SOME APPLICATIONS OF CONTINUOUS
VARIABLE NEIGHBOURHOOD SEARCH
METAHEURISTIC (MATHEMATICAL
MODELLING)

Brunel

UNIVERSITY

L ONUD ON

A Thesis Submitted for the Degree of

Doctor of Philosophy
by

Rima Sheikh Rajab

School of Information System, Computing and Mathematics

Brunel University

https://core.ac.uk/display/6113196?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

In the real world, many problems are continuous in nature. In some cases, finding the global
solutions for these problems is difficult. The reason is that the problem’s objective function
is non convex, nor concave and even not differentiable. Tackling these problems is often
computationally too expensive. Although the development in computer technologies are in-
creasing the speed of computations, this often is not adequate, particularly if the size of the
problem’s instance are large. Applying exact methods on some problems may necessitate
their linearisation. Several new ideas using heuristic approaches have been considered par-
ticularly since they tackle the problems within reasonable computational time and give an
approximate solution.

In this thesis, the variable neighbourhood search (VNS) metaheuristic (the framework
for building heuristic) has been considered. Two variants of variable neighbourhood search
metaheuristic have been developed, continuous variable neighbourhood search and reformu-
lation descent variable neighbourhood search. The GLOB-VNS software (Drazié¢ et al., 2006)
hybridises the Microsoft Visual Studio C++ solver with variable neighbourhood search meta-
heuristics. It has been used as a starting point for this research and then adapted and
modified for problems studied in this thesis. In fact, two problems have been considered,
censored quantile regression and the circle packing problem. The results of this approach
for censored quantile regression outperforms other methods described in the literature, and
the near-optimal solutions are obtained in short running computational time. In addition,
the reformulation descent variable neighbourhood search variant in solving circle packing

problems is developed and the computational results are provided.

Contents

Bibliography
Introduction
0.1 Optimisation problem
0.2 Continuous optimisation L L L
0.2.1 Unconstrained methods
0.2.2 Constrained optimisation,
0.2.3 Global methods
0.3 Classical heuristics
0.4 Metaheuristics
0.5 Thesis overview

1 Local search based metaheuristics

1.1 Local search basic idea: iterative improvement
1.2 A brief overview of some metaheuristic approaches
1.2.1 Simulated annealing L o o
1.2.2 Tabusearch
1.2.3 Guided local search L
1.2.4 TIterated local search -Fixed neighbourhood search
1.3 Future in metaheuristics area L oo oo

ii

o W N

12
13
15
19

2 Variable neighbourhood search metaheuristics 47

2.1 Variable neighbourhood search 47
2.1.1 VNS basicschemes 48
2.1.2 Variable neighbourhood descent 50
2.1.3 Reduced variable neighbourhood search 52
2.1.4 Basic variable neighbourhood search 53
2.1.5 General variable neighbourhood search 55
2.1.6 Skewed variable neighbourhood search 56
2.1.7 Variable neighbourhood decomposition search 59
2.1.8 Continuous variable neighbourhood search 61
2.1.9 Reformulation descent variable neighbourhood search 67
2.1.10 Primal-dual VNS 69
2.1.11 Parallel variable neighbourhood search 70
2.1.12 Variable neighbourhood search with dynamic selection 71

3 Censored quantile regression 73

3.1 Description of the problem 74

3.2 Literature reviewo 77

3.3 Variable neighbourhood search for censored quantile regression 80
3.3.1 Variable neighbourhood search metahuristics 80
332 VNSfor CQR 83

3.4 Computational results Lo o 89
3.4.1 GLOB-VNS for finding standard and percentile 90

3.4.2 GLOB-VNS for finding Finding root mean square, mean bias, mean ab-

solute deviation and median bias 95

3.5 Conclusion and future research 101

4 Circle packing problem 102
4.1 Problem description 103

4.1.1 Circle packing problem inside a circle container (CPP-1) 105

iii

4.1.2 Circle packing problem inside a square container (CPP-2) 106

4.2 Literature review e 107
4.2.1 Circle packing problem within the circle container CPP-1 108
4.2.2 Circle packing problem within the square container CPP-2 112

4.3 Reformulation descent within variable neighbourhood search for solving circle

packing problem Lo 113

4.3.1 RD-VNSfor CPP 114

4.4 Computational results 123
4.4.1 CPP inside a circle container (CPP-1) 123

4.4.2 CPP inside a Square container(CPP-2) 131

4.5 Conclusion and future research oo 139

5 Conclusion 140
Appendix A 163
Appendix B 166

iv

List of Figures

1.1
1.2
1.3

2.1
2.2
2.3
2.4
2.5

3.1

3.2

3.3

3.4

3.5

Initial simplex, where zj represents the highest point and x; represents the
lowest point e
The reflection and expansion steps in Nelder-Mead method

The contraction and multi-contraction steps in Nelder-Mead method

Basic idea of local search oo o
Geometric cooling scheme L L oL

Guided Local Search

The change of neighbourhoods during the VNS search
The basic variable neighbourhood search scheme
Distribution types L
Rastrigin function L Lo Lo

Molecular potential energy function L.

Powell function f((1,32) with n = 100, § = 0.95, yo = 0 and Gaussian r.v.

[lustration of the Basic Variable Neighbourhood Search (BVNS)
Automatic construction of neighbourhoods with ¢ =2 and ke = 3.
Points (z1;,x2,i), @ = 1,...,100, in data space with the standard normal
(left) and normal mixture (right) errors with fixed 5 = 1 and 32 = 1.

Censored Quantile Regression function f(f) ande=0

3.6

3.7

4.1
4.2

Points (z1;, 2i,¥i), ¢ = 1, ..., 100, in data space with the standard normal and
normal mixture errors, and their estimated values (denoted as ”0”), obtained
by CQR-VNS (denoted as "+") 94
Distribution of local minima in (31, 32) space, obtained by 100 restart of CQR-VNS 96

Packing 10 unit circles intoacircle 109

Different distribution types.o Lo 117

vi

List of Tables

3.1
3.2

3.3

4.1

4.2

4.3

4.4

4.5
4.6

4.7
4.8

4.9

The metaheuristics classification for some local search 18

Empirical coverage probabilities for confidence intervals 93
Monte carlo simulation with three regressors for 0.50 quantile and 0.75 cen-
soring point (10,000) repetition 98
Monte carlo simulation with six regressors for 0.50 quantile and 0.75 censoring point (10,000)

repetition L . L L o e e e e e e e e e e e e e e e 100

Empirical example for choosing the (geometry, distribution) pairs for formulation (4.1)119
Circle packing problem inside a circle container from n = 10 till n =200 . . . 125
Circle packing problem inside a circle container from n = 10 till n = 200,
continued table Lo 126
Circle packing problem inside a circle container from n = 10 till n = 200,
continued table 127
The average of the CPP-1 results, where n € [10,200] 129
The percentage of the averages difference compares our CPP-1 results with the best
known results L L oL e e e e 131
Circle packing problem inside a square container CPP-2 for n = 10,...,200 . 132
Circle packing problem inside a square container CPP-2 for n = 10,..., 200,
continued table L L L Lo 133
Circle packing problem inside a square container CPP-2 for n = 10, ..., 200,

continued table e 134

vil

4.10 The average of the CPP-2 results, where n =10,...,200 136
4.11 The percentage of the averages difference compares our CPP-2 results with the best

known results L L e e e 138

5.1 Circle packing problem inside a circle container from n = 10 till n = 200,
continued table Lo 167
5.2 Circle packing problem inside a circle container from n = 10 till n = 200,
continued table 168
5.3 Circle packing problem inside a square container CPP-2 for n = 10,...,200,
continued table L L L Lo 170
5.4 Circle packing problem inside a square container CPP-2 for n = 10,...,200,
continued table Lo Lo 171

viii

Acknowledgments

I present my best thanks to Allah (my God), whose response always helped me and given
me the power to complete my work.

I would like to express my deep gratitude to my supervisor, Professor Dr Nenad Mlade-
novi¢, for supporting my research over the years. I also want to thank Dr Mladenovié¢ for
his inspiration, competent guidance and encouragement were of tremendous value for my
scientific career. Besides, many thanks to Dr Milan Drazi¢ for providing the C++ code
GLOB.

I would also like to thank the School of Information Systems, Computing and Mathemat-
ics (SISCM) at Brunel University for the extensive support during my PhD research years
and for providing me with everything I need for my research.

Finally, many thanks to my family, my husband Raed Alsalem and my son Ebaa for their
supprort during these years. Also, I want to pass my thanks to my parents (my mother and

father) for their huge support and love.

ix

Related Publications

e Published papers
R. S. Rajab, M. Drazi¢ and N. Mladenovié¢. Reformulation descent for solving circle
packing problems. A Proceedings volume from the Information Control Problems in
Manufacturing International Symposium, 2011. ISBN: 978-86-403-1168-7, pages 397-
400.

e Papers submitted for publication
R. S. Rajab, M. Drazi¢, N. Mladenovi¢ and K. Yu. Fitting Censored Quantile Regres-
sion by Variable Neighbourhood Search. Submitted to Statistics and Computing 2011.

Introduction

0.1 Optimisation problem
An optimisation problem P can be defined as
min{f(z) |z € X, X C S} (1)

where S represents the solution space, and X denotes the feasible set. x and f, where
f S — R, are the feasible solution and the real valued function respectively. x is called a
feasible solution for (1) if x € X, and it is infeasible if 2 € S but x ¢ X. The optimisation
problem P is called an infeasible optimisation problem if there is no feasible solution .
Otherwise, P is a feasible one.

If S is a finite but large set, or infinite but enumerable, the P in (1) is called a combi-
natorial or discrete optimisation problem. If S =R™, P is called a continuous optimisation
problem. The formulation (1) is defined as the minimisation problem. The maximisation
problem can be defined easily by using max f(x) = — min(—f(z)).

The solution z’ is a local minimum for the problem (1), if there exists § > 0 such that

for all feasible solutions z with || 2’ — x [|2< 4, satisfy
f(2") < f(=) Vo e X. (2)

The local maximum is given if there exists § > 0 such that for all feasible solutions = with
| 2" —x [|2< 0, satisfy
f@)= flz) VeeX. (3)

Introduction Unconstrained methods

The local minimum is a global minimum z* € X for (1) if
f@®) < f(z) Ve e X. (4)

For a maximisation problem, the global maximal solution or global maximum satisfies the
condition

f@®) = f(x) Vo e X. (5)

The real world problems come from industry, transportation and management, where

optimisation models may be discrete or continuous, as mentioned above.

0.2 Continuous optimisation

In the case of a constrained problem, the optimisation problem (1) can be formulated as

min f(x) (6)

subject to
gi(z) >0, Vi=1,...,m (7)
hi(x) =0, Vi=1,...,p (8)

where the functions f, h; and g; are continuous ones, and =z € X.

This problem is called a convex optimisation problem, if the objective function f(z) and
the constrained functions g;(z), Vi = 1,...,m are convex functions and the feasible solution
set X is a convex set. Besides, the h;(z), Vi = 1,...,p are affine functions (Roberts and

Varberg, 1973).

Definition 1 The function h(z), where h : R™ — R™ is called an affine function if there is

a linear function L : R™ — R™ and a vector b € R™ such that
h(z) =L(z)+b VzeR" 9)

The optimisation problem (1) is called an unconstrained optimisation problem if it does

not have any constraint (7 and 8), i.e., if X = R".

Introduction Direct search methods

0.2.1 Unconstrained methods

As above, the optimisation problem (1) is an unconstrained problem, and it is convex if the
objective function f(z) is a convex function. Note that X = R" is a convex set.

There are three ways to solve convex unconstrained optimisation problem: by direct
search methods, first-order methods or second-order methods. Details of each method are

discussed below.

Direct search methods

The direct search methods solve the problem without using derivatives. If the gradient of
f is not available, some direct search methods attempt to estimate it. The f gradient is
determined by evaluating its value at several points (Zhao et al., 2009). Generally the direct
search methods select one by one a sequence of points in X. These points converge to the
local optimum of f(z). The first point is chosen by the analyst due to the information of the
problem. If there is not enough information, it can be chosen randomly. Then each other
point is generated by some routine or strategy. Nelder-Mead method (Nelder and Mead,
1965) is an example of the direct search methods.

Nelder-Mead method (or downhill simplex method) does not require the function
derivative, it just needs the function evaluations. It was first introduced in (Nelder and
Mead, 1965). The simplex is a geometrical figure. It consists of a n + 1 (z1,22,...,Zn41)
vertices in n dimension. If any point has been taken as an origin, then the rest of n points
are defined as the vector directions, where the n-dimension vector space will be extended.
For keeping the shape of the simplex unchanged, it chooses only one point in the directions.

If the initial solution has been chosen randomly, the n points can be generated by this
formula

T; = 20 + Ae; (10)

where e;’s are n unit vectors and A is a constant. The A is guessed by the user and it
depends on the problem’s length scale (Press et al., 1989). The initial solution xg then

changes through a sequence of geometry transformation (reflection, expansion, contraction

Introduction Direct search methods

and multi-contraction) (Zhao et al., 2009).
The Nelder-Mead algorithm is started by choosing the worst point of the objective func-
tion (see Figure 1). This point is called high, then one generates another point due to the

worst point (see Figure 2a). This operation is called a reflection. This point is given by

x, = (14)T — axpi (11)

Figure 1: Initial simplex, where zj, represents the highest point and x; represents the lowest point

where « is constant and z = %Z?zl x;. If the reflection point is not better than the other
points, the algorithm reflects again with the new worst point. Otherwise, the simplex expands

in this direction. The expansion operation can be seen in Figure 2b and it is given by

e = (1 — B)Z + B, (12)

where (3 is also a constant. The contraction happens, if the reflected point is as good as the

worst point. It’s formula is given by
ze = (1 —7)Z + van (13)

where 7 is also a constant. It is illustrated in Figure 3a. However, if the worst point is better

than the contracted point, the multi-contraction is applied. Moreover, each rejected point x;

Introduction Direct search methods

X
X3
% i i X
e
X
r
|
Xh xb

(a) A Reflection (b) A Expansion

Figure 2: The reflection and expansion steps in Nelder-Mead method

(a) A Contraction (b) A Multi-contraction

Figure 3: The contraction and multi-contraction steps in Nelder-Mead method

Introduction First-order methods

in the simplex will be exchanged by Mfl for each contraction step, where x is a low point

in the simplex (see Figure 3b).
The Nelder-Mead algorithm is given in Algorithm 1 (Press et al., 1989)

function Nelder-Mead(X, f);
1 Order. Order the n + 1 vertices of X to satisfy f(z1) < f(z2)... < f(xnt1)-
2 Reflect. Compute the reflection point x, as x, = & + (T — xp4+1), where

T =213 x; is the centroid of the n best points (all vertices except for 2,11).
If f(x1) < f(zr) < f(xn), accept the reflected point z,, terminate the iteration.
3 Expand. If f(x,) < f(z1), calculate the expansion point x. = T + (z, — T).
If f(xze) < f(x,), accept the expanded point z. and terminate; otherwise accept
z, and terminate the iteration.
4 Contract. If f(x,) > f(z,), perform a contraction between T and the better of z,41
and x,.
(a) Outside. If f(z;) < f(xn+t1), then outside contraction: x. =T + y(x, — T).
If f(z.) < f(x,), accept z. and terminate; otherwise go to Multi-contract step.
(b) Inside. If f(x,) > f(xny1), then inside contraction: x. =& — V(T — Tpi1).
If f(z:) < f(xp41), accept x. and terminate; otherwise go to Multi-contract step.
5 Multi-contract. Evaluate f at the n points v; = z; + d(z; —21),i =2,...,n+ 1.
The (unordered) vertices at the next iteration consist of V' = {x1,va,...,vn11}; set

X=V.

Algorithm 1: Nelder-Mead Algorithm

First-order methods

The First-order methods are known as gradient methods (Simmons, 1975a). These methods

attempt to find the answers for two questions during the search:
e In what direction do we move next?

e How far?

Introduction First-order methods

To give more details about answering these questions, let us suppose that x; is the latest
member in a given sequence of points, and f(z;) is the objective function, where z € R™.
The next point x;41 is given by

Tiy1 = x; + 0;5; (14)

where s; € R™ is the direction of the gradient vector evaluated at x;, and it is given by

s; = 7 f () (15)

where the equation (15) gives the direction to find the local maximum. However, if we need

to find the local minimum, s; is given by

si=—V f(x:) (16)

To answer the question of “how far?”, we should find 6; > 0. Moreover, the function
f(z;) will move in a gradient direction until it starts to decrease. The desired 6; step length
is the smallest positive 6;, which is satisfied by the equation

dg(0;)
db;

=0 (17)
This should be accomplished by maximising the function

9(0;) = f(xi +0; 7 f(x)) (18)

where 6;, in general, determines the distance moved in the s; direction between x; and z;41,
and it is called the step length.

The Hooke-Jeeves method is one of the first-order methods (Hooke and Jeeves, 1961).
It combines both exploratory and pattern moves. The exploratory move tries to find the
best point around the current one. Then, these two points are used to make a pattern move

(Bath et al., 2004). The Hooke-Jeeves algorithm is given in Algorithm 2 (Babu et al., 2008).

Introduction Second-order method

10

11

12

13

function Hooke-Jeeves(X, f);

Choose a starting point xg, variable increments A; (i = 1,...,n), and a step
reduction g > 1.

Choose termination parameter €, k = 0 and choose boundary conditions for variables.
Apply exploratory move based on xy.

Exploratory move. If the current solution is x;, suppose the new solution xy; is
perturbed by A;. Then set i = ¢+ 1 and = = xy,.

Caleulate f = f(z), f* = f(agi + &) and £~ = (o — O5).

Find fuin = min(f, f*, f7). Then set the corresponding f(Znew) t0 fmin-

If (i < n) then go to step 5, else go to step 8.

If (xpew = xp) then set zx11 = Tpew and go to step 10. Otherwise, go to step 9.

If (A >¢)then A; = A;/f fori=1,...,n, and go to step 10. Otherwise, the
algorithm will terminate.

Set i« =1+ 1, and apply pattern move.

Pattern move. The new point will be found by jumping from the current best point
x; along the direction s; between the previous best point x;_1 and the current based
point x; by using the formula x; 11 = x; + (z; — x;—1) = z; + s;.

Apply exploratory move on ;1. Let the result be @p,ep(i11)-

If (f(Znew(i+1)) < f(xi) then go to step 11. Otherwise, go to step 9.

Algorithm 2: Hooke-Jeeves Algorithm

Second-order method

The second-order method is also known as Newton’s method (Bazarra et al., 1993a). It can

only be applied if the function is a twice differentiable one. It is based on exploiting the

quadratic approximation ¢ of the function f(z) at a given point z;. The formula of quadratic

approximation is given by

q(z) = f(zi) + [(@) (z — @;) + %f” () (x — 2;)? (19)

Introduction Lagrange method

The new point ;11 is satisfied when the quadratic approximation ¢ is equal to zero. This

leads to the next equation

F(@) + (@) (@igr — i) =0 (20)
So that ,
Tip1 = Tj — ;((Z’Z)) (21)

This procedure will stop if | z;41 — 2; |< € or | f'(2;) |< €, where ¢ is a termination factor.

In general, Newton’s method can be given by

Tiy1 =z — [f(@)] 7 f @) (22)

which is a classic method for solving the nonlinear equation f(z) = 0, where f : R — R" is

a continuously differentiable function.

0.2.2 Constrained optimisation

The constrained optimisation problem is formulated as shown in (6). It can be solved by
transforming the problem into a sequence of unconstrained problems. Moreover, there are
three techniques for solving constrained problems, the Lagrangian method, the exterior point
method or the interior point method (Simmons, 1975b). These techniques are built with basic
strategies to transform the problem from a constrained problem to an unconstrained one.

More details of each type are given below.

The Lagrangian method

The Lagrangian method can be applied to problem (6) (where g;(x) < 0, Vi = 1,...,m),
if the functions f, ¢;,Vi = 1,...,m, h;,Vi = 1,...,p are twice differentiable. Also, X
is nonempty set (Bazarra et al., 1993b). The Lagrangian function of the problem can be

written as

pla, A o) = f@)+) Nigi(z) + Y vii() (23)
i=1 i=1

Introduction Interior point method

wherel € R",and ,v € RP are weight factors. Moreover, if we have conditioned A and o, it

can be defined as the restricted Lagrangian function
m p
$(x) = p(x, A, 0) = f(2) + D Nigi(z) + Y 0ihi(x) (24)
i=1 i=1

where I = {i : g;(z) = 0} is the index set of the binding inequality constraints at z. The

dual feasibility condition is
mo p
V@) + Y A vgiz) + > 0 v hi(z) (25)
i=1 i=1
The new problem (24) is an unconstrained problem, and it can be solved by one of the
unconstrained methods above.
The interior point method

The Interior point method or Barrier method has been applied to nonlinear constrained

problems of the form

min f(z) (26)

subject to
gi(x) <0, Vi=1,...,m (27)
where f(z) and g¢;(x) (Vi = 1,...,m) are continuous functions. They have first partial
derivatives where there exists at least one point & that can satisfy ¢;(2) <0 (Vi =1,...,m).

This indicates that the interior of the feasible set is non-empty. If the feasible set X can be
defined as
X={x]gi(z)<0, Vi=1,...,m} (28)

then the interior set Xy can be defined as
Xo={z|gi(x) <0, Vi=1,...,m} (29)

where the boundary of X includes all points of x that lie on X not in Xy. The barrier
approach to solve problem (26) can be formulated as

min C(z,r) = f(x) + %B(x) (30)

10

Introduction Interior point method

where 7 is a positive parameter and B(x) is a barrier function. Moreover, the barrier function
B(x) is non positive at each point in the interior and decreases to —oo at the boundary of

X. A typical barrier function and the most used can be given as

m

B@g:—zgway reX (31)

1=

Also, it can be written as a logarithmic utility function (Luenberger and Ye, 2008a)

m

B(a) = =Y lg[—gi()] (32)

i=1
Furthermore, the interior point method (Griva, 2004; Luenberger and Ye, 2008b) for

solving problem (26) with a classical log barrier function can be written as

B(xz,r) = f(z) —r Y lg[—gi()] (33)
i=1
subject to
Az=5> (34)
where r =¥ > 0, k = 1,...,m with ¥ > r*¥*1 ¥ — 0 is a barrier parameter, and the r*

could be predetermined. Moreover, we have
P =Xk 0<A<1 (35)

and it can be assumed that the original problem has a feasible interior-point solution xg, it
can be satisfied that
Axzg=b and g(xo) <0 (36)

where A is a matrix with full row rank. If we have a fixed r and by using D; = 5, then the

optimality conditions of problem (33) are given by

—D g(z) =rl (37)
Ax =b (38)
AT y+ v f(2)" +vy(@)" d=0, (39)

Introduction Global methods

where 7g(z) is a Jacobian matrix and D = diag(d), which means D is a diagonal matrix
whose diagonal elements are d. If f(x) and g;(x), Vi = 1,...,m are convex functions, then
f(x) —r > lg[—gi(x)] is also a convex function and there is a unique minimum solution

for this problem.

The exterior point method

The exterior point method is sometimes called the penalty method. Penalty techniques are
used to solve problem (26), where the functions f(z) and g;(z) (Vi = 1,...,m) are continuous
ones and they have continuous first partial derivatives. The feasible set X can be formulated
as

X={z|gi(z)<0, Vi=1,...,m} (40)

Then, the penalty approach to solve this problem can be written as
min D(x,r) = f(z) + rP(x) (41)

where 7 is a positive parameter and P(x) is a penalty function. The penalty function is zero
for any point of X and negative at all other points of S. The most famous penalty function

(Luenberger and Ye, 2008a) is given by

m

P(z) = = 3 [max{gi(x), 0}]2 (42)

i=1
0.2.3 Global methods

The global minimum for the problem in (1) is defined above in (4). If the problem is a convex
problem, then the local minimum is a global minimum. However, if the problem is not a
convex (nor concave) one, that means the local optimum is not a global optimum. There are
therefore two possibilities to solve the optimisation problem by using exact or approximate
global methods.

The exact algorithms solve the problems exactly. They guarantee to find the optimal

solution with a proof of its optimality. The most exact methods used are branch-and-bound,

12

Introduction Classical heuristics

dynamic programming, Lagrangian relaxation based methods, branch-and-cut, branch-and-
price and branch-and-cut-and-price, etc. The running time for solving the OP by exact
methods increases due to the size of the problem, where exact algorithms almost fit in small
and moderate size problems. However, in some cases it could take days or more to find the
optimal solution even in small or moderate size problems (VoB, 2001). Furthermore, in large
instance size problems, the exact methods can not prove optimality. To solve this problem,
the approximate methods were introduced, which are classified as classical heuristics. The

classical heuristic methods are explained in Section (0.3).

0.3 Classical heuristics

Classical heuristic is a new idea introduced in the sixties to deal with operational research
problems (OR). Its name is derived from the Greek word. Heuristic from the verb heuriskein,
meaning “to find”. The approximate or heuristic algorithm does not guarantee the optimal
solution for the input problem. It just gives a feasible solution. For instance, if 2/ € X
is a feasible solution for the instance P of an optimisation problem (1), where the optimal
solution for P is x*, one would like z’ to be identical to xz*. However, a heuristic can not
prove optimality, it hopes that z’ is close to z*.

Many optimisation problems are NP-hard (Garey and Johnson, 1979). The NP-hard
problems are the problems that can not be solved by a polynomial time algorithm, unless
P=NP (for more details the reader is referred to Appendix A). Moreover, in some problems,
which are solvable by a polynomial time algorithm, the power of that polynomial could be
very large. In this situation, it needs an unreasonable time to be solved. This is another
case where heuristic methods are in need.

