175 research outputs found

    The development and application of metaheuristics for problems in graph theory: A computational study

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.It is known that graph theoretic models have extensive application to real-life discrete optimization problems. Many of these models are NP-hard and, as a result, exact methods may be impractical for large scale problem instances. Consequently, there is a great interest in developing e±cient approximate methods that yield near-optimal solutions in acceptable computational times. A class of such methods, known as metaheuristics, have been proposed with success. This thesis considers some recently proposed NP-hard combinatorial optimization problems formulated on graphs. In particular, the min- imum labelling spanning tree problem, the minimum labelling Steiner tree problem, and the minimum quartet tree cost problem, are inves- tigated. Several metaheuristics are proposed for each problem, from classical approximation algorithms to novel approaches. A compre- hensive computational investigation in which the proposed methods are compared with other algorithms recommended in the literature is reported. The results show that the proposed metaheuristics outper- form the algorithms recommended in the literature, obtaining optimal or near-optimal solutions in short computational running times. In addition, a thorough analysis of the implementation of these methods provide insights for the implementation of metaheuristic strategies for other graph theoretic problems

    Variable neighbourhood decomposition search for 0-1 mixed integer programs

    Get PDF
    In this paper we propose a new hybrid heuristic for solving 0-1 mixed integer programs based on the principle of variable neighbourhood decomposition search. It combines variable neighbourhood search with a general-purpose CPLEX MIP solver. We perform systematic hard variable fixing (or diving) following the variable neighbourhood search rules. The variables to be fixed are chosen according to their distance from the corresponding linear relaxation solution values. If there is an improvement, variable neighbourhood descent branching is performed as the local search in the whole solution space. Numerical experiments have proven that exploiting boundary effects in this way considerably improves solution quality. With our approach, we have managed to improve the best known published results for 8 out of 29 instances from a well-known class of very di±cult MIP problems. Moreover, computational results show that our method outperforms the CPLEX MIP solver, as well as three other recent most successful MIP solution methods

    A hybrid meta-heuristic for the generation of feasible large-scale course timetables using instance decomposition

    Full text link
    This study introduces a hybrid meta-heuristic for generating feasible course timetables in large-scale scenarios. We conducted tests using our university's instances. The current commercial software often struggles to meet constraints and takes hours to find satisfactory solutions. Our methodology combines adaptive large neighbourhood search, guided local search, variable neighbourhood search, and an innovative instance decomposition technique. Constraint violations from various groups are treated as objective functions to minimize. The search focuses on time slots with the most violations, and if no improvements are observed after a certain number of iterations, the most challenging constraint groups receive new weights to guide the search towards non-dominated solutions, even if the total sum of violations increases. In cases where this approach fails, a shaking phase is employed. The decomposition mechanism works by iteratively introducing curricula to the problem and finding new feasible solutions while considering an expanding set of lectures. Assignments from each iteration can be adjusted in subsequent iterations. Our methodology is tested on real-world instances from our university and random subdivisions. For subdivisions with 400 curricula timetables, decomposition reduced solution times by up to 27%. In real-world instances with 1,288 curricula timetables, the reduction was 18%. Clustering curricula with more common lectures and professors during increments improved solution times by 18% compared to random increments. Using our methodology, viable solutions for real-world instances are found in an average of 21 minutes, whereas the commercial software takes several hours

    New variants of variable neighbourhood search for 0-1 mixed integer programming and clustering

    Get PDF
    Many real-world optimisation problems are discrete in nature. Although recent rapid developments in computer technologies are steadily increasing the speed of computations, the size of an instance of a hard discrete optimisation problem solvable in prescribed time does not increase linearly with the computer speed. This calls for the development of new solution methodologies for solving larger instances in shorter time. Furthermore, large instances of discrete optimisation problems are normally impossible to solve to optimality within a reasonable computational time/space and can only be tackled with a heuristic approach. In this thesis the development of so called matheuristics, the heuristics which are based on the mathematical formulation of the problem, is studied and employed within the variable neighbourhood search framework. Some new variants of the variable neighbourhood searchmetaheuristic itself are suggested, which naturally emerge from exploiting the information from the mathematical programming formulation of the problem. However, those variants may also be applied to problems described by the combinatorial formulation. A unifying perspective on modern advances in local search-based metaheuristics, a so called hyper-reactive approach, is also proposed. Two NP-hard discrete optimisation problems are considered: 0-1 mixed integer programming and clustering with application to colour image quantisation. Several new heuristics for 0-1 mixed integer programming problem are developed, based on the principle of variable neighbourhood search. One set of proposed heuristics consists of improvement heuristics, which attempt to find high-quality near-optimal solutions starting from a given feasible solution. Another set consists of constructive heuristics, which attempt to find initial feasible solutions for 0-1 mixed integer programs. Finally, some variable neighbourhood search based clustering techniques are applied for solving the colour image quantisation problem. All new methods presented are compared to other algorithms recommended in literature and a comprehensive performance analysis is provided. Computational results show that the methods proposed either outperform the existing state-of-the-art methods for the problems observed, or provide comparable results. The theory and algorithms presented in this thesis indicate that hybridisation of the CPLEX MIP solver and the VNS metaheuristic can be very effective for solving large instances of the 0-1 mixed integer programming problem. More generally, the results presented in this thesis suggest that hybridisation of exact (commercial) integer programming solvers and some metaheuristic methods is of high interest and such combinations deserve further practical and theoretical investigation. Results also show that VNS can be successfully applied to solving a colour image quantisation problem.EThOS - Electronic Theses Online ServiceMathematical Institute, Serbian Academy of Sciences and ArtsGBUnited Kingdo

