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Abstract

In the real world, many problems are continuous in nature. In some cases, finding the global

solutions for these problems is difficult. The reason is that the problem’s objective function

is non convex, nor concave and even not differentiable. Tackling these problems is often

computationally too expensive. Although the development in computer technologies are in-

creasing the speed of computations, this often is not adequate, particularly if the size of the

problem’s instance are large. Applying exact methods on some problems may necessitate

their linearisation. Several new ideas using heuristic approaches have been considered par-

ticularly since they tackle the problems within reasonable computational time and give an

approximate solution.

In this thesis, the variable neighbourhood search (VNS) metaheuristic (the framework

for building heuristic) has been considered. Two variants of variable neighbourhood search

metaheuristic have been developed, continuous variable neighbourhood search and reformu-

lation descent variable neighbourhood search. The GLOB-VNS software (Drazić et al., 2006)

hybridises the Microsoft Visual Studio C++ solver with variable neighbourhood search meta-

heuristics. It has been used as a starting point for this research and then adapted and

modified for problems studied in this thesis. In fact, two problems have been considered,

censored quantile regression and the circle packing problem. The results of this approach

for censored quantile regression outperforms other methods described in the literature, and

the near-optimal solutions are obtained in short running computational time. In addition,

the reformulation descent variable neighbourhood search variant in solving circle packing

problems is developed and the computational results are provided.
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Introduction

0.1 Optimisation problem

An optimisation problem P can be defined as

min{f(x) | x ∈ X,X ⊆ S} (1)

where S represents the solution space, and X denotes the feasible set. x and f , where

f : S → R, are the feasible solution and the real valued function respectively. x is called a

feasible solution for (1) if x ∈ X, and it is infeasible if x ∈ S but x /∈ X. The optimisation

problem P is called an infeasible optimisation problem if there is no feasible solution x.

Otherwise, P is a feasible one.

If S is a finite but large set, or infinite but enumerable, the P in (1) is called a combi-

natorial or discrete optimisation problem. If S = Rn, P is called a continuous optimisation

problem. The formulation (1) is defined as the minimisation problem. The maximisation

problem can be defined easily by using max f(x) = −min(−f(x)).

The solution x′ is a local minimum for the problem (1), if there exists δ > 0 such that

for all feasible solutions x with ‖ x′ − x ‖2≤ δ, satisfy

f(x′) ≤ f(x) ∀x ∈ X. (2)

The local maximum is given if there exists δ > 0 such that for all feasible solutions x with

‖ x′ − x ‖2≤ δ, satisfy

f(x′) ≥ f(x) ∀x ∈ X. (3)

1



Introduction Unconstrained methods

The local minimum is a global minimum x∗ ∈ X for (1) if

f(x∗) ≤ f(x) ∀x ∈ X. (4)

For a maximisation problem, the global maximal solution or global maximum satisfies the

condition

f(x∗) ≥ f(x) ∀x ∈ X. (5)

The real world problems come from industry, transportation and management, where

optimisation models may be discrete or continuous, as mentioned above.

0.2 Continuous optimisation

In the case of a constrained problem, the optimisation problem (1) can be formulated as

min f(x) (6)

subject to

gi(x) ≥ 0, ∀i = 1, . . . ,m (7)

hi(x) = 0, ∀i = 1, . . . , p (8)

where the functions f, hi and gi are continuous ones, and x ∈ X.

This problem is called a convex optimisation problem, if the objective function f(x) and

the constrained functions gi(x), ∀i = 1, . . . , m are convex functions and the feasible solution

set X is a convex set. Besides, the hi(x), ∀i = 1, . . . , p are affine functions (Roberts and

Varberg, 1973).

Definition 1 The function h(x), where h : Rm → Rn is called an affine function if there is

a linear function L : Rm → Rn and a vector b ∈ Rn such that

h(x) = L(x) + b ∀x ∈ Rn (9)

The optimisation problem (1) is called an unconstrained optimisation problem if it does

not have any constraint (7 and 8), i.e., if X = Rn.

2



Introduction Direct search methods

0.2.1 Unconstrained methods

As above, the optimisation problem (1) is an unconstrained problem, and it is convex if the

objective function f(x) is a convex function. Note that X = Rn is a convex set.

There are three ways to solve convex unconstrained optimisation problem: by direct

search methods, first-order methods or second-order methods. Details of each method are

discussed below.

Direct search methods

The direct search methods solve the problem without using derivatives. If the gradient of

f is not available, some direct search methods attempt to estimate it. The f gradient is

determined by evaluating its value at several points (Zhao et al., 2009). Generally the direct

search methods select one by one a sequence of points in X. These points converge to the

local optimum of f(x). The first point is chosen by the analyst due to the information of the

problem. If there is not enough information, it can be chosen randomly. Then each other

point is generated by some routine or strategy. Nelder-Mead method (Nelder and Mead,

1965) is an example of the direct search methods.

Nelder-Mead method (or downhill simplex method) does not require the function

derivative, it just needs the function evaluations. It was first introduced in (Nelder and

Mead, 1965). The simplex is a geometrical figure. It consists of a n + 1 (x1, x2, . . . , xn+1)

vertices in n dimension. If any point has been taken as an origin, then the rest of n points

are defined as the vector directions, where the n-dimension vector space will be extended.

For keeping the shape of the simplex unchanged, it chooses only one point in the directions.

If the initial solution has been chosen randomly, the n points can be generated by this

formula

xi = x0 + λei (10)

where ei’s are n unit vectors and λ is a constant. The λ is guessed by the user and it

depends on the problem’s length scale (Press et al., 1989). The initial solution x0 then

changes through a sequence of geometry transformation (reflection, expansion, contraction

3



Introduction Direct search methods

and multi-contraction) (Zhao et al., 2009).

The Nelder-Mead algorithm is started by choosing the worst point of the objective func-

tion (see Figure 1). This point is called high, then one generates another point due to the

worst point (see Figure 2a). This operation is called a reflection. This point is given by

xr = (1 + α)x̄− αxn+1 (11)

4 5 6 7 8 9 10
2

3

4

5

6

7

8

x
h

x
2

x
3

x
b

Figure 1: Initial simplex, where xh represents the highest point and xb represents the lowest point

where α is constant and x̄ = 1
n

∑n
i=1 xi. If the reflection point is not better than the other

points, the algorithm reflects again with the new worst point. Otherwise, the simplex expands

in this direction. The expansion operation can be seen in Figure 2b and it is given by

xe = (1− β)x̄ + βxr (12)

where β is also a constant. The contraction happens, if the reflected point is as good as the

worst point. It’s formula is given by

xc = (1− γ)x̄ + γxn (13)

where γ is also a constant. It is illustrated in Figure 3a. However, if the worst point is better

than the contracted point, the multi-contraction is applied. Moreover, each rejected point xi

4



Introduction Direct search methods
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(a) A Reflection

5 6 7 8 9 10 11 12 13 14
3

3.5

4

4.5

5

5.5

6

6.5

7

x
h

x
2

x
3

x
b

x
e

x

(b) A Expansion

Figure 2: The reflection and expansion steps in Nelder-Mead method
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Figure 3: The contraction and multi-contraction steps in Nelder-Mead method
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Introduction First-order methods

in the simplex will be exchanged by xi+x1
2 for each contraction step, where x1 is a low point

in the simplex (see Figure 3b).

The Nelder-Mead algorithm is given in Algorithm 1 (Press et al., 1989)

function Nelder-Mead(X, f);

Order. Order the n + 1 vertices of X to satisfy f(x1) ≤ f(x2) . . . ≤ f(xn+1).1

Reflect. Compute the reflection point xr as xr = x̄ + α(x̄− xn+1), where2

x̄ = 1
n

∑n
i=1 xi is the centroid of the n best points (all vertices except for xn+1).

If f(x1) ≤ f(xr) < f(xn), accept the reflected point xr, terminate the iteration.

Expand. If f(xr) < f(x1), calculate the expansion point xe = x̄ + β(xr − x̄).3

If f(xe) ≤ f(xr), accept the expanded point xe and terminate; otherwise accept

xr and terminate the iteration.

Contract. If f(xr) ≥ f(xn), perform a contraction between x̄ and the better of xn+14

and xr.

(a) Outside. If f(xr) < f(xn+1), then outside contraction: xc = x̄ + γ(xr − x̄).

If f(xc) ≤ f(xr), accept xc and terminate; otherwise go to Multi-contract step.

(b) Inside. If f(xr) ≥ f(xn+1), then inside contraction: xc = x̄− γ(x̄− xn+1).

If f(xc) ≤ f(xn+1), accept xc and terminate; otherwise go to Multi-contract step.

Multi-contract. Evaluate f at the n points vi = x1 + δ(xi − x1), i = 2, . . . , n + 1.5

The (unordered) vertices at the next iteration consist of V = {x1, v2, . . . , vn+1}; set

X = V .
Algorithm 1: Nelder-Mead Algorithm

First-order methods

The First-order methods are known as gradient methods (Simmons, 1975a). These methods

attempt to find the answers for two questions during the search:

• In what direction do we move next?

• How far?

6



Introduction First-order methods

To give more details about answering these questions, let us suppose that xi is the latest

member in a given sequence of points, and f(xi) is the objective function, where x ∈ Rn.

The next point xi+1 is given by

xi+1 = xi + θisi (14)

where si ∈ Rn is the direction of the gradient vector evaluated at xi, and it is given by

si = 5f(xi) (15)

where the equation (15) gives the direction to find the local maximum. However, if we need

to find the local minimum, si is given by

si = −5 f(xi) (16)

To answer the question of “how far?”, we should find θi ≥ 0. Moreover, the function

f(xi) will move in a gradient direction until it starts to decrease. The desired θi step length

is the smallest positive θi, which is satisfied by the equation

dg(θi)
dθi

= 0 (17)

This should be accomplished by maximising the function

g(θi) ≡ f(xi + θi 5 f(xi)) (18)

where θi, in general, determines the distance moved in the si direction between xi and xi+1,

and it is called the step length.

The Hooke-Jeeves method is one of the first-order methods (Hooke and Jeeves, 1961).

It combines both exploratory and pattern moves. The exploratory move tries to find the

best point around the current one. Then, these two points are used to make a pattern move

(Bath et al., 2004). The Hooke-Jeeves algorithm is given in Algorithm 2 (Babu et al., 2008).

7



Introduction Second-order method

function Hooke-Jeeves(X, f);

Choose a starting point x0, variable increments 4i (i = 1, . . . , n), and a step1

reduction β > 1.

Choose termination parameter ε, k = 0 and choose boundary conditions for variables.2

Apply exploratory move based on xk.3

Exploratory move. If the current solution is xk, suppose the new solution xki is4

perturbed by 4i. Then set i = i + 1 and x = xk.

Calculate f = f(x), f+ = f(xki +4i) and f− = f(xki −4i).5

Find fmin = min(f, f+, f−). Then set the corresponding f(xnew) to fmin.6

If (i < n) then go to step 5, else go to step 8.7

If (xnew = xk) then set xk+1 = xnew and go to step 10. Otherwise, go to step 9.8

If (4 > ε) then 4i = 4i/β for i = 1, . . . , n, and go to step 10. Otherwise, the9

algorithm will terminate.

Set i = i + 1, and apply pattern move.10

Pattern move. The new point will be found by jumping from the current best point11

xi along the direction si between the previous best point xi−1 and the current based

point xi by using the formula xi+1 = xi + (xi − xi−1) = xi + si.

Apply exploratory move on xi+1. Let the result be xnew(i+1).12

If (f(xnew(i+1)) < f(xi) then go to step 11. Otherwise, go to step 9.13

Algorithm 2: Hooke-Jeeves Algorithm

Second-order method

The second-order method is also known as Newton’s method (Bazarra et al., 1993a). It can

only be applied if the function is a twice differentiable one. It is based on exploiting the

quadratic approximation q of the function f(x) at a given point xi. The formula of quadratic

approximation is given by

q(x) = f(xi) + f
′
(xi)(x− xi) +

1
2
f
′′
(xi)(x− xi)2 (19)

8
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The new point xi+1 is satisfied when the quadratic approximation q is equal to zero. This

leads to the next equation

f
′
(xi) + f

′′
(xi)(xi+1 − xi) = 0 (20)

So that

xi+1 = xi − f
′
(xi)

f ′′(xi)
(21)

This procedure will stop if | xi+1 − xi |< ε or | f ′(xi) |< ε, where ε is a termination factor.

In general, Newton’s method can be given by

xi+1 = xi − [f ′(xi)]−1f(xi) (22)

which is a classic method for solving the nonlinear equation f(x) = 0, where f : Rn → Rn is

a continuously differentiable function.

0.2.2 Constrained optimisation

The constrained optimisation problem is formulated as shown in (6). It can be solved by

transforming the problem into a sequence of unconstrained problems. Moreover, there are

three techniques for solving constrained problems, the Lagrangian method, the exterior point

method or the interior point method (Simmons, 1975b). These techniques are built with basic

strategies to transform the problem from a constrained problem to an unconstrained one.

More details of each type are given below.

The Lagrangian method

The Lagrangian method can be applied to problem (6) (where gi(x) ≤ 0, ∀i = 1, . . . , m),

if the functions f, gi,∀i = 1, . . . ,m, hi,∀i = 1, . . . , p are twice differentiable. Also, X

is nonempty set (Bazarra et al., 1993b). The Lagrangian function of the problem can be

written as

ϕ(x, λ, υ) ≡ f(x) +
m∑

i=1

λigi(x) +
p∑

i=1

υihi(x) (23)

9
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whereλ ∈ Rn,and , υ ∈ Rp are weight factors. Moreover, if we have conditioned λ̄ and ῡ, it

can be defined as the restricted Lagrangian function

φ(x) ≡ ϕ(x, λ̄, ῡ) ≡ f(x) +
m∑

i=1

λ̄igi(x) +
p∑

i=1

ῡihi(x) (24)

where I = {i : gi(x) = 0} is the index set of the binding inequality constraints at x. The

dual feasibility condition is

5f(x) +
m∑

i=1

λ̄i 5 gi(x) +
p∑

i=1

ῡi 5 hi(x) (25)

The new problem (24) is an unconstrained problem, and it can be solved by one of the

unconstrained methods above.

The interior point method

The Interior point method or Barrier method has been applied to nonlinear constrained

problems of the form

min f(x) (26)

subject to

gi(x) ≤ 0, ∀i = 1, . . . ,m (27)

where f(x) and gi(x) (∀i = 1, . . . , m ) are continuous functions. They have first partial

derivatives where there exists at least one point x̂ that can satisfy gi(x̂) < 0 (∀i = 1, . . . , m).

This indicates that the interior of the feasible set is non-empty. If the feasible set X can be

defined as

X ≡ {x | gi(x) ≤ 0, ∀i = 1, . . . , m} (28)

then the interior set X0 can be defined as

X0 ≡ {x | gi(x) < 0, ∀i = 1, . . . , m} (29)

where the boundary of X includes all points of x that lie on X not in X0. The barrier

approach to solve problem (26) can be formulated as

minC(x, r) ≡ f(x) +
1
r
B(x) (30)

10
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where r is a positive parameter and B(x) is a barrier function. Moreover, the barrier function

B(x) is non positive at each point in the interior and decreases to −∞ at the boundary of

X. A typical barrier function and the most used can be given as

B(x) = −
m∑

i=1

1
gi(x)

, x ∈ X (31)

Also, it can be written as a logarithmic utility function (Luenberger and Ye, 2008a)

B(x) = −
m∑

i=1

lg[−gi(x)] (32)

Furthermore, the interior point method (Griva, 2004; Luenberger and Ye, 2008b) for

solving problem (26) with a classical log barrier function can be written as

B(x, r) ≡ f(x)− r
m∑

i=1

lg[−gi(x)] (33)

subject to

A x = b (34)

where r = rk > 0, k = 1, . . . , m with rk > rk+1, rk −→ 0 is a barrier parameter, and the rk

could be predetermined. Moreover, we have

rk+1 = λ rk, 0 < λ < 1 (35)

and it can be assumed that the original problem has a feasible interior-point solution x0, it

can be satisfied that

A x0 = b and g(x0) < 0 (36)

where A is a matrix with full row rank. If we have a fixed r and by using Di = r
gi

, then the

optimality conditions of problem (33) are given by

−D g(x) = r1 (37)

A x = b (38)

−AT y +5f(x)T +5g(x)T d = 0, (39)

11
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where 5g(x) is a Jacobian matrix and D = diag(d), which means D is a diagonal matrix

whose diagonal elements are d. If f(x) and gi(x), ∀i = 1, . . . ,m are convex functions, then

f(x) − r
∑m

i=1 lg[−gi(x)] is also a convex function and there is a unique minimum solution

for this problem.

The exterior point method

The exterior point method is sometimes called the penalty method. Penalty techniques are

used to solve problem (26), where the functions f(x) and gi(x) (∀i = 1, . . . , m) are continuous

ones and they have continuous first partial derivatives. The feasible set X can be formulated

as

X ≡ {x | gi(x) ≤ 0, ∀i = 1, . . . , m} (40)

Then, the penalty approach to solve this problem can be written as

minD(x, r) ≡ f(x) + rP (x) (41)

where r is a positive parameter and P (x) is a penalty function. The penalty function is zero

for any point of X and negative at all other points of S. The most famous penalty function

(Luenberger and Ye, 2008a) is given by

P (x) =
1
2

m∑

i=1

[max{gi(x), 0}]2 (42)

0.2.3 Global methods

The global minimum for the problem in (1) is defined above in (4). If the problem is a convex

problem, then the local minimum is a global minimum. However, if the problem is not a

convex (nor concave) one, that means the local optimum is not a global optimum. There are

therefore two possibilities to solve the optimisation problem by using exact or approximate

global methods.

The exact algorithms solve the problems exactly. They guarantee to find the optimal

solution with a proof of its optimality. The most exact methods used are branch-and-bound,

12
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dynamic programming, Lagrangian relaxation based methods, branch-and-cut, branch-and-

price and branch-and-cut-and-price, etc. The running time for solving the OP by exact

methods increases due to the size of the problem, where exact algorithms almost fit in small

and moderate size problems. However, in some cases it could take days or more to find the

optimal solution even in small or moderate size problems (VoB, 2001). Furthermore, in large

instance size problems, the exact methods can not prove optimality. To solve this problem,

the approximate methods were introduced, which are classified as classical heuristics. The

classical heuristic methods are explained in Section (0.3).

0.3 Classical heuristics

Classical heuristic is a new idea introduced in the sixties to deal with operational research

problems (OR). Its name is derived from the Greek word. Heuristic from the verb heuriskein,

meaning “to find”. The approximate or heuristic algorithm does not guarantee the optimal

solution for the input problem. It just gives a feasible solution. For instance, if x′ ∈ X

is a feasible solution for the instance P of an optimisation problem (1), where the optimal

solution for P is x∗, one would like x′ to be identical to x∗. However, a heuristic can not

prove optimality, it hopes that x′ is close to x∗.

Many optimisation problems are NP-hard (Garey and Johnson, 1979). The NP-hard

problems are the problems that can not be solved by a polynomial time algorithm, unless

P=NP (for more details the reader is referred to Appendix A). Moreover, in some problems,

which are solvable by a polynomial time algorithm, the power of that polynomial could be

very large. In this situation, it needs an unreasonable time to be solved. This is another

case where heuristic methods are in need.

Sometimes, using efficient heuristic algorithms may outperform using the exact algo-

rithms with regards to the computational time. However, there is no guarantee that any

optimisation algorithm performs well for any optimisation problem. The No-Free-Lunch-

Theorem (NFL) proves this fact (Wolpert and Macready, 1997). The NFL theorem explains

that each optimisation algorithm is designed for a sub-class of optimisation problems, where

13
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it performs well in practice. However, this may not be the case for other characteristic

problems.

In general, according to their application area, the classical heuristic methods are cate-

gorised as follow (Zanakis et al., 1989):

• Construction methods. The construction algorithms generate a feasible solution.

They are obtained by adding individual components (like nodes, arcs) one at a time.

The greedy algorithms are the most commonly used approaches. They seek maximum

improvements at each step. They start from a given feasible or infeasible solution. At

each iteration, the greedy algorithms choose the best move to improve that solution

(VoB, 2001). Moreover, look-ahead algorithm is another approach. At each iteration, it

estimates the sequence of possible choices and candidate of solutions. It discards all the

choices or candidate solutions which may lead to a bad final solution. In general, most

construction algorithms can not reach the feasible solution till the end of the search.

One example of construction heuristics is the nearest neighour in travelling salesman

problems.

• Improvement methods. They are also known as local search methods. The im-

provement methods start from a feasible (initial) solution. They are then improved

by exchanges or mergers in the local search until they reach the local optimum. The

feasible solution is maintained through the search. In general, for each solution x, they

define a neighbourhood N (x) with all candidate solutions. Then the move is selected if

the new solution is better than the current solution x until the local optimum is found.

Sometimes there are combinations between construction and improvement methods.

In this case, the construction methods find the initial solution, while the improvement

methods improve it in order to find the local optimum.

• Mathematical programming methods. In this type of approach, there are a com-

bination of mathematical optimisation models and an exact solution procedure. The

solution is then modified to obtain an efficient heuristic to solve the problem. How-

ever, this approach is not as clear-cut as the other approaches. This design is a creative
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process and gives more opportunities for developing, for instance, using the estimation

procedures by incomplete branch-and-bound.

• Decomposition methods. This approach attempts to solve the problems by dividing

them into a sequence of manageable smaller problems. The output of one will be the

input to the next one, then inductively merging these solutions. The final solution of

the problem is decomposed into a number of discrete steps, where in most cases, it is

a one pass procedure.

• Partitioning methods. This approach is similar to the decomposition method. How-

ever, it divides the problem into subproblems. Each subproblem is solved indepen-

dently, and the solution of the problem is given by merging the solutions of subprob-

lems.

• Relaxation methods. This approach is the opposite of restriction, as it increases the

solution space to obtain a manageable problem. Some methods are multistage. The

first stage utilizes a relaxation approach to decompose a problem, where the initial

solution is almost infeasible, and the feasible solution is found in the next stage.

As previously mentioned the heuristic methods were introduced in the late 1940s. Each

approach was established to solve the specific structure of problems, and as a result the

heuristics were called special heuristics. In the last three decades a more general heuristic

methodology was introduced. It is called metaheuristics. The next section will give more

details about metaheuristic, as well as its definition and classification.

0.4 Metaheuristics

It was introduced by Glover. Its name is derived from two Greek words, heuristics and the

suffix meta means “beyond, in the upper level” (Blum and Roli, 2003). A metaheuristic

can be applied to a wide structure of problems. In Osman and Laporte (1996), it is defined

as “A metaheuristic is formally defined as an iterative generation process which guides a

subordinate heuristic by combining intelligently different concepts for exploring the search
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space, learning strategies use structure information in order to find efficiently near-optimal

solutions”.

In general, metaheuristics have some fundamental properties, which give the metaheuris-

tic methods their characteristics:

• Its strategy is to guide the search process.

• Its goal is to explore the solution space to find a better solution (new optimal solution)

than the current one.

• The metaheuristic algorithms transform simple local search procedures to complex

ones.

• Metaheuristic algorithms are approximate algorithms and most of the time they are

non-deterministic.

• Metaheuristic methods are not specific for one problem.

Moreover, a good metaheuristic algorithm should have a balance between diversification

and intensification.

Intensification refers to the term exploitation. Its idea is exploring the promising area

from the search space to ensure that the best solutions in this area have been found. It

is based on intermediate-term memory such as recency memory, where exploitation is a

short-term memory.

Diversification refers to the term exploration. Its idea, opposite to intensification, is

forcing the search to visit previously unexplored areas of the search space. Sometimes using

the intensification term may lead to the loss of some good solutions, while the diversification

resolves this problem. Moreover, it is based on a long-term memory of the search such as

frequency memory.

There are many classifications for metaheuristics. Each one is related to a specific view-

point. All these classifications are possible. The most important types of classification are

given in (Blum and Roli, 2003):
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• Natural inspired vs. non-natural inspired. This classification is related to origin

of algorithm. For instance genetic algorithms are natural inspired types, whereas Tabu

search is a non-natural inspired one. This type of classification is not a meaningful one

due to two reasons:

– Most of the hybrid metaheuristics are not related to both classes.

– Secondly, sometimes it is really difficult to decide whether the algorithm is related

to one of two classes.

• Population based vs. single point search. In this classification, the number of

solutions is used to decide if the algorithm is population based or a single point search.

If the algorithm is working in a population solution, it is a population based algorithm.

Otherwise, it is single point search algorithm, where sometimes it is called a trajectory

algorithm like Tabu search, Iterated local search and Variable neighbourhood search.

The difference between two classes occurs during the search space. The single point

search is described as trajectory in the search, where the population based algorithm

is describing the evolution as a set of points.

• Dynamic vs. static objective function. The way of using the objective function

has been used to differentiate between two types. Some metaheuristics keep the ob-

jective function fixed during the search; such approaches are static objective function

ones. However, in the guided local search approach the objective function is modified

to escape from local minima. Moreover, the objective function is altered during the

search. This approach is a Dynamic one.

• One vs. various neigbourhood structures. In general, most metaheuristic ap-

proaches have one neighbourhood structure during the search. This means the land-

scape topology is fixed during the search. Whereas, other metaheuristics have different

neighbourhood structures such as variable neighbourhood search, this methodology has

allowed the change of the landscape during the search.

• Memory usage vs. memory-less method. This type of approach is very important.
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It depends on the usage of memory during the search, which means the search may

or may not have a history. There are three known types, short-term, intermediate-

term and long-term memory. The first type is focused on the most recent moves and

solutions. However, the long-term one is an accumulation of parameters about the

search.

Table 1 (Consoli, 2008) summarises the classification of each type of metaheuristic ap-

proach, that will be explained in Chapter 1.

Table 1: The metaheuristics classification for some local search

SA TS ILS GLS V NS GA

natural inspried × × × × × √

single solution
√ √ √ √ √ ×

population based × × × × × √

dynamic objective function × × × √ × ×
static objective function

√ √ √ × √ ×
one neibourhood structure

√ √ √ √ × √

various neibourhood structures × × × × √ ×
memory usage × √ √ √ × √

less usage
√ × × × √ ×

where SA denotes simulated annealing, TS denotes tabu search, ILS denotes iterated local

search, GLS denotes guided local search, VNS denotes variable neighbourhood search and

GA denotes genetic algorithm.

Moreover, the exact methods can be combined with metaheuristics in two ways (Puchinger

and Raidl, 2005):

• Collaborative combinations. The algorithm in this case exchanges the information

between exact and heuristic algorithms in parallel.
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• Integrative combinations. In this technique, there is a master algorithm and at

least one integrated slave. Furthermore, the master algorithm could be an exact or a

heuristic one.

0.5 Thesis overview

In this thesis, the continuous variable neighbourhood search (Mladenović and Hansen, 1997;

Liberti and Drazic, 2005; Mladenović et al., 2008) based metaheuristics and the reformulation

descent variable neighbourhood search (Mladenović et al., 2005) for censored quantile regres-

sion and circle packing problems respectively are presented. The major part of this thesis is

devoted to the development of metaheuristics for solving censored quanitle regression, based

on continuous variable neighbourhood search metaheuristic frameworks. Moreover, continu-

ous variable neighbourhood search is applied on the Powell estimator. This function is non

convex nor concave in regressor, where it is hard to solve exactly. In this thesis, the Powell

estimator has been solved exactly, which has been achieved for the first time. Furthermore,

continuous variable neighbourhood search with reformulation descent idea is applied to the

circle packing problem with two variant containers (a circle and a square). However, the

purpose of this thesis is beyond applying GLOB software, which is designed to solve box

constraints continuous problems, on different types of problems. The chapters of this thesis

are organised as follows.

