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ABSTRACT

META-RAPS HYBRIDIZATION WITH MACHINE LEARNING ALGORITHMS

Fatemah Al-Duoli 
Old Dominion University, 2015 

Director: Dr. Ghaith Rabadi

This dissertation focuses on advancing the Metaheuristic for Randomized Priority 

Search algorithm, known as Meta-RaPS, by integrating it with machine learning 

algorithms. Introducing a new metaheuristic algorithm starts with demonstrating its 

performance. This is accomplished by using the new algorithm to solve various 

combinatorial optimization problems in their basic form. The next stage focuses on 

advancing the new algorithm by strengthening its relatively weaker characteristics. In the 

third traditional stage, the algorithms are exercised in solving more complex optimization 

problems. In the case of effective algorithms, the second and third stages can occur in 

parallel as researchers are eager to employ good algorithms to solve complex problems. 

The third stage can inadvertently strengthen the original algorithm. The simplicity and 

effectiveness Meta-RaPS enjoys places it in both second and third research stages 

concurrently. This dissertation explores strengthening Meta-RaPS by incorporating 

memory and learning features. The major conceptual frameworks that guided this work 

are the Adaptive Memory Programming framework (or AMP) and the metaheuristic 

hybridization taxonomy. The concepts from both frameworks are followed when 

identifying useful information that Meta-RaPS can collect during execution. Hybridizing 

Meta-RaPS with machine learning algorithms helped in transforming the collected 

information into knowledge. The learning concepts selected are supervised and 

unsupervised learning. The algorithms selected to achieve both types of learning are the 

Inductive Decision Tree (supervised learning) and Association Rules (unsupervised 

learning). The objective behind hybridizing Meta-RaPS with an Inductive Decision Tree 

algorithm is to perform online control for Meta-RaPS’ parameters. This Inductive 

Decision Tree algorithm is used to find favorable parameter values using knowledge 

gained from previous Meta-RaPS iterations. The values selected are used in future Meta- 

RaPS iterations. The objective behind hybridizing Meta-RaPS with an Association Rules



algorithm is to identify patterns associated with good solutions. These patterns are 

considered knowledge and are inherited as starting points for in future Meta-RaPS 

iteration. The performance of the hybrid Meta-RaPS algorithms is demonstrated by 

solving the capacitated Vehicle Routing Problem with and without time windows.
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CHAPTER 1 

INTRODUCTION

The field of metaheuristics is one of the active combinatorial optimization fields 

due to the quality of solutions metaheuristics produce for variety of hard combinatorial 

optimization problems. Research in this field tends to fall into two high-level categories: 

algorithms or applications. In the first category the focus is on introducing or improving 

metaheuristics algorithms while the second category focuses on the application of 

metaheuristics to new complex problems. This dissertation work falls in the first 

category. The chief objective is to contribute to an existing, relatively new metaheuristic 

algorithm named Metaheuristics for Randomized Priority Search or Meta-RaPS. This is 

achieved by hybridization Meta-RaPS with machine learning algorithms.

While many have hybridized existing metaheuristics by combining two or more 

metaheuristic algorithms, very little research attempted to hybridize metaheuristics with 

data mining algorithms, a branch of machine learning and artificial intelligence. The 

dissertation details the process of hybridizing Meta-RaPS with both a classification rule 

association algorithms. The proposed hybridization concept is classified as a High-level 

Relay Hybridization with heterogeneous algorithms that are applied to the global search 

domain with a general (same) problem to solve (Talbi, 2009). The effectiveness of the 

hybridized Meta-RaPS is demonstrated by solving the classical Vehicle Routing Problem, 

an NP-hard combinatorial optimization problem.

The next chapter will showcase various known metaheuristic algorithms and 

focus on Meta-RaPS. A literature review of various publications that applied Meta-RaPS 

to solve combinatorial optimization problems is also included in Chapter 2. Chapter 3 

discusses the hybridization of metaheuristic algorithms especially the existing paradigms 

of hybridization. Subsequently, hybridizing metaheuristic algorithms with data mining 

techniques are discussed. Chapter 3 ends with a deeper look at both classification and 

association rules, the two data mining techniques that will be used to hybridize Meta-
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RaPS. The combinatorial optimization problem of choice is the Vehicle Routing 

Problem. The problem, its variants, and the various optimization approaches to solve it 

will be discussed in Chapter 4. A literature review of well-performing metaheuristics 

used to solve the classic Vehicle Routing Problem is included in Chapter 4. Chapter 5 

describes the application of Meta-RaPS to solve the Vehicle Routing Problem. Chapters 6 

and 7 describe the hybridization frameworks of Meta-RaPS with both data mining 

algorithms. Lastly, Chapter 8 details the methodology followed in creating the 

computational experiments, the various trails examined under each hybridized 

experiment, and the associated computation results and analysis.
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CHAPTER 2 

METAHEURISTICS AND META-RAPS

In this chapter, the focus will be on defining and classifying metaheuristics 

algorithms used to solve combinatorial optimization problems. Most of the commonly 

used metaheuristics algorithms will be briefly discussed. The chapter will be concluded 

by discussing Meta-RaPS in greater detail by covering its history, logic, and applications.

2.1 Combinatorial Optimization

The fields of mathematics, computer science and engineering overlap when 

tackling optimization problems where the goal is to find an optimal solution. 

Optimization problems are described by (S J ). S  represents the search space where a set 

of feasible solutions exist for the problem w hile/is the objective function that ranks the 

feasible solutions and yields the highest (or lowest) ranking solution. In Figure 1, Talbi 

(2009) organized the various approaches to solving optimization problems. The approach 

of interest is the Combinatorial Optimization one, which aims at finding the optimal (or 

best) solution for problems that consist of discrete variables in a finite search space 

(Blum & Roli, 2003).
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Optimization m odels 
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(Nl P)
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^  N onlinc  a r  co n v c*

Figure 1 Optimization Models (Talbi 2009)

One of the fundamental combinatorial optimization problems is the Traveling 

Salesman Problem (TSP). The problem consists of cities and the distance between every 

city. The objective of function aims at finding the shortest route that consists of visiting 

each city once. The challenge is in the number of possible solutions that increases as the 

size of the number of cities increases. A large number of possible solutions would need to 

be searched and evaluated prior to determining a global optimal solution. Table 1 shows 

the relationship between the number of cities in a TSP (n) and the number of possible 

solutions (n!). The following figure also visually illustrates two TSP problems of 

different sizes.

Number of Cities (n) Size of the Search Space
5 120
10 3, 628, 800
75 2.5 x 10109

T ab le  1 N um ber o f  Cities in a  T SP  an d  the  C orresponding  Search  Space (Talb i, 2009)
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Figure 2 TSP A wih 52 Cities; TSP B with 24,9789 Cities (Talbi, 2009)

The Knapsack problem is another known combinatorial optimization problem that 

aims at identifying the set of objects that fit the size (or weight) constraint of given 

knapsacks. Another known combinatorial optimization problem is the Quadratic 

Assignment Problem (QAP), where the objective is to find an optimal location 

assignment of facilities/nodes based on the flows between each pair of facilities. The 

literature contains numerous examples of real-world combinatorial optimization 

problems. Many of these real-world problems can be mapped to one of the few 

fundamental combinatorial optimization problems. For example, the problem of finding 

an optimal schedule for aircraft to land and depart in an airport is mapped to a version of 

the TSP (Bianco et al., 1999).

The main challenge in solving real-world combinatorial problems lies in their 

large size and the complexity of their structures (Talbi, 2009). Solving a combinatorial 

optimization problem usually entails evaluating several candidate solutions and 

identifying the best one. Small problems are typically solved using exact algorithms. 

Exact algorithms always find a global optimal solution for a finite size combinatorial
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optimization problem in a bounded time. Examples of exact algorithms include constraint 

programming, dynamic programming, and branch and bound (or branch and cut, or 

branch and price).

For larger problems, approximate methods are utilized. For many larger, more 

complex combinatorial optimization problems, researchers typically theoretically prove 

that no polynomial time exists to solve them and find a global optimal solution. Though 

approximate methods do not guarantee finding a global optimum, they produce 

satisfactory solutions in a reasonable amount of time. Approximate methods are classified 

as approximate algorithms and heuristic algorithms (Talbi, 2009). Approximate 

algorithms produce provable solutions in a provable run-time while heuristic algorithms 

provide good solutions in an acceptable amount of time. Heuristic algorithms comprise of 

classic heuristics and metaheuristics. Classic heuristics tend to be basic and problem- 

specific. Metaheuristics are more general-purpose algorithms that employ one or more 

classic heuristics.

2.2 Metaheuristics

Glover defined the first metaheuristic algorithm, Tabu Search (TS), as an algorithm 

that is “superimposed” on a heuristic algorithm (Glover, 1986). Glover’s TS is attributed 

as the birth of the field of metaheuristic methods. With more metaheuristic activities, 

several authors attempted to create a definition for this new group of methods. Stutzle 

(1999) stated that metaheuristic methods are high-level strategies that guide more 

problem-specific heuristics, to increase their performance.

Metaheuristics generally consist of two phases: Construction and improvement. These 

phases host underlying and more-specific heuristics. The construction phase aims to build 

a solution for the combinatorial optimization problem using one or more heuristic 

algorithms. Subsequently, the improvement phase attempts to advance the newly built 

solution also using one or more heuristic algorithms. As a high-level method, a 

metaheuristic is in charge of managing the underlying heuristics to balance their
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objectives. This is crucial since the heuristic(s) in the construction phase tends to have a 

diversification outlook when building a solution by exploring the solution space. On the 

other hand, the heuristic(s) in the improvement phase tends to have an intensification 

outlook when improving a solution by focusing on a narrow area surrounding the newly 

built solution when attempting to improve it (Lima et al., 2008).

Some of the well-known metaheuristic methods are: Tabu Search, Genetic 

Algorithms, Simulated Annealing, Iterated Local Search, Variable Neighborhood Search, 

Artificial Neural Networks, Ant Colony Optimization, and Greedy Randomized Adaptive 

Search Procedure (GRASP). The characteristics of the metaheuristics allow for more than 

one way to categorize them. Blum and Roli (2003) explored several viable categorization 

approaches:

1. Categorization based on number of solutions used at the same time: population- 

based methods vs. single solution based methods. Population-based methods work 

on a set of points in the search space and aim to describe the evolution of this set 

throughout the search (e.g. Genetic Algorithms) while single solution based 

methods, often called trajectory methods, work with a single solution by 

employing local search method (e.g. Tabu Search and GRASP).

2. Categorization based on type of objective function: The objective function for a 

problem can be static (not modified) or dynamic. While the majority of 

metaheuristic methods do not modify the objective function, the Guided Local 

Search method updates the objective function as an approach to avoid local 

optima.

3. Categorization based on neighborhood structure: Talbi (2009) defined the 

neighborhood structure as a function that assigns to each solution a set of 

solutions (or neighbors) that can be defined by performing small moves to the 

original solution. Metaheuristic methods may use either single or multiple 

neighborhood structures while exploring the search space. Working with multiple
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neighborhood structures, as done in Variable Neighborhood Search method, 

allows for more diversification.

4. Categorization based on memory usage: Metaheuristic methods can be

categorized based on the type of information used when a metaheuristic method is 

deciding its next action. If a method only uses information from its current state, 

then it can be categorized as memory-less. In memory-based methods, however, 

previously stored information (such as previous moves, visited solutions, 

decisions, etc.) can impact the next action. Memory usage can either be a core 

feature or a complementary feature found in advanced versions of certain 

methods. Examples of metaheuristic methods using memory as a core feature 

include Ant Colony Optimization and Tabu Search, while Simulated Annealing 

represents an example of a metaheuristic using memory in its advanced versions.

Categorizing this wide variety of metaheuristic methods allows researchers to select 

the suitable method to solve combinatorial optimization problem(s). Additionally, this 

helps in potential collaboration between the existing method and introduction of new 

methods to the field of metaheuristics. The following sections highlight some of the 

established metaheuristics.
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2.2.1 Genetic Algorithms (GA)

Several optimization algorithms have been developed to utilize the principles of 

natural evolution in solving combinatorial optimization problems. The idea of a 

population of individuals iteratively reproducing and competing to survive is represented 

in various algorithms. These algorithms include Genetic Algorithms (GA) (Holland, 

1962), evolution strategies (Rechenberg, 1965), evolutionary programming (Fogel,

1962), and genetic programming (Koza, 1992). One of the first and most popular 

evolutionary algorithms is GA developed by Holland (1962). An initial solution is 

randomly generated from an initial population. The solution is evaluated and 

individuals/solutions are selected based on a fitness function. The selected 

individuals/solutions represent parents for new population. These parents are recombined 

using the crossover and/or the mutation genetic operators. Lastly, a replacement process 

is applied to determine the surviving solutions from the new generation. The evolutionary 

process repeats itself until a stopping criterion is met.

2.2.2 Simulated Annealing (SA)

This method is inspired by the annealing process in metallurgy. To obtain large 

crystals with little defects, the annealing process involves heating and slowly cooling a 

metal. The strength of the metal depends on the cooling process. Kirkpatrick (1983) 

applied the concept of slowly cooling a metal to solving combinatorial optimization 

problems. The algorithm starts with generating an initial solution and setting the 

temperature to its maximum level. Then, a neighboring solution is generated randomly. If 

the new neighboring solution is better than the initial solution, then it is accepted as the 

new best solution. Else, the new solution is accepted with the probably that depends on 

the difference in values between the objective function of the best solution and the new 

solution and the current system temperature. At a given temperature, a large difference in 

objective function values leads to a higher probability of accepting a solution. The 

temperature decreases according to a cooling scheduling provided as an input to the 

algorithm. Decreasing the temperature lowers the probably of accepting new solutions
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that do not significantly differ from previous solutions. This process is repeated until a 

minimum temperature is reached.

2.2.3 Tabu Search (TS)

Glover (1986) introduced a strategy that keeps track of visited solutions in order 

to assist a local search method in overcoming local optima. By doing so, Glover 

introduced memory structures to the growing field of metaheuristics. The type of memory 

simulated by tabu list depends on the information saved. Memory can be classified into:

• Tabu List or Short-term memory: contains specific moves based on the 

latest solution. Such moves represent the structure of the recent search 

trajectory, or move that were not taken in the recent solution. Short-term 

memory aims at preventing cycling or re-visiting recent solutions. The 

Tabu list is updated after every iteration. Tabu moves that produce better 

solutions are allowed. This is referred to as the aspiration criterion, which 

is evaluated when creating new solution.

• Intermediate-term memory: contains best (elite) solutions found 

throughout the search. Memorizing these elite solutions and their 

attributes impacts future iterations by giving priority to solutions that 

resembles them. Intermediate-term memory helps achieve intensification 

effect.

• Long term memory: contains information about solutions generated 

throughout the search. The goal behind using such information is to avoid 

revisiting old solutions’ regions and promote exploring unvisited regions 

of the search space. Long-term memory helps achieve diversification 

effect.

The pseudo code below shows the general steps followed when executing a TS algorithm.



11

s =  so
Initialize tabu list, medium-term memory, long-term memory 
Repeat

S ’ = Best neighbor 
S =  S ’
Update tabu list, aspiration conditions, medium-term memory, long-term memory 
If intensification criterion holds, then intensify '
If diversification criterion holds, then diversify 

Until termination condition met

Figure 3 Tabu Search Algorithm (Talbi, 2009)

The process starts with creating an initial (and best by default) solution and 

initializing the various types of memories employed. The neighbors of the (initial) 

solution are created and the best neighbor is selected as the new best solution. The Tabu 

list, along with other employed memories, is updated to include non-admissible moves.

