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Résumé 

Face à la complexité qui caractérise les problèmes d'optimisation de grande taille 
l'exploration complète de l'espace des solutions devient rapidement un objectif inacces

sible. En effet , à mesure que la taille des problèmes augmente, des méthodes de solution 
de plus en plus sophistiquées sont exigées afin d'assurer un certain niveau d 'efficacité. 

Ceci a amené une grande partie de la communauté scientifique vers le développement 

d'outils spécifiques pour la résolution de problèmes de grande taille tels que les méthodes 

hybrides. Cependant, malgré les efforts consentis dans le développement d 'approches 

hybrides , la majorité des travaux se sont concentrés sur l'adaptation de deux ou plusieurs 
méthodes spécifiques, en compensant les points faibles des unes par les points forts des 
autres ou bien en les adaptant afin de collaborer ensemble. Au meilleur de notre con

naissance, aucun travail à date n'à été effectué pour développer un cadre conceptuel 

pour la résolution efficace de problèmes d'optimisation de grande taille, qui soit à la 

fois flexible, basé sur l'échange d'information et indépendant des méthodes qui le com
posent. 

L'objectif de cette thèse est d'explorer cette avenue de recherche en proposant un 

cadre conceptuel pour les méthodes hybrides, intitulé la recherche itérative de l'espace 
restreint, «Iterative Restricted Space Search (IRSS)>>, dont, la principale idée est la 

définition et l'exploration successives de régions restreintes de l'espace de solutions. 
Ces régions, qui contiennent de bonnes solutions et qui sont assez petites pour être 

complètement explorées, sont appelées espaces restreints «Restricted Spaces (RS)>>. 
Ainsi, l'IRSS est une approche de solution générique, basée sur l'interaction de deux 
phases algorithmiques ayant des objectifs complémentaires. La première phase consiste 

à identifier une région restreinte intéressante et la deuxième phase consiste à l'explorer. 
Le schéma hybride de l'approche de solution permet d'alterner entre les deux phases 
pour un nombre fixe d'itérations ou jusqu'à l'atteinte d'une certaine limite de temps. 

Les concepts clés associées au développement de ce cadre conceptuel et leur valida

tion seront introduits et validés graduellement dans cette thèse. Ils sont présentés de 
manière à permettre au lecteur de comprendre les problèmes que nous avons rencontrés 

en cours de développement et comment les solutions ont été conçues et implémentées. 
À cette fin, la thèse a été divisée en quatre parties. La première est consacrée à la 

synthèse de l'état de l'art dans le domaine de recherche sur les méthodes hybrides. Elle 

présente les principales approches hybrides développées et leurs applications. Une brève 

description des approches utilisant le concept de restriction d'espace est aussi présentée 

dans cette partie. 



La deuxième partie présente les concepts clés de ce cadre conceptuel. Il s'agit du 

processus d'identification des régions restreintes et des deux phases de recherche. Ces 

concepts sont mis en œuvre dans un schéma hybride heuristique et méthode exacte. 

L'approche a été appliquée à un problème d'ordonnancement avec deux niveaux de 

décision, relié au contexte des pâtes et papier: «Pulp Production Scheduling Problem». 

La troisième partie a permit d 'approfondir les concepts développés et ajuster les 
limitations identifiées dans la deuxième partie, en proposant une recherche itérative 

appliquée pour l'exploration de RS de grande taille et une structure en arbre binaire 
pour l'exploration de plusieurs RS. Cette structure a l'avantage d'éviter l'exploration 

d 'un espace déjà exploré précédemment tout en assurant une diversification naturelle 

à la méthode. Cette extension de la méthode a été testée sur un problème de localisa
tion et d 'allocation en utilisant un schéma d'hybridation heuristique-exact de manière 

itérative. 

La quatrième partie généralise les concepts préalablement développés et conçoit un 

cadre général qui est flexible, indépendant des méthodes utilisées et basé sur un échange 
d'informations entre les phases. Ce cadre a l'avantage d'être général et pourrait être 

appliqué à une large gamme de problèmes. 

MOTS CLÉS: Cadre conceptuel flexible, méthodes hybrides, méthodes heuristiques , 
méthodes exactes, problèmes d'ordonnancement, problèmes de localisation et d 'alloca

tion. 
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Abstract 

Wh en dealing with very large problems attempting to explore the whole solution space is 
an unattainable goal. Moreover, as the size of the pro blem increases more sophisticated 

solving methods are required to maintain a certain level of efficiency. This has lead to 
the development of specific tools, such as hybrid methods. Despite all the efforts and 

advances in the development of hybrid approaches most researchers focused on how 

to exploit the strengths and weakness of two specific methods while adapting them to 

work together. Until now, litt le has been done to develop a generic framework that is 

independent of the component methods and has a foundation based on the exchange of 
information. 

This thesis will explore this gap in the development of hybrid methods by proposing 

a framework, named the Iterative Restricted Space Search (IRSS), for the design of 

efficient hybrid search algorithms. The main ide a of the IRSS is to iteratively define 

and explore restricted regions - subsets of the global solution space - that have a 

high potential of containing good solutions and yet are small enough to be thoroughly 
explored. These regions are named Restricted Spaces (RS). IRSS is a generic search 
approach based on the interaction of two algorithmic phases having complementary 
goals. The first phase identifies a restricted space and the second phase explores it. 

The algorithm alternates between the two phases for a fixed number of iterations or 
until the allotted time has expired. 

Several concepts and ideas related with the development of this framework are pre

sented in chronological order, leading to a natural increase in the complexity of the 
concepts and also allowing the reader to understand the problems that we encountered 
and how the solutions were conceived and implemented. This thesis is therefore divided 

into four parts: the first is dedicated to a description of the literature on hybrid solution 
methods. It presents a review of the most recent hybrid methods and applications of 

this special class of solving methods. In addition, solving techniques that use the "space 

restriction" concept are described. 

The second part introduces the main concepts of this framework, such as the identifi

cation of the Restricted Space and the two-phase search. These ideas are exploited using 
a hybrid heuristic-exact method applied to the Pulp Production Scheduling Problem, 

a difficult real world problem composed of two decision levels. 

The third part extends the recently developed concepts and also repairs the limi

tations identified in the second part. This is done by proposing an incremental search 



procedure to deal with large RS and a binary tree to structure the exploration of several 

RS. This structure has several advantages, among which it avoids the double search and 
provides a natural diversification for the framework. This new extended method is ap

plied to a real-life location-allocation problem using an iterative hybrid heuristic-exact 

algorithm. 

The fourth part generalizes the concepts previously developed and conceives a frame

work that is flexible , independent of the component methods used , and based on the 

exchange of information between its components. This final part also offers my conclu

sions and possible future research topics related to this thesis. 

KEYWORDS - Generic Framework, Hybrid Methods, Heuristic Methods , Exact 
Methods , Real-Life Applications, Pulp Production Scheduling Problem, Location - Al

location Problem 



Resuma 

Em pesquisa operacional , tratando-se de problemas de grande escala, a exploraçao 

completa do espaço de soluçoes é um objetivo praticamente inalcançavel. Além disso, 
observa-se que quanto maior 0 tamanho do problema, mais sofisticado deve ser 0 método 

para se manter certos niveis de eficiência, levando ao desenvolvimento de ferramentas 
especificas, coma por exemplo os métodos hibridos. Apesar de todos os esforços e 

avanços no desenvolvimento dos métodos hibridos , onde a maioria dos trabalhos foca 
na adaptaçao de dois ou mais métodos especificos, compensando os pontos fracos de 
um, corn os pontos fortes de outros , e.g. , a abordagem de intensificaçaoj diversificaçao, 
pouco foi feito para se desenvolver um ' framework" que seja genérico, independente 
dos métodos componentes e que tenha coma base uma s6lida t roca de informaç6es . 

Esta tese explora esta abertura no desenvolvimento dos métodos hibridos , propondo 
um frarnework , nomeado "Iterative Restricted Space Search" (IRSS) , onde a principal 

idéia é a identificaçao e exploraçao sucessivas de subespaços restritos do espaço de 
soluçoes. Duas caracteristicas saD necessarias à definiçao destes subespaços: além de 

terem uma alta possibilidade de conter boas soluçoes devem ser pequenos 0 bastante 
para serem completamente explorados. 0 IRSS é um algoritmo de busca genérico 
baseado na interaçao de duas fases de busca corn objetivos complementares. A primeira 
fase faz uma ampla exploraçao do espaço de soluçoes identificando sub-regioes que sejam 

promissoras e a segunda fase explora essas sub-regioes. 0 algoritmo alterna entre as 
duas fases por um determinado numero de vezes ou até terminar 0 tempo total. 

Os diversos conceitos e idéias relativos a esta pesquisa saD apresentados em ordem 

cronol6gica. Para este fim, a tese esta dividida em quatro partes: 

A primeira é dedicada à descriçao atual do desenvolvimento em hibridaçao, apre
sentando uma revisao dos métodos hfbridos atuais e aplicaçoes que utilizam métodos 

hibridos na sua resoluçao. 

Na segunda parte, os principais conceitos do framework, coma a identificaçao das 
regioes restritas e as duas fases de busca saD apresentados. Estes conceitos saD imple

rnentados na forma de um método hibrido heuristico-exato aplicado a um problema de 
alocaçao de recursos em usinas de celulose (Pulp Production Scheduling Problem), um 

problerna real contendo dois niveis de decisao. 

A terceira parte estende os conceitos recentemente desenvolvidos e repara as limita

çoes identificadas na segunda parte, propondo uma busca incremental aplicada na ex-



ploraçaD de grandes espaços restritos e uma estrutura em arvore binaria para a ex

ploraçaü de diversos espaços. Esta estrutura tem a vantagem de evitar a exploraçao de 
um espaço ja explorado anteriormente provendo uma diversificaçao natural ao frame
work. Este nova método expandido é aplicado a um problema localizaçao e alocaçao 
utilizando um método iterativo hfbrido heuristico-exato. 

A quarta parte generaliza os conceitos previamente desenvolvidos e concebe 0 frame

work 0 quaI é flexivel , independente dos métodos componentes utilizados , baseado em 

uma s6lida troca de informaçoes entre as fases e pode ser aplicado a uma grande gama de 
problemas. Nesta parte final encontram-se também as conclusoes e possiveis pesquisas 
futuras utilizando os conceitos relatados nesta tese. 

