Variable Neighbourhood Decomposition Search for 0-1
Mixed Integer Programs

Jasmina Lazi¢?®, Said Hanafi*", Nenad Mladenovi¢?, Dragan Urosevic®

% Brunel University, West London UB8 3PH, UK
YLAMIH - Universite de Valenciennes,
ISTV 2 Le Mont Houy, 59313 Valenciennes Cedex 9, France
¢ Mathematical Institute, Serbian Academy of Sciences and Arts,
Kneza Mihaila 36, 11000 Belgrade, Serbia

Abstract

In this paper we propose a new hybrid heuristic for solving 0-1 mixed integer pro-
grams based on the principle of variable neighbourhood decomposition search.
It combines variable neighbourhood search with a general-purpose CPLEX MIP
solver. We perform systematic hard variable fixing (or diving) following the vari-
able neighbourhood search rules. The variables to be fixed are chosen accord-
ing to their distance from the corresponding linear relaxation solution values.
If there is an improvement, variable neighbourhood descent branching is per-
formed as the local search in the whole solution space. Numerical experiments
have proven that exploiting boundary effects in this way considerably improves
solution quality. With our approach, we have managed to improve the best
known published results for 8 out of 29 instances from a well-known class of
very difficult MIP problems. Moreover, computational results show that our
method outperforms the CPLEX MIP solver, as well as three other recent most
successful MIP solution methods.

Key words: 0-1 mixed integer programming, Metaheuristics, Variable
neighbourhood search, CPLEX.

1. Introduction

The 0-1 mixed integer programming (0-1 MIP) problem consists of maximis-
ing or minimising a linear function, subject to equality or inequality constraints
and binary choice restrictions on some of the variables. The 0-1 mixed integer
programming problem (P) can be expressed as:

*Corresponding author. Fax: 433 327511940
Email address: said.hanafi@univ-valenciennes.fr (Said Hanafi)

Preprint submitted to Computers & Operations Research November 2, 2009

https://core.ac.uk/display/336387?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

min E?:l CiTj
s.t. E?:l ;T > b, VYieM= {1,2, R ,m}

P
(P) z; €{0,1} VieB#D
T >0 VJ eC
where the set of indices {1,2,...,n} of variables is partitioned into two subsets

B={1,2....,ptand C = {p+ 1,p+ 2,...,n}, corresponding to binary and
continuous variables, respectively, with p € N, 1 < p < n. We will also use the
following short form notation for problem P:

(P) min{c’z | z € X} (1)

where X = {z € R" | Az > b,z; € {0,1} for j = 1,...,p,z; > 0 for j =
p+1,...,n}

Numerous combinatorial optimisation problems, including a wide range of
practical problems in business, engineering and science can be modelled as 0-1
MIP problems (see [1]). Several special cases of the 0-1 MIP problem, such as
knapsack, set packing, cutting and packing, network design, protein alignment,
travelling salesman and some other routing problems, are known to be NP-hard
[2]. Complexity results prove that the computational resources required to op-
timally solve some 0-1 MIP problem instances can grow exponentially with the
size of the problem instance. Over several decades many contributions have
led to successive improvements in exact methods such as branch-and-bound
and branch-and-cut, branch-and-price, dynamic programming, Lagrangian re-
laxation, and linear programming. However, many MIP problems still cannot
be solved within acceptable time and/or space limits by the best current exact
methods. As a consequence, metaheuristics have attracted attention as possible
alternatives or supplements to the more classical approaches. Although exact
methods can successfully solve to optimality problems with small dimensions
(see, for instance, [3]), for large-scale problems they cannot find an optimal so-
lution with reasonable computational effort, hence the need to find near-optimal
solutions. It is well known that heuristics and relaxations are useful for providing
upper and lower bounds of the optimal value for large and difficult optimisation
problems. Several hybrid methods for solving 0-1 MIP problems have been pro-
posed recently, mainly those combining heuristics and exact methods ([4, 5, 6],
7,8, 9], [10, 11, 12], [13]).

In this paper we propose a new hybrid approach for solving 0-1 MIP, which
combines the variable neighbourhood decomposition search (VNDS) with an
exact solution method.

We first find an initial feasible solution and an optimal solution of the LP-
relaxation of the problem, using the CPLEX solver. Those solutions generate
the initial lower and upper bounds. Trivially, if the LP-solution is 0-1 MIP
feasible, we stop the search. Otherwise, at each iteration, we rank variables
in the non-decreasing order of their absolute values of the difference between
the LP-solution and the incumbent solution values. Subproblems within VNDS
are obtained by successively fixing a certain number of variables in the order

provided. In this way, the subproblem involves the free variables which are
furthest from their linear relaxation values. Then these subproblems are solved
exactly or within the CPU time limit. The subproblems are changed by the
hard fixing of the variables (or diving), according to VNS rules.

This paper is organised as follows. In Sec. 2, we provide the necessary
mathematical definitions and notations and a brief overview of the existing
approaches related to our work. In Sec. 3, we describe VNDS heuristic. In
Sec. 4, we provide a detailed description of our VNDS implementation for solving
0-1 MIP problems. Next, in Sec. 5, we analyse the performance of the VNDS
method as compared to the other three methods mentioned and to the CPLEX
solver alone. Last, in Sec. 6, we give some final remarks and conclusions.

2. Preliminaries

In this section, we first present the mathematical notations and a survey of
the closely related recent work.

2.1. Notations and definitions

To formally describe the process of hard variable fixing [14], we introduce
the notion of a reduced problem, which is obtained from the original problem
by assigning given values to some variables. Formally, let 2° be an arbitrary
vector of binary values, x(j)» € {0,1} for j € B, and J C B an arbitrary subset of
binary variable indices. The reduced problem associated with z° and J can be
defined as follows:

T

min c'x
st. Ax>b
P(2°,J) rj =9 vVied (2)
z; €{0,1} VjeB#0
T > 0 VjeC

Obviously, P(z°,0) = P and v(P(2°, J)) < v(P(z°,.J")), for any sets J and J’,
such that J C J’' C B, where v(P) is the optimal objective function value of the
optimisation problem P.

The LP-relaxation of problem P which results from dropping the integer
requirement on z, is denoted as LP(P), i.e. :

min Tz

st. Az >0
z; €[0,1] VjeB#0
33]20 VJEC

LP(P)

Given two solutions z and y of the problem P and a subset of indices J C B,
we define the distance between x and y as:

S(Jxy) =D oy —y; |-

jeJ

More generally, if Z is an optimal solution of the LP relaxation LP(P) (not
necessarily MIP feasible), the distance between x and T can be defined in the
same way, for the subset J of the indices of variables which are integer feasible
in T.

Let X be the solution space of the problem P considered. The neighbourhood
structures {Ng | & = kmin, - - s kmaz b 1 < Emin < Emaz <| B |, can be defined
if the distance §(B, x,y) between any two solutions x,y € X is known. The set
of all solutions in the kth neighbourhood of € X is denoted as N (z), where

N,C(x)z{yeX\é(B,x,y) < k}

From the definition of Nj(x), it follows that Ni(z) C Njy1(z), for any k €
{kmin, kmin + 1, ..., kmaz — 1}, since §(B,z,y) < k implies §(B,z,y) < k+1.
It is trivial that, if we completely explore neighbourhood Nj11(zx), it is not
necessary to explore neighbourhood Ny (z).

2.2. Local branching

Local branching (LB) was introduced by Fischetti and Lodi in 2003 [6], as
a branching strategy for MIP problems which can also be effectively used as a
heuristic for improving the incumbent solution. The usage of local branching as
an improvement heuristic relies on the observation that the neighbourhood of a
feasible 0-1 MIP solution (in terms of the rectangular distance) often contains
better solutions. More precisely, let 2’ be the incumbent solution, x* the best
known solution found and € > 0 a small non-negative real number. The local
branching heuristic solves the following subproblem:

min Tz

st. Az >b
0Bz, z") <k
e < cTar—¢
z; € {0,1} VieB#(
{ITJZO V]GC

P(k,z")

Local branching combines local search with a generic MIP solver, which is
used as a black box for exactly solving problems P(k,2’) in an iterative process.
After the first feasible solution ' is found (if it exists), the first subproblem
P(k,a"), for k = kpin, is solved (where ki, € N is a parameter which defines
the minimum neighbourhood size). Then, if an improved solution is found, a new
subproblem is derived and solved; this is repeated as long as an improvement
can be made in the objective function value. This basic mechanism is extended
by introducing time limits, automatically modifying the neighbourhood size k
and adding diversification strategies in order to improve the performance.