In the following iteration, the process repeats until a local optimum is reached. At this 

point, the search continues by selecting a worse solution to be the next solution.

2.2.4 Iterated Local Search (ILS)

Applying local search methods to a solution is expected to assure that the solution 

is a local optimum. Therefore, applying a local search to a solution in a poor region, 

would lead to improvement or local optima. However, this improvement is only relative 

to the quality of the solution (or input given to the local search). With this motive, ILS 

strategy aims at repeating the application of local search to solution produced in various 

neighborhoods by using a Perturbation method. This method modifies the initial solution 

in order to provide a new starting point to the local search method. Perturbation can be 

very random to lead to more diversification or less random (by keeping parts of the initial 

solution).

ILS effectively combines local search and perturbation by executing the following 

procedures: Generate Initial Solution, Local Search, Perturbation, Local Search and 

Acceptance Criterion (Gendreau et al., 2010). The local search method can be a heuristic 

or a single-solution metaheuristic. ILS starts with ‘Generate Initial Solution’ and ‘Local
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Search’, which represent a common start to many metaheuristic methods where an initial 

solution is constructed and improved

SO =  Generate initial solution 
S* = Local search (SO)
Repeat

S ’ = Perturbation (S*, history)
S*’ = Locals search (S ’)
S* = Acceptance criterion (S*, S*’, history)

Until termination condition met

Figure 4 ILS Algorithm (Gendreau et al., 2010)

Perturbation modifies the neighborhood of the recently created solution before 

Local Search is applied again. Perturbation allows ILS “to effectively escape local optima 

but at the same time avoid the disadvantage of a random start” (den Besten et al., 2001). 

Following the perturbation, a ‘Local Search’ is applied to assure local optima. Then, an 

‘Acceptance Criterion’ is evaluated. This procedure employs a policy that enforces either 

diversification or intensification depending on the problem. The process is repeated until 

a termination condition is met. The concepts behind ILS have been utilized in various 

publications; however, Lourenco et al. (2002) formalized ILS as a metaheuristic.

2.2.5 Variable Neighborhood Search (VNS)

Unlike local search-based metaheuristics, VNS has the ability to omit a trajectory 

search and systematically change neighborhood structures. A neighborhood structure is 

exited as a result of reaching local optima. VNS uses this mechanism to achieve a global 

optimum, which is expected to be a local minimum of all neighborhood structures. VNS 

was first introduced by Mladenovic and Hansen (1997). Two main procedures were 

described: initialization and main step (figure below). During the initialization procedure, 

a set of neighborhood structures are selected and an initial solution (Sbest) is created using 

the first neighborhood structure.
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Initialization:

Select a set o f  neighborhood structures N k

L e tN k b e : k = l , . . . , km ax  
Sbcsi =  Generate an initial solution 

M ain Step:
Repeat 

Let k =  1 
Repeat

S* = Generate a random  solution from neighborhood k //Shake 
S* ' = Local Search (S ’ )
If  S*’ < S t*

Ste , =  S*’ 
k=l 

Else 
k ++

Until k =  kmax
Until termination condition met

Figure 5 Pseudo Code for VNS (Gomes et al., 2000)

In the main step, a solution is generated at random from the kth neighborhood 

structure. This is followed by an improvement via a local search method. If the recently 

created solution is worse than the previous (initial in this case) solution, then the current 

neighborhood structure is exited (k++). This indicates that a local optimum has been 

reached in a neighborhood structure. On the other hand, if  the new solution is better than 

the previous/best solution, then searching neighborhood k=l continues by repeating the 

steps starting with the shaking process in an effort to find a better neighbor.

2.2.6 Guided Local Search (GLS)

The core idea behind GLS is to vary the objective function based on the output of 

a local search method (Voudouris, 1997). This is done by defining features associated 

with a local optimum, associating costs for the features, and incorporating penalties to 

reflect the importance of the features. For a TSP instance, a feature can be a specific 

connection between two cities while the cost is the distance associated with this 

connection. The pseudo code illustrates the general steps following by GLS:
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SO = Generate initial solution 
S=S0
Pi = 0 //Initialize penalties 

Repeat
S* = Local search (S)
For each feature i o f  S*

Uj =  Ci /  (1+ pi) //compute feature’s utility 
Uj =  m a x i - i , ( u i )  //compute maximum utilities 
Pi =  pj + 1 //update penalties

Until termination condition met

Figure 6 Guided Local Search Algorithm (Talbi, 2009)

After defining the features and their associated costs, the process starts by 

creating an initial solution and initializing the penalties to zero. A local search method is 

applied to the initial solution in an effort to reach the local optimum. For each presence 

feature in the solution, the utility is computed, which is proportional to the cost of the 

feature and inverse to the penalty of the feature. The penalty of the feature with the 

highest utility is increased. If a feature is not presence in the solution, then its utility is 

equal to 0 (and ultimately its penalty is not increased). Incorporating the penalty concept 

into the objective function allows GLS to explore the search space by avoiding highly 

penalized regions.

2.2.7 Ant Colony Optimization (ACO)

Creatures such as ants, bees, wasps, fish, birds, etc. have mastered intelligent 

strategies that help them survive. These species are able to indirectly communicate 

knowledge about the best paths to take in order to achieve a specific goal (e.g. best paths 

to food). The concepts behind these strategies have been formulated into metaheuristic 

algorithms and successfully applied to combinatorial optimization methods. These



15

metaheuristics algorithms are known as swarm intelligence algorithms (Kennedy & 

Eberhart, 2001).

One of the most successful swarm intelligence algorithms is the Ant Colony 

Optimization. Inspired by ants in the real world, Dorigo made the connection between 

ants seeking food and optimization (Blum, 2005). Capturing the indirect communication 

between ants in quest for food, Dorigo introduced the Ant System and applied it to the 

TSP. Ant System matured to the become Ant Colony Optimization (ACO) algorithm. The 

ants-focused process starts with ants depositing chemical pheromones in all the routes 

they take leading to the food source. Ants that chose the shortest route are the ones that 

will reach the food and return to the nest first. On their way back to the nest, these ants 

will continue to deposit chemical pheromones. When a new group of ants leave the nest 

with the same objective, they will more likely follow the route with the highest 

pheromone concentration, which is the shortest route to the food. With time, ants will 

repeat this process and eliminate following long routes to get to their food. This 

phenomenon is known as stigmegry, a pheromone-based communication method ants use 

when searching for the shortest way to find food (Dorigo et al., 2000).

The process followed by artificial ants in ACOs is represented in the pseudo code 

below. Artificial ants mimic the behavior of real ants by using heuristic information as 

their artificial pheromone trail.

Initialize pherom one trail 

Repeat
For each ant

Construct solution using pherom one trail 
Update pherom one trails

Until termination condition met

Figure 7 ACO Pseudo Code (Talbi, 2009)

2.2.8 Greedy Randomized Adaptive Search Procedure (GRASP)
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GRASP was introduced by Feo and Bard (1995). It is a simple, iterative, single

solution based metaheuristic. GRASP constructs a solution using a greedy heuristic and 

improves it using a local search heuristic. The solution gets constructed incrementally 

one element at a time. During the process of constructing a solution, GRASP generates a 

Restricted Candidate List (RCL) to include candidate elements that could be chosen next. 

The elements in the RCL are ordered using the greedy, local heuristic. RCL represents 

the adaptive aspect of GRASP as it gets updated after every iteration, which is done when 

an element is selected from it. Selecting an element from the RCL can be achieved 

following cardinality-based criteria or value-based criteria (Talib, 2009). When using the 

cardinality-based criteria, the best element in RCL is selected next while using the value- 

based criteria requires using an additional parameter to be used as a cutoff point, where 

an element better than the parameters is selected randomly. Once the solution is 

completed, it gets improved using a local search heuristic to guarantee that it is a local 

optimum.

2.3 Metaheuristics for Randomized Priority Search (Meta-RaPS)

While the aforementioned metaheuristic methods are some of the most studied 

metaheuristic methods, this study focuses on a relatively new metaheuristic method: 

Metaheuristic for Randomized Priority Search (Meta-RaPS) introduced by DePuy and her 

colleagues in 2001 (DePuy et al., 2001). Meta-RaPS is based on the Computer Method of 

Sequencing Operations for Assembly Lines (COMSOAL) heuristic. COMSOAL was first 

used to solve the assembly line balancing problem (Arcus, 1965). A series of changes 

were introduced to transition from COMSOAL to Meta-RaPS (DePuy and Whitehouse 

2000, DePuy et al. 2000a, DePuy et al. 2000b).

Similar to other metaheuristic methods, Meta-RaPS is also a high-level strategy 

with construction and improvement phases. The notable feature in Meta-RaPS is the use 

of randomness during the construction phase DePuy et al. (2005).
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During the construction phase, Meta-RaPS explores the search space and 

generates a set of feasible components that can be accumulated to the current partial 

solution (solution being built). The component with the best priority value (according to a 

greedy or look ahead heuristic) is only added to the current partial solution if a randomly 

generated number is less than or equal a user-defined priority value (p%). Otherwise, 

other feasible components with priority values within a user-defined restriction window 

(r%) are considered candidates to be added to the current partial solution. Selecting one 

of the candidate solutions is done randomly. This approach allows for worse or less than 

perfect components to be added to the solution currently being built.

At the end of the construction phase, the improvement phase is initiated by 

comparing the newly constructed solution with the best solution found so far. A user- 

defined improvement parameter (i%) is used to create a range around the best solution 

found so far. If the new solution is within i% of the best solution found thus far, then an 

improvement phase is initiated by performing an improvement heuristic. The goal is to 

take advantage of a promising newly constructed solution by applying a local search 

heuristic method in an attempt to find a solution that exceeds the best solution found so 

far. Figure below shows a pseudo code of Meta-RaPS.

Do Until a termination criteria are met 
Construction Phase:

Do Until feasible solution generated
Find priority value for each feasible com ponent 
Find com ponent w ith best priority value 
P = random ly generated value: RND (1,100)
If  P<— p%  Then

New solution -  new solution + com ponent with best priority value
Else

Form ‘available list’ o f  all feasible com ponent whose priority values are within r% 
o f  best priority value
Randomly choose com ponent from available list
N ew solution =  new solution + random ly selected com ponent

End If
End Until 

Improvement Phase:
I f  New solution w ithin i% o f  the best solution found so far 

Apply local search method to the new solution 
I f  improved new solution is better than best solution found so far 

Best solution found so far = improved new solution
End If

End If
End Until

F igure 8 P seudo C od e for  M eta -R aP S  (D eP u y  et al., 2005)
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Using Blum and Roli’s (2003) categorization effort listed in the previous section, 

the original Meta-RaPS can be categorized as a metaheuristic that uses a single point 

search approach with a static objective function, single neighborhood, and no memory.

Meta-RaPS is considered to be a general form of GRASP as Meta-RaPS with p% 

set to 0%, i% set to 100%, and a greedy heuristic during the construction phase will 

imitate the behavior of GRASP. Since its introduction, GRASP (Feo & Resende, 1995) 

has been used to solve a variety of combinatorial optimization problems including routing 

and scheduling problems (e.g. Villegas et al. (2011) and Goodman et al. (2009)). The 

relationship between GRASP and Meta-RaPS paves the way for Meta-RaPS to be applied 

to all problems GRASP has been able to solve. Additionally, Meta-RaPS (not as a general 

form of GRASP) has been used to solve various combinatorial optimization problems as 

seen in the next section.

2.3.1 Meta-RaPS Applications

Since the introduction of Meta-RaPS (DePuy & Whitehouse, 2001), several 

researchers have successfully utilized it in solving combinatorial optimization problems. 

This section provides a chronological overview of the existing Meta-RaPS applications. 

As a new metaheuristic, most of the literature published focused on utilizing Meta-RaPS 

to solve fundamental combinatorial optimization problems.

The effectiveness of Meta-RaPS was first demonstrated by solving the Resource 

Constrained Project Scheduling Problem (RCPSP). COMSOAL was adapted to solve the 

RCPSP. Since Meta-RaPS is based on COMSOAL, applying Meta-RaPS to this problem 

was a natural first choice. To solve RCSP benchmark problems (Patterson Problems), the 

authors developed various construction heuristics (DePuy & Whitehouse, 2001b). The 

ACTIM and Summation heuristics outperformed others and thus was selected. Meta-
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RaPS (or modified COMSAOL) outperformed the original COMSOAL along with other 

RCPSP heuristics. This version of Meta-RaPS did not include an improvement phase.

The main focus seemed to be on the impact of incorporating both randomness and 

priority strategies.

The TSP was also solved by Meta-RaPS (DePuy et al., 2005). The Cheapest Insert 

and Node Insertions were used as the construction phase and improvement phase 

heuristics respectively. Meta-RaPS outperformed other metaheuristics for problems up to 

101 cities, which was very promising. With the incorporation of the improvement phase, 

Meta-RaPS reached a classic metaheuristic status. Therefore, parameter tuning was 

critical. The authors followed a basic “parameter search approach” by coming up with 

ranges for the parameters’ values and selecting two benchmark problems to solve. The 

parameters’ values yielding best outcome were utilized.

Lan et al. (2007) tackled the Set Covering Problem (SCP). This problem proved 

to be more difficult to tackle. For the construction phase, the authors followed the 

Chvatal’s (1979) greedy heuristic. For the improvement phase, a local search heuristic 

was developed by the authors. However, finding a set of parameter values that resulted in 

reaching optimal solutions was not possible. This pushed the authors to adjust the 

framework of Meta-RaPS to produce better quality solutions by revisiting the 

construction heuristic during the improvement phase, randomizing the selection of 

priority rules, and penalizing worst solutions. The performance of this version of Meta- 

RaPS was good when compared to other heuristics. The authors revisited and further 

analyzed the concept of partial construction (Lan & DePuy, 2006). The authors also 

introduced the concepts of intra-iteration and inter-iteration randomization, which 

contributed to better solutions for the SCP.

Moraga et al. (2005) applied Meta-RaPS to solve the 0-1 Multidimensional 

Knapsack Problem. In similar fashion with previous authors, several construction 

heuristics were examined. The Dual Greedy Rule outperformed others and thus was 

utilized in the construction phase. For the improvement phase the insertion and 

exchanging neighborhood search heuristics were followed. Parameter tuning approach
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was the same as the one used by Morage (2002). For small size problems, Meta-RaPS 

outperformed other metaheuristics, another promising finding. A version of GA 

outperformed Meta-RaPS when solving large size problems.

Rabadi et al. (2006) utilized Meta-RaPS to solve the unrelated parallel machines 

scheduling problem (PMSP) with machine-dependent and sequence-dependent setup 

times to minimize makespan. The construction phase employed the Shorted Adjusted 

Processing Time with Smallest Load while the improvement phase utilized three 

neighborhood search heuristics (inter-machine job insertion, inter-machine pair-wise job 

exchange, and intra-machine random job exchange). Moraga’s (2005) parameter tuning 

approach was followed. For small size problems, Meta-RaPS reached optimal solutions, 

which promising. For larger size problems, Meta-RaPS outperformed the Partitioning 

heuristic used to solve the problems.

In 2009, Hepdogan and colleagues (2009) applied Meta-RaPS to solve the 

Early/Tardy single machine scheduling problem with common due dates and sequence- 

dependent setup time. The construction heuristic utilized was the shortest adjusted 

processing time (SAPT). The improvement heuristic was a generalized pairwise 

exchange. The process of parameter tuning was not discussed in details. Meta-RaPS 

solved both small and large size problems. The performance was acceptable when 

compared to Simulated Annealing.