PALAVRAS CRAVE: Framework Genérico , Métodos Hibridos , Métodos Heurfsticos , 

Métodos Exatos , Aplicaçoes à Problemas Reais, Problema de Alocaçao de Recursos para 

à Produçao de Celulose, Problema de Localizaçao-Alocaçao 
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Foreword 

THIS thesis is the capitalization of four years of work as a Ph.D. student at CIRRELT 

Centre interuniversitaire sur les réseaux d 'entreprise, la logistique et le transport under 
the supervision of Professors Angel Ruiz and Patrick Soriano. My contribution was to 

propose the research orientation to the development of a generic framework for hybrid 
methods and the conception of the hybrid solution methods based on the framework 
for the two problems considered in this document. Plays also an important role in my 
contribution, the programming work, conception and validation of data tests and exam
pIes, a first draft of each paper and the preliminary interpretations of the computation 

results obtained. 

This project is composed of three main parts, the first is dedicated to the description 
of the Pulp Production Scheduling Problem and also the hybrid solution method applied 
to it, in the second part the proposed solution approach plus an extension is applied to 

a Location-Allocation problem and the third part is dedicated to the generalization of 

these hybrid approaches into a framework. 

The article "Minimization of the wood density variation in pulp and paper produc

tion" presents the Pulp Production Scheduling Problem. This work was presented 

in "6ème Congrès International de Génie Industriel", Besançon, France, 2005. It is 

published in INFOR, Vol 45(4),2007, pp 187-196. 

The article "Restricted Space Search Heuristic: Application to a Pulp Production 

Scheduling Problem" is the application of proposed solution method into the Pulp Pro
duction Scheduling Problem, described in the first article. It was presented in the 

MIC05 - "6th Metaheuristic International congress", 2005, Vienna, Austria. It should 

be ready for submission this Winter. 

The article "Iterative Restricted Space Search to solve a real-life location-allocation 

problem", extends the ideas of the second paper to a generic iterative solving approach 

and applies them to a location-allocation problem. It was presented in the MIC07 -



"7th Metaheuristics International Conference", 2007, Montreal, Canada; META 08 -

"International Conference on Metaheuristics and Nature Inspired Computing", 2008, 

Hammamet, Tunisia; and it should be ready for submission this Winter. 

The article "Iterative Restricted Space Search: A Framework for designing efficient 

search algorithms " is a generalization of these solution methods. It was presented in 
the MIC07 - "7th Metaheuristics International Conference", 2007, Montreal Canada; 
META 08 - "International Conference on Metaheuristics and Nature Inspired Comput

ing", 2008, Hammamet, Tunisia; This article should be ready in Summer 2009. 



To Giovanna our "estrelinha " and all 

other "estrelinhas" yet to come that 

will make our sky even brighter! 

"There are no nations! There is only 

humanity. And if we don't come to 

understand that right soon, there will 

be no nations, because there will be no 

humanity. " 

ISAAC ASIMOV (1920-1992) 

"You must not lose faith in humanity. 

Humanity is an ocean; if a few drops 

of the ocean are dirty, the ocean does 

not become dirty. " 

MAHATMA GANDHI (1869-1948) 
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Introduction 

Solving very large, real-life problems to optimality remains probably one t he most 
important challenges in Operational Research (OR). The formidable computational re
sources currently available have greatly contributed in pushing the limits of exact meth

ods but , as computation performance increases , so too do es the size or complexity of t he 

problems we seek to solve. Two approaches have shown impressive advances t o tackle 

these large problems in recent years: (1) classical mathematical manipulations aiming 
at transforming or reducing the original problem into smaller and simpler problem( s) to 
solve - e.g. decomposition, linearization, relaxation and projection procedures, among 

others - and (2) improving or refining solution methods. 

Exact methods have been improved with pre-processing techniques, cuts and column 
generation and Mixed Integer Programming (MIP) heuristics. Heuristic methods have 

also made important contributions: Tabu Search (TS), Genetic Algorithm (GA) and 
Variable Neighborhood Search (VNS) among others have been successfully applied to 
problems whose size makes them intractable by means of exact methods. Despite this 
progress , as the size of the problems increases, more sophisticated solving methods are 

required to maintain a certain level of efficiency. This has lead to the development of 

specifie tools such as hybrid methods. 

Hybrid methods have been successfully applied to several problems in Operational 
Research during the last few decades. This success is mostly due to the adaptability and 

flexibility inherent to this class of solution approaches. A priori, using different methods 

to solve a single problem has the advantage of exploring the solution space from differ

ent perspectives that complement each other, e.g. in an intensification/diversification 

paradigm. Therefore, most of the works in the literature that propose hybrid algo

rithms focus on how to explore the strengths and weakness of two specifie methods 

adapting them to work together. However, litt le has been done to develop a generic 

framework independent of the specifie methods to be merged. Despite the component 

methods used in the hybridization, sorne information must be exchanged or shared 

between them. Information exchange is a key issue when designing solving methods 



Introduction 2 

encompassing any form of hybridizing but, again, litt le has been done to develop and 

assess the performance of generic information sharing schemes. 

The objective of this thesis is to propose a framework for the design of efficient 
search algorithms that is independent of its components methods and has a foundation 

built on the exchange of information. 

A vailable search methods are very efficient when applied to small regions of the 

solution space. Thus, if one is able to reduce the scope of the search by reducing or 

constraining the solution space, a thorough yet fast search can be achieved. In other 
words , an efficient search strategy should consist in defining one or several promis

ing subspaces, small enough to be thoroughly explored in reasonable time but with 
a high likelihood of containing near-optimal (hopefully the optimal) solutions. This 

diversification/intensification paradigm led us to design a hybrid algorithmic structure 
encompassing two main phases. The first phase performs a "macro" search covering the 
solution space as much as possible and identifies the promising subspaces, while in the 
second phase a "micro" search or the thorough exploration of the promising subspaces 

is performed. 

A more formaI definition of these promising subspaces, called Restricted Space (RS) 
in the remaining of this thesis, is: 

Retricted Space (RS) is a subspace of the universal set of solutions which 

has two highly desirable characteristics: (1) it should be small enough to be 
thoroughly explored and (2) it should have a high possibility of containing 

near-optimal solutions. 

When dealing with complex OR problems, it is very difficult to have quantitive 

measure of a high possibility of containing near-optimal solutions without explore the 

restricted space to optimality. Therefore we use aIl the information available - including 

a set of local optima points, bounds and the history of search - to construct a RS which 

we believe that has a high possibility of containing near-optimal solutions. As will be 
detailed latter, the RS guarantee by construction always contains a set of local optimal 

solutions. Thus it always provides in the worst case a solution of the same quality as 

the past solutions visited. 

The identification of the RS, do ne by the "macro" search, is one of the main chal

lenges of this work. Although several alternative methods to identify the RS are possi

ble, the following general features are expected in the method used to find it: (1) The 
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method should be able to explore as much of the solution space as possible. Indeed , 

such a method should probe or should sample the solution space, and provide a rough 

idea of the quality of the solutions that could be expected in different regions of t he 
solution space. (2) The method should focus on identifying the common characteris

tics of good solutions rather than on searching for the best solution. (3) The method 
should be able to rank these potential regions by their expected (or estimated) objec
tive function. (4) The method should be efficient , meaning that it should evaluate the 
potential of a given region accurately in reasonable time. To our knowledge t here are 

no heuristics or exact methods able to fully satisfy these requirements on t heir own. 

Therefore, we propose the use of a hybrid approach , which the main concepts are de

veloped through the several chapters of this thesis and it is completely described and 
formalized in Chapter 5. 

The search strategy depicted in the previous paragraphs requires the identification 
and exploration of several RS, performed by the macro and micro search respectively. 

Among several available possibilities to structure the relationship between the macro 
and the micro searches, an iterative structure was used to maximize the efficiency of t he 
overall search. In this way, an iteration consists in the identification and exploration 

of an RS. From one iteration to the next, aIl information gathered concerning regions 
already explored (local optima, bounds, etc ... ) is used to guide the next searches. 
Therefore, instead of proposing a multi-start approach that simply generates one RS 

at each iteration, we chose to structure the search procedure using a binary tree that , 
among other advantages, excludes any previously searched region from the target solu
tion space. This avoids double search and helps to provide a natural diversification for 

the search. 

Two problems were chosen to illustrate the implementation of the Framework. The 

first, called the Pulp Production Schedule Problem, Chapters 2 and 3, is a real-life 

problem which arises in the context of the transportation of wood logs for pulp pro
duction. The second problem, described in Chapter 4, is a version of the classical 

Location-Allocation Problem in the context of an international transportation com
pany that exploits an importjexport network. Although the two problems are clearly 
different, they share several characteristics that made them interesting for use in our 

framework. First, both problems model complex real-life situations. Second, both 

present two different decision levels. Finally, they are formulated as large scale Mixed 

Integer Programs difficult to solve. 

This thesis is the result of almost four years of work and developments. Therefore, we 

believe that it is worth presenting our work according to its chronological evolution, from 

the original idea to the current algorithmic scheme. This appraach leads ta a natural 
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increase in the corn plexi ty of the concepts and also allows the reader to understand the 
problems that we encountered and how the solutions were conceived and implemented. 

The thesis is divided into four parts. Each part consists of one chapter except 

for part two, which includes two chapters. Part l reviews the most recent hybrid 

solution approaches and also includes different approaches which use the concept of 

space restriction. This literature review do es not pretend to coyer all existing hybrid 

algorithms, but to evoke the most important relevant concepts. However, it is important 

to note that problem specific literature reviews can be found in their respective part of 
the thesis. 

The second part presents two articles coping with the Pulp Production Scheduling 
Problem. The first article, Chapter 2, describes the industrial context of the problem 

proposes a mathematical formulation and a heuristic solution approach. The second 

article, Chapter 3, introduces sorne of the concepts of the Framework, such as the RS 
the macro and micro searches and applies them to the Pulp Production Scheduling 
Problem in the form of a hybrid heuristic-exact method. 

The third part, Chapter 4, has two objectives. First , it introduces a real-life location
allocation problem. Second, it extends the ideas underlying the hybrid method used to 
solve the Pulp Production Scheduling Problem and removes its drawbacks by proposing 

an incremental search procedure to deal with large RS, and a binary tree to structure the 
exploration of several RS, leading to a new iterative method called Iterative Restricted 

Space Search - IRSS. 