Chapter 1 is focussed on the literature review. It gives an overview of the most fa-

mous local search based metaheuristic approaches with a single point search (like simulated

annealing, tabu search and guided local search).

As this thesis is focused on variable neighbourhood search, Chapter 2 explains in detail

this metaheuristic, where a brief overview of each type of variable neighbourhood search

approach is provided.

Censored quantile regression models are very useful for the analysis of censored data

when standard linear models are felt to be inappropriate. This problem is an econometric

one. However, fitting censored quantile regression is hard numerically due to the fact that the
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function that has to be minimised (Powell estimator) is not convex nor concave in regressors.

In chapter 3, we suggest a different approach, i.e., we directly solve nonlinear non-convex

non differentiable optimisation problems. Our method is based on a continuous variable

neighborhood search approach, a recent successful technique for solving global optimisation

problems. The target here is to minimise the Powell estimator function. The GLOB software

(Drazić et al., 2006) is applied on three different cases from the literature (Bilias et al., 2000;

Buchinsky and Hahn, 1998). The Nelder-Mead heuristic has been used as a low-level search

component. Simulation results presented indicate that our new method can considerably

improve the quality of censored quantile regression estimator.

Several years ago circle packing problems (CPP) in the plane have been formulated as

nonconvex optimisation problems. Chapter 4 is based on (Rajab et al., October 2011) and

it proposes applying the idea of reformulation descent (RD) on circle packing problems. It

consists of finding a fixed number n of equal circles within different types of containers:

a circle and a square, without overlap. There are two different formulations to solve the

problem in the Cartesian system. The first one is maximising the radius r associated with n

equal circles when the container size is fixed as a unit circle (square), assuming the container is

centered at the origin. The second formulation minimises the circle container R (or the length

of edge L for square container) to accommodate n unit circles. The variable neighbourhood

search has been applied as a nonlinear global optimisation method to solve the problem. We

apply two types of Cartesian formulations, where they switch after half of the time. This idea

has been applied to find n equal circles within the circle and the square container. The VNS

is applied to solve each formulation independently. The experimental run is from n = 10

until n = 200. The computer results show that our approach is comparable with some of the

very best methods from the literature (Hungarian, 2009).

Finally, in Chapter 5, the results and contribution of the thesis are summarised. Sug-

gestions on possible future innovation and development in the field of metaheuristics are

discussed.
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Chapter 1

Local search based metaheuristics

The most used classical heuristic methods are local search methods and constructive meth-

ods. Constrictive methods use information from the problem structure to build up a single

solution. It adds components to the current solution until the feasible one is reached. The lo-

cal search method attempts to find a local optimum by starting from a given initial (feasible)

solution, and improves it gradually at each iteration. Moreover, the local search methods

can be considered as the basic principle underlying a number of optimisation strategies,

where they have been used in many applications with good empirical achievement in most

cases (Johnson et al., 1988). The interest in the local search approach has increased with

the rapid development of methaheuristics, and it has been used as a procedure within some

methaheuristic algorithms such as a low level search strategy (component).

The algorithmic aspects of local search and high level metaheuristic methods with some

applications are proposed in this chapter. In Section 1.1, the basic idea of the local search

framework is discussed. A brief idea on some of the most important local search based

metaheuristics are given in Section 1.2. Section 1.3 is focused on future metaheuristics,

which are called hybrid metaheuristics and their classification.
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1.1 Local search basic idea: iterative improvement

The main strategy of local search algorithms for solving any problem starts from a given

initial solution. Then it tries to improve that solution by repeating small changes inside the

selected neighbourhood. At each iteration, if the new neighbouring solution is better than

the current one, the change is kept, otherwise another improvement will be applied until no

further improvement in the objective function can be found (Papadimitriou and Steiglitz,

1998). The definition of a neighbourhood structure is given in Definition 2

Definition 2 Let P be a given optimisation problem and S the solution space. A neighbour-

hood structure for problem P is a function N : S → P (S) that assigns to every x ∈ S a set of

neighbours N (x) ⊆ S. N (x) is called the neighbourhood of x, where it could be any solution

y ∈ N (x).

The definition of neighbourhood structure enables us to explain the concept of locally

optimal solutions.

Definition 3 A locally minimal solution (or local minimum) with respect to a neighbourhood

structure N is a solution y such that ∀ x ∈ N (y) : f(x) ≤ f(y), where we call y a strict local

minimum if f(x) < f(y),∀ x ∈ N (y).

Moreover, the local optimum for a maximisation problem is defined in a similar way by

adding this condition ∀ x ∈ N (y) : f(x) ≥ f(y) instead of ∀ x ∈ N (y) : f(x) ≤ f(y), and

the optimal solution in this case is called a local maximum solution.

A good neighbourhood structure should satisfy the following conditions:

• For each solution x, the neighbourhood structure should be symmetric, that means

(∀x ∈ S) y ∈ N (x) ⇔ x ∈ N (y).

• For any two solutions x, y ∈ S, the sequence of solution x1, x2, . . . , xn ∈ S should exist

and satisfy the condition x1 ∈ N (x), x2 ∈ N (x1), . . . , xn ∈ N (xn−1), y ∈ N (xn).

• Generating neighbours y ∈ N (x), for a given solution x, should be of a polynomial

complexity.
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• The neighbourhood size should be determined very carefully. This means the neigh-

bourhood should not be too large, or where it can not be explored easily. A large

neighbourhood leads to expensive computation. On the other hand, it should not be

too small so no neighbours with better objective function could be found. The size of

the neighbourhood is defined according to the optimisation problem size.

The basic algorithm for the local search method can be written as in Algorithm 4, where

P is the optimisation problem and x is an initial solution from the solution local space x ∈ S.

Function LS (P, x)

P is an optimisation problem and S is a search space1

Choose an initial solution x2

Define neighbourhood structures N (x) ⊆ S3

begin4

repeat5

x′ ← Improvement function(P, x,N (x)) // find new solution in N (x)6

x ← x′

until No improvement

return x7

end

Algorithm 4: Basic local search

The Improvement function(P, x,N (x)) is trying to find a better solution than the cur-

rent solution x within the same neighbourhood N (x). There are two possibilities to find x

by a first improvement heuristic or a best improvement heuristic.

If there is a need to completely explore the neighbourhood of N (x), the best choice

is the best improvement heuristic. It returns with the best value of the objective function

(minimum or maximum) after it completely explores the neighbourhood ofN (x). In this case,

the move is made only if a new neighbour with the lowest objective function (in minimum

case) has been found. The local search is known as steepest descent. The algorithm of best

improvement heuristic is given in Algorithm (5):
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Function Best Improvement function(P, x,N (x))

repeat1

x′ ← x2

x′ ← argminy∈N (x)f(y)3

until f(x) ≥ f(x′)

return x′4

Algorithm 5: Best improvement function

In some cases, using a best improvement heuristic may be time consuming. In practice,

using the first improvement heuristic is sometimes a better choice than the best improve-

ment heuristic. The solutions xi ∈ N (x) of the first improvement method are enumerated

systematically, then the move is made when a new direction for decent has been found. The

algorithm for using a first improvement function is given in Algorithm (6):

Function First Improvement function(P, x,N (x))

repeat1

x′ ← x; i ← 02

repeat3

i ← i + 14

x′ ← argmin{f(x), f(xi)}, xi ∈ N (x)5

until (f(x) < f(xi) or i =| N (x) |)
until f(x) ≥ f(x′)

return x′6

Algorithm 6: First improvement function

If the initial solution is found by using some constructive methods, the best improvement

heuristic is slightly better than the first improvement (Hansen and Mladenović, 2006). It

may be even faster. But if the initial solution has been found randomly, the better choice is

to use the first improvement heuristic (Hansen and Mladenović, 2006).
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Moreover, applying the best improvement strategy can guarantee that the search will

achieve a local optimum, which may not be the case by using the first improvement one. If

the local search heuristic has been engaged as a low level component inside the metaheuristic

algorithm, the first improvement will be enough and gives good quality solutions. However,

there is another possibility to use both strategies at the same time. A sample of neighbours

have been generated (randomly or by using some strategy), then the best neighbour is

selected from the observed sample, i.e. not the best in the whole neighbourhood (Battiti

et al., 2008). The usage of best improvement vs. first improvement is discussed in details in

(Hansen and Mladenović, 2006).

To sum up, the local search heuristic is a good method that can be used to find a

local optimum. However, it cannot guarantee the global optimum, because when the local

optimum has been found, the search process stops without being able to reach the global

optimum. This phenomenon is explained in Figure 1.1 . To solve this problem, a number

of metaheuristic frameworks has been developed to escape from local optimum during the

search. In the next section, some of the most important metaheuristics are described.

Local optimal

Global optimal

x
0

x
1

x
2

x
Local

x
Globalx

f(
x)

Figure 1.1: Basic idea of local search
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1.2 A brief overview of some metaheuristic approaches

In this section some of the most famous metaheuristics are discussed: simulated annealing

(in Subsection 1.2.1), tabu search (in Subsection 1.2.2), guided local search (in Subsection

1.2.3) and iterated local search (in Subsection 1.2.4).

1.2.1 Simulated annealing

Simulated annealing (SA) is a metaheuristic algorithm, it is used historically to address the

discrete problems, and more recently continuous optimisation ones. It was independently

introduced in (Cerny, 1985; Kirkpatrick et al., 1983). The main concept uses a hill-climbing

move to escape from local optima in the hope of finding a global optimum, i.e. moves which

worsen the objective function value. This technique has made it popular for over the past

two decades.

SA is very popular in physics, where its name is derived from the process of annealing

with a solid. Crystalline solids are heated and allowed to cool under a controlled cooling

technique until the solid is free of crystal defects, i.e. crystal lattice configuration is achieved

with its minimum lattice energy state (Nikolaev et al., 2003). Moreover, SA has established

the connection between this type of thermodynamic behaviour and solving the optimisation

problems. The details of the implementation of SA for P optimisation problem are written

as Algorithm 7.
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Function SA(S, x)

Set S is a search space, and Tk temperature cooling schedule1

Choose an initial solution x2

Define a neighbourhood structures N (x) ⊆ S3

Select an initial temperature T = T0 > 04

Select the temperature change counter k = 05

begin6

Set T ← T07

while termination conditions do8

Generate x′ ∈ N (x)9

if f(x′) < f(x) then10

x ← x′

else

Find a random number ε ∈ [0, 1]11

if ε < exp(f(x′)−f(x)
Tk

) then12

x ← x′13

Update Tk14

k ← k + 115

return x16

end

Algorithm 7: Simulated Annealing

As seen in Algorithm 7, the initial temperature T0 should be defined with the neig-

bourhood structure N (.) and the specific cooling structure. Also, a termination condition is

included (like maximum CPU time, maximum number of iterations or the maximum number

of iterations without improvement).

At each iteration of the SA algorithm, the objective function generates two values. One

is the current solution x and the other is a newly selected solution x′ ∈ N (x). Afterwards,

choosing an improved solution is made by a downhill move, where the temperature parameter
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is decreased (or non-increased) during the search. Conversely, choosing a non-improved

solution (uphill move) depends on the T temperature parameter, where the move in this

case is accepted to escape from local minima.

To decide whether the new solution is accepted or not, the Metropolis criteria should be

included. It is a method of sampling a Boltzmann distribution. It can be simply described as:

a move from xold to xnew can be accepted if f(xnew) < f(xold). However, if f(xnew) > f(xold),

the move will be accepted with probability exp(f(xnew)−f(xold)
Tk

) (Chu et al., 1999a).

In order to decide if the worse move has been taken or not, the random number ε is inde-

pendently generated by using a uniform distribution in [0, 1]. Then, if ε < exp(f(xnew)−f(xold)
Tk

),

the worse move will be accepted and the temperature will be updated by using the cooling

schedule (Tk+1 ← Tk).

Theoretical results on Markov chains (Aarts and Korst, 1988; Aarts et al., 2005) shows

that the SA algorithm can converge to a global minimum when k → ∞, under particular

conditions on the cooling schedules. In more details, let Pk be a probability of finding a

global minimum after k steps. We can define a Γ ∈ R, where
∑∞

k=1 exp Γ
Tk
→∞ if and only

if limk→∞ Pk = 1.

There are different cooling schedules like a logarithm cooling law and geometric cooling

law. The logarithm cooling law can be written as

Tk+1 =
Γ

lg(k + k0)
(1.1)

where Γ and k0 are given by the user. It guarantees the convergence of a global minimum.

At the same time it is not feasible in the application because it is very slow in practice.

Furthermore, the geometric cooling law is faster than the logarithm cooling one, where it

can be described as

Tk+1 = α ∗ Tk, α ∈ [0, 1] (1.2)

where α corresponds to an exponential decay of the temperature. A more robust algorithm

can be obtained if the temperature is changed according to a specific iteration L, where

L ∈ N is usually found empirically. tn is defined as

tn = αkt0 for kL ≤ n < (k + 1)L, k ∈ N ∪ {0} (1.3)
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In Figure 1.2 the idea of using geometric cooling law has been described .

Number of iteration

Temperature

t
0

t
1

t
2

L 2L 3L

Figure 1.2: Geometric cooling scheme

There are many applications using simulated annealing for solving combinatorial prob-

lems, those described by Chu et al. (1999b); Dueck and Scheuer (1990); Kirkpatrick (1984);

Osman (1993). In Aarts et al. (1988), they apply the SA algorithm to solve 100-city traveling

salesman problems. They use a function of the control parameter of the cooling schedule

to analyse the expectation and the variance of the cost. Also, SA is applied to solve 0-1

unconstrained optimisation problems (Chardaire et al., 1995). At a given temperature, they

compute the value of the variables. This information helps to reduce the size of the problem

where it allows to fix the variables as the temperature decreases.

In Romeijn and Smith (1994), a continuous simulated annealing has been used for solving

the maximum of a continuous function, where a hide-and-seek strategy is implemented. This

approach is applied when the objective function may be non differentiable and the feasible

region may be non convex or disconnected. The difference between this approach and the

discrete one is that the candidate point at each iteration of the algorithm may be generated

as any point in the feasible region. It will then be either accepted or rejected according to
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the metropolis criterion. This algorithm gives a competitive performance by hide-and-seek.

In Corana et al. (1987), simulated annealing is used to solve continuous functions against

the Nelder-Mead simplex method and Adaptive Random search. The algorithm has adapted

moves according to an iterative random search. In this case, the SA algorithm gives more

reliable results than the others.

Also SA has been applied for econometrics problems. In Goffe et al. (1994), the SA

algorithm, in contrast to the other three common conventional algorithms it is compared

with , is less likely to fail in difficult functions. Also it can find the global optimum for four

different econometrics problems. For more applications in global optimisation see Dekkers

and Aarts (1991); Vanderbilt and Louie (1984). Nowadays, SA is used as a component in

metaheuristics rather than applied as a basic algorithm for the search.

1.2.2 Tabu search

Over the last fourteen years, tabu search (TS) has been one of the most used metaheuristics

for solving optimisation problems. It was first introduced by Glover (1986). This approach

escapes from local optima by a strategy of forbidding certain moves to prevent cycling.

Usually, this method gives solutions very close to optimal ones. It is among the most effective

on difficult problems, and have therefore made TS very popular.

As opposed to branch and bound, TS might be called a “weak inhibition” search. Tabu

generally holds a small fraction of moves, according to what is still available. These moves

then become accessible after a short time. Moreover, TS keeps the ability to guide the search

to escape from poor local optima, in similar to simulated annealing, by using a deterministic

nature rather than a stochastic one.

As mentioned above, tabus are used to prevent cycling, moving from local optima and

not going back. These tabus are stored in a tabu list (a short-term memory). It is used to

avoid revisiting the most recent solutions, and forbidding any movement toward them. Tabu

lists are not only used to prevent a move from being repeated, but also they prevent moves

from being reversed.

First In First out (FIFO) is a technique for updating the tabu list, i.e. when the current
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solution is added to a tabu list, the oldest one in the list is removed. Tabu tenure is the

length of tabu list, where it is used to control the memory of the search process. In most

cases, the length of the tabu tenure is fixed. Moreover, the small fixed length of tabu tenure

cannot always prevent cycling, where the search will concentrate on a small area of the search

space. In contrast, a large tabu tenure explores larger areas. For solving this problem, some

methods have used varying tabu tenure during the search (see e.g. Glover (1989a,b)). On the

other hand, another technique has been used, where the procedure for generating a random

tabu tenure for each move has been added in a specific interval (see e.g. Gendreau et al.

(1994)).

Sometimes tabus are too powerful, they may lead to the loss of some unvisited good

quality solutions. For that, the aspiration criteria has been added. In general, the aspiration

criteria is an algorithmic device. It allowes a move, even if it is tabu, if it gives a solution with

a better objective value than the current best known one. The TS is described in Algorithm

8.
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Function TS (P, S, x)

Set P is an optimisation problem and S is a search space1

Choose an initial solution x2

Define a neighbourhood structures N (x) ⊆ S3

Memorise the best solution so far x′4

Define tabu list TL5

Define allowed set AL6

begin7

TL ←− ∅8

Move x′ ← x, where x′ ∈ N (x)9

Update TL using FIFO (TL ∪ x)10

while termination conditions do11

AL ← N (x)− TL12

Find the best solution within AL: x ← Update(AL)13

if f(x) < f(x′) then14

x′ ← x15

Update TL16

return x′17

end

Algorithm 8: Tabu Search

The Update(.) function tries to find a better solution from the set of solutions that

belongs to the allowed list AL. There are two possible functions: first improvement function

or best improvement function (as explained in Section 1.1). By using first improvement

strategy, the Update(.) function scans the AL and finds the first solution that is better

than the current one. However, by using the best improvement one, the Update(.) function

completely discovers the whole allowed set and returns the solution which gives the minimum

objective function value. Including the Update(.) function in the algorithm makes TS more

efficient to explore solutions in a dynamic neighbourhood structure with short term memory
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implemented by TS. The termination conditions could be:

• A fixed number of iterations;

• A fixed amount of CPU time;

• After a fixed number of iterations without an improvement in the objective function;

• If the objective function reaches a pre-specified threshold value.

A simple TS may successfully solve difficult problems. For the most of the cases, TS

should include additional elements to make the search strategy fully effective. Intensification

is one of them, where the search should explore more portions of the search space, that could

be promising areas, to make sure that the best solution is indeed found. That means the

normal search should stop from time to time to perform an intensification phase. Generally

intensification is based on some intermediate-term memory, like a recency memory. It records

the number of consecutive iterations that various “solution elements” have been introduced

in the current solution without interruption.

Many TS implementations have used an intensification strategy. However, in some cases

using the normal search is enough, and there is no need to spend time in exploring more

portions of the search space that have been already visited. Due to that the diversification

strategy should be included. As opposed to intensification, diversification tends to force the

search to go through previously unexplored portions of the search space. It is based on some

long-term memory, like a frequency memory. It records the total number of iterations (since

the search start) that various solution elements have been involved in the current solution.

There are different types of diversification, restart diversification and continuous diver-

sification. The restart diversification tries to force a few rarely used elements in the current

solution and start the search again from this point. The continuous diversification adds

diversification considerations directly into the regular search process.

In mateheuristics, there are four terms to describe the usage of memory: recency, fre-

quency, quality and influence. The first two are the most important, and have been discussed

earlier. In general, quality refers to the solutions with good objective function values. That
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may help in TS to give the intensive search in the most promising regions. Influence measures

the degree of change in solution structure. In TS, it is an important aspect of aspiration

criteria.

There are some problems where the true objective functions are quite costly to evaluate.

To solve this problem, TS has used a surrogate objective function. It is a less demanding

computational function. Besides, it is correlated to the true objective function by the identify

of a small set of promising candidates. The true objective function is then computed (see

Crainic et al. (1993)).

TS applications. The traditional concept of TS has been applied to combinatorial

problems. Nowadays TS deals with different techniques for making the search more efficient.

TS includes methods for giving more information during the search about better starting

points, parallel search strategies and more powerful neigbourhood operators, for application

(see Crainic et al. (1997)). Moreover, hybridization is an important trend in TS, and it is

used in TS with other heuristics approaches such as Lagrangean relaxation (Grunert, 2002),

column generation (Crainic et al., 2000) , Ant colony optimisation (Arito and Leguizamón,

2009) and Genetics Algorthims (Crainic and Gendreau, 1999; Fleurent and Ferland, 1996).

TS is also adapted with other metaheuristics approaches for solving the global optimisa-

tion problems. In Teh and Rangaiah (2003), a new version from TS has been applied, it is

namely an enhanced continuous TS (ECTS). ECTS has performed better for many problems

including high dimensional ones. Furthermore, ECTS has two steps. First it attempts to

apply a benchmark test function having multiple minima, and then it evaluates for phase

equilibrium calculations. ECTS algorithm have four stages: parameters setting, diversifi-

cation, identifying the most promising area and intensification (Teh and Rangaiah, 2003).

Also there are a similarity between TS and genetic algorithm (GA) in locating the global

minimum, where TS converges faster than GA. For another ECTS application see Chelouah

and Siarry (2000).

Another approach for TS in global optimisation is presented by Battiti and Tecchiolli

(1996). They introduce a novel algorithm (C-RTS), in which reactive TS cooperates with a

stochastic local minimiser. It is used for unconstrained global optimisation, where only the
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function values are required. C-RTS uses an efficient memory during the search. Besides,

it has a mechanism to tune the search space to be discretization by having a tree of search

boxes.

1.2.3 Guided local search

Guided local search (GLS) is metaheuristic based on penalty, where it sits on the top of

other local search methods. It was introduced by Voudouris and Tsang (April 1996). In

GLS, a new strategy has been used by augmenting the objective function to escape from the

current local optimum. In contrast, the other metaheuristics strategies use a fixed objective

function, while the set of solutions and the neighbourhood structure are changed during the

search (i.e. changing the search landscape to escape from the local minima). The procedure

of GLS is illustrated in Figure 1.3.

x

f(x)

x
min

new
x

min

old

Figure 1.3: Guided Local Search

The main concept of the GLS algorithm is based on the definition of solution feature

i. It has been used to discriminate between solutions. This solution supposes to have the
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property of non-trivial solution, where not all the solutions have this property. Moreover,

the constraints on feature come from the problem information and the local search heuristic,

where the features cost could be constants or variables.

Ii(x) is the indicator function to define if the feature i is chosen or not in the specific

solution x, where it can be written as

Ii(x) =


 1 if solution x has property i

0 otherwise

The augmented cost function is used to augment the objective function and includes the

penalty p. At each iteration of the GLS algorithm, the local search modifies a penalty vector

p = (p1, p2, . . . , pn) to escape from a local minimum. If we suppose that we have n features

and f(.) the objective function (cost function), then the augmented cost function can be

written as

f ′(x) = f(x) + λ.
n∑

i=1

pi.Ii(x) (1.4)

where λ is the regularization parameter. The importance of the regularisation parameter

comes from representing the relative effect of penalties with respect to the solution cost. At

the beginning, all the penalty parameters are set to 0 (i.e. no features are constrained). Then

a call is made to the local search to find a local minimum of the augmented cost function.

The GLS algorithm is described in Algorithm 9.
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Function GLS (S, n, λ, x )

Set the search space S, n solution features, and the regulation parameter λ1

Choose an initial solution x2

Define a neighbourhood structures N (x) ⊆ S3

Let pi, where i = 1, . . . , n, be the penalty parameters for the n solution features4

Let ci, where i = 1, . . . , n, be the costs assigned to the n solution features5

Let Ii, where i = 1, . . . , n, be the indicator function to the n solution features6

begin7

Generate an initial solution x8

Initialize the penalty parameters to 0, i.e. pi ← 0 for all i = 1, . . . , n9

while termination conditions do10

Find f ′(x) = f(x) + λ.
∑n

i=1 pi.Ii(x), where1112

Ii(x) =


 1 if solution x has property i

0 otherwise

Apply a local search for (f ′(x),N (x)) to find a new solution x′13

if f ′(x) < f ′(x′) then14

x′ ← x15

Compute the utility function Util(x, i) for each feature i, where i =16

1, . . . , n, of the current candidate solution x, where the utility function

is explained as

17

Util(x, i) =


 Ii(x). ci

1+pi
if solution x has property i

0 otherwise

for each solution feature i with maximum Util(x, i) do18

Penalize the solution feature i: pi ← pi + 1

return x′19

end

Algorithm 9: Guided Local Search37
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c = (c1, c2, . . . , cn) is a vector of cost. That means for each feature i, there is a cost ci.

The cost vector may be a constant or a variable which contains zero or positive elements.

The cost vector with the local minimum gives the sources of information about the problem.

Moreover, a practical local minimum contains a number of features. That means if the

feature fi is exhibited in the local minimum of x, the indicator function for feature i is

Ii(x) = 1.

Also, at a local minimum x for example, the utility of the penalising function for each

feature i can be written

Util(x, i) =


 Ii(x). ci

1+pi
if solution x has a property i

0 otherwise

in other words, the utility of penalising will be equal to Ii(x). ci
1+pi

, if the feature i is exhibited

in the local minimum x, otherwise it will be equal to zero. In addition, if the cost of the

feature is lower (the smaller ci), the utility of penalising will be smaller. Furthermore, if the

pi is greater, the more times it will be needed to penalise, that means the utility of penalising

will be lower (Voudouris and Tsang, 2003).

There is a close relationship between GLS and Tabu Search (Voudouris and Tsang, 2003).

Tabus in TS can be seen as penalties in GLS, and both ways are used to escape from local

minima. Also, TS can be adopted by GLS. For instance, the idea of a tabu list and aspiration

criteria have been included in later versions of GLS. However, in GLS if many penalties have

been added to augment the objective function, the local search could be misguided. In

Voudouris and Tsang (1998), they apply GLS to the quadratic assignment problem, where

they use a limited number of penalties (resembling tabu lists), which means when the list is

full, the old penalties will be overwritten.

In addition, the GLS adopts the genetic algorithm (GA) to produce a guided genetic

algorithm (GGA) (Mills et al., 2003), where GGA is a hybrid of GA and GLS. In GGA, after

a specific number of iterations (where this number is the parameter of GGA) without any

improvement, the GLS will modify the fitness function by means of penalties, that will help

GGA to focus in its search.

There are many applications for GLS. In Kilby et al. (1999); Zhong and Cole (2005),
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GLS is applied to vehicle routing problems, while in Zhong and Cole (2005), it is applied to

vehicle routing problem with backhauls and time windows. The main idea is to construct

an initial infeasible solution and then use GLS to improve that solution to be a feasible one.

This new approach gives some better solutions compared with the other previously used

methods. Moreover, it is used when the customers are in clusters or distributed normally.

In Mills and Tsang (2000), they apply the GLS algorithm to solve the SAT problem. The

new resulting algorithm can be easily extended to solve the weighted MAX-SAT problem.