Hancerliogullari et al. (2013) used Meta-RaPS to solve the Aircraft Scheduling 

Problem (ASP). The problem was modeled as a Parallel Machine Scheduling Problem 

with Unequal Ready-times, Target times and Deadlines. A real-life ASP also requires 

sequence-dependent separation times on each runway to prevent the dangers associated 

with wake-vortex effects. The authors developed and evaluated several heuristics to use 

the construction phase of Meta-RaPS. In addition to Meta-RaPS, the authors solved the 

problem with Simulated Annealing (SA) metaheuristic using the same greedy heuristics. 

For both Meta-RaPS and SA, the parameter tuning was achieved by following a Design 

of Experiment approach. Both Meta-RaPS and SA outperformed the greedy heuristics.



Though optimal or near optimal solutions were found for many instances, S A 

outperformed Meta-RaPS.
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CHAPTER 3 

HYBRIDIZING METAHEURISTICS WITH DATA MINING

The development of the field of metaheuristic algorithm started with focusing of 

formulating and introducing new metaheuristic methods. This phase lasted for 

approximately two decades, assuming the start of metaheuristics was in the 1980s. 

Following the pure metaheuristics development phase, the characteristics of many of the 

well-established, pure metaheuristics became well-defined. This has led to combining 

metaheuristics with each other and with other existing optimization algorithms. The 

resulting metaheuristics are known as Hybrid Metaheuristics. Successful hybrid 

metaheuristics found the appropriate balance when combined with other algorithms, such 

as:

• Combining metaheuristics with other metaheuristics,

• Combining metaheuristics with operational research methods, such as exact 

mathematical programming methods,

• Combining metaheuristics with artificial intelligence methods, such as constraint 

programming methods, and

• Combining metaheuristics with machine learning and data mining techniques 

(Talbi, 2009)

The formulization of the field of hybrid metaheuristics started in the early 2000s 

(Talbi, 2002). The field is very active especially as more complex problems are being 

solved using approximate methods. A group of researchers are focused on continuing to 

define the field and surveying the literature has published several references on the 

subject (Blum et al., 2010; 2011). Additionally, various members meet at the 

International Workshop on Hybrid Metaheuristics and the International Conference on 

Hybrid Metaheuristics to further advance the field.
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All the ongoing efforts, has led to findings few patterns:

• Positive:

o For various real-life combinatorial optimization problems, hybrid 

metaheuristics were able to find better results (Talbi, 2002)

• Neutral:

o A formal definition for hybrid metaheuristics has yet to be introduced. 

However, this is viewed as a normal part of an evolving field (Blum et al., 

2011). An early exact definition might lead to limitation in future research

• Negative:

o Working with hybrid metaheuristics is often a challenge as they require 

developing expertise in more than one field, and

o Producing general hybrid metaheuristics is more challenging than 

producing general metaheuristics as more parameters, rules, and 

algorithms are involved in hybrid metaheuristics (Blum et al., 2011).

In the following sections, taxonomy for hybrid metaheuristics proposed by Talbi 

(2009) will be discussed to give a better understanding of how hybridization might occur. 

Though various hybridization options exist, the goal of this effort is to hybridize Meta- 

RaPS with a data mining technique. This will be discussed in detail in subsequent 

sections. The chapter ends with reviewing data mining techniques that will be combined 

with Meta-RaPS.

3.1 Hybrid Metaheuristics Categorization

Few frameworks of hybrid metaheuristics have been published (Blum et al., 2008; 

Raidl, 2006). The classification discussed here is by Talbi (2009), which is illustrated in 

the fire below. This classification helps clarify issues faced when designing hybrid 

metaheuristics.
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Hybrid m etaheuristics

Low level

Mode: Relay Relay TeamworkTeamwork

LRH LTH HRH HTH

Domain:
• Global 
•Partial

I 'u iu i ion :
■ Generalist 
• Specialist

- Hom ogeneous
- H eterogeneous

H ierarch ica l
classification

Flal
classification

F igu re  9 M etah eu ristics D esign  C lassifica tion  (T alb i, 2009)

The level-wise, hybridization can either be low or high level. Low-level hybridization 

represents a class where a metaheuristic is embedded in another metaheuristic. High-level 

hybridization represents a class where different algorithms coordinate with each other 

without impacting the internal structure of each algorithm. Within each hybridization 

level, two modes are possible: Relay and Teamwork. In Relay mode, algorithms are 

executed in a pipeline-like manner, where the output of one is the input for the next 

algorithm. In Teamwork mode, algorithms coordinate with each other and work in 

parallel. The levels and modes described yield four classes of hybrid metaheuristics: 

Low-level Relay Hybrid (LRH), Low-level Teamwork Hybrid (LTH), High-level Relay 

Hybrid (HRH), and High-level Teamwork Hybrid (HTH).

• In LRH class, algorithms are embedded in single-solution metaheuristics, such as 

embedding a local search algorithm in the Simulated Annealing metaheuristic.

• In LTH class, single-solution metaheuristic is typically embedded in population- 

based metaheuristic. This hybridization allows for both diversification (strength of
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population-based metaheuristics) and intensification (strength of single-solution 

metaheuristics). This results in many combinations that involve Simulated 

Annealing or Tabu Search with Evolutionary Algorithms or Swarm Algorithms.

• In HRH class, metaheuristics are sequentially executed. The characteristics of the 

selected metaheuristics complement each other. For example: a population-based 

metaheuristic is typically followed by single-solution metaheuristic. This 

hybridization allows for diversification and then fine-tuning and intensification.

• In HTH class, several self-contained metaheuristics tackle the search space in 

parallel. These metaheuristics coordinate with each other to find optima over 

various regions of the search space.

In addition to four hierarchical hybridization classes, Talbi (2009) provides a flat 

classification for hybrid metaheuristics. Aspects such as Type, Domain, and Function 

represent another layer where hybrid metaheuristics vary. Type-wise, a hybrid 

metaheuristic m ay consist of a homogenous or a heterogeneous set of algorithms. Though 

homogeneous metaheuristics are combined, they are expected to have different values for 

their parameters and/or search components (e.g. heuristics, neighborhood structures, etc.). 

Another aspect used to classify hybrid metaheuristics is the Domain where the hybrid 

metaheuristics are applied. In global hybridization, all metaheuristics tackle the entire 

search space. On the other hand, partial domain hybridization aims at partitioning the 

search space in advanced and assigning specific metaheuristics to solve specific regions. 

The last level of hybridization aspect categorizes the functionality performed by the 

algorithms that make up a hybrid metaheuristic into general and specialist hybrids. In 

general hybrids, all metaheuristics have and solve the same problem. Specialist hybrids 

divide the problem into sub-problems and assign each sub-problem to one of the 

metaheuristics in the hybridized combo.

Both hybridization approaches described here are classified as HRH  with 

heterogeneous algorithms that are applied to the global search domain with a general 

(same) problem to solve.



26

3.2 Hybridizing Metaheuristics with Data Mining

In the field of Data Mining (or Knowledge Discovery in Databases) computer 

science and statistics techniques are employed to process large amounts of data and 

transform the data into knowledge (Chen et al., 1996). The fundamental rules and 

patterns obtained by mining datasets are: association rules, sequential patterns, 

classification rules, and data clusters (L. F. Santos, 2005). This information can be 

viewed as learning. The process of learning can be simplified as the process of utilizing 

the knowledge produced by these techniques in making future decisions. Data mining 

techniques are categorized based on the way they learn into: supervised, semi-supervised, 

and unsupervised learning techniques. The supervised and unsupervised learning methods 

are most common. Supervised learning algorithms learn from given correct input. On the 

other hand, unsupervised learning algorithms discover relationships without input. Some 

of the most known tasks performed by these two techniques are data classification and 

data association rules correspondingly.

Though metaheuristics have been widely employed to improve the performance 

of data mining techniques, the opposite is not true. Hybridizing metaheuristics by 

incorporating data mining techniques have rarely been studied (Talbi, 2009). The 

potential hybridization between metaheuristics and data mining techniques can be 

classified based on the following categories:

Tims of hybridization Aim of hybridization Involved com ponent

i i

-OH

F igu re  10 D ata  M in in g  In tegration  A p p roach es (T a lb i, 2009)
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• Time of hybridization: data mining techniques can be used extract knowledge and 

formulate strategies off-line (before the search starts) or on-line (during the 

search).

• Aim of hybridization: data mining techniques can assist in managing the search 

space (efficiency) or guiding a metaheuristic algorithm in search space 

(effectiveness).

• Involved component: data mining techniques can on improving a specific aspect 

of the metaheuristic, such as solution encoding, initialization, parameter tuning, 

etc.

The use of data mining can vary from one hybridization class to another. A survey 

mapping the aforementioned data mining hybridization categories to existing publications 

can be found in (Jourdan et al., 2006). In this survey, the majority of the metaheuristics 

hybridized with data mining are population-based metaheuristics. This conclusion is 

logical due to the expected guidance and intensification the knowledge extracted using 

data mining techniques can provide to diverse population-based metaheuristics.

As an example, Lessmann et al. (2011) utilized data mining methods to improve the 

parameter tuning aspect in Particle Swarm Optimization (PSO) metaheuristic. Regression 

models were used to mine the data generated by particles during typical PSO iterations. 

The information available about a particle is presented in a particle's signature, which 

consists of position vector, flying vector velocity, and best position vector. The particle's 

next/future movement is calculated following an equation that makes use of three 

parameters: ci, C2, and Vmax- These parameters are expected to impact how a particle 

searches the search space. These parameters are the target parameters to be tuned. The 

hypothesis put forward by the authors states that a particle's signature contains relevant 

information, which will impact the effectiveness of the particle's next move. To confirm 

this hypothesis, the authors described a model that identifies the appropriate information 

to extract and a group of regression methods (multiple linear regression model, stepwise 

multiple linear regression model, least square support vector machine - linear, least
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square support vector machine radical, and regression forest) to utilize the extracted 

information and forecast appropriate values for the PSO parameters. The proposed 

process was applied to the water supply network planning problem. The results behind 

the empirical study focused on identifying the best regression method by examining the 

forecasting accuracy of each method. Both non-linear regression methods (least square 

support vector machine radical, and regression forest) resulted in better forecasting 

accuracy than the original (no-regression) and the linear methods. Additionally, the 

performance of the forecasting methods was analyzed against increasing the size of the 

problem.

Very few non-population-based metaheuristics were listed. Three GRASP hybridized 

with data mining were surveyed (Plastino et al., 2011; Ribeiro et al., 2004; L. F. Santos, 

2005). GRASP was hybridized with a portion of the unsupervised learning data mining 

similar to the Apriori Algorithm (Argawal et al., 1993) named Frequent Itemset Mining 

or FIM. The target combinatorial optimization problems are the Set Packing Problem, 

Maximum Diversity Problem, and the p-median problem. Learning is done by forgoing 

the multi-start feature of GRASP and guiding the start of the search based patterns 

frequently found in elite solutions found after running GRASP for a defined number of 

iterations.

In addition to being hybridized with GRASP, a customized version of the Apriori 

Algorithm (Argawal et al., 1993) was also integrated with GA to solve the Oil Collecting 

VRP (Santos et al., 2006). The high-level objective of the hybridization is to accelerate 

the occurrences of good solution in the GA population by discovering and incorporating 

patterns found frequently in elite solutions.

As the hybridization category of interest, the HRH class can benefit from the 

knowledge provided by data mining in:

• Search components: instead of relying on random multi-start approach, data 

mining techniques can help guide the search to better regions.
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• Parameter setting: data mining methods can help find the optimal parameter 

settings using knowledge gained during the search

• Optimization model: data mining can assist in decomposing the optimization 

problem via classification and clustering techniques. Decomposition allows the 

metaheuristic to be more effective handling more manageable sets of problems.

3.3 Classification via Decision Trees

Classification is learning a function that maps or classifies input data into one of 

several predefined classes (Fayyad et al., 1996). While classification handles discrete 

input, regression learning (another supervised learning approach) handles continuous 

input variables. Popular classification methods are Inductive Decision Trees (IDTs), 

neural networks, support vector machines.

The IDT is a data mining technique that aims at classifying data by generating 

classification rules without prior knowledge (Chen et al., 1999). IDT achieves this goal 

after completing a training phase, during which Training Examples (TE) are used as 

input. Data mining algorithms can be classified based on the content of TE into: 

supervised, semi-supervised, and unsupervised. For a supervised learning method such as 

IDT, the set of TE consists of labeled data, which can be viewed as a paired data: a vector 

of system attributes and the desired label (see table below). A desired label can be 

described as the desired outcome of learning or a class (Park et al., 1997).

Instance
Vector of Attributes

Class
Attribute 1 Attribute 2 . . . Attribute n

l Xxx X XX Success

2 Xxx X XX Success

3 Xxx X XX Failure

Table 2 Theoretical View of Labeled TE (Kotsiantis, 2007)
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Following the training phase, IDT is expected to have learned the concepts of the 

classes in TE. This is portrayed by generating classification rules. Examining the quality 

of the classification rules is achieved when IDT is faced with never seen before data. The 

TE for semi-supervised algorithms contains a mix of labeled and unlabeled data. While 

unsupervised algorithms utilize unlabeled data during their training phase.

When compared to other supervised machine learning algorithms (Table 3), IDT 

fared well especially when it comes to its speed, handling of discrete, binary, and 

continuous attributes, and comprehensibility.

Criteria
D ecision

T rees
N eural

N etw orks
N aive
B ayes

kNN SVM Rule
Learners

A ccuracy in general ** *** * ** **** **

Speed o f  learn ing  w ith  re sp ec t to  
n u m b er o f  a ttr ib u te s  an d  the  
n u m b er o f  instances

*** * * **

Speed o f  classification **** **** * **** ****

T olerance to  m issing values *** * * ** **

T olerance to irre lev an t a ttr ib u te s *** * ** ** **

T olerance to  red u n d a n t a ttr ib u te s ** ** * ** *** **

T olerance to highly 
in te rd ep en d en t a ttr ib u te s  (e.g. 
p a rity  prob lem s)

** *** * * *** **

Dealing w ith  d isc re te  
/b in a ry /c o n tin u o u s  a ttr ib u te s

**** *** 

(not disc.)

*** 

(not cont.)

***

(n o t d irec tly  
disc.)

** 

(not disc.)

***
(not directly ccont)

T olerance to noise ** ** *** * ** *

Dealing w ith  d an g er o f  overfitting ** * *** *** ** **

A ttem pts for increm en ta l learn ing ** *** ** *

E xplanation  ab ility /tran sp a ren cy  
o f
know ledge/classifications

**** * ** *

Model p a ra m e te r  handling *** * *** * ***

Table 3 Supervised Learning Algorithms (**** Best, * Worst) (Kotsiantis, 2007)
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The clarity IDT enjoys is largely because a decision tree can easily be represented 

as If-Then decision rules or as graphical trees.

Figure 11 Graphical Representation of IDT with Associate TE (Kotsiantis, 2007)

Employing the concept of an IDT involves making use of decision tree 

construction algorithms. These algorithms include ID3 and its extension C4.5, which 

grew in popularity to become the standard decision tree construction algorithms (Quinlan, 

1993). Both ID3 and C4.5 start by evaluating the attributes in a TE. An attribute that best 

divides the data is selected to be the root node of a tree. The branches of each node 

represent all possible values of an attribute. As a tree branches out, a leaf (end) node is 

reached. Leaf nodes represent the outcomes of the classification (i.e. the classes to which 

instances belong).

IDT can have poor predictive performance due to its tendency to overfit the TE. 