The fourth part, Chapter 5, generalizes the concepts previously developed and 

presents the full framework. The complete framework, including all its extensions, 
is applied again to the two proposed problems in or der to assess the contribution of the 

different enhancements. This chapter also discusses important issues concerning the 

implementation of the framework, for example, the trade-off between exploring a few 

large RS or many smaller RS. 

Finally, Chapter 6 offers our conclusions and outlines several future possible research 

avenues related to this thesis. 
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The Literature 
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Considerate la vostra semenza: fatti 

non foste a viver come bruti , ma per 

seguir virtute e canoscenza. 

Dante Alighieri (1265-1321) 

La divina commedia 
Canto XXVI, lines 118-120 



Chapter 1 

Literature Review 

This literature review presents the theoretical foundation of this thesis. To this end, 

it is divided into two sections, the first is dedicated to the hybrid solution approaches 
and the second talks about the space restriction methods. 

Every hybrid method is composed of more than one component method (n.b. or one 
single solution method used several times, such as the parallel algorithms). The interac
tion between these component methods differentiates hybrid methods from multi-start 
approaches. U sually, different methods are associated with one another to complement 
the weakness of one with the strengths of the other and this association is made through 
any kind of exchange of information. Therefore, studying and proposing hybrids which 

focus on a solid exchange of information will intuitively lead to more efficient solution 
approaches. To this end, a section in this literature review depicts the information 

exchange proto col of the hybrid methods present in the recent literature. As we chose 
tow real-life models to illustrate the IRSS, a section describing hybrid methods applied 

to real-life problems is included. 

As the literature on hybrid methods is very rich and vast, it is beyond the scope of 

this thesis to make an exhaustive review of all hybrid approaches or to formalize and 

classify them. For such matters, the interested reader is referred to the works of Talbi 
(2002), which provides an extensive classification of hybrid methods using heuristics 

and Puchinger and RaidI (2005) on hybrid heuristic-exact methods. 

Within the operational research literature, the term "hybrid solution approach" IS 

generally applied to the mixing of two or more different solution methods. The goals 
of this approach are to encourage the exploration of new search regions, escape the 

local attraction of optimal points , and generate cuts and/or columns, among ot hers. 
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However, it can be argued that the fundamental principle of the hybrid framework 

proposed in this thesis differs somewhat from the principles of the majority of hybrid 

approaches have been based on up to now. As briefiy explained in the introduction 

we use a hybrid approach to identify a potential region of the space, which we call 

Restricted Space. As the restriction of the search space is a fundamental ide a in the 

framework proposed by this thesis , a section that introduces the various approaches 
that use any kind of space restriction is also included. 

Both fields are fundamental in the development of this thesis. First , hybrid methods 
will be explored , followed by approaches that use any kind of space restriction d uring 
their execution. 

1.1 Hybrids 

Hybrid solution methods belong to a relatively new, but very broad domain in Opera

tional Research. Essentially, any two solution methods can be put together to create a 

hybrid method. The first articles about hybrid methods can be tracked to the begin

ning of the 1980s. One of the first published articles which explicitly uses the expression 
hybrid is the work of Langston (1982) where two simple heuristic methods - one greedy 

and one improvement - are used sequentially to assign jobs to a set of identical machines 
to minimize the finish time. 

Traditionally, hybrid approaches have merged heuristic and/or exact algorithms 

(Gallardo et al., 2007). Exact methods are a special class of solution approaches that 
guarantee optimality, but they can become computationally intractable for many com
binatorial optimization problems, especially NP-Hard problems (Manber, 1989). Exact 

methods however can be very efficient wh en dealing with small to medium sized prob

lems. Examples of these methods are: Branch and Bound (Land and Doig, 1960), and 
its variations, Branch and eut, Branch and Price, Branch and eut and Price (Barnhart 

et al., 2000 ; Nemhauser and Wolsey, 1988) and Dynamic Programming (Wolsey, 1998). 
If we remove the optimality condition, we arrive in the domain of heuristic methods. 

These methods are known to be very efficient, even when dealing with NP-Hard prob

lems. On the other hand, heuristics are able to find good solutions in a relatively short 

computational time and they can be specially designed to profit from special structures 

of a problem. Examples of heuristics methods belonging to the constructive and neigh

borhood based class are: the descent local search (Papadimitriou and Steiglitz, 1982), 

greedy heuristic (Lawler, 1976), simulated annealing (SA) (Kirkpatrick et al., 1983), 

tabu search (TS) (Glover and Laguna, 1997) , examples belonging to the population 
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based class are: genetic algorithms (GA) (Holland, 1975) , ant colonies (AC) (Dorigo 

et aL , 1996) , scatter search (88) and path relinking (PR) (Glover, 1977) among others. 

Glover and Kochenberger (2003) , Blum and Roli (2003) and Vof3 et al. (1999) present 
interesting overviews of the main metaheuristics developed in recent years. 

Recent research on hybrid methods involve simulation (Peng et al. , 2006) , constraint 

programming (Correa et aL , 2004 ; Hooker , 2006) , neural networks (8ahoo and Mait y , 

2007 ; Pendharkar, 2005) and multi-agent (Yan and Zhou, 2006) approaches. AIso, 

this special class of solution methods has been applied to a wide range of operat ional 

research problems. These have achieved very good results in classical problems, such as 
the knapsack problem (da Silva et al. , 2007) , the Traveling Salesman Problem (N guyen 
et aL , 2007) , the p-median location problem (Resende and Werneck, 2004) as weIl as on 
real world applications such as , health care (Bertels and Fahle, 2006 ; Pécora, 2002) t he 

optimization of credit portfolios (8chlottmann and 8eese, 2004) and aircraft scheduling, 

(Gronkvist, 2006) among others. 

The next subsection presents sorne recent articles dealing with hybrid methods em
phasizing the communication proto col used to connect the component methods. 

Communication protocols within the hybrid methods 

Despite the number of possible combinations aIl hybrid methods have one thing in 

common, the component methods communicate with each other using a proto col. To 
structure this review, we propose a communication protocol that defines the type of 
information (HomogeneousjHeterogeneous and Raw jPreprocessed) and how this infor

mation is passed through the methods (PipelinejCyclicj Arbitrary). These communi
cation proto cols are defined as: pipeline, where each component method is executed 

only once and the information is passed in sequence from the first to the last without 
feedback ; cyclic, where the information is passed in sequence from the first to the last 

method which returns the information to the first method completing the cycle; arbi

trary, where there is no fixed order to transfer the information, usually aIl methods 
send information to a single pool which is available and visible to aIl. The information 
can be homogeneous, when aIl methods share the same type of information, (e.g. 

the best solution found) or heterogeneous, where the type of information differs from 

method to method. AIso, the information can be preprocessed (e.g., sorted, classified, 

modified) before being transferred or can be transferred in its raw format. 
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Pipeline / Cyclic / Arbitrary 

Examples of pipeline communication are: Langston (1982) , where two heurist ics - one 

constructive and one improvement - are used in sequence to assign jobs to parallel 

machines . The constructive heuristic generates a partial solution that is passed as 

information to the improvement heuristic , which completes the solution. Perez et al. 
(2005) proposed a Hybrid GRASP and Path Relinking (PR) with a pipeline information 
flow. The GRASP is used to generate an initial population, then aIl the individuals 
belonging to this initial population are combined two by two using the PR, and t he 

algorithm finishes returning the best solution found. Delmaire et al. (1999) presented 
a G RASP and Tabu Search hybrid for the single-source capacitated facility location 
problem where the GRASP generates an initial population that is improved by t he TS. 

Alvim et al. (2004) proposed a hybrid for the one-dimensional bin packing problem, 
their algorithm has five phases (i.e., reduction, bounds, construction, redistribution 
and improvement) passing information sequentially in a pipeline structure. Despite 
being called several times, using multi-start approach the algorithm is classified as a 
pipeline information exchange algorithm instead of cyclic as there is no information 

going from the last to the first phase. 

Lapierre et al. (2004) used a cyclic exchange of information between a Tabu Search 
and a Variable Neighborhood Search (VNS) hybrid to solve a location-allocation prob

lem. The neighborhood developed for this application uses a pseudo-random sampling 
technique to reduce the number of solutions to be evaluated but retains the possibility 
of concentrating the shipment in a specific hub. Their hybrid algorithm is essentially a 
Tabu Search, in which the VNS chooses the neighborhood to be explored based on the 

search status. 

Almost every hybrid that uses parallelization has arbitrary communication. Exam
pIes of this type of communication can be found in Crainic and Gendreau (2002) for 
the fixed charge capacitated multi-commodity network design problem, \vhere a series 
of Tabu Search metaheuristics are executed in a parallel cooperative scheme. Each 
Tabu Search updates a pool of solutions every time it reaches a local optimal point 

and can request information from the pool at a moment determined by a series of six 

import criteria. Gendron et al. (2003) presented a parallel hybrid heuristic for the 

multi-commodity capacitated location problem. This hybrid, which combines Variable 
Neighborhood Descent (VND) (Hansen and Mladenovié, 2001) and Slope Scaling (Kim 

and Pardalos, 2000) , is based on adaptive memories that are updated by the two meta
heuristics in running time and is also responsible for sending new starting solutions 

whenever the solution method needs one. An example of arbitrary communication that 

is not a parallel algorithm is the core and shell framework introduced by Jain and 
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Meeran (2002). Their approach is a hierarchical search method based on the tradeoff 

between intensification and diversification. The innermost search method, the core, is 

responsible for intensification while the several sheU algorithms have an increased de

gree of diversification. The communication between the several shells and the core is 
made through a set of elite solutions available to aU search algorithms. 

Heterogeneous / Homogeneous 

Homogeneous information exchange is very common, e.g. , every hybrid that only ex

changes solutions is classified as homogeneous. 