GLS is applied to solve traveling salesman problem in Voudouris and Tsang (1999), where

they use the techniques of guided local search and fast local search (FLS). The FLS is

applied to neighbourhood to speed up the algorithm. More GLS applications such as three

dimensional bin packing problems, capacitated arc-routing and team orienteering problems

are discussed by Faroe et al. (2003), Beullens et al. (2003) and Vansteenwegen et al. (2009)

respectively.

1.2.4 Iterated local search -Fixed neighbourhood search

Iterated local search (ILS) is a simple and general metaheursitic. It iteratively builds a

sequence of solutions generated by an embedded heuristic, which will lead to far better

solutions if random trials of that heuristic have been used to find the solutions (Lourenco

et al., 2003). ILS algorithm is given in Algorithm 10.
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Function ILS (x, N (.), S)

Define the neighbourhood structure N (x)1

begin2

Apply Generate initial solution procedure to find the initial solution x, x ←3

Generate initial solution

Apply Local Search procedure on x to find a better solution x′, x′ ←4

Local search(x,N (x))

repeat5

Use the Perturbation procedure on x′ to find x′′, x′′ ←6

Perturbation(x′, history)

Again apply Local Search procedure on x′′ to find x′∗, x′∗ ←7

Local search(x′′)

Use Accepting criterion procedure to accept x∗ or not, x∗ ←8

Accepting criterion(x∗, x′∗, history)

Set x ← x∗9

until termination condition met

end

return x
Algorithm 10: Iterated Local Search

As previously stated, the ILS algorithm is made up of four procedures:

• Generate initial solution procedure.

• Perturbation procedure.

• Accepting criterion procedure.

• Local search procedure.

As we can note the difference between ILS and multi-start method is that the multi-start

method re-starts the search from a new solution to achieve the diversification, where ILS has

at the beginning an initial solution only.

40



Local search based metaheuristics Iterated local search

As shown in Algorithm 10, the ILS algorithm begins by finding the initial solution x,

where starting with a good solution gives high quality solutions in reasonable time. There are

two possibilities to generate the initial solution, a random restart or a greedy construction

heuristic. Using a greedy initial solution over a random restart gives the search two advan-

tages. First combining the initial solution with local search leads to good quality solutions.

Additionally, local search using greedy solutions needs less CPU time, because it takes less

improvement steps (i.e. the greedy solution speeds the search). Furthermore, using random

restart with the short computation time will give a solution x′ less efficient than a greedy

heuristic one.

In order to avoid stalling in local optima and reach the global minimum, ILS uses the

perturbation procedure as in the SA algorithm. The local search should not be able to undo

the perturbation. Otherwise the search will fall back to visited local optima. The local search

can achieve the perturbation procedure by using random moves on the neighbourhood higher

than the one used before. It is still a good idea to use the perturbation procedure, which

guarantees better results.

Changing the current solution using perturbation should not be too strong, because it

will lead it to behave as a random restart. Also, finding better solutions are not a guarantee.

On the other hand, the perturbation should not be too small, where the search may revisit

the same local optima. Moreover, the perturbation strength may be refereed to as the number

of solution components, which means an appropriate perturbation strength depends on the

instance size. For example in traveling salesman problem (TSP), it is the number of edges

that are changing during the tour, roughly, the strength is defined as the amount of change

made on the current solution, where it may be fixed or variable.

There are many ways to determine the perturbation strength. For instance, in TSP

problems it is very small and seems independent of the instance size. On the other hand, it

is driven to a large size in the quadratic assignment problem (QAP). Furthermore, ILS for

the QAP shows that there is not a priori single best size for the perturbation, according to

that ILS algorithm adapts the perturbation strength during the search, more information is

described in Hong et al. (1997).
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After finding another solution x′′ by using the perturbation procedure, the acceptance

criterion is used to decide if the move will be taken or not. It controls the balance between

the intensification and diversification during the search. A Markovian acceptance criterion

(or better acceptance criterion) for minimisation problems is a very strong intensification. It

is simply achieved by accepting better solutions. It can be written as

Better acceptance criterion =





x′∗ if f(x′∗) < f(x∗)

x∗ otherwise

On the another hand, the random acceptance criterion, which favours diversification, can

be used for applying the perturbation to the visited local optima, irrespective of its cost. It

can be described as

random acceptance criterion(x∗, x′∗, history) = x′∗ (1.5)

There are many intermediate choices between the better acceptance and the random

acceptance criterion. For instance in Martin et al. (1991, 1992) the large step Markov chains

algorithm has been applied with a simulated annealing type acceptance criterion. It is

denoted as LSMC and it is given in Algorithm 11.

Procedure LSMC (x∗, x′∗, history)

if f(x′∗) < f(x∗) then1

x′∗ ← x∗

else

accept x′∗ ← x∗ with probability, exp{f(x∗)−f(x′∗)
T }

Algorithm 11: LSMC acceptance criterion

where T is called a temperature parameter as in SA. The LSMC behaves as a better accep-

tance criterion when the temperature is very low, and as random acceptance criterion when

the temperature is very high.

There is a limited case for using the memory with the acceptance criteria. It has been

used to restart the algorithm when the intensification becomes inefficient to switch to diver-

sification. This idea could be applied when no improved solution have been found. It uses

the new initial solution for a given number of iterations to restart the algorithm. The restart
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acceptance criterion is given in Algorithm 12.

Procedure Restart (x∗, x′∗, history)

if f(x′∗) < f(x∗) then1

x′∗

else if f(x′∗) ≥ f(x∗) and i− ilast > ir then
x

else
x∗

Algorithm 12: Restart acceptance criterion

where ilast is the last iteration where a better solution has been found, and i is the iteration

counter. Also, ir indicates the number of iterations without any improvement.

The ILS algorithm is very sensitive to the choice of embedded heuristics. There are

many different algorithms which may fit an embedded heuristic. In general, the better

the choice of the local search, the better is the corresponding ILS. For example, when the

CPU time is fixed, it is better to choose a less efficient and fast local search than a slower

and more powerful one. The best choice depends on how much time is needed to find

a better solution. However, if the speed does not make any difference, then the better

heuristic is worth applying. Besides, the local search can not easily undo the perturbation.

Consequently, good ILS depends on the combination of all four components. The best choice

of perturbation depends on the local search, while the best choice of acceptance criterion

depends on perturbation and local search. Briefly, the search space has to have these two

points:

• The perturbation should not easily become undone by the local search. Moreover,

the perturbation should compensate for the local search, if the local search has short

comings.

• Having a good combination of perturbation and acceptance criterion. The relation

between these two makes the balance between intensification and diversification.

More applications and some interesting developments of the ILS algorithm can be found

in Hong et al. (1997); Martin et al. (1991); Stutzle (2006); Tang and Wang (2006).
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1.3 Future in metaheuristics area

Hybridization is a recent trend in metaheuristics, which can be defined as the integration

between the single-solution methods with the population-based methods. In general, we

can distinguish three different types (forms) of hybrid metaheuristics: component exchange

among metaheuristics, cooperative search and integrating metaheuristics (Blum and Roli,

2003).

Component exchange among metaheuristics is one of the most popular and uses hy-

bridization by combining the single-methods in population-based methods. The reason of

the power of this combination becomes apparent by explaining the strength of two types:

population-based methods and trajectory methods (single-solution methods).

The main idea of population-based methods is based on recombining the solutions to

obtain new ones. The explicit recombining solutions are implemented by one or more re-

combination operators in evolutionary computation and scatter search. However, in Ant

Colony Optimisation and Estimation of Distribution Algorithms, the recombining solutions

are implicit according to the usage, where the distribution over the search space will gener-

ate new recombining solutions. This recombination procedure in population-based methods

allows “big” guided steps in the search space. Usually these guided steps are larger than

the steps performed by trajectory methods. However, some trajectory methods like iterated

local search and variable neighbourhood search have big steps as well, because their steps are

usually not guided. They perform from random mechanisms, which are called “kick moves”

or “perturbation”. Moreover, the strength of trajectory methods drives the search to explore

the promising areas in the search space. In conclusion, we can note that the population-

based methods are more powerful in finding the promising areas in the search space, whereas

trajectory methods are superior in searching specific zones (promising areas) of the domain.

That leads to very successful applications by using this form of hybrid metaheuristics.

The second form of hybrid metaheuristics is cooperative search. Its basic idea is exchang-

ing information between different algorithms, where the algorithms could be approximate

or complete or a mix of both types. This exchange might consist of exchanging in states,
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models, entire sub problems, solutions or other search space characteristics. Typically, this

type consists of the parallel execution of search algorithms with different communication

levels. The used algorithms could be different or the same with different models or param-

eters. Nowadays, cooperative search receives much attention due to increasing interest in

parallelization of metaheuristics. For more information of parallel metaheuristics see the

survey in Crainic and Toulouse (2003).

The last form is the integration of approximate and systematic (or complete) methods.

This type of hybrid metaheuristics is really powerful and gives very effective algorithm when

it is applied to real world problems. There are three main approaches for integration of

metaheuristics (especially trajectory “single solution” methods) and systematic techniques.

Theses are as follows

• When the metaheuristics and systematic method are applied in sequence. If the meta-

heuristics algorithm is working to find the solutions, then these solutions will be the

heuristic information that will be improved by the systematic search and vice versa.

This approach can be seen as a cooperative search, or a kind of loose integration.

• When the metaheuristics are applied a complete methods to efficiently explore the

neighbourhood structure rather than using random sampling or simply enumerating

all the neighbours. This type of search combines two advantages, the fast exploration by

using metaheuristics, and the efficient exploration of the neighbourhood by systematic

method. This approach is really efficient when the large neighbourhood structures are

used or when it is applied to real world problems. This type of problems has additional

constraints, they are called side constraints, where it might be difficult to explore the

neighbourhood by using metaheuristics.

• When the concepts or strategies for classes of algorithms are used together. Generally,

this means this type of hybridization is achieved by integrating strategies from meta-

heuristics into tree search methods. For example, the idea of tabu list or aspiration

criteria, which are defined in Tabu search, is applied on other algorithms not only on

tabu search.
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To sum up, the hybrid metaheuristics gives a developed type of metaheuristics as com-

pared to their parent, where they can be applied to more problems and give better results.
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Chapter 2

Variable neighbourhood search

metaheuristics

All local search based metaheuristics discussed in Chapter 1 are dealing with a single neigh-

bourhood structure at each iteration, which may or may not be updated from one iteration

to another. However, this is not the case with varaible neighbourhood search, where more

than one neighbourhood structure is included at each iteration. That means the solution

process could be significantly improved if more than one neighbourhood of the currently

observed solution is explored and thus a few new candidate solutions are generated at each

iteration. This is the basic idea of the variable neighbourhood search metaheuristic.

The variable neighbourhood search is thoroughly explained in this chapter, where this

variable neighbourhood search metaheuristic is the main idea in this thesis as the research

reported.

2.1 Variable neighbourhood search

Variable neighbourhood search (VNS) is a metaheuristic or framework for building heuristics.

It was introduced by Mladenović and Hansen (1997). VNS is based upon systematic changes

of neighbourhoods in order to find better solutions in distant parts of a solution space.

Most local search metaheuristics use just few neighbourhoods (one or two, number of
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neighbourhood ≤ 2) at each iteration, which could be changed from one iteration to another.

Changing the neighbourhood structure during the search makes the search process more

effective. Therefore, if there is more than one neighbourhood at each observed solution,

that will help to improve the solution process to explore the search space and thus find new

candidate solutions, fulfilling the basic idea of VNS. There are three obvious facts that could

explain why change of neighbourhoods works well:

Fact 1. A global minimum is a local minimum with respect to all possible neighbourhood

structures.

Fact 2. A local minimum with respect to one neighbourhood structure is not necessarily a

local minimum with respect to another neighbourhood structure.

Fact 3. For many problems local minima with respect to one or several neighbourhoods are

relatively close to each other (Hansen et al., 2008).

The last fact is an empirical one, which implies that a local optimum gives information

about the global optimum. For instance, it may appear that some variables have the same

values in both local and global optima. Moreover, those simple facts are used within VNS in

several different ways (see for example recent surveys of VNS in Hansen et al. (2008, 2010)).

Furthermore, these three facts can be combined in three different ways: the determinis-

tic one, stochastic one and both deterministic and stochastic, to make a balance between

intensification and diversification.

VNS has been used in different applications, for each case it has a selection of neighbour-

hood structures. Neighbourhood changes scheme or the way of selecting the solutions within

a neighbourhood, etc., depends on the problem. In the next subsection, basic schemes of

VNS will be explained in more detail. Also, many types of VNS will be described in the

following subsections.

2.1.1 VNS basic schemes

VNS is designed for solving both continuous and discrete optimisation problems, that may

be formulated as

min{f(x)| x ∈ X,X ⊆ S}. (2.1)
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S, X, x and f respectively denote the solution space, feasible set, a feasible solution and a

real-valued objective function. If S is a finite but large set, a combinatorial optimisation

problem is defined. If S = Rn, we refer to continuous optimisation. An exact algorithm

for problem (2.1), if one exists, finds an optimal solution x∗, together with the proof of its

optimality, or shows that there is no feasible solution, i.e., X = ∅.
LetNk, k = 1, . . . , kmax, denotes a finite set of pre-selected neighbourhood structures and

letNk(x) be the set of solutions in the kth neighbourhood of x. Moreover, the neighbourhoods

for the same solution are nested i.e. N1(x) ⊆ N2(x) ⊆ . . . ⊆ Nkmax(x), that means, as

opposed to other metaheuristics, VNS is dealing with more than one neighbourhood for each

candidate solution x. This phenomenon is explained in Figure 2.1.

Figure 2.1: The change of neighbourhoods during the VNS search

The neighbourhood structures Nk may be induced from one or more metrics, where the

metric function is ρ : S2 → R, thus the formula for finding Nk(x) can be described

Nk(x) = {y ∈ X | rk−1 < ρk(x, y) ≤ rk}, (2.2)
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Or

Nk(x) = {y ∈ X |ρk(x, y) ≤ rk}, (2.3)

Where the metric ρk(x, y) is monotonically increasing with rk, where rk is a given raduis of

neighbourhood Nk. The ρk(x, y) between any two solutions x and y is given as

ρk(x, y) = (
n∑

i=1

| xi − yi |p)
1
p (1 ≤ p < ∞) (2.4)

or

ρk(x, y) = max
0≤i≤n

| xi − yi |, p = ∞ (2.5)

We define x′ ∈ X as a local minimum w.r.t. Nk, if there is no solution x ∈ Nk(x′) ⊆ X

such that f(x) ≤ f(x′). This is a brief idea about VNS scheme and the next subsections will

focus on VNS variants.

2.1.2 Variable neighbourhood descent

Variable neighbourhood descent (VND) is performed in a deterministic way to make changes

of neighbourhoods. It completely explores the neighouborhood (Hansen and Mladenović,

1999). Due to that, VND requires a large amount of computational effort, where the diversi-

fication process is rather slow, whereas intensification is enforced. VND steps are explained

in Algorithm 13.
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Function VND(x, Nk, S)

Select the set of neighbourhood structures Nk, k = 1, . . . , kmax, where Nk is1

given by (2.2) or (2.3)

Find an initial point x ∈ S (or apply the rules to find it)2

repeat3

Set k ← 14

repeat5

Find the best improvement x′ ∈ Nk(x) after completely exploring the6

neigbourhood Nk(x)

if f(x′) ≤ f(x) then7

Set x ← x′, and k ← 1

else
k ← k + 1// Next neighbourhood

until k ← kmax

until no improvement is obtained

return x8

Algorithm 13: Variable neighbourhood descent

As a first step in Algorithm 13, an initial solution x has been selected from the current

neighbourhood. Then for each iteration k, all possible candidate solutions have been gener-

ated to find the best neighbour of x. This means the current neighbourhood is completely

discovered before moving to another one (step 6). This is the case if there is no other stopping

condition. This sequential order of neighbourhood structures can develop a nested strategy.

Using the intensification rather than the diversification gives more chance to reach the

global minimum. On the other hand, completely exploring the neighbourhood requires more

computational time, which makes the search expensive. Sometimes, VND is used as a local

search in other metahuristic frameworks according to its robustness. More applications are

discussed (Gao et al., 2008; Hertz and Mittaz, 2001; Ognjanović et al., 2005).
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2.1.3 Reduced variable neighbourhood search

Reduced variable neighbourhood search (RVNS) chooses the new candidate solutions ran-

domly from the current neighourhood. This means it uses stochastic search (Hansen et al.,

2008). Moreover, RVNS does not apply any local search to improve these candidate solutions.

This strategy makes RVNS very useful in very large instances, when using a local search may

be costly. More applications are given in Hansen and Mladenović (1999); Mladenović et al.

(2003); Remde et al. (2007); Sevkli and Sevilgenr (2008). RVNS is illustrated in Algorithm

14 (Hansen et al., 2008).

Function RVNS(x, kmax, tmax)

Select the set of neighbourhood structures Nk, k = 1, . . . , kmax, where Nk is1

given by (2.2) or (2.3)

Choose the stopping condition2

while termination conditions do3

repeat4

Set k ← 15

repeat6

select at random x′, where x′ ∈ Nk(x) //Shaking7

if f(x′) ≤ f(x) then8

Set x ← x′, and k ← 1

else
k ← k + 1// Next neighbourhood

until k ← kmax

until t > tmax

t ← CpuTime()9

return x10

Algorithm 14: Reduce Variable Neighbourhood Search

The algorithm initializes the search by selecting the maximum time (CPU time) and

maximum number of neighbourhood structures. Sometimes, another termination condition
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may be added like the number of iteration without any improvement in the objective function.

It selects then new points at random inside the neighbourhood Nk(x), which compares with

the incumbent one. The update happens, when the improvement is found (see steps 7 and

8), and this process is iterated until no improvement is reached.

2.1.4 Basic variable neighbourhood search

Basic variable neighbourhood search (BVNS) is applied to problems by combining the de-

terministic and stochastic way in changing of the neighbourhood (Mladenović and Hansen,

1997). This leads to a balance between the intensification and diversification.

However, VND completely explores the neighbourhood, which means that a large amount

of computational effort will be required, whereas RVNS just chooses the candidate solution

at random. This means the RVNS technique discards the quality of solutions. In BVNS the

next candidate solution from the current neighbourhood can be found by selecting a random

element (first solution) from the same neighbourhood. Then a local search approach applies

to improve it. Thus the best one is chosen to be considered as the next candidate solution

for the same neighbourhood. In Figure 2.2, we can note that the BVNS is not exploring all

the neighbourhood, but it provides a reasonable-quality solution. BVNS steps are explained

in Algorithm 15 (Mladenović and Hansen, 1997).
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Figure 2.2: The basic variable neighbourhood search scheme
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Function BVNS(x, Nk, S)

Select the set of neighbourhood structures Nk, k = 1, . . . , kmax, where Nk is1

given by (2.2) or (2.3)

Find an initial point x ∈ S2

Choose the stopping condition3

while termination conditions do4

Set k ← 15

repeat6

Generate at random x′, where x′ ∈ Nk(x) //Shaking7

Apply local search with x′ as an initial solution to obtain the local8

optimum x′′

if f(x′′) ≤ f(x) then9

Set x ← x′′, and k ← 1

else
k ← k + 1// Next neighbourhood

until k ← kmax

return x10

Algorithm 15: Basic Variable Neighbourhood Search

The new point x′ is generated at random (i.e. in stochastic rule in step 7 in Algorithm

15) to avoid cycling, which might occur if the deterministic way is applied. After that, a

local search method is applied on x′ as an initial solution to find x′′ (step 8 in Algorithm

15). Sometimes BVNS may be replaced by the local search by using variable neighbourhood

descent, where this combination leads to the most successful applications (see Hansen and

Mladenović (2001a)).

2.1.5 General variable neighbourhood search

General variable neighbourhood search (GVNS) is derived from the basic variable neigh-

bourhood search, when BVNS is used as a local search to find the improvement. GVNS has
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led to the most successful applications (see Andreatta and Ribeiro (2002); Brimberg et al.

(2000); Caporossi and Hansen (2000, 2004); Hansen and Mladenović (2001a)). GVNS steps

are explained in Algorithm 16 (Hansen and Mladenović, 2001a).

Function GVNS(x, Nk, S)

Select the set of neighbourhood structures Nk, k = 1, . . . , kmax, where Nk is1

given by (2.2) or (2.3)

Find an initial point x ∈ S2

Choose the stopping condition3

while termination conditions not satisfied do4

Set k ← 15

repeat6

Generate at random x′, where x′ ∈ Nk(x) //Shaking7

Apply variable neighbourhood descent (VND) with x′ as an initial solu-8

tion to obtain the local optimum x′′ //Shaking

if f(x′′) ≤ f(x) then9

Set x ← x′′, and k ← 1

else
k ← k + 1// Next neighbourhood

until k ← kmax

return x10

Algorithm 16: General Variable Neighbourhood Search

where VND in step (8) in Algorithm 16 is a min VND, that means it has less number of

neighbourhood structures as in general one.

2.1.6 Skewed variable neighbourhood search

Skewed variable neighbourhood search (SVNS) explores the valleys far from the incumbent

solution (Hansen and Mladenović, 2003). Indeed, in a large region problem, when the best

solution has been found, to improve that solution, the search has to go further to obtain an
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improved one. If small neighbourhoods have been used, reaching the global optimum requires

a significant amount of computational time, which will make the search time consuming. To

overcome this problem, SVNS has a flexible acceptance criteria to deal with this dilemma. It

uses large neighbourhoods of the incumbent solution in order to escape from local optimum

and to have a better solution.

In addition, some metaheuristics like simulated annealing and tabu search use the idea of

diversification. They allow the search to accept worse solutions than the incumbent one to

escape from stalling in valleys, where SVNS has the same idea. Moreover, the solutions are

randomly choosen in distant neighbourhoods, which may make a substantial difference be-

tween them and the incumbent one and allow VNS to degenerate into a Multistart heuristic.

Consequently, SVNS makes some compensation for distance from the incumbent solution.

SVNS is explained in Algorithm 17 (Hansen and Mladenović, 2003).
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Function SVNS(x, kmax, tmax, α)

Select the set of neighbourhood structures Nk, k = 1, . . . , kmax, where Nk is1

given by (2.2) or (2.3)

Find an initial point x ∈ S2

while t ≤ tmax do3

Set k ← 1 and xbest ← x4

repeat5

Generate at random x′, where x′ ∈ Nk(x)6

Apply local search with x′ as an initial solution to obtain the local7

optimum x′′ //Shaking

if f(x′′) < fbest then8

Set fbest ← f(x) and xbest ← x′′

else if f(x′′)− αδ(x, x′′) < f(x) then9

Set x ← x′′ and k ← 1

else
k ← k + 1// Next neighbourhood

until k ← kmax

return x10

Algorithm 17: Skewed variable neighbourhood search

In Algorithm 17 step 9 allows to move to worse solutions to avoid stalling in large valleys.

The δ : S2 ← R is used to measure the distance between the local optimum found x′′ and

the incumbent solution x, where a move is made if f(x′′)−αδ(x, x′′) < f(x). The α ∈ R+ is

a parameter, and it is used to control the diversification. This function δ(x, x′′) may or may

not be defined as the distance function ρ : S2 ← R, which it is explained in (2.4) and (2.5),

where it is used to define the Nk.

Moreover, the α must be chosen in order to guarantee that the search goes far away from

x when f(x′′) is larger than f(x), but not too much larger (otherwise one will always leave

x). In some case, the α can be found experimentally in each case, or it can be defined as a

large value when δ is small for avoiding frequent moves from x to closer solution, where the
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more sophisticated choices for finding α could be made through the learning process. For

SNVS applications (see Brimberg et al. (2009); Souza and Martins (2008)).

2.1.7 Variable neighbourhood decomposition search

The variable neighbourhood decomposition search (VNDS) was introduced by Hansen et al.

(2001). VNDS extends the basic VNS into a two-level VNS scheme based upon decomposition

of the problem.

The basic VNS is very useful for solving many combinatorial and global optimisation

problems. However, if the problem has very large instances, the basic VNS almost practically

fails to find a good quality solution in reasonable computational time, because it has limited

tools to deal with big size problems. When the heuristic methods are applied to very large

instance problems, their strengths and weaknesses become clearly apparent. Due to that the

improvement scheme is desirable, where VNSD is improved to sort out this issue.

The main difference between VNS and VNDS is that VNS applies the local search method

in the whole solution space S. VNDS is divided at each iteration into a subproblem in some

subspace, where VNS is used as a local search here, thus the two-level VNS-scheme arises.

VNDS steps are explained in Algorithm 18 (Hansen et al., 2001).

At the beginning, the set of all solution attributes is defined as A and td, where td is an

additional parameter and it is used as the running time for solving decomposed small size

problem by VNS. At each iteration, VNDS chooses a subset y ⊆ A at random, where y is a

set of k solution attributes present in x′, but not in x (y = x′\x). Then, a new local optimum

y′ has been found in the space y, where it is denoted as x′′ in the space S (x′′ = (x′ \ y) \ y′).

Due to the above, the VNDS is becoming popular with a number of successful applications

(see Costa et al. (2002); Hansen et al. (2007b); Lazić et al. (2010); Lejeune (2006); Urosević

et al. (2004)).
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Function VNDS(x, kmax, tmax,td)

Select the set of neighbourhood structures Nk, k = 1, . . . , kmax, where Nk is1

given by (2.2) or (2.3)

Find an initial point x ∈ S2

Let A be a set of all solution attributes3

while t ≤ tmax do4

Set k ← 15

repeat6

Generate at random x′, where x′ ∈ Nk(x)7

Let y ⊆ A be a set of k solution attributes present in x′ but not in x,8

(y = x′ \ x) //Shaking

repeat9

Find the local optimum in the subspace y by inspection or by some10

heuristics and name the incumbent by y′. Let x′′ be in the whole

space S, where x′′ = (x′ \ y) \ y′

until t ≤ td

if f(x′′) < f(x) then11

Set x ← x′′

else
k ← k + 1

until k ← kmax

return x12

Algorithm 18: Variable neighbourhood decomposition search
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2.1.8 Continuous variable neighbourhood search

Continuous variable neighbourhood search (CVNS) was introduced by Mladenović et al.

(2003). It was developed to solve constrained and unconstrained continuous optimisation

problems. The continuous box constrained nonlinear optimisation problem (COP) can be

written as

(COP )


 min f(x)

s.t. aj ≤ xj ≤ bj ∀j ∈ {1, 2, . . . , n}

where x = (x1, . . . , xn), f : Rn → R, a, b ∈ Rn are the lower and upper bounds on the

variables.

The COP, as defined above, naturally arises in many applications, e.g. in advanced

engineering design, data analysis, financial planning, risk management, scientific modeling,

etc. Most cases of practical interest are characterised by multiple local optima and, therefore,

a search effort of global scope is needed to find the globally optimal solution (COP).

For solving COP, VNS has already been used in two different ways: with neighbourhoods

induced by using an `p norm (Drazić et al., 2006; Liberti and Drazic, 2005; Mladenović et al.,

2008) and without using an `p norm (Toksari and Guner, 2007). The metric function ρk can

be defined as in (2.4) or (2.5). Thus, the neighbourhood Nk(x), where it denotes the set of

solutions in the k–th neighbourhood of x, can be written by using the metric ρk as in (2.2)

or (2.3), where metric the ρk(x, y) and rk are monotonically increasing with k, and rk is a

given radius of the neigbourhood Nk.

In Drazić et al. (2006) a software package GLOB was developed for solving box con-

strained CGOP by using CVNS. Its steps are given in Algorithm 19.