Sometimes, using efficient heuristic algorithms may outperform using the exact algo-
rithms with regards to the computational time. However, there is no guarantee that any
optimisation algorithm performs well for any optimisation problem. The No-Free-Lunch-
Theorem (NFL) proves this fact (Wolpert and Macready, 1997). The NFL theorem explains

that each optimisation algorithm is designed for a sub-class of optimisation problems, where

13

Introduction Classical heuristics

it performs well in practice. However, this may not be the case for other characteristic
problems.
In general, according to their application area, the classical heuristic methods are cate-

gorised as follow (Zanakis et al., 1989):

e Construction methods. The construction algorithms generate a feasible solution.
They are obtained by adding individual components (like nodes, arcs) one at a time.
The greedy algorithms are the most commonly used approaches. They seek maximum
improvements at each step. They start from a given feasible or infeasible solution. At
each iteration, the greedy algorithms choose the best move to improve that solution
(VoB, 2001). Moreover, look-ahead algorithm is another approach. At each iteration, it
estimates the sequence of possible choices and candidate of solutions. It discards all the
choices or candidate solutions which may lead to a bad final solution. In general, most
construction algorithms can not reach the feasible solution till the end of the search.
One example of construction heuristics is the nearest neighour in travelling salesman

problems.

e Improvement methods. They are also known as local search methods. The im-
provement methods start from a feasible (initial) solution. They are then improved
by exchanges or mergers in the local search until they reach the local optimum. The
feasible solution is maintained through the search. In general, for each solution x, they
define a neighbourhood N (z) with all candidate solutions. Then the move is selected if
the new solution is better than the current solution z until the local optimum is found.
Sometimes there are combinations between construction and improvement methods.
In this case, the construction methods find the initial solution, while the improvement

methods improve it in order to find the local optimum.

e Mathematical programming methods. In this type of approach, there are a com-
bination of mathematical optimisation models and an exact solution procedure. The
solution is then modified to obtain an efficient heuristic to solve the problem. How-

ever, this approach is not as clear-cut as the other approaches. This design is a creative

14

Introduction Metaheuristics

process and gives more opportunities for developing, for instance, using the estimation

procedures by incomplete branch-and-bound.

e Decomposition methods. This approach attempts to solve the problems by dividing
them into a sequence of manageable smaller problems. The output of one will be the
input to the next one, then inductively merging these solutions. The final solution of
the problem is decomposed into a number of discrete steps, where in most cases, it is

a one pass procedure.

e Partitioning methods. This approach is similar to the decomposition method. How-
ever, it divides the problem into subproblems. Each subproblem is solved indepen-
dently, and the solution of the problem is given by merging the solutions of subprob-

lems.

e Relaxation methods. This approach is the opposite of restriction, as it increases the
solution space to obtain a manageable problem. Some methods are multistage. The
first stage utilizes a relaxation approach to decompose a problem, where the initial

solution is almost infeasible, and the feasible solution is found in the next stage.

As previously mentioned the heuristic methods were introduced in the late 1940s. Each
approach was established to solve the specific structure of problems, and as a result the
heuristics were called special heuristics. In the last three decades a more general heuristic
methodology was introduced. It is called metaheuristics. The next section will give more

details about metaheuristic, as well as its definition and classification.

0.4 Metaheuristics

It was introduced by Glover. Its name is derived from two Greek words, heuristics and the
suffix meta means “beyond, in the upper level” (Blum and Roli, 2003). A metaheuristic
can be applied to a wide structure of problems. In Osman and Laporte (1996), it is defined
as “A metaheuristic is formally defined as an iterative generation process which guides a

subordinate heuristic by combining intelligently different concepts for exploring the search

15

Introduction Metaheuristics

space, learning strategies use structure information in order to find efficiently near-optimal
solutions”.
In general, metaheuristics have some fundamental properties, which give the metaheuris-

tic methods their characteristics:

Its strategy is to guide the search process.

e Its goal is to explore the solution space to find a better solution (new optimal solution)

than the current one.

e The metaheuristic algorithms transform simple local search procedures to complex

ones.

e Metaheuristic algorithms are approximate algorithms and most of the time they are

non-deterministic.
e Metaheuristic methods are not specific for one problem.

Moreover, a good metaheuristic algorithm should have a balance between diversification
and intensification.

Intensification refers to the term exploitation. Its idea is exploring the promising area
from the search space to ensure that the best solutions in this area have been found. It
is based on intermediate-term memory such as recency memory, where exploitation is a
short-term memory.

Diversification refers to the term exploration. Its idea, opposite to intensification, is
forcing the search to visit previously unexplored areas of the search space. Sometimes using
the intensification term may lead to the loss of some good solutions, while the diversification
resolves this problem. Moreover, it is based on a long-term memory of the search such as
frequency memory.

There are many classifications for metaheuristics. Each one is related to a specific view-
point. All these classifications are possible. The most important types of classification are

given in (Blum and Roli, 2003):

16

Introduction Metaheuristics

e Natural inspired vs. non-natural inspired. This classification is related to origin
of algorithm. For instance genetic algorithms are natural inspired types, whereas Tabu
search is a non-natural inspired one. This type of classification is not a meaningful one

due to two reasons:

— Most of the hybrid metaheuristics are not related to both classes.

— Secondly, sometimes it is really difficult to decide whether the algorithm is related

to one of two classes.

e Population based vs. single point search. In this classification, the number of
solutions is used to decide if the algorithm is population based or a single point search.
If the algorithm is working in a population solution, it is a population based algorithm.
Otherwise, it is single point search algorithm, where sometimes it is called a trajectory
algorithm like Tabu search, Iterated local search and Variable neighbourhood search.
The difference between two classes occurs during the search space. The single point
search is described as trajectory in the search, where the population based algorithm

is describing the evolution as a set of points.

e Dynamic vs. static objective function. The way of using the objective function
has been used to differentiate between two types. Some metaheuristics keep the ob-
jective function fixed during the search; such approaches are static objective function
ones. However, in the guided local search approach the objective function is modified
to escape from local minima. Moreover, the objective function is altered during the

search. This approach is a Dynamic one.

e One vs. wvarious neigbourhood structures. In general, most metaheuristic ap-
proaches have one neighbourhood structure during the search. This means the land-
scape topology is fixed during the search. Whereas, other metaheuristics have different
neighbourhood structures such as variable neighbourhood search, this methodology has

allowed the change of the landscape during the search.

e Memory usage vs. memory-less method. This type of approach is very important.

17

Introduction Metaheuristics

It depends on the usage of memory during the search, which means the search may
or may not have a history. There are three known types, short-term, intermediate-
term and long-term memory. The first type is focused on the most recent moves and
solutions. However, the long-term one is an accumulation of parameters about the

search.

Table 1 (Consoli, 2008) summarises the classification of each type of metaheuristic ap-

proach, that will be explained in Chapter 1.

Table 1: The metaheuristics classification for some local search

SA TS ILS GLS VNS GA
x

natural inspried X X X

<
<
<

single solution Vv

X
X

population based X

X
X <. X

dynamic objective function X
static objective function V
one neibourhood structure vV

X

various neibourhood structures

X

memory usage

X <. X <_ <_ X
X <. X < <. X

X < X < X < X < X
< X <. X <. X%

X <. X <. X

<

less usage

where SA denotes simulated annealing, TS denotes tabu search, ILS denotes iterated local
search, GLS denotes guided local search, VNS denotes variable neighbourhood search and
GA denotes genetic algorithm.

Moreover, the exact methods can be combined with metaheuristics in two ways (Puchinger

and Raidl, 2005):

e Collaborative combinations. The algorithm in this case exchanges the information

between exact and heuristic algorithms in parallel.

18

Introduction Thesis overview

e Integrative combinations. In this technique, there is a master algorithm and at
least one integrated slave. Furthermore, the master algorithm could be an exact or a

heuristic one.

0.5 Thesis overview

In this thesis, the continuous variable neighbourhood search (Mladenovié¢ and Hansen, 1997;
Liberti and Drazic, 2005; Mladenovié et al., 2008) based metaheuristics and the reformulation
descent variable neighbourhood search (Mladenovié et al., 2005) for censored quantile regres-
sion and circle packing problems respectively are presented. The major part of this thesis is
devoted to the development of metaheuristics for solving censored quanitle regression, based
on continuous variable neighbourhood search metaheuristic frameworks. Moreover, continu-
ous variable neighbourhood search is applied on the Powell estimator. This function is non
convex nor concave in regressor, where it is hard to solve exactly. In this thesis, the Powell
estimator has been solved exactly, which has been achieved for the first time. Furthermore,
continuous variable neighbourhood search with reformulation descent idea is applied to the
circle packing problem with two variant containers (a circle and a square). However, the
purpose of this thesis is beyond applying GLOB software, which is designed to solve box
constraints continuous problems, on different types of problems. The chapters of this thesis
are organised as follows.

Chapter 1 is focussed on the literature review. It gives an overview of the most fa-
mous local search based metaheuristic approaches with a single point search (like simulated
annealing, tabu search and guided local search).

As this thesis is focused on variable neighbourhood search, Chapter 2 explains in detail
this metaheuristic, where a brief overview of each type of variable neighbourhood search
approach is provided.

Censored quantile regression models are very useful for the analysis of censored data
when standard linear models are felt to be inappropriate. This problem is an econometric

one. However, fitting censored quantile regression is hard numerically due to the fact that the

19

Introduction Thesis overview

function that has to be minimised (Powell estimator) is not convex nor concave in regressors.
In chapter 3, we suggest a different approach, i.e., we directly solve nonlinear non-convex
non differentiable optimisation problems. Our method is based on a continuous variable
neighborhood search approach, a recent successful technique for solving global optimisation
problems. The target here is to minimise the Powell estimator function. The GLOB software
(Drazi¢ et al., 2006) is applied on three different cases from the literature (Bilias et al., 2000;
Buchinsky and Hahn, 1998). The Nelder-Mead heuristic has been used as a low-level search
component. Simulation results presented indicate that our new method can considerably
improve the quality of censored quantile regression estimator.

Several years ago circle packing problems (CPP) in the plane have been formulated as
nonconvex optimisation problems. Chapter 4 is based on (Rajab et al., October 2011) and
it proposes applying the idea of reformulation descent (RD) on circle packing problems. It
consists of finding a fixed number n of equal circles within different types of containers:
a circle and a square, without overlap. There are two different formulations to solve the
problem in the Cartesian system. The first one is maximising the radius r associated with n
equal circles when the container size is fixed as a unit circle (square), assuming the container is
centered at the origin. The second formulation minimises the circle container R (or the length
of edge L for square container) to accommodate n unit circles. The variable neighbourhood
search has been applied as a nonlinear global optimisation method to solve the problem. We
apply two types of Cartesian formulations, where they switch after half of the time. This idea
has been applied to find n equal circles within the circle and the square container. The VNS
is applied to solve each formulation independently. The experimental run is from n = 10
until n = 200. The computer results show that our approach is comparable with some of the
very best methods from the literature (Hungarian, 2009).

Finally, in Chapter 5, the results and contribution of the thesis are summarised. Sug-
gestions on possible future innovation and development in the field of metaheuristics are

discussed.

20

Chapter 1

Local search based metaheuristics

The most used classical heuristic methods are local search methods and constructive meth-
ods. Constrictive methods use information from the problem structure to build up a single
solution. It adds components to the current solution until the feasible one is reached. The lo-
cal search method attempts to find a local optimum by starting from a given initial (feasible)
solution, and improves it gradually at each iteration. Moreover, the local search methods
can be considered as the basic principle underlying a number of optimisation strategies,
where they have been used in many applications with good empirical achievement in most
cases (Johnson et al., 1988). The interest in the local search approach has increased with
the rapid development of methaheuristics, and it has been used as a procedure within some
methaheuristic algorithms such as a low level search strategy (component).

The algorithmic aspects of local search and high level metaheuristic methods with some
applications are proposed in this chapter. In Section 1.1, the basic idea of the local search
framework is discussed. A brief idea on some of the most important local search based
metaheuristics are given in Section 1.2. Section 1.3 is focused on future metaheuristics,

which are called hybrid metaheuristics and their classification.

21

Local search based metaheuristics Local search basic idea: iterative improvement

1.1 Local search basic idea: iterative improvement

The main strategy of local search algorithms for solving any problem starts from a given
initial solution. Then it tries to improve that solution by repeating small changes inside the
selected neighbourhood. At each iteration, if the new neighbouring solution is better than
the current one, the change is kept, otherwise another improvement will be applied until no
further improvement in the objective function can be found (Papadimitriou and Steiglitz,

1998). The definition of a neighbourhood structure is given in Definition 2

Definition 2 Let P be a given optimisation problem and S the solution space. A neighbour-
hood structure for problem P is a function N : S — P(S) that assigns to every x € S a set of
neighbours N'(x) C S. N(x) is called the neighbourhood of x, where it could be any solution
y e N(z).

The definition of neighbourhood structure enables us to explain the concept of locally

optimal solutions.

Definition 3 A locally minimal solution (or local minimum) with respect to a neighbourhood
structure N is a solution y such thatV x € N(y) : f(z) < f(y), where we call y a strict local
minimum if f(z) < f(y),¥ = € N(y).

Moreover, the local optimum for a maximisation problem is defined in a similar way by
adding this condition V = € N (y) : f(z) > f(y) instead of V x € N(y) : f(z) < f(y), and
the optimal solution in this case is called a local maximum solution.

A good neighbourhood structure should satisfy the following conditions:

e For each solution z, the neighbourhood structure should be symmetric, that means

(Ve e S)yeN(z) e xeN(y).

e For any two solutions z,y € S, the sequence of solution z1,xs,...,z, € S should exist

and satisfy the condition z1 € N (z),x2 € N(x1),...,2n € N(xn_1),y € N(2y,).

e Generating neighbours y € N (x), for a given solution x, should be of a polynomial

complexity.

22

Local search based metaheuristics Local search basic idea: iterative improvement

e The neighbourhood size should be determined very carefully. This means the neigh-
bourhood should not be too large, or where it can not be explored easily. A large
neighbourhood leads to expensive computation. On the other hand, it should not be
too small so no neighbours with better objective function could be found. The size of

the neighbourhood is defined according to the optimisation problem size.

The basic algorithm for the local search method can be written as in Algorithm 4, where

P is the optimisation problem and z is an initial solution from the solution local space x € S.

Function LS (P,)
1 P is an optimisation problem and S is a search space
2 Choose an initial solution x

3 Define neighbourhood structures A (z) C S

4 begin

5 repeat

6 x' — Improvement_function(P,x, N (x)) // find new solution in N (z)
z — 2/

until No improvement

7 return z

end

Algorithm 4: Basic local search

The I'mprovement_function(P,z, N'(x)) is trying to find a better solution than the cur-
rent solution x within the same neighbourhood N (z). There are two possibilities to find x
by a first improvement heuristic or a best improvement heuristic.

If there is a need to completely explore the neighbourhood of N(z), the best choice
is the best improvement heuristic. It returns with the best value of the objective function
(minimum or maximum) after it completely explores the neighbourhood of N'(z). In this case,
the move is made only if a new neighbour with the lowest objective function (in minimum
case) has been found. The local search is known as steepest descent. The algorithm of best

improvement heuristic is given in Algorithm (5):

23

Local search based metaheuristics Local search basic idea: iterative improvement

Function Best_Improvement_function(P, z, N (z))

1 repeat
2 ¥ —
3 x' — argminyé]\/'(m)f(y)

until f(z) > f(a')

4 return 2’

Algorithm 5: Best improvement function

In some cases, using a best improvement heuristic may be time consuming. In practice,
using the first improvement heuristic is sometimes a better choice than the best improve-
ment heuristic. The solutions z; € N (z) of the first improvement method are enumerated
systematically, then the move is made when a new direction for decent has been found. The

algorithm for using a first improvement function is given in Algorithm (6):

Function First_Improvement function(P,z, N (z))

1 repeat

2 ¥~z i+ 0

3 repeat

4 t—1+1

5 o' — argmin{f(x), f(z:)},zi € N(x)
until (f(z) < f(z:) ori=|N(z)|)

until f(z) > f(2')

6 return x’

Algorithm 6: First improvement function

If the initial solution is found by using some constructive methods, the best improvement
heuristic is slightly better than the first improvement (Hansen and Mladenovié, 2006). It
may be even faster. But if the initial solution has been found randomly, the better choice is

to use the first improvement heuristic (Hansen and Mladenovi¢, 2006).

24

Local search based metaheuristics A brief overview of some metaheuristic approaches

Moreover, applying the best improvement strategy can guarantee that the search will
achieve a local optimum, which may not be the case by using the first improvement one. If
the local search heuristic has been engaged as a low level component inside the metaheuristic
algorithm, the first improvement will be enough and gives good quality solutions. However,
there is another possibility to use both strategies at the same time. A sample of neighbours
have been generated (randomly or by using some strategy), then the best neighbour is
selected from the observed sample, i.e. not the best in the whole neighbourhood (Battiti
et al., 2008). The usage of best improvement vs. first improvement is discussed in details in
(Hansen and Mladenovié, 2006).

To sum up, the local search heuristic is a good method that can be used to find a
local optimum. However, it cannot guarantee the global optimum, because when the local
optimum has been found, the search process stops without being able to reach the global
optimum. This phenomenon is explained in Figure 1.1 . To solve this problem, a number
of metaheuristic frameworks has been developed to escape from local optimum during the

search. In the next section, some of the most important metaheuristics are described.

")

- Local optimal

Global optimal

x *Global

Figure 1.1: Basic idea of local search

25

Local search based metaheuristics Simulated annealing

1.2 A brief overview of some metaheuristic approaches

In this section some of the most famous metaheuristics are discussed: simulated annealing
(in Subsection 1.2.1), tabu search (in Subsection 1.2.2), guided local search (in Subsection

1.2.3) and iterated local search (in Subsection 1.2.4).

1.2.1 Simulated annealing

Simulated annealing (SA) is a metaheuristic algorithm, it is used historically to address the
discrete problems, and more recently continuous optimisation ones. It was independently
introduced in (Cerny, 1985; Kirkpatrick et al., 1983). The main concept uses a hill-climbing
move to escape from local optima in the hope of finding a global optimum, i.e. moves which
worsen the objective function value. This technique has made it popular for over the past
two decades.

SA is very popular in physics, where its name is derived from the process of annealing
with a solid. Crystalline solids are heated and allowed to cool under a controlled cooling
technique until the solid is free of crystal defects, i.e. crystal lattice configuration is achieved
with its minimum lattice energy state (Nikolaev et al., 2003). Moreover, SA has established
the connection between this type of thermodynamic behaviour and solving the optimisation
problems. The details of the implementation of SA for P optimisation problem are written

as Algorithm 7.

26

Local search based metaheuristics

Simulated annealing

1

2

3

10

11

12

13

14

15

16

Function SA(S, z)

Set S is a search space, and T} temperature cooling schedule
Choose an initial solution x
Define a neighbourhood structures A/ (z) C S
Select an initial temperature T'= Ty > 0
Select the temperature change counter k = 0
begin
Set T «— Ty
while termination conditions do
Generate 2/ € N (z)
if f(2') < f(z) then
L x—a
else
Find a random number € € [0, 1]
if e< exp(%;f(x)) then
L x 2
Update T}
k—k+1
return r
end

Algorithm 7: Simulated Annealing

As seen in Algorithm 7, the initial temperature Ty should be defined with the neig-

bourhood structure N (.) and the specific cooling structure. Also, a termination condition is

included (like maximum CPU time, maximum number of iterations or the maximum number

of iterations without improvement).

At each iteration of the SA algorithm, the objective function generates two values. One

is the current solution x and the other is a newly selected solution 2/ € N (z). Afterwards,

choosing an improved solution is made by a downhill move, where the temperature parameter

27

Local search based metaheuristics Simulated annealing

is decreased (or non-increased) during the search. Conversely, choosing a non-improved
solution (uphill move) depends on the 7' temperature parameter, where the move in this
case is accepted to escape from local minima.

To decide whether the new solution is accepted or not, the Metropolis criteria should be
included. It is a method of sampling a Boltzmann distribution. It can be simply described as:
a move from x4 t0 Tpew can be accepted if f(Tnew) < f(xoq). However, if f(new) > f(xo1d),
the move will be accepted with probability exp(%;ﬂx"ld)) (Chu et al., 1999a).

In order to decide if the worse move has been taken or not, the random number € is inde-
f(xnﬁw)ff(wold))

pendently generated by using a uniform distribution in [0, 1]. Then, if € < exp(n

the worse move will be accepted and the temperature will be updated by using the cooling
schedule (Tgy1 < Tk).

Theoretical results on Markov chains (Aarts and Korst, 1988; Aarts et al., 2005) shows
that the SA algorithm can converge to a global minimum when k& — oo, under particular
conditions on the cooling schedules. In more details, let P, be a probability of finding a
global minimum after k steps. We can define a I € R, where > ;2 ; exp TLk — o0 if and only
if limg o, Py = 1.

There are different cooling schedules like a logarithm cooling law and geometric cooling

law. The logarithm cooling law can be written as

r

lg(k + ko) (1)

Tpy1 =

where I' and kg are given by the user. It guarantees the convergence of a global minimum.
At the same time it is not feasible in the application because it is very slow in practice.
Furthermore, the geometric cooling law is faster than the logarithm cooling one, where it
can be described as

Tyr1 = ax Tk, o€ [O, 1] (1.2)

where « corresponds to an exponential decay of the temperature. A more robust algorithm
can be obtained if the temperature is changed according to a specific iteration L, where

L € N is usually found empirically. ¢, is defined as
ta=afty for kL<n< (k+1)L,kc NU{0} (1.3)

28

Local search based metaheuristics Simulated annealing

In Figure 1.2 the idea of using geometric cooling law has been described .

1 | 1 1
L Number of iteration 2L 3L

Figure 1.2: Geometric cooling scheme

There are many applications using simulated annealing for solving combinatorial prob-
lems, those described by Chu et al. (1999b); Dueck and Scheuer (1990); Kirkpatrick (1984);
Osman (1993). In Aarts et al. (1988), they apply the SA algorithm to solve 100-city traveling
salesman problems. They use a function of the control parameter of the cooling schedule
to analyse the expectation and the variance of the cost. Also, SA is applied to solve 0-1
unconstrained optimisation problems (Chardaire et al., 1995). At a given temperature, they
compute the value of the variables. This information helps to reduce the size of the problem
where it allows to fix the variables as the temperature decreases.

In Romeijn and Smith (1994), a continuous simulated annealing has been used for solving
the maximum of a continuous function, where a hide-and-seek strategy is implemented. This
approach is applied when the objective function may be non differentiable and the feasible
region may be non convex or disconnected. The difference between this approach and the
discrete one is that the candidate point at each iteration of the algorithm may be generated

as any point in the feasible region. It will then be either accepted or rejected according to

29

Local search based metaheuristics Tabu search

the metropolis criterion. This algorithm gives a competitive performance by hide-and-seek.

In Corana et al. (1987), simulated annealing is used to solve continuous functions against
the Nelder-Mead simplex method and Adaptive Random search. The algorithm has adapted
moves according to an iterative random search. In this case, the SA algorithm gives more
reliable results than the others.

Also SA has been applied for econometrics problems. In Goffe et al. (1994), the SA
algorithm, in contrast to the other three common conventional algorithms it is compared
with , is less likely to fail in difficult functions. Also it can find the global optimum for four
different econometrics problems. For more applications in global optimisation see Dekkers
and Aarts (1991); Vanderbilt and Louie (1984). Nowadays, SA is used as a component in

metaheuristics rather than applied as a basic algorithm for the search.

1.2.2 Tabu search

Over the last fourteen years, tabu search (TS) has been one of the most used metaheuristics
for solving optimisation problems. It was first introduced by Glover (1986). This approach
escapes from local optima by a strategy of forbidding certain moves to prevent cycling.
Usually, this method gives solutions very close to optimal ones. It is among the most effective
on difficult problems, and have therefore made TS very popular.

“weak inhibition” search. Tabu

As opposed to branch and bound, TS might be called a
generally holds a small fraction of moves, according to what is still available. These moves
then become accessible after a short time. Moreover, TS keeps the ability to guide the search
to escape from poor local optima, in similar to simulated annealing, by using a deterministic
nature rather than a stochastic one.

As mentioned above, tabus are used to prevent cycling, moving from local optima and
not going back. These tabus are stored in a tabu list (a short-term memory). It is used to
avoid revisiting the most recent solutions, and forbidding any movement toward them. Tabu
lists are not only used to prevent a move from being repeated, but also they prevent moves

from being reversed.

First In First out (FIFO) is a technique for updating the tabu list, i.e. when the current

30

Local search based metaheuristics Tabu search

solution is added to a tabu list, the oldest one in the list is removed. Tabu tenure is the
length of tabu list, where it is used to control the memory of the search process. In most
cases, the length of the tabu tenure is fixed. Moreover, the small fixed length of tabu tenure
cannot always prevent cycling, where the search will concentrate on a small area of the search
space. In contrast, a large tabu tenure explores larger areas. For solving this problem, some
methods have used varying tabu tenure during the search (see e.g. Glover (1989a,b)). On the
other hand, another technique has been used, where the procedure for generating a random
tabu tenure for each move has been added in a specific interval (see e.g. Gendreau et al.
(1994)).

Sometimes tabus are too powerful, they may lead to the loss of some unvisited good
quality solutions. For that, the aspiration criteria has been added. In general, the aspiration
criteria is an algorithmic device. It allowes a move, even if it is tabu, if it gives a solution with
a better objective value than the current best known one. The TS is described in Algorithm

8.

31

Local search based metaheuristics

Tabu search

1

2

3

10

11

12

13

14

15

16

17

Function TS (P, S, z)

Set P is an optimisation problem and S is a search space
Choose an initial solution x

Define a neighbourhood structures N (z) C S

Memorise the best solution so far x’

Define tabu list T'L

Define allowed set AL

begin

TL — 0

Move 2’ « x, where 2/ € N'(z)

Update T'L using FIFO (T'L U x)

while termination conditions do

AL — N(z)-TL

Find the best solution within AL: x < Update(AL)
if f(z) < f(2') then

LZL'/<—ZL‘

Update T'L

return x’

end

Algorithm 8: Tabu Search

The Update(.) function tries to find a better solution from the set of solutions that

belongs to the allowed list AL. There are two possible functions: first improvement function

or best improvement function (as explained in Section 1.1). By using first improvement

strategy, the Update(.) function scans the AL and finds the first solution that is better

than the current one. However, by using the best improvement one, the Update(.) function

completely discovers the whole allowed set and returns the solution which gives the minimum

objective function value. Including the Update(.) function in the algorithm makes TS more

efficient to explore solutions in a dynamic neighbourhood structure with short term memory

32

Local search based metaheuristics Tabu search

implemented by TS. The termination conditions could be:
e A fixed number of iterations;
e A fixed amount of CPU time;
e After a fixed number of iterations without an improvement in the objective function;
e If the objective function reaches a pre-specified threshold value.

A simple TS may successfully solve difficult problems. For the most of the cases, TS
should include additional elements to make the search strategy fully effective. Intensification
is one of them, where the search should explore more portions of the search space, that could
be promising areas, to make sure that the best solution is indeed found. That means the
normal search should stop from time to time to perform an intensification phase. Generally
intensification is based on some intermediate-term memory, like a recency memory. It records
the number of consecutive iterations that various “solution elements” have been introduced
in the current solution without interruption.

Many TS implementations have used an intensification strategy. However, in some cases
using the normal search is enough, and there is no need to spend time in exploring more
portions of the search space that have been already visited. Due to that the diversification
strategy should be included. As opposed to intensification, diversification tends to force the
search to go through previously unexplored portions of the search space. It is based on some
long-term memory, like a frequency memory. It records the total number of iterations (since
the search start) that various solution elements have been involved in the current solution.

There are different types of diversification, restart diversification and continuous diver-
sification. The restart diversification tries to force a few rarely used elements in the current
solution and start the search again from this point. The continuous diversification adds
diversification considerations directly into the regular search process.

In mateheuristics, there are four terms to describe the usage of memory: recency, fre-
quency, quality and influence. The first two are the most important, and have been discussed

earlier. In general, quality refers to the solutions with good objective function values. That

33

Local search based metaheuristics Tabu search

may help in TS to give the intensive search in the most promising regions. Influence measures
the degree of change in solution structure. In TS, it is an important aspect of aspiration
criteria.