The Cooperative Coevolutionary Algorithms (CCA), (Potter and De Jong, 1994 ; 
Wiegand, 2003), are good examples of heterogeneous information exchange. The CCA 
imitates biological coevolution using a series of reciprocal changes between two or more 

distinct populations. In CCA a complete solution is an aggregation of several parts 
of solutions, where each part is defined as a species that is tackled by one evolutive 
method. Therefore, each species evolves separately and the interaction between the 

species is performed when they are aggregated to become the whole solution. These 

solution methods have heterogeneous information because each evolutive method con
tribut es with a different part of a solution. French et al. (2001) proposed a heterogeneous 
exchange of information between a GA and a Branch and Bound (B&B) for the MAX
SAT problem. The hybrid starts with the B&B that introduces potential solutions in 

a GA population. When the control of the hybrid is passed to the GA it is executed 
for several generations to improve the initial population. When the GA finishes, the 

control of the hybrid is passed back to the B&B but the decisions to choose the branch
ing node, branching variable and branching direction are made using the information 
extracted from the individual solutions generated during the GA phase. Subsequently, 

the algorithm alternates between the two approaches until the stop criterion is reached. 
Budenbender et al. (2000) proposed a hybrid TS - B&B for the Direct Flight Network 

Design Problem. The intuition of this method is to use the information in the tabu 

list and a set of rules to find a subset of solutions to be explored by the B&B. In this 
hybrid the information exiting the TS is the tabu list and the returning information is 

the best solution found inside the given region. 
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Raw / Preprocessed 

Passing the information in its raw format is the most common approach, aH the exam
pIes listed ab ove , except for Budenbender et al. (2000), faH into this category. 

Budenbender et al. (2000) proposed a hybridization between a TS and a B&B, where 
the TS sends the tabu Iist which is encoded as a prohibition of branching in certain 

variables and the B&B sends back the best solution found. In this way the information 
exiting from the TS is modified before it arrives at the B&B. Another preprocessed 

information exchange can be found in Prins et al. (2007). They developed a Hybrid 
containing a Lagrangean Relaxation (LR) and a Granular Tabu Search (GTS) (Toth 
and Vigo , 2003) for the capacitated location routing problem (LRP). The GTS tackles 

the original capacitated LRP sending the best solution found to the LR which deals 
with a location problem. Therefore, the current LRP solution is transformed into a 
location problem by aggregating the customers into super-customers, only then the LR 

is executed to solve the problem. The solution resulting from the LR is disaggregated 
and passed back to the GTS. The GTS and the LR use a cyclic proto col communication 

limited by a number of cycles. The RINS method (Danna et aL , 2005) consists in caHing 
for a heuristic search during a Branch and Bound tree. At a given node the current 

relaxed solution and the incumbent (best known) solution are compared which define a 
neighborhood around the incumbent solution. This neighborhood is explored by RINS , 

which returns the best solution found to the B&B. Velarde and Laguna (2004) presents 
a hybrid between a linear method and TS for a scenario based approach for the Robust 
capacitated international sourcing problem. The linear relaxation of each decomposed 
scenario is solved and the shadow priees of the capacity constraints are averaged. 

Using this information a decision is made regarding the potential moves (i.e. , open, 
close, swap). The most promising moves are implemented in the TS procedure that 

returns the best known solution to the Iinear method, restarting the cycle. 

Hybrids applied to real-life problems 

There are a number of examples of reai life problems touching different fields in Op

erational Research. These problems range from aircraft scheduling to health care and 

also production problems, energy and water distribution and petrol production, to cite 

a few. AH of these problems have several points in common. Real world problems are 
among the most difficult problems to solve in Operational Research, not just for their 

great size and high complexity, which usuaHy is NP-Hard, but also because this class of 

problems has very specifie constraints and modeling needs. For aIl these reasons , generic 
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and straightforward solution approaches may not perform weIl for such problems. To 

efficiently solve them, the specifie characteristics of the problems need to be exploited 

and the chosen solution approach needs to be adapted to it. The following paragraphs 

discuss sorne recent real-life problems that use hybrids as a solving procedure. 

Ahuja et al. (2005) proposed a hybrid solution approach for the locomotive-assignment 
problem. This problem consists in assigning locomotives into a pre-planned train sched
ule, while assuring enough locomotive power to pull the train from the start point to 

the end destination. Their model incorporates real-life features such as train-to-t rain 

connections and consist bustings and consistency. A consist is said to be busted when a 

set of locomotives arriving with a train is broken into subsets to be reassigned to two or 

more trains. A solution is consistent when the same locomotive is assigned to the same 
train for a period of at least one week. In order to solve this problem the aut hors use 

a combination of decomposition techniques, integer programming and very-large scale 

neighborhood search (Ahuja et aL, 2002) using a pipeline-homogeneous- raw proto col. 

The work of Vaidyanathan et al. (2008) extended this formulation by adding new con
straints to the planning problem, such as incremental locomotive planning which helps 

to achieve a good solution with minimum changes to the original planning. 

Atkin et al. (2007) proposed a hybrid metaheuristic based on TS and a constructive 
heuristic, named Path Assignment Heuristic, using a cyclic- heterogeneous- raw proto

col to tackle runway scheduling at London Heathrow airport. Only one runway is used 
for aIl aircraft departures at Heathrow airport. A separation time - depending on the 

aircraft routes, weights and speeds - between two departures is required for each pair of 

aircraft at take-off to safety reasons. Also, the geometry of the runway at Heathrow air

port imposes physical constraints not found in the academic literature. Their approach 

proposes a solution that guides the runway controllers in their decisions and can also 
be used to anticipate future problems in the schedule. Aiso in the domain of the air
craft scheduling, Gronkvist (2006) proposed a hybrid of Constraint Programming and 

Column Generation to the Tail Assignment Problem which consists in assigning each 

aircraft (identified by its tail number) to a flight, while considering reallife constraints 

such as maintenance and landing restrictions and prohibited flight times for certain 

aircrafts at certain airports. Their method starts with a constraint programming that 

reduces the original search space, and then the linear relaxation is used to generate 
columns for the relaxed problem. Once the relaxed optimal is found a heuristic method 

is applied to find an integer solution. The tree methods exchange information using a 

Pipeline - Heterogeneous - Raw proto col. 

Bertels and Fahle (2006) solved the home health care problem - i.e., visiting and 

nursing patients at their home - using a combination of constraint programming, tabu 
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search and simulated annealing. This hybrid approach has two phases. In the first 

phase a set of initial solutions is generated by constraint programming and saved in a 

pool. In the second phase a heuristic method is chosen randomly, between a TS and 
SA, and used to improve a random solution from the pool. The improved solution takes 

the place of the original solution in the pool and a new pair (heuristic and solution) 

is chosen when the algorithm restarts. Despite using a pool of solutions and restarts, 
this algorithm is classified as a pipeline because the constraint programming is used 

only once to generate the initial solution. Aiso in the healthcare field , the physician 

scheduling problem (Carter and Lapierre, 1999) , consists in determining the sequence of 
shifts which each physician wiU work considering several constraints such as , contracts 
ergonomic rules and hospital demand. Pécora (2002) presented a combination of GA 
and TS, using a cyclic- homogeneous- raw protocol, to tackle a real-life instance arising 
in the General J ewish Hospital - Montreal. In this approach, after each GA crossover 

the offsprings are improved by a TS before being part of a new generation. 

Borraz-Sanchez and Rios-Mercado (2005) tackled a real-life problem for the distri
bution of natural gas. When dealing with natural gas distribution through pipeline 

3% to 5% of the total natural gas transported is spent to maintain pressure in the 

pipeline. As the quantity of natural gas that is transported is huge, even a marginal 

improvement can have a significant positive impact in the whole system. The main 
decisions for this problem are the flow of gas to meet the demand requirements and 

at which point of the pipeline to use natural gas to keep the right pressure inside the 
whole gas pipeline. The authors decompose the main problem into a sub problem con
taining just the pressure variables, which is solved with dynamic programming, while 
the second subproblem deals with the flow variables and is solved by a Tabu Search. 
The hybrid method provides improved results for aU Il instances given in the article 

and this improvement is more than 2% in 8 out of Il instances. It is implemented using 

cyclic-heterogeneous-raw proto col. 

Budenbender et al. (2000) presented a real world instance of the facility location 
problem based on the German postal service. This problem consists in transporting 
letter mail through airport terminaIs by deciding which airports wiU be used and how the 

freight is transported among the terminaIs. The authors propose a ·Hybrid Tabu Search 
and Branch and Bound, where the exact method is used to explore a neighborhood given 

by the metaheuristic. The proto col used here is Cyclic and Heterogeneous because the 

TS and the B&B iteratively exchange different types of information. The TS sends the 

tabu list and the B&B send the best solution found. The proto col is also preprocessed 

because the information exiting the TS - the tabu list - is transformed in a constraint 

before arrives to the B&B. 
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The water distribution problem consists in transporting clean water from the t reat

ment plant to individual customers. This multi-objective problem has many decisions 
to make. It has to maintain adequate water pressure, maintain the disinfection level 
ensure minimum pipe bursts and also minimize the costs of material , excavation and 

maintenance. Keedwell and Khu (2006) deal with this problem by applying a hybrid 

including a cellular automaton (von Neumann and Burks , 1966) and a GA; in t his case 
the cellular automata is responsible for seeding - to generate an initial population of 

solutions - and the GA - used as an intensification procedure - combines t he solut ions 

in the initial population with the goal of defining the Pareto optimal set of solut ions. 
The solution method uses a pipeline-homogeneous- raw information exchange. 

Tarantilis et al. (2008) presented a variant of the Vehicle Routing Problem often met 
in real-life problems. Their work aims at identifying optimal routes for a fleet t hat can 

have their capacity recharged at intermediary replenishment stations. The aut hors used 

a combination of four heuristics to tackle this problem. In the first phase a constructive 
heuristic is used to find an initial solution. In the second phase this solution is improved 
using a combination of Tabu Search and Variable Neighborhood Search. Finally, in the 
third phase a guided local search is used to eliminate low quality features from the final 
solution. This algorithm is tested with a benchmark improving the best known solution 

for several instances and it uses a pipeline- homogeneous- raw exchange of information. 

As previously mentioned, the Framework proposed in this thesis has two hybridiza
tions; one between the "macro" and "micro" searches and a second inside the "macro" 

search. Chapter 5 will demonstrate that this hybridization keeps the same information 
exchange proto col independently of the component methods implemented. 