2.3. Variable neighbourhood search branching

Variable neighbourhood search (VNS) is a metaheuristic which is based on
the systematic change of neighbourhoods towards the local optima and also

out of the regions which contain them [15, 16]. The pseudo-code of the step
which performs systematic change is given in Fig. 1. In this figure, z,2’ and
k denote the incumbent solution, new solution and the neighbourhood index,
respectively.

Procedure NeighbourhoodChange(x,x’, k)
1 if T2’ < 'z then
2 x—a', k«1; // Make a move.
3 else k — k+1; // Next neighbourhood.

Figure 1: Neighbourhood change pseudo-code.

VNS branching (VNSB) is a heuristic for solving MIP problems, using the
general-purpose MIP solver CPLEX as a black-box [8]. VNSB adds constraints
to the original problem, as in the LB method. However, in VNSB, neighbour-
hoods are changed in a systematic manner, according to the rules of the general
VNS algorithm [16]. The main idea of both LB and VNSB for solving MIP is
in fact a change of the neighbourhood during the search. Therefore, LB can be
seen as a specialised variant of VNSB (or vice versa): (i) in LB the local search
step is performed in the neighbourhood of the fixed size k > 1 (where k is a
given parameter), instead of k=1; (ii) as a consequence of (i), backward instead
of forward VNS (see [17]) is used in the inner loop (i.e., instead of increasing
neighbourhood by 1 in the intensification step, its current size, initially set at
k, is reduced by half); (iii) the shaking step of VNS and the diversification step
of LB differ only in the area from which a random feasible solution is chosen.
In LB the area is a disk with radii 1 and k£ 4 dv - [g] where dv is the current
number of diversifications (see [6] for details), while in VNSB the disk is defined
by radii kcyr and keyr + Estep, Where ke, defines the current neighbourhood size
and kgep is a given parameter.

Variable neighbourhood descent (VND) is a variant of VNS in which neigh-
bourhoods are changed deterministically. Starting from the first feasible solu-
tion, the current neighbourhood of the current incumbent solution z is com-
pletely explored and if a better solution z’ is found, then the whole process is
iterated, starting from 2z’ as the current incumbent; otherwise, the next neigh-
bourhood of x is explored. The whole process is iterated until a maximal number
of neighbourhoods is reached, or the predefined time limit is exceeded.

Both VNSB and the approach presented within this paper use the im-
plementation of VND with only a time limit as a stopping criterion. The
pseudo-code for the VND procedure is given in Fig. 2, where the statement
y = LocalSearch(P,z) means that some local search technique is applied to
the problem P, starting from z as the initial solution, with solution y as a
result.

Procedure VND(P,x,tynq)
1 repeat
k =1; tstare = cpuTime();
repeat
x’ = LocalSearch(P(k,z),z); // Find the best neighbour in N (z).
NeighbourhoodChange(x,z’, k); // Change neighbourhood.
tend = CPUTime()7 t = tend — Ustart;
until ¢z’ = Tz or t > tynq;
until ¢ > t,,4;
return z’.

© 00 3O U Wi

Figure 2: VND pseudo-code.

2.4. Relazxation induced neighbourhood search

The relaxation induced neighbourhoods search (RINS for short), proposed by
Danna et al. in 2005 (see [7]), solves reduced problems at some nodes of a branch-
and-bound tree when performing a tree search. It is based on the observation
that often an optimal solution of a 0-1 MIP and an optimal solution of its LP
relaxation have some variables with the same values. Therefore, it is more likely
that some variables in the incumbent integer feasible solution which have the
same value as the corresponding variables in the linear relaxation solution, will
have the same value in the optimal solution. Hence, it seems justifiable to fix the
values of those variables and then solve the remaining subproblem, in order to
obtain a 0-1 MIP feasible solution with a good objective value. On the basis of
this idea, at a node of the branch-and-bound tree, the RINS heuristic performs
the following procedure: (i) fix the values of the variables which are the same
in the current continuous relaxation and the incumbent integral solution; (ii)
set the objective cutoff to the value of the current incumbent solution; and (iii)
solve the MIP subproblem on the remaining variables.

More precisely, let 29 be the current incumbent feasible solution, Z the so-
lution of the continuous relaxation at the current node, J = {j € B | x? =z},
x* the best known solution found and € > 0 a small nonnegative real number.
Then RINS solves the following reduced problem:

min c¢'zx
st. Ax>b
0 .
0 = T; =1 Vied
P(Cﬂ,l‘,J) CTl‘SCTJZ*—E
z; €{0,1} VieB#£D
xz; >0 Viecl

Since solving MIP problems optimally can be time consuming, it is desirable
to avoid solving reduced problems which are very similar. For example, if the
LP relaxations are very similar, adjacent nodes of the branch-and-bound tree
tend to have very similar optimal solutions. Therefore, one way to meet this
difficulty would be to solve reduced problems only if a new best solution z*

was found during the process. Hence, with this strategy, RINS provides more
diversification than local branching because the optimal LP solution potentially
changes at far nodes (nodes which are far with respect to the path length from
the root node of the branch-and-bound tree). Experiments have shown that the
RINS heuristic thus described gives the best results if not applied to each node
of the branch-and-bound tree, but with a certain frequency f >> 1 (usually f =
100). Another way to meet the possibility of taking a long computational time
to find the MIP optimal solution is to limit the time for solving subproblems.

2.5. Other Approaches

Recently, a few similar approaches have emerged which follow the idea of
decomposition based on successive approximations. Although some of them
are problem specific, their ideas can easily be extended to solve general MIP
problems.

One idea for generating and exploiting small subproblems within a successive
approximations method was proposed by Glover ([18, 19]), but without any
empirical evidence.

Hanafi and Wilbaut have introduced several enhanced versions ([10, 9, 11])
of the exact algorithm proposed by Soyster in [3]. The process consists in
generating two sequences of upper and lower bounds until the optimality of the
problem solution is proven. This process is used as a heuristic with a maximum
number of iterations. The integration of mixed integer programming relaxations
allows the lower bounds to be refined and diversifies the search. They have also
suggested a new proof of the finite convergence of this algorithm. In addition,
they have proposed a new two-phase heuristic algorithm which uses dominance
properties to decrease the number of reduced problems to be solved exactly.
The proposed heuristics have been tested on the multidimensional knapsack
problem. The results obtained on a set of available and difficult instances show
the efficiency of this method.

Mitrovi¢-Mini¢ and Punnen have developed a very large scale variable neigh-
bourhood search (VLSVNS) (see [12]), based on the very large scale neigh-
bourhood search (see [5]) and VNS ([16]). This approach uses the exponential
k-exchange neighbourhoods with large values for k. These very large neigh-
bourhoods are then explored by exactly or approximately solving the sequence
of subproblems. The size of each subproblem and the CPU time allowed for
solving it are increased in the VNS manner. VLSVNS has been applied effi-
ciently for solving the general assignment problem and it outperforms existing
methods ([12]).

3. Variable neighbourhood decomposition search

Variable neighbourhood decomposition search (VNDS) is a two-level VNS
scheme for solving optimisation problems, based upon the decomposition of the
problem [20]. In general, an optimisation problem can be defined as

(OPT) min{f(z) |z € X,X C S},

where f, x, X and S are the real valued objective function, feasible solution,
feasible set, and solution space, respectively. Note that MIP problem defined in
(1) is a special case of optimisation problem, with f(z) = ¢¥x and S = R". We
will denote with A the set of all solution attributes (or variable indices, if set X
is enumerable) and with z(J) = (z;);cs the subvector associated with the set
of solution attributes (or variable indices) J C A and solution z. The notion
of a reduced problem, defined in (2), can be generalised for any optimisation
problem P. Namely, if P is a given optimisation problem, then the reduced
problem P(x°,.J), associated with the arbitrary feasible solution x° and the
subset of solution attributes J C A, can be defined as:

P(z°,J) min{f(z) |z € X, X C S, z; = :E(;, Vje J}.