There are some problems where the true objective functions are quite costly to evaluate.
To solve this problem, TS has used a surrogate objective function. It is a less demanding
computational function. Besides, it is correlated to the true objective function by the identify
of a small set of promising candidates. The true objective function is then computed (see
Crainic et al. (1993)).

TS applications. The traditional concept of TS has been applied to combinatorial
problems. Nowadays TS deals with different techniques for making the search more efficient.
TS includes methods for giving more information during the search about better starting
points, parallel search strategies and more powerful neighourhood operators, for application
(see Crainic et al. (1997)). Moreover, hybridization is an important trend in TS, and it is
used in T'S with other heuristics approaches such as Lagrangean relaxation (Grunert, 2002),
column generation (Crainic et al., 2000) , Ant colony optimisation (Arito and Leguizamoén,
2009) and Genetics Algorthims (Crainic and Gendreau, 1999; Fleurent and Ferland, 1996).

TS is also adapted with other metaheuristics approaches for solving the global optimisa-
tion problems. In Teh and Rangaiah (2003), a new version from TS has been applied, it is
namely an enhanced continuous TS (ECTS). ECTS has performed better for many problems
including high dimensional ones. Furthermore, ECTS has two steps. First it attempts to
apply a benchmark test function having multiple minima, and then it evaluates for phase
equilibrium calculations. ECTS algorithm have four stages: parameters setting, diversifi-
cation, identifying the most promising area and intensification (Teh and Rangaiah, 2003).
Also there are a similarity between TS and genetic algorithm (GA) in locating the global
minimum, where TS converges faster than GA. For another ECTS application see Chelouah
and Siarry (2000).

Another approach for TS in global optimisation is presented by Battiti and Tecchiolli
(1996). They introduce a novel algorithm (C-RTS), in which reactive TS cooperates with a

stochastic local minimiser. It is used for unconstrained global optimisation, where only the

34

Local search based metaheuristics Guided local search

function values are required. C-RTS uses an efficient memory during the search. Besides,
it has a mechanism to tune the search space to be discretization by having a tree of search

boxes.

1.2.3 Guided local search

Guided local search (GLS) is metaheuristic based on penalty, where it sits on the top of
other local search methods. It was introduced by Voudouris and Tsang (April 1996). In
GLS, a new strategy has been used by augmenting the objective function to escape from the
current local optimum. In contrast, the other metaheuristics strategies use a fixed objective
function, while the set of solutions and the neighbourhood structure are changed during the
search (i.e. changing the search landscape to escape from the local minima). The procedure

of GLS is illustrated in Figure 1.3.

A
f(x)

1
old new
X .
min min

*y

Figure 1.3: Guided Local Search

The main concept of the GLS algorithm is based on the definition of solution feature

i. It has been used to discriminate between solutions. This solution supposes to have the

35

Local search based metaheuristics Guided local search

property of non-trivial solution, where not all the solutions have this property. Moreover,
the constraints on feature come from the problem information and the local search heuristic,
where the features cost could be constants or variables.

I;(z) is the indicator function to define if the feature i is chosen or not in the specific

solution z, where it can be written as

L) 1 if solution x has property i
i(r) =
0 otherwise

The augmented cost function is used to augment the objective function and includes the
penalty p. At each iteration of the GLS algorithm, the local search modifies a penalty vector
p = (p1,p2,-..,Pn) to escape from a local minimum. If we suppose that we have n features
and f(.) the objective function (cost function), then the augmented cost function can be

written as
fl@) = @)+ X pii(x) (1.4)
i=1

where A is the regularization parameter. The importance of the regularisation parameter
comes from representing the relative effect of penalties with respect to the solution cost. At
the beginning, all the penalty parameters are set to 0 (i.e. no features are constrained). Then
a call is made to the local search to find a local minimum of the augmented cost function.

The GLS algorithm is described in Algorithm 9.

36

Local search based metaheuristics Guided local search

Function GLS (S,n, A,z)

1

2

3

10

12

13

14

15

16

17

18

19

Set the search space S, n solution features, and the regulation parameter \
Choose an initial solution x
Define a neighbourhood structures A (z) C S
Let p;, where ¢ = 1,...,n, be the penalty parameters for the n solution features
Let ¢;, where i = 1,...,n, be the costs assigned to the n solution features
Let I;, where i = 1,...,n, be the indicator function to the n solution features
begin
Generate an initial solution x
Initialize the penalty parameters to 0, i.e. p; <~ O foralli=1,...,n
while termination conditions do
Find f'(z) = f(z) + X\. >~ pi-Li(x), where
1 if solution x has property i
Ii(x) =
0 otherwise
Apply a local search for (f'(x), N (x)) to find a new solution z’
if f'(x) < f'(2’) then
L ' —x
Compute the utility function Util(x,i) for each feature i, where i =
1,...,n, of the current candidate solution x, where the utility function

is explained as

Li(z).+& 1 f solution x has property i
Util (2. 1) = i()- 155 f property
0 otherwise

for each solution feature i with maximum Util(z,i) do
| Penalize the solution feature i: p; «— p; + 1

return z’

end

Algorithm 9: Gui%e?d Local Search

Local search based metaheuristics Guided local search

c¢=(c1,¢2,...,¢p) is a vector of cost. That means for each feature i, there is a cost ¢;.
The cost vector may be a constant or a variable which contains zero or positive elements.
The cost vector with the local minimum gives the sources of information about the problem.
Moreover, a practical local minimum contains a number of features. That means if the
feature f; is exhibited in the local minimum of z, the indicator function for feature ¢ is
Ii(x) =1.

Also, at a local minimum z for example, the utility of the penalising function for each

feature 7 can be written

Ii(x). +5- if solution x has a property i
Util(z, i) = i@y i Y
0 otherwise

in other words, the utility of penalising will be equal to Ii(x).%ipi, if the feature 4 is exhibited
in the local minimum =z, otherwise it will be equal to zero. In addition, if the cost of the
feature is lower (the smaller ¢;), the utility of penalising will be smaller. Furthermore, if the
p; is greater, the more times it will be needed to penalise, that means the utility of penalising
will be lower (Voudouris and Tsang, 2003).

There is a close relationship between GLS and Tabu Search (Voudouris and Tsang, 2003).
Tabus in TS can be seen as penalties in GLS, and both ways are used to escape from local
minima. Also, TS can be adopted by GLS. For instance, the idea of a tabu list and aspiration
criteria have been included in later versions of GLS. However, in GLS if many penalties have
been added to augment the objective function, the local search could be misguided. In
Voudouris and Tsang (1998), they apply GLS to the quadratic assignment problem, where
they use a limited number of penalties (resembling tabu lists), which means when the list is
full, the old penalties will be overwritten.

In addition, the GLS adopts the genetic algorithm (GA) to produce a guided genetic
algorithm (GGA) (Mills et al., 2003), where GGA is a hybrid of GA and GLS. In GGA, after
a specific number of iterations (where this number is the parameter of GGA) without any
improvement, the GLS will modify the fitness function by means of penalties, that will help
GGA to focus in its search.

There are many applications for GLS. In Kilby et al. (1999); Zhong and Cole (2005),

38

Local search based metaheuristics Iterated local search

GLS is applied to vehicle routing problems, while in Zhong and Cole (2005), it is applied to
vehicle routing problem with backhauls and time windows. The main idea is to construct
an initial infeasible solution and then use GLS to improve that solution to be a feasible one.
This new approach gives some better solutions compared with the other previously used
methods. Moreover, it is used when the customers are in clusters or distributed normally.
In Mills and Tsang (2000), they apply the GLS algorithm to solve the SAT problem. The
new resulting algorithm can be easily extended to solve the weighted MAX-SAT problem.
GLS is applied to solve traveling salesman problem in Voudouris and Tsang (1999), where
they use the techniques of guided local search and fast local search (FLS). The FLS is
applied to neighbourhood to speed up the algorithm. More GLS applications such as three
dimensional bin packing problems, capacitated arc-routing and team orienteering problems
are discussed by Faroe et al. (2003), Beullens et al. (2003) and Vansteenwegen et al. (2009)

respectively.

1.2.4 Iterated local search -Fixed neighbourhood search

Iterated local search (ILS) is a simple and general metaheursitic. It iteratively builds a
sequence of solutions generated by an embedded heuristic, which will lead to far better
solutions if random trials of that heuristic have been used to find the solutions (Lourenco

et al., 2003). ILS algorithm is given in Algorithm 10.

39

Local search based metaheuristics Iterated local search

Function ILS (z, N(.), S)
1 Define the neighbourhood structure N (z)
2 begin
3 Apply Generate_initial_solution procedure to find the initial solution x, z «
Generate_initial _solution
4 Apply Local_Search procedure on x to find a better solution z/, 2/ «
Local _search(x, N (z))
5 repeat
6 Use the Perturbation procedure on 2’ to find 2", 2" «
Perturbation(x’, history)
7 Again apply Local_Search procedure on z’ to find 2™, 2/* «
Local _search(z")

*

8 Use Accepting_criterion procedure to accept z* or not, = —

Accepting_criterion(x*, x'™*, history)

9 Set x «— z*

until termination condition met

end

return z

Algorithm 10: Iterated Local Search

As previously stated, the ILS algorithm is made up of four procedures:
e Generate initial solution procedure.
e Perturbation procedure.
e Accepting criterion procedure.
e Local search procedure.

As we can note the difference between ILS and multi-start method is that the multi-start
method re-starts the search from a new solution to achieve the diversification, where ILS has

at the beginning an initial solution only.

40

Local search based metaheuristics Iterated local search

As shown in Algorithm 10, the ILS algorithm begins by finding the initial solution =,
where starting with a good solution gives high quality solutions in reasonable time. There are
two possibilities to generate the initial solution, a random restart or a greedy construction
heuristic. Using a greedy initial solution over a random restart gives the search two advan-
tages. First combining the initial solution with local search leads to good quality solutions.
Additionally, local search using greedy solutions needs less CPU time, because it takes less
improvement steps (i.e. the greedy solution speeds the search). Furthermore, using random
restart with the short computation time will give a solution z’ less efficient than a greedy
heuristic one.

In order to avoid stalling in local optima and reach the global minimum, ILS uses the
perturbation procedure as in the SA algorithm. The local search should not be able to undo
the perturbation. Otherwise the search will fall back to visited local optima. The local search
can achieve the perturbation procedure by using random moves on the neighbourhood higher
than the one used before. It is still a good idea to use the perturbation procedure, which
guarantees better results.

Changing the current solution using perturbation should not be too strong, because it
will lead it to behave as a random restart. Also, finding better solutions are not a guarantee.
On the other hand, the perturbation should not be too small, where the search may revisit
the same local optima. Moreover, the perturbation strength may be refereed to as the number
of solution components, which means an appropriate perturbation strength depends on the
instance size. For example in traveling salesman problem (TSP), it is the number of edges
that are changing during the tour, roughly, the strength is defined as the amount of change
made on the current solution, where it may be fixed or variable.

There are many ways to determine the perturbation strength. For instance, in TSP
problems it is very small and seems independent of the instance size. On the other hand, it
is driven to a large size in the quadratic assignment problem (QAP). Furthermore, ILS for
the QAP shows that there is not a priori single best size for the perturbation, according to
that ILS algorithm adapts the perturbation strength during the search, more information is

described in Hong et al. (1997).

41

Local search based metaheuristics Iterated local search

After finding another solution z” by using the perturbation procedure, the acceptance
criterion is used to decide if the move will be taken or not. It controls the balance between
the intensification and diversification during the search. A Markovian acceptance criterion
(or better acceptance criterion) for minimisation problems is a very strong intensification. It

is simply achieved by accepting better solutions. It can be written as

P if @) < f(a)

z* otherwise

Better_acceptance_criterion =

On the another hand, the random acceptance criterion, which favours diversification, can
be used for applying the perturbation to the visited local optima, irrespective of its cost. It

can be described as
random_acceptance_criterion(x*, x'*, history) = z'* (1.5)

There are many intermediate choices between the better acceptance and the random
acceptance criterion. For instance in Martin et al. (1991, 1992) the large step Markov chains
algorithm has been applied with a simulated annealing type acceptance criterion. It is

denoted as LSMC and it is given in Algorithm 11.

Procedure LSMC (x*, 2/, history)
1 if f(2™) < f(z*) then

L ZE/* — ZE*

else

L accept x'* « x* with probability, exp{w}

Algorithm 11: LSMC acceptance criterion

where T is called a temperature parameter as in SA. The LSMC behaves as a better accep-
tance criterion when the temperature is very low, and as random acceptance criterion when
the temperature is very high.

There is a limited case for using the memory with the acceptance criteria. It has been
used to restart the algorithm when the intensification becomes inefficient to switch to diver-
sification. This idea could be applied when no improved solution have been found. It uses

the new initial solution for a given number of iterations to restart the algorithm. The restart

42

Local search based metaheuristics Future in metaheuristics area

acceptance criterion is given in Algorithm 12.

Procedure Restart (z*, 2™, history)
1 if f(2™) < f(z*) then
L x/*

else if f(2"*) > f(x*) and i — ij4st > i, then
Lz

else

L x*

Algorithm 12: Restart acceptance criterion

where 4,4 is the last iteration where a better solution has been found, and 7 is the iteration
counter. Also, i, indicates the number of iterations without any improvement.

The ILS algorithm is very sensitive to the choice of embedded heuristics. There are
many different algorithms which may fit an embedded heuristic. In general, the better
the choice of the local search, the better is the corresponding ILS. For example, when the
CPU time is fixed, it is better to choose a less efficient and fast local search than a slower
and more powerful one. The best choice depends on how much time is needed to find
a better solution. However, if the speed does not make any difference, then the better
heuristic is worth applying. Besides, the local search can not easily undo the perturbation.
Consequently, good ILS depends on the combination of all four components. The best choice
of perturbation depends on the local search, while the best choice of acceptance criterion
depends on perturbation and local search. Briefly, the search space has to have these two

points:

e The perturbation should not easily become undone by the local search. Moreover,
the perturbation should compensate for the local search, if the local search has short

comings.

e Having a good combination of perturbation and acceptance criterion. The relation

between these two makes the balance between intensification and diversification.

More applications and some interesting developments of the ILS algorithm can be found

in Hong et al. (1997); Martin et al. (1991); Stutzle (2006); Tang and Wang (2006).

43

Local search based metaheuristics Future in metaheuristics area

1.3 Future in metaheuristics area

Hybridization is a recent trend in metaheuristics, which can be defined as the integration
between the single-solution methods with the population-based methods. In general, we
can distinguish three different types (forms) of hybrid metaheuristics: component exchange
among metaheuristics, cooperative search and integrating metaheuristics (Blum and Roli,
2003).

Component exchange among metaheuristics is one of the most popular and uses hy-
bridization by combining the single-methods in population-based methods. The reason of
the power of this combination becomes apparent by explaining the strength of two types:
population-based methods and trajectory methods (single-solution methods).

The main idea of population-based methods is based on recombining the solutions to
obtain new ones. The explicit recombining solutions are implemented by one or more re-
combination operators in evolutionary computation and scatter search. However, in Ant
Colony Optimisation and Estimation of Distribution Algorithms, the recombining solutions
are implicit according to the usage, where the distribution over the search space will gener-
ate new recombining solutions. This recombination procedure in population-based methods
allows “big” guided steps in the search space. Usually these guided steps are larger than
the steps performed by trajectory methods. However, some trajectory methods like iterated
local search and variable neighbourhood search have big steps as well, because their steps are
usually not guided. They perform from random mechanisms, which are called “kick moves”
or “perturbation”. Moreover, the strength of trajectory methods drives the search to explore
the promising areas in the search space. In conclusion, we can note that the population-
based methods are more powerful in finding the promising areas in the search space, whereas
trajectory methods are superior in searching specific zones (promising areas) of the domain.
That leads to very successful applications by using this form of hybrid metaheuristics.

The second form of hybrid metaheuristics is cooperative search. Its basic idea is exchang-
ing information between different algorithms, where the algorithms could be approximate

or complete or a mix of both types. This exchange might consist of exchanging in states,

44

Local search based metaheuristics Future in metaheuristics area

models, entire sub problems, solutions or other search space characteristics. Typically, this
type consists of the parallel execution of search algorithms with different communication
levels. The used algorithms could be different or the same with different models or param-
eters. Nowadays, cooperative search receives much attention due to increasing interest in
parallelization of metaheuristics. For more information of parallel metaheuristics see the
survey in Crainic and Toulouse (2003).

The last form is the integration of approzimate and systematic (or complete) methods.
This type of hybrid metaheuristics is really powerful and gives very effective algorithm when
it is applied to real world problems. There are three main approaches for integration of
metaheuristics (especially trajectory “single solution” methods) and systematic techniques.

Theses are as follows

e When the metaheuristics and systematic method are applied in sequence. If the meta-
heuristics algorithm is working to find the solutions, then these solutions will be the
heuristic information that will be improved by the systematic search and vice versa.

This approach can be seen as a cooperative search, or a kind of loose integration.

e When the metaheuristics are applied a complete methods to efficiently explore the
neighbourhood structure rather than using random sampling or simply enumerating
all the neighbours. This type of search combines two advantages, the fast exploration by
using metaheuristics, and the efficient exploration of the neighbourhood by systematic
method. This approach is really efficient when the large neighbourhood structures are
used or when it is applied to real world problems. This type of problems has additional
constraints, they are called side constraints, where it might be difficult to explore the

neighbourhood by using metaheuristics.

e When the concepts or strategies for classes of algorithms are used together. Generally,
this means this type of hybridization is achieved by integrating strategies from meta-
heuristics into tree search methods. For example, the idea of tabu list or aspiration
criteria, which are defined in Tabu search, is applied on other algorithms not only on

tabu search.

45

Local search based metaheuristics Future in metaheuristics area

To sum up, the hybrid metaheuristics gives a developed type of metaheuristics as com-

pared to their parent, where they can be applied to more problems and give better results.

46

Chapter 2

Variable neighbourhood search

metaheuristics

All local search based metaheuristics discussed in Chapter 1 are dealing with a single neigh-
bourhood structure at each iteration, which may or may not be updated from one iteration
to another. However, this is not the case with varaible neighbourhood search, where more
than one neighbourhood structure is included at each iteration. That means the solution
process could be significantly improved if more than one neighbourhood of the currently
observed solution is explored and thus a few new candidate solutions are generated at each
iteration. This is the basic idea of the variable neighbourhood search metaheuristic.

The variable neighbourhood search is thoroughly explained in this chapter, where this
variable neighbourhood search metaheuristic is the main idea in this thesis as the research

reported.

2.1 Variable neighbourhood search

Variable neighbourhood search (VNS) is a metaheuristic or framework for building heuristics.
It was introduced by Mladenovi¢ and Hansen (1997). VNS is based upon systematic changes
of neighbourhoods in order to find better solutions in distant parts of a solution space.

Most local search metaheuristics use just few neighbourhoods (one or two, number of

47

VNS VNS basic schemes

neighbourhood < 2) at each iteration, which could be changed from one iteration to another.
Changing the neighbourhood structure during the search makes the search process more
effective. Therefore, if there is more than one neighbourhood at each observed solution,
that will help to improve the solution process to explore the search space and thus find new
candidate solutions, fulfilling the basic idea of VNS. There are three obvious facts that could
explain why change of neighbourhoods works well:

Fact 1. A global minimum is a local minimum with respect to all possible neighbourhood
structures.

Fact 2. A local minimum with respect to one neighbourhood structure is not necessarily a
local minimum with respect to another neighbourhood structure.

Fact 3. For many problems local minima with respect to one or several neighbourhoods are
relatively close to each other (Hansen et al., 2008).

The last fact is an empirical one, which implies that a local optimum gives information
about the global optimum. For instance, it may appear that some variables have the same
values in both local and global optima. Moreover, those simple facts are used within VNS in
several different ways (see for example recent surveys of VNS in Hansen et al. (2008, 2010)).
Furthermore, these three facts can be combined in three different ways: the determinis-
tic one, stochastic one and both deterministic and stochastic, to make a balance between
intensification and diversification.

VNS has been used in different applications, for each case it has a selection of neighbour-
hood structures. Neighbourhood changes scheme or the way of selecting the solutions within
a neighbourhood, etc., depends on the problem. In the next subsection, basic schemes of
VNS will be explained in more detail. Also, many types of VNS will be described in the

following subsections.

2.1.1 VNS basic schemes

VNS is designed for solving both continuous and discrete optimisation problems, that may
be formulated as

min{f(z)| z € X, X C S}. (2.1)

48

VNS VNS basic schemes

S, X,z and f respectively denote the solution space, feasible set, a feasible solution and a
real-valued objective function. If S is a finite but large set, a combinatorial optimisation
problem is defined. If § = R", we refer to continuous optimisation. An exact algorithm
for problem (2.1), if one exists, finds an optimal solution x*, together with the proof of its
optimality, or shows that there is no feasible solution, i.e., X = (.

Let N, k=1,..., knas, denotes a finite set of pre-selected neighbourhood structures and
let NV () be the set of solutions in the k" neighbourhood of 2. Moreover, the neighbourhoods
for the same solution are nested i.e. Nj(z) C Ma(z) C ... C Np,..(z), that means, as
opposed to other metaheuristics, VNS is dealing with more than one neighbourhood for each

candidate solution x. This phenomenon is explained in Figure 2.1.

Figure 2.1: The change of neighbourhoods during the VNS search

The neighbourhood structures A, may be induced from one or more metrics, where the

metric function is p : S? — R, thus the formula for finding A (x) can be described

Ne(z)={y € X | rp_1 < pr(x,y) <7}y (2.2)

49

VNS Variable neighbourhood descent

Ni(z) ={y € X |pr(z,y) < i}, (2.3)

Where the metric pg(x,y) is monotonically increasing with 7y, where ry is a given raduis of

neighbourhood Nj. The pi(x,y) between any two solutions x and y is given as

n 1
pr(@,y) = lzi—wilP)r (1<p<oo) (2.4)
=1
or

We define 2/ € X as a local minimum w.r.t. A, if there is no solution z € Ny(2') C X
such that f(x) < f(2’). This is a brief idea about VNS scheme and the next subsections will

focus on VNS variants.

2.1.2 Variable neighbourhood descent

Variable neighbourhood descent (VND) is performed in a deterministic way to make changes
of neighbourhoods. It completely explores the neighouborhood (Hansen and Mladenovié,
1999). Due to that, VND requires a large amount of computational effort, where the diversi-
fication process is rather slow, whereas intensification is enforced. VND steps are explained

in Algorithm 13.

50

VNS Reduced variable neighbourhood search

Function VND(z, N}, S)

1 Select the set of neighbourhood structures Ny, k = 1,..., knax, where N, is
given by (2.2) or (2.3)

2 Find an initial point x € S (or apply the rules to find it)

3 repeat

4 Set k1

5 repeat

6 Find the best improvement x’ € Ny (x) after completely exploring the
neigbourhood N (z)

7 if f(«') < f(z) then

| Set x «— 2/, and k « 1

else
| k<« k+1// Next neighbourhood

until k£ — k 0z
until no improvement is obtained

8 return z

Algorithm 13: Variable neighbourhood descent

As a first step in Algorithm 13, an initial solution x has been selected from the current
neighbourhood. Then for each iteration k, all possible candidate solutions have been gener-
ated to find the best neighbour of x. This means the current neighbourhood is completely
discovered before moving to another one (step 6). This is the case if there is no other stopping
condition. This sequential order of neighbourhood structures can develop a nested strategy.

Using the intensification rather than the diversification gives more chance to reach the
global minimum. On the other hand, completely exploring the neighbourhood requires more
computational time, which makes the search expensive. Sometimes, VND is used as a local
search in other metahuristic frameworks according to its robustness. More applications are

discussed (Gao et al., 2008; Hertz and Mittaz, 2001; Ognjanovié¢ et al., 2005).

o1

VNS Reduced variable neighbourhood search

2.1.3 Reduced variable neighbourhood search

Reduced variable neighbourhood search (RVNS) chooses the new candidate solutions ran-
domly from the current neighourhood. This means it uses stochastic search (Hansen et al.,
2008). Moreover, RVNS does not apply any local search to improve these candidate solutions.
This strategy makes RVNS very useful in very large instances, when using a local search may
be costly. More applications are given in Hansen and Mladenovi¢ (1999); Mladenovié et al.
(2003); Remde et al. (2007); Sevkli and Sevilgenr (2008). RVNS is illustrated in Algorithm
14 (Hansen et al., 2008).

Function RVNS(z, kmax, tmax)

1 Select the set of neighbourhood structures Ny, k = 1,..., knax, where N, is
given by (2.2) or (2.3)

2 Choose the stopping condition

3 while termination conditions do

4 repeat

5 Set k1

6 repeat

7 select at random 2/, where 2/ € Ny (z) //Shaking
8 if f(«') < f(z) then

| Set x «— 2/, and k « 1

else
| k<« k+1// Next neighbourhood

until &k — k 0z

until ¢ > tax

9 t «— CpuTime()

10 return x

Algorithm 14: Reduce Variable Neighbourhood Search

The algorithm initializes the search by selecting the maximum time (CPU time) and

maximum number of neighbourhood structures. Sometimes, another termination condition

52

VNS Basic variable neighbourhood search

may be added like the number of iteration without any improvement in the objective function.
It selects then new points at random inside the neighbourhood N (), which compares with
the incumbent one. The update happens, when the improvement is found (see steps 7 and

8), and this process is iterated until no improvement is reached.

2.1.4 Basic variable neighbourhood search

Basic variable neighbourhood search (BVNS) is applied to problems by combining the de-
terministic and stochastic way in changing of the neighbourhood (Mladenovié¢ and Hansen,
1997). This leads to a balance between the intensification and diversification.

However, VND completely explores the neighbourhood, which means that a large amount
of computational effort will be required, whereas RVNS just chooses the candidate solution
at random. This means the RVNS technique discards the quality of solutions. In BVNS the
next candidate solution from the current neighbourhood can be found by selecting a random
element (first solution) from the same neighbourhood. Then a local search approach applies
to improve it. Thus the best one is chosen to be considered as the next candidate solution
for the same neighbourhood. In Figure 2.2, we can note that the BVNS is not exploring all
the neighbourhood, but it provides a reasonable-quality solution. BVNS steps are explained

in Algorithm 15 (Mladenovi¢ and Hansen, 1997).

93

VNS Basic variable neighbourhood search

f(x) #k Global minimum

@® |oca minimum

Figure 2.2: The basic variable neighbourhood search scheme

o4

VNS General variable neighbourhood search

Function BVNS(z, Ny, S)

1 Select the set of neighbourhood structures Ny, k = 1,..., knax, where N, is
given by (2.2) or (2.3)

2 Find an initial point z € S

3 Choose the stopping condition

4 while termination conditions do

5 Set k «— 1

6 repeat
7 Generate at random ', where 2’ € Ny (z) //Shaking
8 Apply local search with 2’ as an initial solution to obtain the local

optimum z”
9 if f(2") < f(z) then
| Set x 2", and k — 1

else

| k< k+1// Next neighbourhood

until k& «— k,0z

10 return z

Algorithm 15: Basic Variable Neighbourhood Search

The new point z’ is generated at random (i.e. in stochastic rule in step 7 in Algorithm
15) to avoid cycling, which might occur if the deterministic way is applied. After that, a
local search method is applied on z’ as an initial solution to find z” (step 8 in Algorithm
15). Sometimes BVNS may be replaced by the local search by using variable neighbourhood
descent, where this combination leads to the most successful applications (see Hansen and

Mladenovié (2001a)).