Overfitting ties the learned classification rules to the TE used during the construction and 

training phases. Overfitting can be prevented by

1- Terminating training prior to fitting all pairs in a TE, or

2- Pruning/reducing the size of tree to be constructed.
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Two pruning approaches exist: pre and post pruning. Pre-pruning is a method to 

stop building a tree at a predetermined point. On the other hand, post-pruning is an 

approach that evaluates the performance of an IDT as it is being pruned (Kotsiantis, 

2007).

3.4 Rules Learning via Association

In addition to learning via classification (supervised learning), learning could also 

achieved by discovering rules associating different seemingly independent items, 

identifying frequent patterns, and/or discovering causal relationship between items 

without any advanced knowledge. This category of learning is known as association 

rules, which is one the unsupervised learning techniques. An association rule is “an 

implication of the form X -» Y, where X is the antecedent and Y is the consequent of the 

rule” (Alpaydin, 2010). Association rules are applied in various fields including mining 

biological data in bioinformatics databases to product recommendation in websites based 

on customers’ recent purchases. The classical application of association rules is the 

Basket Analysis, where retailers have an interest in discovering the dependency between 

two products purchased by customers.

To quantify the relationship between two (or more) items or products, three measures 

are often calculated: Support, Confident, and Lift.

• Support of the association rule X -> Y or Support (X,Y):

Support (X, Y) = P (X,Y) = # items containing both X and Y 
# items (1)

• Confidence of the association rule X —> Y:

Confidence (X -»Y) s  P (Y|X) P(X, Y) _ # items containing both X and Y 
P(X) # items containing X

• Lift or Interest of the association rule X —> Y:



Lift (X -> Y) = P (X|Y) = * * * >
P(X) P(Y) P(Y)

(3)

The Support of a rule indicates its statistical significance of a rule. Higher support 

for a rule is of interest since a rule or a relationship that rarely occurs is not likely to 

impact the learning process (e.g. only 0.01% of customers bought two products together 

will not influence decision makers to reconfigure a market to place these items closer to 

each other). Along with a potential rule with strong Support, the Confidence is calculated 

to solidify that a conditional probably exists tying two seemingly independent items. In 

the case of Basket Analysis, a Confidence value close to 1 and higher than P(Y) indicates 

that the probably of customers purchasing product X and Y is much higher than the 

probability of customers only purchasing product Y. Threshold values for both Support 

and Confidence are usually set by the user in order to discard any rules of less statistical 

significance and strength. The Lift is used to demonstrate the relationship between two 

items. If Lift is less than 1, then the relationship between items X and Y is less likely 

(purchasing product X makes purchasing product Y less likely). If Lift is more than 1, 

then the relationship between items X and Y is more likely (purchasing product X makes 

purchasing product Y more likely). If Lift is close to 1, then X and Y are independent.



34

CHAPTER 4 

VEHICLE ROUTING PROBLEM

The Vehicle Routing Problem is one of the fundamental combinatorial 

optimization problems. Though this dissertation focuses on tackling the classic Vehicle 

Routing Problem using the Meta-RaPS metaheuristic method, this chapter aims at 

providing a brief background about the problem. The chapter starts by describing the 

field of combinatorial optimization. Subsequent sections describe the Vehicle Routing 

Problem, its variations and the various approaches to solving this problem.

4.1 Problem Overview

Dantzig and Ramser (1954) introduced the Truck Dispatching Problem, which is 

now known as the Vehicle Routing Problem. The problem consists of a central depot, 

where products are stored, and a fleet o f  trucks to deliver the products to geographically  

dispersed customers. The objective is to identify the optimal set of routes each truck is to 

follow in order to serve all customers. The VRP is a combinatorial problem as it is 

considered a special version of the TSP if the traveling salesman is constrained by 

returning to the central depot after visiting each city. Similar to the TSP, the VRP is an 

NP-hard problem (Toth & Vigo 2002).

The classical VRP, also known as the Capacitated VRP (CVRP), is defined by 

Laporte (1992) as graph G= (V, A), where

N  -  the number of customer to be served

V -  {0,..., «}is a set of vertices each representing a customer. Vertex 0 is the central 

depot

A = {(i j ) :  i , j  e V, i ^  j }  is the set of arcs connecting the customers, where an arc

connecting customers i and j  is A,y

m = trucks are located at the central depot

n/ = the number of customer to be served by truck j
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Q = capacity of each truck 

q, = demand of customer i

dj = cost or distance of traveling arc Ay. The cost is typically symmetrical, where c,y = cy

The objective function identifying the set of routes (taken by each truck) that 

minimizes the total distance traveled. The constraints applied in the CVRP consist of 

visiting all customers, not exceeding the capacity of the trucks.

k= m J= « j

1 1 ^  W
*=1 j =0

The figure below shows a CVRP that consists of 14 customers (each with demand 

shown next to the vertex). Four tours are used to deliver goods. The capacity of each 

truck is 10.

#5

# 2

H

Figure 12 Solution of CVRP 14 Customers and Four Trucks Q 10. (Laporte, 2007)
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The CVRP is one of the most studied combinatorial optimization problems. This 

attention led to many advances and variations to the original CVRP. The more real-life 

constrains, conditions, and/or assumptions are considered, the more VRP variants get 

introduced and studied. In an effort to categorize the VRP variants, the variants are 

divided based on the constraints that led to creating them: customer variants, distribution 

systems variants, and problem variants.

Customer variants:

In many real-world distribution problems the customers expect receiving demands 

within a given time window. The VRP with Time Windows (VRPTW) is introduced 

(Solomon, 1987). The Periodic VRP (PVRP) model and solves a VRP where the 

costumers require periodic delivery of products (Gaudioso & Paletta, 1992). On the other 

hand, to model a VRP where the customers’ demands are not known in advanced, 

Psaraftis (1995) introduced the Stochastic VRP (SVRP). This variant covers more than 

unknown demands, but also unknown number of customers and unknown time windows. 

Another customer-induced constraint can be based on the product being delivered. The 

Site Dependent VRP (SDVRP) was introduced to model a VRP where the products being 

delivered require specific vehicles (Cordeau & Laporte, 2001).

Distribution systems variants:

The CVRP makes many assumptions about the distribution system. Distribution 

companies can have several fleets of vehicles to deliver products. Assuming that all 

vehicles have the same capacity is very simplistic. Hence, CVRP with heterogeneous 

fleets variants was introduced (Tarantilis et al., 2004). To model distribution systems 

with more than a single central depot, the CVRP with multiple depots was introduced 

(Filipec et al., 1997). In distribution systems where the truck does not have to return to 

the back to the central depot, the Open VRP is used (Tarantilis et al., 2005). Another 

VRP variant is the VRP with multiple scheduling (VRPM). In this instance, the 

distribution companies allow the vehicles to return back to the central depot(s) and 

replenish with more products (Tarantilis et al., 2005).
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Problem variants:

There are VRP variants can be considered spinoffs of the VRP. The Arc Routing 

Problem (ARP) satisfies customers demand in a similar fashion as the VRP. However, 

the ARP delivers/picks up products from the edges or the arcs connecting the customers 

(Lacomme et al., 2003). Additionally, systems that require serving both customers and 

arcs are modeled using the General Routing Problem (GRP) (Gerhard & Dirk, 2005).

Though this is not a complete list of all VRP variants, the list aims at illustrating 

the wide spectrum of VRP variants and the attention this problem it received from 

researchers. Several VRP variants can fit in more than a single category such as the 

CVRP with Split Deliveries (CVRPSD) (Belenguer et al., 2000) and the VRP with 

Pickup and Delivery (VRPPD) (Savelsbergh & Sol, 1995). In the CVRPSD, both 

distribution companies and customers coordinate satisfying customers’ demand via 

delivering products using more than one vehicle. The VRPPD models a system where the 

trucks not only delivers goods, but also pick up items from the customers. Additional 

VRP variants exist as a result of incorporating more aspects of the problem such as a 

Capacitated Arc Routing Problem (CARP) (Golden & Wong, 1981) or incorporating time 

window constraints to other VRP variants such as the Split Delivery Vehicle Routing 

Problem with Time Window (Dror & Trudeau, 1989).

4.2 Vehicle Routing Problem Solutions

As with many combinatorial optimization problems, the VRP was solved using 

complete/exact algorithms and approximate ones. Many reviews articles are written to 

give snapshots of the algorithms used to solve the VRP and its variants (Golden et al. 

1988; Golden & Stewart 1985; Laporte, 1992, 2007, 2009; Laporte & Norbet 1987; Toth 

& Vigo 2002). Complete algorithms find optimal solution for the problem by searching 

the entire search space. Complete algorithms used to solve the VRP include Integer 

Programming algorithms, Dynamic Programming, Branch-and-Bound (Laporte, 2007). 

The downside of complete algorithms is the time they take to produce an optimal 

solution. This limits them to small (Toth & Vigo, 2002), mostly conceptual instances of
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the problem. To overcome this limitation, many researchers have hybridized complete 

algorithms with approximate ones. Though they reliably provide optimal solution to the 

problems, complete algorithms will not be discussed in detail here. The focus on this 

brief review is on approximate algorithms used to solve the VRP. The approximate 

algorithms used to solve the VRP are divided into heuristics and metaheuristics.

4.2.1 Heuristic Algorithms

Blum and Roli (2003) classified heuristic algorithms into constructive and local 

search or improvement algorithms. The constructive algorithms incrementally build a 

solution by starting from scratch. On the other hand, improvement heuristic algorithms 

start with an initial solution and work on improving it by modifying portions of in an 

effort to find better versions of the solution. The similarity between the VRP and the TSP 

allows for TSP-specific constructive and improvement heuristics to be used to solve 

VRP. VRP-specific heuristics include the Clarke and Wright saving heuristics, Sweep 

and Petal heuristics, and Two-Phase Decomposition Procedure (Laporte, 2007).

4.2.1.1 Clarke and Wright (CW) Saving Heuristic

This algorithm was introduced 1964 to solves the CVRP by merging routes to 

reduce the total distance traveled (Clarke and Wright, 1964). The initial setup assumes 

that individual routes exist between the central depot and each customer. Reducing the 

total distance traveled is quantified using the concept of savings:

S ij =  d 0 i  + d o j  -  d ij ^ 0 V a r c  (j> j ) ^

The distance between two destinations is referred to as d. Thus, the distance 

between customer i and the depot is dot, the distance between customers i and j  is dij. Sy 

represents the distance saved by directly connecting customers i and j .  To use the CW 

algorithm to solve a CVRP instance, the distances between each customer must be 

calculated. The distances can be saved in a distance matrix. The distances are then used 

to create a savings matrix, where equation (2) is used to calculate the savings if an arc 

were to connect two customers directly. The savings matrix is then sorted in a descending
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order, where the arc with the most savings is first. The outcome of sorting will be referred 

to as the sorted savings list. Every arc in the sorted savings list represents a possibility to 

merge two CVRP routes by connecting two customers together. However, to merge two 

routes using an arc from the sorted savings list, the arc is examined against three CW 

conditions. The first condition checks if the customers in the arc belong to two separate 

existing routes. The second condition verifies that the truck capacity is not exceeded if 

two routes are merged using the arc under consideration. The last condition checks if the 

both customers in the arc are either first or last in their existing routes. After evaluating 

every arc in the sorted savings list, several of the initial routes are expected to be merged.

This heuristic is both simple and very popular when constructing VRP solutions. 

Some of its main disadvantages are related to the relatively long time the sorting step 

consumes (Laporte, 2007) and the lack of flexibility evident by the poor results achieved 

when adding new constraints (Cordeau et al., 2002).

4.2.1.2 Sweep and Petal Heuristics

For VRP layouts where the routes do not interest (or planar graph VRP), the 

Sweep algorithm is used (Gillett & Miller, 1974). A route is generated starting with a line 

centered at the depot. Customers are included in a vehicle route gradually by rotating the 

line until constrains are violated (e.g. capacity is exceeded). The process repeats until all 

customers are served. The figure below shows the construction of feasible routes using 

the sweep algorithm with vehicle capacity Q = 10. Customers’ demands are displayed on 

the vertices.
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R oute  1

Half-line
roo ted
a t th e  
d ep o t

Figure 13 Sweep Algorithm (Laporte, 2007)

The algorithm is very simple, however it is limited to simple VRP instances 

especially ones where intersections and grids are expected.

The Petals heuristic algorithm (Foster & Ryan, 1976) generates routes based on 

the Sweep heuristic. A number of routes (or r-petals) are created within a specific area 

from the depot. A subset of the routes is selected and then a Set Partitioning Problem (a 

complete algorithm) is performed. Several extensions were introduced to the petals 

heuristic to allow for intersecting and embedded routes (Renaud et al., 1996; Ryan et al., 

1993).

4.2.1.3 Two-Phase Decomposition Procedure

Fisher and Jaikumar (1981) proposed a procedure where the first phase consists of 

clustering customers and then vehicle routes are created in the second phase. The clusters 

are created using the General Assignment Problem (an NP-hard combinatorial 

optimization problem). A seed is located in a region and then the sum of distances 

between customers and the seed to which they are allocated is minimized. After creating 

the clusters, a vehicle route is generated by solving a TSP per cluster. Laporte (2007) 

reported that the Fisher and Jaikumar did not explicitly specify the method behind
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placing the seeds in certain regions. Advances to this framework were done to improve 

seed selection, where Bramel and Simichi-Levi (1995) used actual customers as seeds.

4.2.2 Metaheuristics Algorithms

The VRP and its variants are very close to real-world distribution problems. With 

their ability to provide good-enough solutions in a short time, metaheuristics are a viable 

option to solve these problems as evident by the amount of literature produced. The 

objective of this section is to discuss the core concepts of some of the well-established 

metaheuristics used to solve the CVRP as reviewed by Laporte (2007). Due to its 

similarity with Meta-RaPS, the subsequent section focuses on showcasing literature that 

applied GRASP metaheuristic to solve the CVRP.

According to Laporte (2007), the best metaheuristics approaches used to solve 

benchmark CVRP instances deviate from best known value by a maximum of 1%. These 

approaches utilize population-based metaheuristics, local search, or a combination of the 

two. Table 4 highlights some of the latest best performing metaheuristics used to solve 

CVRP. The common test beds used by many researchers are:

1. CMT small VRP instances generated by Christofides, Mingozzi, and Toth 

(1979), and

2. GWKC large VRP instances generated by Golden, Wasil, Kelly, and 

Chao (1998)

The performance is typically measured by the deviation from best known 

solutions for the input benchmark problems.
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Metaheuristic Hybridization Approach

TABUROUTE (Gendreau et al., 1994) Tabu search

AGES (Mester and Braysy, 2005) Genetic Algorithm, Guided Local Search

D-Ants (Reimann et al., 2004) Ant Systems

BoneRoute (Tarantilis and Kiranoudis, 2002) Tabu search, Adaptive memoty

SEP AS (Tarantilis, 2005) Tabu search, Adaptive memory

GRELS (Prins, 2009) GRASP, ELS

MPNS-GRAPS (Marinakis, 2012) GRASP, M ultiple reactive methods

GRASPVRP (Layeb, 2013) GRASP, SA

GRASP w/ evolutionary path-relinking (Usberti, et al., 2013) GRASP, Multiple reactive methods

Table 4 Sample o f Best Performing Metaheuristics to Solve CVRP

4.2.2.1 TABUROUTE

Various Tabu Search approaches were successfully utilized to solve the VRP. 