The steps of VNDS method are presented in Fig. 3, where the statement
y = LocalSearch(P, z,t) means that a local search technique is applied to the
problem P, starting from z as the initial solution, with a given running time
limit ¢ and with solution y as a result.

Procedure VNDS(P7 x, kmina kmam7 tmama tsub, tvnd)
1 repeat
k = kmin; tstare = cpuTime();
repeat
Choose randomly Jj, C A such that | Ji |= k;
o' (J) = x(Jk); Ju = A\ Ji; B
x'(Jy) = LocalSearch(P(z, Ji), (Jk)s tsub);
if Tz’ <z
then z”/ = VND(P, 2/, tynd);
9 else '/ = 1/;
10 NeighbourhoodChange(z, z”, k);
11 tend = CPUTime(); t = tend — tstart;
12 until (k = kpae) or (8> tmaz);
13 until t > t,,44;
14 return z”;

0 O U W N

Figure 3: VNDS pseudo-code.

Input parameters for the VNDS algorithm are the optimisation problem P,
the initial solution z, minimal number k,,;, of neighbourhoods to be explored,
maximal number k4, of neighbourhoods to be explored, maximal running time
allowed t,,q, time allowed for the inner local search procedure t,,;, and time
allowed for the VND procedure t,,4.

At each iteration, VNDS chooses randomly a subset of indices Ji C A with
cardinality k. Then a local search is applied to the subproblem P(x, J)), where
variables with indices from .J; are fixed to values of the current incumbent
solution z. The local search starts from the current solution x(Jy), where Jj =
A\ Ji, to obtain the final solution z’ and it operates only on subvector z(J)

(i.e., on the free variables indexed by J). If an improvement occurs, we perform
a local search on the complete solution, starting from z’. The local search
applied at this stage is usually some other VNS scheme. Since our experiments
have shown that the basic VNS method can be very time consuming, we found
it more effective to apply the VND procedure at this step.

In recent years, similar decomposition strategies for solving MIP problems
have been proposed (see for instance [19] or [11]).

4. Algorithm of VNDS for 0-1 MIP Problems

In this section we propose a new variant of VNDS for solving 0-1 MIP prob-
lems, called VNDS-MIP. This method combines a linear programming (LP)
solver, MIP solver and VNS based MIP solving method VND-MIP in order
to efficiently solve a given 0-1 MIP problem. The pseudo-code for VNDS for
the 0-1 MIP, called VNDS-MIP, is given in Fig. 4. Input parameters for the
VNDS-MIP algorithm are instance P of 0—1 MIP problem, parameter d, which
defines the value of variable kgiep, i.e., defines the number of variables to be re-
leased (set free) in each iteration of the algorithm, the maximum running time
allowed ¢4z, time tg,p allowed for solving subproblems, time t,,4 allowed for
the VND-MIP procedure, time t,,;, allowed for call to the MIP solver within
the VND-MIP procedure and maximum size rhs;,., of neighbourhood to be ex-
plored within the VND-MIP procedure. Throughout the pseudo-code, the calls
to the general MIP solver are denoted as ' = MIPSOLVE(P, ¢, x), meaning
that the solver is called for the problem instance P, with the solving time limit
t and starting solution supplied z, where =’ designates the best solution found.

At the beginning of the algorithm, we first solve the LP-relaxation of the
original problem P to obtain an optimal solution Z and we generate an ini-
tial feasible solution . The value of the objective function ¢’z provides a
lower bound on the optimal value v(P) of P. Note that, if the optimal solu-
tion T is integer feasible for P, we stop and return T as an optimal solution
for P. At each iteration of the VNDS procedure, we compute the distances
0; =| &; —T; | from the current incumbent solution values (x;);ep to their
corresponding LP-relaxation solution values (Z;)jes and index the variables
xj,j € B so that 6; < 02 < ... < 6, (where p =| B |). Then we solve the
subproblem P(x,{1,...,k}) obtained from the original problem P, where the
first k variables are fixed to their values in the current incumbent solution x.
If an improvement occurs, VND is performed over the whole search space and
the process is repeated. If not, the number of fixed variables in the current
subproblem is decreased. Note that by fixing only the variables whose distance
values are equal to zero, i.e., setting k = max{j € B | §; = 0}, RINS scheme is
obtained.

In the remainder of this section, we describe the VND-MIP procedure which
is used as a local search method within the VNDS-MIP. Input parameters for

VNDS_MIP(Pv da tmaza tsuba tvnda tmipa Thlsmaz)
1 Find an optimal solution T of LP(P); if T is integer feasible then return Z.

2 Find the first feasible 0-1 MIP solution x of P.
3 Set tstart = cpuTime(), t = 0.
4 while (t < tmaz)
5 Compute 6; =| z; — F; | for j € B, and index the variables z;, j € B.
so that 61 <2 < ... < dp, p=| B|
6 Set ng =| {j € B|d; # 0} |, kstep = [na/d], k = p — kstep;
7 while (¢t < tq.) and (k > 0)
8 ' = MIPSOLVE(P(x,{1,2,...,k}), tsup,);
9 if (T2’ < ¢Tx) then
10 x = VND-MIP (P, tynd; tmip, "hSmagz, &'); break;
11 else
12 if (k — kstep > p — ng) then kg, = max{[k/2], 1};
13 Set k =k — Egtep;
14 Set teng = cpuTime(), t = tend — tstart;
15 endif
16 endwhile

17 endwhile
18 return z.

Figure 4: VNDS for MIPs.

the VND-MIP algorithm are instance P of the 0—1 MIP problem, total running
time allowed typnq, time ¢, allowed for the MIP solver, maximum size rhsmqq
of the neighbourhood to be explored, and starting solution z’. The output is
new solution obtained. The VND-MIP pseudo-code is given in Fig. 5.

At each iteration of VND-MIP algorithm, the pseudo-cut §(B,z’, z) < rhs,
with the current value of rhs is added to the current problem (line 4). Then
the CPLEX solver is called to obtain the next solution z’ (line 5), starting from
the solution z’ and within a given time limit. Thus, the search space for the
MIP solver is reduced, and a solution is expected to be found (or the problem is
expected to be proven infeasible) in a much shorter time than the time needed
for the original problem without the pseudo-cut, as has been experimentally
shown in [6] and [8]. The following steps depend on the status of the CPLEX
solver. If an optimal or feasible solution is found (lines 7 and 10), it becomes a
new incumbent and the search continues from its first neighbourhood (rhs = 1,
lines 9 and 12). If the subproblem is solved exactly, i.e., optimality (line 7) or
infeasibility (line 13) is proven, we do not consider the current neighbourhood
in further solution space exploration, so the current pseudo-cut is reversed into
the complementary one (§(B8,2',2) > rhs + 1, lines 8 and 14). However, if a
feasible solution is found but has not been proven optimal, the last pseudo-
cut is replaced with 6(B,a’,2) > 1 (line 11), in order to avoid returning to
this same solution again during the search process. In case of infeasibility (line
13), neighbourhood size is increased by one (rhs = rhs + 1, line 15). Finally,

10

if the solver fails to find a feasible solution and also to prove the infeasibility
of the current problem (line 16), the VND-MIP algorithm is terminated (line
17). The VND-MIP algorithm also terminates whenever the stopping criteria
are met, i.e., the running time limit is reached or the maximum size of the
neighbourhood is exceeded.

VND-MIP(P, tynd, tmip, "hSmaz, T')
1 rhs = 1; tspart = cpuTime(); t = 0;

2 while (t < tynqg and rhs < rhspe,) do
3 TimeLimit = min(tmip, tond — t);
4 add the pseudo-cut §(B, ', z) < rhs;
5 2" = MIPSOLVE(P, TimeLimit, 2');
6 switch solutionStatus do
7 case “optSolFound”:
8 reverse last pseudo-cut into 6(B,a’,x) > rhs + 1;
9 ' =a2";rhs = 1;
10 case “feasibleSolFound”:
11 replace last pseudo-cut with §(B,a’,x) > 1;
12 ' =z2";rhs = 1;
13 case “provenInfeasible”:
14 reverse last pseudo-cut into 0(B,a’,x) > rhs + 1;
15 rhs =rhs +1;
16 case “noFeasibleSolFound”:
17 Go to 20;
18 end
19 tend = CPUT’éme<)5 t = tend — tstart;
20 end

21 return z”.