2.1.5 General variable neighbourhood search

General variable neighbourhood search (GVNS) is derived from the basic variable neigh-

bourhood search, when BVNS is used as a local search to find the improvement. GVNS has

95

VNS

Skewed variable neighbourhood search

led to the most successful applications (see Andreatta and Ribeiro (2002); Brimberg et al.
(2000); Caporossi and Hansen (2000, 2004); Hansen and Mladenovié¢ (2001a)). GVNS steps

are explained in Algorithm 16 (Hansen and Mladenovié, 2001a).

2

3

5

6

7

10

Function GVNS(z, Ny, S)

1 Select the set of neighbourhood structures Ny, k = 1,..., knax, where N, is
given by (2.2) or (2.3)

Find an initial point x € S

Choose the stopping condition

4 while termination conditions not satisfied do

Set k1

repeat

Generate at random 2/, where 2’ € N (z) //Shaking

Apply variable neighbourhood descent (VND) with 2’ as an initial solu-
tion to obtain the local optimum 2’ //Shaking

if f(z") < f(z) then
| Set x 2", and k «— 1

else
| k<« k+1// Next neighbourhood

until k& — a0z

return z

Algorithm 16: General Variable Neighbourhood Search

where VND in step (8) in Algorithm 16 is a min VND, that means it has less number of

neighbourhood structures as in general one.

2.1.6 Skewed variable neighbourhood search

Skewed variable neighbourhood search (SVNS) explores the valleys far from the incumbent

solution (Hansen and Mladenovié¢, 2003). Indeed, in a large region problem, when the best

solution has been found, to improve that solution, the search has to go further to obtain an

o6

VNS Skewed variable neighbourhood search

improved one. If small neighbourhoods have been used, reaching the global optimum requires
a significant amount of computational time, which will make the search time consuming. To
overcome this problem, SVNS has a flexible acceptance criteria to deal with this dilemma. It
uses large neighbourhoods of the incumbent solution in order to escape from local optimum
and to have a better solution.

In addition, some metaheuristics like simulated annealing and tabu search use the idea of
diversification. They allow the search to accept worse solutions than the incumbent one to
escape from stalling in valleys, where SVNS has the same idea. Moreover, the solutions are
randomly choosen in distant neighbourhoods, which may make a substantial difference be-
tween them and the incumbent one and allow VNS to degenerate into a Multistart heuristic.
Consequently, SVNS makes some compensation for distance from the incumbent solution.

SVNS is explained in Algorithm 17 (Hansen and Mladenovié¢, 2003).

o7

VNS Skewed variable neighbourhood search

Function SVNS(z, kmax, tmax,)

1 Select the set of neighbourhood structures Ny, k = 1,..., knax, where N, is
given by (2.2) or (2.3)

2 Find an initial point z € S

3 while t < tax do

4 Set k «— 1 and xpest <—

5 repeat

6 Generate at random 2, where 2’ € Ny (z)

7 Apply local search with 2/ as an initial solution to obtain the local

optimum z” //Shaking

8 if f(2") < fpest then
L Set fest < f(ﬂl') and Tpess < z”
9 else if f(2") — ad(z,2”) < f(x) then

L Set 2 — 2" and k — 1

else
| k<« k+1// Next neighbourhood

until k£ «— k,az

10 return x

Algorithm 17: Skewed variable neighbourhood search

In Algorithm 17 step 9 allows to move to worse solutions to avoid stalling in large valleys.
The § : S? — R is used to measure the distance between the local optimum found z” and
the incumbent solution x, where a move is made if f(z”) — ad(x,2”) < f(z). The « € RT is
a parameter, and it is used to control the diversification. This function §(x,z”) may or may
not be defined as the distance function p : §2 «— R, which it is explained in (2.4) and (2.5),
where it is used to define the N.

Moreover, the a must be chosen in order to guarantee that the search goes far away from
x when f(2”) is larger than f(x), but not too much larger (otherwise one will always leave
x). In some case, the a can be found experimentally in each case, or it can be defined as a

large value when ¢ is small for avoiding frequent moves from x to closer solution, where the

o8

VNS Variable neighbourhood decomposition search

more sophisticated choices for finding « could be made through the learning process. For

SNVS applications (see Brimberg et al. (2009); Souza and Martins (2008)).

2.1.7 Variable neighbourhood decomposition search

The variable neighbourhood decomposition search (VNDS) was introduced by Hansen et al.
(2001). VNDS extends the basic VNS into a two-level VNS scheme based upon decomposition
of the problem.

The basic VNS is very useful for solving many combinatorial and global optimisation
problems. However, if the problem has very large instances, the basic VNS almost practically
fails to find a good quality solution in reasonable computational time, because it has limited
tools to deal with big size problems. When the heuristic methods are applied to very large
instance problems, their strengths and weaknesses become clearly apparent. Due to that the
improvement scheme is desirable, where VNSD is improved to sort out this issue.

The main difference between VNS and VNDS is that VNS applies the local search method
in the whole solution space S. VNDS is divided at each iteration into a subproblem in some
subspace, where VNS is used as a local search here, thus the two-level VNS-scheme arises.
VNDS steps are explained in Algorithm 18 (Hansen et al., 2001).

At the beginning, the set of all solution attributes is defined as A and t4, where t4 is an
additional parameter and it is used as the running time for solving decomposed small size
problem by VNS. At each iteration, VNDS chooses a subset y C A at random, where y is a
set of k solution attributes present in 2/, but not in z (y = 2/\x). Then, a new local optimum
y" has been found in the space y, where it is denoted as " in the space S (2" = (' \ y) \ /).
Due to the above, the VNDS is becoming popular with a number of successful applications
(see Costa et al. (2002); Hansen et al. (2007b); Lazi¢ et al. (2010); Lejeune (2006); Urosevié
et al. (2004)).

29

VNS Variable neighbourhood decomposition search

Function VNDS(z, kmax, tmax:td)

1 Select the set of neighbourhood structures Ny, k = 1,..., knax, where N, is
given by (2.2) or (2.3)

2 Find an initial point z € S

3 Let A be a set of all solution attributes

4 while t <t do

5 Set k «— 1

6 repeat
7 Generate at random 2/, where 2’ € Ny (z)
8 Let y C A be a set of k solution attributes present in z’ but not in z,
(y =2’ \) //Shaking
9 repeat
10 Find the local optimum in the subspace y by inspection or by some

heuristics and name the incumbent by 7’. Let z” be in the whole
space S, where 2’ = (2/ \ y) \ ¢/

until ¢t <ty

11 if f(2") < f(x) then

L Set x « 2"

else
| k—k+1

until k£ — k0z

12 return x

Algorithm 18: Variable neighbourhood decomposition search

60

VNS Continuous variable neighbourhood search

2.1.8 Continuous variable neighbourhood search

Continuous variable neighbourhood search (CVNS) was introduced by Mladenovié et al.
(2003). It was developed to solve constrained and unconstrained continuous optimisation

problems. The continuous box constrained nonlinear optimisation problem (COP) can be

written as
min T
(cop) f(x)
s.t. a; < Zj < bj Vj e {1,2,...,1’L}
where x = (x1,...,2,), f : R* — R, a,b € R"™ are the lower and upper bounds on the
variables.

The COP, as defined above, naturally arises in many applications, e.g. in advanced
engineering design, data analysis, financial planning, risk management, scientific modeling,
etc. Most cases of practical interest are characterised by multiple local optima and, therefore,
a search effort of global scope is needed to find the globally optimal solution (COP).

For solving COP, VNS has already been used in two different ways: with neighbourhoods
induced by using an ¢, norm (Drazi¢ et al., 2006; Liberti and Drazic, 2005; Mladenovi¢ et al.,
2008) and without using an ¢, norm (Toksari and Guner, 2007). The metric function pj can
be defined as in (2.4) or (2.5). Thus, the neighbourhood N (), where it denotes the set of
solutions in the k-th neighbourhood of x, can be written by using the metric p; as in (2.2)
or (2.3), where metric the pi(z,y) and 7 are monotonically increasing with k, and 7 is a
given radius of the neigbourhood N,.

In Drazi¢ et al. (2006) a software package GLOB was developed for solving box con-
strained CGOP by using CVNS. Its steps are given in Algorithm 19.

The Glob-VNS procedure from Algorithm 19 contains the following parameters in addition
t0 kmaz (2 maximum number of neighbourhoods used in the search) and 4, (total maximum

time allowed):

1. Values of radii v, kK = 1,...,kmax- Those values may be defined by the user or

calculated automatically in the minimising process;

61

VNS Continuous variable neighbourhood search

Function Glob-VNS (z, kmaz, tmaz)

1 Select the set of neighbourhood structures Ny, k = 1,..., kpax, as in (2.2) or
(2.3)

2 Find an initial point x € X

3 Select the array of geometry distributions types

4 while t < t,,4, do

5 k—1

6 repeat

7 for each (geometry, distribution) pair do

8 Generate 2’ € Nj(x) at random

9 Apply a local search on 2’ to obtain a local minimum z”//Shaking
10 if f(2") < f(z) then
11 L x 2" go to line 5
12 k—k+1

until k¥ = kpax

13 t < CpuTime()

14 return x

Algorithm 19: VNS for COP

62

VNS Continuous variable neighbourhood search

2. Geometry of the neighbourhood structures Ny, defined by the choice of the metric and

their order. The usual choices are the £1, {5, and . norms;

3. Distribution used for obtaining the random point 2’ from N},. Uniform distribution in
N is the obvious choice, but other distributions may lead to much better performance
on some problems. Besides uniform (u), we also implement hypergeometric distribution
(h), the special distribution (denoted by 2) uses a specially designed distribution on ¢;

unit sphere, as follows:

e The coordinate d; is taken uniformly on [—1,1], d is taken uniformly from
[— Ak, Ag] where Ay = 1— | dy | —...— | dg—1 |,k = 2,...,n — 1 and the last

d, takes A, with a random sign.

e The coordinates of d are permuted randomly.

Note that different choices of geometric neighbourhood shapes and random point dis-
tributions lead to different VNS-based heuristics. We denote them as (o,), where «

and 7 represents geometry (the metric) used and distribution, respectively.

Figure 2.3 explains all types of distributions. Moreover, for the local search phase GLOB
includes several nonlinear methods like steepset descent, Rosenbrock, Nelder-Mead, and
Fletcher-Reeves. The type of local search is chosen by the user to decide which one fits
better with the problem. Furthermore, the type and order of geometries to generate the
neighbourhood structures is a user decision, where not all of them should be included. Also,
a random starting point in each neighbourhood is generated by the local search according
to the chosen metric.

To sum up, Glob-VNS algorithm should contain the following:

e defined tax Wwhich is the maximum running time for the search.

e defined k. which is the maximum number of neighbourhood structures during the

search.

e defined radii r; or the procedure to generate them.

63

VNS Continuous variable neighbourhood search

Figure 2.3: Distribution types

64

VNS

Continuous optimisation applications

100
80
f’p%‘;ﬂ\\» ‘;“?’%“‘:“‘\\‘\\”M 60 M /’ﬂﬁn ,’w“;}‘ ;&w‘ i
A VALY - A \ i
Y T il 5 i 0
ST PR E AR
AN P N A A
i im:':':‘«\'}':"}:":‘o\“\‘ww. 3’:’:"‘\‘“\'\9&"0'0" ! '::"3"0':':‘.‘““;\‘#°."""/' 20 kL
[N"M""‘“ YN ‘9\\ : ""‘9 'o‘{,f‘““q
e O Cobii

Figure 2.4: Rastrigin function

MPE(x,y)
N
I

Figure 2.5: Molecular potential energy function

defined choice of geometries which are used to build the neighbourhood structure.
chosen types of distributions that will be used during the search.
decided local heuristic method that will be used in the search.

finally, decided order of neighbourhoods and distributions in the shaking steps.

Some figures for applying GLOB-VNS on continuous optimisation problems are given such

as Rastrigin function in Figure 2.4 and Molecular potential energy function in Figure 2.5.

65

VNS Reformulation descent variable neighbourhood search

Continuous optimisation applications

In this part, some application on continuous optimisation problems, which have been solved
by CVNS, will be explained.

Bilinear programming problem (BLP) is structured as a global optimisation problem with
bilinear constraints. This problem has three sets of variables x, y and z, with cardinalities
n1, ng and ng respectively. This problem has a bilinear property, which means, when the set
of y is fixed, BLP becomes a linear program in z and z, whereas when the set of z is fixed,

the BLP is linear program in x and y. The steps of solving BLP can be written as
e Fixe one variable y (or z).
e LP;: Solve this problem as a linear program in (x, z) (or (x,y)).

e LPy: For z (or y), which it has been found in previous step, solve a linear program in

(z,y) (or (,2)).
o If stability is not reached return to LP;.

This algorithm is suggested as a well-known Alternate heuristics, where it may be solved
by a Multistart framework. Applying CVNS on BLP outperforms the Multistart Alternate
heuristic (Audet et al., 2004). In CVNS algorithm, the neighbourhood N (z, y, z) for solution
(z,y, 2) is defined, then the alternate heuristic is used as the local search method.
Continuous Min-Max problem has been solved by CVNS. The algorithm starts by defining
different neighbourhood structures. They are derived from the Euclidean distance, then the
random point has been selected from the current neighbourhood. In the local search step, the
gradient local search has been applied. This step will be repeated until the number of active
functions in the current point equals n. The results have been compared with multi-level
Tabu search, where CVNS outperforms better on quality and computing time for all test
instances (Hansen and Mladenovié¢, 2001b; Mladenovié¢ et al., 2003). For more applications

for CVNS (see Mladenovié et al. (2008); Toksari and Guner (2007)).

66

VNS Reformulation descent variable neighbourhood search

2.1.9 Reformulation descent variable neighbourhood search

The traditional techniques to solve an optimisation problem are attempted by considering
its formulation and searching through the feasible region X. In fact, the same optimisation
problem can often be formulated in different ways, where this allows the search to jump from
one formulation to another. It has a local search method, which works totally within the
formulation, and gives a final solution. Any solution which has been found by one of the
formulations, should then be translated to an equivalent one in any other formulations.

This strategy helps to escape from local optima by switching from one formulation to
another, where the local minima for the first one, may not be a local minima for another.
This idea can help if the local search for each formulation will behave differently.

The VNS algorithm for reformulation descent (RD) is given in Algorithm 20. Let P
be a given optimisation problem (combinatorial or continuous) and ¢1, @2 are two different
formulations for the problem. It explains how the two formulations are incorporated, where

the current active formulation is denoted as uctive-

67

VNS Reformulation descent variable neighbourhood search

M VNS-RD (Pa Z, Y1, P2, kmam» tma:(:)

1 Select the set of neighbourhood structures Ny, , k =1,..., kmax, where Ny, :
Sp1 — P(&m)

2 Select the set of neighbourhood structures Njy,, k = 1,. .., kmax, where Ny, :
Spy — P(Ssoz)

3 Find an initial point x € X

4 Set Pactive = P1-

5 while t < t,,4, do

6 k«—1
7 repeat
8 Generate 2’ € Ny, ... (2) at random
9 Applying a local search on 2’ to obtain a local minimum z”
10 if f(2", pactive) < f(Z, Pactive) then
11 2" and k «— 1
12 | Set active = P2
else
13 k=k+1
until k < kpax
14 t < CpuTime()

15 return x

Algorithm 20: VNS for RD

where kpax could be equaled for ¢; and @9 or not.

This idea was recently investigated in Mladenovié¢ et al. (2005). It was applied on cir-
cle packing problems (CPP) to investigate systematical changes between two formulations
(one for Cartesian coordinates and one for polar coordinates system). It is shown that the
stationary point in polar coordinates is not necessarily a stationary point in the Cartesian

coordinates system. In this case a RD method is applied, which alternates between two

68

VNS Primal-dual VNS

formulations until a final solution is found, where this one is a stationary point with respect
to both formulations. The results obtained were comparable with the best known values,
but they were 150 times faster than other single formulation approaches. An extension for
RD has been suggested by using more than two formulations, this case is called formulation
space search (FSS) (Mladenovi¢ et al., 2007). For more application (see Hansen et al. (2010);
Hertz et al. (2008); Mladenovi¢ et al. (2007)).

2.1.10 Primal-dual VNS

The optimal solution can not be guaranteed by most of heuristic methods. Moreover, the
difference between the solution obtained and the optimal one is completely unknown. Thus
there is no information that could help to decide if the obtained solution is close to the
optimal one or not. In the heuristic method, if the lower bound of the objective function
value is known, the optimal solution may be guaranteed. To solve this issue, mathematical
programming is applied on relaxing the integrality constraints on the primal variables. How-
ever, the commercial solvers may fail to find the exact solution when the relaxed problem
has a large instance. Therefore, the new idea is to solve the dual relaxed problem with the
primal one.

In Hansen et al. (2007a), the Primal-dual VNS has been successfully applied on large
scale simple plant location problems (SPLP). It has been used to find the exact solution or

the guaranteed bounds. The algorithm is given in Algorithm (21)

Function PD-VNS (P, z k, kmazs tmaz)

s Fmaazs
1 Solve the primal by using BVNS(P, z, k], ...+ kmazs tmaz)
2 Find infeasible dual solution such that fp(x) = fp(y)

3 Use VNS to decrease the infeasibility of dual solution y
4 Find the exact dual solution

5 Apply branch-and-bound method on x and y

6 return x and y

Algorithm 21: Primal-dual VNS

69

VNS Parallel variable neighbourhood search

This algorithm has three phases. The first one is based on VNS, and it finds the nearest
optimal solution for the primal problem. Moreover, VNS decomposition is very powerful for
solving large scale simple plant location problems with up to 15000 facilities and 15000 users.
In the second phase, the approach is designed to find an exact solution to the relaxed dual
problem. Then the standard branch-and-bound is applied on the original problem within
tight upper and lower bounds, where they are obtained from the heuristic primal solution and

exact dual one. More details on PD-VNS for SPLP can be found in Hansen et al. (2007a).

2.1.11 Parallel variable neighbourhood search

The parallel variable neighbourhood search strategy could be classified into three categories:

e Low-level parallelism. This strategy aims to speed up the computations by executing
in parallel one or several tasks on one iteration. The implementation is divided among
the master processor and the slave processors. The master processor dispatchs work
to the other slave processors, then it has the results again. At this point the sequential
algorithm continues. The difference from one parallel approach to another is how much

work the slave processors will have.

e Domain decomposition. It is generally applied by dividing the vector of variables
and the solution space into subspaces. For finding the solution, the VNS procedure is
repeated for all subspaces to explore the whole region, which increases the exploration
in the search space. The master processor has the partial slave’s solutions and builds
the complete solution. At this point, the new partitions are decided by the master

processor which then restarts.

e Multiple search. It is obtained from multiple concurrent explorations of the solution
space. Moreover, the concurrent searches may or may not use the same heuristic.
They may or may not start from the same initial solutions. Besides, they may have a
communication during the search or at the end to identify the best overall solution. This
leads to two strategies known as the independent search methods, and the cooperative

multi-search methods.

70

VNS Variable neighbourhood search with dynamic selection

For more details and applications for parallel variable neighbourhood search (see Crainic

et al. (2004); Garcla-Lépez et al. (2002); Yazdani et al. (2010)).

2.1.12 Variable neighbourhood search with dynamic selection

In this subsection, the advance scheme of variable neighbourhood search will be highlighted
with dynamic change of parameters and / or neighbourhood structure during the search. To
characterise any local search metaheuristics, the next four components should be defined:
problem formulation, neighbourhood structure, initial solution and sets of parameters. These
components are fixed during the search. However, the behaviour of the search process could
be changed which may make these components or some of them not efficient enough to reach
the global optima. There is a possibility of switching between different formulations for the
same problem during the search and it has been explained in subsection 2.1.9.

There are two possibilities of using the neighbourhood structure to improve the search
process. First, by restricting the existing neighbourhood structure to a subspace of interest.
Second, by switching between different types of neighbourhood structures. Moreover, up-
dating the neighbourhood structure can be used when we are sure that some of the search
space is not of interest anymore and it should be discarded. This idea is very similar to the
tabu search (it has been discussed in chapter 1). If S is the solution space and let S” denotes
the set of solutions not of interest thus the new solution space will be S\ S’. Furthermore,
if the neighbourhood can be written as A/ : S — P(S), thus the new reduction one can be
formulated as N : S\ S — P(S\ S').

The other type of dynamic change of neighbourhood structure is called a variable neigh-
bourhood descent (it is discussed in subsection 2.1.2) as proposed in Hu and Raidl (2006).
The basic idea behind VND is switching systematically between different neighbourhood
structures N1, N, ..., N,. The search process starts with the first neighbourhood structure
N1 until the local optima has been found. It will then switch to neighbouhood structure
N3, and if the new improved solution has been found the search will start again from Nj.
Otherwise it will continue with N3 and so on. If the last neighbourhood structure N, has

been used without any improvement, the VND will terminate with a solution, which is repre-

71

VNS Variable neighbourhood search with dynamic selection

sented as a local optima to all neighbourhood structure. For some successful application (see

Hansen et al. (2006); Hu and Raidl (2006); Hu et al. (2009); Puchinger and Raidl (2008)).

72

Chapter 3

Censored quantile regression

This chapter focuses on continuous variable neighbourhood search (VNS) for solving censored
quantile regression (CQR). CQR models are very useful for the analysis of censored data
when standard linear models are felt to be inappropriate. However, fitting censored quantile
regression is hard numerically due to the fact that the function that has to be minimised
(Powell estimator) is not convex, nor concave in regressors. The performance of standard
methods is not satisfactory, in particular if a high degree of censoring is present. The
usual approach in the literature is to simplify (linearise) the estimator function and show
theoretically that such approximation tends to provide good real optimal values.

In this chapter a new approach to solve CQR will be suggested, i.e., the nonlinear,
non-convex, and non differentiable optimisation problem is solved directly. Our method is
based on variable neighbourhood search approach, a recent successful technique for solving
global optimisation problems. Simulation results presented indicate that our new method
can improve the quality of the censored quantile regression estimator considerably.

This chapter is organised as follows. Section 3.1 describes the censored quantile regression
problem and Powell estimator. In section 3.2, the literature review of censored quantile
regression is presented. The variable neigbuorhood search approach for solving censored
quantile regression by the Powell estimator, and its algorithm are presented in section 3.3.
Section 3.4 includes details on how the data instances are generated and then reports

extensive computational analysis.

73

Censored quantile regression Description of problem

3.1 Description of the problem

The research of quantile regression began four decades ago. The quantile in general can be

written as, if there is a random variable y with probability function
Fly) = P(Y <y) (3.1)

the quantile regression on 6th quantile is the inverse of the cumulative distribution function,

F~1(#), and it can be formulated as,
F=H(0) = infly: F(y) > 0} (32)

where 0 < 6 < 1. The median quantile will be given when 6§ = 1/2. Furthermore, the quantile
divides the population into segments. It is called quintiles, if the population is divided into
five segments, each segment has equal proportions of the population. Furthermore, it is
called quartiles, if it divides the population into four equal segments. Also, it could be called
deciles, if the population is divided into ten equal segments.

The quantile regression model (QR) was introduced by Koenker and Bassett (1978). This
estimator is the most famous approach, where the quantiles of responses are linearly related

to the input vector. It can be formulated as,
vi = TP + c0i i=1,...,n, (3.3)

where y; is the fth quantile function due to the response of the input vector x;. For estimating

the (8, €p), the Oth quantile regression are defined to minimise the objective function
n
F(Bog) = polyi — 73) (34)
i=1

where ey; is independent and identically distributed (i.i.d.) with distribution function, and

the py is the check function and it can be written as
po(N) = 16— (A <)]\ (3.5)
where I(.) is the indicator function, it is given as

1 if A<O
0 if A>0

I(A<0)=

74

Censored quantile regression Description of problem

Furthermore, the censored quantile regression with fixed censored point can be written
as,
y; = max{yo, ;B + €o:} Ji=1,...,n, (3.6)

where y; are given latent or dependent values, and yp is a given censoring point. z} is

g—dimensional vector of the independent covariates, which are observed (given) for each i.
0 represents confidence level, and eg; is an unobservable error term which is assumed to be
normally distributed (also known as quantile). By = (Bog, - - -, 59,179)T is g— dimensional
parameter of interest that we would like to find. The censored quantile regression model
is sometimes referred to by economists as the censored “Tobit” model (Tobin, 1958). The
regression is used to quantify the relationship between a response variable y; and some
covaraites x;, 1 = 1,...,n.

Powell (Powell, 1984, 1986) suggested an intuitive estimator for censored quantile regres-

sion model. This estimator solves
1 n
f(B,0,y0) = mﬂiﬂ -~ ;Pﬁ(yi — max{yo, z3}), (3.7)
i—

where pg is given as (3.5) and I(.) is the usual indicator function. Since 6 and yp are given,
function (3.7) depends only on 3. Therefore, we denote Powell estimator (3.7) as f(3). Right
censoring estimator can be easily found from (3.7) by replacing the max with min, where
it is mostly used with the duration model applications. In most econometric applications
the censoring point is fixed yo = 0 as in the original “Tobit” model but this case is not a
general one. However, the most important point that the censoring point yg is known for
all observations, where in the Powell estimator it is fixed. The Powell estimator has several

disadvantages.
e First, the censoring point yg must be known.

e Second, obtaining the global minimum of (3.7) can be difficult because the objective

function f(f) is non convex, nor concave and even non differentiable in £.

75

Censored quantile regression Description of problem

An example of f(5) with g = 2, n = 100, § = 0.95, yo = 0 and normally distributed
random variable ¢ is illustrated in Figure 3.1 (more details of this instance will be given in

section 3.4). Thus, the problem belongs to the global (nonlinear) optimisation area, and

1.4

1.2

f(B)

Figure 3.1: Powell function f(81,32) with n = 100, 6 = 0.95, yo = 0 and Gaussian r.v. € # 0

may have many local optima. Consequently, standard optimisation tools, that require the
objective function to be differentiable and/or convex, may fail to discover the true CQR
estimator.

However, several convex optimisation algorithms have been adapted for finding CQR,
where the Powell estimator (3.7) has been used see Fitzenberger (1997) for a survey of such
algorithms). More details are given in the next section 3.2.

Those algorithms have difficulties in solving CQR problems. They exhibit a high degree

of complexity in their implementation. Most of them achieve convergence to local optima,

76

Censored quantile regression Literature review

whereas finding the global optima for these problems require a heavy computational load.
Therefore, the basic question we would like to answer in this chapter is, what approach
is more promising: use the original Powell estimator (3.7) and solve CQR problem approx-
imately, or using a simplified approximative model and solve it exactly? In contrast to
the majority of authors who used to simplify models, here we suggest, for the first time,
the use of approximate global optimisation method for solving (3.7). In order to do that,
we developed nonlinear programminng (NP) code based on variable neighbourhood search
(VNS) metaheuristic (or framework for building heuristics). As far as we know, this is the
first time that some metaheuristics approach is used for solving the CQR problem. Based
on computational results section, it appears that our approach outperforms other methods

from the literature.