Table 1.1 shows the complete proto col for information exchange within hybrid meth

ods for each article cited here. Note that in the case when the article uses more than 
two solution methods, only the two that we judge the most important are represented 

in this Table. 
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Reference 

Ahuja et al. (2005) 

Alvim et al. (2004) 

Atkin et al. (2007) 

Bertels and Fahle (2006) 

Method 1 

MIP Method 

Constructive 

Heuristic 

TS 

Constraint 

Programming 

Method 2 

Very Large Scaled 

Neighborhood 

Improvement 

Heuristic 

Information 

Protocol* 

Pip-Hom-Raw 

Pip-Het-Raw 

Constructive Heuris- Cyc-Het-Raw 

tic 

TS + SA Pip-Hom-Raw 

15 

Borraz-Sanchez and Rios- TS Dynamic Program- Cyc-Het-Raw 

Mercado (2005) 

Budenbender et al. (2000) 

Crainic and Gendreau (2002) 
Danna et al. (2005) 

Delmaire et al. (1999) 

French et al. (2001) 

Gendron et al. (2003) 

Gronkvist (2006) 

Keedwell and Khu (2006) 

Langston (1982) 

Lapierre et al. (2004) 

J ain and Meeran (2002) 

Pécora (2002) 

Perez et al. (2005) 

Pot ter and De J ong (1994) 

Prins et al. (2007) 

Repoussis et al. (2006) 

Tarantilis et al. (2008) 

Vaidyanathan et al. (2008) 

Velarde and Laguna (2004) 

TS 

TS 
MIP method 

GRASP 

GA 

VND 

Constraint 

Programming 

GA 

Constructive 

Heuristic 

TS 

Core 

GA 

GRASP 

Evol u tionary 

Algorithm 

GTS 

GRASP 

TS + VNS 
MIP Method 

TS 

ming 
MlP method 

TS 

Cye-Het-Pre 

Arb-Hom-Raw 

Truncated 

method 

MIP Arb-Het-Pre 

TS 

Branch and Bound 

Slope Scaling 

Column Generation 

Cellular Automaton 

Improvement 

Heuristic 

VNS 

Shell 

TS 

PR 

Evolutionary Algo

rithm 

Lagrangean Relax

ation 

Pip-Hom-Raw 

Cyc-Het-Raw 

Arb-Hom-Raw 

Pip-Het-Raw 

Pip-Hom-Raw 

Pip-Hom-Raw 

Cyc-Het-Raw 

Arb-Hom-Raw 

Cyc-Hom-Raw 

Pip-Hom-Raw 

Cyc-Het-Raw 

Cyc-Het-Pre 

TS + VNS Pip-Hom-Raw 

Guided Local Search Pip-Hom-Raw 

Very Large Scaled Pip-Hom-Raw 

Neighborhood 

Linear Method Cyc-Het-Pre 
*Information Protoeol: Pip = Pipeline, Cye = Cyehc, Arb = Arbltrary; 

Hom = Homogeneous, Het = Heterogeneous; Raw = Raw, Pre = Preprocessed 

Table 1.1: Information exchange proto col in hybrid methods 
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1.2 Space restriction approaches 

The ide a of restricting the search space is not a new idea in OR. As the size of problems 
that can be solved to optimality is mostly determined by the power of the computational 

resources available, researchers have been proposing several procedures to remodellarge 

scaled problems into a solvable sized problem, among others figures, mathematical ma

nipulations , cutting planes algorithms, column generation and constraint propagation 

techniques. Geoffrion (1970a) mention several manipulations to deal with large scaled 

mathematical programming such as, decomposition , linearization, relaxation and pro
jection. These manipulations can be seen as one of the pillars that hold the development 

of solution approaches up to today. Cutting plane algorithms aim at reducing the search 
space by proposing valid cuts with the goal of identifying the integer convex envelope. 

Column generation approaches follow the contrary path, they start with a very small 

space and look for profitable new variables to add to the restricted problem. There 

are also modeling issues used to restrict the solution space, such as the aggregation of 

variables. This approach has the drawback of not dealing with the exact problem, but 

rather an approximation of it, but this may be necessary and useful, especially when 

dealing with real-life problems. Constraint propagation techniques also aim at reducing 

the solutions space by identifying possible inconsistencies that cannot belong to any fea
sible solution. Also, neighborhood based heuristic methods explores the solution space 

by means of a weIl defined sequence of restricted spaces, called neighborhoods. 

The rest of this subsection is dedicated to outline and exemplify these space re

striction approaches to better place the IRSS into the current literature. It is not the 

goal of this section to provide a classification or a taxonomy for these approaches, for 

such matters specific reviews are provided. This section is divided into three parts: 

mathematical programming, constraint propagation and neighborhood based heuristic 

methods. 

Mathematical programming 

Dealing with large NP-hard problems using pseudo-enumerative methods can be very 

costly. In order to cope with large scale mathematical programs, approximations or 

manipulations (Geoffrion, 1970a,b) are used to transform the main problem into smaller 
and more manageable/solvable subproblems. Actually, these manipulations have the 

goal to reduce the solution space to a reasonable size, one which can be handled with 

known solution methods. For example, Benders Decomposition (Benders, 1962), fixes 

the values of the "complicating variables" reducing the main problem to a parameterized 

FSA - Université Laval 



1.2 Space restriction approaches 17 

linear problem, (n.b. for the generalized form of Benders ' Decomposition see Geoffrion, 

1972) , which is used to iteratively approximate the convex envelope of the solut ion space 

by identifying cutting planes. Costa (2005) presents a survey on Benders decomposition 

applied to fixed charge network design problems, Rei et al. (2006) used local branching 

to accelerate the classical Benders decomposition algorithm, improving simult aneously 
the lower and upper bounds for a series of network design problems. The Dantzig-Wolfe 

decomposition (Dantzig and Wolfe, 1960) method for linear problems, considered the 
basis of the column generation approaches, is based on the interaction of two models. A 

reduced instance, with fewer variables (columns) than the main model is solved and a 

sub model is used to identify the variable that should be added to improve the objective 

function. Gilmore and Gomory (1961) applied the Dantzig-Wolfe decomposit ion to t he 

unidimensional cutting problem. Their algorithm iteratively solves the linear relaxation 
main model and uses the shadow prices in sub model that generates profitable cut 

patterns, added as new columns in the main model. The algorithm cycles between t he 
main and the sub model until no cut pattern can be added to improve the objective 
function. 

An integer programming technique used to reduce the solution space is cutting 

plane algorithms. The rationale behind these algorithms is to try to identify t he facets 
- especially the ones in which the optimal solution belongs - of the convex envelop of 
the integer solutions. Because if this convex envelop is completely identified, any linear 
method will return the optimal integer solution. U sually such approaches are not able 
to identify the integer convex envelop - which is as difficult as solving the main problem 
to optimality - but instead, the cutting plane algorithms provide a good approximation 

for the convex envelope improving the convergence of the solution method. There are a 

number of cutting plane techniques which can be applied to generic MlP problems and 

for more information about this theory we refer the reader to the books (Wolsey, 1998 ; 

Nemhauser and Wolsey, 1988). Problem-specific cuts also can be added to strengthen 
the model e.g. Cavallet et al. (2000) uses a knapsack model to generate valid cuts that 

are based on the passing flow through the hubs for a location-allocation problem. 

A restriction in the solution space can also be achieved by aggregating similar vari
ables. This manipulation changes the structure of the problem to make it a simpler and 

easier one to solve. However, this simplification do es not usually provide the optimal 
solution for the original problem but this technique is largely used when the original 

problem is very large and complex. Johnson and Wang (1998) tackled a problem of 

scheduling disassembly operations for recycling that is modeled as a two-commodity 

network problem. Disassembly operations can be very complex due to the sequence

dependent pro cess leading to a very large mathematical program. Therefore, to reduce 

the final search space they use a technique that aggregates compatible materials and 
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also similar assembly operations. In addition, the non-profitable disposaI nodes are 

identified and eliminated from the search space. The final model, which is a relax

ation of t he real model , is then solved using a branch and bound algorit hm. Prins 
et al. (2007) described a location routing problem (LRP). During one phase of t heir 
hybrid algorithm sorne customers have their demand aggregated into a super-customer 

as called by the authors. U sing this aggregation the LRP is transformed into a location 

allocation problem, which is solved by a Lagrangean relaxation. 

It can be argued that the IRSS has its foundations on the mathematical program
ming approaches , for example the definition of a RS is related with the concept of 
projection, the structural variables , Chapter 5, is related with relaxation and decom
position. The IRSS uses these manipulations and t he integer programming methods, 
such as Branch and Bound and Local Branching to propose a framework for hybrid 

methods that is based on the successive definition and exploration of restrict ed spaces . 

Constraint propagation 

Constraint propagation techniques (Mackworth, 1977) are used in artificial intelligence 
to strengthen constraints and reduce the domain of variables leading to a reduction of 
the search space. Constraint propagation is also a method for red ucing the search space 

of a problem instance based on the interdependence between the variables induced by 
the set of constraints. l ts goal is to detect inconsistent assignments that cannot be part 

of any feasible solution. Dorndorf et al. (2000a) proposed a space reduction procedure 
based on constraint propagation and a time-oriented branching sequence, applied to 

the Resource-Constrained Project Scheduling with Generalized Precedence Constraints. 
Hybrid approaches using constraint propagation, together with branching techniques , 

may prove to be very effective when dealing with highly constrained mathematical pro

grams. Artigues and Feillet (2008) and Sadykov (2008) used the constraint propagation 

techniques embedded in a branch and bound. In these works, the main goal of con

straint propagation is to reduce the search space and generate infeasibility cuts to speed 

up the branching. The former minimizes the makespan, while the latter minimizes the 
weighted number of late jobs. Dorndorf et al. (2000b) provides a survey on constraint 

propagation applied to the disjunctive scheduling problem. The reader is referred of 

Rossi et al. (2006) to details and a list of references in constraint propagation. 

The IRSS restricts the space by probing the solutions space and looking for common 

characteristics of good solutions. Constraint propagation techniques proposes to reduce 

the search space by identifying inconsistencies. 
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Neighborhood based heuristics 

There sever al modern metaheuristics that use the concept of neighborhood, eg.: Sim

ulated Annealing (Kirkpatrick et al. , 1983) , Multi Neighborhood (Boctor , 1993) , Tabu 

Search (Glover and Laguna, 1997) , Variable Neighborhood Search (Hansen and Mlade

novié, 2001) and Very Large Scale Neighborhood Search (Ahuja et al. , 2002). 