The Glob-VNS procedure from Algorithm 19 contains the following parameters in addition

to kmax (a maximum number of neighbourhoods used in the search) and tmax (total maximum

time allowed):

1. Values of radii rk, k = 1, . . . , kmax. Those values may be defined by the user or

calculated automatically in the minimising process;

61



VNS Continuous variable neighbourhood search

Function Glob-VNS (x, kmax, tmax)

Select the set of neighbourhood structures Nk, k = 1, . . . , kmax, as in (2.2) or1

(2.3)

Find an initial point x ∈ X2

Select the array of geometry distributions types3

while t < tmax do4

k ← 15

repeat6

for each (geometry, distribution) pair do7

Generate x′ ∈ Nk(x) at random8

Apply a local search on x′ to obtain a local minimum x′′//Shaking9

if f(x′′) < f(x) then10

x ← x′′, go to line 511

k ← k + 112

until k = kmax

t ← CpuTime()13

return x14

Algorithm 19: VNS for COP
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2. Geometry of the neighbourhood structures Nk, defined by the choice of the metric and

their order. The usual choices are the `1, `2, and `∞ norms;

3. Distribution used for obtaining the random point x′ from Nk. Uniform distribution in

Nk is the obvious choice, but other distributions may lead to much better performance

on some problems. Besides uniform (u), we also implement hypergeometric distribution

(h), the special distribution (denoted by 2) uses a specially designed distribution on `1

unit sphere, as follows:

• The coordinate d1 is taken uniformly on [−1, 1], dk is taken uniformly from

[−Ak, Ak] where Ak = 1− | d1 | − . . .− | dk−1 |, k = 2, . . . , n − 1 and the last

dn takes An with a random sign.

• The coordinates of d are permuted randomly.

Note that different choices of geometric neighbourhood shapes and random point dis-

tributions lead to different VNS-based heuristics. We denote them as (α, γ), where α

and γ represents geometry (the metric) used and distribution, respectively.

Figure 2.3 explains all types of distributions. Moreover, for the local search phase GLOB

includes several nonlinear methods like steepset descent, Rosenbrock, Nelder-Mead, and

Fletcher-Reeves. The type of local search is chosen by the user to decide which one fits

better with the problem. Furthermore, the type and order of geometries to generate the

neighbourhood structures is a user decision, where not all of them should be included. Also,

a random starting point in each neighbourhood is generated by the local search according

to the chosen metric.

To sum up, Glob-VNS algorithm should contain the following:

• defined tmax which is the maximum running time for the search.

• defined kmax which is the maximum number of neighbourhood structures during the

search.

• defined radii rk or the procedure to generate them.

63



VNS Continuous variable neighbourhood search

Figure 2.3: Distribution types
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Figure 2.4: Rastrigin function
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Figure 2.5: Molecular potential energy function

• defined choice of geometries which are used to build the neighbourhood structure.

• chosen types of distributions that will be used during the search.

• decided local heuristic method that will be used in the search.

• finally, decided order of neighbourhoods and distributions in the shaking steps.

Some figures for applying GLOB-VNS on continuous optimisation problems are given such

as Rastrigin function in Figure 2.4 and Molecular potential energy function in Figure 2.5.
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Continuous optimisation applications

In this part, some application on continuous optimisation problems, which have been solved

by CVNS, will be explained.

Bilinear programming problem (BLP) is structured as a global optimisation problem with

bilinear constraints. This problem has three sets of variables x, y and z, with cardinalities

n1, n2 and n3 respectively. This problem has a bilinear property, which means, when the set

of y is fixed, BLP becomes a linear program in x and z, whereas when the set of z is fixed,

the BLP is linear program in x and y. The steps of solving BLP can be written as

• Fixe one variable y (or z).

• LP1: Solve this problem as a linear program in (x, z) (or (x, y)).

• LP2: For z (or y), which it has been found in previous step, solve a linear program in

(x, y) (or (x, z)).

• If stability is not reached return to LP1.

This algorithm is suggested as a well-known Alternate heuristics, where it may be solved

by a Multistart framework. Applying CVNS on BLP outperforms the Multistart Alternate

heuristic (Audet et al., 2004). In CVNS algorithm, the neighbourhoodNk(x, y, z) for solution

(x, y, z) is defined, then the alternate heuristic is used as the local search method.

Continuous Min-Max problem has been solved by CVNS. The algorithm starts by defining

different neighbourhood structures. They are derived from the Euclidean distance, then the

random point has been selected from the current neighbourhood. In the local search step, the

gradient local search has been applied. This step will be repeated until the number of active

functions in the current point equals n. The results have been compared with multi-level

Tabu search, where CVNS outperforms better on quality and computing time for all test

instances (Hansen and Mladenović, 2001b; Mladenović et al., 2003). For more applications

for CVNS (see Mladenović et al. (2008); Toksari and Guner (2007)).
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2.1.9 Reformulation descent variable neighbourhood search

The traditional techniques to solve an optimisation problem are attempted by considering

its formulation and searching through the feasible region X. In fact, the same optimisation

problem can often be formulated in different ways, where this allows the search to jump from

one formulation to another. It has a local search method, which works totally within the

formulation, and gives a final solution. Any solution which has been found by one of the

formulations, should then be translated to an equivalent one in any other formulations.

This strategy helps to escape from local optima by switching from one formulation to

another, where the local minima for the first one, may not be a local minima for another.

This idea can help if the local search for each formulation will behave differently.

The VNS algorithm for reformulation descent (RD) is given in Algorithm 20. Let P

be a given optimisation problem (combinatorial or continuous) and ϕ1, ϕ2 are two different

formulations for the problem. It explains how the two formulations are incorporated, where

the current active formulation is denoted as ϕactive.
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Function VNS-RD (P, x, ϕ1, ϕ2, kmax, tmax)

Select the set of neighbourhood structures Nkϕ1 , k = 1, . . . , kmax, where Nkϕ1 :1

Sϕ1 → P (Sϕ1)

Select the set of neighbourhood structures Nkϕ2 , k = 1, . . . , kmax, where Nkϕ2 :2

Sϕ2 → P (Sϕ2)

Find an initial point x ∈ X3

Set ϕactive = ϕ1.4

while t < tmax do5

k ← 16

repeat7

Generate x′ ∈ Nkϕactive(x) at random8

Applying a local search on x′ to obtain a local minimum x′′9

if f(x′′, ϕactive) < f(x, ϕactive) then10

x ← x′′, and k ← 111

Set ϕactive = ϕ212

else

k = k + 113

until k ≤ kmax

t ← CpuTime()14

return x15

Algorithm 20: VNS for RD

where kmax could be equaled for ϕ1 and ϕ2 or not.

This idea was recently investigated in Mladenović et al. (2005). It was applied on cir-

cle packing problems (CPP) to investigate systematical changes between two formulations

(one for Cartesian coordinates and one for polar coordinates system). It is shown that the

stationary point in polar coordinates is not necessarily a stationary point in the Cartesian

coordinates system. In this case a RD method is applied, which alternates between two
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formulations until a final solution is found, where this one is a stationary point with respect

to both formulations. The results obtained were comparable with the best known values,

but they were 150 times faster than other single formulation approaches. An extension for

RD has been suggested by using more than two formulations, this case is called formulation

space search (FSS) (Mladenović et al., 2007). For more application (see Hansen et al. (2010);

Hertz et al. (2008); Mladenović et al. (2007)).

2.1.10 Primal-dual VNS

The optimal solution can not be guaranteed by most of heuristic methods. Moreover, the

difference between the solution obtained and the optimal one is completely unknown. Thus

there is no information that could help to decide if the obtained solution is close to the

optimal one or not. In the heuristic method, if the lower bound of the objective function

value is known, the optimal solution may be guaranteed. To solve this issue, mathematical

programming is applied on relaxing the integrality constraints on the primal variables. How-

ever, the commercial solvers may fail to find the exact solution when the relaxed problem

has a large instance. Therefore, the new idea is to solve the dual relaxed problem with the

primal one.

In Hansen et al. (2007a), the Primal-dual VNS has been successfully applied on large

scale simple plant location problems (SPLP). It has been used to find the exact solution or

the guaranteed bounds. The algorithm is given in Algorithm (21)

Function PD-VNS (P, x, k′max, kmax, tmax)

Solve the primal by using BVNS(P, x, k′max, kmax, tmax)1

Find infeasible dual solution such that fP (x) = fD(y)2

Use VNS to decrease the infeasibility of dual solution y3

Find the exact dual solution4

Apply branch-and-bound method on x and y5

return x and y6

Algorithm 21: Primal-dual VNS
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This algorithm has three phases. The first one is based on VNS, and it finds the nearest

optimal solution for the primal problem. Moreover, VNS decomposition is very powerful for

solving large scale simple plant location problems with up to 15000 facilities and 15000 users.

In the second phase, the approach is designed to find an exact solution to the relaxed dual

problem. Then the standard branch-and-bound is applied on the original problem within

tight upper and lower bounds, where they are obtained from the heuristic primal solution and

exact dual one. More details on PD-VNS for SPLP can be found in Hansen et al. (2007a).

2.1.11 Parallel variable neighbourhood search

The parallel variable neighbourhood search strategy could be classified into three categories:

• Low-level parallelism. This strategy aims to speed up the computations by executing

in parallel one or several tasks on one iteration. The implementation is divided among

the master processor and the slave processors. The master processor dispatchs work

to the other slave processors, then it has the results again. At this point the sequential

algorithm continues. The difference from one parallel approach to another is how much

work the slave processors will have.

• Domain decomposition. It is generally applied by dividing the vector of variables

and the solution space into subspaces. For finding the solution, the VNS procedure is

repeated for all subspaces to explore the whole region, which increases the exploration

in the search space. The master processor has the partial slave’s solutions and builds

the complete solution. At this point, the new partitions are decided by the master

processor which then restarts.

• Multiple search. It is obtained from multiple concurrent explorations of the solution

space. Moreover, the concurrent searches may or may not use the same heuristic.

They may or may not start from the same initial solutions. Besides, they may have a

communication during the search or at the end to identify the best overall solution. This

leads to two strategies known as the independent search methods, and the cooperative

multi-search methods.
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For more details and applications for parallel variable neighbourhood search (see Crainic

et al. (2004); Garclá-López et al. (2002); Yazdani et al. (2010)).

2.1.12 Variable neighbourhood search with dynamic selection

In this subsection, the advance scheme of variable neighbourhood search will be highlighted

with dynamic change of parameters and / or neighbourhood structure during the search. To

characterise any local search metaheuristics, the next four components should be defined:

problem formulation, neighbourhood structure, initial solution and sets of parameters. These

components are fixed during the search. However, the behaviour of the search process could

be changed which may make these components or some of them not efficient enough to reach

the global optima. There is a possibility of switching between different formulations for the

same problem during the search and it has been explained in subsection 2.1.9.

There are two possibilities of using the neighbourhood structure to improve the search

process. First, by restricting the existing neighbourhood structure to a subspace of interest.

Second, by switching between different types of neighbourhood structures. Moreover, up-

dating the neighbourhood structure can be used when we are sure that some of the search

space is not of interest anymore and it should be discarded. This idea is very similar to the

tabu search (it has been discussed in chapter 1). If S is the solution space and let S′ denotes

the set of solutions not of interest thus the new solution space will be S \ S′. Furthermore,

if the neighbourhood can be written as N : S → P (S), thus the new reduction one can be

formulated as N : S \ S′ → P (S \ S′).

The other type of dynamic change of neighbourhood structure is called a variable neigh-

bourhood descent (it is discussed in subsection 2.1.2) as proposed in Hu and Raidl (2006).

The basic idea behind VND is switching systematically between different neighbourhood

structures N1,N2, . . . ,Nn. The search process starts with the first neighbourhood structure

N1 until the local optima has been found. It will then switch to neighbouhood structure

N2, and if the new improved solution has been found the search will start again from N1.

Otherwise it will continue with N3 and so on. If the last neighbourhood structure Nn has

been used without any improvement, the VND will terminate with a solution, which is repre-
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sented as a local optima to all neighbourhood structure. For some successful application (see

Hansen et al. (2006); Hu and Raidl (2006); Hu et al. (2009); Puchinger and Raidl (2008)).
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Chapter 3

Censored quantile regression

This chapter focuses on continuous variable neighbourhood search (VNS) for solving censored

quantile regression (CQR). CQR models are very useful for the analysis of censored data

when standard linear models are felt to be inappropriate. However, fitting censored quantile

regression is hard numerically due to the fact that the function that has to be minimised

(Powell estimator) is not convex, nor concave in regressors. The performance of standard

methods is not satisfactory, in particular if a high degree of censoring is present. The

usual approach in the literature is to simplify (linearise) the estimator function and show

theoretically that such approximation tends to provide good real optimal values.

In this chapter a new approach to solve CQR will be suggested, i.e., the nonlinear,

non-convex, and non differentiable optimisation problem is solved directly. Our method is

based on variable neighbourhood search approach, a recent successful technique for solving

global optimisation problems. Simulation results presented indicate that our new method

can improve the quality of the censored quantile regression estimator considerably.

This chapter is organised as follows. Section 3.1 describes the censored quantile regression

problem and Powell estimator. In section 3.2, the literature review of censored quantile

regression is presented. The variable neigbuorhood search approach for solving censored

quantile regression by the Powell estimator, and its algorithm are presented in section 3.3.

Section 3.4 includes details on how the data instances are generated and then reports

extensive computational analysis.
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3.1 Description of the problem

The research of quantile regression began four decades ago. The quantile in general can be

written as, if there is a random variable y with probability function

F (y) = P (Y ≤ y) (3.1)

the quantile regression on θth quantile is the inverse of the cumulative distribution function,

F−1(θ), and it can be formulated as,

F−1(θ) = inf{y : F (y) ≥ θ} (3.2)

where 0 < θ < 1. The median quantile will be given when θ = 1/2. Furthermore, the quantile

divides the population into segments. It is called quintiles, if the population is divided into

five segments, each segment has equal proportions of the population. Furthermore, it is

called quartiles, if it divides the population into four equal segments. Also, it could be called

deciles, if the population is divided into ten equal segments.

The quantile regression model (QR) was introduced by Koenker and Bassett (1978). This

estimator is the most famous approach, where the quantiles of responses are linearly related

to the input vector. It can be formulated as,

yi = x′iβθ + εθi , i = 1, . . . , n, (3.3)

where yi is the θth quantile function due to the response of the input vector xi. For estimating

the (βθ, εθ), the θth quantile regression are defined to minimise the objective function

f(β, ε) =
n∑

i=1

ρθ(yi − x′iβθ) (3.4)

where εθi is independent and identically distributed (i.i.d.) with distribution function, and

the ρθ is the check function and it can be written as

ρθ(λ) = [θ − I(λ < 0)]λ (3.5)

where I(.) is the indicator function, it is given as

I(λ < 0) =


 1 if λ < 0

0 if λ ≥ 0

74



Censored quantile regression Description of problem

Furthermore, the censored quantile regression with fixed censored point can be written

as,

yi = max{y0, x′iβθ + εθi} , i = 1, . . . , n, (3.6)

where yi are given latent or dependent values, and y0 is a given censoring point. x′i is

g−dimensional vector of the independent covariates, which are observed (given) for each i.

θ represents confidence level, and εθi is an unobservable error term which is assumed to be

normally distributed (also known as quantile). βθ = (β0θ, . . . , βg−1,θ)T is g− dimensional

parameter of interest that we would like to find. The censored quantile regression model

is sometimes referred to by economists as the censored “Tobit” model (Tobin, 1958). The

regression is used to quantify the relationship between a response variable yi and some

covaraites xi, i = 1, . . . , n.

Powell (Powell, 1984, 1986) suggested an intuitive estimator for censored quantile regres-

sion model. This estimator solves

f(β, θ, y0) = min
β

1
n

n∑

i=1

ρθ(yi −max{y0, x′iβθ}), (3.7)

where ρθ is given as (3.5) and I(.) is the usual indicator function. Since θ and y0 are given,

function (3.7) depends only on β. Therefore, we denote Powell estimator (3.7) as f(β). Right

censoring estimator can be easily found from (3.7) by replacing the max with min, where

it is mostly used with the duration model applications. In most econometric applications

the censoring point is fixed y0 = 0 as in the original “Tobit” model but this case is not a

general one. However, the most important point that the censoring point y0 is known for

all observations, where in the Powell estimator it is fixed. The Powell estimator has several

disadvantages.

• First, the censoring point y0 must be known.

• Second, obtaining the global minimum of (3.7) can be difficult because the objective

function f(β) is non convex, nor concave and even non differentiable in β.
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An example of f(β) with g = 2, n = 100, θ = 0.95, y0 = 0 and normally distributed

random variable ε is illustrated in Figure 3.1 (more details of this instance will be given in

section 3.4). Thus, the problem belongs to the global (nonlinear) optimisation area, and
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Figure 3.1: Powell function f(β1, β2) with n = 100, θ = 0.95, y0 = 0 and Gaussian r.v. ε 6= 0

.

may have many local optima. Consequently, standard optimisation tools, that require the

objective function to be differentiable and/or convex, may fail to discover the true CQR

estimator.

However, several convex optimisation algorithms have been adapted for finding CQR,

where the Powell estimator (3.7) has been used see Fitzenberger (1997) for a survey of such

algorithms). More details are given in the next section 3.2.

Those algorithms have difficulties in solving CQR problems. They exhibit a high degree

of complexity in their implementation. Most of them achieve convergence to local optima,
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whereas finding the global optima for these problems require a heavy computational load.

Therefore, the basic question we would like to answer in this chapter is, what approach

is more promising: use the original Powell estimator (3.7) and solve CQR problem approx-

imately, or using a simplified approximative model and solve it exactly? In contrast to

the majority of authors who used to simplify models, here we suggest, for the first time,

the use of approximate global optimisation method for solving (3.7). In order to do that,

we developed nonlinear programminng (NP) code based on variable neighbourhood search

(VNS) metaheuristic (or framework for building heuristics). As far as we know, this is the

first time that some metaheuristics approach is used for solving the CQR problem. Based

on computational results section, it appears that our approach outperforms other methods

from the literature.

3.2 Literature review

There are many applications of censored quantile regression. Econometrics and statistics

have been interested in the CQR model in recent years, especially due to unknown condi-

tional heteroscedasticity and their robustness to distributional misspecification of error term.

Various applications of CQR have been published (Amemiya, 1982; Buchinsky and Hahn,

1998; Chaudhuri et al., 1997; Chen and Khan, 2000; Chernozhukov and Hong, 2002; Portnoy,

1991; Rao and Zhao, 1995; Yu. et al., 2003).

As mentioned above, the objective function of CQR is non convex, nor concave and non

differentiable. The optimisation problem may therefore have many local optima which means

that the local optimisation methods could be terminated in local optima instead of global

optima. Many algorithms described in the literature failed to provide satisfactory results

(Fitzenberger, 1997).

Womersley (1986) linearised the problem by using a reduced-gradient algorithm. In that

way a local minimiser is found by using linear programming.

Dueck and Scheuer (1990) used a new approach called “threshold accepting” (TA).

This algorithm is applied on the traveling salesman problem and the construction of error-
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correcting codes problem. The computational results show that the algorithm is very close

to optimum in 442-cities traveling salesman problem. This algorithm is also used to provide

convergence results (Althofer and Koschnick, 1991).

Pinkse (1993) tries to solve CQR with the Powell estimator by using the simplex algorithm

with Nelder-Mead method. He finds that the simplex algorithm is preferably not used for

estimating CQR.

Buchinsky (1994) has used iterative linear programming algorithm (ILPA) to study the

change of wages in the United States. The algorithm is applied on March Current Population

Survey since 1964. Besides, the changes in the return to schooling and the experience at

different wages are also examined. The linear model is divided into two groups, a one group

and a sixteen group model. The computational results show that the experience at different

wages and the returns to schools are similar in patterns of change, but they are different

across quantiles of the wage distribution. ILPA algorithm is available in many statistics

software likes STATA, and it can be easily written by TSP or R software languages.

The interior point algorithm for solving nonlinear quantile regression problems (NLRQ)

is discussed by Koenker and Park (1996). This algorithm has been applied on different

quantile problems, where the linear censored quantile problem of Powell estimator is also

included. NLRQ algorithm is available in R software.

Fitzenberger (1997) adapts the simplex algorithm of Barrodale and Roberts (1974) with `1

norm. This algorithm is called a BRCENS, where it studies the standard quantile regressions

and the CQR case. The objective function is the piecewise linear, where it depends on an

exact fit to p observations. The computation results are obtained by deleting one of the p

points from the “basis”. This strategy ensures convergence to a local optima.

The ILPA and NLRQ algorithms cannot guarantee the convergence to global optima,

even they cannot guarantee the convergence to local optima, whereas the BRCENS can

guarantee the convergence to local optima. Furthermore, in contrast to BRCENS and the

simplex algorithm in Pinkse (1993), TA algorithm almost guarantees convergence to the

global minimum with an infinity number of iterations. However, TA algorithm improves the

estimation of CQR better than any other algorithms, but it needs more CPU time. For that
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it has been used widely with CQR.

Since the late 1990s there have been different modification of CQR model . For example,

Buchinsky and Hahn (1998) introduced an alterative to the CQR model, this model is a

globally convex one. It can be solved by linear programming. Their stepwise estimator has

been used to estimate the coefficients. During the first step, a non-parametric approach is

applied on the estimation of the probability of censoring point at each observation. In the

second step, the uncensored observations are reweighted by using the estimated censoring

point. They then applied the ILPA algorithm in two cases, with unknown censoring point,

and with a Powell estimator with a fixed censoring point. The results show that the algorithm

outperforms for the bias induced by censoring.

Chernozhukov and Hong (2002) suggest the three-step estimator for solving CQR. This

estimator has variant fixed censoring point probabilities, where it is a stepwise estimation

approach as in Buchinsky and Hahn (1998). The parametric model has been used to es-

timate the censoring points at the first step. They use the estimated censoring points to

determine the observations with the small censoring probability. The computational results

show that the three-step estimator is useful for small sample or models with many regressors.

The estimators suggest in Buchinsky and Hahn (1998); Chernozhukov and Hong (2002) are

asymptotically equivalent to the original Powell estimator, they do not allow explicitly for

censored observations to be interpolated by the estimated CQR, where the interpolation

property suggests finding an exact solution by using a computationally expensive algorithm.

In Honoré et al. (2002), the distribution function is estimated by the censoring points.

This function is assumed to be independent of the response variables and covariates. Then,

the CQR is used when the censoring point is unknown.

The estimator suggested in Portnoy (2003) mimics the Kaplan-Meier estimator. It

reweights the censored observation if the censored region contains the value of it’s condi-

tional quantile function. This estimator is a right censored one, where it has been started

from the lower tail of the data. This CQR estimator is different from the Powell estima-

tor. Additional applications are described in the literature (Chernozhukov and Hong, 2003;

Blundella and Powell, 2007; Qian and Peng, 2010; Portnoy and Lin, 2010; Pang et al., 2010;
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Hosseinkouchack, 2011).

3.3 Variable neighbourhood search for censored quantile re-

gression

As mentioned earlier, CQR problem belongs to continuous global optimisation. In this sec-

tion, the general rules of VNS for solving global optimisation problems (GOP) are discussed.

This is followed by an explanation of their use in solving CQR.

3.3.1 Variable neighbourhood search metahuristics

This subsection gives a brief revision of general variable neighbourhood search. Variable

neighbourhood search (VNS) (Mladenović and Hansen, 1997) is a metaheuristic based upon

systematic changes of neighbourhoods in order to enable finding a better solution in dis-

tant parts of a solution space. VNS is designed for solving both continuous and discrete

optimisation problems, that may be formulated as

min{f(β)| β ∈ B,B ⊆ S}. (3.8)

S,B, β and f respectively denote the solution space, feasible set, a feasible solution and a

real-valued objective function. If S is a finite but large set, a combinatorial optimisation

problem is defined. If S = Rn, we refer to continuous optimisation. An exact algorithm

for problem (3.8), if one exists, finds an optimal solution β∗, together with the proof of its

optimality, or shows that there is no feasible solution, i.e., B = ∅.
Let Nk, k = 1, . . . , kmax, denotes a finite set of pre-selected neighbourhood structures

and let Nk(β) be the set of solutions in the kth neighbourhood of β. The neighbourhood

structures Nk may be induced from one or more metrics introduced into a solution space S,

either discrete or continuous. We define β′′ ∈ X as a local minimum w.r.t. Nk, if there is no

solution β ∈ Nk(β′′) ⊆ B such that f(β) ≤ f(β′′).

Those simple facts are used within VNS in several different ways (see for example recent

surveys of VNS in (Hansen et al., 2008, 2010)). The deterministic change of neighbourhoods
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leads us to a so-called Variable neighbourhood descent (VND) heuristic. The basic VNS

(BVNS) combines deterministic and random search (Mladenović and Hansen, 1997). Its

pseudo-code is given in Algorithm 22.

Function BVNS (β, kmax, tmax);

repeat1

k ← 1;2

repeat3

β′ ← Shake(β, k);4

β′′ ← LocalSearch(β′) ;5

If (f(β′′) < f(β)) β ← β′′; goto 2;67

k ← k + 18

until k = kmax ;

t ← CpuTime()9

until t > tmax ;
Algorithm 22: Steps of the Basic VNS for CQR

Let β be the incumbent (the best solution found so far). Within BVNS a point β′ from

the neighbourhood k of β (β′ ∈ Nk(β)) is taken at random where k = 1, . . . , kmax. Such a

point is an initial one for a local search routine that provides local minimum β′′. If f(β′′)

is better (smaller in the case of minimisation) then the new incumbent is β′′ (β ← β′′)

also k is set to 1 (k ← 1) and the process is repeated. Otherwise we generate a random

point from the larger neighbourhood (k ← k + 1). The only parameter for the BVNS is the

number of neighbourhoods used (kmax). Once that neighbourhood is reached without finding

improvement, k is again set to 1. The process is repeated until some stopping criterion, such

as maximum CPU time tmax used, is satisfied (see Figure 3.2).

We may view the VNS as a “shaking” process, where a movement to a neighborhood

further from the current solution corresponds to a harder shake. Unlike random restart, the

VNS allows a controlled increase in the level of the shake. In this chapter we design the

GVNS heuristic for solving the CQR problem, by minimising the nonlinear Powell function

f(β).
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Figure 3.2: Illustration of the Basic Variable Neighbourhood Search (BVNS)
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3.3.2 VNS for CQR

In this subsection we explain how we use VNS to solve the CQR problem. f(β) defined

in (3.7), is a nonlinear objective function with continuous variables β0, . . . , βg−1. Thus, the

CQR problem may be solved as an unconstrained nonlinear program. If θ = 1
2 , then f(β)

gives the median (Chernozhukov and Hong, 2002). Observe also that any unconstrained

nonlinear program may be considered as box constrained, if left and right values of variables

that define a box are set to the same large negative and positive values ai and bi. Therefore,

given input data X = (xij), i = 1, . . . , n; j = 1, . . . , g − 1, Y = (y1, . . . , yn), ε = (ε1, . . . , εn)

and the value of β = (β0, . . . , βg−1), the pseudo-code for evaluating the Powell estimator is

given in Algorithm 23.