3.2 Literature review

There are many applications of censored quantile regression. Econometrics and statistics
have been interested in the CQR model in recent years, especially due to unknown condi-
tional heteroscedasticity and their robustness to distributional misspecification of error term.
Various applications of CQR have been published (Amemiya, 1982; Buchinsky and Hahn,
1998; Chaudhuri et al., 1997; Chen and Khan, 2000; Chernozhukov and Hong, 2002; Portnoy,
1991; Rao and Zhao, 1995; Yu. et al., 2003).

As mentioned above, the objective function of CQR is non convex, nor concave and non
differentiable. The optimisation problem may therefore have many local optima which means
that the local optimisation methods could be terminated in local optima instead of global
optima. Many algorithms described in the literature failed to provide satisfactory results
(Fitzenberger, 1997).

Womersley (1986) linearised the problem by using a reduced-gradient algorithm. In that
way a local minimiser is found by using linear programming.

Dueck and Scheuer (1990) used a new approach called “threshold accepting” (TA).

This algorithm is applied on the traveling salesman problem and the construction of error-

7

Censored quantile regression Literature review

correcting codes problem. The computational results show that the algorithm is very close
to optimum in 442-cities traveling salesman problem. This algorithm is also used to provide
convergence results (Althofer and Koschnick, 1991).

Pinkse (1993) tries to solve CQR with the Powell estimator by using the simplex algorithm
with Nelder-Mead method. He finds that the simplex algorithm is preferably not used for
estimating CQR.

Buchinsky (1994) has used iterative linear programming algorithm (ILPA) to study the
change of wages in the United States. The algorithm is applied on March Current Population
Survey since 1964. Besides, the changes in the return to schooling and the experience at
different wages are also examined. The linear model is divided into two groups, a one group
and a sixteen group model. The computational results show that the experience at different
wages and the returns to schools are similar in patterns of change, but they are different
across quantiles of the wage distribution. ILPA algorithm is available in many statistics
software likes STATA, and it can be easily written by TSP or R software languages.

The interior point algorithm for solving nonlinear quantile regression problems (NLRQ)
is discussed by Koenker and Park (1996). This algorithm has been applied on different
quantile problems, where the linear censored quantile problem of Powell estimator is also
included. NLRQ algorithm is available in R software.

Fitzenberger (1997) adapts the simplex algorithm of Barrodale and Roberts (1974) with ¢,
norm. This algorithm is called a BRCENS, where it studies the standard quantile regressions
and the CQR case. The objective function is the piecewise linear, where it depends on an
exact fit to p observations. The computation results are obtained by deleting one of the p
points from the “basis”. This strategy ensures convergence to a local optima.

The ILPA and NLRQ algorithms cannot guarantee the convergence to global optima,
even they cannot guarantee the convergence to local optima, whereas the BRCENS can
guarantee the convergence to local optima. Furthermore, in contrast to BRCENS and the
simplex algorithm in Pinkse (1993), TA algorithm almost guarantees convergence to the
global minimum with an infinity number of iterations. However, TA algorithm improves the

estimation of CQR better than any other algorithms, but it needs more CPU time. For that

78

Censored quantile regression Literature review

it has been used widely with CQR.

Since the late 1990s there have been different modification of CQR model . For example,
Buchinsky and Hahn (1998) introduced an alterative to the CQR model, this model is a
globally convex one. It can be solved by linear programming. Their stepwise estimator has
been used to estimate the coefficients. During the first step, a non-parametric approach is
applied on the estimation of the probability of censoring point at each observation. In the
second step, the uncensored observations are reweighted by using the estimated censoring
point. They then applied the ILPA algorithm in two cases, with unknown censoring point,
and with a Powell estimator with a fixed censoring point. The results show that the algorithm
outperforms for the bias induced by censoring.

Chernozhukov and Hong (2002) suggest the three-step estimator for solving CQR. This
estimator has variant fixed censoring point probabilities, where it is a stepwise estimation
approach as in Buchinsky and Hahn (1998). The parametric model has been used to es-
timate the censoring points at the first step. They use the estimated censoring points to
determine the observations with the small censoring probability. The computational results
show that the three-step estimator is useful for small sample or models with many regressors.
The estimators suggest in Buchinsky and Hahn (1998); Chernozhukov and Hong (2002) are
asymptotically equivalent to the original Powell estimator, they do not allow explicitly for
censored observations to be interpolated by the estimated CQR, where the interpolation
property suggests finding an exact solution by using a computationally expensive algorithm.

In Honoré et al. (2002), the distribution function is estimated by the censoring points.
This function is assumed to be independent of the response variables and covariates. Then,
the CQR is used when the censoring point is unknown.

The estimator suggested in Portnoy (2003) mimics the Kaplan-Meier estimator. It
reweights the censored observation if the censored region contains the value of it’s condi-
tional quantile function. This estimator is a right censored one, where it has been started
from the lower tail of the data. This CQR estimator is different from the Powell estima-
tor. Additional applications are described in the literature (Chernozhukov and Hong, 2003;
Blundella and Powell, 2007; Qian and Peng, 2010; Portnoy and Lin, 2010; Pang et al., 2010;

79

Censored quantile regression Variable neighbourhood search metahuristics

Hosseinkouchack, 2011).

3.3 Variable neighbourhood search for censored quantile re-

gression

As mentioned earlier, CQR problem belongs to continuous global optimisation. In this sec-
tion, the general rules of VNS for solving global optimisation problems (GOP) are discussed.

This is followed by an explanation of their use in solving CQR.

3.3.1 Variable neighbourhood search metahuristics

This subsection gives a brief revision of general variable neighbourhood search. Variable
neighbourhood search (VNS) (Mladenovi¢ and Hansen, 1997) is a metaheuristic based upon
systematic changes of neighbourhoods in order to enable finding a better solution in dis-
tant parts of a solution space. VNS is designed for solving both continuous and discrete

optimisation problems, that may be formulated as
min{f(9)| 4 € B,B C S}. (3.8)

S, B, 3 and f respectively denote the solution space, feasible set, a feasible solution and a
real-valued objective function. If S is a finite but large set, a combinatorial optimisation
problem is defined. If S = R", we refer to continuous optimisation. An exact algorithm
for problem (3.8), if one exists, finds an optimal solution 3*, together with the proof of its
optimality, or shows that there is no feasible solution, i.e., B = (.

Let Ny, k = 1,..., knaz, denotes a finite set of pre-selected neighbourhood structures
and let Ni(8) be the set of solutions in the k¥ neighbourhood of 3. The neighbourhood
structures A may be induced from one or more metrics introduced into a solution space S,
either discrete or continuous. We define 3” € X as a local minimum w.r.t. Ny, if there is no
solution 8 € Ni(8") C B such that f(3) < f(8").

Those simple facts are used within VNS in several different ways (see for example recent

surveys of VNS in (Hansen et al., 2008, 2010)). The deterministic change of neighbourhoods

80

Censored quantile regression VNS for CQR

leads us to a so-called Variable neighbourhood descent (VND) heuristic. The basic VNS
(BVNS) combines deterministic and random search (Mladenovi¢ and Hansen, 1997). Its

pseudo-code is given in Algorithm 22.

Function BVNS (3, kmaz, tmaz);
1 repeat
2 k<« 1;
3 repeat
4 ' < Shake(3, k);
5 [" < LocalSearch(f') ;
@ It (f(8") < f(B)) B — B"; goto 2;
8 k—k+1

until k£ = ke ;

9 t «+— CpuTime)

until ¢ > 40 ;

Algorithm 22: Steps of the Basic VNS for CQR

Let 8 be the incumbent (the best solution found so far). Within BVNS a point ' from
the neighbourhood k of 3 (8’ € Ni(f)) is taken at random where k = 1,..., kpax. Such a
point is an initial one for a local search routine that provides local minimum 3”. If f(5")
is better (smaller in the case of minimisation) then the new incumbent is 5" (G «— 5”)
also k is set to 1 (k « 1) and the process is repeated. Otherwise we generate a random
point from the larger neighbourhood (k < k + 1). The only parameter for the BVNS is the
number of neighbourhoods used (kmax). Once that neighbourhood is reached without finding
improvement, k is again set to 1. The process is repeated until some stopping criterion, such
as maximum CPU time ¢,y used, is satisfied (see Figure 3.2).

We may view the VNS as a “shaking” process, where a movement to a neighborhood
further from the current solution corresponds to a harder shake. Unlike random restart, the
VNS allows a controlled increase in the level of the shake. In this chapter we design the

GVNS heuristic for solving the CQR problem, by minimising the nonlinear Powell function
f(B).

81

Censored quantile regression VNS for CQR

x1

* x3

Figure 3.2: Illustration of the Basic Variable Neighbourhood Search (BVNS)

82

Censored quantile regression VNS for CQR

3.3.2 VNS for CQR

In this subsection we explain how we use VNS to solve the CQR problem. f(3) defined
in (3.7), is a nonlinear objective function with continuous variables fy,. .., 84—1. Thus, the
CQR problem may be solved as an unconstrained nonlinear program. If = %, then f(5)
gives the median (Chernozhukov and Hong, 2002). Observe also that any unconstrained
nonlinear program may be considered as box constrained, if left and right values of variables
that define a box are set to the same large negative and positive values a; and b;. Therefore,
given input data X = (z;5),i=1,...,n j=1,...,9 =1, Y = (y1,...,yn), € = (€1,-..,n)
and the value of 8 = (B, ...,By—1), the pseudo-code for evaluating the Powell estimator is

given in Algorithm 23.

Function Powell(s, X,Y, yo,€)
1 Powell— 0

2 fori=1,...,ndo

3 s+—0

4 for j=1,...,9—1do
5 L 5« s+ x;; 05

6 r— y; —max{yo,s — &; }
7 Powell < Powell 4 6r

8 if r < 0 then

9 L Powell « Powell - r

Algorithm 23: Pseudo-code for finding Powell estimator value

Neighborhoods - Shaking. For solving GOP, VNS has already been used in two different

ways: with neighbourhoods induced by using an £, norm (Drazi¢ et al., 2006; Mladenovi¢
et al., 2008; Liberti and Drazic, 2005) and without using an ¢, norm (Toksari and Guner,
2007). Here we apply VNS that uses the £, norm, i.e., we define distances between any two

solutions 3 and v as

g—1)
58,7 =18 —nlP)7, (3.9)
i=0

83

Censored quantile regression VNS for CQR

or

8(B,7) = odnax | 1Bi —vil, p=oc. (3.10)

The neighbourhood N () denotes the set of solutions in the k—th neighbourhood of 3, and

using the metric ¢, it is defined as

Nk(ﬁ) = {’7 €B | Tp—1 < 5(677) < Tk’}a (311)

where 7, is a given radius of neighourhood N, (k= 1,..., knax)-

Our CQR-VNS procedure for solving the CRQ problem contains the following parameters
in addition to kg, (2 maximum number of neighbourhoods used in the search) and ¢4,
(the maximum time allowed in the search):

(i) Values of radii ri,, k = 1,..., kmax. These values may be defined by the user or calcu-
lated automatically during the minimisation process. The geometry of the neighbourhood
structure is induced by the ¢; (3.9) and /5 (3.10) norms. We use balls as in (3.11). Radii
r <71y < ... <7, are automatically computed as follow: let 8 = (B, ..., By-1) € RI

be the current incumbent solution and let
ajgﬁjgbj, jZO,...,g—l (3.12)
defines a box or hyper-cube
g—1
H = []la;.0)]
=0
around the incumbent solution . In order to find k4, neighbourhoods automatically and

thus make our CQR-VNS more user-friendly, we divide 3; —a; and b; — 3; into kmax intervals:

Bz 5 b6
7‘7_ 9] — .

kmax kmax

Then the kpyax hyper-cubes (boxes) Hy, Ha, ..., Hyax around the incumbent (the best solu-

tion found so far) [are given
aj+ (k—1)0; < B <bj— (k—1)0j,k =1,..., kmax (3.13)

or

djk Sﬂ] SEjk)k: 1,0, kmax (314)

84

Censored quantile regression VNS for CQR

Figure (3.3) illustrates our construction of continuous neighbourhoods as hyper-cubes for

the case of kmax = 3 and g = 2 (or 8 = (8o, 51)7).

85

Censored quantile regression VNS for CQR

b2

a2

al bl

Figure 3.3: Automatic construction of neighbourhoods with ¢ = 2 and kpae = 3.

(ii) (Geometry, distribution) pairs. Geometry of neighbourhood structures Ny, is defined by

the choice of the metric functions used in the search through the solution space. The usual
choices are the f1, ¢35, and £, norms. Their order in the search is also important within
VNS. Different distributions may be used for obtaining the random point y from the same
neighbourhood N}, in the Shaking step. Uniform distribution in N}, is the obvious choice, but
other distributions may lead to much better performance on some problems. Besides uniform
(u), we also implement the hypergeometric distribution (h)(Drazi¢ et al., 2006; Mladenovié

et al., 2008). The special distribution (h) is designed as follows:

e The coordinate 3; is taken uniformly on [—1, 1], 8 is taken uniformly from [— Ay, Ax]
where Ay, =1— | 61| —...— | Br=1 |,k =2,...,9 — 1 and the last 3, takes A, with a

random sign.
e The coordinates of 8 are permuted randomly.

Note that different choices of geometric neighbourhood shapes and random point distribu-
tions lead to different VNS based heuristics. We denote them as («,), where a and 7 repre-

sents geometry (metric) and distribution used, respectively. Therefore, in total we have 6 dif-

86

Censored quantile regression VNS for CQR

ferent variants of VNS defined by (geometry, distribution) pairs: (¢1,u),(f2,u),({s0,),(¢1, k),
(2,h), ({so,h). Note that “u” denotes uniform distribution, while “hA” denotes hypergeo-
metric (special) distribution. For simplicity, we will denote those variants in pseudo-code
as (1,1),(2,1),(3,1),(1,2),(2,2) and (3,2): (1,1)= (¢1,u), (2,1)=(l2,u), etc. For example, pair
(3,2) indicates that £o norm (3) and the special distribution (2) are used in the shaking step.
However, after extensive computational analysis, we select on four (geometry, distribu-
tion) pairs in our CQR-VNS in the following order: distribution type_order = (1,2) (1,1)
(3,1) and (3,2). After that a radius from interval [0, 7] is taken at random in order to get a
point from Nj(z). Therefore, a random point within the Shaking step of CQR-VNS is gener-
ated in two steps: (i) find random direction; (ii) find random radius along that direction.

Local Search. As a local search for solving CQR we apply the direct search Nelder-Mead

nonlinear programming method since it does not use derivatives. The left and right bound-
aries a; and b; for variables are defined as appropriate. The GLOB has six local search
methods: steepest descent, Fletcher-Powell, Fletcher-Reeves, Nelder-Mead, Hook-Jeeves and
Rosenbrock, where we chose Nelder-Mead nonlinear programming method by an empirical
way. At the beginning, we fixed the other parameters on GLOB with fixed maximum running
time and we run the code for each method. Then we found that the Nelder-Mead method
gave better results than the other five methods. For that the Nelder-Mead method has been
used here as a local search method for solving the censored quantile regression problem.

Pseudo-code. The algorithm Glob-VNS for solving CQR is given in Algorithm 24, where

kmax and tmax are usual VNS parameters, given by user.

87

Censored quantile regression Computational results

Function CQR-VNS (3%, kmaz: tmaz, X, Y5 40, €)

1 Select (geometry, distribution) pairs as: (1,2), (1,1), (3,1), (3,2)
2 Choose an initial point §* € B at random

3 f* « Powell(S*, X,Y,y0,¢)

4 B—p%t—0

5 while t < t,,4, do

6 kE—1
7 repeat
8 for each (geometry, distribution) pair do
9 (' < Shake(3,k) // Get 3 € Ni(B) at random
10 3" — Nelder-Mead((, f) // Get local minimum 3" by Nelder-Mead
11 if (f < f*) then
12 L B— 8" fr—f go to line 6
13 k—k+1
until k£ = kpyun
14 t < CpuTime()

Algorithm 24: VNS for CQR

After choosing (geometry, distribution) pairs and random initial solution £* € RI~! in
steps 1 and 2 respectively, we apply Algorithm 23 to find the Powell estimator f(5*). We
denote with 3 the incumbent solution. As explained in Algorithm 22, outer loop of VNS
is running until a predefined stopping condition is met. The inner loop is repeated Kiqz
times, if there is no improvement in regressors (3. In each neighbourhood a random point
from the Ny (B) is taken (line 9) and the well known Nelder-Mead unconstrained nonlinear
programming code run (line 10). The local minimum value for Powel’s estimator is denote
with f. If a better solution is obtained, we save it (line 12) and repeat all process with the

first neighbourhood (i.e., return to step 6).

88

Censored quantile regression Computational results

3.4 Computational results

We perform extensive computational analysis to investigate how our new CQR-VNS method
compares with other approaches. We first give general rules for the computational simulation
performed, and then present comparative results on various test instances.

Methods compared. We compare our VNS-CQR with the following approaches from the

literature.
1. The first group of methods are the same as those described by Bilias et al. (2000):

e the direct heteroscedastic bootstrap method;
e modified bootstrap and

e resampling methods.
2. The second group of methods are from Buchinsky and Hahn (1998):
e CV method which denotes theCQR-LP estimator with log likelihood cross-validated

bandwidth;

e CVa method, which denotes the CV estimator with bandwidth adjusted to con-

form with assumption K;

e PR method, which denotes the CQR-LP estimator with probit estimates for cen-

soring probability;

e HO and HOa are the same as CV and CVa except that the kernel function involves

a higher order kernel, and

e CR denotes Powell’s estimator.

3. Lastly, we apply our method to an extramarital affairs. Data set taken from Fair

(1976).

Computer support. Our code was written in C++ and complied with Microsoft Visual
Studio 8.0. The program was run on Intel(R) Core(TM) 2 at 1.73 GHz with 2 GB of RAM.

Unfortunately, there is no information about the computers which were used to get results by

89

Censored quantile regression GLOB-VNS for finding standard and percentile

other methods. Therefore, the efficiency (i.e., the running CPU time of methods) could not
be compared in this study. The comparison will therefore be restricted to their effectiveness
or precision.

VNS parameters. Along the space dimension, initial and boundary conditions which are

different in each test instance, in the CQR-VNS we used the following parameters.
e CPU time was limited to t,,,: = 5 seconds;
e The number of neighbourhoods structures used is set to 10, ky,q: = 10;

e We choose the Nelder-Mead local search method. It stops when one among the following

three criteria are met:

— a diameter of a simplex is less than 0.1e-5 (1s_eps = 0.1e-5),

— the difference between two consecutive objective function values is less than 0.1e-5

(1s_fun_eps = 0.1e-5) and

— the number of iterations reached 500.

3.4.1 GLOB-VNS for finding standard and percentile

In this part, we compared our CQR-VNS (whose pseudo-code is given in Algorithm 24) with

the three algorithms used by Bilias et al. (2000). There the following model is considered:

yi = max{fo + x1;51 + v2:2 + €i, Yo }- (3.15)

The details regarding simulation are listed below:

e 1, is generated as a Bernoulli distribution centered at zero, with the success probability

equal to %;
e 19 is a standard normal variable N(0,1);
e The censoring point is yy = 0;
e Three different types of error € are considered:

90

Censored quantile regression GLOB-VNS for finding standard and percentile

— a standard normal distribution;
— a heteroscedastic normal (1 + z2) x N(0,1), and

— a normal mixture 0.75 x N(0,1) + 0.25 x N(0,4), as suggested in (Bilias et al.,
2000).

It is assumed that the best estimator values are known and all equal to 1, (5o, 51, 52)

= (1,1,1). Then y; is calculated by using formula (3.15).

For each of the following confidence level # € {0.95, 0.90, 0.85} the standard (S) and
percentile (P) methods (Efron and Tibshirani, 1993) are used to construct confidence
intervals. In particular, we compare the 95%, 90% and 85% confidence levels for each

type of error.

e A size n = 100 of random sample is generated, i.e., {(x1;,z2,%:),? = 1,2,...,100}.
Those data space points are obtained with the three different types of error €. Two of

them are plotted in Figure 3.4.

The simulation is repeated 1000 times and the average results reported.

2O B N W A O O

Figure 3.4: Points (%1, x2i,¥i), ¢ = 1,...,100, in data space with the standard normal (left) and normal

mixture (right) errors with fixed f; = 1 and B2 = 1.

In Figure 3.1 an instance of this type is plot in the regressor space (1, 32), where the

value of (y is fixed to 1. Powell’s estimator values are obtained by applying Algorithm 23

91

Censored quantile regression GLOB-VNS for finding standard and percentile

and taking (01, f2) in each point of the square grid [0,2]x[0,2] and increment 0.2 for each
variable: 3;, = 0.2-k,Vj = 1,2;Vk = 0,...,10. The version of the same instance, but with
g; = 0 in (3.15), is presented in Figure 3.5.

0.8

0.6

Figure 3.5: Censored Quantile Regression function f(3) and e =0

Table 3.1 contains results for the estimation of the regression coefficients 3y only. We
compare the empirical coverage probabilities to the other three algorithms used in Bilias et al.
(2000). Therefore, we investigate the finite sample performance of four methods: our VNS
for CQR (CQR-VNS), the direct heteroscedastics bootstrap method (Bootstrap for short), the
resampling method (Resampling for short) and Bilias, Chen and Ying’s bootstrap method
(M-Bootstrap for short) (Bilias et al., 2000). The quality of solutions obtained by CQR-VNS

may be seen in Figure 3.6 as well

92

Censored quantile regression GLOB-VNS for finding standard and percentile

Table 3.1: Empirical coverage probabilities for confidence intervals

Bootstrap Resample M — Bootstrap VNS

Confidence level ECP ECP ECP ECP

Standard Normal

0.95 S 0.956 0.929 0.912 0.948
P 0.974 0.952 0.943 0.951
0.90 S 0.909 0.878 0.863 0.897
P 0.941 0.900 0.886 0.901
0.85 S 0.868 0.830 0.812 0.847
P 0.906 0.846 0.833 0.851
Normal Mixture
0.95 S 0.957 0.936 0.926 0.950
P 0.975 0.938 0.935 0.951
0.90 S 0.923 0.892 0.875 0.899
P 0.941 0.878 0.872 0.901
0.85 S 0.879 0.843 0.824 0.852
P 0.901 0.829 0.822 0.851
Heteroscedastic Normal
0.95 S 0.963 0.950 0.946 0.937
P 0.966 0.948 0.943 0.951
0.90 S 0.922 0.906 0.896 0.895
P 0.925 0.898 0.887 0.901
0.85 S 0.887 0.859 0.851 0.846
P 0.868 0.838 0.832 0.851

Note: The model includes three regressors, a constant and two other, the real vector of coefficient is (1,1,1),
and the censoring point here is yo = 0. P denotes percentile. S denotes the standard. VNS denotes variable

neighbourhood search. ECP is the empirical coverage probabilities.

93

Censored quantile regression GLOB-VNS for finding standard and percentile

y

y
rO BN W A O O
rO BN W A O O

Figure 3.6: Points (21, z2i, i), ¢ = 1,...,100, in data space with the standard normal and normal mixture

errors, and their estimated values (denoted as ”0”), obtained by CQR-VNS (denoted as ”+")

The bootstrap regression model in Table 3.1 can be formulated as in Hahn (1995),
n
F(8) =min Y pp(yi — Boi}) (3.16)
i=1

where y; = [g;x, + €¢;. Moreover, the regressor vector z is deterministic and eg; are i.i.d of
random variables.

The M-bootstrap and the resampling method in Bilias et al. (2000) are an extension to
the PWY method (Parzen et al., 1994), where they are based on the next equation,

F18) = 3l s < 0) = 511! > 0) + 0" =0 (317)

where U* = Y 1" | z[B; — %]I(ﬂ;%xg > 0). Bj,i=1,...,n is a sequence of i.i.d. Bernoulli
random variables with success probability 1/2.

Moreover, the steps of calculating the standard S in Table 3.1 are given by:

e We run the code for 1000 times for each type of error, and we then save the regression

coefficient (5.

e Then the mean and the standard deviation (sd) of 1000 2 has been calculated.

94

Censored quantile regression Finding RMSE, mean bias, MAE and median bias

e The confidence interval for the quantile 6 is given by (mean(32) —6.sd(B2), mean(B2)+
0.sd(2)), where 6 in Table 3.1 has three probabilities § = 0.95,0.90 or 0.85, where
6(0.95) = 1.96,6(0.90) = 1.64 and 6(0.85) = 1.44.

e The standard .S is the number of B within the confidence interval divided by 1000.
Furthermore, the steps of calculating the percentile P in Table 3.1 are given by

e We run the code for 1000 times for each type of error, and we then save the regression

coefficient (2.

e The percentile interval is written as (“—;9) * 100, (1 — (1;9)) % 100), where 6 in Table
3.1 has three probabilities 6§ = 0.95,0.90 or 0.85.

e The percentile P is the number of o within the percentile interval divided by 1000.

As we can see in Table 3.1, for standard normal distribution error and normal mixture er-
ror, VNS method gives better results when compared to other methods. For heteroscedastic
normal error term, our CQR-VNS reports better results than others for finding the percentile
“P”_ but it is not the best one in finding standard “S” case. The distribution best solutions
obtained by our CQR-VNS in 100 runs are presented at Figure 3.7. Therefore, we can con-
clude that VNS based heuristic with the Powell’s estimator is a new promising method for
solving the CQR problem. Our results also show that the choice of approximate solution
method applied on exact model could be a better choice than the use of exact methods on

an approximate model.

3.4.2 GLOB-VNS for finding Finding root mean square, mean bias, mean

absolute deviation and median bias

In this subsection, there are two possible regression functions. The first one can be written

as

y = max{fy + xi /1 + xi2f2 + €5, Yo} (3.18)

95

Censored quantile regression Finding RMSE, mean bias, MAE and median bias

0.6

Figure 3.7: Distribution of local minima in (81, 82) space, obtained by 100 restart of CQR-VNS

and the second one can be written as

y = max{fy + xi1 01 + Ti2fB2 + 303 + xiafa + 505 + €, Yo } (3.19)

where (8o, 51, B2, B3, B4, B5) equals (1,1,0.5,—1,—0.5,0.25). z; are generated as a standard
normal distribution, truncated as {|| x; ||co< 2}. The error term has the multiplicative

herteroscedasticity structure, where it can be formulated as

E; = uiv(xi), (320)
where v(z;) can be written as
m
v(z;) = ap + Z(ajlei + ajngzl-), (3.21)
j=1

ap =1, aj1 = 0.5 and aj2 = 0.5. The censoring point is yg = —0.75.
Two alternative distributions are considered for w;: a normal distribution N(0,25), and
a x? distribution with four degrees of freedom, re-centered to have zero median. In this part

we have done the following:

96

Censored quantile regression Finding RMSE, mean bias, MAE and median bias

e We generate the data as above according to Buchinsky and Hahn (1998).

e We repeat the simulation 10000 times for each of the three cases of sample size:

{(yi,x),i=1,2,...,100},{(yi, x;),i = 1,2,...,400}, and {(y;,z;),i =1,2,...,600}.

e We apply the VNS for two cases of regression function. the first one as (3.18), and the

second one as (3.19).

e We find the root mean square errors (RMSEs), mean bias, mean absolute deviation

(MAE), and median bias for all (31, 82).

e Our results are compared with the results from the CV method (which denotes the
CQR-LP estimator with log likelihood cross-validated bandwidth), the CVa method
(which denotes the CV estimator with bandwidth adjusted to conform with assumption
K), the PR method (which denotes the CQR-LP estimator with probit estimates for the
censoring probability), the HO and HOa methods (which are the same as CV and CVa,
except that the kernel function is order kernel), the CR method, which is a Powell’s

estimator, and the VNS method (Buchinsky and Hahn, 1998).