Taillard (1993) proposed a two-phased decomposition-like procedure to assist parallel 

iterative search methods applied to the VRP. The approach divided the problem into 

several regions. Tabu Search is then applied to each region individually. Inter-region 

moves are performed periodically for adjacent regions. Another successful Tabu Search 

approach was introduced by Gendreau et al. (1994) named TABUROUTE. This allows 

for infeasible solutions to be accepted, which is a result of incorporating penalties terms 

in the objective function. One of the factors that contributed to the success of 

TABUROUTE is the use of GENI (GENeralized Isertion) heuristic, which only allows 

for a customer to be inserted in a route that contains the customer’s closest neighbors. 

GENI helped produce better routes and periodically perturbed solutions.

4.2.2.2 AGES

The Active-Guided Evolution Strategies or AGES (Mester & Braysy, 2005) is a 

hybrid metaheuristic that employs basic heuristics, guided local search concepts, and 

genetic algorithm concepts to solve large CVRP. AGES consists of two phases, where a 

set of solutions are created in the first phase that get improved in the second phase. To 

create the initial solutions, cheapest insertion heuristics along with a filling procedure are 

used. The best solution is passed to the second phase, which starts with a guided local
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search method. The goal behind this is to better improve the solution by using 3-5 

different improvement heuristics. The second phase is concluded when the guided local 

search metaheuristic stops improving the solution. This kicks off the last stage during 

which the solution is further improved by utilizing evolution strategies, which consists of 

a series of removal and reinsertion moves.

4.2.2.3 D-ANT

Decomposition-ANT (Reimann et al., 2004) focused on using the natural 

clustering process that human dispatchers followed when handling the VRP. This 

clustering can occur based on geographical characteristics of an area or a basic zip-code, 

etc.

D-ANT starts with generating a master solution and improving it. This solution is 

divided into clusters after determining the center of gravity for each cluster of customers 

using the sweeping algorithm. Each cluster is then solved using the Ant Colony 

Algorithm. The construction heuristic used is the C&W heuristic, where the saving rule 

represents the ants’ pheromone trail. After solving each cluster, a master solution is 

resembled.
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4.2.2.4 BoneRoute

This is a population-based method that follows the adaptive memory concepts 

introduced by Taillard et al. (2001). The method builds solutions based on using 

sequences of nodes (or bones) extracted from previous solutions. The core concept is to 

identify frequently occurring sequence of nodes that don't only occur in high quality 

solutions, but also medium and low quality solutions. The method is organized based into 

three phases: pool generation phase based on a stochastic Paessens heuristic and Tabu 

search; pool exploitation phase, where two conditions are applied to identify the bones 

(user defined bone length and user defined bone frequency of occurring in the pool); and 

new solution generations phase that uses knowledge extracted from the second phase to 

construct a new solution.

4.2.2.5 SEPAS

One of BoneRoute’s authors proposed Solutions’ Elite PArts Search (SEPAS) 

metaheuristic (Tarantilis, 2005). SEPAS is an iterative method that makes used of Tabu 

search under the Adaptive Memory Programming concept by Taillard et al. (2001). 

SEPAS starts by following a systematic, diversified approach while generating initial 

solutions. These solutions are stored in adaptive memory and are used as the source of the 

‘elite parts’. ‘Elite parts’ are a sequence of the generated solutions. These sequences 

consist of a number of predefined nodes in a single route that occurs in a predefined 

number of solutions. The ‘elite parts’ are merged using a construction heuristic. The last 

phase of SEPAS improves the constructed solution by using a Tabu search approach.

4.2.2.6 GRELS

Prins (2009) hybridized GRASP with Evolutionary Local Search (ELS) 

metaheuristic named GRELS. Throughout the iterations, GRELS alternates the structure 

of the solution being constructed between a VRP solution structure and a giant tour. In 

handling the VRP as a giant tour, the author encoded VRP into TSP problem. A giant 

tour follows the route-first cluster-second approach.
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In the initial GRASP iteration, the construction phase uses the Clarke and Wright 

heuristic to build a VRP solution. Subsequent GRASP iterations construct a giant tour 

using the Randomized Nearest Neighbor Heuristic, which gets converted to a VRP 

solution using a Split procedure. The improvement phase of GRASP is achieved using a 

fast local search procedure. The improved VRP solution gets converted back to a giant 

tour before kicking off ELS portion of GRELS, which represent the core of GRELS.

Within ELS, the giant tour gets mutated and split to VRP tours. The VRP tours go 

through local search (improvement phase). The best solution gets concatenated back to a 

giant tour, which is reused within ELS again. This process repeats until an upper iteration 

limit is reached, which happens by incrementing a variable every time ELS mutation does 

not produce a better solution. The variable is cleared once a new best solution is found. 

This algorithm was used to solve the CMT benchmark problems. On average, it was 

better than other metaheuristic methods (which in term on average reached 0.3% 

deviation from best known solutions). GRELS was comparable to AGES Fast (Mester & 

Braysy, 2005).

4.2.2.7 MPNS-GRASP

The MPNS-GRASP (Marinakis, 2012) incorporates several features that allow 

GRASP to be more effective when solving the CVRP. The algorithm is divided into three 

phases: initialization, main algorithm, and main phase 2. Parameter setting and selection 

of both greedy and local search heuristics occur during the initialization phase. During 

the main algorithm phase, the solution gets progressively constructed by selecting an 

element from the Restricted Candidate list to use one of the greedy heuristics, which will 

be selected at random. The performance of the greedy heuristic is evaluated during main 

algorithm phase while the solution is constructed. If the quality of the currently 

constructed solution is not better than a threshold, then another greedy heuristic is used. 

The main algorithm is executed repeatedly until a stopping condition is met. Main phase 

2 represent the improvement phase where a new metaheuristic named Expanding 

Neighborhood Search is introduced and used.
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The algorithm was used to solve CMT and GWKC benchmark problems. The average 

deviation from optimal is 0.41% for the CMT problems and 1.34% for the larger GWKC 

problems. The various concepts introduced can be quantified as: (1) using more than a 

single construction heuristic to create an initial solution; (3) allowing construction and/or 

local search heuristics to be changed online;(2) existing based on the quality of the 

solution found (and not when a constant number of iterations are executed); (3) following 

Cardinality-based RCL, where best candidate make it to the RCL and one of the top 

candidates is selected randomly; (4) proposing and using the Expanding Neighborhood 

Search.

4.2.2.8 GRASPVRP

The GRASPVRP algorithm is a hybrid between two metaheuristics: GRASP and 

SA during the construction and improvement phases respectively. The construction 

approach follows the route-first cluster-second strategy, where they construct a 

mater/giant route first and then split it into feasible routes. The improvement phase uses 

the SA metaheuristic with several inter-route and intra-route heuristics.

To construct a tour, the authors introduce construction heuristic that is based on 

the density order heuristic used for the knapsack problem. This heuristic calculates a 

density value for the paths between customers. Density value is calculated by taking the 

difference between the vehicle capacity and customers’ demands and then dividing the 

result by the distance between two customers. Density values are used to create a density 

matrix, which is used as a method to prioritize customers during the construction of the 

giant route. The giant route is then split into feasible routes based on the truck capacity. 

This is repeated until all customers are assigned to a truck. Prior to exiting the 

construction phase the nearest neighbor heuristic is performed on each tour. GRASPVRP 

is tested by solving the CMT problems. The performance was comparable to MPNS- 

GRASP (Marinakis, 2012), but it was outperformed by another GRASP method named 

GRELS (Prins, 2009).
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4 .1.2.9 GRASP with Path Relinking

The authors employed several reactive concepts with GRASP to solve the CARP 

problem (Usberti et al., 2013). These concepts are: (a) reactive parameter tuning, where 

the value of certain parameters are updated based on performance; (b) using a statistical 

filter to avoid executing local search heuristics for poor solutions;(c) infeasible local 

search, which is used to explore the neighborhood of infeasible, high-quality solutions. 

Additionally, the augmented GRASP is hybridized by incorporating evolutionary Path 

Relinking to it. This allows elite solutions to be improved by relinking pairs of elite 

solutions.



48

CHAPTER 5

META-RAPS FOR CAPACITATED VEHICLE ROUTING
PROBLEM

This chapter describes the details behind using the original Meta-RaPS algorithm 

to solve the CVRP. This algorithm is used as a baseline for the hybrid algorithms. The 

memory-less Meta-RaPS framework consisting of a construction and an improvement 

phase is used. The construction heuristic selected is the Clarke and Wright (CW) savings 

heuristic (Clarke & Wright, 1964). The improvement heuristic selected is a basic local 

search heuristic named adjacent pair-wise exchange local search heuristic.
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Figure 14 Original Meta-RaPS Framework

The steps executed can be summarized as follows:

1- Read input problem:

Benchmark input problems usually contain the size of the problem (in terms of 

number of customers), maximum load allowed per truck, (X,Y) coordinates for 

the central depot and the customers, and the demand associated with each 

customer. In CVRP with time constraint, the maximum time constraint is 

provided along with the service (or drop) time
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2- Set Meta-RaPS parameters:

p%, r%, i%, and the number of Meta-RaPS iterations. The process behind 

determining the values to assign to the parameters is discussed in the design of 

experiment in later sections.

3- Create initial routes:

Initial routes consist of routes that serve a single customer. In other words, a route 

can be represented as (central depot, customer A, central depot). The number of 

initial routes is equal to the number of customers in the input problem

4- Determine the priority:

In this case, the distance is the priority as the overall objective is to minimize the 

total distance (the distance traveled by each truck). Based on this priority, the 

distance between each customer in the input problem is calculated.

5- Execute the construction phase:

If a random value is less than or equal to p%, then follow the CW heuristic in 

selecting the next customer to add to the solution. Else, follow a modified CW 

heuristic. Both options are discussed in details in this section. The construction 

phase ends when a solution is created. A solution consists of routes, where each 

route is handled by a truck. The number of customers served in a route depends 

on the capacity of the truck. A route could consist of a single customer if  the 

customer’s demand is equal to the truck’s capacity.

6- Execute the improvement phase:

If the total distance of the constructed solution is within i% of the best constructed 

solution, then apply the local search improvement heuristic (details of the adjacent 

pair-wise exchange are discussed later in this section). The improvement limit is 

calculated by considering the values of the Best Constructed Solution (BCS) and 

Worst Constructed Solution (WCS) so far:
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Improvement limit = WCS + i% (BCS -  WCS) (6)

7- All the steps are repeated until all Meta-RaPS iterations are exhausted. The best 

solution found from all Meta-RaPS iterations is reported as the final solution.

5.1 Clarke and Wright Construction Heuristic

Within the construction phase, original and modified versions of the CW heuristic 

are executed. The following pseudo code describes the construction phase:

D o  U n til fe a s ib le  so lu tio n  g en era ted

F in d  p r io rity  v a lu e  fo r  each  fe a s ib le  c o m p o n e n t b ased  o n  C W  (S a v in g s  L is t)
P =  ra n d o m ly  g en e ra ted  value: R N D  (1 ,1 0 0 )

I f  P <  p %  T hen  
C W :

F in d  c o m p o n e n t w ith  b es t p rio rity  v a lu e  b ased  o n  C W

N e w  so lu tio n  =  N ew  so lu tio n  +  co m p o n en t w ith  b e s t p r io rity  v a lu e

E lse
M o d i f i e d  C W :

C rea te  an  ‘av a ila b le  lis t’ o f  all fe a s ib le  c o m p o n en ts  w ith  p r io rity  v a lu e s  w ith in  r%  
o f  c o m p o n e n t w ith  b es t p rio rity  v a lu e

R a n d o m ly  ch o o se  c o m p o n e n t fro m  av a ila b le  list

N e w  so lu tio n  =  N e w  so lu tio n  +  ra n d o m ly  se lec ted  c o m p o n e n t
E n d  I f

E n d  U ntil

Figure 15 Meta-RaPS Construction Phase Detailed Pseudo Code

The steps followed within the construction phase are dependent on the construction 

heuristic used. In order to use the CW heuristic within the construction phase, the 

following building blocks must be understood:
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1- Creating an ordered savings list:

In this step, the distances calculated between each customer are used to calculate 

the distance saved if an arc were to connect two customers directly. The CW 

saving equation (2) is used to calculate the savings arcs. The saving arcs are 

sorted from a descending order and stored in an ordered saving list. The first 

saving arc in the list is the arc that yields the most saving in distance, which 

makes it the arc with the highest priority.

2- Original CW:

The original CW heuristic could be used to select the next component (or arc) 

to add to the solution. If the random number < p%, then the next arc to add to the 

solution must be the best, feasible arc. The feasibility of an arc depends on the 

CW conditions and the current state of the solution. The following are the 

possible outcomes for an arc (i j ) connecting two customers i and j:

1- If both customers belong to different routes and each customer is either 

first or last in its route and the truck capacity is not violated by merging 

the capacity of both route, then merge the two routes.

2- If one of the customers (e.g. customer /) belongs to an existing route and 

this customer is either first or last in its route and the truck capacity is not 

violated by adding the capacity of the other customer in the arc (e.g. 

customer j), then add customer j  to the route.

3- If none of the conditions above is applicable, then neither customer in the 

arc belongs to an existing route. Therefore, a new route is created with 

both arc customers if the truck capacity is not violated.

If an arc passes the CW conditions, then it is removed from the ordered 

savings list. If an arc does not pass the CW conditions, then the next arc in the
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ordered saving list is evaluated. This is repeated until an arc is feasible arc is 

found marking this step complete.

3- Modified CW:

If the random number is greater than p%, then instead of selecting the best 

feasible savings arc, a saving arc is randomly selected from an ‘Available List’. 

The Available List contains savings arcs that are within restriction limit (r%) of 

the best available saving arc (the arc with the highest priority). To compute the 

restriction limit, the Most Saving Arc (MSA) and Least Saving Arc (LSA) are 

identified and the following equation is used:

Restriction limit = MSA + r% (LSA -  MSA) (7)

The saving arc randomly selected from the ‘Available List’ is evaluated 

against the CW conditions (same condition as in the original CW heuristic). If an 

arc does not pass the CW conditions, then another arc from the ‘Available List’ is 

selected randomly.

The process above (original and modified CW) is repeated until all saving arcs are used 

to merge routes or create new routes.

5.2. Adjacent Pair-wise Exchange Improvement Heuristic

Following the construction phase, the improvement phase starts. If the constructed 

solution passes the improvement limit, then a local search heuristic is used to improve the 

solution. The heuristic selected is the adjacent pair-wise exchange heuristic, which was 

used for the CVRP by Mirza (2011).
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For each route in constructed solution
Old route distance = route distance
For each adjacent customers in a  route

Replace customer i and customer i+1
Calculate the route distance
If new route distance < old route distance

Keep new route
Old route distance = new route distance

Next
Next

Figure 16 Adjacent Pair-Wise Exchange Improvement Heuristic
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CHAPTER 6

HYBRIDIZING META-RAPS WITH INDUCTIVE DECISION TREE

The high-level goal behind hybridizing Meta-RaPS with an Inductive Decision 

Tree (IDT), a data mining technique, is to increase the effectiveness of the original Meta- 

RaPS by performing online parameter control (figure below). Characteristics (or 

attributes) about the solutions generated by Meta-RaPS represent the data to be mined by 

the IDT. After mining Meta-RaPS solutions, IDT is expected to identify Meta-RaPS 

parameter that was associated with Meta-RaPS’ good solutions. Knowing the parameter 

(and its associated value) represent the knowledge that the IDT obtained. This knowledge 

is passed to future Meta-RaPS iterations. On the other hand, the values for the remaining 

Meta-RaPS parameters can be randomly selected.