Function Powell(β, X, Y, y0, ε)

Powell← 01

for i = 1, . . . , n do2

s ← 03

for j = 1, . . . , g − 1 do4

s ← s + xijβj5

r ← yi −max{y0, s− εi}6

Powell ← Powell + θr7

if r < 0 then8

Powell ← Powell - r9

Algorithm 23: Pseudo-code for finding Powell estimator value

Neighborhoods - Shaking. For solving GOP, VNS has already been used in two different

ways: with neighbourhoods induced by using an `p norm (Drazić et al., 2006; Mladenović

et al., 2008; Liberti and Drazic, 2005) and without using an `p norm (Toksari and Guner,

2007). Here we apply VNS that uses the `p norm, i.e., we define distances between any two

solutions β and γ as

δ(β, γ) = (
g−1∑

i=0

|βi − γi|p)
1
p , (3.9)
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or

δ(β, γ) = max
0≤i≤g−1

|βi − γi|, p = ∞. (3.10)

The neighbourhood Nk(β) denotes the set of solutions in the k–th neighbourhood of β, and

using the metric δ, it is defined as

Nk(β) = {γ ∈ B | rk−1 ≤ δ(β, γ) ≤ rk}, (3.11)

where rk is a given radius of neigbourhood Nk (k = 1, . . . , kmax).

Our CQR-VNS procedure for solving the CRQ problem contains the following parameters

in addition to kmax (a maximum number of neighbourhoods used in the search) and tmax

(the maximum time allowed in the search):

(i) Values of radii rk, k = 1, . . . , kmax. These values may be defined by the user or calcu-

lated automatically during the minimisation process. The geometry of the neighbourhood

structure is induced by the `1 (3.9) and `∞ (3.10) norms. We use balls as in (3.11). Radii

r1 ≤ r2 ≤ . . . ≤ rkmax are automatically computed as follow: let β = (β0, . . . , βg−1)T ∈ Rg

be the current incumbent solution and let

aj ≤ βj ≤ bj , j = 0, . . . , g − 1 (3.12)

defines a box or hyper-cube

H =
g−1∏

j=0

[aj , bj ]

around the incumbent solution β. In order to find kmax neighbourhoods automatically and

thus make our CQR-VNS more user-friendly, we divide βj − aj and bj −βj into kmax intervals:

δj =
βj − aj

kmax
; δj =

bj − βj

kmax
.

Then the kmax hyper-cubes (boxes) H1,H2, . . . , Hmax around the incumbent (the best solu-

tion found so far) β are given

aj + (k − 1)δj ≤ βj ≤ bj − (k − 1)δj , k = 1, . . . , kmax (3.13)

or

djk ≤ βj ≤ djk, k = 1, . . . , kmax (3.14)
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Figure (3.3) illustrates our construction of continuous neighbourhoods as hyper-cubes for

the case of kmax = 3 and g = 2 (or β = (β0, β1)T ).
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b2
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Figure 3.3: Automatic construction of neighbourhoods with g = 2 and kmax = 3.

(ii) (Geometry, distribution) pairs. Geometry of neighbourhood structures Nk is defined by

the choice of the metric functions used in the search through the solution space. The usual

choices are the `1, `2, and `∞ norms. Their order in the search is also important within

VNS. Different distributions may be used for obtaining the random point y from the same

neighbourhood Nk in the Shaking step. Uniform distribution in Nk is the obvious choice, but

other distributions may lead to much better performance on some problems. Besides uniform

(u), we also implement the hypergeometric distribution (h)(Drazić et al., 2006; Mladenović

et al., 2008). The special distribution (h) is designed as follows:

• The coordinate β1 is taken uniformly on [−1, 1], βk is taken uniformly from [−Ak, Ak]

where Ak = 1− | β1 | − . . .− | βk−1 |, k = 2, . . . , g − 1 and the last βn takes An with a

random sign.

• The coordinates of β are permuted randomly.

Note that different choices of geometric neighbourhood shapes and random point distribu-

tions lead to different VNS based heuristics. We denote them as (α, γ), where α and γ repre-

sents geometry (metric) and distribution used, respectively. Therefore, in total we have 6 dif-
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ferent variants of VNS defined by (geometry, distribution) pairs: (`1, u),(`2, u),(`∞, u),(`1, h),

(`2, h), (`∞, h). Note that “u” denotes uniform distribution, while “h” denotes hypergeo-

metric (special) distribution. For simplicity, we will denote those variants in pseudo-code

as (1,1),(2,1),(3,1),(1,2),(2,2) and (3,2): (1,1)= (`1, u), (2,1)=(`2, u), etc. For example, pair

(3,2) indicates that `∞ norm (3) and the special distribution (2) are used in the shaking step.

However, after extensive computational analysis, we select on four (geometry, distribu-

tion) pairs in our CQR-VNS in the following order: distribution type order = (1,2) (1,1)

(3,1) and (3,2). After that a radius from interval [0, rk] is taken at random in order to get a

point from Nk(x). Therefore, a random point within the Shaking step of CQR-VNS is gener-

ated in two steps: (i) find random direction; (ii) find random radius along that direction.

Local Search. As a local search for solving CQR we apply the direct search Nelder-Mead

nonlinear programming method since it does not use derivatives. The left and right bound-

aries aj and bj for variables are defined as appropriate. The GLOB has six local search

methods: steepest descent, Fletcher-Powell, Fletcher-Reeves, Nelder-Mead, Hook-Jeeves and

Rosenbrock, where we chose Nelder-Mead nonlinear programming method by an empirical

way. At the beginning, we fixed the other parameters on GLOB with fixed maximum running

time and we run the code for each method. Then we found that the Nelder-Mead method

gave better results than the other five methods. For that the Nelder-Mead method has been

used here as a local search method for solving the censored quantile regression problem.

Pseudo-code. The algorithm Glob-VNS for solving CQR is given in Algorithm 24, where

kmax and tmax are usual VNS parameters, given by user.

87



Censored quantile regression Computational results

Function CQR-VNS (β∗, kmax, tmax, X, Y, y0, ε)

Select (geometry, distribution) pairs as: (1,2), (1,1), (3,1), (3,2)1

Choose an initial point β∗ ∈ B at random2

f∗ ← Powell(β∗, X, Y, y0, ε)3

β ← β∗, t ← 04

while t < tmax do5

k ← 16

repeat7

for each (geometry, distribution) pair do8

β′ ← Shake(β, k) // Get β′ ∈ Nk(β) at random9

β
′′ ← Nelder-Mead(β′, f) // Get local minimum β

′′
by Nelder-Mead10

if (f < f∗) then11

β ← β
′′
; f∗ ← f ; go to line 612

k ← k + 113

until k = kmax

t ← CpuTime()14

Algorithm 24: VNS for CQR

After choosing (geometry, distribution) pairs and random initial solution β∗ ∈ Rg−1 in

steps 1 and 2 respectively, we apply Algorithm 23 to find the Powell estimator f(β∗). We

denote with β the incumbent solution. As explained in Algorithm 22, outer loop of VNS

is running until a predefined stopping condition is met. The inner loop is repeated kmax

times, if there is no improvement in regressors β. In each neighbourhood a random point

from the Nk(β) is taken (line 9) and the well known Nelder-Mead unconstrained nonlinear

programming code run (line 10). The local minimum value for Powel’s estimator is denote

with f . If a better solution is obtained, we save it (line 12) and repeat all process with the

first neighbourhood (i.e., return to step 6).
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3.4 Computational results

We perform extensive computational analysis to investigate how our new CQR-VNS method

compares with other approaches. We first give general rules for the computational simulation

performed, and then present comparative results on various test instances.

Methods compared. We compare our VNS-CQR with the following approaches from the

literature.

1. The first group of methods are the same as those described by Bilias et al. (2000):

• the direct heteroscedastic bootstrap method;

• modified bootstrap and

• resampling methods.

2. The second group of methods are from Buchinsky and Hahn (1998):

• CV method which denotes theCQR-LP estimator with log likelihood cross-validated

bandwidth;

• CVa method, which denotes the CV estimator with bandwidth adjusted to con-

form with assumption K;

• PR method, which denotes the CQR-LP estimator with probit estimates for cen-

soring probability;

• HO and HOa are the same as CV and CVa except that the kernel function involves

a higher order kernel, and

• CR denotes Powell’s estimator.

3. Lastly, we apply our method to an extramarital affairs. Data set taken from Fair

(1976).

Computer support. Our code was written in C++ and complied with Microsoft Visual

Studio 8.0. The program was run on Intel(R) Core(TM) 2 at 1.73 GHz with 2 GB of RAM.

Unfortunately, there is no information about the computers which were used to get results by
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other methods. Therefore, the efficiency (i.e., the running CPU time of methods) could not

be compared in this study. The comparison will therefore be restricted to their effectiveness

or precision.

VNS parameters. Along the space dimension, initial and boundary conditions which are

different in each test instance, in the CQR-VNS we used the following parameters.

• CPU time was limited to tmax = 5 seconds;

• The number of neighbourhoods structures used is set to 10, kmax = 10;

• We choose the Nelder-Mead local search method. It stops when one among the following

three criteria are met:

– a diameter of a simplex is less than 0.1e-5 (ls eps = 0.1e-5),

– the difference between two consecutive objective function values is less than 0.1e-5

(ls fun eps = 0.1e-5) and

– the number of iterations reached 500.

3.4.1 GLOB-VNS for finding standard and percentile

In this part, we compared our CQR-VNS (whose pseudo-code is given in Algorithm 24) with

the three algorithms used by Bilias et al. (2000). There the following model is considered:

yi = max{β0 + x1iβ1 + x2iβ2 + εi, y0}. (3.15)

The details regarding simulation are listed below:

• x1 is generated as a Bernoulli distribution centered at zero, with the success probability

equal to 1
2 ;

• x2 is a standard normal variable N(0, 1);

• The censoring point is y0 = 0;

• Three different types of error ε are considered:
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– a standard normal distribution;

– a heteroscedastic normal (1 + x2)×N(0, 1), and

– a normal mixture 0.75 × N(0, 1) + 0.25 × N(0, 4), as suggested in (Bilias et al.,

2000).

• It is assumed that the best estimator values are known and all equal to 1, (β0, β1, β2)

= (1, 1, 1). Then yi is calculated by using formula (3.15).

• For each of the following confidence level θ ∈ {0.95, 0.90, 0.85} the standard (S) and

percentile (P) methods (Efron and Tibshirani, 1993) are used to construct confidence

intervals. In particular, we compare the 95%, 90% and 85% confidence levels for each

type of error.

• A size n = 100 of random sample is generated, i.e., {(x1i, x2i, yi), i = 1, 2, . . . , 100}.
Those data space points are obtained with the three different types of error ε. Two of

them are plotted in Figure 3.4.

• The simulation is repeated 1000 times and the average results reported.
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Figure 3.4: Points (x1i, x2i, yi), i = 1, . . . , 100, in data space with the standard normal (left) and normal

mixture (right) errors with fixed β1 = 1 and β2 = 1.

In Figure 3.1 an instance of this type is plot in the regressor space (β1, β2), where the

value of β0 is fixed to 1. Powell’s estimator values are obtained by applying Algorithm 23
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and taking (β1, β2) in each point of the square grid [0,2]×[0,2] and increment 0.2 for each

variable: βjk = 0.2 · k, ∀j = 1, 2;∀k = 0, . . . , 10. The version of the same instance, but with

εi = 0 in (3.15), is presented in Figure 3.5.
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Figure 3.5: Censored Quantile Regression function f(β) and ε = 0

.

Table 3.1 contains results for the estimation of the regression coefficients β2 only. We

compare the empirical coverage probabilities to the other three algorithms used in Bilias et al.

(2000). Therefore, we investigate the finite sample performance of four methods: our VNS

for CQR (CQR-VNS), the direct heteroscedastics bootstrap method (Bootstrap for short), the

resampling method (Resampling for short) and Bilias, Chen and Ying’s bootstrap method

(M-Bootstrap for short) (Bilias et al., 2000). The quality of solutions obtained by CQR-VNS

may be seen in Figure 3.6 as well
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Table 3.1: Empirical coverage probabilities for confidence intervals

Bootstrap Resample M −Bootstrap V NS

Confidence level ECP ECP ECP ECP

Standard Normal

0.95 S 0.956 0.929 0.912 0.948

P 0.974 0.952 0.943 0.951

0.90 S 0.909 0.878 0.863 0.897

P 0.941 0.900 0.886 0.901

0.85 S 0.868 0.830 0.812 0.847

P 0.906 0.846 0.833 0.851

Normal Mixture

0.95 S 0.957 0.936 0.926 0.950

P 0.975 0.938 0.935 0.951

0.90 S 0.923 0.892 0.875 0.899

P 0.941 0.878 0.872 0.901

0.85 S 0.879 0.843 0.824 0.852

P 0.901 0.829 0.822 0.851

Heteroscedastic Normal

0.95 S 0.963 0.950 0.946 0.937

P 0.966 0.948 0.943 0.951

0.90 S 0.922 0.906 0.896 0.895

P 0.925 0.898 0.887 0.901

0.85 S 0.887 0.859 0.851 0.846

P 0.868 0.838 0.832 0.851

Note: The model includes three regressors, a constant and two other, the real vector of coefficient is (1, 1, 1),

and the censoring point here is y0 = 0. P denotes percentile. S denotes the standard. VNS denotes variable

neighbourhood search. ECP is the empirical coverage probabilities.
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Figure 3.6: Points (x1i, x2i, yi), i = 1, . . . , 100, in data space with the standard normal and normal mixture

errors, and their estimated values (denoted as ”o”), obtained by CQR-VNS (denoted as ”+”)

The bootstrap regression model in Table 3.1 can be formulated as in Hahn (1995),

f(β) = min
n∑

i=1

ρθ(yi − βθix
′
i) (3.16)

where yi = βθix
′
i + εθi. Moreover, the regressor vector x is deterministic and εθi are i.i.d of

random variables.

The M-bootstrap and the resampling method in Bilias et al. (2000) are an extension to

the PWY method (Parzen et al., 1994), where they are based on the next equation,

f(β̂) =
n∑

i=1

xi[I(yi − βθix
′
i ≤ 0)− 1

2
]I(β̂θix

′
i > 0) + U∗ = 0 (3.17)

where U∗ =
∑n

i=1 xi[Bi − 1
2 ]I(β̂θix

′
i > 0). Bi, i = 1, . . . , n is a sequence of i.i.d. Bernoulli

random variables with success probability 1/2.

Moreover, the steps of calculating the standard S in Table 3.1 are given by:

• We run the code for 1000 times for each type of error, and we then save the regression

coefficient β2.

• Then the mean and the standard deviation (sd) of 1000 β2 has been calculated.
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• The confidence interval for the quantile θ is given by (mean(β2)−θ.sd(β2),mean(β2)+

θ.sd(β2)), where θ in Table 3.1 has three probabilities θ = 0.95, 0.90 or 0.85, where

θ(0.95) = 1.96, θ(0.90) = 1.64 and θ(0.85) = 1.44.

• The standard S is the number of β2 within the confidence interval divided by 1000.

Furthermore, the steps of calculating the percentile P in Table 3.1 are given by

• We run the code for 1000 times for each type of error, and we then save the regression

coefficient β2.

• The percentile interval is written as ( (1−θ)
2 ∗ 100, (1 − (1−θ)

2 ) ∗ 100), where θ in Table

3.1 has three probabilities θ = 0.95, 0.90 or 0.85.

• The percentile P is the number of β2 within the percentile interval divided by 1000.

As we can see in Table 3.1, for standard normal distribution error and normal mixture er-

ror, VNS method gives better results when compared to other methods. For heteroscedastic

normal error term, our CQR-VNS reports better results than others for finding the percentile

“P”, but it is not the best one in finding standard “S” case. The distribution best solutions

obtained by our CQR-VNS in 100 runs are presented at Figure 3.7. Therefore, we can con-

clude that VNS based heuristic with the Powell’s estimator is a new promising method for

solving the CQR problem. Our results also show that the choice of approximate solution

method applied on exact model could be a better choice than the use of exact methods on

an approximate model.

3.4.2 GLOB-VNS for finding Finding root mean square, mean bias, mean

absolute deviation and median bias

In this subsection, there are two possible regression functions. The first one can be written

as

y = max{β0 + xi1β1 + xi2β2 + εi, y0}, (3.18)
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Figure 3.7: Distribution of local minima in (β1, β2) space, obtained by 100 restart of CQR-VNS

and the second one can be written as

y = max{β0 + xi1β1 + xi2β2 + xi3β3 + xi4β4 + xi5β5 + εi, y0}, (3.19)

where (β0, β1, β2, β3, β4, β5) equals (1, 1, 0.5,−1,−0.5, 0.25). xi are generated as a standard

normal distribution, truncated as {‖ xi ‖∞< 2}. The error term has the multiplicative

herteroscedasticity structure, where it can be formulated as

εi = uiv(xi), (3.20)

where v(xi) can be written as

v(xi) = a0 +
m∑

j=1

(aj1xji + aj2x
2
ji), (3.21)

a0 = 1, aj1 = 0.5 and aj2 = 0.5. The censoring point is y0 = −0.75.

Two alternative distributions are considered for ui: a normal distribution N(0, 25), and

a χ2 distribution with four degrees of freedom, re-centered to have zero median. In this part

we have done the following:
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• We generate the data as above according to Buchinsky and Hahn (1998).

• We repeat the simulation 10000 times for each of the three cases of sample size:

{(yi, xi), i = 1, 2, . . . , 100},{(yi, xi), i = 1, 2, . . . , 400}, and {(yi, xi), i = 1, 2, . . . , 600}.

• We apply the VNS for two cases of regression function. the first one as (3.18), and the

second one as (3.19).

• We find the root mean square errors (RMSEs), mean bias, mean absolute deviation

(MAE), and median bias for all (β1, β2).

• Our results are compared with the results from the CV method (which denotes the

CQR-LP estimator with log likelihood cross-validated bandwidth), the CVa method

(which denotes the CV estimator with bandwidth adjusted to conform with assumption

K), the PR method (which denotes the CQR-LP estimator with probit estimates for the

censoring probability), the HO and HOa methods (which are the same as CV and CVa,

except that the kernel function is order kernel), the CR method, which is a Powell’s

estimator, and the VNS method (Buchinsky and Hahn, 1998).

Table 3.2 shows the computational results, when the function is presented as in (3.18)
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Table 3.2: Monte carlo simulation with three regressors for 0.50 quantile and 0.75 censoring point (10,000)

repetition

Intercept - β0 Slope - β2

CV CV a PR HO HOa CR V NS CV CV a PR HO HOa CR V NS

N(0, 25)

n = 100

RMSE 2.88 3.34 1.59 4.39 3.02 4.11 0.42 2.16 2.10 2.18 2.41 1.98 2.85 0.73

Mean bias 0.14 0.07 0.60 0.18 0.44 −0.08 −0.23 0.31 0.28 0.70 0.32 0.40 0.33 −0.65

MAE 0.82 0.80 0.94 0.83 0.92 0.74 0.23 0.86 0.83 1.21 0.85 0.90 0.92 0.65

Median bias 0.93 0.32 0.70 0.45 0.60 0.35 −0.00 0.06 0.01 0.49 0.05 0.13 −0.31 −0.69

n = 400

RMSE 0.58 0.57 0.56 0.60 0.66 0.68 0.28 0.61 0.59 0.90 0.67 0.71 0.66 0.65

Mean bias 0.20 0.17 0.17 0.19 0.30 0.19 −0.14 −0.06 −0.10 0.28 −0.05 0.04 −0.45 −0.61

MAE 0.39 0.38 0.36 0.41 0.45 0.41 0.14 0.39 0.39 0.53 0.43 0.44 0.55 0.61

Median bias 0.20 0.16 0.16 0.19 0.29 0.19 −0.00 −0.12 −0.17 0.21 −0.12 −0.05 −0.52 −0.57

n = 600

RMSE 0.48 0.48 0.46 0.48 0.52 0.49 0.24 0.50 0.48 0.71 0.54 0.56 0.57 0.62

Mean bias 0.18 0.16 0.14 0.12 0.20 0.20 −0.12 −0.06 −0.11 0.25 −0.17 −0.10 −0.47 −0.58

MAE 0.33 0.32 0.31 0.33 0.35 0.33 0.12 0.33 0.33 0.44 0.40 0.40 0.50 0.58

Median bias 0.18 0.16 0.15 0.13 0.20 0.19 −0.00 −0.10 −0.15 0.23 −0.22 −0.16 −0.49 −0.54

χ2(4)

n = 100

RMSE 0.63 0.62 0.62 0.65 0.70 0.67 0.25 0.72 0.70 0.92 0.76 0.79 0.90 0.59

Meanbias 0.26 0.23 0.25 0.30 0.37 0.20 −0.12 −0.05 −0.08 0.19 −0.01 0.04 −0.14 −0.52

MAE 0.41 0.40 0.39 0.43 0.45 0.39 0.12 0.46 0.45 0.54 0.48 0.49 0.56 0.52

Median bias 0.24 0.21 0.22 0.27 0.33 0.19 −0.00 −0.11 −0.13 0.12 −0.08 −0.03 −0.37 −0.49

n = 400

RMSE 0.32 0.31 0.28 0.32 0.35 0.31 0.13 0.35 0.35 0.39 0.37 0.37 0.51 0.50

Mean bias 0.17 0.16 0.09 0.17 0.21 0.12 −0.06 −0.11 −0.14 0.00 −0.09 −0.07 −0.45 −0.47

MAE 0.22 0.21 0.18 0.22 0.23 0.20 0.06 0.24 0.24 0.25 0.25 0.25 0.48 0.47

Median bias 0.17 0.16 0.08 0.17 0.20 0.11 −0.00 −0.13 −0.15 −0.02 −0.11 −0.08 −0.47 −0.45

n = 600

RMSE 0.26 0.265 0.23 0.27 0.29 0.25 0.10 0.30 0.30 0.32 0.30 0.30 0.50 0.48

Mean bias 0.14 0.14 0.06 0.15 0.18 0.09 −0.04 −0.10 −0.13 −0.01 −0.09 −0.07 −0.46 −0.46

MAE 0.18 0.18 0.15 0.18 0.19 0.17 0.04 0.21 0.21 0.22 0.21 0.21 0.48 0.46

Median bias 0.14 0.13 0.06 0.14 0.17 0.10 −0.00 −0.12 −0.14 −0.03 −0.10 −0.08 −0.48 −0.44

Note:The model includes three regressors: a constant and two random i.i.d. N(0,1)regressors. The vector of

coefficients is (1,1,.5). The censoring point is set at 0.75.
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The steps of calculating RMSE, Mean bias, MAE and Median bias in Table 3.2 are

given by

• We run the code for 10,000 times for each type of error and we then save the constant

and slop regression coefficient β0 and β1.

• We find the mean and the variance for β0 and β1 independently.

• The RMSE has been found by the equation

RMSE =
√

(mean− β)2 + variance (3.22)

where β is equal 1.

• The Mean bias is given Mean bias = Mean− β, where β = 1.

• The Median bias is given Median bias = Median− β, where β = 1.

• The MAE is calculated by MAE = 1
n

∑n
i=1 | mean−β0i | for β0 and MAE = 1

n

∑n
i=1 |

mean− β1i | for β1, where n = 10, 000.

We use in Table 3.2 the regression function as in (3.18). Applying VNS method to original

Powell estimator for solving CQR outperforms better than the six other methods for the

regression coefficient β1 for all sample sizes and both kinds of error. On the other hand, the

VNS method did not work very well for the regression coefficient β2. The explanation is that

the VNS works to give the minimum of the objective function in total, not the minimum of

each component of this objective function.

In Table 3.3 the regression function has five regressors, as in (3.19). The data are gener-

ated in the same way as in Table 3.2.
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Table 3.3: Monte carlo simulation with six regressors for 0.50 quantile and 0.75 censoring point (10,000)

repetition

Intercept Slope

CV CV a PR CR V NS CV CV a PR CR V NS

N(0, 25)

n = 100

RMSE 3.29 3.25 4.36 3.93 0.52 2.24 2.24 2.74 3.05 0.61

Meanbias 1.66 1.38 3.59 0.70 −0.30 0.26 0.21 0.72 0.43 −0.41

MAE 2.07 1.89 3.56 1.55 0.30 1.12 1.09 1.60 1.11 0.41

M − bias 1.77 1.54 3.53 1.22 −0.00 0.05 0.00 0.51 −0.12 −0.13

n = 400

RMSE 1.34 1.28 1.46 1.31 0.42 0.78 0.77 1.15 0.89 0.52

Meanbias 0.78 0.62 1.15 0.74 −0.23 −0.19 −0.24 0.26 −0.38 −0.32

MAE 0.89 0.80 1.17 0.81 0.23 0.52 0.51 0.69 0.66 0.32

M − bias 0.79 0.64 1.15 0.78 −0.00 −0.25 −0.30 0.19 −0.54 −0.01

n = 600

RMSE 1.11 1.01 1.07 0.91 0.38 0.63 0.63 0.88 0.71 0.48

Meanbias 0.67 0.54 0.81 0.64 −0.20 −0.14 −0.16 0.16 −0.50 −0.29

MAE 0.74 0.66 0.84 0.65 0.20 0.45 0.45 0.54 0.63 0.29

M − bias 0.67 0.56 0.81 0.62 −0.00 −0.20 −0.22 0.11 −0.60 −0.00

χ2(4)

n = 100

RMSE 1.53 1.46 2.01 1.33 0.38 1.02 1.03 1.34 1.23 0.51

Meanbias 0.96 0.87 1.63 0.69 −0.20 −0.22 −0.24 0.10 −0.12 −0.32

MAE 0.99 0.93 1.54 0.75 0.20 0.66 0.64 0.80 0.73 0.32

M − bias 0.93 0.84 1.53 0.68 −0.00 −0.30 −0.34 −0.02 −0.37 −0.00

n = 400

RMSE 0.88 0.80 0.69 0.62 0.19 0.51 0.52 0.57 0.60 0.36

Meanbias 0.72 0.62 0.51 0.46 −0.07 −0.24 −0.29 −0.04 −0.47 −0.20

MAE 0.70 0.61 0.52 0.46 0.07 0.37 0.38 0.38 0.54 0.20

M − bias 0.70 0.60 0.50 0.45 −0.00 −0.27 −0.31 −0.07 −0.52 −0.00

n = 600

RMSE 0.80 0.72 0.54 0.54 0.13 0.42 0.43 0.45 0.57 0.31

Meanbias 0.69 0.60 0.40 0.42 −0.04 −0.17 −0.19 −0.04 −0.50 −0.17

MAE 0.69 0.60 0.41 0.41 0.04 0.29 0.31 0.30 0.53 0.17

M − bias 0.69 0.60 0.40 −0.00 −0.65 −0.18 −0.20 −0.06 −0.53 −0.00

Note:The model includes six regressors: a constant and five random i.i.d. N(0,1)regressors. The vector of

coefficients is (1,1,.5,-1,-.5,.25). The censoring point is set at 0.75.
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Table 3.3 shows that the VNS method with Powell estimator in general for solving CQR

gives very good results in the case of five regressors. We note that VNS is the best for all

sample sizes in both kind of error for slope coefficient. In the case of the x2 coefficient VNS

works well, better than other methods most of the time. We may conclude that, when we

increase the dimension of the regression function, the VNS method with the exact Powell

estimator outperforms other methods from the literature.

3.5 Conclusion and future research

In this chapter we suggest a new method for solving censored quantile regression (CQR).