Table 3.2 shows the computational results, when the function is presented as in (3.18)

97

Censored quantile regression Finding RMSE, mean bias, MAE and median bias

Table 3.2: Monte carlo simulation with three regressors for 0.50 quantile and 0.75 censoring point (10,000)

repetition

Intercept - Bo Slope - (2

CV CVa PR HO HOa CR VNS CV CVa PR HO HOa CRVNS

N(0,25)
n = 100
RMSE 2.88 3.341.594.39 3.02 4.11 042 216 2.10 2.18 241 198 2.85 0.73
Mean bias 0.14 0.070.600.18 0.44 —0.08 —0.23 0.31 0.28 0.70 0.32 0.40 0.33 —0.65
MAE 0.82 0.800.940.83 0.92 0.74 0.23 086 0.83 1.21 0.85 0.90 0.92 0.65

Median bias 0.93 0.320.700.45 0.60 0.35—-0.00 0.06 0.01 0.49 0.05 0.13 —-0.31 —0.69

n = 400

RMSE 0.58 0.570.560.60 0.66 0.68 0.28 0.61 0.59 0.90 0.67 0.71 0.66 0.65
Mean bias 0.20 0.170.170.19 0.30 0.19 —0.14 —0.06 —0.10 0.28 —0.05 0.04 —0.45 —0.61
MAE 0.39 0.380.360.41 0.45 0.41 0.14 0.39 0.39 0.53 043 044 0.55 0.61
Median bias 0.20 0.160.16 0.19 0.29 0.19 —0.00 —0.12 —0.17 0.21 —0.12 —0.05 —0.52 —0.57

n = 600

RMSE 0.48 0.480.460.48 0.52 0.49 0.24 0.50 0.48 0.71 0.54 0.56 0.57 0.62
Mean bias 0.18 0.160.140.12 0.20 0.20 —0.12 —0.06 —0.11 0.25 —0.17 —0.10 —0.47 —0.58
MAE 0.33 0.320.310.33 0.35 0.33 0.12 0.33 0.33 0.44 0.40 0.40 0.50 0.58

Median bias 0.18 0.160.150.13 0.20 0.19 —0.00 —0.10 —0.15 0.23 —0.22 —0.16 —0.49 —0.54

xX*(4)
n = 100
RMSE 0.63 0.620.620.65 0.70 0.67 0.25 0.72 0.70 0.92 0.76 0.79 0.90 0.59
Meanbias 0.26 0.230.250.30 0.37 0.20 —0.12 —0.05 —0.08 0.19 —0.01 0.04 —0.14 —0.52
MAE 0.41 0.400.390.43 0.45 0.39 012 046 045 054 048 049 0.56 0.52
Median bias 0.24 0.210.220.27 0.33 0.19 —0.00 —0.11 —0.13 0.12 —0.08 —0.03 —0.37 —0.49

n = 400

RMSE 0.32 0.310.280.32 0.35 0.31 0.13 0.35 0.35 0.39 0.37 0.37 0.51 0.50
Mean bias 0.17 0.160.090.17 0.21 0.12 —0.06 —0.11 —0.14 0.00 —0.09 —0.07 —0.45 —0.47
MAE 0.22 0.210.180.22 0.23 0.20 0.06 0.24 0.24 0.25 0.25 0.25 0.48 0.47

Median bias 0.17 0.16 0.08 0.17 0.20 0.11 —0.00 —0.13 —0.15 —0.02 —0.11 —0.08 —0.47 —0.45

n = 600

RMSE 0.26 0.2650.230.27 0.29 0.25 0.10 0.30 0.30 0.32 0.30 0.30 0.50 0.48
Mean bias 0.14 0.140.06 0.15 0.18 0.09 —0.04 —0.10 —0.13 —0.01 —0.09 —0.07 —0.46 —0.46
MAE 0.18 0.180.150.18 0.19 0.17 0.04 0.21 0.21 0.22 0.21 0.21 0.48 0.46

Median bias 0.14 0.130.06 0.14 0.17 0.10 —0.00 —0.12 —0.14 —0.03 —0.10 —0.08 —0.48 —0.44
98

Note:The model includes three regressors: a constant and two random i.i.d. N(0,1)regressors. The vector of

coefficients is (1,1,.5). The censoring point is set at 0.75.

Censored quantile regression Finding RMSE, mean bias, MAE and median bias

The steps of calculating RMSE, Mean bias, MAE and Median bias in Table 3.2 are

given by

e We run the code for 10,000 times for each type of error and we then save the constant

and slop regression coefficient Gy and ;.
e We find the mean and the variance for 8y and (1 independently.

e The RMSE has been found by the equation

RMSE = \/(mean — ()2 + variance (3.22)

where 3 is equal 1.
e The Mean bias is given Mean bias = Mean — (3, where 3 = 1.
e The Median bias is given Median bias = Median — 3, where 3 = 1.

e The MAE is calculated by MAE = 1 5™ | mean—fy; | for By and MAE = 1577 |
mean — (1; | for B1, where n = 10, 000.

We use in Table 3.2 the regression function as in (3.18). Applying VNS method to original
Powell estimator for solving CQR outperforms better than the six other methods for the
regression coefficient (1 for all sample sizes and both kinds of error. On the other hand, the
VNS method did not work very well for the regression coefficient 35. The explanation is that
the VNS works to give the minimum of the objective function in total, not the minimum of
each component of this objective function.

In Table 3.3 the regression function has five regressors, as in (3.19). The data are gener-

ated in the same way as in Table 3.2.

99

Censored quantile regression Finding RMSE, mean bias, MAE and median bias

Table 3.3: Monte carlo simulation with six regressors for 0.50 quantile and 0.75 censoring point (10,000)

repetition

Intercept Slope

Cv CVa PR CR VNS CV CVa PR CR VNS

N(0,25)
n = 100
RMSE 329 325436 393 0.52 224 224 274 3.05 0.61
Meanbias 1.66 1.38 3.59 0.70 —0.30 0.26 0.21 0.72 0.43 —0.41
MAE 2.07 1.89 3.56 1.55 0.30 1.12 1.09 1.60 1.11 0.41
M —bias 1.77 1.54 3.53 1.22 —0.00 0.05 0.00 0.51 —0.12 —0.13

n = 400

RMSE 134 128 1.46 1.31 0.42 0.78 0.77 1.15 0.89 0.52
Meanbias 0.78 0.62 1.15 0.74 —0.23 —0.19 —0.24 0.26 —0.38 —0.32
MAE 0.89 0.80 1.17 0.81 0.23 0.52 0.51 0.69 0.66 0.32
M —bias 0.79 0.64 1.15 0.78 —0.00 —0.25 —0.30 0.19 —0.54 —0.01

n = 600

RMSE 1.11 1.01 1.07 091 0.38 0.63 0.63 0.88 0.71 0.48
Meanbias 0.67 0.54 0.81 0.64 —0.20 —0.14 —0.16 0.16 —0.50 —0.29
MAE 0.74 0.66 0.84 0.65 0.20 0.45 0.45 0.54 0.63 0.29
M — bias 0.67 0.56 0.81 0.62 —0.00 —0.20 —0.22 0.11 —0.60 —0.00

xX*(4)
n =100
RMSE 153 146 201 1.33 0.38 1.02 1.03 1.34 123 051
Meanbias 0.96 0.87 1.63 0.69 —0.20 —0.22 —0.24 0.10 —0.12 —0.32
MAE 099 093 1.54 075 020 0.66 064 080 0.73 0.32
M —bias 0.93 0.84 1.53 0.68 —0.00 —0.30 —0.34 —0.02 —0.37 —0.00

n = 400

RMSE 0.88 0.80 0.69 0.62 0.19 0.51 0.52 0.57 0.60 0.36
Meanbias 0.72 0.62 0.51 0.46 —0.07 —0.24 —0.29 —0.04 —0.47 —0.20
MAE 0.70 0.61 0.52 0.46 0.07 0.37 0.38 0.38 0.54 0.20
M —bias 0.70 0.60 0.50 0.45 —0.00 —0.27 —0.31 —0.07 —0.52 —0.00

n = 600

RMSE 080 0.72 0.54 0.54 0.13 042 043 045 0.57 0.31
Meanbias 0.69 0.60 0.40 0.42 —0.04 —0.17 —0.19 —0.04 —0.50 —0.17
MAE 0.69 0.60 0.41 041 0.04 0.29 031 030 053 0.17
M —bias 0.69 0.60 0.40 —0.00 —0.65 —0.18 —0.20 —0.06 —0.53 —0.00

100

Note:The model includes siz regressors: a constant and five random i.i.d. N(0,1)regressors. The vector of

coefficients is (1,1,.5,-1,-.5,.25). The censoring point is set at 0.75.

Censored quantile regression Conclusion and future research

Table 3.3 shows that the VNS method with Powell estimator in general for solving CQR
gives very good results in the case of five regressors. We note that VNS is the best for all
sample sizes in both kind of error for slope coefficient. In the case of the xo coefficient VNS
works well, better than other methods most of the time. We may conclude that, when we
increase the dimension of the regression function, the VNS method with the exact Powell

estimator outperforms other methods from the literature.

3.5 Conclusion and future research

In this chapter we suggest a new method for solving censored quantile regression (CQR).
It is based on variable neighbourhood search (VNS) global optimisation technique. As the
objective function it uses Powell estimator, which is known to be non convex, nor concave.
Other approaches in the literature try to find a linear approximation of Powell’s function and
then solve the problem exactly. We rather apply an approximation method on an exact CQR
model. Our method adapts VNS rules in order to solve this global optimisation problem.
The basic idea of the VNS metaheuristic is the use of different metric functions in defining
the neighbourhood structure of the current solution.

It appears that our new approach is competitive with state-of-the-art methods from the
literature. Moreover, our results indicate that better solutions are usually obtained by using a
nonlinear model and effective approximate solution method that use an approximate (linear)
model with exact solution procedure.

Future research may include the use of other, more sophisticated global optimisation
techniques for solving CQR. Moreover, it may include the extension of our approach to semi
censored quantile regression (Powell, 1986) as well. In addition, new neighourhood structures

may be tried out within variable neigbourhood approach.

101

Chapter 4

Circle packing problem

In this chapter, variable neighbourhood search (VNS), a nonlinear global optimiser for solving
circle packing problem (CPP) is studied. The problem is an optimisation arrangement of n
arbitrary sized circles inside a container (e.g. a circle, a square or a rectangle) such that no
two circles overlap. Several years ago, CPP has been formulated as a continuous, nonlinear,
nonconvex global optimisation problem. This problem has proven to be NP-hard (Hochbaum
and Maass, 1985). Recently it has been solved by the reformulation descent approach where
two different formulations of the problem switch between a polar and a Cartesian system
(Mladenovié et al., 2005).

This chapter presents a VNS algorithm based on reformulation descent by using two
different Cartesian formulations, maximising the radius of small circles or minimising the
radius of the container. Moreover, we consider two types of containers to pack n equal circles:
a circle and a square. The problem has been solved by each formulation independently as
well as by using both within one reformulation descent method. Our work investigates the
effect of this type of reformulation.

This chapter is organised as follows. In section 4.1, the description of the circle packing
problem is presented. As mentioned earlier, the CPP has various type of containers, in this
thesis CPP is studied within two types of containers, a circle and a square. Furthermore,
a brief idea of the CPP within the circle and the square container is given in section 4.2.

Section 4.3 is devoted to focus on the variable neighbourhood search for solving the circle

102

Circle packing problem Problem’s description

packing problem with reformulation descent. The reformulation descent has used two Carte-
sian formulations for each container type. The computational results of the algorithm are

presented in section 4.4. Section 4.5 gives a brief conclusion with future research.

4.1 Problem description

The circle packing problem (CPP) consists of positioning a given number n of circular disks
of equal radius without overlap, such that its radius is a maximum. It is a NP-hard problem,
i.e. it is difficult to find the optimal solution and therefore it is unlikely to find a polynomial
time algorithm to solve the problem. Moreover, it is harder to be solved, when the search
space becomes large. Thus, the use of heuristic methods provides good solutions with more
speed, efficiency, and reliability. In a general setting, the CPP can be defined as follows.

If there is a given container which depends on a size parameter r, where C(r) C R?, and
given n are geometrical objects. The position of these n in d-dimensional space depends on
t position parameters a1, ..., ay, i.e., Di(as1,...,ai) C R4, i=1,...,n. Then the solution
is determined by choosing the parameters where all the objects are packed inside a container
such that no two circles overlap, and the size of container is minimised. The problem can be

written
min r
s.t.

Di(ail,...,ait)QC(r) izl,...,n
D?(ail,...,ait)ﬁD?(ozﬂ,...,ozit):¢ Z#]

If d is equal to 2, many optional features for the container could exist like a circle, a
square, a rectangle or a strip. Moreover, the radius of circles within the container could be
equal or unequal.

The CPP has arisen in many fields of natural sciences such as engineering design and

has many applications such as in coverage, storage, packaging and cutting industry (Correia

103

Circle packing problem Problem’s description

et al., 2001; Cui, 2005; Dowsland, 1991; Fraser and George, 1994; George et al., 1995; Hifi
and M’Hallah, 2004; Hifi et al., 2004). Hifi et al. (2004) consider cutting out as many circles
as possible from the rectangle plate, where these problems could be considered as constrained
or unconstrained circle cutting problems. Cui (2005) gives optimal patterns for solving the
problem of cutting circle blanks from silicon steel to build electric motors. These types could
be expensive due to the use of silicone. The quality of the packing is measured by one of

these three options (Castillo et al., 2008):

e the size of the container.
e the weighted average pairwise distance between centers of circles.
e a linear combination of both criteria.

The geometric approach to the circle packing problems has a long history (see Szabé
et al. (2007) for an overview). However, solving problems with a large n is almost impos-
sible by using geometrical arguments. Therefore, most researchers switch to mathematical
programming approaches.

The same problem can sometimes be formulated in different ways, and one can switch
between formulations using the same local optimisation method. A solution obtained by
one formulation is an initial solution for another one. The method that alternates between
different formulations of the problem is called a formulation space search (FSS). Mladenovi¢
et al. (2005) is the simplest FSS, where formulations are changed in a deterministic way until
there is no improvement in the objective function value. CPP can be manipulated through
different formulations according to container types. CPP is solved by using a nonlinear
reformulation of the problem, where the idea of reformulation descent (RD) has been applied.
Switching between the Cartesian and the polar coordinates (and vice versa) was possible
since MINOS is used as an NLP solver (see details in Mladenovié¢ et al. 2005). Their strategy
avoids stopping at a stationary point by switching between two different formulations. An
extension of the RD idea is discussed by Mladenovi¢ et al. (2007).

As previously mentioned, the CPP is considered for packing equal or unequal circles

within different types of containers. Each type could be manipulated by using different

104

Circle packing problem CPP-1

formulations. In this chapter, the CPP has been considered within two types of containers
in the plane (i.e. d = 2), a circle and a square. Each type of container will accommodate

equal circles only with their mathematical formulations.

4.1.1 Circle packing problem inside a circle container (CPP-1)

There are two different formulations of CPP-1. The first formulation attempts to find a
maximum radius for n equal circles in a unit circle container without any overlap. We assume
that the container is centered at the origin. This problem can be written in 2 — dimensional

Cartesian as follows:

max r (4.1)

s.t.

dijZQT‘, ,j=1,...,n;1 <]

where the center of circle i is denoted by (z;,y;). d;; is the distance between the centers of
the two circles, i and j, where (i < j). Moreover, it can be calculated by using Euclidean

distance as follow:

dij = \/(l‘i —)2 + (yi — y5)?, Vi,j=1,...,n, (4.2)

The second formulation attempts to minimise the radius of the circle container R to accom-
modate n unit circles without overlap. We assume that the problem is in 2 — dimensional

Cartesian as well, where it is given as:
min R (4.3)
s.t.
VX2+Y2<R-1, i=1,...,n,
dij > 2, Li=1,....,n;i<j

105

Circle packing problem CPP-2

To prove the equivalence between the two formulations (4.1) and (4.3), we divide the

constraints in formulation (4.1) by 1/r2. For the first constraint we have
x?+yi2§(1—r)2, 1=1,...,n,

by dividing this constraint with 1/72, we will have

then we will get

this gives

where % = X; % =Y, and % = R, and this gives the first constraint in the formulation
(4.3).

For the second constraint, we will do the same
d7; > 4r?, ij=1,...,n;i<j

this gives

where

where this gives the second constraint in formulation (4.3).

4.1.2 Circle packing problem inside a square container (CPP-2)

In this subsection, CPP-2 formulations inside a square container will be explained. Once
again two formulations are presented. The first one is maximising the radius r for n equal

circles inside a unit square container without any overlap. It can be formulated as
max r (4.4)
s.t.

106

Circle packing problem Literature review

r<xz; <1-—r 1=1,...,n,
r<y; <l-—r, 1=1,...,n,
dz‘jZQT’, ,j=1,...,n;1<j

where d;; is given by (4.2). The second one is minimising the length of the side container
L of the square to accommodate a number of n unit circles without overlap. The nonlinear

formulation can be written as

min L (4.5)
s.t.
1< X;<L-1, i=1,...,m,
1<Y,<L—1, i=1,....m,
di; > 2, =1, ni<]

We can note that the optimal solution in formulation (4.4) can be transferred to the other
formulation (4.5) by using X; = %, Y; = % and L = 1 This can be proved the same as in

r

circle packing problem within a circle container.

4.2 Literature review

Historically, the CPP was introduced in European mathematics in the nineteen century,
when the Italian mathematician G. Malfatti posed this question “Consider a right prism
with a right triangular base. How do we cut out three cylinders (perhaps of different sizes)
from the prism, such that the total volume of cylinders is mazximal?’ (Szabé et al., 2007).
This problem was studied and solved earlier by the Japanese mathematician Chokuen Ajima
between (1732-1798) (Szabé et al., 2007).

The packing problems have been studied for 2 — dimensional and 3 — dimensional space.
Only the 2 — dimensional space will be considered here. Details of packing problems in

3 — dimensional space have been published by many authors (Kravitz 1967; Clare and

107

Circle packing problem Circle packing problem within the circle container CPP-1

Kepert Jun. 9, 1986; Hsiang 1993). The circle packing problems in 2 — dimensional space
may have various types of containers such as a circle, a square, a rectangle, a triangle or
a strip. The next subsections will give a brief review of CPP within a circle and a square
container respectively. For other types of container the reader may be refereed to (Dowsland
and Dowsland, 1992; George et al., 1995; Huang et al., 2005; Birgin et al., 2005; Birgin and
Gentil, 2010).

4.2.1 Circle packing problem within the circle container CPP-1

CPP-1 has two options of packing n non-overlapping circles, equal or unequal ones. This
thesis considers only packing n equal circles within a circle container without overlap. Details
of packing unequal circles inside a circle container without overlap have been discussed by
many researchers (Wenqi and Ruchu, 1999; Wang et al., 2002; Huang et al., 2003; Hifi and
M’Hallah, 2008; Huang et al., 2006; Grosso et al., 2010).

Kravitz (1967) is perhaps one of the first researchers to study uniform sized circles in-
side a unit circle container. He was able to pack up to 19 without proofs of optimality.
He thought that the global optima for n = 10 within the larger container is found with
R = 3.8284271. Indeed, the global optimal solution for n = 10 has been found later by

mathematical programming with R = 3.8130256, see Figure 4.1.

108

Circle packing problem Circle packing problem within the circle container CPP-1

(a) Radius © 3.8284271 (b) Radius © 3.8130256

Figure 4.1: Packing 10 unit circles into a circle

109

Circle packing problem Circle packing problem within the circle container CPP-1

The optimal solutions for n = 7,...,10 were independently proven by Graham (1968)
and Pirl (1969). Pirl (1969) also improved the results of packing problem for n up to 19.
However, some of his results (n = 14, 15, 16) were improved later (Goldberg, 1971). Goldberg
(1971) showed the packing results for n up to 20, but his results of n = 17 were improved by
Reis (1975).

Reis (1975) improved the results of packing equal circles within a circle container for
n = 17,21,...,25 as compared with previous literature. This involved a new technique
by using an iris diaphragm as a variable circumscribing circle to eliminate any assumption
connected with symmetry (Reis, 1975). The optimal solutions for n up to 11 have also been
published in Melissen (1994).

Lubachevsky and Graham (1997) solve CPP-1 by using the curved hexagonal packings.
For each k > 1, the corresponding hexagonal number is h(k) = 3k(k + 1) + 1, where n =
h(k) is the number of equal circles within the container. There are m(k) = max{(k —
1)!/2,1} different curved hexagonal packings, they give the same density. Billiards simulation
algorithm is used to solve the problem, which works by simulating the movements of n circles
during their movements along a fixed direction, each circle collides with other circles and
the boundary of the circle container. They assume that there is no gravity and friction. For
k < 5, the optimal results are found, whereas for k > 5 good quality solutions have been
found by curved hexagonal packings (Lubachevsky and Graham, 1997).

Graham et al. (1998) use two packing algorithms to find the minimum radius for circle
container to accommodate n unit circles. They note that there research is poor for n > 20.
They use two variant strategies. One is based on the repulsion forces algorithm and it is
similar to that described by Nurmela and Ostergard (1997). The other is based on Billiards
simulation algorithm, which has been used by Lubachevsky and Graham (1997). Both
algorithms attempt to maximise the minimum pairwise distance among n points spread
in the unit circle centered at the origin. Moreover, both algorithms need similar CPU
time. Whereas billiard simulation algorithm is better in finding the optimal solutions, the
algorithms find the best packing results for 21 < n < 65.

As mentioned before, the same problem can sometimes be formulated in different ways,

110

Circle packing problem Circle packing problem within the square container CPP-2

and one can switch between formulations within the same method. A solution obtained
by one formulation is an initial solution for another. The method that alternates between
two different formulations of the problem is called a reformulation descent (RD) (Mladenovié
et al., 2005). The CPP problem can be formulated by different formulations due to container
types. In Mladenovié¢ et al. (2005), the CPP is solved by using a nonlinear reformulation
of the problem, where the idea of RD has been applied. Switching between Cartesian and
polar coordinates (and vice versa) was possible since MINOS is used as an NLP solver (see
details in Mladenovi¢ et al. (2005)). Their strategy avoids stopping at a stationary point
by switching between two formulations. Their results are compared with a Netwon-type
solution approach, where two approaches find solutions of good quality. However, RD needs
less CPU time. Extension of the RD idea by using more than two formulations is called
formulation space search (FFS) and it was put forward by (Mladenovié¢ et al., 2007).

Zhang and Deng (2005) use a hybrid algorithm for solving CPP-1 into a larger container
circle. The hybrid algorithm combines simulated annealing with tabu search. The power
of this algorithm comes from getting out of local minima. It uses simulated annealing to
escape from local optima and tabu search to prevent cycling and enhance diversification.
The hybrid algorithm outperforms simulated annealing and tabu search algorithms (Zhang
and Deng, 2005).

Birgin and Sobral (2008) solve CPP-1 in 2 — dimensional and 3 — dimensional space
within various types of containers (a circle, a triangle, a square, a rectangle and a strip). Each
type of container accommodates equal or different-sized circles. They use twice-differentiable
models for all pervious cases. Their strategy reduces the computational cost of computing
the overlapping (Birgin and Sobral, 2008).

Lu and Huang (2008) incorporate the PERM scheme into the strategy of maximum cave
degree to solve equal or unequal circles within a larger container circle. This approach
evaluates the benefit of a partial configuration by using the maximum cave degree. Besides,
the PERM strategy enhances the efficiency of search. Zhang’s algorithm is more powerful
than Lu and Huang’s algorithm for several large instances with equal size circles (Lu and

Huang, 2008).

111

Circle packing problem Circle packing problem within the square container CPP-2

4.2.2 Circle packing problem within the square container CPP-2

Several approaches have been developed to solve the circle packing problem within a square
container during the last five decades. In a theoretical way, the optimal solutions are proven
for n = 2,...,9,14,16,25 and 36 circles (Nurmela and Ostergard, 1997; Markét, 2004),
n < 20 (de Groot et al., 1990, 1992). The optimal solutions for 21 < n < 27 can be proven
using computer-aided software (Nurmela and Ostergard, 1999). Recently, the function values
for n = 10,...,35, 37, 38 circles were correct within the tolerance equal to 1le — 5 by Locatelli
and Raber (2002).

Maranas et al. (1995) use a min max optimisation approach with the MINOS and the
GAMS modeling language. This approach improves the result of n = 15, besides new
configurations are found for n= 28 and 29 and it matches the best results for up to n = 30.

Nurmela and Ostergard (1997) solve the problem by using a different nonlinear approach
based on the energy function 3, ,.(A/ d?j)m. The problem is solved by minimising the energy
function, where it is transformed into an unconstrainted problem and is solved by using a
multistart hybrid line-search algorithm. The algorithm starts with a gradient direction, and
close to a solution it then uses a Newton direction (Nurmela and Ostergard, 1997). This
algorithm is used for solving the problem when n < 50. Some results improve and others
find alternative ones. Furthermore, Graham and Lubachevsky (1996) extend and improve
the work carried out by Nurmela and Ostergard (1997) by using a Billiard simulation.

Boll et al. (2000) solve the problem by using a two-phase approach, the approximation
one moves each point along a pre-chosen direction while decreasing the step size. The second
phase uses a Billiard simulation, where the starting point is the result of the first phase. The
results of n = 32 and 48 circles are slightly improved, whereas the big difference is seen for
n = 37 and 50.

In Casado et al. (2001) , the unit square is subdivided into k x k subsquares, where
k =| v/n |. They find the initial solution by randomly placing n points at the center of the
n subsquares. Each point has been perturbed randomly, where the algorithm may accept
the nonimproved perturbed point. The algorithm finds the results up to n = 100, where it

can find most of the optimal solutions from the literature and improve some results. This

112

Circle packing problem RD-VNS for CPP

idea is extended by other researchers (Markét and Csendes, 2005; Szabd et al., 2005), where
they eliminate large groups of subproblems to improve the solution. The algorithm solves
the problem for n = 28,29 and 30 within tight tolerance values (Marké6t and Csendes, 2005;
Szabé et al., 2005). Further extensions of this idea has been documented by Markét and
Csendes (2006); Markot (2007).