Figure 5: VND for MIPs.

Hence, in our algorithm we combine two approaches: hard variable fixing
in the main scheme and soft variable fixing in the local search. In this way we
manage to outperform state-of-the-art heuristics for difficult MIP models, as we
will show in the next section which discusses the computational results.

5. Computational Results

In this section we present the computational results for our algorithm. All
results reported in this section are obtained on a computer with a 2.4GHz Intel
Core 2 Duo E6600 processor and 4GB RAM, using general purpose MIP solver
CPLEX 10.1. Algorithms were implemented in C++ and compiled within Mi-
crosoft Visual Studio 2005.

11

Methods compared. The VNDS is compared with the four other recent MIP
solution methods: Variable Neighbourhood Search Branching (VNSB) [8], local
branching (LB) [6], relaxation induced neighbourhood search (RINS) [7] and the
CPLEX MIP solver (with all default options but without RINS heuristic). The
VNSB and the LB use CPLEX MIP solver as a black box. The RINS heuristic
is directly incorporated within a CPLEX branch-and-cut tree search algorithm.
It should be noted that the objective function values for LB, VNSB and RINS
reported here are sometimes different from those given in the original papers.
The reasons for this are the use of a different version of CPLEX and the use of
a different computer.

Test bed. The 29 test instances which we consider here for comparison pur-
poses are the same as those previously used for testing performances of LB and
VNSB (see [6], [8]) and most of the instances used for testing RINS (see [7]).
The characteristics of this test bed are given in Tab. 1: the number of con-
straints is given in column one, the total number of variables is given in column
two, column three indicates the number of binary variables, and column four
indicates the best known published objective value so far.

Since we wanted to clearly show the differences between all the techniques,
we decided to divide the models into four groups, according to the gap between
the best and the worst solution obtained using the five methods. Problems are
defined as very small-spread, small-spread, medium-spread, and large-spread if
the gap mentioned is less than 1%, between 1% and 10%, between 10% and 100%
and larger than 100%, respectively. A similar way of grouping the test instances
was first presented in Danna et al. [7], where the problems were divided into
three sets. We use this way of grouping the problems mainly for the graphical
representation of our results.

(Table 1 comes here.)

CPLEX parameters. As mentioned earlier, the CPLEX MIP solver is used
in each method compared. We now give a more detailed explanation of the
way in which we use its parameters. For LB, VNSB and VNDS, we choose
to set the CPX_PARAM MIP_ EMPHASIS to FEASIBILITY for the first feasible so-
lution, and then change to the default BALANCED option after the first feasible
solution has been found. Furthermore, for all instances except for van, we
turn off all heuristics for finding the first feasible solution, i.e., both parameters
CPX_PARAM HEUR_FREQ and CPX_PARAM RINS_HEUR are set to —1. We do this be-
cause we have empirically observed that the use of heuristic within CPLEX slows
down the search process, without improving the quality of the final solution.

After the first feasible solution has been found, we set the local heuristics
frequency (parameter CPX_PARAM HEUR FREQ) to 100. For the instance van, the
first feasible solution cannot be found in this way within the given time limit,
due to its numerical instability. So, for this instance, we set both parameters
CPX_PARAM HEUR_FREQ and CPX_PARAM RINS_HEUR to 100 in order to obtain the
first feasible solution, and after this we turn off the RINS heuristic.

Termination. All methods were run for 5 hours (¢4, = 18,000 seconds), the

12

same length of time as in the papers about Local Branching ([6]) and VNSB
([8]). An exception is the NSR8K, which is the largest instance in the test bed.
Due to the long time required for the first feasible solution to be attained (more
than 13,000 seconds), we decided to allow 15 hours for solving this problem
(tmaz = 54,000).

VNDS Implementation. In order to evaluate the performance of the algo-
rithm and its sensitivity to the parameter values, we tried out different param-
eter settings. As our aim was to make the algorithm user-friendly, we tried to
reduce the number of parameters. In addition, we tried to use the same val-
ues of parameters for testing most of the test instances. As the result of our
preliminary testing, we obtained two variants of VNDS for MIP which differ
only in the set of parameters used for the inner VND subroutine. Moreover, we
found an automatic rule for switching between these two variants. The details
are given below.

VNDS with the first VND version (VNDS1). In the first version, we
do not restrict the size of the neighbourhoods, nor the time for the MIP solver
(apart from the overall time limit for the whole VND procedure). In this ver-
sion the number of parameters is minimised (following the main idea of VNS
that there should be as few parameters as possible). Namely, we set t,,;, = 00
and rhsq = 00, leaving the input problem P, the total time allowed %,,4 and
the initial solution z’ as the only input parameters. This allowed four input
parameters for the whole VNDS algorithm (apart from the input problem P):
d, timaz, tsup and tyng. We set d = 10 in all cases!, total running time allowed
tmaz as stated above, tg,, = 1200s and t,,q = 900s for all models except NSR8K,
for which we put tg,;, = 3600s and t,,q = 2100s.

VNDS with the second VND version (VNDS2). In the second version
of the VND procedure, we aim to reduce the search space and thereby hasten
the solution process. Therefore, we limit the maximal size of neighbourhood
that can be explored, as well as the time allowed for the MIP solver. Values for
the parameters d and t,,,, are the same as in the first variant, and the other
settings are as follows: Thsp., = 5 for all instances, tgup = tyng = 1200s for
all instances except NSR8K, tsup = tyna = 3600s for NSR8K, and t,ip = tund/d
(i.e. timip = 360s for NSR8K and t,,;, = 120s for all other instances). Thus, the
number of parameters for this second variant of VNDS is again limited to four
(not including the input problem P): d, ¢z, tond and rhSmaz.

Problems classification. The local search step in VNDS]1 is obviously more
computationally extensive and usually more time-consuming, since there are no

1d is the number of groups in which the variables (which differ in the incumbent integral and
linear relaxation solution) are divided, in order to define the increase kstep of neighbourhood
size within VNDS (see Fig. 4).

13

limitations regarding the neighbourhood size and time allowed for the call to
CPLEX solver. Therefore we expected VNDS2 to be more successful with prob-
lems requiring more computational effort to be solved. For the less demanding
problems, however, it seems more probable that the given time limit will allow
the first variant of VND to achieve greater improvement.

To formally distinguish between these types of problems, we say that the
MIP model P is computationally demanding with respect to time limit T, if the
time needed for the default CPLEX MIP optimiser to solve it is greater than
2T'/3, where T is the maximum time allowed for a call to the CPLEX MIP
optimiser. We say that MIP model P is computationally non-demanding with
respect to the time limit T, if it is not computationally demanding with respect
to T. Since the time limit for all problems in our test bed is already given,
we will refer to computationally demanding problems with respect to 5 hours
(or 15 hours for the NSR8K instance) as demanding problems. Similarly, we will
refer to computationally non-demanding problems with respect to 5 hours as
non-demanding problems.

As the step of our final method, we choose to apply VNDS1 to non-demanding
problems and VNDS2 to demanding problems. Since this selection method re-
quires solving each instance by the CPLEX MIP solver first, it can be very
time consuming. Therefore, it would be better to apply another method, based
solely on the characteristics of the instances. However, the complexity of such
a method would be beyond the scope of this paper, so we decided to present
the results obtained with the criterion described above. In Fig. 6 we give the
average performance of the two variants VNDS1 and VNDS2 over the prob-
lems in the test bed (large-spread instances are not included in this plot?). As
predicted, it is clear that in the early stage of the solution process, heuristic
VNDS2 improves faster. However, due to the longer time allowed for solving
subproblems, VNDS1 improves its average performance later. This pattern of
behaviour is even more evident in Fig. 7, where we presented the average gap
change over time for demanding problems. However, from Fig. 8, it is clear
that a local search in VNDSI is more effective within a given time limit for
non-demanding problems. Even more, Fig. 8 suggests that the time limit for
non-demanding problems can be reduced.

(Figures 6-8 come here.)
In Tab. 2, for each of the two variants VNDS1 and VNDS2 we present the

time needed until the finally best found solution is reached. The better of the
two values for each problem is bolded. As expected, the average time perfor-

2Problems marsharel and markshare2 are specially designed hard small 0-1 instances, with
a non-typical behaviour. Being large-spread instances, their behaviour significantly affects the
form of the plot 6. The time allowed for instance NSR8K is 15 hours, as opposed to 5 hours
allowed for all other instances. Furthermore, it takes a very long time (more than 13,000
seconds) to obtain the first feasible solution for this instance. For these reasons, we decided
to exclude these three large-spread instances from Fig. 6.