It is based on variable neighbourhood search (VNS) global optimisation technique. As the

objective function it uses Powell estimator, which is known to be non convex, nor concave.

Other approaches in the literature try to find a linear approximation of Powell’s function and

then solve the problem exactly. We rather apply an approximation method on an exact CQR

model. Our method adapts VNS rules in order to solve this global optimisation problem.

The basic idea of the VNS metaheuristic is the use of different metric functions in defining

the neighbourhood structure of the current solution.

It appears that our new approach is competitive with state-of-the-art methods from the

literature. Moreover, our results indicate that better solutions are usually obtained by using a

nonlinear model and effective approximate solution method that use an approximate (linear)

model with exact solution procedure.

Future research may include the use of other, more sophisticated global optimisation

techniques for solving CQR. Moreover, it may include the extension of our approach to semi

censored quantile regression (Powell, 1986) as well. In addition, new neigbourhood structures

may be tried out within variable neigbourhood approach.
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Chapter 4

Circle packing problem

In this chapter, variable neighbourhood search (VNS), a nonlinear global optimiser for solving

circle packing problem (CPP) is studied. The problem is an optimisation arrangement of n

arbitrary sized circles inside a container (e.g. a circle, a square or a rectangle) such that no

two circles overlap. Several years ago, CPP has been formulated as a continuous, nonlinear,

nonconvex global optimisation problem. This problem has proven to be NP-hard (Hochbaum

and Maass, 1985). Recently it has been solved by the reformulation descent approach where

two different formulations of the problem switch between a polar and a Cartesian system

(Mladenović et al., 2005).

This chapter presents a VNS algorithm based on reformulation descent by using two

different Cartesian formulations, maximising the radius of small circles or minimising the

radius of the container. Moreover, we consider two types of containers to pack n equal circles:

a circle and a square. The problem has been solved by each formulation independently as

well as by using both within one reformulation descent method. Our work investigates the

effect of this type of reformulation.

This chapter is organised as follows. In section 4.1, the description of the circle packing

problem is presented. As mentioned earlier, the CPP has various type of containers, in this

thesis CPP is studied within two types of containers, a circle and a square. Furthermore,

a brief idea of the CPP within the circle and the square container is given in section 4.2.

Section 4.3 is devoted to focus on the variable neighbourhood search for solving the circle
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packing problem with reformulation descent. The reformulation descent has used two Carte-

sian formulations for each container type. The computational results of the algorithm are

presented in section 4.4. Section 4.5 gives a brief conclusion with future research.

4.1 Problem description

The circle packing problem (CPP) consists of positioning a given number n of circular disks

of equal radius without overlap, such that its radius is a maximum. It is a NP-hard problem,

i.e. it is difficult to find the optimal solution and therefore it is unlikely to find a polynomial

time algorithm to solve the problem. Moreover, it is harder to be solved, when the search

space becomes large. Thus, the use of heuristic methods provides good solutions with more

speed, efficiency, and reliability. In a general setting, the CPP can be defined as follows.

If there is a given container which depends on a size parameter r, where C(r) ⊂ Rd, and

given n are geometrical objects. The position of these n in d-dimensional space depends on

t position parameters αi1, . . . , αit, i.e., Di(αi1, . . . , αit) ⊂ Rd, i = 1, . . . , n. Then the solution

is determined by choosing the parameters where all the objects are packed inside a container

such that no two circles overlap, and the size of container is minimised. The problem can be

written

min r

s.t.

Di(αi1, . . . , αit) ⊆ C(r) i = 1, . . . , n

D0
i (αi1, . . . , αit) ∩D0

j (αi1, . . . , αit) = φ i 6= j

If d is equal to 2, many optional features for the container could exist like a circle, a

square, a rectangle or a strip. Moreover, the radius of circles within the container could be

equal or unequal.

The CPP has arisen in many fields of natural sciences such as engineering design and

has many applications such as in coverage, storage, packaging and cutting industry (Correia
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et al., 2001; Cui, 2005; Dowsland, 1991; Fraser and George, 1994; George et al., 1995; Hifi

and M’Hallah, 2004; Hifi et al., 2004). Hifi et al. (2004) consider cutting out as many circles

as possible from the rectangle plate, where these problems could be considered as constrained

or unconstrained circle cutting problems. Cui (2005) gives optimal patterns for solving the

problem of cutting circle blanks from silicon steel to build electric motors. These types could

be expensive due to the use of silicone. The quality of the packing is measured by one of

these three options (Castillo et al., 2008):

• the size of the container.

• the weighted average pairwise distance between centers of circles.

• a linear combination of both criteria.

The geometric approach to the circle packing problems has a long history (see Szabó

et al. (2007) for an overview). However, solving problems with a large n is almost impos-

sible by using geometrical arguments. Therefore, most researchers switch to mathematical

programming approaches.

The same problem can sometimes be formulated in different ways, and one can switch

between formulations using the same local optimisation method. A solution obtained by

one formulation is an initial solution for another one. The method that alternates between

different formulations of the problem is called a formulation space search (FSS). Mladenović

et al. (2005) is the simplest FSS, where formulations are changed in a deterministic way until

there is no improvement in the objective function value. CPP can be manipulated through

different formulations according to container types. CPP is solved by using a nonlinear

reformulation of the problem, where the idea of reformulation descent (RD) has been applied.

Switching between the Cartesian and the polar coordinates (and vice versa) was possible

since MINOS is used as an NLP solver (see details in Mladenović et al. 2005). Their strategy

avoids stopping at a stationary point by switching between two different formulations. An

extension of the RD idea is discussed by Mladenović et al. (2007).

As previously mentioned, the CPP is considered for packing equal or unequal circles

within different types of containers. Each type could be manipulated by using different
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formulations. In this chapter, the CPP has been considered within two types of containers

in the plane (i.e. d = 2), a circle and a square. Each type of container will accommodate

equal circles only with their mathematical formulations.

4.1.1 Circle packing problem inside a circle container (CPP-1)

There are two different formulations of CPP-1. The first formulation attempts to find a

maximum radius for n equal circles in a unit circle container without any overlap. We assume

that the container is centered at the origin. This problem can be written in 2−dimensional

Cartesian as follows:

max r (4.1)

s.t.
√

x2
i + y2

i ≤ 1− r, i = 1, . . . , n,

dij ≥ 2r, i, j = 1, . . . , n ; i < j

where the center of circle i is denoted by (xi, yi). dij is the distance between the centers of

the two circles, i and j, where (i < j). Moreover, it can be calculated by using Euclidean

distance as follow:

dij =
√

(xi − xj)2 + (yi − yj)2, ∀i, j = 1, . . . , n, (4.2)

The second formulation attempts to minimise the radius of the circle container R to accom-

modate n unit circles without overlap. We assume that the problem is in 2− dimensional

Cartesian as well, where it is given as:

min R (4.3)

s.t.
√

X2
i + Y 2

i ≤ R− 1, i = 1, . . . , n,

dij ≥ 2, i, j = 1, . . . , n ; i < j
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To prove the equivalence between the two formulations (4.1) and (4.3), we divide the

constraints in formulation (4.1) by 1/r2. For the first constraint we have

x2
i + y2

i ≤ (1− r)2, i = 1, . . . , n,

by dividing this constraint with 1/r2, we will have

x2
i

r2 + y2
i

r2 ≤ (1−r
r )2

then we will get

(xi
r )2 + (yi

r )2 ≤ (1
r − 1)2

this gives
√

(xi
r )2 + (yi

r )2 ≤ 1
r − 1

where xi
r = Xi, yi

r = Yi and 1
r = R, and this gives the first constraint in the formulation

(4.3).

For the second constraint, we will do the same

d2
ij ≥ 4r2, i, j = 1, . . . , n ; i < j

this gives

(xi−xj)
2+(yi−yj)

2

r2 ≥ 4r2

r2

where

(xi
r −

xj

r )2 + (yi

r −
yj

r )2 ≥ 4

where this gives the second constraint in formulation (4.3).

4.1.2 Circle packing problem inside a square container (CPP-2)

In this subsection, CPP-2 formulations inside a square container will be explained. Once

again two formulations are presented. The first one is maximising the radius r for n equal

circles inside a unit square container without any overlap. It can be formulated as

max r (4.4)

s.t.
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r ≤ xi ≤ 1− r, i = 1, . . . , n,

r ≤ yi ≤ 1− r, i = 1, . . . , n,

dij ≥ 2r, i, j = 1, . . . , n ; i < j

where dij is given by (4.2). The second one is minimising the length of the side container

L of the square to accommodate a number of n unit circles without overlap. The nonlinear

formulation can be written as

min L (4.5)

s.t.

1 ≤ Xi ≤ L− 1, i = 1, . . . , n,

1 ≤ Yi ≤ L− 1, i = 1, . . . , n,

dij ≥ 2, i, j = 1, . . . , n ; i < j

We can note that the optimal solution in formulation (4.4) can be transferred to the other

formulation (4.5) by using Xi = xi
r , Yi = yi

r and L = 1
r . This can be proved the same as in

circle packing problem within a circle container.

4.2 Literature review

Historically, the CPP was introduced in European mathematics in the nineteen century,

when the Italian mathematician G. Malfatti posed this question “Consider a right prism

with a right triangular base. How do we cut out three cylinders (perhaps of different sizes)

from the prism, such that the total volume of cylinders is maximal?” (Szabó et al., 2007).

This problem was studied and solved earlier by the Japanese mathematician Chokuen Ajima

between (1732-1798) (Szabó et al., 2007).

The packing problems have been studied for 2−dimensional and 3−dimensional space.

Only the 2 − dimensional space will be considered here. Details of packing problems in

3 − dimensional space have been published by many authors (Kravitz 1967; Clare and
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Kepert Jun. 9, 1986; Hsiang 1993). The circle packing problems in 2− dimensional space

may have various types of containers such as a circle, a square, a rectangle, a triangle or

a strip. The next subsections will give a brief review of CPP within a circle and a square

container respectively. For other types of container the reader may be refereed to (Dowsland

and Dowsland, 1992; George et al., 1995; Huang et al., 2005; Birgin et al., 2005; Birgin and

Gentil, 2010).

4.2.1 Circle packing problem within the circle container CPP-1

CPP-1 has two options of packing n non-overlapping circles, equal or unequal ones. This

thesis considers only packing n equal circles within a circle container without overlap. Details

of packing unequal circles inside a circle container without overlap have been discussed by

many researchers (Wenqi and Ruchu, 1999; Wang et al., 2002; Huang et al., 2003; Hifi and

M’Hallah, 2008; Huang et al., 2006; Grosso et al., 2010).

Kravitz (1967) is perhaps one of the first researchers to study uniform sized circles in-

side a unit circle container. He was able to pack up to 19 without proofs of optimality.

He thought that the global optima for n = 10 within the larger container is found with

R = 3.8284271. Indeed, the global optimal solution for n = 10 has been found later by

mathematical programming with R = 3.8130256, see Figure 4.1.
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(a) Radius : 3.8284271 (b) Radius : 3.8130256

Figure 4.1: Packing 10 unit circles into a circle
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The optimal solutions for n = 7, . . . , 10 were independently proven by Graham (1968)

and Pirl (1969). Pirl (1969) also improved the results of packing problem for n up to 19.

However, some of his results (n = 14, 15, 16) were improved later (Goldberg, 1971). Goldberg

(1971) showed the packing results for n up to 20, but his results of n = 17 were improved by

Reis (1975).

Reis (1975) improved the results of packing equal circles within a circle container for

n = 17, 21, . . . , 25 as compared with previous literature. This involved a new technique

by using an iris diaphragm as a variable circumscribing circle to eliminate any assumption

connected with symmetry (Reis, 1975). The optimal solutions for n up to 11 have also been

published in Melissen (1994).

Lubachevsky and Graham (1997) solve CPP-1 by using the curved hexagonal packings.

For each k ≥ 1, the corresponding hexagonal number is h(k) = 3k(k + 1) + 1, where n =

h(k) is the number of equal circles within the container. There are m(k) = max{(k −
1)!/2, 1} different curved hexagonal packings, they give the same density. Billiards simulation

algorithm is used to solve the problem, which works by simulating the movements of n circles

during their movements along a fixed direction, each circle collides with other circles and

the boundary of the circle container. They assume that there is no gravity and friction. For

k ≤ 5, the optimal results are found, whereas for k > 5 good quality solutions have been

found by curved hexagonal packings (Lubachevsky and Graham, 1997).

Graham et al. (1998) use two packing algorithms to find the minimum radius for circle

container to accommodate n unit circles. They note that there research is poor for n > 20.

They use two variant strategies. One is based on the repulsion forces algorithm and it is

similar to that described by Nurmela and Ostergard (1997). The other is based on Billiards

simulation algorithm, which has been used by Lubachevsky and Graham (1997). Both

algorithms attempt to maximise the minimum pairwise distance among n points spread

in the unit circle centered at the origin. Moreover, both algorithms need similar CPU

time. Whereas billiard simulation algorithm is better in finding the optimal solutions, the

algorithms find the best packing results for 21 ≤ n ≤ 65.

As mentioned before, the same problem can sometimes be formulated in different ways,
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and one can switch between formulations within the same method. A solution obtained

by one formulation is an initial solution for another. The method that alternates between

two different formulations of the problem is called a reformulation descent (RD) (Mladenović

et al., 2005). The CPP problem can be formulated by different formulations due to container

types. In Mladenović et al. (2005), the CPP is solved by using a nonlinear reformulation

of the problem, where the idea of RD has been applied. Switching between Cartesian and

polar coordinates (and vice versa) was possible since MINOS is used as an NLP solver (see

details in Mladenović et al. (2005)). Their strategy avoids stopping at a stationary point

by switching between two formulations. Their results are compared with a Netwon-type

solution approach, where two approaches find solutions of good quality. However, RD needs

less CPU time. Extension of the RD idea by using more than two formulations is called

formulation space search (FFS) and it was put forward by (Mladenović et al., 2007).

Zhang and Deng (2005) use a hybrid algorithm for solving CPP-1 into a larger container

circle. The hybrid algorithm combines simulated annealing with tabu search. The power

of this algorithm comes from getting out of local minima. It uses simulated annealing to

escape from local optima and tabu search to prevent cycling and enhance diversification.

The hybrid algorithm outperforms simulated annealing and tabu search algorithms (Zhang

and Deng, 2005).

Birgin and Sobral (2008) solve CPP-1 in 2 − dimensional and 3 − dimensional space

within various types of containers (a circle, a triangle, a square, a rectangle and a strip). Each

type of container accommodates equal or different-sized circles. They use twice-differentiable

models for all pervious cases. Their strategy reduces the computational cost of computing

the overlapping (Birgin and Sobral, 2008).

Lu and Huang (2008) incorporate the PERM scheme into the strategy of maximum cave

degree to solve equal or unequal circles within a larger container circle. This approach

evaluates the benefit of a partial configuration by using the maximum cave degree. Besides,

the PERM strategy enhances the efficiency of search. Zhang’s algorithm is more powerful

than Lu and Huang’s algorithm for several large instances with equal size circles (Lu and

Huang, 2008).
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4.2.2 Circle packing problem within the square container CPP-2

Several approaches have been developed to solve the circle packing problem within a square

container during the last five decades. In a theoretical way, the optimal solutions are proven

for n = 2, . . . , 9, 14, 16, 25 and 36 circles (Nurmela and Ostergard, 1997; Markót, 2004),

n ≤ 20 (de Groot et al., 1990, 1992). The optimal solutions for 21 ≤ n ≤ 27 can be proven

using computer-aided software (Nurmela and Ostergard, 1999). Recently, the function values

for n = 10, . . . , 35, 37, 38 circles were correct within the tolerance equal to 1e−5 by Locatelli

and Raber (2002).

Maranas et al. (1995) use a min max optimisation approach with the MINOS and the

GAMS modeling language. This approach improves the result of n = 15, besides new

configurations are found for n= 28 and 29 and it matches the best results for up to n = 30.

Nurmela and Ostergard (1997) solve the problem by using a different nonlinear approach

based on the energy function
∑

i6=j(λ/d2
ij)

m. The problem is solved by minimising the energy

function, where it is transformed into an unconstrainted problem and is solved by using a

multistart hybrid line-search algorithm. The algorithm starts with a gradient direction, and

close to a solution it then uses a Newton direction (Nurmela and Ostergard, 1997). This

algorithm is used for solving the problem when n ≤ 50. Some results improve and others

find alternative ones. Furthermore, Graham and Lubachevsky (1996) extend and improve

the work carried out by Nurmela and Ostergard (1997) by using a Billiard simulation.

Boll et al. (2000) solve the problem by using a two-phase approach, the approximation

one moves each point along a pre-chosen direction while decreasing the step size. The second

phase uses a Billiard simulation, where the starting point is the result of the first phase. The

results of n = 32 and 48 circles are slightly improved, whereas the big difference is seen for

n = 37 and 50.

In Casado et al. (2001) , the unit square is subdivided into k × k subsquares, where

k =| √n |. They find the initial solution by randomly placing n points at the center of the

n subsquares. Each point has been perturbed randomly, where the algorithm may accept

the nonimproved perturbed point. The algorithm finds the results up to n = 100, where it

can find most of the optimal solutions from the literature and improve some results. This
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idea is extended by other researchers (Markót and Csendes, 2005; Szabó et al., 2005), where

they eliminate large groups of subproblems to improve the solution. The algorithm solves

the problem for n = 28, 29 and 30 within tight tolerance values (Markót and Csendes, 2005;

Szabó et al., 2005). Further extensions of this idea has been documented by Markót and

Csendes (2006); Markót (2007).

Locatelli and Raber (2002) consider finding the maximum radius for n non-overlapping

circles within a unit square. Their approach starts from a general rectangle branch-and-

bound algorithm, where the problem is modeled as a quadratic optimisation problem. Within

the tolerance 10−5, the algorithm has proven optimal for best known solutions in the litera-

ture for n = 10, . . . , 35 and n = 38, 39 except n = 32. In the case of n = 32, a new solution

has been found with a proof of its optimality within the given tolerance. However, for n = 37

a new solution has been detected without a proof of optimality within the given tolerance.

The running time for n ≤ 13 is less than 0.5 seconds, for n ≤ 21 is more than 2 minutes, and

for n ≤ 26 is more than 30 minutes, whereas for n ≤ 28 exceeds the 27 hours (Locatelli and

Raber, 2002).

Addis et al. (2008) reformulate the problem to have more efficient local search procedures.

They change the Euclidean distance by its square, where it can be written as

d̄2 ≤ (x
′
i − x

′
j)

2 + (y
′
i − y

′
j)

2 1 ≤ i < j ≤ n, (4.6)

They conjecture that the problem possesses a funnel landscape. This feature is commonly

known in molecular conformation problems. Their algorithm improves 32 best known solu-

tions in the range n ≤ 130 (Addis et al., 2008).

van Dam et al. (2007) solve the problem by using maximin Latin hypercube designs for

general n. They find the maximum Latin hypercube designs for n ≤ 70 and the approxima-

tion maximum Latin hypercube designs for 71 ≤ n ≤ 1000 (van Dam et al., 2007).

4.3 Reformulation descent within variable neighbourhood search

for solving circle packing problem

In this section, the rules for solving the CPP by using RD-VNS will be explained.
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4.3.1 RD-VNS for CPP

In this subsection, we have applied VNS in four different ways: using formulation in (4.1)

or (4.4) only, then using formulations in (4.3) or (4.5). Our RD-VNS switches between the

first and the second formulation, i.e. between (4.1) and (4.3), or between (4.4) and (4.5),

and vice versa. The CPP objective function is a nonlinear continuous one. Thus, the

CPP problem may be solved as an unconstrained nonlinear problem. Observe also that any

unconstrained nonlinear program may be considered as a box constrained, if left and right

values of variables that define the box are set to the same large negative and positive values

ai and bi. The GLOB-VNS package (Drazić et al., 2006) has been used. In order to run VNS

global optimiser for solving CPP, we need to adapt CPP variables to that general solver.

Therefore, given input data in GLOB-VNS is the vector x, and it contains 2n + 1 variables

denoted by x = (x1, y1, . . . , xn, yn, r), for models in (4.1) and (4.4). In the models given by

(4.3) and (4.5), the last variables are R and L respectively.

The steps of the VNS heuristic (Glob-VNS) for solving CPP for one formulation only are

given in Algorithm 25:
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Function Glob-VNS (x, kmax, tmax)

Select the set of neighbourhood structures Nk, k = 1, . . . , kmax induced from `11

and `∞ norms.

Choose (geometry, distribution) pairs order.2

Find an initial point x ∈ X.3

while t < tmax do4

k ← 15

repeat6

for (geometry, distribution) pairs order do7

Generate x′ ∈ Nk(x) at random //Shaking8

Apply Hooke-Jeeves NLP method starting with x′ to get x′′ //Local9

search

if f(x′′) < f(x) then10

x ← x′′, go to line 411

else

Set k ← k + 112

until k = kmax

t ← CpuTime()13

return x14

Algorithm 25: VNS for one formulation only

where kmax is a maximum number of neighbourhoods used in the search and tmax is the

maximum time allowed in the search.

Neighbourhoods - Shaking. For solving GOP, VNS has already been used in two different

ways: with neighbourhoods induced by using an `p norm (Drazić et al., 2006; Mladenović

et al., 2008; Liberti and Drazic, 2005) and without using an `p norm (Toksari and Guner,

2007). Here we apply VNS that uses the `p norm, i.e., we define distances between any two
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solutions x and y as

ρk(x, y) = (
n∑

i=1

|xi − yi|p)
1
p , (4.7)

or

ρk(x, y) = max
1≤i≤n

|xi − yi|, p = ∞. (4.8)

The neighbourhood Nk(x) denotes the set of solutions in the k–th neighbourhood of x, and

using the metric ρk, it is defined as

Nk(x) = {y ∈ X | ρ(x, y) ≤ rk}, (4.9)

or

Nk(x) = {y ∈ X | rk−1 ≤ ρ(x, y) ≤ rk}, (4.10)

where rk is a given radius of neigbourhood Nk (k = 1, . . . , kmax).

(i) Values of radii rk, k = 1, . . . , kmax. Those values may be defined by the user or calcu-

lated automatically during the minimisation process. The geometry of the neighbourhood

structure is induced by the `1 (4.7) and `∞ (4.8). We use balls as in (4.10). Radii r1 ≤ r2 ≤
. . . ≤ rkmax are automatically computed as follow: let x = (x1, y1, . . . , xn, yn, r) ∈ R2n+1 be

the current incumbent solution and let

ai ≤ xi ≤ bi, i = 1, . . . , 2n + 1 (4.11)

defines the box or hyper-cube

H =
2n+1∏

i=1

[ai, bi]

around the incumbent solution x. In order to find kmax neighbourhoods automatically and

thus make our GLOB-VNS more user-friendly, we divide xi−ai and bi−xi into a kmax intervals:

ρ
i
=

xi − ai

kmax
; ρi =

bi − xi

kmax
.

Then the kmax hyper-cubes (boxes) H1,H2, . . . , Hmax around the incumbent (the best solu-

tion found so far) x are given

aj + (k − 1)ρ
i
≤ xi ≤ bi − (k − 1)ρi, k = 1, . . . , kmax (4.12)
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or

dik ≤ xi ≤ dik, k = 1, . . . , kmax (4.13)

Figure (4.2) illustrates different type of distributions.

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Different distribution types.

(ii) (Geometry, distribution) pairs. Geometry of neighbourhood structures Nk is defined by

the choice of the metric functions used in the search through the solution space. The usual

choices are the `1, `2, and `∞ norms. Their order in the search is also important within

VNS. Different distributions may be used for obtaining the random point y from the same

neighbourhood Nk in the Shaking step. Uniform distribution in Nk is the obvious choice, but

other distributions may lead to a much better performance on some problems. Beside uniform

(u), we also implement the hypergeometric distribution (h)(Drazić et al., 2006; Mladenović

et al., 2008). The hypergeometric distribution (h) is designed as follows:

• The coordinate x1 is taken uniformly on [−1, 1], xk is taken uniformly from [−Ak, Ak]

where Ak = 1− | x1 | − . . .− | xk−1 |, k = 2, . . . , n− 1 and the last xn takes An with a

random sign.
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• The coordinates of x are permuted randomly.

Note that different choices of geometric neighbourhood shapes and random point distribu-

tions lead to different VNS-based heuristics. We denote them as (α, γ), where α and γ repre-

sents geometry (metric) and distribution used, respectively. Therefore, in total we have 6 dif-

ferent variants of VNS defined by (geometry, distribution) pairs: (`1, u),(`2, u),(`∞, u),(`1, h),

(`2, h), (`∞, h). Note that “u” denotes uniform distribution, while “h” denotes hypergeo-

metric (special) distribution. For simplicity, we will denote those variants in pseudo-code

as (1,1),(2,1),(3,1),(1,2),(2,2) and (3,2): (1,1)= (`1, u), (2,1)=(`2, u), etc. For example, pair

(3,2) indicates that `∞ norm (3) and the special distribution (2) are used in the shaking step.

However, after extensive computational analysis, we have used different (geometry, distri−
bution) pairs orders due to the used formulation. We have applied three (geometry, distribut−
ion) pairs in our GLOB-VNS for solving CPP with single formulation. For solving CPP by

formulation (4.1), the distribution order is given by dist type order = (3,2) (1,1) and (1,2).

For applying the formulation (4.3), the distribution order is given by dist type order =

(3,1) (1,2) and (1,1), and for the formulation (4.4) the distribution order is dist type order

= (3,2) (3,1) and (1,1). However, for the formulation (4.5) only two (geometry, distribution)

pairs have been used dist type order = (3,2) and (1,2).

Furthermore, variant (geometry, distribution) pairs orders has been applied for solving

CPP by using RD-VNS. We use four (geometry, distribution) pairs in our RD-VNS for solving

CPP-1 and CPP-2. Switching between CPP-1 formulations, from (4.1) to (4.3) was after

the mid of the CPU time, the distribution order is given by dist type order = (3,1) (1,1)

(1,2) and (3,1), where in the inverse case the distribution order is dist type order = (3,1)

(1,1) (3,2) and (1,2). For CPP-2, switching from (4.4) to (4.5) after half of the CPU time,

the order distribution is dist type order = (3,2) (1,2) (3,2) and (1,1), for visa versa case

it is dist type order = (1,2) (3,2) (3,1) and (1,2).

The (geometry, distribution) pairs have been found empirically. Table 4.1 gives an ex-

ample of finding the best (geometry, distribution) pairs, the formulation (4.1) has been used

with fixed CPU to 2 seconds, where all (geometry, distribution) pairs have been tried up

to four pairs. The best result and the best (geometry, distribution) pairs order are given in
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red in Table 4.1.