Locatelli and Raber (2002) consider finding the maximum radius for n non-overlapping
circles within a unit square. Their approach starts from a general rectangle branch-and-
bound algorithm, where the problem is modeled as a quadratic optimisation problem. Within
the tolerance 10~°, the algorithm has proven optimal for best known solutions in the litera-
ture for n = 10,...,35 and n = 38,39 except n = 32. In the case of n = 32, a new solution
has been found with a proof of its optimality within the given tolerance. However, for n = 37
a new solution has been detected without a proof of optimality within the given tolerance.
The running time for n < 13 is less than 0.5 seconds, for n < 21 is more than 2 minutes, and
for n < 26 is more than 30 minutes, whereas for n < 28 exceeds the 27 hours (Locatelli and
Raber, 2002).

Addis et al. (2008) reformulate the problem to have more efficient local search procedures.
They change the Euclidean distance by its square, where it can be written as

/ / /

< (:B;—x])Q—i—(yi—y])Q 1<i<j<n, (4.6)

They conjecture that the problem possesses a funnel landscape. This feature is commonly
known in molecular conformation problems. Their algorithm improves 32 best known solu-
tions in the range n < 130 (Addis et al., 2008).

van Dam et al. (2007) solve the problem by using maximin Latin hypercube designs for
general n. They find the maximum Latin hypercube designs for n < 70 and the approxima-

tion maximum Latin hypercube designs for 71 < n < 1000 (van Dam et al., 2007).

4.3 Reformulation descent within variable neighbourhood search

for solving circle packing problem

In this section, the rules for solving the CPP by using RD-VNS will be explained.

113

Circle packing problem RD-VNS for CPP

4.3.1 RD-VNS for CPP

In this subsection, we have applied VNS in four different ways: using formulation in (4.1)
or (4.4) only, then using formulations in (4.3) or (4.5). Our RD-VNS switches between the
first and the second formulation, i.e. between (4.1) and (4.3), or between (4.4) and (4.5),
and vice versa. The CPP objective function is a nonlinear continuous one. Thus, the
CPP problem may be solved as an unconstrained nonlinear problem. Observe also that any
unconstrained nonlinear program may be considered as a box constrained, if left and right
values of variables that define the box are set to the same large negative and positive values
a; and b;. The GLOB-VNS package (Drazié¢ et al., 2006) has been used. In order to run VNS
global optimiser for solving CPP, we need to adapt CPP variables to that general solver.
Therefore, given input data in GLOB-VNS is the vector z, and it contains 2n + 1 variables
denoted by = (z1,91,...,%n,Yn,), for models in (4.1) and (4.4). In the models given by
(4.3) and (4.5), the last variables are R and L respectively.

The steps of the VNS heuristic (GLob-VNS) for solving CPP for one formulation only are

given in Algorithm 25:

114

Circle packing problem RD-VNS for CPP

Function Glob-VNS (z, kmaz, tmaz)
1 Select the set of neighbourhood structures Ny, k = 1,. .., kmax induced from ¢,

and /4, norms.

N

Choose (geometry, distribution) pairs order.
3 Find an initial point x € X.

4 while t < t,,4: do

5 k1
6 repeat
7 for (geometry, distribution) pairs order do
8 Generate 2’ € Nj(x) at random //Shaking
9 Apply Hooke-Jeeves NLP method starting with 2’ to get «” //Local
search
10 if f(2") < f(z) then
11 L x 2" go to line 4
else
12 Set k — k+1
until k¥ = kpax
13 t < CpuTime()

14 return x

Algorithm 25: VNS for one formulation only

where kg 1S a maximum number of neighbourhoods used in the search and t,,,; is the
maximum time allowed in the search.

Neighbourhoods - Shaking. For solving GOP, VNS has already been used in two different

ways: with neighbourhoods induced by using an ¢, norm (Drazi¢ et al., 2006; Mladenovi¢
et al., 2008; Liberti and Drazic, 2005) and without using an ¢, norm (Toksari and Guner,

2007). Here we apply VNS that uses the £, norm, i.e., we define distances between any two

115

Circle packing problem RD-VNS for CPP

solutions x and y as
n
1
pr(z,y) = (O lwi — wil”)7, (4.7)
i=1
or

_ o — 4.8
pr(z,y) giag);\xz yil, p=o0 (4.8)

The neighbourhood N (z) denotes the set of solutions in the k—th neighbourhood of z, and

using the metric py, it is defined as

Ni(z) ={y € X | p(z,y) < i}, (4.9)
or
Ni@) = {y € X | roo1 < play) < i (4.10)
where 7, is a given radius of neighourhood Ny (k =1,..., knax)-
(i) Values of radii vy, k = 1,..., kmax. Those values may be defined by the user or calcu-

lated automatically during the minimisation process. The geometry of the neighbourhood
structure is induced by the ¢; (4.7) and ¢, (4.8). We use balls as in (4.10). Radii r < rg <
... < 7p,... are automatically computed as follow: let x = (z1,y1,. .., Tn,Yn,7) € R*"T! be

the current incumbent solution and let
a; <z <b, 1=1,...,2n+1 (4.11)

defines the box or hyper-cube
2n+1

H = H [ai, b@]
i=1
around the incumbent solution z. In order to find k4, neighbourhoods automatically and

thus make our GLOB-VNS more user-friendly, we divide z; —a; and b; — x; into a kpyay intervals:

Ty — Qy _ bi—xi
B.: ’pi: .

v kmax kmax

Then the knax hyper-cubes (boxes) Hy, Ho, ..., Hyax around the incumbent (the best solu-

tion found so far) z are given
aj+ (k—1)p, <x; <b;— (k= 1)pj, k=1,... kmax (4.12)

116

Circle packing problem RD-VNS for CPP

or

dik S T S E’L]%k = 17 s 7kmax (413)

Figure (4.2) illustrates different type of distributions.

Figure 4.2: Different distribution types.

(i) (Geometry, distribution) pairs. Geometry of neighbourhood structures Ny, is defined by

the choice of the metric functions used in the search through the solution space. The usual
choices are the f1, ¢35, and fo, norms. Their order in the search is also important within
VNS. Different distributions may be used for obtaining the random point y from the same
neighbourhood N}, in the Shaking step. Uniform distribution in N}, is the obvious choice, but
other distributions may lead to a much better performance on some problems. Beside uniform
(u), we also implement the hypergeometric distribution (h)(Drazi¢ et al., 2006; Mladenovié

et al., 2008). The hypergeometric distribution (h) is designed as follows:

e The coordinate x; is taken uniformly on [—1, 1], xj is taken uniformly from [— Ay, Ak]
where Ay, =1—|z1 | —...— | k-1 |,k =2,...,n — 1 and the last x,, takes A,, with a

random sign.

117

Circle packing problem RD-VNS for CPP

e The coordinates of x are permuted randomly.

Note that different choices of geometric neighbourhood shapes and random point distribu-
tions lead to different VNS-based heuristics. We denote them as («,), where o and ~y repre-
sents geometry (metric) and distribution used, respectively. Therefore, in total we have 6 dif-
ferent variants of VNS defined by (geometry, distribution) pairs: (¢1,u),(f2,u),({s0,),(¢1, k),
(l2,h), (lso,h). Note that “u” denotes uniform distribution, while “A” denotes hypergeo-
metric (special) distribution. For simplicity, we will denote those variants in pseudo-code
as (1,1),(2,1),(3,1),(1,2),(2,2) and (3,2): (1,1)= (¢1,u), (2,1)=(l2,u), etc. For example, pair
(3,2) indicates that £o norm (3) and the special distribution (2) are used in the shaking step.

However, after extensive computational analysis, we have used different (geometry, distri—
bution) pairs orders due to the used formulation. We have applied three (geometry, distribut—
ion) pairs in our GLOB-VNS for solving CPP with single formulation. For solving CPP by
formulation (4.1), the distribution order is given by dist_type_order = (3,2) (1,1) and (1,2).
For applying the formulation (4.3), the distribution order is given by dist_type_order =
(3,1) (1,2) and (1,1), and for the formulation (4.4) the distribution order is dist_type_order
= (3,2) (3,1) and (1,1). However, for the formulation (4.5) only two (geometry, distribution)
pairs have been used dist_type_order = (3,2) and (1,2).

Furthermore, variant (geometry, distribution) pairs orders has been applied for solving
CPP by using RD-VNS. We use four (geometry, distribution) pairs in our RD-VNS for solving
CPP-1 and CPP-2. Switching between CPP-1 formulations, from (4.1) to (4.3) was after
the mid of the CPU time, the distribution order is given by dist_type_order = (3,1) (1,1)
(1,2) and (3,1), where in the inverse case the distribution order is dist_type_order = (3,1)
(1,1) (3,2) and (1,2). For CPP-2, switching from (4.4) to (4.5) after half of the CPU time,
the order distribution is dist_type_order = (3,2) (1,2) (3,2) and (1,1), for visa versa case
it is dist_type_order = (1,2) (3,2) (3,1) and (1,2).

The (geometry, distribution) pairs have been found empirically. Table 4.1 gives an ex-
ample of finding the best (geometry, distribution) pairs, the formulation (4.1) has been used
with fixed CPU to 2 seconds, where all (geometry, distribution) pairs have been tried up

to four pairs. The best result and the best (geometry, distribution) pairs order are given in

118

Circle packing problem RD-VNS for CPP

red in Table 4.1.

Table 4.1: Empirical example for choosing the (geometry, distribution) pairs for formulation (4.1)

(geometry, distribution)pair (3,2) (1,2) (1,1) (3,1)
results 0.203976 0.257700 0.260078 0.261200
(geometry, distribution) pairs (3,1)(1,1) (3,1)(1,2) (3,1)(3,2)

results 0.262230 0.262230 0.261140

(geometry, distribution) pairs (3,2)(1,1) (3,2)(1,2) (3,2)(3,1)

results 0.258920 0.259110 0.260764

(geometry, distribution) pairs (1,2)(1,1) (1,2)(3,2) (1,2)(3,1)

results 0.256880 0.257780 0.259338

(geometry, distribution) pairs (1,1)(3,2) (1,1)(3,2) (1,1)(3,1)

results 0.260070 0.260068 0.259379

(geometry, distribution) pairs (3,2)(1,2)(1,1) (3,2)(1,2)(3,2) (3,2)(1,2)(3,1) (3,2)(1,1)(1,2)
results 0.259169 0.259179 0.259178 0.258914
(geometry, distribution) pairs (3,2)(1,1)(3,2) (3,2)(1,1)(3,1) (3,2)(3,1)(3,2) (3,2)(3,1)(1,2)
results 0.252600 0.258914 0.260700 0.260769
(geometry, distribution) pairs (3,2)(3,1)(1,1) (3,1)(1,2)(3,1) (3,1)(1,2)(3,2) (3,1)(1,2)(1,1)
results 0.260771 0.261424 0.261480 0.262249
(geometry, distribution) pairs (3,1)(1,1)(3,1) (3,1)(1,1)(3,2) (3,1)(1,1)(1,2) (3,1)(3,2)(1,1)
results 0.261670 0.261194 0.261987 0.261751
(geometry, distribution) pairs (3,1)(3,2)(1,2) (3,1)(3,2)(3,1) (1,2)(1,1)(1,2) (1,2)(1,1)(3,2)
results 0.262210 0.261833 0.257070 0.260904
(geometry, distribution) pairs| (1,2)(1,1)(3,1) (1,2)(3,2)(1,1) (1,2)(3,2)(1,2) (1,2)(3,2)(3,1)
results 0.261902 0.258220 0.256383 0.260300
(geometry, distribution)pairs (1,2)(3,1)(1,1) (1,2)(3,1)(1,2) (1,2)(3,1)(3,2) (1,1)(1,2)(1,1)
results 0.258220 0.256380 0.257756 0.260067
(geometry, distribution) pairs (1,1)(1,2)(3,2) (1,1)(1,2)(3,1) (1,1)(3,2)(1,1) (1,1)(3,2)(1,1)
results 0.26007 0.26139 0.262241 0.26006
(geometry, distribution) pair (1,1)(3,2)(1,1) (1,1)(3,1)(1,1) (1,1)(3,1)(1,2) (1,1)(3,1)(3,2)
results 0.260070 0.259300 0.259909 0.260200

(geometry, distribution) pairs

results

3, 1L, 1)(3, 1)(1, 1)

0.261390

(3, 1)(1,1)(1,2)(3,2)

0.255807

(1, 1)(1,2)(1,1)(1, 2)

0.262239

(1,1)(1,2)(1,1)(3,2)

0.260070

(geometry, distribution) pairs

results

(1, 1)(1,2)(1, 1)(3, 1)

0.260070

(1, 1)(1,2)(3,1)(1, 2)

0.261267

(1, 1)(1,2)(3, 1)(1, 1)

0.261170

(1, 1)(1,2)(3,1)(3, 2)

0.261360

(geometry, distribution) pairs

results

(1,1)(1,2)(3,2)(1,2)

0.262244

(1,1)(1,2)(3,2)(3, 1)

0.260070

(1,1)(1,2)(3,2)(1, 1)

0.260070

(1,1)(3,2)(1,2)(1, 1)

0.261780

(geometry, distribution) pairs

results

(1,1)(3,2)(1,2)(3,2)

0.260096

(1,1)(3,2)(1,2)(3, 1)

0.260069

(1,1)(3,2)(1,1)(1,2)

0.260074

(1,1)(3,2)(1, 1)(3, 1)

0.260096

(geometry, distribution) pair

results

(1,1)(3,2)(1,1)(3,2)

0.260069

(1, 1)(3,2)(3, 1)1, 1)

0.260980

(1,1)(3,2)(3,1)(3,2)

0.260067

(1,1)(3,2)(3,1)(1,2)

0.262244

(geometry, distribution) pairs

results

(1,1)(3,1)(1,1)(1,2)

0.260150

(1,1)(3,1)(1,1)(3,2)

0.250000

(1,1)(3,1)(1,1)(1,3)

0.250000

(1,1)(3,1)(3,2)(1,1)

0.259500

(geometry, distribution) pairs

results

(1,1)(3,1)(3,2)(1,2)

0.259500

(1, 1)(3,1)(3,2)(3,1)

0.260036

(1, 1)@, 1)(1,2)(1, 1)

0.259900

(1,1)(3,1)(1,2)(3,2)

0.259900

(geometry, distribution) pairs

results

(1, 1)(3,1)(1,2)(3, 1)

0.259900

(1,2)(1,1)(1,2)(1, 1)

0.258260

(1,2)(1,1)(1,2)(3,2)

0.257120

(1,2)(1,1)(1,2)(3, 1)

0.259080

(geometry, distribution) pairs

results

(1,2)(1,1)(3,2)(3, 1)

0.257618

(1,2)(1,1)(3,2)(1, 1)

0.257570

(1,2)(1,1)(3,2)(1,2)

0.258791

(1,2)(1,1)(3,1)(1, 1)

0.261322

(geometry, distribution) pairs

results

(1,2)(1,1)(3,1)(1,2)

0.261330

(1,2)(1,1)(3,1)(3, 2)

0.261307

(1,2)(3,2)(1,2)(1, 1)

0.256400

(1,2)(3,2)(1,2)(3,2)

0.256324

(geometry, distribution) pairs

results

(1,2)(3,2)(1,2)(3, 1)

0.256324

(1,2)(3,2)(1, 1)(3, 1)

0.262122

(1,2)(3,2)(1,1)(3,2)

0.258221

(1,2)(3,2)(1, 1)(1,2)

0.258822

119

Circle packing problem

RD-VNS for CPP

(geometry, distribution) pairs

results

(1,2)(3,2)(3, 1)(1, 1)
0.260357

(1,2)(3,2)(3, 1)(1,2)
0.259501

(1,2)(3,2)(3,1)(3,2)
0.260163

(1,2)(3,1)(1,2)(1, 1)
0.260002

(geometry, distribution) pair

results

(1,2)(3,1)(1,2)(3, 1)
0.259732

(1,2)(3,1)(1,2)(3,2)
0.259732

(1,2)(3,1)(3,2)(1, 1)
0.260510

(1,2)(3,1)(3,2)(1,2)
0.259906

(geometry, distribution) pairs

results

(1,2)(3,1)(3,2)(3, 1)
0.25447

(1,2)(3,1)(1,2)(3, 1)
0.259732

(1,2)(3, 1)(1,2)(3,2)
0.259732

(1,2)(3,1)(1,2)(1, 1)
0.259937

(geometry, distribution) pair

results

(3,2)(1,1)(1,2)(1, 1)
0.256397

(3,2)(1,1)(1,2)(3, 1)
0.255807

(3,2)(1,1)(1,2)(3,2)
0.255807

(3,2)(1,1)(3,2)(1, 1)
0.258919

(geometry, distribution) pairs

results

(3,2)(1,1)(3,2)(1,2)
0.259496

(3,2)(1,1)(3,2)(3,1)
0.258917

(3,2)(1,1)(3,1)(1,1)
0.258925

(3,2)(1,1)(3,1)(1,2)
0.259490

(geometry, distribution) pair

results

(3,2)(1,1)(3,1)(3,2)
0.258917

(3,2)(1,2)(3,2)(3,1)
0.259108

(3,2)(1,2)(3,2)(1, 1)
0.259130

(3,2)(1,2)(3,2)(1,2)
0.259437

(geometry, distribution) pairs

results

(3,2)(1,2)(1, 1)(3, 1)
0.258231

(3,2)(1,2)(1, 1)(3,2)
0.259163

(3,2)(1,2)(1,1)(1,2)
0.259111

(3,2)(1,2)(3,1)(1,2)
0.259437

(geometry, distribution) pair

results

(3,2)(1,2)(3,1)(1, 1)
0.258231

(3,2)(1,2)(3,1)(3,2)
0.259108

(3:2)(3,1)(3,2)(1, 1)
0.260767

(3,2)(3,1)(3,2)(1,2)
0.260076

(geometry, distribution) pairs

results

(3,2)(3,1)(3,2)(3, 1)
0.256440

(3,2)(3,1)(1,2)(1, 1)
0.260770

(3,2)(3,1)(1,2)(3, 1)
0.261013

(3,2)(3,1)(1,2)(3,2)
0.260773

(geometry, distribution) pairs

results

(3,2)(3, 1)(1,1)(1,2)
0.260772

(3,2)(3, 1)(1,1)(3, 1)
0.260766

(3,2)(3, (1, 1)(3,2)
0.260762

(3, (1, 1)(1,2)(1, 1)
0.261569

(geometry, distribution) pair

results

(3,1)(1,1)(1,2)(3,1)
0.261560

(3,1)(1,1)(1,2)(3,2)
0.261532

(3,1)(1,1)(3,2)(3,1)
0.261549

(3,1)(1,1)(3,2)(1,1)
0.261398

(geometry, distribution) pairs

results

(3,1)(1,1)(3,2)(1,2)
0.262064

(3, 1)(1,1)(1,2)(1,1)
0.261569

(3, (L, 1)(1,2)(3, 1)
0.261568

(3,1)(1,1)(1,2)(3,2)
0.261570

(geometry, distribution) pairs

results

(3,1)(1,2)(3,2)(1, 1)
0.262220

(3,1)(1,2)(3,2)(1,2)
0.262230

(3,1)(1,2)(3,2)(3, 1)
0.262233

(3,1)(1,2)(3, 1)(3,2)
0.262238

(geometry, distribution) pairs

results

(3,1)(1,2)(3,1)(1,2)
0.262234

(3,1)(1,2)(3,1)(1, 1)
0.262220

(3, 1)(1,2)(1,1)(1,2)
0.262234

(3,1)(1,2)(1, 1)(3, 2)
0.262244

(geometry, distribution) pairs

results

(3, (1, 2)(1,1)(3, 1)
0.261417

(3, 1)(3,2)(1,1)(3, 1)
0.261188

(3, 1)(3,2)(1,1)(3,2)
0.262234

(3, 1)(3,2)(1,1)(1,2)
0.262212

(geometry, distribution) pairs

results

(3,1)(3,2)(1,2)(3,2)
0.261525

(3,1)(3,2)(1,2)(3, 1)
0.261972

(3, 1)(3,2)(1,2)(1, 1)
0.264729

3, 1)(3,2)3, 1D, 1)
0.261855

(geometry, distribution) pairs

results

(3,1)(3,2)(3,1)(1,2)
0.262237

(3,1)(3,2)(3,1)(3,2)
0.261865

After that a radius from interval [0, 7] is taken at random in order to get a point from

Ni(z). Therefore, a random point within the Shaking step of GLOB-VNS or RD-VNS is gener-

ated in two steps: (i) find random direction; (ii) find random radius along that direction.

Local Search. As a local search for solving CPP we apply the direct search Hooke-Jeeves

nonlinear programming method since it does not use derivatives. The left and right bound-

aries a; and b; for variables are defined as a;

= —1land b; = +1. The GLOB has six local search

methods: steepest descent, Fletcher-Powell, Fletcher-Reeves, Nelder-Mead, Hook-Jeeves and

Rosenbrock, where we chose Hook-Jeeves nonlinear programming method by an empirical

way. At the beginning, we fixed the other parameters on GLOB with fixed maximum running

120

Circle packing problem RD-VNS for CPP

time and we run the code for each method. Then we found that the Hook-Jeeves method
gave better results than the other five methods. For that the Hook-Jeeves method has been
used here as a local search method for solving the CPP.

Pseudo-code. Our RD-VNS procedure for solving the CPP problem contains two different

formulations for solving the same problem. The RD-VNS algorithm for solving CPP is given

in Algorithm 26, where kpax and tpax are the usual VNS parameters, given by the user.

121

Circle packing problem RD-VNS for CPP

FULtiOD RD-VNS (377 ®1, Y2, kmaxv tmax)
1 Select the set of neighbourhood structures N, k = 1,..., knax induced from /;

and (., norms as in (4.7) and (4.8).

[V

Choose (geometry, distribution) pairs order.
3 Set Pactive = P1
4 Find an initial point x € X with respect to vactive

5 while t < t,,4, do

6 k—1
7 repeat
8 for (geometry, distribution) pairs order do
9 Generate 2’ € Nyyp, ... () at random //Shaking
10 Apply Hooke-Jeeves NLP method starting with 2’ to get 2" //Local
search
1 if f(2", Pactive) < f(%, Pactive) then
12 L x «— 2", and go to line 6.
else
13 Set k —k+1

until £ < kpax
14 Transform the point x to corresponding point in another formulation, where

xr = 1/f($, @active)

15 if Pactive = L1 then
L Pactive = P2

16 else
L Pactive = P1

17 t < CpuTime()

18 return x

Algorithm 26: RD-VNS algorithm

122

Circle packing problem CPP inside a circle container (CPP-1)

The pseudo-code for the RD-VNS in Algorithm 26 contains a few more lines than the
pseudo-code for GLOB-VNS. They correspond to different formulations of CPP-1 or CPP-
2. In line 3 the current formulation is denoted by the notation @gctive. Lines 14, 15 and
16 explain the switching between two formulations. Each variable z;,j = 1,...,2n + 1 is
divided by pervious x2,+1, which is in fact an objective function value of the current problem
(ry,Ror L).

After choosing (geometry, distribution) pairs and the active formulation @gctive in steps
1 and 2 respectively in Algorithm 26, we then choose a random initial solution z. We denote
with x the incumbent solution. As explained in Algorithm 26, the outer loop of VNS is
running until a predefined stopping condition is met. The inner loop is repeated k4, times,
if there is no improvement in x. In each neighbourhood a random point from the Nj(z) is
taken (line 9) and the well known Hooke-Jeeves unconstrained nonlinear programming code
is run (line 10). The active formulation is denoted with @gcrive. If the better solution is
obtained, we save it (line 12) and repeat the entire process with the first neighbourhood

(i.e., return to step 7).

4.4 Computational results

Our code is written in C4++ and compiled with Microsoft Visual Studio 8.0. The program
is run on Intel(R) Core(TM) 2 at 1.73 GHz with 2 GB of RAM. There is no information
regarding the computers used to calculate the results for other methods.

This section is divided into two subsections, one is devoted for CPP-1 results, and the

second includes the CPP-2 results.

4.4.1 CPP inside a circle container (CPP-1)

In this subsection all the CPP-1 results for n = 10,...,200 in four variant cases will be
provided. The first case uses GLOB-VNS with the formulation (4.1) only, the second one uses
GLOB-VNS with the formulation (4.3). The third case uses RD-VNS between the formulation

(4.1) and the formulation (4.3), where in this case the algorithm starts with the formulation

123

Circle packing problem CPP inside a circle container (CPP-1)

(4.1), and it then switches to the formulation (4.3) after half of the CPU time allowed.
Finally, this one is the opposite case of the third one, where the algorithm RD-VNS is between
the formulation (4.1) and the formulation (4.3), but it starts with the formulation (4.3), and
it then switches to the formulation (4.1) at the middle of the CPU time.

The CPP-1 results for applying each formulation, (4.1) or (4.3), independently and RD
between them are given in Table 4.2, Table 4.3, Table 4.4 and Table 5.1, Table 5.2 in

Appendix B respectively.