    Iterative restricted space search : a solving approach based on hybridization

    Get PDF
    Face à la complexité qui caractérise les problèmes d'optimisation de grande taille l'exploration complète de l'espace des solutions devient rapidement un objectif inaccessible. En effet, à mesure que la taille des problèmes augmente, des méthodes de solution de plus en plus sophistiquées sont exigées afin d'assurer un certain niveau d 'efficacité. Ceci a amené une grande partie de la communauté scientifique vers le développement d'outils spécifiques pour la résolution de problèmes de grande taille tels que les méthodes hybrides. Cependant, malgré les efforts consentis dans le développement d'approches hybrides, la majorité des travaux se sont concentrés sur l'adaptation de deux ou plusieurs méthodes spécifiques, en compensant les points faibles des unes par les points forts des autres ou bien en les adaptant afin de collaborer ensemble. Au meilleur de notre connaissance, aucun travail à date n'à été effectué pour développer un cadre conceptuel pour la résolution efficace de problèmes d'optimisation de grande taille, qui soit à la fois flexible, basé sur l'échange d'information et indépendant des méthodes qui le composent. L'objectif de cette thèse est d'explorer cette avenue de recherche en proposant un cadre conceptuel pour les méthodes hybrides, intitulé la recherche itérative de l'espace restreint, ±Iterative Restricted Space Search (IRSS)>>, dont, la principale idée est la définition et l'exploration successives de régions restreintes de l'espace de solutions. Ces régions, qui contiennent de bonnes solutions et qui sont assez petites pour être complètement explorées, sont appelées espaces restreints "Restricted Spaces (RS)". Ainsi, l'IRSS est une approche de solution générique, basée sur l'interaction de deux phases algorithmiques ayant des objectifs complémentaires. La première phase consiste à identifier une région restreinte intéressante et la deuxième phase consiste à l'explorer. Le schéma hybride de l'approche de solution permet d'alterner entre les deux phases pour un nombre fixe d'itérations ou jusqu'à l'atteinte d'une certaine limite de temps. Les concepts clés associées au développement de ce cadre conceptuel et leur validation seront introduits et validés graduellement dans cette thèse. Ils sont présentés de manière à permettre au lecteur de comprendre les problèmes que nous avons rencontrés en cours de développement et comment les solutions ont été conçues et implémentées. À cette fin, la thèse a été divisée en quatre parties. La première est consacrée à la synthèse de l'état de l'art dans le domaine de recherche sur les méthodes hybrides. Elle présente les principales approches hybrides développées et leurs applications. Une brève description des approches utilisant le concept de restriction d'espace est aussi présentée dans cette partie. La deuxième partie présente les concepts clés de ce cadre conceptuel. Il s'agit du processus d'identification des régions restreintes et des deux phases de recherche. Ces concepts sont mis en oeuvre dans un schéma hybride heuristique et méthode exacte. L'approche a été appliquée à un problème d'ordonnancement avec deux niveaux de décision, relié au contexte des pâtes et papier: "Pulp Production Scheduling Problem". La troisième partie a permit d'approfondir les concepts développés et ajuster les limitations identifiées dans la deuxième partie, en proposant une recherche itérative appliquée pour l'exploration de RS de grande taille et une structure en arbre binaire pour l'exploration de plusieurs RS. Cette structure a l'avantage d'éviter l'exploration d 'un espace déjà exploré précédemment tout en assurant une diversification naturelle à la méthode. Cette extension de la méthode a été testée sur un problème de localisation et d'allocation en utilisant un schéma d'hybridation heuristique-exact de manière itérative. La quatrième partie généralise les concepts préalablement développés et conçoit un cadre général qui est flexible, indépendant des méthodes utilisées et basé sur un échange d'informations entre les phases. Ce cadre a l'avantage d'être général et pourrait être appliqué à une large gamme de problèmes

    Meta-RaPS Hybridization with Machine Learning Algorithms

    Get PDF
    This dissertation focuses on advancing the Metaheuristic for Randomized Priority Search algorithm, known as Meta-RaPS, by integrating it with machine learning algorithms. Introducing a new metaheuristic algorithm starts with demonstrating its performance. This is accomplished by using the new algorithm to solve various combinatorial optimization problems in their basic form. The next stage focuses on advancing the new algorithm by strengthening its relatively weaker characteristics. In the third traditional stage, the algorithms are exercised in solving more complex optimization problems. In the case of effective algorithms, the second and third stages can occur in parallel as researchers are eager to employ good algorithms to solve complex problems. The third stage can inadvertently strengthen the original algorithm. The simplicity and effectiveness Meta-RaPS enjoys places it in both second and third research stages concurrently. This dissertation explores strengthening Meta-RaPS by incorporating memory and learning features. The major conceptual frameworks that guided this work are the Adaptive Memory Programming framework (or AMP) and the metaheuristic hybridization taxonomy. The concepts from both frameworks are followed when identifying useful information that Meta-RaPS can collect during execution. Hybridizing Meta-RaPS with machine learning algorithms helped in transforming the collected information into knowledge. The learning concepts selected are supervised and unsupervised learning. The algorithms selected to achieve both types of learning are the Inductive Decision Tree (supervised learning) and Association Rules (unsupervised learning). The objective behind hybridizing Meta-RaPS with an Inductive Decision Tree algorithm is to perform online control for Meta-RaPS\u27 parameters. This Inductive Decision Tree algorithm is used to find favorable parameter values using knowledge gained from previous Meta-RaPS iterations. The values selected are used in future Meta-RaPS iterations. The objective behind hybridizing Meta-RaPS with an Association Rules algorithm is to identify patterns associated with good solutions. These patterns are considered knowledge and are inherited as starting points for in future Meta-RaPS iteration. The performance of the hybrid Meta-RaPS algorithms is demonstrated by solving the capacitated Vehicle Routing Problem with and without time windows
    corecore