Future Meta-RaPS iterations utilize same value fo r  most critical param eter

Original
Meta-RaPS Collected M eta-RaPS Solutions

IDT

Generates solutions
Identifies most critical 
M eta-RaPS param eter 

and its value

Figure 17 High-level Hybridization Approach

This approach of integrating a data mining technique with a metaheuristic can be 

classified as: High-Level Relay Hybrid (HRH), with heterogeneous algorithms (Meta- 

RaPS and IDT), global search domain to tackle, and general (same problem) to solve 

(Talbi, 2009). This hybridization with data mining can be classified as an online
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hybridization with the goal of increasing the effectiveness of Meta-RaPS by setting its 

parameters using knowledge identified in previous iterations.

6.1 Meta-RaPS Inductive Decision Tree

The hybridized Meta-RaPS with Inductive Decision Tree, or MR IDT, starts with 

an initialization phase. This phase lasts for a predefined percentage of number of Meta- 

RaPS iterations (TE%). During the TE% iterations Training Examples (TE) are collected 

to be used in building the tree. During the initialization phase, Meta-RaPS uses no prior 

knowledge and performs as a multi-start metaheuristic (the same way the original Meta- 

RaPS). After every iteration in the initialization phase, a set of information or attributes 

about the solutions produced by Meta-RaPS is gathered. The attributes of interest are 

ranges of Meta-RaPS parameters p% value, r% value, i% value, and the category (or 

label) of the solution.

f a r t f a f f r a l f o r i  P / i a s * ;

■"R.andoro MR. Parameters Values 

*S  o l u t i o n  l a b e l :  g o o d  o r  b a d

P o s t - T r & s  P h a s e :

*  Fixed a t  least 1 IV1R 

P a r a m e t e r s  { b a s e d  o n  I D T ]

^  ...........  . . ....

...A .............................................

. ....... ..... ' " V

t m *  2 B u i M l O T .f-7H

f r i t v f ' r  -& 0  0 1 )V  £»S £•

Figure 18 MR IDT Timeline

As previously mentioned, the attributes selected in this design are Meta-RaPS’ 

parameters. To construct a tree, values for these parameters must be assigned. Due to the 

continuous nature of the parameters’ values, categories or levels are assigned. These
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levels reference the parameter values used in the original Meta-RaPS. Therefore, during 

the initialization phase of MR IDT, the values of p%, r%, and i% are randomly selected. 

For example, if a randomly selected value for p% is larger than the Meta-RaPS value for 

p%, then the level for p% attribute is set to ‘High’ for this solution. Otherwise, the level 

for p% is set to ‘Low’. Note that several approaches can be taken to labeling parameters. 

A different approach can limit labeling a parameter as ‘High’ only when the randomly 

selected value falls within a specific range of Meta-RaPS’ high values. This implies 

defining high and low values for Meta-RaPS parameters and defining a labeling range 

(e.g. a parameter is labeled as ‘High’ if  it is within 5% of Meta-RaPS high p%).
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The last attribute captured represents a label given to the solution produced. 

Several approaches can be used to label a solution as ‘Good’ or ‘Bad’. A solution can be 

labeled as a ‘Good’ if its distance is within a percentage of the Best Known Value for the 

problem being solved (BKV%). A solution with a distance that is exceeds the BKV% 

limit is labeled ‘Bad’. Alternatively, a solution can be labeled as ‘Good’ if it is better than 

the moving average value of a predetermined number of previous solutions.

Following the Initialization Phase (after TE% Meta-RaPS iterations have been 

executed), the Training Examples (or TE) are passed to the IDT algorithm (Table 5). The 

TE set is used as input for the tree construction algorithm.

Count p% Level r% Level i% Level Solution Label

1 H igh L o w H igh “g o o d ”

2 H igh H igh H igh “g o o d ”

3 L o w L ow L ow “b a d ”

T E L ow L o w H igh “ b a d ”

Table 5 Example of TE List

The IDT algorithm processes the list of TE and produces a tree. The root node of 

the tree can either be p%, r%, or i%. While the leaf nodes present a solution label: ‘Good’ 

or ‘Bad’. Though the tree will show various parameters and link them to the leaf nodes 

(both ‘Good’ and ‘Bad’), the parameters of interest are the ones in the branch that leads 

to a leaf node labeled ‘Good’. This relationship represents the parameter (root node) that 

is strongly associated with ‘Good’ leaf node. The knowledge represented by this
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relationship is passed to future Meta-RaPS iteration by fixing the value of the root node 

parameter. Note that it is possible that the TE contain mostly ‘Bad’ solutions leading the 

IDT algorithm to build a tree without a ‘Good’ leaf node. In this case, the no knowledge 

is passed to future Meta-RaPS iterations.
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Figure 20 Example of Constructed IDT

Following the construction of the tree, two approaches can be followed: continue 

to use IDT knowledge until the end of Meta-RaPS iterations or routinely re-evaluate MR 

IDT performance and implement a kick-out mechanism. In the later approach, after a pre

defined number of iterations (avg%), the performance of MR IDT is evaluated in an 

effort to prevent continuing to use bad IDT knowledge. If the last MR IDT solution is 

improving relative to the performance of the moving average of the last avg% solutions, 

then continue to use the knowledge. Else, stop using the knowledge and revert back to 

randomly selecting values for Meta-RaPS’ parameters. After executing the the kick-out 

mechanism, more TE are collected. This avoids collecting biased TE (when certain 

parameters are fixed). The IDT algorithm gets executed again after avg% iterations. A 

new tree is built leading to potentially discovering new parameters that contributed to 

good Meta-RaPS solutions.
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Figure 21 MR IDT Timeline with Kickout

6.2 ID3 Algorithm

The algorithm employed to construct an IDT is the ID3 (Quinlan, 1993). The 

input to the algorithm consist the Training Examples (TE). Each TE consists of a vector 

of attributes and a class (a.k.a. as label or target attribute).

A simple, non-Meta-RaPS-related example for using ID3 is mining data with the 

goal of identifying a consumer base. Each instance in the TE represents a consumer. The 

attributes gathered are: gender, age, income level, education, and marital status. The 

target attribute is “belong to consumer base” or “does not belong to consumer base”. 

Given the values associated with these attributes in the TE, ID3 aims at identifying the 

attribute that leads to correctly classifying the consumer base, which can be income level 

as an example. If the incorrect attribute is identified (e.g. gender instead of income level), 

then an organization might dedicate resources to attract the wrong subset of the 

consumers. Identifying the “income level” attribute is viewed as identifying the most 

informative attribute about the target attribute.
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The TE set in the MR IDT algorithm consist of Meta-RaPS attributes (p%, r%, 

and i%) and an associated target attribute that describes the solution as either ‘Good’ or 

‘Bad’. ID3 aims at identifying the parameter that leads to ‘Good’ performance.

ID3 recursively processes the TE with the goal of identifying a root node for the 

tree. The algorithm starts with calculating the Entropy (8) for the training examples.

n

H(P) — —̂  p t log(/>,■) , where p, represents the probably o f  each value o f  the target attribute (8)
(=1

Entropy represents the uncertainty (Shannon, 1948) in arriving at a classification 

given the TE. In other words, if all the instances in the TE were labeled as ‘Good’, then 

Entropy would be 1 and there would be no uncertainty.

After calculating the Entropy, ID3 calculates the information gain (9) for each attribute. 

Information Gain (Att, TE) = Entropy (TE) - Entropy (Att, TE) (9)

The Entropy of a specific attribute is calculated using a similar entropy equation (10)

=  (10)
1=1 p I

Information gain is used to rank attributes. The attribute with the highest 

information gain value is the attribute that can classify the TE (and reach a specific target 

attribute) with the least uncertainty. This attribute correspond to the root node in a tree. 

The arcs of this root node represent the attribute possible values as found in TE.

The algorithm is repeated for the remaining attributes (while excluding the root 

node attribute from TE). The attributes identifies subsequently represent non-leaf nodes
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in the tree. The algorithm reaches a leaf node when all attributes have been processed. 

Leaf nodes represent the various values of the target attributes (in this case: ‘Good’ or 

‘Bad’). Given the arcs connecting the root node, non-leaf nodes, and the leaf nodes, one 

should arrive at a leaf node that represents the correct target attribute.
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CHAPTER 7

HYBRIDIZING META-RAPS WITH FREQUENT ITEMSET
MINING

The high-level goal behind integrating Meta-RaPS with Apriori Algorithm 

(Argawal et al., 1993) is to increase the effectiveness of the original Meta-RaPS by 

making use of previous knowledge. To achieve this goal, frequent itemsets found in 

previous Meta-RaPS solutions are identified and utilized as starting point for future Meta- 

RaPS iterations.

Future Meta-RaPS iterations start solutions with frequently fo u n d  patterns

Original
Meta-RaPS Collected M eta-RaPS Solutions

FIM

Identifies most 
frequen t patterns in 

elite solutions

w
Generates solutions

Figure 22 High-level Hybridization Approach

This approach of integrating a data mining technique with a metaheuristic can be 

classified as: High-Level Relay Hybrid (HRH), with heterogeneous algorithms (Meta- 

RaPS and the Frequent Itemsets Mining portion of the Apriori algorithm, global search 

domain to tackle, and general (same problem) to solve (Talbi, 2009). This hybridization 

with data mining can be classified as an online hybridization with the goal of increasing 

the effectiveness of Meta-RaPS by starting the construction of new solutions using 

knowledge identified in previous iterations. The hybridization is modeled after GRASP
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hybridization with FIM (Plastino et al., 2011) and GA hybridization with Apriori 

Algorithm (Santos et ah, 2006).

7.1 Meta-RaPS Frequent Itemset Mining

The framework of the Meta-RaPS with Frequent Itemset Mining (FIM) is 

illustrated in the following flowchart. Meta-RaPS FIM starts with an elite list 

initialization phase. During this phase, solutions that pass elite list eligibility conditions 

are accumulated until a predefined elite list size is reached (E%). During the initialization 

phase, Meta-RaPS uses no prior knowledge and performs as a multi-start metaheuristic 

(the same way the original Meta-RaPS). At the end of each iteration during the 

initialization phase, the solution generated is saved if it is better than the worst solution in 

the elite list.

Once the elite list size is reached, FIM is executed. The statistically significant 

patterns found in the elite solutions are produced. These patterns are identified if  they 

pass Support% (S%) threshold. If no patterns are identified, then the next Meta-RaPS 

iterations are executed without previous knowledge (same as the original Meta-RaPS). If 

patterns are found by FIM, then future Meta-RaPS iterations start constructing new 

solutions with the patterns. The improvement phase is executed normally (no changes 

from the original Meta-RaPS). The same patterns are used until FIM is executed again. 

The next FIM execution time is based on the changes to the elite list. When a new item is 

added to the elite list, FIM is executed again.
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7.2 Frequent Itemset Mining -  Apriori Algorithm

The Apriori algorithm is designed to mine databases to discover relationships 

between items without any initial knowledge. The process starts with creating the 

database of candidates containing itemsets to be mined. Followed by identifying 

statistically significant itemsets and identifying the association rules between the 

itemsets.

With the Meta-RaPS FIM framework, the need to identify that a relationship exists 

between itemset is eliminated. The relationship of interest is defined by the elite list. With 

the list only containing best solutions Meta-RaPS generated so far, the purpose of 

learning becomes the identification of the patterns that are common between elite 

solutions. This makes identifying frequent itemsets that pass the Support% threshold is a 

sufficient (eliminating the need to calculate the Confidence and Lift between itemsets). 

Identifying the frequent itemsets follows the Apriori principles where

• Any subset of a frequent itemset is frequent

• No supersets of infrequent itemsets should be generated

To identify frequent patterns, the following process is executed:

1- Define the smallest itemsets. In the case of VRP, the smallest itemsets are arcs 

connecting two customers.

2- Mine elite list for frequent itemsets

3- Generate supersets by joining frequent itemsets. In the case of VRP, joining 

itemsets is done if the end of a smaller itemset (coordinates of the last customer 

customer) is the same as the start of another smaller itemset (coordinates of the 

first customer)

4- Repeat steps 2 and 3 until joining frequent itemsets is infeasible.

5- Return the last joined itemsets

The steps above identify the longest most frequent pattern among the solutions in the 

elite list. If the solutions in the elite list have a frequent, common pattern, then the next
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step is to integrate this pattern into future Meta-RaPS solutions. This is done by starting 

future Meta-RaPS solutions with the pattern.

As described in the Meta-RaPS chapter, utilizing the C&W heuristic to construct 

VRP solution (original Meta-RaPS) starts with creating temporary short routes that start 

with the central depot, service a single customer, and end at the central depot. The 

temporary short routes are created for each customer in the input problem. The process of 

creating C&W temporary short routes is modified in Meta-RaPS FIM. With patterns 

provided from previous Meta-RaPS iteration, creating temporary short routes is limited to 

the customers that are not in the patterns. Temporary (though longer) routes are created 

for the patterns. This is done by starting and ending the patterns with central depot. This 

modification allows minimal change to the C&W heuristic. As with the original Meta- 

RaPS, the temporary routes will be evaluated against the savings list in order for 

temporary routes to be joined without violating the C&W conditions.
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CHAPTER 8 

COMPUTATIONAL EXPERIMENT DESIGN

The objective of this dissertation is to conduct controlled experimental studies to 

evaluate the impact of hybridizing Meta-RaPS with data mining machine learning 

algorithms. The data mining algorithms selected for this study are the Inductive Decision 

Tree (IDT) and the Frequent Itemset Mining (FIM) algorithms. The research hypothesis 

of this study specifies that hybridized Meta-RaPS outperform the original Meta-RaPS.

To conduct this study, Visual Basic programs are implemented using Microsoft 

Visual Studio 2010 development environment. The programs represent three major 

experiments: original Meta-RaPS (MR) hybridized Meta-RaPS with IDT (MR IDT), and 

hybridized Meta-RaPS with FIM (MR FIM). The same benchmark instances of the 

Capacitated Vehicle Routing Problem (CVRP) are used as input to all experiments. All 

experiments were run using Intel Xeon E5-2666v3 processors with a base speed of 2.9 

GHz and 3.75 GB of memory. .

8.1 Input Problems

The input problems used for both experiments belong to a set of CVRP 

benchmark problems: CMT benchmark problems. These problems are generated by 

Christofides, Mingozzi, and Toth (1979). The CMT benchmark problem set contains 14 

CVRP instances. These problems represent smaller CVRP problems with number of 

customers ranging from 50 to 199. The Golden, Wasil, Kelly, and Chao (1998) or GWKC 

benchmark problem set contains 20 CVRP instance with more customers. The number of 

customers in the GWKC CVRP problems range from 200 to 480. The GWKC problems 

will not be used here.

The CVRP instances for both sets are available online 

(http://www.bemabe.dorronsoro.es/vrp/). With each X, Y coordinates, the demands for

http://www.bemabe.dorronsoro.es/vrp/
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each customer in the problem are listed. Each file also contains the maximum load 

allowed on the truck.

In addition to the truck capacity constraints, some of the instances enforce a 

maximum route time duration constraint. It is assumed that the time and distance between 

each customer are the same (Ursani, 2009). To account for the route time, the instances 

include a service (or drop) time. The service time represents the time associated with 

servicing each customer.