14

mance of VNDS2 is better, due to the less extensive local search.
(Table 2 comes here.)

In Tab. 3 we present VNDS1 and VNDS2 objective values and CPLEX run-
ning time for reaching the final solution for all instances in the test bed. The
results for demanding problems, i.e., rows where CPLEX time is greater than
12,000 seconds (36,000 seconds for NSR8K instance), are typewritten in italic
font, and the better of the two objective values is further bolded. The value
selected according to our automatic rule is marked with an asterisk.

(Table 3 comes here.)

From the results shown in Tab. 3, we can see that by applying our automatic
rule for selecting one of the two parameters settings, we choose the better of
the two variants in 24 out of 29 cases (i.e., in 83% of cases). This further justi-
fies our classification of problems and the automatic rule for selection between
VNDS1 and VNDS2. With respect to running time, we chose the better of the
two variants in 15 out of 29 cases.

Comparison. In Tab. 4 we present the objective function values for the meth-
ods tested. Here we report the values obtained with one of the two parameters
settings selected according to our automatic rule (see above explanation). For
each instance, the best of the five values obtained in our experiments is bolded,
and the values which are better than the currently best known are marked with
an asterisk.

(Table 4 comes here.)

It is worth mentioning here that most of the best known published results
originate from the paper introducing the RINS heuristic [7]. However, these
values were not obtained by pure RINS algorithm, but with hybrids which
combine RINS with other heuristics (such as local branching, genetic algorithm,
guided dives, etc.). In this paper, however, we evaluate the performance of the
pure RINS algorithm, rather than different RINS hybrids. It appears that:

(i) With our VNDS based heuristic we obtained better objective values than
the best published so far, for as many as eight test instances out of 29
(marksharel, markshare2, van, biellal, UMTS, nsrand_ipx, alclsl and
sp97ar). VNSB improved the best known result in three cases (marksharel,
glass4 and sp97ic), and local branching and RINS obtained it for one
instance (NSR8K and alclsl, respectively); CPLEX alone did not improve
any of the best known objective values.

(ii) With our VNDS based heuristic we were able to reach the best result among
all the five methods in 16 out of 29 cases, whereas the RINS heuristic

15

obtained the best result in 12 cases, VNS branching in 10 cases, CPLEX
alone in 6 and local branching in 2 cases.

In Tab. 5, the values of relative gap in % are provided. The gap is computed

|fbest‘

where fpes: is the better value of the following two: the best known published
value, and the best among the five results we have obtained in our experiments.
The table shows that our algorithm outperforms on average all other methods;
it has a percentage gap of only 0.654%, whereas the default CPLEX has a gap of
32.052%, pure RINS of 20.173%, local branching of 14.807%, and VNS branch-
ing of 3.120%.

as
x 100,

(Table 5 comes here.)

In Fig. 9 we show how the relative gap changes with time for instance
biellal. We selected biellal since it is a small spread instance, where the
final gap values of different methods are very similar.

(Figure 9 comes here.)

In Fig. 10-13 we graphically display the gaps for all the methods tested. Fig-
ures 10-13 show that the large relative gap values in most cases occur because
the objective function value achieved by the VNDS algorithm is smaller than
that of the other methods.

(Figures 10-13 come here.)

Finally, for all the methods we display the computational time spent until
the solution process is finished (see Tab. 6). In computing the average time
performance, instance NSR8K was not taken into account, since the time allowed
for solving this model was 15 hours, as opposed to 5 hours for all other models.
The results show that LB has the best time performance, with an average run-
ning time of nearly 6,000 seconds. VNDS is the second best method regarding
the computational time, with an average running time of approximately 7,000
seconds. As regards the other methods, VNSB takes more than 8,000 seconds
on average, whereas both CPLEX and RINS take more than 11,000 seconds.

(Table 6 comes here.)

The values in Tab. 6 are averages obtained in 10 runs. All the actual values
for a particular instance are within the +5% of the value presented for that
instance. Due to the consistency of the CPLEX solver, the objective value (if
there is one) obtained starting from a given solution and within a given time
limit is always the same. Therefore, the values in Tab. 4-5 are exact (standard
deviation over the 10 runs is 0).

16

Statistical analysis. It is well known that average values are susceptible to
outliers, i.e., it is possible that exceptional performance (either very good or
very bad) in a few instances influences the overall performance of the algorithm
observed. Therefore, comparison between the algorithms based only on the
averages (either of the objective function values or of the running times) does
not necessarily have to be valid. This is why we have carried out statistical
tests to confirm the significance of differences between the performances of the
algorithms. Since we cannot make any assumptions about the distribution of the
experimental results, we apply a non-parametric (distribution-free) Friedman
test [21], followed by the Bonferroni-Dunn [22] post hoc test, as suggested in
[23].

Given ¢ algorithms and N data sets, the Friedman test ranks the perfor-
mances of algorithms for each data set (in case of equal performance, average
ranks are assigned) and tests if the measured average ranks R; = + SN (!
as the rank of the jth algorithm on the ith data set) are significantly different
from the mean rank. The statistic used is

¢
= 12N Z 247€(€+1)2
7y +1) i 4 ’
which follows a x? distribution with £—1 degrees of freedom. Since this statistic
proved to be conservative [24], a more powerful version of the Friedman test was
developed [24], with the following statistic:

P (N =Dk
FONE—1) —x%

which is distributed according to the Fischer’s F-distribution with ¢ — 1 and
(¢ —1)(N — 1) degrees of freedom. For more details, see [23].

In order to perform the Friedman test, we first rank all the algorithms ac-
cording to the objective function values (see Tab. 7) and running times (see
Tab. 8). Average ranks by themselves provide a fair comparison of the algo-
rithms. Regarding the solution quality, the average ranks of the algorithms over
the 29 data sets are 2.43 for VNDS, 2.67 for RINS, 3.02 for VNSB, 3.43 for LB
and 3.45 for CPLEX (Tab. 7). Regarding the running times, the average ranks
are 2.28 for LB, 2.74 for VNDS, 2.78 for VNSB, 3.52 for RINS, and 3.69 for
CPLEX (Tab. 8). These results confirm the conclusions which we draw from
observing the average values: that VNDS is the best choice among the five
methods regarding the solution quality and the second best choice, after LB,
regarding the computational time. However, according to the average rank-
ings, the second best method regarding the solution quality is RINS, followed
by VNSB, LB and CPLEX, in turn. Regarding the computational time, the
ordering of the methods by average ranks is the same as by average values.

(Tables 7-8 come here.)

In order to statistically analyse the difference between the ranks computed,
we calculate the value of the Fr statistic for ¢ = 5 algorithms and N = 29

17

data sets. This value is 2.49 for the objective value rankings and 4.50 for the
computational time rankings. Both values are greater than the critical value 2.45
of the F-distribution with (£ —1,(¢ — 1)(N — 1)) = (4,112) degrees of freedom
at the probability level 0.05. Therefore, the null hypothesis that ranks do not
significantly differ is rejected. Thus, we conclude that there is a significant
difference between the performances of the algorithms, both regarding solution
quality and computational time.

Since the equivalence of the algorithms is rejected, we proceed with the
post hoc test. The most common post hoc tests used after the Friedman test
are the Nemenyi test [25], for pairwise comparisons of all the algorithms, or
the Bonferroni-Dunn test [22] when one algorithm of interest (the control algo-
rithm) is compared with all the other algorithms (see [23]). In the special case
of comparing the control algorithm with all the others, the Bonferroni-Dunn
test is more powerful than the Nemenyi test (see [23]), so we decided to use
Bonferroni-Dunn test as the post-hoc test with VNDS as the control algorithm.
According to the Bonferroni-Dunn test, the performance of two algorithms is
significantly different if the corresponding average ranks differ by at least the
critical difference
(L+1)

6N
where q, is the critical value at the probability level a that can be obtained
from the corresponding statistical table. For £ = 5, we get gp.05 = 2.498 and
qo.10 = 2.241 (see [23]), so CD = 1.037 for a = 0.05 and CD = 0.931 for
a = 0.10. Regarding the solution quality, from Tab. 9 we can see that, at
the probability level 0.10, VNDS is significantly better than LB and CPLEX,
since the corresponding average ranks differ by more than CD = 0.931. At
the probability level 0.05, post hoc test is not powerful enough to detect any
differences. Regarding the computational time, from Tab. 10, we can see that,
at the probability level 0.10, VNDS is significantly better than CPLEX, since
the corresponding average ranks differ by more than CD = 0.931. Again, at the
probability level 0.05, the post hoc test could not detect any differences. For
the graphical display of average rank values in relation to the Bonferroni-Dunn
critical difference from the average rank of VNDS as the control algorithm, see
Fig. 14-15.
(Tables 9-10 come here.) (Figures 14-15 come here.)

