependencies. 

8.3 Run Time Improvements 

We were able to achieve huge run time savings (about 16,000-fold improvement) 

over the initial results by restricting the mutation operator to cease from violating the 

feature model dependencies expressed in the feature tree (the PUSH method). This, along 

with no crossover and a low rate of mutation, exploited the problem structure to 

accelerate the search through the space of possible configurations. Such customization is 

crucial to the success in addressing any type of problem, as the evolutionary algorithms 

are generic approaches to solving problems, and may not fit the nature of the search 

space. 

8.4 Potential for “User-In-The-Loop” Design 

As demonstrated in Fig. 9, we were able to obtain “acceptable” i.e. model-

conforming results within 1 second for medium-sized feature models from SPLOT. The 

large real-life feature models from LVAT took longer to achieve an all-correct population, 

but the longest time was 135 seconds for the FreeBSD feature model. This empowers us 

to explore the idea of interactive configuration, with the user being part of the 

optimization loop. A precondition for including the user in the loop is the ability to 

provide the user with meaningful candidate solutions within a short period of time, i.e. to 

offer advice before an expert's attention wanders to other issues. Neilson [72] reports that 
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“the basic advice regarding response times has been about the same for thirty years; i.e. 

 1 second is about the limit for the user's flow of thought to stay 

uninterrupted, even though the user will notice the delay 

 10 seconds is the limit for keeping a user's attention focused on the 

dialogue.''  

In the case of aggregate-based approaches (single optimal solution), the user is 

consulted only once at the beginning of the process, their preferences are taken as input, 

the weights for the objectives are preset, then an optimum one-of-a-kind output is 

presented in the end. Whereas in the case of Pareto-based approaches (range of optimal 

solutions), the user is consulted in the beginning, and then again in the end when they 

need to choose from among the Pareto-optimal solutions. This gives the users insight and 

more decision-making power. 

Interactive approaches (or so-called preference-based approaches) provide the 

users with an even bigger role in the optimization process; they are consulted several 

times (typically) before, during, and after the machines compute the optimum solutions. 

This is especially useful when the underlying optimizer is an evolutionary algorithm, 

which typically evolves thousands of candidate solutions in every possible direction 

throughout the decision space, and goes through the evaluation and ranking of every 

possible candidate. Such lengthy process can be cut short if the user is able to limit the 

search to a certain region of interest within the decision space or the objective space, or 

both. Examples of preference-based optimization algorithms are [92] and [21]. 
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Chapter 9: Conclusions and Future Work 
 

9.1 Conclusions 

A traditional view about the scalability of evolutionary algorithms is that the 

technology (i.e. CPU power, RAM) needs to catch up with the algorithms, since the 

population-based evolutionary methods require large amounts of RAM to store the 

primary population and the archive resulting from crossover and mutation, and CPU 

power would help finish the computations within reasonable time. Multicore CPUs would 

allow for the parallelization of execution, which is an important property of population-

based methods. [46] 

Our experience, as reported in this study, was that large memory and fast CPUs 

were not enough to handle the size and complexity of the very large Linux model (6888 

features). It took hours for the 5-objective optimization process to find any valid 

configurations, and more hours to find a significant set of valid solutions that are closer to 

optimality. 

The innovation in method (PUSH, PULL, and population seeding) was our key to 

scalability. One feature-rich valid seed in the midst of a 300-member initial population 

was enough to generate many valid configurations within a short period. A larger set of 

seeds did not help in improving the result, which hinted that the careful selection of seeds 

was more effective than increasing their quantity. One effective seed acted like the 

proverbial “straw that broke the camel’s back”. 
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We have also shown a four-orders-of-magnitude improvement in IBEA’s runtime 

when handling the E-Shopping feature model as compared to initial results. This 

remarkable result was possible due to respecting the internal structure of the feature 

models (PUSH), giving priority to constraint satisfaction (PULL), and better parameter 

tuning. We also achieved scalability of the remarkable results obtained with IBEA with 

larger feature models, such as the Linux kernel feature model (part of LVAT repository) 

composed of 6888 features. The “population seeding” approach guided IBEA into finding 

valid configurations early in the optimization process.  