Table 4.1: Empirical example for choosing the (geometry, distribution) pairs for formulation (4.1)

(geometry, distribution)pair (3, 2) (1, 2) (1, 1) (3, 1)

results 0.203976 0.257700 0.260078 0.261200

(geometry, distribution) pairs (3, 1)(1, 1) (3, 1)(1, 2) (3, 1)(3, 2)

results 0.262230 0.262230 0.261140

(geometry, distribution) pairs (3, 2)(1, 1) (3, 2)(1, 2) (3, 2)(3, 1)

results 0.258920 0.259110 0.260764

(geometry, distribution) pairs (1, 2)(1, 1) (1, 2)(3, 2) (1, 2)(3, 1)

results 0.256880 0.257780 0.259338

(geometry, distribution) pairs (1, 1)(3, 2) (1, 1)(3, 2) (1, 1)(3, 1)

results 0.260070 0.260068 0.259379

(geometry, distribution) pairs (3, 2)(1, 2)(1, 1) (3, 2)(1, 2)(3, 2) (3, 2)(1, 2)(3, 1) (3, 2)(1, 1)(1, 2)

results 0.259169 0.259179 0.259178 0.258914

(geometry, distribution) pairs (3, 2)(1, 1)(3, 2) (3, 2)(1, 1)(3, 1) (3, 2)(3, 1)(3, 2) (3, 2)(3, 1)(1, 2)

results 0.252600 0.258914 0.260700 0.260769

(geometry, distribution) pairs (3, 2)(3, 1)(1, 1) (3, 1)(1, 2)(3, 1) (3, 1)(1, 2)(3, 2) (3, 1)(1, 2)(1, 1)

results 0.260771 0.261424 0.261480 0.262249

(geometry, distribution) pairs (3, 1)(1, 1)(3, 1) (3, 1)(1, 1)(3, 2) (3, 1)(1, 1)(1, 2) (3, 1)(3, 2)(1, 1)

results 0.261670 0.261194 0.261987 0.261751

(geometry, distribution) pairs (3, 1)(3, 2)(1, 2) (3, 1)(3, 2)(3, 1) (1, 2)(1, 1)(1, 2) (1, 2)(1, 1)(3, 2)

results 0.262210 0.261833 0.257070 0.260904

(geometry, distribution) pairs (1, 2)(1, 1)(3, 1) (1, 2)(3, 2)(1, 1) (1, 2)(3, 2)(1, 2) (1, 2)(3, 2)(3, 1)

results 0.261902 0.258220 0.256383 0.260300

(geometry, distribution)pairs (1, 2)(3, 1)(1, 1) (1, 2)(3, 1)(1, 2) (1, 2)(3, 1)(3, 2) (1, 1)(1, 2)(1, 1)

results 0.258220 0.256380 0.257756 0.260067

(geometry, distribution) pairs (1, 1)(1, 2)(3, 2) (1, 1)(1, 2)(3, 1) (1, 1)(3, 2)(1, 1) (1, 1)(3, 2)(1, 1)

results 0.26007 0.26139 0.262241 0.26006

(geometry, distribution) pair (1, 1)(3, 2)(1, 1) (1, 1)(3, 1)(1, 1) (1, 1)(3, 1)(1, 2) (1, 1)(3, 1)(3, 2)

results 0.260070 0.259300 0.259909 0.260200

(geometry, distribution) pairs (3, 1)(1, 1)(3, 1)(1, 1) (3, 1)(1, 1)(1, 2)(3, 2) (1, 1)(1, 2)(1, 1)(1, 2) (1, 1)(1, 2)(1, 1)(3, 2)

results 0.261390 0.255807 0.262239 0.260070

(geometry, distribution) pairs (1, 1)(1, 2)(1, 1)(3, 1) (1, 1)(1, 2)(3, 1)(1, 2) (1, 1)(1, 2)(3, 1)(1, 1) (1, 1)(1, 2)(3, 1)(3, 2)

results 0.260070 0.261267 0.261170 0.261360

(geometry, distribution) pairs (1, 1)(1, 2)(3, 2)(1, 2) (1, 1)(1, 2)(3, 2)(3, 1) (1, 1)(1, 2)(3, 2)(1, 1) (1, 1)(3, 2)(1, 2)(1, 1)

results 0.262244 0.260070 0.260070 0.261780

(geometry, distribution) pairs (1, 1)(3, 2)(1, 2)(3, 2) (1, 1)(3, 2)(1, 2)(3, 1) (1, 1)(3, 2)(1, 1)(1, 2) (1, 1)(3, 2)(1, 1)(3, 1)

results 0.260096 0.260069 0.260074 0.260096

(geometry, distribution) pair (1, 1)(3, 2)(1, 1)(3, 2) (1, 1)(3, 2)(3, 1)(1, 1) (1, 1)(3, 2)(3, 1)(3, 2) (1, 1)(3, 2)(3, 1)(1, 2)

results 0.260069 0.260980 0.260067 0.262244

(geometry, distribution) pairs (1, 1)(3, 1)(1, 1)(1, 2) (1, 1)(3, 1)(1, 1)(3, 2) (1, 1)(3, 1)(1, 1)(1, 3) (1, 1)(3, 1)(3, 2)(1, 1)

results 0.260150 0.250000 0.250000 0.259500

(geometry, distribution) pairs (1, 1)(3, 1)(3, 2)(1, 2) (1, 1)(3, 1)(3, 2)(3, 1) (1, 1)(3, 1)(1, 2)(1, 1) (1, 1)(3, 1)(1, 2)(3, 2)

results 0.259500 0.260036 0.259900 0.259900

(geometry, distribution) pairs (1, 1)(3, 1)(1, 2)(3, 1) (1, 2)(1, 1)(1, 2)(1, 1) (1, 2)(1, 1)(1, 2)(3, 2) (1, 2)(1, 1)(1, 2)(3, 1)

results 0.259900 0.258260 0.257120 0.259080

(geometry, distribution) pairs (1, 2)(1, 1)(3, 2)(3, 1) (1, 2)(1, 1)(3, 2)(1, 1) (1, 2)(1, 1)(3, 2)(1, 2) (1, 2)(1, 1)(3, 1)(1, 1)

results 0.257618 0.257570 0.258791 0.261322

(geometry, distribution) pairs (1, 2)(1, 1)(3, 1)(1, 2) (1, 2)(1, 1)(3, 1)(3, 2) (1, 2)(3, 2)(1, 2)(1, 1) (1, 2)(3, 2)(1, 2)(3, 2)

results 0.261330 0.261307 0.256400 0.256324

(geometry, distribution) pairs (1, 2)(3, 2)(1, 2)(3, 1) (1, 2)(3, 2)(1, 1)(3, 1) (1, 2)(3, 2)(1, 1)(3, 2) (1, 2)(3, 2)(1, 1)(1, 2)

results 0.256324 0.262122 0.258221 0.258822
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(geometry, distribution) pairs (1, 2)(3, 2)(3, 1)(1, 1) (1, 2)(3, 2)(3, 1)(1, 2) (1, 2)(3, 2)(3, 1)(3, 2) (1, 2)(3, 1)(1, 2)(1, 1)

results 0.260357 0.259501 0.260163 0.260002

(geometry, distribution) pair (1, 2)(3, 1)(1, 2)(3, 1) (1, 2)(3, 1)(1, 2)(3, 2) (1, 2)(3, 1)(3, 2)(1, 1) (1, 2)(3, 1)(3, 2)(1, 2)

results 0.259732 0.259732 0.260510 0.259906

(geometry, distribution) pairs (1, 2)(3, 1)(3, 2)(3, 1) (1, 2)(3, 1)(1, 2)(3, 1) (1, 2)(3, 1)(1, 2)(3, 2) (1, 2)(3, 1)(1, 2)(1, 1)

results 0.25447 0.259732 0.259732 0.259937

(geometry, distribution) pair (3, 2)(1, 1)(1, 2)(1, 1) (3, 2)(1, 1)(1, 2)(3, 1) (3, 2)(1, 1)(1, 2)(3, 2) (3, 2)(1, 1)(3, 2)(1, 1)

results 0.256397 0.255807 0.255807 0.258919

(geometry, distribution) pairs (3, 2)(1, 1)(3, 2)(1, 2) (3, 2)(1, 1)(3, 2)(3, 1) (3, 2)(1, 1)(3, 1)(1, 1) (3, 2)(1, 1)(3, 1)(1, 2)

results 0.259496 0.258917 0.258925 0.259490

(geometry, distribution) pair (3, 2)(1, 1)(3, 1)(3, 2) (3, 2)(1, 2)(3, 2)(3, 1) (3, 2)(1, 2)(3, 2)(1, 1) (3, 2)(1, 2)(3, 2)(1, 2)

results 0.258917 0.259108 0.259130 0.259437

(geometry, distribution) pairs (3, 2)(1, 2)(1, 1)(3, 1) (3, 2)(1, 2)(1, 1)(3, 2) (3, 2)(1, 2)(1, 1)(1, 2) (3, 2)(1, 2)(3, 1)(1, 2)

results 0.258231 0.259163 0.259111 0.259437

(geometry, distribution) pair (3, 2)(1, 2)(3, 1)(1, 1) (3, 2)(1, 2)(3, 1)(3, 2) (3, 2)(3, 1)(3, 2)(1, 1) (3, 2)(3, 1)(3, 2)(1, 2)

results 0.258231 0.259108 0.260767 0.260076

(geometry, distribution) pairs (3, 2)(3, 1)(3, 2)(3, 1) (3, 2)(3, 1)(1, 2)(1, 1) (3, 2)(3, 1)(1, 2)(3, 1) (3, 2)(3, 1)(1, 2)(3, 2)

results 0.256440 0.260770 0.261013 0.260773

(geometry, distribution) pairs (3, 2)(3, 1)(1, 1)(1, 2) (3, 2)(3, 1)(1, 1)(3, 1) (3, 2)(3, 1)(1, 1)(3, 2) (3, 1)(1, 1)(1, 2)(1, 1)

results 0.260772 0.260766 0.260762 0.261569

(geometry, distribution) pair (3, 1)(1, 1)(1, 2)(3, 1) (3, 1)(1, 1)(1, 2)(3, 2) (3, 1)(1, 1)(3, 2)(3, 1) (3, 1)(1, 1)(3, 2)(1, 1)

results 0.261560 0.261532 0.261549 0.261398

(geometry, distribution) pairs (3, 1)(1, 1)(3, 2)(1, 2) (3, 1)(1, 1)(1, 2)(1, 1) (3, 1)(1, 1)(1, 2)(3, 1) (3, 1)(1, 1)(1, 2)(3, 2)

results 0.262064 0.261569 0.261568 0.261570

(geometry, distribution) pairs (3, 1)(1, 2)(3, 2)(1, 1) (3, 1)(1, 2)(3, 2)(1, 2) (3, 1)(1, 2)(3, 2)(3, 1) (3, 1)(1, 2)(3, 1)(3, 2)

results 0.262220 0.262230 0.262233 0.262238

(geometry, distribution) pairs (3, 1)(1, 2)(3, 1)(1, 2) (3, 1)(1, 2)(3, 1)(1, 1) (3, 1)(1, 2)(1, 1)(1, 2) (3, 1)(1, 2)(1, 1)(3, 2)

results 0.262234 0.262220 0.262234 0.262244

(geometry, distribution) pairs (3, 1)(1, 2)(1, 1)(3, 1) (3, 1)(3, 2)(1, 1)(3, 1) (3, 1)(3, 2)(1, 1)(3, 2) (3, 1)(3, 2)(1, 1)(1, 2)

results 0.261417 0.261188 0.262234 0.262212

(geometry, distribution) pairs (3, 1)(3, 2)(1, 2)(3, 2) (3, 1)(3, 2)(1, 2)(3, 1) (3, 1)(3, 2)(1, 2)(1, 1) (3, 1)(3, 2)(3, 1)(1, 1)

results 0.261525 0.261972 0.264729 0.261855

(geometry, distribution) pairs (3, 1)(3, 2)(3, 1)(1, 2) (3, 1)(3, 2)(3, 1)(3, 2)

results 0.262237 0.261865

After that a radius from interval [0, rk] is taken at random in order to get a point from

Nk(x). Therefore, a random point within the Shaking step of GLOB-VNS or RD-VNS is gener-

ated in two steps: (i) find random direction; (ii) find random radius along that direction.

Local Search. As a local search for solving CPP we apply the direct search Hooke-Jeeves

nonlinear programming method since it does not use derivatives. The left and right bound-

aries aj and bj for variables are defined as aj = −1 and bj = +1. The GLOB has six local search

methods: steepest descent, Fletcher-Powell, Fletcher-Reeves, Nelder-Mead, Hook-Jeeves and

Rosenbrock, where we chose Hook-Jeeves nonlinear programming method by an empirical

way. At the beginning, we fixed the other parameters on GLOB with fixed maximum running
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time and we run the code for each method. Then we found that the Hook-Jeeves method

gave better results than the other five methods. For that the Hook-Jeeves method has been

used here as a local search method for solving the CPP.

Pseudo-code. Our RD-VNS procedure for solving the CPP problem contains two different

formulations for solving the same problem. The RD-VNS algorithm for solving CPP is given

in Algorithm 26, where kmax and tmax are the usual VNS parameters, given by the user.
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Function RD-VNS (x, ϕ1, ϕ2, kmax, tmax)

Select the set of neighbourhood structures Nk, k = 1, . . . , kmax induced from `11

and `∞ norms as in (4.7) and (4.8).

Choose (geometry, distribution) pairs order.2

Set ϕactive = ϕ13

Find an initial point x ∈ X with respect to ϕactive4

while t < tmax do5

k ← 16

repeat7

for (geometry, distribution) pairs order do8

Generate x′ ∈ Nkϕactive(x) at random //Shaking9

Apply Hooke-Jeeves NLP method starting with x′ to get x′′ //Local10

search

if f(x′′, ϕactive) < f(x, ϕactive) then11

x ← x′′, and go to line 6.12

else

Set k ← k + 113

until k ≤ kmax

Transform the point x to corresponding point in another formulation, where14

x = 1/f(x, ϕactive)

if ϕactive = ϕ1 then15

ϕactive = ϕ2

else16

ϕactive = ϕ1

t ← CpuTime()17

return x18

Algorithm 26: RD-VNS algorithm
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The pseudo-code for the RD-VNS in Algorithm 26 contains a few more lines than the

pseudo-code for GLOB-VNS. They correspond to different formulations of CPP-1 or CPP-

2. In line 3 the current formulation is denoted by the notation ϕactive. Lines 14, 15 and

16 explain the switching between two formulations. Each variable xj , j = 1, . . . , 2n + 1 is

divided by pervious x2n+1, which is in fact an objective function value of the current problem

(r,R or L).

After choosing (geometry, distribution) pairs and the active formulation ϕactive in steps

1 and 2 respectively in Algorithm 26, we then choose a random initial solution x. We denote

with x the incumbent solution. As explained in Algorithm 26, the outer loop of VNS is

running until a predefined stopping condition is met. The inner loop is repeated kmax times,

if there is no improvement in x. In each neighbourhood a random point from the Nk(x) is

taken (line 9) and the well known Hooke-Jeeves unconstrained nonlinear programming code

is run (line 10). The active formulation is denoted with ϕactive. If the better solution is

obtained, we save it (line 12) and repeat the entire process with the first neighbourhood

(i.e., return to step 7).

4.4 Computational results

Our code is written in C++ and compiled with Microsoft Visual Studio 8.0. The program

is run on Intel(R) Core(TM) 2 at 1.73 GHz with 2 GB of RAM. There is no information

regarding the computers used to calculate the results for other methods.

This section is divided into two subsections, one is devoted for CPP-1 results, and the

second includes the CPP-2 results.

4.4.1 CPP inside a circle container (CPP-1)

In this subsection all the CPP-1 results for n = 10, . . . , 200 in four variant cases will be

provided. The first case uses GLOB-VNS with the formulation (4.1) only, the second one uses

GLOB-VNS with the formulation (4.3). The third case uses RD-VNS between the formulation

(4.1) and the formulation (4.3), where in this case the algorithm starts with the formulation
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(4.1), and it then switches to the formulation (4.3) after half of the CPU time allowed.

Finally, this one is the opposite case of the third one, where the algorithm RD-VNS is between

the formulation (4.1) and the formulation (4.3), but it starts with the formulation (4.3), and

it then switches to the formulation (4.1) at the middle of the CPU time.

The CPP-1 results for applying each formulation, (4.1) or (4.3), independently and RD

between them are given in Table 4.2, Table 4.3, Table 4.4 and Table 5.1, Table 5.2 in

Appendix B respectively.
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Circle packing problem CPP inside a circle container (CPP-1)
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Circle packing problem CPP inside a circle container (CPP-1)
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Circle packing problem CPP inside a circle container (CPP-1)

In Table 4.2, Table 4.3, Table 4.4, Table 5.1 and Table 5.2, n denotes the number of non-

overlap equal circles inside the circle container. The value of n is within the interval [10, 200].

The Packonomia denotes the best known results in Packonomia website (Hungarian, 2009).

This website has two possibilities for each number of circles within the circle container,

firstly the best known results of the maximum radius of n non-overlap equal circles inside

the unit circle container is denoted by Packonomia r. Secondly, the best known results

of the minimum radius of circle container to accommodate n unit circles without overlap

is denoted by Packonomia R. V NS R denotes the minimum radius of circle container to

accommodate n equal circles without overlap by using GLOB-VNS with the single formulation

(4.3). Next column, in Tables 4.2, 4.3, 4.4, 5.1 and 5.2, is the one divided by V NS R

i.e. 1
V NS R . V NS r denotes the maximum radius for n equal circles within the unit circle

container without overlap, where it has been found by GLOB-VNS with the single formulation

(4.3) only.

The next two columns have been found by applying the RD-VNS algorithm, where RD(R →
r) means that RD-VNS algorithm starts with the formulation (4.3) first, then it switches to the

formulation (4.1), and vice versa for RD(r → R). The last column CPU gives the running

time in seconds.

The next table compares our results(GLOB-VNS or RD-VNS) with the Packonomia website

(Hungarian, 2009) by finding the average of the results. For finding the average, the n

interval, n ∈ [10, 200], has been divided into eight subintervals, [10, 25], [10, 50], [10, 75],

[10, 100], [10, 125], [10, 150], [10, 175] and [10, 200]. These averages are presented in Table

4.5.
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Circle packing problem CPP inside a circle container (CPP-1)

The data in Table 4.5 are average results between two fixed numbers of n, where n

is the number of equal size circles within the container without overlap. In Table 4.5,

Packonomia denotes the best results known in Packomania website (Hungarian, 2009), where

Packonomia r is the best known results for maximising the radius of the n small circles and

Packonomia R is the best known results for minimising the radius of the circle container.

r denotes applying GLOB-VNS results to the formulation (4.1) only. R denotes applying

GLOB-VNS results to the formulation (4.3). RD(R → r) denotes applying RD-VNS between

(4.1) and (4.3), where the RD-VNS algorithm starts with the formulation (4.1). Also, RD(r →
R) denotes applying RD-VNS to (4.1) and (4.3), where the RD-VNS algorithm starts with the

formulation (4.3). CPU is computational time in seconds. The results in Table 4.5 have been

rounded into five decimal numbers.

As shown in Table 4.5 and after comparing the average results for all different four cases,

it can be noted that using GLOB-VNS with the formulation (4.1) for CPP-1 outperforms

GLOB-VNS with the formulation (4.3) and using RD-VNS between (4.1) and (4.3).

Furthermore, Table 4.6 can prove that using GLOB-VNS with the formulation (4.1) for

CPP-1 is the best among four variant cases by finding the percentage of the average difference

between the best known results (Hungarian, 2009) and our GLOB-VNS and RD-VNS results for

CPP-1.

In Table 4.6, n is the number of non-overlap equal circles inside the circle container. Besides,

the value of n has been divided into eight subintervals as in Table 4.5. The percentage of

the averages difference in Table 4.6 have been found by giving the V NS R as an example.

It is calculated by deducting the GLOB-VNS results (which has been found by using the

formulation (4.3) for minimising the radius of container R to accommodate n unit circles

without overlap) from the best known results at the same n. After that the average between

two fixed n is applied i.e. for each subinterval. Then the percentage for each average interval

has been calculated. V NS r is between the best known results and GLOB-VNS results for the

formulation (4.1). RD(r → R) denotes the percentage of the average difference between the

best known results and RD-VNS (starting with the formulation (4.1)) and then switches to

the formulation (4.3) after the mid of the time. RD(R → r) denotes the percentage of the
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Circle packing problem CPP inside a Square container(CPP-2)

Table 4.6: The percentage of the averages difference compares our CPP-1 results with the best

known results

n V NS R V NS r RD(R → r) RD(r → R)

10− 25 0.377 0.070 0.203 0.443

10− 50 0.451 0.080 0.193 0.407

10− 75 0.480 0.117 0.205 0.376

10− 100 0.444 0.129 0.219 0.375

10− 125 0.421 0.127 0.228 0.376

10− 150 0.404 0.126 0.226 0.369

10− 175 0.394 0.127 0.225 0.357

10− 200 0.375 0.131 0.217 0.348

average difference between the best known results and RD-VNS (starting with the formulation

(4.3)) and then switches to the formulation (4.1) after the mid of the time.

As shown in Table 4.6, the best results are given by applying GLOB-VNS with the formu-

lation (4.1) only (coloured in red). Furthermore, RD-VND between (4.1) and (4.3), starting

with formulation (4.3) gives better results after the formulation (4.1).

4.4.2 CPP inside a Square container(CPP-2)

In this subsection all the CPP-2 results for n = 10, . . . , 200 in four different cases will

be provided: using GLOB-VNS with the formulation (4.4) only, using GLOB-VNS with the

formulation (4.5), RD-VNS between formulation (4.4) and formulation (4.5), where in this

case the RD-VNS algorithm starts with formulation (4.4) and then switches to the formulation

(4.5) after the mid of CPU time. Besides, the last case is the same as the third one, but

RD-VNS algorithm starts with the formulation (4.5) and switches to the formulation (4.4)

after the half of the computational time. The CPP-2 results for applying each formulation,

(4.4) or (4.5), independently and RD between them are given in Table 4.7, Table 4.8, Table

4.9 and Table 5.3, Table 5.4 in Appendix B.

131



Circle packing problem CPP inside a Square container(CPP-2)

T
a
b
le

4
.7

:
C

ir
cl

e
p
a
ck

in
g

p
ro

b
le

m
in

si
d
e

a
sq

u
a
re

co
n
ta

in
er

C
P

P
-2

fo
r

n
=

1
0
,.

..
,2

0
0

n
P

a
c
k

r
V

N
S

L
1
/
L

V
N

S
r

R
D

(L
→

r
)

R
D

(r
→

L
)

1
/
(R

D
(r
→

L
))