Instance
N um ber of 

Cities
C onstrain ts

City

D istribution

Best Known 

Value

VRPNC1 50 Truck Capacity Random 524.6

VRPNC2 75 Truck Capacity Random 835.3

VRPNC3 100 Truck Capacity Random 826.1

VRPNC4 150 Truck Capacity Random 1028.4

VRPNC5 199 Truck Capacity Random 1291.4

VRPNC6 50 Truck Capacity & Total Tour Time Random 555.4

VRPNC8 75 Truck Capacity & Total Tour Time Random 909.7

VRPNC9 100 Truck Capacity & Total Tour Time Random 865.9

VRPNC10 150 Truck Capacity & Total Tour Time Random 1162.5

VRPNC11 120 Truck Capacity Clustered 1395.8

VRPNC12 100 Truck Capacity Clustered 1042.1

VRPNC13 120 Truck Capacity & Total Tour Time Clustered 819.6

VRPNC14 100 Truck Capacity & Total Tour Time Clustered 1541.1

Table 6 C M T  Inpu t Problem s

8.2 Parameter Tuning

Metaheuristics’ parameters represent an essential part of the algorithms. 

Determining the values of these parameters has a great impact on the quality of solutions 

produced. Parameter values vary based on the problem solved by the metaheuristic. Even
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when solving the same problem, the optimal parameter values are likely to vary from one 

input instance to the other (Wolpert & Macready, 1997). The process of discovering 

suitable parameter values is referred to as parameter tuning.

To tune the parameters used in the original Meta-RaPS algorithm, an offline two- 

level factorial design of experiment was followed (Table 7). Deciding the values of each 

level can either be determined by a Subject Matter Expert or selected randomly. Though 

the values here were selected randomly, other than the values used by other researchers 

(Moraga, 2002; Song, 2005).

Levels
Original Meta-RaPS Parameters

p% r% i% ITR

L ow 40 30 20 250

H ig h 80 70 60 500

T able 7 Two-level Factorial Design Values fo r M eta-R aPS Param eters

To identify parameter values, five randomly selected problem instances were run 

for 20 times with every combination of design factors. The combination of parameters 

that led to best solution quality (least deviation from best known value) is 80% for p%, 

30% for r%, 60% for i%, and 500 iterations for ITR.

8.3 Algorithm Performance

To demonstrate the performance in the algorithms, the average solution quality is 

used as an indicator. Solution quality is defined as the percent deviation or relative error 

in relation to the Best Known Values (BKV) for the input instances. Another indicator of 

quality is the percentage that the hybridized Meta-RaPS algorithms deviate from the 

original Meta-RaPS algorithm. The same percent deviation equation can be used:



where s represent the solution value for the BKV and s ' represent the solution value 

found by the algorithms in this dissertation. When considering deviating from the original 

MR, it is critical to indicate that the deviation is due to learning.

All solutions represent the total distance traveled by all the trucks used to serve all 

the customers in the input problem. However, due to the large role randomness plays in 

Meta-RaPS, algorithms are repeated 10 times (Arin, 2012). However, when analyzing 

performance, values are averaged to describe the quality of the solutions. Averaging will 

not be used when describing the best solution produced (out of the 10 runs).

It is worth noting that the performance of metaheuristics is typically measured 

with CPU run time. This performance indicator is critical for metaheuristics, as they 

enjoy arriving at acceptable solutions for complex problems in reasonable amount of 

time. However, CPU run times can depend on many factors and usually vary from one 

study to the other, which makes the comparison illogical. CPU run time can be viewed as 

an advantage (or disadvantage) if it was directly improved (degraded) by an algorithm.

8.4 Meta-RaPS Inductive Decision Tree Experiment

Implementing the MR IDT algorithm involved evaluating various approaches 

(Figure 24). They consisted of varying major aspects of the hybridization algorithm, 

which are:

1- Kick-out mechanism or frequency of running ID3 algorithm: whether or not to 

employ a kick-out mechanism. This aspect can also be viewed as the 

minimum frequency of ID3 execution, which without a kick-out mechanism is 

one.

2- Makeup of knowledge: whether to pass to future iteration (or fix) the root 

node parameter only or fix all parameters that lead to a ‘Good’ leaf node.
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3- Labeling solutions: when collecting TE, a Meta-RaPS solution is to be labeled 

as either ‘Good’ or ‘Bad’. Deciding that a solution is ‘Good’ can be done by 

comparing it to the best known value of the problem being solved. Labeling a 

solution can also be based on comparing its value to a moving average value.

4- Attribute values:

a. Knowledge Attribute(s) can either

i. Be set to the original Meta-RaPS parameter value, or

ii. Randomly selected within range of original Meta-RaPS 

parameter value

b. Non-Knowledge Attributes can either

i. Be randomly selected, or

ii. Randomly selected within range of original Meta-RaPS 

parameter value
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Note, that every combination of the aspects listed above (and illustrated in the 

figure above) was examined. All of the MR IDT trials make use of Meta-RaPS 

parameters. In addition to the p%, r%, i%, and ITR parameters, MR IDT introduces TE% 

and avg% parameters. The TE% parameter is used to determine the minimum number of 

training examples to be used as input for the ID3. The avg% parameter is associated with 

evaluating the impact of the knowledge on the performance of Meta-RaPS.

To set the values for these parameters, the same two-level factorial design of 

experiment approach was followed. The same subset of input problems used to tune 

parameters in the original Meta-RaPS are used (vrpncl, vrpnc2, vrpnc6, vrpnc7, 

vrpncl 1). The original Meta-RaPS parameters values were not changed. The values for 

the levels of MR IDT parameters are randomly selected as follows (Table 8).

Experiment Design Factors Levels

MR IDT

TE%
25%

50%

Avg%
5

10

Table 8 M R  ID T Design Factors Values

To select the appropriate design factor levels, every combination of design factors 

was run 20 times. The combination of parameters that led to best solution quality (least 

deviation from optimal value) is 50% for TE% and 10 for Avg%. Due to its relative small 

value (relative to the TE% parameter), avg% overloaded as both the time when 

evaluating tree performance is needed and as the size of the moving average window. In 

trials where fixed or non-fixed parameters are randomly selected within a range of the 

original Meta-RaPS value, avg% value is used as the range cutoff.
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8.5 Meta-RaPS Inductive Decision Tree Computational Results

The following tables (9-18??) show the computational results associated with all the 

MR IDT trials. The summary table shows two values:

1- The number of times MR IDT outperformed the original MR with learning.

2- The number of times MR IDT was on average better than the original MR.

Note “number of times” is relative to the number of input problems. In the case of CMT 

problems: maximum “number of times” is 14. The approaches columns represent:

1- Approach 1: single IDT run; TE labeling based on moving average or Best 

Known Value; knowledge: single attribute (root node)

2- Approach 2: multiple IDT runs; TE labeling based on moving average or Best 

Known Value; knowledge: single attribute (root node)

3- Approach 3: single IDT run; TE labeling based on moving average or Best 

Known Value; knowledge: multiple attributes

4- Approach 4: multiple IDT runs; TE labeling based on moving average or Best 

Known Value; knowledge: multiple attributes

The tables show that the simplest approach with a single IDT run / knowledge 

represented by the root node / TE labeled based on BKV is the best performing approach.
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Trial
TE Label Based on Moving Average TE Label Based on BKV
Approach

1

Approach

2

Approach

3

Approach

4

Approach

1

Approach

2

Approach

3

Approach

4

K now ledge

A ttrib u te :

Constant;

O th e r A ttribu tes:

Random

8; 13 10; 12 9; 11 8; 11 10; 13 9; 12 3; 13 8; 11

K now ledge

A ttrib u te :

Random w/i %  range; 

O th e r a ttrib u tes : 

Random

7; 14 8; 12 11; 11 8; 13 7; 13 7; 12 9; 12 8; 13

Knowledge

A ttrib u te :

Constant;

O th e r A ttribu tes:

Random w/i % range;

1; 1 0; 2 10; 2 9; 12 1; 11 3 ;1 0; 11 9; 12

K now ledge

A ttrib u te :

Random w/i % range; 

O th e r  A ttribu tes:

Random w/i % range;

0; 2 2; 0 8; 2 10; 3 0; 11 0; 0 7; 13 7; 2

Table 9 M R IDT Summary Results

The following table shows the results in terms of summary of averages. The 

values presented here show the average deviation from BKV for the various MR IDT 

trials. An average value is based on the best results produced by the MR IDT trial and 

spans over all the input problems. The average deviation for the original MR for the CMT 

input problems is 4.15.



79

Trial
TE Label Based on Moving Average TE Label Based on BKV

Approach

J

Approach

2

Approach

3

Approach

4

Approach

1

Approach

2

Approach

3

Approach

4

K now ledge

A ttribu te :

Constant;

O th e r A ttribu tes:

Random

3.47 3.53 3.50 3.60 3.18 3.61 3.60 3.60

Knowledge

A ttribu te :

Random w/i % range; 

O th e r a ttrib u tes : 

Random

3.58 3.58 3.62 3.62 3.26 3.47 3.54 3.62

K now ledge

A ttribu te :

Constant;

O th e r A ttribu tes:

Random w/i % range;

7.60 7.86 3.62 3.56 3.64 7.19 3.72 3.56

K now ledge

A ttribu te :

Random w/i % range; 

O th er A ttribu tes:

Random w/i % range;

8.18 5.55 3.62 3.59 3.95 8.49 3.46 6.52

Table 10 MR IDT Average Summary Results
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8.6 Meta-RaPS Frequent Itemset Mining Experiment

Implementing the MR FIM algorithm involved studying the behavior of the 

hybridized algorithm and examining the following aspects:

1- Negative impact of intensification: identifying the longest, most frequent 

sequence of customers in the elite list represents valuable knowledge. 

However, this knowledge is based solely on the content of the elite list. An 

elite list with easy to satisfy eligibility conditions lead to patterns based on 

average solutions. Integrating these patterns into future Meta-RaPS iterations 

negatively impacts the performance. Foregoing the use of the patterns with the 

incorporation of a kick out mechanism is one way to allow diversification.

2- Pattern integration and diversification: starting Meta-RaPS with patterns is an 

intentional intensification mechanism. However, patterns can lead to very 

little randomness in during solution construction. This ultimately leads to a 

repetitive performance where the same solution is produced for most of the 

iterations after FIM is executed. To allow for more randomness, the first step 

in constructing a route is forced to be a modified C&W. The goal is avoid 

using the same (best) arc in the saving list and allow for more randomness by 

choosing from the restricted candidate list.

3- Elite List characteristics: if the execution of the FIM algorithm is based on 

reaching the elite list size, then the size of the list should be relative to the 

elite list eligibility conditions. The FIM algorithm will likely not get executed 

if the elite list is large with very strict conditions. The following conditions 

(ordered from least to most strict) were examined.

a. Include if new solution better than the worst solution in the elite list

b. Include if new solution is better than the best solution in the elite list

c. Include if new solution is within range of the best known value for the 

input problem

4- Support value vs. elite list eligibility condition(s): in the case of strict elite list 

eligibility conditions, having a high support value may not of value. The
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solutions in the elite list may not have long sequence of routes in common. 

Enforcing a high support value will likely result in no patterns.

5- Supported patterns vs. rare/unique solutions: obtaining a pattern is a result of 

its frequent appearances among the solutions in the elite list. A side effect of 

obtaining patterns as a result of their frequency is omitting sequences 

belonging to very good, yet unique solutions. Since a very good solution is 

usually rare, its sequences are not likely to pass the Support% threshold.

With the features listed above, the following MR FIM trials were built and executed.

They consisted of varying the following factors:

1- FIM Frequency: running FIM and identifying patterns is computationally 

expensive. However, running FIM once (based on a bad elite list) and 

identifying a pattern once is likely to lead to a bad, repetitive performance. 

Therefore, allowing for multiple runs is examined. Re-running the FIM 

algorithm is triggered by the update of the elite list once a new solution is 

added to the list. A new solution is added to the list if it is better than the best 

solution in the list. When a new solution is added, the worst solution is 

removed from the list.

2- The kick-out mechanism: if employed, it consists of comparing the latest 

solution to a moving average. If the latest solution is worse, then both the 

patterns and the content of the elite list are discarded. This allows the Meta- 

RaPS to revert to being a multi-start method. It also allows for new solutions 

to make to the elite list.

3- Reacting to very good solutions: if employed, then the content of the elite list 

is examined. When a newly added solution is within Elite% range of the best 

known value of the input problem, then the longest route in the solution is 

used as a starting pattern for future Meta-RaPS iterations. Executing the FIM 

is omitted.

Note the elite list eligibility condition used consisted of including a new solution if it

better than the best solution in the elite list.
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All of the MR FIM trials make use of Meta-RaPS parameters. In addition to the 

p%, r%, i%, and ITR parameters, MR FIM introduces support (S%) and elite list size 

(E%) parameters. The Support% parameter is used to determine the frequency threshold 

percentage that a sequence needs to meet for it to count as a pattern. The E% represents 

the size of the elite list as a percentage of Meta-RaPS ITR. Some of the MR FIM trials 

use a moving average as a kick out mechanism. These trials use an Avg% parameter, 

which is also as a percentage of Meta-RaPS ITR. The trials with reaction to best solutions 

introduce a parameter (Bst%) to measure the range of deviation from best known 

problems. Based on this range, FIM might not be executed.

To set the values for these parameters, the same two-level factorial design of 

experiment approach used to tune the original Meta-RaPS was followed. The original 

Meta-RaPS parameters values were not changed. The values for the levels of MR FIM 

parameters are randomly selected as follows (Table 19).

E x p e r im e n t D esig n  F a c to r s L ev e ls

FIM Pattern Support (S%)
40

60

Elite List Size (E%)
1

M R  F IM
5

Kick out Moving Avg. (Avg%)
5

10

Deviation from BKV (Bst%)
5

10

Table 19 MR FIM Design Factors Values

To select the appropriate design factor levels, every combination of design factors 

was run 20 times. The combination of parameters that led to best solution quality (least
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deviation from optimal value) is 40,1, 5, and 5 for S%, E%, Avg%, and Bst% 

parameters.

8.7 Meta-RaPS Frequent Itemset Mining Computational Results

Similar to MR IDT, the following tables show the computational results associated 

with all the MR FIM trials. The summary table shows the following values:

1- The number of times MR FIM outperformed the original MR with learning.

2- The number of times MR FIM was on average better than the original MR.

3- Average deviation values, which is based on the best results produced by the MR 

FIM trial and spans over all the input problems. The average deviation for the 

original MR for the CMT input problems is 4.15

Note “number of times” is relative to the number of input problems. In the case of CMT 

problems: maximum “number of times” is 14. The approaches columns represent:

T r ia l
M R  FIM  ou tperfo rm ing  

orig inal M R  w/ learn ing

M R  F IM  avg. b e tte r 

th an  orig inal M R

Avg. Deviation 

from  BKV

Single FIM w/o Kick-out 2 2 8.96

Single FIM w/ Kick-out 3 2 10.35

Multiple FIM w/o Kick-out 2 0 8.87

Multiple FIM w/ Kick-out 3 2 9.07

Multiple FIM + good solution reaction w/ Kick-out 1 0 9.15

Multiple FIM + good solution reaction w/ Kick-out 2 2 9.42

Table 20 MR FIM Trials
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Albeit discouraging, the poor performance of MR FIM led to adjustment in the following

aspects of the algorithms:

1- Elite list eligibility: solutions are added to the elite list if  they are better than the

best. If a solution is better than the worst solution in the elite list, then it 

replaces the worst solution in the list. This strategy further improves the quality 

of the solutions in the elite list and potentially improving the quality of the 

patterns identified by FIM. This strategy, however, delays reaching the elite 

size and starting the FIM process.