9.2 Future Work 

Broadly speaking, there needs to be a better understanding of the decision making 

process and what it requires in various disciplines, where the decision makers must be 

provided with the most comprehensive, yet concise, picture about the trade-offs involved 

with complex decision spaces, and the interactions of various decision points. 

Decision making can be a complex task in various fields, such as government 

planning, electric power systems, or large-scale software design. Complexity may occur 

in the decision space or in the objective space, or both. The decision space can have many 

intricate constraints and dependencies among individual decisions such that finding 

logically-sound solutions becomes as tough a problem as finding optimal solutions. The 

objective space can have multiple conflicting objectives such that optimizing a certain 

objective would almost certainly be detrimental to other objectives. When complexity 

occurs in both the decision and objective spaces, automated decision support tools 
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become indispensable to the decision maker, especially with far-reaching consequences 

of strategic decision making in the present age.  

The state of the art in complex decision making in various fields is using Multi-

Objective Evolutionary Algorithms (MOEAs), with their ability to find a range of Pareto-

efficient solutions, i.e. a group of optimal solutions where each solution represents the 

best trade-off among various competing objectives. This approach has eclipsed traditional 

reasoning approaches which become inefficient and time-consuming when dealing with 

complex systems. Furthermore, it would be a disservice to the decision maker if all the 

multiple objectives are lumped together in one formula with pre-determined weights, and 

then presenting a single optimal solution as a result. Such practice only hides the richness 

of the decision space and the enlightening knowledge in the objective space; thus leaving 

the decision makers with incomplete data and sub-optimal reasoning. 

In each of the aforementioned fields (government planning, electric power 

systems, and large-scale software design), multi-objective evolutionary algorithms are 

used by many researchers to solve various problems, with two recurring tendencies: 

First, the objective space was often reduced into two or three competing 

objectives, such that the resulting range of solutions could nicely be plotted in 2D or 3D. 

Second, the algorithms chosen to perform the optimization put much emphasis on 

finding a diverse range of solutions that the user preferences did not play a central role in 

the multi-objective search. 
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In this dissertation, we have arrived at two major findings: if your system is 

complex in both the decision and objective spaces, preserve its complexity by expressing 

all the available user preferences without aggregation, and use an optimization algorithm 

that exploits user preferences in multi-objective search. The results obtained with this 

approach will be far-more optimal and diversified than those obtained with the traditional 

algorithms that are less sensitive to user preferences. The other major finding was the 

importance of customizing the evolutionary search according to the nature of the decision 

space at hand. Much search time can be saved by tailoring the evolutionary operators to 

abide by the domain constraints. 

We envision a far reaching impact of these results; in spite of the previous 

research work that dealt with multi-objective optimization in various fields, the real 

power within these algorithms has not yet been unleashed. The suggested direction of 

research is: to preserve complexity in system modeling; to involve more and more data 

that expresses user/decision maker preferences; and to deploy algorithms that best utilize 

user preferences in the quest for optimization. Furthermore, the various trade-offs need to 

be presented to the decision makers in an intuitive and insightful manner that empowers 

them to make the best decisions possible according to the available data. 

Directions for future work may include: 

1. Improving the configuration process by including the user-in-the-loop 

approach, where the optimizer runs for a few seconds, presents a range of results to the 

user, and then takes the user’s choices as input to the next round of optimization. This 
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trend was followed by prominent researchers in the field of MOEAs such as Thiele et al. 

[92], and Chaudhuri and Deb [21]. 

2. Exploring the adaptive parameter control approach where multiple 

populations are evolved using different sets of parameters; their performance being 

reported to a central manager, and parameters are dynamically controlled for new 

generations following a performance assessment. 
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