C
P

U
1

C
P

U
2

C
P

U
3

C
P

U
4

1
0

0
.1

4
8
2
0
4
3
2
2
6

6
.7

4
7
8
3
9
6
5
5

0
.1

4
8
1
9
5
5
7
8

0
.1

4
8
1
7
1
8
5
5

0
.1

4
8
0
6
6
9
8
6

6
.9

5
0
2
4
3
4
1
6

0
.1

4
3
8
7
9
8
5
3

2
2

4
4

1
1

0
.1

4
2
3
9
9
2
3
7
7

7
.1

3
4
7
1
3
5
7
3

0
.1

4
0
1
5
9
7
9
6

0
.1

4
2
3
7
9
0
2

0
.1

4
2
3
9
7
6
1
6

7
.0

9
8
8
5
4
3
6
8

0
.1

4
0
8
6
7
8

2
2

8
4

1
2

0
.1

3
9
9
5
8
8
4
4
0

7
.1

6
0
0
6
3
6
3

0
.1

3
9
6
6
3
5
6
3

0
.1

3
9
9
4
1
1
4
5

0
.1

3
3
2
7
2
0
2
8

7
.3

1
2
9
0
3
3
0
2

0
.1

3
6
7
4
4
5
9
5

1
0

2
2
0

4

1
3

0
.1

3
3
9
9
3
5
1
3
5

7
.5

9
3
3
8
9
9
0
1

0
.1

3
1
6
9
3
4
8
8

0
.1

3
2
0
4
8
5
7
4

0
.1

3
3
9
7
1
7
2
3

7
.5

3
5
6
1
3
1
8
6

0
.1

3
2
7
0
3
2
0
2

1
0

2
2
0

4

1
4

0
.1

2
9
3
3
1
7
9
3
7

8
.0

0
6
8
3
8
0
2
3

0
.1

2
4
8
9
3
2
4
7

0
.1

2
9
0
6
7
1
6
1

0
.1

2
8
2
7
5
1
6
8

7
.9

5
3
4
2
4
5
8
4

0
.1

2
5
7
3
2
0
0
3

1
0

2
2
0

4

1
5

0
.1

2
7
1
6
6
5
4
7
5

7
.9

5
9
7
1
6
8
8

0
.1

2
5
6
3
2
6
0
9

0
.1

2
7
1
4
6
8
3
2

0
.1

2
7
1
5
7
2
2
9

8
.1

0
3
4
1
1
3
8
1

0
.1

2
3
4
0
4
8
1
7

1
0

2
2
0

8

1
6

0
.1

2
5
0
0
0
0
0
0
0

8
.9

8
2
1
6
4
2
0
9

0
.1

1
1
3
3
1
7
4
3

0
.1

2
4
9
9
7
3
9
4

0
.1

1
5
9
3
4
2
9
4

8
.8

7
4
8
0
1
7
9
4

0
.1

1
2
6
7
8
5
7
3

1
0

2
2
0

8

1
7

0
.1

1
7
1
9
6
7
4
2
8

9
.0

0
0
8
9
0
9
2
7

0
.1

1
1
1
0
0
1
1
3

0
.1

1
5
4
3
2
7
6
3

0
.1

1
1
2
4
2
4
9

9
.0

0
3
2
5
6
8
5

0
.1

1
1
0
7
0
9
1
8

1
0

2
2
0

8

1
8

0
.1

1
5
5
2
1
4
3
2
5

9
.0

0
0
0
1
9
7

0
.1

1
1
1
1
0
8
6
8

0
.1

1
2
6
7
7
6
6
5

0
.1

1
1
3
6
0
9
5
4

9
.0

2
5
1
0
9
3
9
2

0
.1

1
0
8
0
1
9
8
1

1
0

5
2
0

8

1
9

0
.1

1
2
2
6
5
4
3
7
6

9
.0

0
0
3
0
5
9
6
4

0
.1

1
1
1
0
7
3
3
4

0
.1

1
2
2
4
5
2
1
2

0
.1

1
1
5
5
7
8
9
7

9
.0

5
9
5
7
9
6
4
4

0
.1

1
0
3
8
0
3
9
7

1
0

5
2
0

1
2

2
0

0
.1

1
1
3
8
2
3
4
7
5

9
.1

4
0
4
4
6
3
0
9

0
.1

0
9
4
0
3
8
4
8

0
.1

1
1
3
3
6
4
5
3

0
.1

1
1
3
6
8
1
9
5

9
.4

6
2
3
5
5
2
9
3

0
.1

0
5
6
8
1
9
3
3

1
0

5
2
0

1
2

2
1

0
.1

0
6
8
6
0
2
1
2
4

9
.8

2
0
0
0
7
0
5
7

0
.1

0
1
8
3
2
9
2
1

0
.1

0
6
3
5
0
4
4
9

0
.1

0
5
9
9
9
8
7
5

9
.6

6
7
1
4
1
2
4
7

0
.1

0
3
4
4
3
1
9
7

1
0

5
2
0

1
2

2
2

0
.1

0
5
6
6
5
2
9
6
8

9
.5

2
2
4
8
5
3
1
6

0
.1

0
5
0
1
4
6
0
1

0
.1

0
3
5
1
1
2
4
9

0
.1

0
5
6
5
2
8
6
4

1
0
.0

3
2
7
4
2
5
6

0
.0

9
9
6
7
3
6
4
3

1
0

5
2
0

1
2

2
3

0
.1

0
2
8
0
2
3
2
3
4

9
.9

8
4
0
0
3
8
2
5

0
.1

0
0
1
6
0
2
1
8

0
.1

0
1
2
2
1
7
5
9

0
.1

0
1
9
2
7
9
8
2

1
0
.1

0
6
5
2
6
5
6

0
.0

9
8
9
4
5
9
6
3

1
0

5
2
0

1
2

2
4

0
.1

0
1
3
8
1
8
0
0
4

1
0
.5

8
4
0
5
3
0
7

0
.0

9
4
4
8
1
7
6
4

0
.1

0
1
3
3
2
9
9
2

0
.1

0
1
2
7
7
2
4
4

1
0
.1

6
0
9
5
6
9
8

0
.0

9
8
4
1
5
9
2
7

1
0

5
2
0

1
2

2
5

0
.1

0
0
0
0
0
0
0
0
0

1
0
.7

4
8
2
5
8
6
8

0
.0

9
3
0
3
8
3
2
6

0
.0

9
9
9
8
9
5
8
6

0
.0

9
7
2
3
7
9
8
7

1
0
.6

6
3
6
6
2
9
8

0
.0

9
3
7
7
6
4
0
7

1
0

5
2
0

1
2

2
6

0
.0

9
6
3
6
2
3
3
9
0

1
1
.0

0
6
2
4
3
0
9

0
.0

9
0
8
5
7
5
2
4

0
.0

9
5
7
0
0
1
0
6

0
.0

9
4
3
5
4
4
8
9

1
0
.5

6
4
1
1
0
9
5

0
.0

9
4
6
6
0
1
1
9

1
0

5
2
0

1
2

2
7

0
.0

9
5
4
2
0
0
0
1
7

1
1
.0

0
0
0
0
5
3
8

0
.0

9
0
9
0
9
0
4
6

0
.0

9
4
3
2
8
5
3

0
.0

9
3
8
5
2
1
1
9

1
1
.0

0
3
2
3
2
9
1

0
.0

9
0
8
8
2
3
8
1

1
0

5
2
0

1
5

2
8

0
.0

9
3
6
7
2
8
3
3
8

1
1
.0

0
3
9
8
8
0
8

0
.0

9
0
8
7
6
1
4
4

0
.0

9
3
3
7
0
9
1
7

0
.0

9
2
0
4
1
4
8
7

1
1
.0

2
4
4
9
0
3
2

0
.0

9
0
7
0
7
1
4
1

1
0

5
2
0

1
5

2
9

0
.0

9
2
4
6
3
1
4
4
0

1
1
.8

2
6
3
0
2
4
1

0
.0

8
4
5
5
7
2
8
3

0
.0

9
2
0
9
1
8
8

0
.0

9
0
9
6
9
6
6
3

1
1
.0

0
8
7
7
1
1
9

0
.0

9
0
8
3
6
6
6

1
0

5
2
0

1
5

3
0

0
.0

9
1
6
7
1
0
5
8
0

1
1
.0

7
5
6
1
3
0
6

0
.0

9
0
2
8
8
4
5
6

0
.0

8
9
3
2
0
8
9
4

0
.0

9
0
3
7
7
8
0
1

1
1
.5

9
0
0
4
8
2
4

0
.0

8
6
2
8
0
9
1
8

1
0

5
2
0

1
5

3
1

0
.0

8
9
3
3
8
3
3
3
4

1
1
.6

6
3
9
1
0
3
7

0
.0

8
5
7
3
4
5
4
1

0
.0

8
8
3
6
7
5
6
6

0
.0

8
8
8
0
3
7
9
7

1
1
.7

4
3
0
0
3
3
1

0
.0

8
5
1
5
7
0
9
1

1
5

5
3
0

2
0

3
2

0
.0

8
7
8
5
8
1
5
7
1

1
1
.6

9
6
8
2
3
7
5

0
.0

8
5
4
9
3
2
9
5

0
.0

8
7
5
9
3
7
6
9

0
.0

8
7
1
0
5
5
8
8

1
1
.9

0
2
3
1
9
4

0
.0

8
4
0
1
7
2
3
8

1
5

1
0

3
0

2
0

3
3

0
.0

8
7
2
3
0
0
1
4
1

1
1
.9

4
5
5
0
5
9
5

0
.0

8
3
7
1
3
4
9
1

0
.0

8
5
4
9
3
2
4
2

0
.0

8
5
7
3
0
1
0
3

1
1
.9

5
3
3
2
2
2
9

0
.0

8
3
6
5
8
7
5

1
5

1
0

3
0

2
0

3
4

0
.0

8
5
2
7
0
3
4
4
4

1
2
.4

3
1
3
0
8
0
8

0
.0

8
0
4
4
2
0
5
8

0
.0

8
4
5
5
8
0
7
3

0
.0

8
2
4
2
8
0
1
4

1
2
.1

0
4
1
0
5
6
6

0
.0

8
2
6
1
6
5
9
5

1
5

1
0

3
0

2
0

3
5

0
.0

8
4
2
9
0
7
1
2
1

1
3
.0

7
5
0
5
1
9
8

0
.0

7
6
4
8
1
5
3
1

0
.0

8
3
6
5
8
3
7
3

0
.0

8
2
8
4
2
9
7
8

1
2
.7

3
7
8
8
1
2
1

0
.0

7
8
5
0
5
9
9
2

1
5

1
0

3
0

2
0

3
6

0
.0

8
3
3
3
3
3
3
3
3

1
3
.0

0
0
0
5
9
4
6

0
.0

7
6
9
2
2
7
2
5

0
.0

8
2
1
4
9
0
7
8

0
.0

8
2
4
0
1
3
3
8

1
3
.0

0
0
7
9
7
7

0
.0

7
6
9
1
8
3
5
7

1
5

1
0

3
0

3
0

3
7

0
.0

8
2
0
8
9
7
6
6
4

1
3
.7

6
0
9
0
9
0
6

0
.0

7
2
6
6
9
6
1
8

0
.0

8
0
3
4
3
0
2
4

0
.0

8
0
4
8
4
7
4
2

1
3
.0

1
1
4
7
0
0
7

0
.0

7
6
8
5
5
2
6
7

1
5

1
0

3
0

3
0

3
8

0
.0

8
1
7
0
9
7
7
6
1

1
3
.0

2
1
5
3
9
7
3

0
.0

7
6
7
9
5
8
3
4

0
.0

8
1
6
0
0
1
2
4

0
.0

8
1
6
1
0
7
4
8

1
3
.0

3
0
7
0
0
1
3

0
.0

7
6
7
4
1
8
4
7

1
5

1
0

3
0

3
0

3
9

0
.0

8
1
3
6
7
5
2
7
0

1
3
.0

2
6
6
1
5
7
4

0
.0

7
6
7
6
5
9
0
9

0
.0

8
1
2
7
5
0
2
7

0
.0

7
6
9
2
3
5

1
3
.0

1
1
4
1
7
6

0
.0

7
6
8
5
5
5
7
6

1
5

1
0

3
0

3
0

4
0

0
.0

7
9
1
8
6
7
5
2
5

1
3
.0

3
1
0
6
3
6
3

0
.0

7
6
7
3
9
7
0
7

0
.0

7
8
7
7
1
5
9
7

0
.0

7
7
4
2
9
5
5
5

1
3
.0

0
7
0
8
0
6
3

0
.0

7
6
8
8
1
2
0
3

1
5

1
0

3
0

3
0

4
1

0
.0

7
8
4
5
0
2
1
0
1

1
4
.0

0
1
9
3
2
6
1

0
.0

7
1
4
1
8
7
1
3

0
.0

7
7
8
6
4
4
6
5

0
.0

7
5
6
3
8
5
2
2

1
3
.1

5
6
5
7
7
6
2

0
.0

7
6
0
0
7
6
0
8

2
0

1
5

3
0

4
0

4
2

0
.0

7
7
8
0
1
5
0
2
9

1
4
.2

0
7
9
6
1
9
4

0
.0

7
0
3
8
3
0
7
1

0
.0

7
6
8
6
7
8
1
4

0
.0

7
5
8
7
6
6
6
1

1
3
.0

2
5
2
3
8
8

0
.0

7
6
7
7
4
0
2
4

2
0

1
5

3
0

4
0

4
3

0
.0

7
6
3
3
9
8
1
0
6

1
4
.3

0
7
1
1
5
7
7

0
.0

6
9
8
9
5
2
9

0
.0

7
6
0
4
6
4
3
2

0
.0

7
5
1
7
6
4
0
1

1
3
.5

9
3
5
7
2
1
4

0
.0

7
3
5
6
4
1
8
1

2
0

1
5

6
0

4
0

4
4

0
.0

7
5
7
8
1
9
8
6
0

1
4
.0

3
8
7
1
4
2
8

0
.0

7
1
2
3
1
5
9
4

0
.0

7
5
1
0
9
5
3
8

0
.0

7
3
4
4
7
4
2
1

1
4
.1

4
6
6
2
1
8
5

0
.0

7
0
6
8
8
2
5
4

2
0

1
5

4
0

4
0

4
5

0
.0

7
4
7
2
7
3
4
3
7

1
3
.9

0
5
6
0
4
9

0
.0

7
1
9
1
3
4
4
8

0
.0

7
4
1
8
8
2
6
7

0
.0

7
2
4
2
2
4
4
2

1
4
.0

3
4
7
1
2
2
3

0
.0

7
1
2
5
1
9
0
6

3
0

1
5

4
0

4
0

132



Circle packing problem CPP inside a Square container(CPP-2)
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Circle packing problem CPP inside a Square container(CPP-2)
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Circle packing problem CPP inside a Square container(CPP-2)

In Table 4.7, Table 4.8, Table 4.9 and Table 5.3, Table 5.4, n denotes the number of non-

overlap equal circles inside the circle container. The n is within the interval [10, 200]. The

Pack r denotes the best known results in Packonomia website (Hungarian, 2009) for finding

the maximum radius of n equal circles inside the unit square container without overlap.

V NS L denotes the minimum length of the side container of the square to accommodate n

nonoverlaping unit circles by using GLOB-VNS with single formulation (4.5), where the next

column in Tables 4.7, 4.8, 4.9, 5.3 and 5.4 is the one divided by V NS L i.e. 1
V NS L . V NS r

denotes the maximum radius for n equal circles within the unit square container without

overlap, where it has been found by GLOB-VNS with the single formulation (4.3) only.

The next two columns show the results of applying the RD-VNS between the formulation

(4.4) and the formulation (4.5), where RD(L → r) means that RD-VNS algorithm starts

with the formulation (4.5) first, then it switches to the formulation (4.4) after half of CPU

time, and vice versa for RD(r → L). In the last columns, CPU give the running time in

seconds, where CPU1 denotes the computational time for using the formulation (4.5), and

CPU2 denotes the computational time for using the formulation (4.4). CPU3 denotes the

computational time for finding RD between (4.4) and (4.5) starting with (4.5), and CPU4

denotes the computational time for finding RD between (4.4) and (4.5) starting with (4.4).

The next table compares our results(GLOB-VNS or RD-VNS) with the best known results

(Hungarian, 2009) by finding the average of the results. For finding the average, the n

interval, where n = 10, . . . , 200, has been divided into eight subintervals, [10, 25], [10, 50],

[10, 75], [10, 100], [10, 125], [10, 150], [10, 175] and [10, 200]. These averages are presented in

Table 4.10.
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Circle packing problem CPP inside a Square container(CPP-2)

Table 4.10 shows the average results between two fixed numbers of n, where n is the num-

ber of equal size circles within the container. The average is calculated between two fixed n,

where n = 10, . . . , 200. In Table 4.10, Pack r denotes the best known results in Packomania

website for maximising the radius of n equal circles within the unit square container without

overlap (Hungarian, 2009). V NS L denotes the results of applying GLOB-VNS to the formu-

lation (4.5) only, and V NS r denotes the results of applying GLOB-VNS to the formulation

(4.4). RD(L → r) denotes the results of applying RD-VNS algorithm between (4.4) and (4.5),

where the RD-VNS algorithm starts with the formulation (4.5) and then switches to the for-

mulation (4.4) at the mid was of the CPU time. Also, RD(r → L) denotes applying RD-VNS

between (4.4) and (4.5), where the RD-VNS algorithm starts with formulation (4.4) and then

switches to the formulation (4.5) at the mid was of CPU time.

CPU is the computational time in seconds, where CPU1 is the running time for using

GLOB-VNS with the formulation (4.5). CPU2 is the running time for using GLOB-VNS with

the formulation (4.4). CPU3 is the running time spent for using the RD-VNS between the

formulation (4.4) and (4.5), starting with (4.5). The last CPU4 is computational running

time for using the RD-VNS between the formulation (4.4) and (4.5), starting with (4.4).

As shown in Table 4.10, applying GLOB-VNS with the formulation given in (4.4) provides

the best for CPP-2 problem as compared with the other cases. Moreover, it needs less

computational time to run. These results have been coloured in red in Table 4.10. All

results have been rounded to five decimal numbers.

Furthermore, Table 4.11 can prove that using GLOB-VNS with the formulation (4.4) for

CPP-2 is the best among four different cases by finding the average difference. These aver-

age differences are calculated between the Packonamia website (Hungarian, 2009) and our

GLOB-VNS and RD-VNS results for CPP-2.
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Table 4.11: The percentage of the averages difference compares our CPP-2 results with the best

known results

n V NS L V NS r RD(L → r) RD(r → L)

10− 25 0.827 0.106 0.648 0.411

10− 50 1.309 0.083 0.489 0.358

10− 75 1.393 0.105 0.378 0.441

10− 100 1.356 0.14 0.329 0.502

10− 125 1.268 0.170 0.335 0.538

10− 150 1.176 0.184 0.308 0.548

10− 175 1.092 0.191 0.295 0.543

10− 200 1.019 0.200 0.279 0.539

In Table 4.11, n is the number of non-overlap equal circles inside the circle container. Beside

the n has been divided into eight subintervals as in Table 4.10. The percentage of the

averages difference in Table (4.11) have been found by giving the V NS r as an example. It

is calculated by deducting the GLOB-VNS results (which have been found using the formulation

(4.4) for maximising the radius r of n equal circles without overlap inside the unit square

container) from the best known results at the same n. After that the average between two

fixed n is applied i.e. for each subinterval. V NS L denotes the same as above between the

best known results and GLOB-VNS results for the formulation (4.5). RD(r → L) denotes the

percentage of the average difference between the best known results and RD-VNS starting

with the formulation (4.4) and then switches to the formulation (4.5) at mid was of the time.

RD(L → r) denotes the percentage of the average difference between the best known results

and RD-VNS starting with the formulation (4.5) and then switches to the formulation (4.4)

at mid was of the time.

As shown in Table 4.11, the best results are given by the formulation (4.4) (in red).

Furthermore, RD-VND between (4.4) and (4.5), starting with formulation (4.5) gives better
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Circle packing problem Conclusion and future research

results for bigger n. All results have been rounded into five decimal numbers before finding

the percentage.

4.5 Conclusion and future research

In this chapter we suggest a method that alternates two different formulations for solving

the circle packing problem (CPP). Each formulation is solved by the variable neighbourhood

search (VNS) global optimisation technique. Computer results show that our approach is

comparable with some of the very best methods in the literature with more reasonable

computational time.

Future research may include the use of other, more sophisticated global optimisation

softwares for solving CPP such as LINGO (Systems, 2004), NMinimze (Research, 2005) and

MathOptimizer Professional (Pintér, 1996). Moreover, it may include an extension of our

approach to other types of containers where circles should be packed: rectangles, triangles

and strips (Birgin and Gentil, 2010). In addition, new neighbourhood structures may be

attempted within variable neighbourhood approach, as well as other types of formulations

(Mladenović et al., 2007).
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Chapter 5

Conclusion

The research reported in this thesis focuses on the development of novel variable neighbour-

hood search (VNS) based metaheuristics for censored quantile regression problems (CQR)

and circle packing problems (CPP). The aim of this thesis is twofold. The first is to design

continuous variable neighbourhood search for censored quantile regression problems. Circle

packing problems have been studied as the second part of this thesis, where the reformulation

descent within variable neighbourhood search by using two Cartesian formulations has been

applied. Neighbourhood structures are implicity defined and updated according to the set

of parameters, where these parameters depend on the mathematical formulation of the used

problem. The Glob package within the visual studio C++ solver is used with VNS to be

applied on problems. However, the aim of this thesis is not only to apply a general continu-

ous variable neighbourhood search on problems. The change of VNS components have been

applied to adapt the problems such as the change of the neighbourhood structure.

Chapter 1 is a survey of local search based metaheuristic methods. This chapter pro-

vided the theoretical and practical aspects of neighbourhood search, where it covered from

the simplest local search to highly technical ones such as large-scale neighbourhood search

and reformulation descent. Furthermore, it covered the concepts and components of each

local search based metaheuristic method. This chapter presented different classes of meta-

heuristics, in particular, the important single-solution metaheuristic methods. Also, the

important aspects of metaheuristics, intensification and diversification, were discussed.
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Conclusion Conclusion and future research

Chapter 2 focuses on variable neighbourhood search metaheuristic, which this thesis de-

pends on. This chapter gives a brief explanation of the most types of variable neighbourhood

search.

Chapter 3 showed how continuous variable neighbourhood search within the Glob pack-

age can be successfully employed as a new censored quantile regression technique. The Powell

estimator for CQR has been used as the objective function. This function is not convex, nor

concave and not even differentiable. The methods in the literature usually linearised the

CQR model and then solved it exactly. In this chapter, the CQR by Powell estimator has

been found by applying an approximation method on an exact CQR model. Different metric

functions within the VNS for defining the neighbourhood structure have been developed as

the basic idea of our research in this thesis. This VNS approach was applied on groups of

test instances and on real data. This new approach is a competitive one with state-of-the-art

methods from the literature, where the VNS results outperforms the other results from the

literature. This means using the nonlinear model with the approximate solution method is

better than using an exact solution method with a linearised model. Future research in this

direction may include extending this approach on the semi censored quantile regression or

using another global optimisation techniques.

In Chapter 4, a new approach for solving circle packing problems was proposed. CPP

in 2 − dimensional space was considered within two types of containers: a circle and a

square. The reformulation descent variable neighbourhood search RD-VNS has been applied

on two Cartesian formulations for each type of container. In addition to applying RD-VNS,

GLOB-VNS has been applied on each formulation independently. The results showed that our

approach is comparable with some of the very best methods in the literature with more

reasonable computational time. Future research may include applying RD-VNS with two

Cartesian formulations on different types of containers such as a rectangle, a triangle and

a strip. Moreover, different types of formulation like polar coordinates could be used with

a new neighbourhood structure. The idea of reformulation descent could be applied on

3− dimensional containers.

To sum up, the research reported in this thesis may be useful in the scientific and indus-
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trial fields. An up to date convergence of exciting metaheuristic methodologies proposed in

this thesis could help researchers to develop an efficient computational heuristic approach

for solving continuous optimisation problems with large instances especially in the econo-

metrical field. In addition, the practitioner in the industrial field, such as circular cutting,

container loading and cylinder packing, or in real life, such as extramarital affairs or exams

results, may benefit from the application of these techniques. These techniques could be

used in solving variant applications in the real world. In this thesis, the author would like

to encourage adopting the metaheuristic approaches for solving the continuous optimisation

problems especially in econometric, for example censored quantile regression problems and

their real applications.
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heuristics for solving the multisource webber problem. Operations Research, 48(3):444–460,

2000.
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N. Mladenović, M. Drazić, V. Kovacevic-Vujcic, and M. Cangalovic. General variable neigh-

bourhood search for the continuous optimization. European Journal of Operational Re-

search, 191:753–770, 2008.

J. A. Nelder and R. Mead. A simplex method for function minimization. Computer Journal,

7:308–313, 1965.

A. G. Nikolaev, S. H. Jacobson, and A. W. Johnson. The theory and practice of simulated

annealling. In F. Glover, G. Kochenberger (Eds.), Handbook of Metaheuristics, chapter 10,

pages 278–320. Kluwer Academic Publishers, Norwell, 1 edition, 2003.

K. J. Nurmela and P. R. J. Ostergard. Packing up to 50 equal circles in a square. Discrete

& Computational Geometry, 18(1):111–120, 1997.

156



Bibliography Bibliography

K. J. Nurmela and P. R. J. Ostergard. More optimal packings of equal circles in a square.

Discrete Comput. Geometry, 22:439–457, 1999.
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Appendix A

The idea of complexity theory has arisen in the beginning of 1930’s. It was first introduced

by Turing (1936). Moreover, the most important question that the computability theory is

trying to answer is “if the problem can be solved algorithmically by using the computer or

not”. If the answer is “Yes”, then the next question is “what are the minimum time and

memory bit required?”. Before going deep in this idea, some initial definitions should be

introduced.

Let’s assume that A is a finite alphabet and A∗ is the set of infinite strings of elements

of A. If x ∈ A∗, the length of x is given by lg(x).

Definition 4 The deterministic algorithm A is specified by D ⊆ R, where D is a countable

domain set and R is a countable range set, 4 is a finite alphabet where 4∗ ∩ R = φ, E is

an encoding function E : D →4∗ and τ is the transition function τ : 4∗ →4∗ ∩R.

The computation of A on input x ∈ D is the unique sequence y1, y2, . . . such that y1 =

E(x) and yi+1 = τ(yi) ∀i. Moreover, If the sequence is finite and ends with yk, then yk ∈ R.

Furthermore, the instantaneous description is a string occurring as an element of com-

putation. The running time length t(x) for algorithm A on input x can be defined when the

computation of A on x is finite of length.

Definition 5 A is terminating if all its computation are finite, where A is computing the

function fA : D → R, like fA(x) is the last element of the computation of A on x.

Definition 6 The recognition algorithm A is happened if R = {accept, reject}. Moreover,

if D =
∑∗ then A is called a string recognition algorithm, where the langue recognized by A
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is {x ∈ ∑∗ | fA(x) = accept}. If D = R =
∑∗ the algorithm A is called a string mapping

one.

Definition 7 The terminating algorithm A with D =
∑∗ operates on polynomial time if

there is a polynomial p(.) such that for each x ∈ ∑∗ then t(x) ≤ p(lg(x)).

There are many well known classes of recognition algorithms like Markov algorithms, one-

tap Turing machines and multitap and multihead Turing machines. Moreover, the class of

language that recognize by polynomial algorithms is invariant under a wide range of changes

in the class of algorithms.

Definition 8 P is the class of languages recognizable by one-tap Turing machines which

operate in polynomial time.

The complexity class, denotes by P , is the most important class between complexity

classes. The problems from class P can be solved by polynomial-time algorithms such as

Turing machines.

Definition 9 The function
∏

:
∑∗ → ∑∗ is defined one-tape Turing machines which oper-

ate in polynomial time.

Remark 1 If f ∈ ∏
, where f :

∑∗ → ∑∗, there is a polynomial p(.) satisfied lg(f(x)) ≤
p(lg(x)).

Definition 10 The L is reducible to M (L ∝ M), where L,M are languages, if there is a

function f ∈ ∏
satisfied f(x) ∈ M ⇔ x ∈ L.

Lemma 2 If L ∝ M and M ∈ P then L ∈ P .

If P2 denote the class of subset
∑∗×∑∗ which are recognizable in polynomial time. The

language L is defined as follow L = {x | there exists y that < x, y >∈ L2 and lg(y) ≤
p(lg(x))}, where L2 ∈ P2 and p is a polynomial. Furthermore, L as a language is derived

from L2 by p-bounded existential quantification.
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Definition 11 NP is the set of language derived from elements of P2 by polynomial-bounded

existential quantification.

Definition 12 A nondeterministic algorithm A is specified by D the domina countable set,

5 a finite alphabet where (5∗ ∩ {accept, reject} = φ. The encoding function E : D → 5∗

and the transition function τ ⊆ 5∗× (5∗ ∪{accept, reject}). For any y0 ∈ 5∗ there is a set

{< y0, y >|< y0, y >∈ τ} has fewer than kA element. kA is a constant.

Moreover, if D =
∑∗ then A is nondeterministic string recognition algorithm. That means

the NP complexity class is for nondeterministic polynomial. Furthermore, the language from

this class can be used by polynomial nondeterministic Turing machine.

Definition 13 The language L is polynomial complete if

• L ∈ NP .

• Satisfiability ∝ L.

Theorem 3 Either all complete language are in P , or non of them are. The former alter-

native holds if P = NP .

Definition 14 If D is a countable domain and T ⊆ D. e is one-one encoding function

e : D → ∑∗. Then T is complete if and only if e(D) is complete.
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Appendix B

The continued Tables results for CPP-1 are presented in Table 5.1 and Table 5.2, where n

denotes the number of non-overlap equal circles inside the circle container. The n is within the

interval [10, 200]. The Packonomia denotes the best known results in Packonomia website

(Hungarian, 2009). This website has two possibilities for each number of circles within

the circle container, firstly the maximum radius of n non-overlap equal circles inside the

unit circle container is denoted by Packonomia r. Secondly, the minimum radius of circle

container to accommodate n unit circles without overlap is denoted by Packonomia R.

V NS R denotes the minimum radius of circle container to accommodate n equal circles

without overlap by using GLOB-VNS with the single formulation (4.3), where the next column

in Tables is the one divided by V NS R. V NS r denotes the maximum radius for n equal

circles within the unit circle container without overlap, where it has been found by GLOB-VNS

with the single formulation (4.3) only.

The next two columns have been found by applying the RD-VNS algorithm, where RD(R →
r) means that RD-VNS algorithm starts with the formulation (4.3) first, then it switches to

the formulation (4.1) after the half of CPU time, and vice versa for RD(r → R). The last

column CPU gives the running time in seconds.
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Appendix B. Computational results for CPP-1 and CPP-2 problems CPP-1 and CPP-2
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Appendix B. Computational results for CPP-1 and CPP-2 problems CPP-1 and CPP-2

The continued Tables results for CPP-2 are presented in Table 5.3 and Table 5.4, where

n denotes the number of non-overlap equal circles inside the circle container. The n is

within the interval [10, 200]. The Pack r denotes the best known results in Packonomia

website (Hungarian, 2009) for finding the maximum radius of n equal circles inside the unit

square container without overlap. V NS L denotes the minimum length of the side container

of the square to accommodate n nonoverlaping unit circles by using GLOB-VNS with single

formulation (4.5), where the next column in Tables is the one divided by V NS L. V NS r

denotes the maximum radius for n equal circles within the unit square container without

overlap, where it has been found by GLOB-VNS with the single formulation (4.3) only.

The next two columns have the results of applying the RD-VNS between the formulation

(4.4) and the formulation (4.5), where RD(L → r) means that RD-VNS algorithm starts

with the formulation (4.5) first, then it switches to the formulation (4.4) at the middle of the

computational time, and vice versa for RD(r → L). The last columns CPU give the running

time in seconds, where CPU1 denotes the computational time for using the formulation (4.5),

and CPU2 denotes the computational time for using the formulation (4.4). CPU3 denotes

the computational time for finding RD between (4.4) and (4.5) starting with (4.5), and

CPU4 denotes the computational time for finding RD between (4.4) and (4.5) starting with

(4.4).

169



Appendix B. Computational results for CPP-1 and CPP-2 problems CPP-1 and CPP-2
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Appendix B. Computational results for CPP-1 and CPP-2 problems CPP-1 and CPP-2
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