CD =qq

6. Conclusion

In this paper we propose a new approach for solving binary mixed inte-
ger programming (MIP) problems. Our method combines hard and soft vari-
able fixing: hard fixing is based on the variable neighborhood decomposition
search (VNDS) framework, whereas soft fixing introduces pseudo-cuts as in lo-
cal branching [6] according to the rules of the variable neighbourhood descent
(VND) scheme [8]. In this way we obtain a two-level VNS scheme known as a
VNDS heuristic. Moreover, we found a new way to classify instances within a

18

given test bed. We say that a particular instance is either computationally de-
manding or non-demanding, depending on the CPU time needed for the default
CPLEX optimiser to solve it. Our selection of the particular set of parameters
is based on this classification. The VINDS proposed proves to perform well when
compared with the state-of-the-art 0-1 MIP solution methods. More precisely,
for our solution quality measures we consider several criteria: average percent-
age gap, average rank according to objective values and the number of times
that the method managed to improve the best known published objective. Our
experiments show that VNDS proves to be the best in all the aspects stated. In
addition, VNDS appears to be the second best method (after LB) regarding the
computational time, according to both average computational time and average
time performance rank. By performing a Friedman test on our experimental
results, we have proven that a significant difference does indeed exist between
the algorithms.

Finally, we conclude this work with a few remarks about possible future
work. First, our current incumbent updates are based only on the upper bound
estimates. Therefore one would expect to speed up the search process by incor-
porating the lower bound updates in addition. This can be done for example
by introducing new constraints when generating subproblems [11]. Second, as
our method is presented as a stand-alone heuristic, i.e., is performed only at the
root node of the CPLEX branch-and-bound tree, integrating this method with
the branch-and-bound search (allowing it to be performed at each node of the
tree) might lead to an even more successful strategy. It is also possible, finally,
that this approach may be extended for solving general MIP problems.

Acknowledgements

The present research work has been supported by the International Campus
on Safety and Intermodality in Transportation the Nord-Pas-de-Calais Region,
the European Community, the Regional Delegation for Research and Technol-
ogy, the Ministry of Higher Education and Research, and the National Center
for Scientific Research. The authors gratefully acknowledge the support of these
institutions. We also would like to thank the referees for their valuable sugges-
tions for improving this paper.

References

[1] L. Wolsey, G. Nemhauser, Integer and Combinatorial Optimization (1999).

[2] M. Garey, D. Johnson, et al., Computers and Intractability: A Guide to
the Theory of NP-completeness, WH Freeman San Francisco, 1979.

[3] A. Soyster, B. Lev, W. Slivka, Zero-One Programming with Many Vari-
ables and Few Constraints, European Journal of Operational Research 2 (3)
(1978) 195-201.

19

[4]

[10]

[11]

[12]

[13]

[14]

[15]

P. Shaw, Using Constraint Programming and Local Search Methods to
Solve Vehicle Routing Problems, Lecture Notes in Computer Science (1998)
417-431.

R. Ahuja, O. Ergun, J. Orlin, A. Punnen, A survey of very large-scale
neighborhood search techniques, Discrete Applied Mathematics 123 (1-3)
(2002) 75-102.

M. Fischetti, A. Lodi, Local branching, Mathematical Programming 98 (2)
(2003) 23-47.

E. Danna, E. Rothberg, C. L. Pape, Exploring relaxation induced neigh-
borhoods to improve mip solutions, Mathematical Programming 102 (1)
(2005) 71-90.

P. Hansen, N. Mladenovi¢, D. Urosevié¢, Variable neighborhood search and
local branching, Computers and Operations Research 33 (10) (2006) 3034
3045.

C. Wilbaut, Heuristiques hybrides pour la résolution de problemes en vari-
ables 0-1 mixtes, Ph.D. thesis, Université de Valenciennes, Valenciennes,
France (2006).

C. Wilbaut, S. Hanafi, A. Freville, S. Balev, Tabu search: global intensi-
fication using dynamic programming, CONTROL AND CYBERNETICS
35 (3) (2006) 579.

C. Wilbaut, S. Hanafi, New convergent heuristics for 0-1 mixed integer
programming, European Journal of Operational Research 195 (1) (2009)
62-74.

S. Mitrovié-Mini¢, A. Punnen, Very large-scale variable neighborhood
search for the generalized assignment problem, accepted for publication
in Journal of Interdisciplinary Mathematics.

S. Salhi, A. Al-Khedhairi, Integrating heuristic information into exact
methods: The case of the vertex p-centre problem, Accepted for publi-
cation in JORS.

R. Bixby, M. Fenelon, Z. Gu, E. Rothberg, R. Wunderling, MIP: Theory
and practice — closing the gap (2000) 19-49.

P. Hansen, N. Mladenovié, Variable neighborhood search: Principles and
applications, European Journal of Operational Research 130 (3) (2001)
449-467.

N. Mladenovié¢, P. Hansen, Variable neighborhood search, Computers and
Operations Research 24 (11) (1997) 1097-1100.

P. Hansen, N. Mladenovi¢, Developments of VNS, In: Ribeiro, C. and
Hansen, P. (Eds.), Essays and Surveys in Metaheuristics. 415-440.

20

[18]

[19]

F. Glover, Heuristics for Integer Programming Using Surrogate Constraints,
Decision Sciences 8 (1) (1977) 156-166.

F. Glover, Adaptive memory projection methods for integer programming,
In: Rego, C., Alidaee, B. (Eds.), Metaheuristic Optimization Via Memory
and Evolution. (2005) 425 — 440.

P. Hansen, N. Mladenovi¢, D. Perez-Britos, Variable Neighborhood Decom-
position Search, Journal of Heuristics 7 (4) (2001) 335-350.

M. Friedman, A comparison of alternative tests of significance for the prob-
lem of m rankings, The Annals of Mathematical Statistics 11 (1) (1940)
86-92.

O. Dunn, Multiple comparisons among means, Journal of the American
Statistical Association (1961) 52-64.

J. Demsar, Statistical comparisons of classifiers over multiple data sets,
The Journal of Machine Learning Research 7 (2006) 1-30.

R. L. Iman, J. M. Davenport, Approximations of the critical region of the
Friedman statistic, Communications in Statistics — Theory and Methods 9
(1980) 571-595.

P. Nemenyi, Distribution-free multiple comparisons, Ph.D. thesis, Prince-
ton. (1963).

21

15
VNDSL1
VNDS2
__10f -
S
Q
©
o
()
2
g
T
a4
5, -
O L L L L
0 1 2 3 4 5

Time (h)

Figure 6: Relative gap average over all instances in test bed vs. computational time.

15
VNDS1
VNDS2
10 -
g
Qo
©
o
2]
z
g
T
o
5 - -
O L L L L
0 1 2 3 4 5

Time (h)

Figure 7: Relative gap average over demanding instances vs. computational time.

22

15
VNDSL1
VNDS2
__10f -
S
Q
©
o
()
2
g
T
a4
5, -
0
0 1 2 3 4 5

Time (h)

Figure 8: Relative gap average over non-demanding instances vs. computational time.

biellal
VNDS
VNSB
LB
CPLEX
RINS]
S
Q. 4
[
o
()
= |
©
T
14
e
3 4 5
Time (h)

Figure 9: The change of relative gap with computational time for biellal instance.

23

800

700 f

600

500

400

Relative gap (%)

300

200

100

20

18

= = = =
o N i o

Relative gap (%)
o]

:
I NDs
I vNsB
B
I crPLE
| I RINS

marksharel markshare2 NSR8K
Problems

Figure 10: Relative gap values (in %) for large-spread instances.