A neighborhood can also be seen as restriction of space, differently of the valid cut, 
column generation and mathematical manipulations techniques, neighborhood based 

heuristics does not transform the solution space. Instead, it selects a region around a 

reference solution to perform the search procedure, due to this characteristic, most of the 
neighborhood based heuristics act locally thus they need sorne procedure to diversify t he 

search, like tabu list in TS, the control parameter in SA, multi neighborhoods or even 
all these artifices together in a hybrid rnethod. For more on neighborhood heuristics 
we suggest the work Glover and Kochenberger (2003) to the reader. 

Differently frorn neighborhood based metaheuristics, the Iterative Restricted Space 

Search proposes an algorithrn structure to explore the solution space which naturally 

provides the diversification. As will be described in the next chapters two restricted 
spaces have not points in cornmon, which naturally leads the search to new regions of 

the solution space. 

The idea of reducing the solution space to be explored is a natural way to deal with 
large scale problems and it has been explored in mu ch different ways during the last 

years. In this thesis , this concept is used in the framework both inside the "macro" 

search as exemplified in Chapter 5 and also in the information passed from the "macro" 

search to the "micro" search, the RS. In addition, the IRSS proposes an intelligent way 
to define the restricted space based on the information gathered during the "macro" 

search. 
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"The best friend on Earth of man is 

the tree. When we use the tree 

respectfully and economically, we 

have one of the greatest resources of 

the Earth." 

Frank Lloyd Wright (1867 - 1959) 



Introduction 

The contribution of this part is twofold. First , it models and introduces a new problem 

the Pulp Production Scheduling Problem (PPSP) , and second it proposes a new solution 
approach the Restricted Space Search. To this end it is divided into two chapters, the 

first one is dedicated to the definition and formalization of the mathematical model 

related to the Pulp production Scheduling Problem, a real-life problem that arrises 
in the context of a Brazilian Pulp company. The main objective of this problem is 

homogenize the feed of wood chips in the digester - a pressure vessel w here the pul p 

is produced - in or der to optimize the quality of the pulp produced. At this point , 

as the main goal of this article is not the solution approach, but the formalization of 
the problem, a simple constructive heuristic is proposed. This article was published in 
INFOR Volume 45, Number 4 in November 2007. 

The second chapter of this part proposes a new solution approach, the Restricted 

Space Search, for the same problem. It lays the basis and develops the first concepts of 

this thesis , as the two phase search, structural variables, restricted spaces and direction 

vectors. These concepts are extended in Part III and generalized in Part IV. 

Despite dealing with the same problem, the reader will notice that the models in 
these two chapt ers are not exactly the same, this is due to the development of the ideas 

and a better understanding of the problem. The first difference is that in Chapter 2 the 
demands are modeled in volume of wood, due to the fact that the Brazilian pulp has a 

very good strategic planning all the harvest areas have almost the same size. Implying 
that the total volume of wood logs produced by each harvest area is very similar. 

Therefore, in the second chapter we model~d the demand by numbers of harvest areas 

consumed per period instead of total volume of wood. Leading to a new model that 
avoids the partition of the same harvest area into different digesters, without the need 

of binary variables or new constraints, an undesirable operational constraint for the 

pulp plant. The second difference is that the constraints imposing a smooth changing 

in the density of the wood chips fed in the digester, (constraints 2.6) does not belong 

to the second mathematical model. There are two main reasons for that , first as the 
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range of possible basic densities are small , thus even a great change in the feeding will 

not affect the final pulp quality substantially. Second is that the wood chips waiting to 
be fed in the digester are stored in heaps which mixes them. Operationally the better 

solution for this problem is the implementation of a new storage facilities in which 

the different chips could eventually be separated, a solution that the pulp company 

considered reasonable but inviable for the moment. Therefore to better adequate our 

model to the reality of this pulp plant these constraints where subtracted of the model. 

Despit e being two chapters they are complementary and both contribute for t his 
research. The first by modeling a new real-life problem and the second by proposing a 
new solution approach for this problem. 
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Chapter 2 

Introduction to Pulp Production 
Scheduling Problem 

Résumé - La pâte kraft, matière première nécessaire à la fabrication du 
papier, s'obtient par cuisson de copeaux de bois dans des lessiveurs. Les pa
ramètres physico-chimiques du processus (température, pression, temps de 
cuisson et quantités de produits chimiques), établis selon la densité basique 
du bois à transformer, ont un impact majeur sur la qualité de la pâte. En 
sélectionnant des parcelles dont les densités basiques sont similaires, on op
timise à la fois le processus de production et la qualité du produit obtenu. La 
quantité de bois disponible dans chaque parcelle étant limitée et les densités 
pouvant être significativement différentes d'une parcelle à l'autre, la planifi
cation opérationnelle de la production consiste essentiellement à combiner, 
pour chaque lessiveur, les parcelles à exploiter, de telle manière que les den
sités soient les plus homogènes possible. Ce problème est modélisé comme 
un problème d'ordonnancement dans lequel chaque parcelle est affectée à 
un lessiveur et à une période, en minimisant la variance des densités des 
copeaux de bois à transformer pour chaque période de l'horizon de planifi
cation. Nous proposons une solution heuristique basée sur cette formulation 
et discutons de son efficacité à l'aide des résultats numériques obtenus. 

MOTS CLÉS : ordonnancement, foresterie, modélisation mathématique, 
heuristique constructive 
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Abstract 

Kraft pulp, the raw material in paper manufacturing, is obtained by ex
posing pieces of wood to a cooking process. The parameters of this pro cess 
(temperatures, times, chemicals, etc.) depend strongly on the density of the 
different woods in the cooker and have an influence on the quality of the 
pulp that is obtained. In order to optimize both the production process and 
the pulp quality, one wishes to cook together woods having similar densities. 
However, given that the harvest areas contain limited quantities of trees and 
that wood densities vary significantly from one area to another, deciding how 
harvested wood from different areas should be mixed for processing is a sig
nificant operational decision in pulp production planning. This situation is 
modeled as a scheduling problem where one has to decide which harvested 
area goes to each available processing units in order to minimize the vari
ance of wood densities within each cooker for each period of the planning 
horizon. We also present an approximated solution approach based on the 
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formulation proposed. Sorne results are reported and the efficiency of the 
method is discussed. 

KEY WORDS: scheduling, forestry, mathematical modeling, constructive 
heuristic 
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Despite t he promises of several end-of-century gurus , we are still far away from a pa

perless world. Pulp, the base for paper and cardboard production, is still a healthy 
industry. The world consumption of paper and cardboard attained 339 million t ons in 

2003, and grows by about 3% per year (see http:j jwww.copacel.frjanglais.htm). The 
large industrialized countries make up the lion 's share of this consumption. Production 
per capita in these countries is estimated to be between 179 kg per year (Spain) and 

301 kg per year (United States). The consumption of paper and cardboard is linked t o 
economic activity, but also to wood availability at the different stock points present at 

the different levels of the value chain. 

The pro cess for the manufacture of pulp and paper basically consists in transform
ing wood into a fibrous material, known as paste, pulp or industrial pulp. However , 
ind ustrial models vary from one country (or region) to another, according to climatic 
conditions, harvested tree species as well as the specific local supplying and transfor

mation practices. In this paper, we will focus on the particular model observed in the 

Brazilian ind ustry. This model differs from others - the Canadian model, for ex am
pIe - in several aspects concerning mainly the forest management and characteristics 

(species), supply issues (logistics and transportation), the transformation process and 
the distribution and fulfillment strategies. The particularities of the Brazilian pulp and 

paper production model will be discussed in the next paragraphs. 

In contrast to the Nordic and Canadian production models, Brazilian pulp and pa
per production is almost exclusively based on the transformation of eucalyptus rather 

than a mix of different species. Eucalyptus trees have a much shorter live cycle than 

Nordic species (five to seven years to maturity instead of 35 to 40) and they are cul

tivated in plantations where genetically selected species are exclusively dedicated to 
pulp and paper production. Farms are divided into harvest areas, which are homoge

neous parcels of land producing enough wood to feed a pulp digester for one day. This 

sylviculture approach leads to other major operational differences with respect to the 

exploitation of natural forests. First of aU, as the area of these farms is significantly 
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sm aller than the ones dedicated to N ordic species, traveling distances to the processing 

factories are shorter. In fact, a Brazilian tree will travel around 40 km to reach the 

transformation facility while a Canadian tree will easily travel 400 km or even more. 

Secondly, the access to parcels is on permanent routes. Thus, in the studied case, we 

will exclusively concentrate on transportation scheduling, neglecting other operational 
issues such transportation modes, transportation delays or even route construction. 

Once an area has been harvested , cut wood is left to dry naturally for a period of 4 

to 6 weeks and then transported to the mills. This waiting time allows the wood to loose 

part of its humidity, reducing its weight and therefore the transportation cost. However , 
if the wood becomes too dry further operations in the transformation cycle might be 

hindered. Therefore, taking into account the moist Brazilian climate, plant engineers 
recommend wood transportation within a time window ranging from the fourth to the 

12th week after harvest. Note that this is in contrast with Nordic countries , where wood 

humidity loss is an important concern due to their dryer climates. Transportation is 

mostly done by truck, one harvest area requiring several trucks. 

Pulp is extracted from wood chips by mechanical, chemical or thermal methods , 
but the most common one in the Brazilian pulp industry is a thermo-chemical pro cess 

which is known as the kraft process (see Kennedy et al., 1989 ; Biermann, 1996). This 
cooking consists in submitting the chips to the chemical action of strong white liquor 

(composed of caustic soda - i.e. sodium hydroxide - and sodium sulphite) and steam 

inside a digester in order to separate the lignin that binds the fibre in the wood. The 
liberated fibre is industrial pulp. The digester is a pressure vessel where the chips and 

white liquor are continuously introduced through an opening at the top. Total cooking 
time of the wood chips is around 120 minutes, carried out from the top to the center 
of the digester. From the center down, a washing operation is conducted to remove the 

residual solution, weak black liquor (the strong white liquor used in cooking plus lignin 

removed from the wood), which is later used as fuel for the recovery boilers. 

The industrial setting that we observed includes a single factory with three different 

cookers, each with its own wood pile in the factory backyard. Wood logs from the piles 
are sent through chi ppers to be slashed into wood chips. These are then fed to the 
digester area, where the cooking pro cess begins. Figure 2.1 schematizes such a pulp 

production pro cess and the particular industrial setting considered (within the dashed 

box). 