124

CPP inside a circle container (CPP-1)

Circle packing problem

0€
o€
o€
o€
o€
14
Gc
14
Gc
Gc
14
G
14
Gc
G
(014
0g
(04
0gc
02T
a1
a1
ST
a1
Gt
(028
(028
(028
(028
(028
(028
(028
(028
(028
g

g

S66E8T8896CT 0
VIL8TICTIL6TT O
80L68T9ETITT O
LGL68ESTTYET O
OVI6VIVITIET 0
LLBTETHELBET O
0r670€S908071°0
9L6T8LTIE69ET 0
€T8COTL8VTTVT 0
VLGE9GEGTLYT O
VOTLLG6LTIVT O
80GL99GGTOST O
66LETSRITLYT O
790€8LIVICST 0
OVVLILYSVOST O
CE€GLEY9GC09T 0
IVITI68L8091°0
0ZOT8TOTZTIIT 0
02070S€9489T 0
CG9T697990LT 0
TV9C¥8LEOSIT O
€900CC96SSLT 0
€C8L8BTO0SLI O
68L6L89ETVO8T 0
LGEETSTI068T°0
VLGEGBLTTIO6T O
89¥60C07€S0T 0
TOT868SSGTS6T 0
€69€0€9L2€0T°0
097LS071480T 0
GT9€L9LTIT61T 0
€86.LT666€82T°0
TL2C9T17S09€T 0
CITI9TEBOSEET O
LO9V6LOT8YST 0
999€6€860092°0

09€S0LT080TL L
LTTELEEOVI0L L
68965988€6LT06°L
67280€9STOST L
€C66C0LLOTVIE L
60T88999LL0T L
901¥¥190020T L
79CS6790600€ L
20G0S06LT8TO L
8L68CTILO0T6L 9
6L666C7CT9€8°9
08TE8TGGLESI9
6LTOLVETITEL'9
TI9PST98CISS 9
0€8T808TSITY9'9
9TVOSTI666EC 9
OV18609S8S1C 9
GE0ELTTR0E0T 9
8TT9LCT8VTEG S
06LT9TO8L6S8 G
6LLLEVOVOTS6'S
T6TLOVES8Y69°G
G9LTLOVTCYIL S
GOEVL6VETTYS G
CS0E6S66168T 'S
L609298T196SC"¢
76C98L996698
616V ICY8VICT S
LV8VSSTIV6I6 1V
090S9TL6ERS6L T
669L665L9T19G°V
GTE€E6098TVLE ™V
GRSTOTVIEIET ¥
LOT6SSVETIVT T
G906TS8T0OVTC6'E
T9C008TV.LIVR'E

70¥8959S¥¥C1 0
9CGEETYRVOET 0
€0€T¥68052CET 0
GTT90CTL68TIET 0
7695999C0€ET 0
TOTLOSETOBET O
PPE8COEESVET 0
VEVTRIT66071 0
TT6LEGLLOTVT O
8E0ELIBBVSTT O
T9ETESOLLOTVT O
€ELBTOVLIE6TVT O
€9TL8TI6LITI O
LTOTBO6LSTST O
699C180T9€ST 0
TOLETITTEO9T O
1994867072910
922800TLE6TT 0
YOVISG¥969991°0
TG998C6€00LT 0
TIP8G9CET69T 0
VST8LITEVVLI O
LTO6LIGVITLLT O
8G86TTTS908T 0
CLTIVRGVITLIO
0S6TIROVELST O
0LTL8V6ETI8T 0
SIVEV0S8ES0T 0
096.LC€ERVSE0T 0
6S7865L9€20T°0
86709G8C0ELTIT 0
86E£EVV6VT6CT 0
I¥918T91L6CTC 0
1€86T00995€C°0
90€TLITEBTST O
G90LT6LETTIT 0

ELETLYVILIET O
6V9T1ESCYITET 0
0C8EBILIIVET O
7S0TOTCRISET O
Y0V9SCT889€T 0
€CTIVOV68TI8ET 0
€9E€6CIVRSIVI0O
GG9068L8LTVT 0
L6LVIO0LVELYT O
CET6997808TV1 0
9G099GLCT6TT 0
886CLELIVEGTT O
897CCCTEETST 0
98LETEREVTST O
TTETVTIGELET O
8L86TTITLO9T 0
G1TETVET8TIT 0O
609298897S91°0
9LEVB689T69T 0
G980€L9CVILT O
9¥4GC9908LELT O
9LG€TS0CTITLT O
9S0TT¥0T68LT 0
0TO8806TI8E8T 0
TYY6Sv6€€061°0
G206.L8860€61°0
06£696L65502°0
9T9€ELEERVSES0T 0
TIP€6200950C°0
ST6LIVSEBTIT O
L0T126L99802C 0
TVTIE6LLLOET O
09L49488509€2°0
T66VI96TI8YT 0
LEVOVTIVEYST O
€1998928492¢29T 0

L6S0T6CIVETT O
LS9V0181€CCT 0
96CVLET68SCT 0
LyEe9ee0€cee1o
C8T6S6LILITT O
909925€ESTTT 0
0CTL8SO8V6CT 0O
CTL8TSVOTIGTIT O
769149C80€0ET 0
8T8L00L9CEET 0O
TLYOTSTO6TET O
GE66S098V8ET 0
€9TLEETESTYT O
TSLL6V0TTSET O
LO9VGEGTVIVIO
8690L68€9TV1°0
€ETBEEIVTEST O
GLEB6996CTST O
20T678TS6SST 0
891G600CSLET 0
9VPILLLOOOIT O
06ETSGO88VILT O
LEYELLVIVILI O
G98GC0CTSVLI O
T8TIBEGI6VELT O
009T¥E6966LT°0
G8E6VLSTTIG8T 0
2€98¥%¢Lc000T 0
£68€0809L70T°0
0S¥74982€0C¥0T 0
¥S670612180C 0
L8GLETLGE0ET O
0CTLL6SS09€T 0
Y0E1CV080€VT 0
€7E8G9000TST 0
28€90L052292°0

€VLELTSTETR'S
L69€9VOVSLT'8
96E£4GEETEETE L
760V0SLCTI8T 8
96LCTIVSI68 L
06L7LTEOTIT'S
00VLVGOTETL L
VLTLEIRBS6E'S
SCTV60TTIVLO L
66999C€LE0G L
9TOP89GETRSG L
768€49S66030C" L
€98GLOS6STOL
0C0S6918VET L
LVL91899690°L
GTL8LI0LOTO L
€900¥1¥PScs 9
VLV1S685609°9
CTLLBVV6ICIV'O
TVPP9LSTESYE 9
€9C¥796967C°9
TYY9001ETER"G
€LTTILTIOTCER S
89LLLGEG6TL G
TE0TTO9TS89'G
89€9610599¢°¢
I¥L0952020¥V° 9
669L88TE666'T
0698TLVLESS T
£€79498080L68°F
9G8GTILITO8 ¥
CT98VEROIVE 'V
€LYCTEERTICT TV
0C9V8VI8ETT ¥
TES6TESOTR6'E
VOSTIGVIEIS €

TGLIEITETTO6TLG L
¥2S662899€0867 L
ICIVE9S8Y V661V L
9LTV690796.L97VE L
Y0LLIBTETTO09C L
CIEV6SETIVRETT L
00¥7C9CITP88LG0 L
V18CTS96988196°9
€9EVIEVVOLLRSGL'9
LIVEVEGLEGLIVL 9
V206LT60TLTL69 9
00T00060L596019°9
€7099€CTE0LIRT 9
TT0S60L6C9V6CTV'9
8T6CICT9C0ST6C 9
TTO6LBOLOTVLLET'9
VI8L6E06L6S8ET 9
TGTLELEOSEGTTIO 9
GIV6ELYSLEEIN6 G
V6TV69659LTI8T8 G
TTLS80EEVTRTSL G
€VGILT60T991S9° ¢
G8V7LGTTCY0OTSTe S
TCTLO6S6BILEET G
VCOTOSLYLTETST S
¢491669€L0T€CCT S
LTI9GTS0EE0LEIR T
LTIGTS0EE0LEIR T
LGOTEBVLEEOTOL' TV
6TELBV6SSTTSTI T
9T190L¥9699€1CS 'V
€809879GG8CV8TE ¥
8L66VLL6LI0IET T
8T9TT0E6T096C0
80€9T00¥¥08€T6 €
CIB6ETEISTOEIR'E

0€9TSCV6S670CET 0
G00988SGTVT8IEEET 0O
CTITO8OT68TILLYET O
LBIGTLBVLETTIET O
PVEST6CI80OTVLLET O
YILTOTV09€LEOTT O
€O0VEVLITSSE89TVI O
68CELOSTICT6EIETT O
9L06L¥V06SS6LTVT 0
6TTT9L6CV6IT8VI 0
9TTSE99LLITEGTT O
GGLIVC8TOVITICT O
8GOLV6LISTITVST O
0LLTCTVSGR6EESEST O
OVE09STVSTT68ST 0
68979060T67ETIT 0
VY99.L26V9€06C91 0
9098€00948ST99T°0
ELGVETTEBLOE6IT O
99TLBTICSTOSSTLTI O
CTTITVTI99LT8ELT O
T969690€T6€69L1°0
9€T¥ST6009€€08T 0
T8918499C0EEVEVT 0
€S06789¥TT6E06T 0
8VL8TOTTOVTTS6T 0
894G65L979170950C 0
89965L97970950C 0
6670L55996L980C 0
CTYYT6TrLY9991C 0
06£9806€9TLTTICT O
800TL6L2L0OEOTET O
68L66VLL6LI09ET O
989TLGOLVEITIBYT O
8VTILILTOLYS8VSC 0
G9T061VC6892CIT 0

ndo

(g —w)ay)/t

(¥ —wvay

(v —w)ay

4+ SNA

u/1

q SNA

Y DIUWOUOHID J

002 = U [[13 0T = ¥ WOIJ ISUIRIUO0D J[OIID € apisul wajqoid Surped o[dI1) :g'§ 9[qe],

4 DIUWLOUOYID]

125

0g
0g

0g
or
(07
ov
0¥
ge
Ge
ge
Ge
g€
Ge
g€
o€
o€
(019
o€
0€
o€
o€
o€
o€
0€
o€
o€
o€
o€
(019
o€
0€
o€
o€
o€
o€
0€¢
o€
o€
o€
(019
0€
o€
0€
o€

CPP inside a circle container (CPP-1)

Circle packing problem

CISTETEVLLROO
VET6ECTYI880°0

0S¢ 6678TEV6T680°0

€080€CV.L8060°0
2ELOSGVTIITV060°0
67CCI8TT6880°0
98.L6C9076160°0
£T8969¥8CI60°0
G00S8GLTILT60°0
V1L626990960°0
78LET16929C60°0
L6699LE0TV60°0
898¥66829260°0
00L298LETV60°0
0T¥8G8LTYS60°0
IVPETESETLG60°0
719LL0098960°0
8ET¥TEV09560°0
20V1T896L960°0
L0LT€0€9L00T 0
69CTCC8SEL860°0
T99876£79660°0
8€80TLY66E0T 0
GE€GCEIVO910T 0
£9062€1CST0T 0
8TL8ETH6LTSOT O
TySTL8YY0S0T 0
92C997¥ 194901 0
8L9974298601°0
L8¥869L6VOTT O
8GVETPTLY80T 0
60989766VCTT 0
LILTEETITVIT O
0G8T6T90€CTT 0
VTI0T88VELYIT O
8LVOBVIGLLIT O
CTELLBLSTILIT O
T697948SG06TT 0
8€90€6L6SLTIT O
8T6L0CSTETTT O
98ITE6EVETTT O
€8ETOGLERTTT O
VOEEVITTITIOCT O
T6TLT8LSLITT O
€0SVITV0C8TT 0

GGTTGE06896E TT
6680768V01I8T 11
6CVI6L0T686T TT
89806961C700°TT
6CE68VCETYSO'TT
0¥C0TS660L7VC TT
€1TI8IVREILE 0T
765960809L756°0T
9L06€S0PPS8L° 0T
8GG.L8E60V60V 0T
0T79C0866S96.L°0T
G0009TL9¢929°0T
08TLOLGGLS6L 0T
GLEE609TTVITI 0T
L6VCTC0TTI6LTY 0T
86LETRBEESITY 0T
1667S60L1¥CE 0T
766006LLL6ST OT
VLIOVLLI60EE 0T
9GE6ESTLTTT6'6
9G99.LC6€LSTT 0T
0S¥65€CELGE00T
€6E8CTLTLISTI6
9LTT9E6TI1ITY8'6
8VLETTSTVLIS 6
L6ELTE68VSGR6T 6
TO906TTIVL6TS 6
OTVCYVELELLY 6
912C80€8TTOT 6
TTI8672296670 6
LSVI60T€681C 6
GTGGL80E6888'8
8LVEBI9GT6SL'S
Vr9149482CV06'8
T9SVCTSVLETL'S
6G68CEVLG68T'S
98TTTLYTRLES'8
607E€GLLTT66E'S
VITOSOETI6I8Y'8
TO9TST86SGLT'8
TOVLT8B8LIELT'S
LSLOETTIG6ET'S
ICEV6EETE6C6 L
TCIBLI6S0688 L
TTTIPL9T90008 L

VYI899€L6C60°0
8L9G080€E€E60°0
7S¥696559760°0
V629949192V 60°0
61TETEVLLG60°0
G67091797560°0
6E£76C69€9560°0
980€8C6¥7960°0
G6T968LV8L60°0
G9GLE6S€6L60°0
9LG0LSSTEL60°0
TELIGVLET660°0
887108200001 0
GTISTT092EL60°0
LG9TL6TRSTOT O
£98¥08C6700T 0
8C86€6055€0T 0
920072956201 0
080C91C86E0T 0
0689788627010
P1I9¥2E€E€8950T 0
8G08LTELESOT O
8868T6LSELOT O
9T1L600991L0T°0
9ETLTITRCI80T 0
€0CL66EST60T°0
CT6E0TLOSOTT O
808ETRGVITITIT 0
Yr699SvI0CIT 0
0C6E6SSLSTTIT O
6V8LITIEVTIT O
T98098C08STT 0
POET698GLSTT O
TT6S8E€C8TITT 0
GLT8LLYTTITT O
€V68C60L98TT 0
0TILLSTRSLIT O
0LGTPPI8LICT O
L€89001602¢21°0
CTSL90€9LTICT 0
Cradusadeizant]
OTT9TS8E6VCT 0
GVTLO88969CT 0
6LE299€88921°0
VLESYTIBRIBTT O

9GL66T¥89T60°0
8LLEBVVTITE60 0
LT6ESTLTYC60°0
TEV9018L6¥60°0
€80T6TSV1S60°0
L60€€8260760°0
9.0220€90560°0
9LLGELE6LI60°0
987088TVIL60°0
0070L€T95960°0
G¥0LTS9T0660°0
V1LT68861660°0
2969€988200T°0
9L9L16L9000T°0
9LTITV66LBTOT 0
8LTILISV6TIOT O
896L1565¢00T 0
TZ80T909TE0T 0
6E€TGCLI8LTOT O
LOE690TSLYOT O
80CV088TSTVOT 0
€VLIB6S6TI0T 0O
6L0LT88YCLOT O
86V6TIVELLOT O
90€766L2E60T°0
CEOLTTVOS0TIT O
6VLTLEGO860T 0
G8TLTHEVSITIT O
L8BLEEGVETTT O
2Ov796CIVSIT 0
GGGV P896ESTT 0
980GTE6ITITT O
CITTSL6689TT 0
LSGV986GCLLIT O
€99GEETVO8TT 0
T6CEEVT6I6IT 0
TSEET6IT86TT 0O
LTI6E6ETIRTICI O
€16060€€8611°0
7E88VIV6IVCT O
026589794121 0
0TSEBLSGLEITT O
96E£67V9618CT 0
TE6ETTIVEGTT O
VEV6VSE6E0ET 0

LV6S67SETSR0°0
1262CL170LT880°0
TLSGV0TLI6LB0O0
099829502 080°0
€0096€50S180°0
99€8¥8€E9980°0
98V.LLTI69780°0
LT¥L6L880880°0
9961C87S1980°0
8CYTLEGEILEO 0O
8T8L¥S896C80°0
712697908160°0
TEEBEGETO980°0
9V.L8ESTIVTRO 0
69CL8GRGBR800
TTGLIS06TT160°0
T€619CL9V060°0
9TLESLROTTE0°0
G06€£CLESSE60°0
0¥P21E€S0T¥60°0
€CIELTEIVLE0 0
LIVS6V98IV60°0
918%90297760°0
8LTTI961€9560°0
0S79LTSEETE60°0
80805STV65C60°0
GLLGG0605960°0
TV.LV90LSGL860°0
09€96L915560°0
GG¥6.L928€960°0
6CTESSTSERG0 0
CEVEVETOTTOT O
79961€880860°0
VIVIL8ECYI0T 0
6508GG87SS0T 0
TILTETES8SOT 0
€T092C6T1ER0T 0
8L080TCCESOT 0O
€VI0E6166160°0
L8LLLTTGR60T 0
78EIVVI88660°0
8CLIGRVTIICIT O
7999C98LGTTI1 0
98E€8SL908901°0
€0SVIVPL6TOT O

9L9L8IELVOL TT
GTCT99188TE'TT
TV688TLBLIE TT
S8VIT6CS6L9T'CT
VZ8CEITI69C CL
8LEGBTERTYSG'TT
9688C806908°T1T
V8ETETIVICSE TT
06C6ETT0LO9TT
GCTE996C0TV 1T
€6,9009Lc50°CT
VE98GBLYT68'0T
TCI¥¥908STI'TT
89€096L1890°CT
88LGEIEVEST TT
0676£9T10996°0T
8GEOVCTLESO'TT
G8LEBVTLYTIO 0T
069LE570689°0T
6£S79C6€929°0T
9cCe9482T092°01
LTLYVEEETLTIOOT
1662C092984°0T
CVCTITSSL9GY 0T
76€CL80T0ER0T
PE86SGTLLE6L 0T
0GE€E6ITLIOE 0T
€GLGE8LGRGTT 0T
CLIGBTIE6IV 0T
EFEGT80ESLE 0T
6166GL09L91°01
8EBTYTIOTI68'6
€96LLEGRVET 0T
9C0TI8BEI6E 6
€ETVTTIETLY'6
8800LCV0LVT 6
TV9TSTIL6TIET 6
VLETLTRIVET 6
VOVELBTSOLS 0T
€12yeev1e01 6
916689711001
9€98T0TR/6LE'S
790SL089T88'8
CTITO¥E0LTIE 6
O8TVIOSTIITIL 6

0LES6LLTEI097S 0T
09€LGVIBI6V00S 0T
0€TELTOILEETET OT
08LL0S0S80TE9€E°0T
OTOTTES0TOLS86T 0T
0L9L8GOPTITIEIT 0T
0T9€TLI80ES6VTI 0T
00COTGL8LG8ITT OT
090S¥€CCPT80S0°0T
0L00ZT¥C¥98010°0T
LEESTETIBICTIRIG 6
T0T99L97€90506°6
C8V8866860LLER"6
8LI0OSVC6TTI686L°6
791912089656 6
TILV61€9620CL9°6
LI6EETVILTETHRS 6
68LETCTITIVEOVS 6
COETLIGRO68ELY 6
CB0OLBIGRIGLETY 6
8V8VOV61ESIGTE 6
60T¥999C19L69C 6
990GL9VLELLETT 6
6LEBLIBRTILESIT 6
LTYT69CV6.LT960°6
€L80CETELBELTIO6
€LG8VBOTTLETI6'S
GG0GGLESTSETH8'S
G0TL680VS9L6C8'S
8EOVEELIEL6TTIO'S
T6LSVSVB61CITI'8
L00LEGS666VT6S '8
096€T0LLESSTTS'S
CVOTVESGOVSILYY'S
G68LGCT66TSERE'S
L6LT609SCOTTIIT'8
£E£697E8ETV6E0T'S
90T1¥89CRTVG6LT'S
8868906 TLILY80'S
8I617C96905L20°8
TGEBLVLTGTGLYE L
98C088960L8988"L
998GC0EVILTTI6L L
TO86STS00LTVTL L
99€69VI166L1059"L

8769849650CT8760°0
0L8EVSVEIEETS60 0
TOSTLLT6LGERS60°0
I8T9E8TICS67960°0
T0€500¥29660L60°0
909269€9056€860°0
GGv06€12L9TE860°0
L9BILTHTE6VTF8B60°0
LGTG08LTEVEV660°0
9€9T6VSLVI68660°0
9LTIITV66¥61E00T 0
94TYVS9¥9¥8G6001°0
69€6TL6ETVETTTOT O
069€869¥12S0C0T 0
L969V6T8T6LLTOT O
TPr99941606€E0T 0
80TSEB6CIEVTIYOT 0O
88T889666LTI8TOT 0
99069T€STESSS0T 0
CITLERG6VT0CI0T 0
C9LG099T19T00L0T"0
678Y9EEVILLESLOT O
GLYPOLLTOSTEROT O
€81€20C8VE90601°0
0LZ86CLS0SE660T°0
T96CTLEVLIBS0TT O
9CLGTRG6GCRVETTIT O
GEBLIBTHTISTCIT O
089C8616CESTETT 0
9GEBLITVTIIGYSIT O
VI8CETO8VLGISTT O
L¥7096679S08€9TT 0
98T8CTE6TIROELIT O
00S9TS9L€9C8EVTT 0
C9ETROLEVIBTHTIT O
666LCGVCEIVLITT O
7969981C0C68TTT 0
619L89€C9949TTT1 0
697C6SVIT069€TT 0
G9€T099L9TLSTCT O
YOv0E€S68VST8ETI 0
9022892966C6L9C1°0
GV8CVG9GL8VERTT O
LG69TELVLEIVETT O
€ET8EO08BSTLOET O

06
68
88
L8
98
a8
8
€8

0L
69
89
L9
99

ndo

g —vaa)/t

(¥ —v)ay

(v —y)ay

<+ SNA

u/1

q SNA

Y DIUOUOYID J

9[qR) PANUIIUOD ‘()0g = U [[I3 O] = U WOIJ ISUIRIUOD S[OID ® opisul we[qoid Jurped oI ¢ 9[qrR],

4 DIUWOUOYID J

126

0TT
0g1
0zt
0zt
01T
OTT
OTT
o1t
OTT
01T
01T
01T
OTT
01T
o1t
OTT
00T
00T
00T
00T
06
06
06
06
08
08
08
08
0L
0L
0L
0L
0L
0L
09
09
09
09
09
09

CPP inside a circle container (CPP-1)

€0€996.L8728L0°0
66L€£006€6VL0°0
L6T9T7988€EL0"0
0¥88L97STEL00
€LTCTVS0rv.L0°0
LS8ETTIVYRELOO
€2868760€49L0°0
VLBIGTITE0SLO'0
G9T€6C0TT19L0°0
€6SGLTLT68SLO0
606L78TLEELOO
9LTETERRI9L00
6€L9TL6£95L0°0
GV.LVGTEBT6L0°0
9€92¥06€LLLOO
8CTYTIITIVI8LO'0
GY0ELEVESLLOO
6T1€S0950€8L0°0
GEBIBVEET6L0°0
LTOLYTS6SLLOO
LGOVS9€9986L0°0
86195L€966L0°0
7Sr8¥8676080°0
GG¥80L0€6080°0
809€T9€C96L0°0
TCTEETSTIV080°0
¢9TT8S0OTEER0 0
0S¥T1C9LSGST80°0
€00799¢11280°0
661C79LETTIR00
GG08¥R8LEIERO 0
8678C54STER0 0
GELOTV6S8T80°0
TCVSeTse9cs80°0
€08LLETLLERO0O
VE€69TLBGEIR00
L¥99T89S5LGR00
LVETGESTI980°0
¥929L¥8C5680°0
LVT99259L680°0

6G99G8670TT08°ET
68G8T6SVIVYEET
0L66T6980929°€T
908GLTS00TS9'ET
CIVITLOSS6ET €T
6CV9TCIVOTYS €T
6590€06€498LT €T
9L9TCSLELLTE €T
9G60€ELTSVET €T
969080€679LT €T
LIT76S990C6C9°ET
LOETLTIBLEEO ET
T995009950CT €T
LEGGOCEIVITOCL
TOLEOT6VSEIR'TT
GT16E£688078VL'CL
LT9G6LLEBLERCT
9€TTLBLLYOLLTT
T8EGLLEVI6RGTL
09T98TLBELYRTT
19CCT1L160C9°CL
2180999995041
L09g€9.LcEESETT
6CC0816VC9SE CT
GCPTLESBO6SSTT
GLV68COLVSEY ' CT
T86870LLTE00°CT
8LG890CSGLTTIT CT
LOSLEVEBEBLICT
96£€7STIS60E°CT
TLLTES60E9G6'TT
€97099627C86 TT
€C0CV896TV8L TT
€G0V6C6018CL TT
TYTIEV0S9L8SI'TT
SVILGLG096LG TT
GEVSVC6L8099°TT
8CELOGLETSVE TT
9700TS0€969T 1T
CIV809LITOVT'TT

T88L89S689.L0°0
Vr92E9T96LL0O°0
LTIBIGLEILLOO
TL908VEE0LLO0
€8€LL05008L0°0
CIE€E69T0TLLOO
L6€9659C0CLLO0O
89€699LLL6LOO
70498¥8¥¥¥6L0°0
9€88ILETTHLO'0
992.L8696CE€L0°0
LOE6EIV6TIRVLO0O
766219087 180°0
98LLLOBGETSO 0
7088¥792E€SEL0"0
€06.LL7808180°0
6109€CT6V6L0°0
€16¥8¢CeEVT80°0
6¢8L656681780°0
9€6L68LSLTRO0
07.L260€96580°0
6L80T888T6L0°0
8G8TVOVETHRO 0
0€¥928760980°0
TS¥C9T6CLS80°0
G9CGGLT6L980°0
18606€0C¥.L80°0
07166C798L80°0
GGT961796€80°0
869T968LST80°0
CEVLG08GGLB0O0
CTL6TIVILS680°0
9910€£096L680°0
TTIS80¥T19¥060°0
706£907SS060°0
0090T¥818680°0
6¥78€907L¥.L80°0
6ET8LLRTETH60°0
G9CLGLIGLT60°0
G08¥¥CS9€€60°0

OVLTLVLSTLLOO
P8EBELGISLLOO
VELTSTIOVYELO'O
P00OV6LI9T6LLO0O
G0806€EVI6LLOO
YO0OPS¥9T9LLO O
9LVILLETESLO O
0189987000800
26990LS766L0°0
T8L00T6L86L0°0
£€68¥0L9S95L0°0
89€€0¥811¥080°0
TSTPT60CSTR0°0
998G96.L78180°0
0L92¥LT9LT80°0
CEVOTEITVO80°0
98G8IEVILIBO0
€T9€9¥889280°0
TE€CVETITOERD O
VOVEVTILILIROO
808990148280°0
€SVVLIOV6T80°0
218999200480°0
G9C601ST6780°0
LE60TTCSTER80°0
€169911C6¥80°0
080968765800
GL66L5807980°0
9209967175980°0
79E68€007980°0
880697650L80°0
89€THTLELLRO O
TLV18CTT6L80°0
Y0LLEEBYCO60°0
6875959700600
TTITL60070160°0
TT8IETT6S060°0
6VITLICEVI60°0
7089€CTLLO60 0
0¥7€6.L2609260°0

€¥9€998TITLO 0
GE990VLE8LILOO
€8TVLETLOVLOO
9C116C67L690°0
06C0T8L8ETLO 0
€EVCTI0TILYLOO
TGVETTIS6ITLO0
TP9CTIVLTYLO 0O
6608002007L0°0
0S860€6€95L0°0
TTICL6T6S8CLO0
€LVGGS007SL0°0
T69TET6VLELOO
T6ETLLBELELOO
TG868EETSEL0O0
€2¢99€09€92L0°0
€4949C9910€9L0°0
LTTO0E0S8LL0O0
90T9CVETEVLO O
9TVE6TTLGGLO0
TV0961618LL0°0
TTOVI996.L7L0°0
L9TTL900€ELOO
¥610666C65L0°0
GI8TVEETEE6LO0
98€T9¥C008L0°0
7GLTS0CS95L0°0
89LT6V8EE6L0°0
6IVITESTTILLOO
6C6L607088L0°0
78990€6V.L6L0°0
GL6659€L9C80°0
G690€CT69180°0
668€T¥600LL0°0
TCST009€5080°0
YY12E€0€06180°0
CYVT8LIST9ILO0
T6168L97T1080°0
G8GEEEI68E80°0
8CEEE0TTTIILO0

SVLI8OV8CTI6'ET
9C¢8G86T00E6°ET
G8GTET6V00S €T
TTILTEIOLEE VT
LTL8GOSYVIREL
TTIET6EL6TBEET
729€85