T
I NDs
H I VNSB g
s
|| B cPLE i
I RiINS

swath glass4 van netl2
Problems

Figure 11: Relative gap values (in %) for medium-spread instances.

24

Relative gap (%)

Relative gap (%)

2.

[

0.

18

1.6

14

1.2

0.8

0.6

0.4

0.2

3 T T
I VDS
[vNsB
s]
T cpLE
I RiNS
2 - -
5 - -
l - -
5 - -
rail507 rail4284c biellal blclsl b2clsl sp97ar sp97ic sp98ar sp98ic
Problems
Figure 12: Relative gap values (in %) for small-spread instances.
: ‘ ‘ 1 mke
I \os 2 danoint
-| [VNSB 1 3arkiool
. 4 seymour
5 rail2536¢
- CPLEX B N
= RINS 6 rail2586¢
7 rail4872c
r 1 8 UMTS
9 roll3000
L | 10 nsrand_ipx
11 alclsl
12 a2clsl
B 1 131tr12-30
1 2 3 4 5 6 7 8 9 10 11 12 13

Problems

Figure 13: Relative gap values (in %) for very small-spread instances.

25

35 ——r

CD = 1.037 at 0.05 level
CD =[0.931 at 0.10 level

VNDS(2.43) VNSB(3.02) LB(3.43) CPLEX(3.45) RINS(2.67)
Algorithms (control algorithm VNDS).

25

Objective value average ranks.

Figure 14: Average solution quality performance ranks with respect to Bonferroni-Dunn crit-
ical difference from the rank of VNDS as the control algorithm.

CD = 1.037 at 0.05 level
CD =[0.931 at 0.10 level

VNDS(2.74) VNSB(2.78) LB(2.28) CPLEX(3.69) RINS(3.52)
Algorithms (control algorithm VNDS).

35

25

Running time average ranks.

Figure 15: Average computational time performance ranks with respect to Bonferroni-Dunn
critical difference from the rank of VNDS as the control algorithm.

26

Instance Number of Total number Number of Best published

constraints of variables binary variables objective value
mkc 3411 5325 5323 -563.85
swath 884 6805 6724 467.41
danoint 664 521 56 65.67
marksharel 6 62 50 7.00
markshare2 7 74 60 14.00
arki001 1048 1388 415 7580813.05
seymour 4944 1372 1372 423.00
NSR8K 6284 38356 32040 20780430.00
rail507 509 63019 63009 174.00
rail2536¢ 2539 15293 15284 690.00
rail2586¢ 2589 13226 13215 947.00
rail4284c 4287 21714 21705 1071.00
rail4872c 4875 24656 24645 1534.00
glass4 396 322 302 1400013666.50
van 27331 12481 192 4.84
biellal 14021 7328 6110 3065084.57
UMTS 4465 2947 2802 30122200.00
net12 14115 14115 1603 214.00
roll3000 2295 1166 246 12890.00
nsrand_ipx 735 6621 6620 51360.00
alclsl 3312 3648 192 11551.19
a2clsl 3312 3648 192 10889.14
blclsl 3904 3872 288 24544.25
b2clsl 3904 3872 288 25740.15
tr12-30 750 1080 360 130596.00
sp97ar 1761 14101 14101 662671913.92
sp97ic 1033 12497 12497 429562635.68
sp98ar 1435 15085 15085 529814784.70
sp98ic 825 10894 10894 449144758.40

Table 1: Test bed information.

27

Instance VNDSI1 time (s) VNDS2 time (s)
mkc 6303 9003
swath 901 3177
danoint 2362 3360
marksharel 12592 371
markshare2 13572 15448
arki001 4595 4685
seymour 7149 9151
NSR8K 54002 53652
rail507 2150 1524
rail2536¢ 13284 6433
rail2586¢ 7897 12822
rail4284c 13066 17875
rail4872c 10939 8349
glass4 3198 625
van 14706 11535
biellal 18000 4452
UMTS 11412 6837
net12 3971 130
roll3000 935 2585
nsrand_ipx 14827 10595
alclsl 1985 1438
a2clsl 8403 2357
blclsl 4595 5347
b2clsl 905 133
tr12-30 7617 1581
sp97ar 16933 18364
sp97ic 2014 3085
sp98ar 7173 4368
sp98ic 2724 676
average: 7650 5939

28

Table 2: VNDS1 and VNDS2 time performance.

Instance VNDS1 objective value ~ VNDS2 objective value CPLEX time (s)
mike -563.85 561.9 18000.47
swath 467.41" 480.12 1283.23
danoint 65.67 65.67" 18000.63
marksharel 3.00" 3.00 10018.84
markshare2 8.00" 10.00 3108.12
arki001 7580813.05" 7580814.51 338.56
seymour 424.00 425.00" 18000.59
NSRSK 20758020.00 20752809.00" 54001.45
rail507 174.00" 174.00 662.26
rail2536¢ 689.00" 689.00 190.194
rail2586¢ 966.00 957.00" 18048.787
rail4284c 1079.00 1075.007 18188.925
rail4872c 1556.00 1552.00" 18000.623
glass4 1550009237.59" 1587513455.18 3732.31
van 4.82 4.57" 18001.10
biellal 3135810.98 3065005.78" 18000.71
UMTS 30125601.00 30090469.00" 18000.75
net12 214.00 214.007 18000.75
roll3000 12896.00 12930.00* 18000.86
nsrand_ipx 51360.00 51200.00" 18009.09
alclsl 11559.36 11503.44" 18007.55
a2clsl 10925.97 10958.42* 18006.50
bicist 25034.62 24646.77" 18000.54
b2c1s1 25997.84 25997.84" 18003.44
tr12-30 130596.00" 130596.00 7309.60
sp97ar 662156718.08" 665917871.36 11841.78
sp97ic 431596203.84" 429129747.04 124491
sp98ar 530232565.12" 531080972.48 1419.13
sp98ic 449144758.40™ 451020452.48 1278.13

Table 3: VNDS objective values for two different parameters settings. The CPLEX running
time for each instance is also given to indicate the selection of the appropriate setting.

29

Instance VNDS VNSB LB CPLEX RINS
mkc -561.94 -563.85 -560.43 -563.85 -563.85
swath 467.41 467.41 477.57 509.56 524.19
danoint 65.67 65.67 65.67 65.67 65.67
marksharel 3.00* 3.00* 12.00 5.00 7.00
markshare2 8.00* 12.00 14.00 15.00 17.00
arki001 7580813.05 7580889.44 7581918.36 7581076.31 7581007.53
seymour 425.00 423.00 424.00 424.00 424.00
NSR8K 20752809.00 21157723.00 20449043.00* 164818990.35 83340960.04
rail507 174.00 174.00 176.00 174.00 174.00
rail2536¢ 689.00 691.00 691.00 689.00 689.00
rail2586¢ 957.00 960.00 956.00 959.00 954.00
rail4284c 1075.00 1085.00 1075.00 1075.00 1074.00
rail4872c 1552.00 1561.00 1546.00 1551.00 1548.00
glass4 1550009237.59 1400013000.00* 1600013800.00 1575013900.00 1460007793.59
van 4.57* 4.84 5.09 5.35 5.09
biellal 3065005.78* 3142409.08 3078768.45 3065729.05 3071693.28
UMTS 30090469.00* 30127927.00 30128739.00 30133691.00 30122984.02
net12 214.00 255.00 255.00 255.00 214.00
roll3000 12930.00 12890.00 12899.00 12890.00 12899.00
nsrand_ipx 51200.00* 51520.00 51360.00 51360.00 51360.00
alclsl 11503.44* 11515.60 11554.66 11505.44 11503.44*
a2clsl 10958.42 10997.58 10891.75 10889.14 10889.14
blclsl 24646.77 25044.92 24762.71 24903.52 24544.25
b2clsl 25997.84 25891.66 25857.17 25869.40 25740.15
tr12-30 130596.00 130985.00 130688.00 130596.00 130596.00
sp97ar 662156718.08* 662221963.52 662824570.56 670484585.92 662892981.12
sp97ic 431596203.84 427684487.68* 428035176.96 437946706.56 430623976.96
sp98ar 530232565.12 529938532.16 530056232.32 536738808.48 530806545.28
sp98ic 449144758.40 449144758.40 449226843.52 454532032.48 449468491.84

Table 4: Objective function values for all the 5 methods tested.