Puip produced from wood chips with different densities are used to manufacture 

distinct types of paper. Pulp coming from high density chips are more suitable for 
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Figure 2.1: Pulp production pro cess and the decisions considered 
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packing grades where high tear strength is important . On the other hand, pulp produced 

from low density chips are preferred to manufacture fine papers (Kennedy et al. 1989). 

Cooking wood chips with different basic densities pro duces necessarily a mix of both 

overcooked and undercooked pulp (Biermann, 1996 ; Kibblewhite and Uprichard , 1996 ; 

Williams, 1994). Homogeneous wood chips are desired when submitting them to a kraft 

process, because one will have a greater control of the final pulp quality and will avoid 

the losses in production due to un der or over-cooking. 

In order to optimize production, one needs to carefully set the digester parameters 

according to the characteristics of the wood to be processed and, in particular, to the 

wood basic density. To this end, production planners have to deal with two difficulties . 

• Firstly, chips coming from harvest areas with different basic densities clearly re

quire different cooking times, different temperatures, but especially different doses 

of chemicals which motivate engineers to "group" similar woods to be cooked to

gether. 

• Secondly, pulp production is a continuous pro cess which means that the pro cess 

cannot be stopped while changing the cooking parameters. Thereby, a second 

goal when planning production seeks to avoid (or minimize as much as possible) 

the number and the size of the changes in cooking parameters. Since wood fed 

into the digester cornes from a large and heterogeneous set of chips, production 

planners need to choose - schedule - from which of the available forests one should 

transport wood in order to feed the cooking processors with similar density woods 

at the different factories and minimize the changes in their cooking settings. 
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U nfortunately, there is no known economical function relating the homogeneity of 

the wood being cooked together and the processing costs and performance. However , 

plant engineers from our industrial partner estimate that savings of up to 10 US$ per 

ton of produced pulp may be achieved if (1) the digester is fed with a good mix of wood 

- i.e. wood with similar basic densities - and (2) changes in the cooking parameters are 

minimized. The impact of such savings is extremely important for an industry that , 
though still growing, shows strong price-driven behaviour. 

Taking into account the above considerations this paper proposes a mathematical 

model that aims at helping managers to schedule wood transportation to feed the plant 

digesters in order to minimize the wood density variance within each of them. 

lntroducing density variance within the objective function naturally leads to a non

linear mathematical model. We therefore apply a linearization strategy, based on the 

discretization of the continuous density values into discrete density levels. The math
ematical model accounts for classical constraints such as wood availability and system 

capacities, but also considers engineering plant constraints such as specifie restrictions 
that aim at smooth digester operation by avoiding radical changes in the digester set

tings between consecutive production periods. 

The paper is organized as follows; the next section presents a review of the related 

literature. Section 3 introduces sorne notation before presenting the mathematical for
mulation. A real-life industrial application is presented in Section 4. Finally, section 5 

concl udes the paper. 

2.2 Research areas within pulp production litera

ture 

As the scientific production in forestry is vast, our literature review concentrates exclu

sively in two research streams. The selected issues are: 1) the application of operational 

research techniques to general forestry problems and wood supply chain management 
and 2) the chemical pro cess involved in pulp production and, in particular, the key role 
of wood density in the transformation processes. In the next paragraphs we review the 
scope of these respective research domains and we explain how the present study fits 

within the research framework of the forestry discipline. 
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Several research works have concentrated in applying OR techniques to the forestry 

context. Weintraub et al. (2000) discuss the combinatorial nature of sorne forest man

agement problems and the OR algorithms that have been proposed to tackle t hem. 
This survey also introduces sorne imposed environmental constraints , which lead t o the 

adjacency problem (see also Murray and Church, 1995, 1996a,b) . In short, these en

vironmental restrictions state that , in order to protect wildlife, adjacent areas should 
not be harvested in the same time period thus preventing the destroyed habitat zones 

from being too large and preserving sufficient movement corridors between unharvested 
forest units for wildlife. 

The concept of supply chain management (SCM) arose in the early 90s. SCM has 
allowed many companies to achieve important improvements in almost every kind of 
logist ic syst em (see Slats et al. , 1995 ; Geoffrion and Powers , 1995). It attempts to 

coordinate the logistic activities around the different echelons of the production chain, 

but it can also improve the supply coordination between vertically related companies 
or even competing companies. SCM is particularly appealing for the forestry industry 
due to the large distances that generally separate forests and production centers from 
customers. Increasingly, these are more spread out all around the world with the 

growing globalization of the economy. Besides, wood is a heavy and dense material 
which implies costly transportation, handling and storage activities. 

Ronnqvist (2003) , studies the wood supply chain and production planning. Forest 

management, as well as transportation and routing issues , are considered within strate
gie, tactical and operational planning. At the strategie level - a horizon ranging from 
20 to 25 years - the transportation problem relates to road building and upgrading in 

order to guarantee future timber flow. In tactical planning, usually with a horizon of 

2 to 4 years , decision makers are interested in selecting the set of areas which will be 
harvested in the next period, to meet expected market demand. The operational level 
- 1 or 2 months - is mostly concerned by the choice of transportation modes and the 

target becomes minimization of the costs. Karlsson et al. (2003) discuss transportation 

issues and other operational questions concerning the Swedish forest industry such as 
crew scheduling or road construction and clearing (snow removal). 

The second research stream concerns the pulp production pro cess itself. White 

liquor, the base for pulp and paper production, may be produced by sever al different 

mechanical , chemical and thermal processes. In particular, this study is concerned by 

the thermo-chemical process production. Roughly, this pro cess submits the pieces of 

wood to precise temperature and pressure conditions in the presence of chemical agents. 

The optimal receipt for such a cooking pro cess requires a correct balance between these 
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parameters and the physical characteristics of the wood (Biermann, 1996 Kennedy 

et al. , 1989). 

A good comprehension of the relationships between raw material and the final prod
uct is mandatory for any pulp and paper industry which would like to face the current 

competitive and demanding market. The impact of wood characteristics on the paper 
pro cess is studied by Williams (1994). In his work the author states that a classification 
of wood into density ranges is beneficial for the final quality of the pulp. Furthermore, 
Foelkel et al. (1992), demonstrate that density is a critical physical property of wood 

in the eucalyptus cooking equation. Basic density appears as a key factor during the 

delignification - wood impregnation with the cooking liquor - procedure. In general , 

wood chips with high density present greater resistance to liquor flow during cooking, 
leading to a deficient degree of impregnation. Thus, the intensity of the delignification 

reactions is reduced and the required cooking times, as weIl as the chemical doses , need 

to be readjusted. Therefore, programming the thermo-chemical digester parameters 
under a mix of heterogeneous wood fibres (different densities) represents a difficult but 

worthy problem for the plant engineers. 

Several other studies have concentrated on how to measure the values of the wood 
physical properties in practice better and faster. Schimleck et al. (2005) use infrared 

spectroscopy to determine basic density and pulp yield properties. Molteberg (2004) 
describes measurement methods to determine several wood properties like basic density, 

dry density, fibre length, kraft pulp yield and others, using small wood samples. Duffy 
and Kibblewhite (1989) present a method based on the suspension of fibres to infer the 

wood parameters and their importance in the quality of the final product. 

However, despite the proved impact of basic density management in the pulp pro

duction process, a thorough bibliographic search did not find any previous research 
that dealt explicitly with the variance in basic wood density within pulp production 

planning or wood procurement and transportation schedules. To the best of our knowl

edge, this study presents the first mathematical model integrating wood transportation 
and production decisions within a wood density variance optimization objective. The 
next section first presents the different parameters and decisions variables required by 

proposed model followed by a formaI mathematical formulation. 
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2.3 Problem description and mathematical model 

The notation needed to describe the mathematical model is as follows. Let W be the set 

of wood to be transported. Note that not aIl areas are available to transport at the same 

time: sorne areas are too young, sorne are too old , and others do not meet the minimum 

required quality to pro duce pulp. Each individual area w E W , is characterized by the 

volume of wood available, vw , and the average basic density, 6w . AIso, each harvested 

area has its own transportation window. In practice lower and upper bounds of 4 and 12 

weeks respectively, are imposed for the wood transportation window. We model these 

transportation time windows by binary parameters Twt, which take value 1 if the area w 

may be transported within period t and 0 otherwise. The average transportation time 
is small when compared to the planning period of one week, so we have no significant 

reason to consider transportation times between the forest and the mill. 

On the manufacturing side, we assume that a single mill is equipped with several 

digesters identified by index f E F. Wood arriving from the harvested areas is tem

porarily stockpiled in the mill stockyard, which has a limited total storage capacity 

M Stock. The pulp demand for every digester and period, denoted by d ft, is determin

istic and known in advance. They are also assumed to be less than the corresponding 

digester production capacity. 

As we mentioned in the previous section, to the best of our knowledge there is neither 

a theoretical nor empirical formula providing a relationship between the homogeneity 

of the wood and cooking costs or pulp quality. N evertheless, reducing the basic wood 

density variability has been identified by plant engineers as their primary goal when 

planning wood transportation and their allocation to the cookers. Therefore, we have 

translated the engineering wishes into a mathematical objective function which aims at 

minimizing the wood basic density variation for each cooker and period. 

Unfortunately, the variance measure introduces a non-linear term in the objective 

function. In order to overcome this drawback, we propose a linearization strategy based 

on the definition of a set of discrete density ranges and two sets of auxiliary variables. 

The linearization starts by separating the continuous range of density values into a finite 

set of working levels l EL, each level characterized by an average density 8l . Using this 

density classification, we define Œwl as the average density deviation of each harvested 

area w with respect to the median density of each of the proposed working levels l E L. 

The average density deviation is computed as Œwl == (8w - 8l )2. 
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Based on the previous definition of the metric deviation, we propose a set of auxiliary 

variables V Devflt which give, for each period t, the distance between the average density 

of the wood-mix within each digester J, and each of the proposed working levels l. 
Lastly, we propose a second set of auxiliary variables, V Slackflt , whose purpose will be 
explained later in this section. 

Although discrete working levels are used to describe the digester settings, pulp 
production is a continuous process. Therefore, changing digester parameters at the 
end of a given period is somewhat more difficult than could be guessed a priori , so 
changes should be avoided or at the least minimized. In order to account for t hese 

operational constraints , the model includes equations that limit the change in working 

levels observed from one period to the next to changes from one level to either of its 
two adjacent levels (i.e. from l to either l- 1 or l + 1). The next paragraphs summarize 

the different sets of indexes, parameters and variables used in the model formulation 
that follows. 