2- Content of the pattern: instead of choosing the longest route out of the pattern,

three? other options were evaluated: selecting the most effective route, dividing 

the routes in the pattern by half, and combination of the aforementioned 

options (fixing the most effective route in the pattern and fixing half of the 

remaining routes). The most effective route is the route with the most 

customers visited in the shortest distance. In an effort to check the performance 

o f  these options, they were evaluated by running MR FIM without any reaction 

to finding very good solutions. The best results were found when the pattern 

was divided in half. A pattern consisting of the longest or most effective route 

never included enough customers to make a difference in performance. A 

frequent single route is constrained by the capacity of the truck, thus preventing 

the pattern from being very long. In other words, a pattern may include 7 

customers. This leaves MR to construct routes for the remaining 43 customers 

(in the case of the smallest CMT instance) without any influence from the 

patterns. Note that the option of combining most effective route in the pattern 

and fixing half of the remaining routes was not noticeably better. So, the 

approach of dividing routes by half was selected.

3- More reactive kick-out: in addition to kicking out after a certain number of

solutions were accumulated after the pattern is identified, a more reactive kick- 

out mechanism is included. If a rare, yet very good solution was found, then 

half of its routes are fixed for future iterations. If this leads to bad solutions, 

then Meta-RaPS reverts to its normal multi-start behavior.
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The performance of the updated MR FIM is illustrated by showcasing the different 

approaches to identifying knowledge to pass to future Meta-RaPS iterations:

1- MR FIM only: this approach excludes reacting to finding very good, rare solution. 

A kick-out based on moving average is employed.

2- MR with special solutions only: this approach excludes FIM algorithm. If a very 

good, rare solution is found, then half of its routes will be passed to future 

iterations. A reactive kick-out mechanism is employed.

3- MR FIM including reacting to special solutions: this approach combines the 

previous approaches. Both kick-out mechanisms are employed.

Similar to previous summary results table, the values included are:

1 - The number of times the trail outperformed the original MR with learning.

2- The number of times the trial was on average better than the original MR.

3- Average deviation values, which is based on the best results produced by the MR 

FIM trial and spans over all the input problems. The average deviation for the 

original MR for the CMT input problems is 4.15

The “number of times” is relative to the number of input problems. In the case of CMT 

problems: maximum “number of times” is 14. Note that FIM was executed in the MR 

FIM with kick-out trials. However, none of the iterations that made use of FIM pattern 

outperformed the performance of MR.

Trial
M R  F IM  o u tp e rfo rm in g  

o r ig in a l M R  w / le a rn in g

M R  F IM  avg . b e t te r  

th a n  o r ig in a l M R

A vg. D ev ia tio n  

f ro m  B K V

MR FIM + Kick-out 0 0 3.79

MR w/ Special Solutions Only + Kick-out 8 0 4.30

M R FIM + Special Solutions + Kick-out 9 0 3.933

Table 24 Performance of Knowledge Approaches in MR FIM

The following table shows the details behind the summary table.
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8.8 Algorithm Comparison

To demonstrate the performance of the various algorithms, a comparison is done 

between:

1- The original Meta-RaPS (without any hybridization) and both MR IDT and MR 

FIM with the goal of showcasing the impact of hybridization.

2- MR, MR IDT, and MR FIM with other applications in the literature that used 

Meta-RaPS to solve similar VRP instances.

Comparing the original Meta-RaPS with the hybridized ones aims at examining the 

research hypothesis of behind this effort specifying that a hybridized Meta-RaPS 

outperforms the original Meta-RaPS. The statistical hypotheses used in the experiments 

are based on paired t-test since the same input problems are solved with the original 

Meta-RaPS and with the hybridized ones.

The null hypothesis states that there is no difference in performance when a problem is 

solved with the original Meta-RaPS or with the hybridized Meta-RaPS.

where d is the difference between paired values. The following tables show the paired t- 

test results for the best performing trails in both MR IDT and MR FIM. Paired t-tests are 

performed using the best deviation from BKV for the original MR and the hybrid MR 

algorithms. For MR IDT, the difference between means is 0.97 and the two-tail P value is 

0.00735 indicating that that the statistical difference between the samples is significant. 

On the other hand, the difference between the mean of MR and the mean of MR FIM is 

0.22 and the two-tail P value is 0.674167 indicating that there is no statistical difference 

between the samples.

(12)

(13)
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Original MR 
(Best Dev%)

MR IDT 
(Best Dev%)

Mean 4.152143 3.18071429

Variance 8.431664 4.68273022

Observations 14 14

Pearson Correlation 0.939094

Hypothesized Mean Difference 0

df 13

tS ta t 3.172461

P(T<=t) one-tail 0.003673

t Critical one-tail 1.770933

P(T<=t) two-tail 0.007347

t Critical two-tail 2.160369

Table 26 MR IDT Approach 1 - Paired t-test Results (Best Values)

Original MR 
(Best Dev%)

MRFIMw.Spcl 
(Best Dev%)

Mean 4.15203 3.933664

Variance 8 .4 4 5 3 3 4 5 .2 0 0 1 0 3

Observations 14 14

Pearson Correlation 0.757258

Hypothesized Mean Difference 0

D f 13

t Stat 0.4301

P(T<=t) one-tail 0.337083

t Critical one-tail - 1.770933

P(T<=t) two-tail 0.674167

t Critical two-tail 2.160369

Table 27 MR FIM with Special Solution - Paired t-test Results (Best Values)

When comparing the performance of MR, MR IDT, and MR FIM to other metaheuristics, 

the focus was on top performing metaheuristics as listed below.
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Metaheuristic Hybridization Approach
CMT
BKV

Dev%

GWKC 
BKV Dev%

TABUROUTE (Gendreau et al„ 1994) Tabu search 0.05 N/A

AGES (M ester and Braysy, 2005) Genetic Algorithm, Guided Local Search 0.03 0.11

D-Ants (Reimann et al., 2004) Ant Systems N/A 0.71

BoneRoute (Tarantilis and Kiranoudis, 2002) Tabu search, Adaptive memory 0.23
0.76

avg over 8 not 20 
input

SEPAS (Tarantilis, 2005) Tabu search, Adaptive memory 0.18 N/A

GRELS (Prins, 2009) GRASP, ELS

MPNS-GRAPS (Marinakis, 2012) GRASP, Multiple reactive methods

GRASPVRP (Layeb, 2013) GRASP, SA

GRASP w/ evolutionary path-relinking 
(Usberti, e ta l., 2013)

GRASP, Multiple reactive methods

Table 28 Top Performing Hybrid Metaheuristics Solving VRP

The table below shows the performance of GRASP due to its similarity to Meta-RaPS. 

The algorithms are: GRELS (Prins, 2009) hybridized GRASP with Evolutionary Local 

Search metaheuristic, MPNS-GRAPS (Marinakis, 2012) incorporates multiple reactive 

mechanisms into GRASP, and GRASPVRP (Layeb, 2013) combines GRASP with 

Simulated Annealing.

CMT Input GRELS Dev % MPNS-GRAPS Dev % GRASPVRP Dev%

VRPNC 1 0.00 0.00 0.00
V R PN C 2 0.00 0.14 0.11
V R PN C 3 0.00 0.00 0.00
VRPNC 4 0.10 0.37 0.33
VRPNC 5 0.22 1.77 1.34
VRPNC 6 0.00 0.00 0.00
V R PN C 7 0.00 0.00 0.53
VRPNC 8 0.00 0.00 1.03
VRPNC 9 0.00 1.14 1.32

VRPNC 10 0.40 1.16 1.20
VRPNC 11 0.00 0.00 0.00
VRPNC 12 0.00 0.19 0.00
VRPNC 13 0.28 0.48 0.44
VRPNC 14 0.00 0.26 0.00

Avg 0.07 0.39 0.45
Table 29 Performance of GRASP-based Metaheuristics



103

There are no other publications that used Meta-RaPS to solve the full set of CMT 

instances. None of the algorithms below attempted the larger GWKC benchmark 

problems. The following table shows the results of applying Meta-RaPS to solve different 

VRP benchmark input problems.
So

u
rc

e

Metaheuristic Heuristic Tuning Input
(name, #nodes) %Dev BKV

M e ta -R ap s C & W
P % = 9 0
R % = 1 0

Itr= 5 0 0 0
(E il, 51) 5 .64

oo
CN

cS
bJO
CQ
U
O5!

M e ta -R ap s c & w

P % = 6 0
R % = 1 0

Itr= 5 0 0 0
(E il, 76) 2 .6 4

M e ta -R ap s C & W
P % = 8 0
R % = 1 0

Itr= 5 0 0 0
(E il, 101) 3.33

M e ta-R ap s

C & W  +  
im p ro v e m e n t 

r e p e a te d fo r  5 0 0  
ite ra tio n s

5 rep e titio n s 
P % = 2 0  
R % = 15  

I% =5
Im p ro v em en t itr  =  500  

M R Itr= 5 0 0

(E il, 51) 2 .4

(S
on

g,
 2

00
5)

M e ta -R ap s

C & W  +  
im p ro v e m e n t 

re p e a te d  f o r  5 0 0  
ite ra tio n s

5 rep e titio n s  
P % = 2 0  
R % = 5 
1%=5

Im p ro v em en t itr  =  500  
M R  Itr= 5 0 0

(E il, 76) 1.0

M e ta -R ap s

C & W +  
im p ro v e m e n t 

re p e a te d  f o r  100  
ite ra tio n s

5 re p e titio n s  
P % = 8 0  
R % = 5 
I% =5

Im p ro v em en t i tr  =  500  
M R  Itr= 5 0 0

(E il, 101) 3.31

(V R P N C  1, 50) 3 .12

(V R P N C 2 , 75) 3 .8 0
o
< N

M e ta -R ap s
C & W  +  a d jacen t 

p a irw ise

% p  =  80, (V R P N C 3 , 100) 5 .19
cd

fi
% r =  20 , % i= 1 0 0  

M R  itr=  20 0 0
(V R P N C 4 , 150) 7.45

2 (V R P N C 1 1 , 120) 2 .77

(V R P N C  12, 100) 1.03

(V R P N C  1 ,5 0 ) 3 .12

M e ta -R ap s  +  
N eu ra l n e tw o rk  

H eb b ian  lea rn in g

C & W  +
% p  =  80,

% r =  2 0 , % i= 1 0 0  
M R  itr=  2000

(V R P N C 2 , 75) 4 .0 4
CN

C3N

|

a d ja c e n t p a irw ise  + (V R P N C 3 , 100) 3 .86

n eura l n e tw o rk  
learn ing

(V R P N C 4 , 150) 8 .32

(V R P N C 1 1 , 120) 2 .68

(V R P N C  12, 100) 1.76

Table 30 Performance of Meta-RaPS Solving VRP
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The tables above show that the performance of published Meta-RaPS does not compete 

with the top performing metaheuristics or GRASP-based algorithms that solved the 

classic VRP instances. The table below compares the performance of the published 

Meta-RaPS (Mirza, 2011) used to solving CMT input with algorithms developed in this 

effort (the last four columns show the results from the algorithms developed during this 

effort).

C M T  Input
M R

2000 itr

M R  N eural N etw ork

2000 itr

M R

500 itr

M R  IDT

500 itr

M R  FIM

500 itr

V R P N C  1 3 .12 3.12 3 .8 1.68 2 .4 3
V R P N C  2 3 .80 4 .0 4 1.26 2 .33 2 .7 4
V R P N C  3 5 .1 9 3 .86 3 .9 3 .2 4 3 .08
V R P N C 4 7.45 8.32 5 .9 2 4 .6 4 3 .95

V R P N C  11 2 .77 2 .68 1.6 2.1 4 .4 8
V R P N C  12 1.03 1.76 0 .83 0.43 1.69

Avg 3.96 3.89 2.88 2.40 3.06

Table 31 Perform ance Relative to  Existing M R  Im plem entation
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CHAPTER 9 

CONCLUSIONS

This effort was conducted around three interests: contributing to the efforts that 

aim at evolving Meta-RaPS, incorporating machine learning to metaheuristics, and 

solving classic VRP benchmark instances using Meta-RaPS. However, without the 

simplicity and adaptability of the classic Meta-RaPS algorithm, transforming these 

interests into a research effort would have been more challenging. Thus, perusing 

hybridization while preserving the simplicity of Meta-RaPS became another core interest. 

These interests combined formulate the research hypothesis of this study, which is to 

improve the performance of Meta-RaPS by hybridizing it with machine learning 

algorithms and demonstrate the performance by solving VRP instances.

The main contribution of this work lays in the employment of machine learning 

algorithms to enhance a metaheuristic algorithm. This contribution departs from the 

normal use of metaheuristic algorithms to enhance the performance of machine learning 

algorithms. The scope of this hybridization included two machine learning algorithms: 

Inductive Decision Tree and Frequent Itemset Mining portion of Association Rules. The 

selected machine learning algorithms conducted different learning approaches supervised 

and unsupervised respectively. The resulting hybridized Meta-RaPS algorithms are: MR 

IDT and MR FIM. Both hybridized algorithms followed the High-level Relay 

Hybridization classes, part of the hierarchical hybridization taxonomy. Additionally, 

when categorized based on the flat hybridization taxonomy, MR IDT and MR FIM are 

heterogeneous hybridized algorithms both applied to the global search domain with a 

general/same problem to solve. These hybridization approaches are aligned with the 

interest of continuing to keep Meta-RaPS relatively simple. Though both algorithms 

belong to the same hybridization classes (based on both hierarchical and flat 

hybridization taxonomies), the roles played by each machine learning algorithm were 

different. The IDT aimed at effectively guiding MR by performing online parameter 

control. FIM increased the efficiency of managing the search space by identifying
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patterns and forgoing MR multi-start. Though hybridizing two or more algorithms has a 

negative impact of the simplicity enjoyed by the original/pure algorithms, both MR IDT 

and MR FIM are relatively simple and problem independent especially when compared 

with other metaheuristics (non-hybridized ones) used in solving VRP.

The lessons learned from hybridizing MR with IDT and FIM are reflected in the 

performance of MR IDT and MR FIM. MR IDT helped improve the performance when 

compared to the original Meta-RaPS due to the known, critical impact metaheuristics’ 

parameters have on their performance. Fixing the values of these parameters while 

solving different problems (in this case VRP problems varied in size, the layout of the 

coordinates, and the constraints: truck capacity with and without route time) has a 

negative impact on performance as demonstrated in the performance of the original MR. 

Though multiple trials were conducted, the simple idea behind taking advantage of the 

root node of the tree proved to be sufficient enough to show improvement in 

performance. It is worth noting that MR IDT helped in guiding Meta-RaPS without 

impacting its multi-start approach for constructing solutions. In other words, MR IDT 

kept one of MR core features, which is allowing for less than best (highest-priority) 

moves to be considered when constructing a solution. This was not the case for MR FIM, 

which intentionally impacted MR multi-start by fixing coordinates passed as patterns 

from previous iterations. Despite including mechanisms to balance the intensification 

resulting from FIM patterns, MR FIM did not have a statistically significant improvement 

over the performance of Meta-RaPS.

The potential for future studies in this field are abundant as many combinations of 

algorithms can be examined. A systematic study aiming at showcasing how machine 

learning algorithms can be hybridized with Meta-RaPS or other metaheuristics at various 

hybridization levels based on the hybridization taxonomy would be an interesting study 

that adds to this not-well studied field.

Future work related to MR IDT may evaluate other classification algorithms. 

Another use of MR IDT can be to tune MR parameters offline to allow for MR to be
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combined with other algorithms (possible MR FIM with the following sequence: MR 

IDT followed by MR FIM). MR FIM can benefit from more diversification methods to 

help maintain the randomness of Meta-RaPS such as methods to modify the priority of 

the solution being constructed. Both algorithms can also be evaluated with more robust 

heuristics.
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