30

Instance VNDS VNSB LB CPLEX RINS
mke 0.337 0.001 0.607 0.001 0.001
swath 0.000 0.000 2.174 9.017 12.149
danoint 0.000 0.000 0.005 0.000 0.000
marksharel 0.000 0.000 300.000 66.667 133.333
markshare2 0.000 50.000 75.000 87.500 112.500
arki001 0.000 0.001 0.015 0.003 0.003
seymour 0.473 0.000 0.236 0.236 0.236
NSR8K 1.485 3.466 0.000 705.999 307.554
rail507 0.000 0.000 1.149 0.000 0.000
rail2536¢ 0.000 0.290 0.290 0.000 0.000
rail2586¢ 1.056 1.373 0.950 1.267 0.739
rail4284c 0.373 1.307 0.373 0.373 0.280
rail4872c 1.173 1.760 0.782 1.108 0.913
glass4 10.714 0.000 14.286 12.500 4.285
van 0.000 5.790 11.285 17.041 11.251
biellal 0.000 2.525 0.449 0.024 0.218
UMTS 0.000 0.124 0.127 0.144 0.108
net12 0.000 19.159 19.159 19.159 0.000
roll3000 0.310 0.000 0.070 0.000 0.070
nsrand_ipx 0.000 0.625 0.313 0.313 0.313
alclsl 0.000 0.106 0.445 0.017 0.000
a2clsl 0.636 0.996 0.024 0.000 0.000
blclsl 0.418 2.040 0.890 1.464 0.000
b2clsl 1.001 0.589 0.455 0.502 0.000
tr12-30 0.000 0.298 0.070 0.000 0.000
sp97ar 0.000 0.010 0.101 1.258 0.111
sp97ic 0.915 0.000 0.082 2.399 0.687
sp98ar 0.079 0.023 0.046 1.307 0.187
sp98ic 0.000 0.000 0.018 1.199 0.072
average gap: 0.654 3.120 14.807 32.052 20.173

Table 5: Relative gap values (in %) for all the 5 methods tested.

31

Instance VNDS VNSB LB CPLEX RINS
mkc 9003 11440 585 18000 18000
swath 901 25 249 1283 558
danoint 3360 112 23 18001 18001
marksharel 12592 8989 463 10019 18001
markshare2 13572 14600 7178 3108 7294
arkiO01 4595 6142 10678 339 27
seymour 9151 15995 260 18001 18001
NSR8K 53651 53610 37664 54001 54002
rail507 2150 17015 463 662 525
rail2536¢ 13284 6543 3817 190 192
rail2586¢ 12822 15716 923 18049 18001
rail4284c 17875 7406 16729 18189 18001
rail4872c 8349 4108 10431 18001 18001
glass4 3198 10296 1535 3732 4258
van 11535 5244 15349. 18001 18959
biellal 4452 18057 9029 18001 18001
UMTS 6837 2332 10973 18001 18001
net12 130 3305 3359 18001 18001
roll3000 2585 594 10176 180001 14193
nsrand_ipx 10595 6677 16856 13009 11286
alclsl 1438 6263 15340 18008 18001
a2clsl 2357 690 2102 18007 18002
blclsl 5347 9722 9016 18000 18001
b2clsl 133 16757 1807 18003 18001
tr12-30 7617 18209 2918 7310 4341
sp97ar 16933 5614 7067 11842 8498
sp97ic 2014 7844 2478 1245 735
sp98ar 7173 6337 1647 1419 1052
sp98ic 2724 4993 2231 1278 1031
average time 6883 8103 5846 11632 11606

Table 6: Running times (in seconds) for all the 5 methods tested.

32

Instance VNDS VNSB LB CPLEX RINS
mkc 4.00 2.00 5.00 2.00 2.00
swath 1.50 1.50 3.00 4.00 5.00
danoint 2.50 2.50 5.00 2.50 2.50
marksharel 1.50 1.50 5.00 3.00 4.00
markshare2 1.00 2.00 3.00 4.00 5.00
arki001 1.00 2.00 5.00 4.00 3.00
seymour 5.00 1.00 3.00 3.00 3.00
NSR8K 2.00 3.00 1.00 5.00 4.00
rail507 2.50 2.50 5.00 2.50 2.50
rail2536¢ 2.00 4.50 4.50 2.00 2.00
rail2586¢ 3.00 5.00 2.00 4.00 1.00
rail4284c 3.00 5.00 3.00 3.00 1.00
rail4872c 4.00 5.00 1.00 3.00 2.00
glass4 3.00 1.00 5.00 4.00 2.00
van 1.00 2.00 3.50 5.00 3.50
biellal 1.00 5.00 4.00 2.00 3.00
UMTS 1.00 3.00 4.00 5.00 2.00
net12 1.50 4.00 4.00 4.00 1.50
roll3000 5.00 1.50 3.50 1.50 3.50
nsrand_ipx 1.00 5.00 3.00 3.00 3.00
alclsl 1.50 4.00 5.00 3.00 1.50
a2clsl 4.00 5.00 3.00 1.50 1.50
blclsl 2.00 5.00 3.00 4.00 1.00
b2clsl 5.00 4.00 2.00 3.00 1.00
tr12-30 2.00 5.00 4.00 2.00 2.00
sp97ar 1.00 2.00 3.00 5.00 4.00
sp97ic 4.00 1.00 2.00 5.00 3.00
sp98ar 3.00 1.00 2.00 5.00 4.00
sp98ic 1.50 1.50 3.00 5.00 4.00
average ranks 2.43 3.02 3.43 3.45 2.67

Table 7: Algorithm rankings by the objective function values for all instances.

33

Instance VNDS VNSB LB CPLEX RINS
mkc 2.00 3.00 1.00 4.50 4.50
swath 4.00 1.00 2.00 5.00 3.00
danoint 3.00 2.00 1.00 4.50 4.50
marksharel 4.00 2.00 1.00 3.00 5.00
markshare2 4.00 5.00 2.00 1.00 3.00
arkiO01 3.00 4.00 5.00 2.00 1.00
seymour 2.00 3.00 1.00 4.50 4.50
NSR8K 2.50 2.50 1.00 4.50 4.50
rail507 4.00 5.00 1.00 3.00 2.00
rail2536¢ 5.00 4.00 3.00 1.50 1.50
rail2586¢ 3.00 2.00 1.00 4.50 4.50
rail4284c 3.00 1.00 2.00 4.00 5.00
rail4872c 2.00 1.00 3.00 4.50 4.50
glass4 2.00 5.00 1.00 3.00 4.00
van 2.00 1.00 3.00 4.00 5.00
biellal 1.00 5.00 2.00 3.50 3.50
UMTS 2.00 1.00 3.00 4.50 4.50
net12 1.00 2.00 3.00 4.50 4.50
rol13000 2.00 1.00 3.00 5.00 4.00
nsrand_ipx 2.00 1.00 5.00 4.00 3.00
alclsl 1.00 2.00 3.00 4.50 4.50
a2clsl 3.00 1.00 2.00 4.50 4.50
blclsl 1.00 3.00 2.00 4.50 4.50
b2clsl 1.00 3.00 2.00 4.50 4.50
tr12-30 3.00 5.00 1.00 4.00 2.00
sp97ar 5.00 1.00 2.00 4.00 3.00
sp97ic 3.00 5.00 4.00 2.00 1.00
sp98ar 5.00 4.00 3.00 2.00 1.00
sp98ic 4.00 5.00 3.00 2.00 1.00
average ranks 2.74 2.78 2.28 3.69 3.52

Table 8: Algorithm rankings by the running time values for all instances.

ALGORITHM (average rank)

VNSB (3.02)

LB (3.43)

CPLEX (3.45)

Difference from VNDS rank (2.43)

1.02

Table 9: Objective value average rank differences from the average rank of the control algo-

rithm VNDS.

ALGORITHM (average rank)

VNSB (2.78)

LB (2.28)

CPLEX (3.69)

Difference from VNDS rank (2.74)

0.95

Table 10: Running time average rank differences from the average rank of the control algorithm

VNDS.

34

RINS (2.67)

RINS (3.52)