Thus , the Pulp Production Scheduling Problem (PPSP) can be written as follows: 
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Index 

w Index for harvested wood waiting for transportation; w == 1, ... , IWI 
f Index for pulp processing units (digesters); f == 1, .. . , IFI 

Index for the digester working level; l == 1, ... , ILl 
t Index for period number; t == 1, ... , ITI 

Forest data and Thansportation windows 
Vw Available wood volume in area w; 

6w Average wood density of area w; 

O"wl Deviation of the average density of area w w Ir to the median density of working 

levell; 

W 1 Set of harvested areas that must be consumed within the planning horizon due 
to the expiration of their transportation window; 

T w t Time window parameter which equals 1 if area w may be transported at period 
t, 0 otherwise; 

MStock 

VSwo 

V Devflt 

VSlackflt 

Factory and demand data 
Stockyard capacity (in volume); 
Volume of wood from area w Stored at the factory at the beginning of the 
planning horizon; 

Volume of wood to be transformed in digester f during period t (i.e. demand); 

Binary decision variables 
Equals 1 if digester f is set to work at level l during period t, 0 otherwise; 

Continuous and non-negative variables 
Volume of wood from harvested unit w Transported at period t; 

Volume of wood from harvested unit w Consumed (processed) by digester f 
at period t; 
Volume of wood from harvested unit w in Stock at the end of period t; 

Auxiliary, continuous and non-negative variables 
Deviation of the average wood density within digester f with respect to work

ing level l at period t; 
Deviation slack of digester f with respect to working levell at period t; 
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MinLLLVDeVflt+Pl L(Vw - LLVCwft)+P2LLVSwt (2.1) 
f wEW, f w 

Subject to: 

L Zflt == l' , Vj, t ; (2.2) 
l 

VDevflt + VSlackflt == I:w VCwf tO"wl; Vj, l , t ; (2.3) 

V Slackflt :::; M (1 - Zflt) ; Vj , l , t (2. 4) 

VDevflt :::; VSlackfl ,t ; Vj , t , l , l'E {L: l i-l'} (2. 5) 

Zfl-lt+l + Zflt+l + Zfl+lt+l 2 Zflt ; Vj, l , t E {1 , ... , ITI -l} (2.6) 

LVCwtf S VwTwl; 'r/w , t (2.7) 
f 

LVCwft == dft Vj,t (2.8) 
w 

LVSwt :::; MStock Vt (2.9) 

LVTwt :::; Vw Vw (2.10) 

VTwt + VSwt- 1 - L VCwft == VSwt Vw,t (2.11) 
f 

As previously mentioned, PPSP is a linear integer program. The first t erm of the 
objective function (2.1) computes the sum, over each period, of the deviation of the 
wood densities within each cooker with respect to the target working level. Clearly, 

minimizing this sum leads to maximizing the homogeneity of the wood density, the 

goal pursued by the plant engineers. The second term in (2.1) penalizes the wasted 

wood, i.e. the wood that could not be processed before the end of its allowed time 
window. The third term aims at reducing the amount of wood stocked at the factory 

by imposing a penalty on it. It is desirable that this penalized term in the objective 

function reaches zero. Therefore, the values for penalty weights Pl and P2 are positive 

and given the relative importance of each term, we impose Pl > P2' The numerical 
values for these parameters will be adjusted empirically after preliminary experimental 

t ests. 

The model contains three sets of constraints. The first one serves to linearize the 

model. First , we have to ensure that the variables V Devflt compute only the deviation 

of the harvested area average density with respect to the target working level of the 

digester for the given period. To this end, constraints (2.2) to (2.5) are required. 

Constraint s (2.2) state that one and only one working level per factory and period 
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will be chosen (i.e. the target level). Then, note that constraints (2.4) allow variables 
V Slackflt to take any positive value bounded by M. However, V Slackflt are forced to 
zero for the selected working levels. Finally, constraints (2.3) compute the deviation 

of the wood densities within each cooker with respect to the working level , putting 

the result in V Devflt - for the selected factory working level - or in VSlackflt - for 

the other working levels. Constraints (2.5) ensure that the model chooses the level 

which brings about minimum density deviation. This constraint is needed because, in 

particular situations, the model could try to select a level satisfying the consecutive 
level constraints (2.6) even if they do not match the reallevel in the digester. 

A difficult part of this model is the definition of parameter M used in Equation 
(2.4). Its value should be big enough to make (2.4) a valid equation but cannot be 
too big in or der to avoid floating point errors and a bad scaled matrix. Therefore, this 

parameter is computed for each factory and period multiplying the greatest deviation 

awl by the demand for the given factory and period. 

The second set of equations contains the consecutive level constraints (2.6) which 
prevent the model to change more than one level in two consecutive periods. This 

constraint is needed to force the model to make smooth changes in the working level 

of each digester. The third set of constraints is rather classical. Equations (2.7) ensure 
that harvested areas can only be transported in the allowed periods (i.e. during their 

transportation window) and demand satisfaction constraints (2.8) force the model to 
pro cess the predetermined volume of wood at each digester for each planning period. 

Equations (2.9) and (2.10) ensure, respectively, that the inventory for each period is 
below the stockyard capacity and that the availability of wood at each area is respected. 

Finally, inventory balance is kept by equations (2.11). 

Our preliminary results showed that standard branch and bound software could only 
solve small sized instances of PPSP (up to 4 periods). However, real instances of PPSP 

require from 12 to 16 planning periods. In order to overcome this important drawback, 
a rolling horizon heuristic based on the previous model is presented in the next section. 

Rolling horizon heuristic 

A natural decomposition approach to the PPSP consists in solving each period - or 

group of periods - individually. In the following, we propose a al {3 decomposition 

approach which divides the initial problem into a series of smaller sub problems which 

are sequentially solved by a standard branch and bound algorithm. Parameters j3 and 

a designate the size of each sub- problem (i.e. the number of periods to solve at each 
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iteration) and how many of them are kept as part of the solution (a ~ (3), respectively. 

In particular, the heuristic begins solving the first sub problem containing the {3 first 
periods. Then, the first a periods of the solution are kept and the ({3 - a )th period 

becomes the first one in the next sub problem. This procedure is repeated until aIl t he 
blocks have been scheduled. The following pseudo code illustrates the decomposit ion 
heuristic. 

Aigorithm 1 Rolling Horizon Heuristic 
1: t == 1 
2: repeat 

3: Solve PPSP containing periods [1 + a(t - 1)] to [min({3 + a(t - 1) , IT I)] 
4: Add periods [1 + a(t - 1)] to [a + a(t - 1)] to the solution 

5: t == t + 1 

6: until [Œ + Œ(t - 1)] ~ ITI 
7: End 

At the end, at most l T / a J sub problems will have been solved, where lx J is the 
largest integer smaller than x. AIso, note that the last sub problem may include less 

than {3 periods. Yet the choice of parameters {3 and Œ remains a nontrivial issue, because 

a delicate trade-off needs to be made between accuracy, which increases with {3, and 

the computational effort required by the method. Additional discussion on this difficult 
issue is provided in the next section. 

2.4 Practical application and nurnerical results 

The purpose of this section is twofold. First, we intend to assess the performance of 
the proposed heuristic approach to solve PPSP in terms of both the numerical value 
of the solutions obtained and the computational effort required. This is an important 
issue because, as we were not able to solve to optimality any real sized instance, further 

analyses concerning the practical application of our model - the second goal of this 

section - will be made using approximated solutions. In particular, in the second part 

of the section we solve a real instance using the heuristic approach and we compare it 

to a solution provided by the plant engineers. This analysis evaluates how our solution 
fits the engineers production objectives - maximize wood homogeneity and minimize 

level changes between periods - rather than their numerical objective values. 
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Assessing the performance of the approximated method 

Our test data is based on real information provided by one of the largest pulp producers 

in Brazil. All the instances solved here consider a three digester setting, each with 

production ranging from 5000 m3 to 7000 m 3 per day, operating on a 24 hours per day, 

7 days per week basis. Inside the planning horizon, the company manages around 400 
harvest areas, each with a volume of about 6000 m 3 . Since the quantity of available 
wood varies in time according to the number of harvested forests - which is an exogenous 

decision to the model - we defined the parameter p as the ratio between the total 

demand and the total volume of wood available. Therefore , setting p to different values 
during the instances generation allows us to reproduce different supply scenarios. We 
observed that the value of p strongly influences the difficulty of the instance to solve. 

If p is close to 1, the problem is very tight and almost every piece of available wood 
will have to be transported in order to meet demand. On the other hand, when this 

ratio reduces to 0, the number of feasible solutions increases considerably as more wood 
is available. Finally, we modeled the wood basic density of these forests as a random 

variable with a normal distribution which parameters were obtained from historical 
observations. 

The discretization of density values into working levels is an important issue, since 
the number of levels directly affects the quantity of binary variables in the model and 
therefore the computing effort required to solve the model. However, one can expect 

that the larger the number of levels, the better the approximation of the real problem. 
Taking this into account and after discussions with the plant engineers, we concluded 

that 5 levels was a good trade-off between both criteria. 

Therefore, randomly generated instances were grouped according to the number 
of periods considered (4 or 8), the number of available harvested units (200 or 400), 

and different p values (29, 54, 78 or 96%). For each category, three instances were 

generated according to the volume of wood available (uniformly distributed between 
5000 and 7000) and average wood density (normally distributed with average basic 
density 530 and deviation a of 50 or 100) for a total of 96 instances. The weights pl 

and p2 in the objective (2.1) were set to 100 and 10 respectively after sorne preliminary 
tests. AlI the tests were conducted on a SUN Ultra-5 400MHZ CPU with 256 MB of 
RAM, using Cplex 8.1 and the maximum allotted computation time was limited to 

36000 seconds (10 hours) and an optimality gap equal to 0.1%. 

Our computational experiments seek two main goals. First, they aim at identifying 

the range of problem sizes for which PPSP can be solved to optimal efficiently and 

therefore substantiate whenever the call for heuristic methods, as the one presented in 
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Section 2.1, is justified. The second goal deals with the selection of the parameters for 
the rolling horizon heuristic. To this end, aU possible combinations of values for which 

f3 :S 3 and Œ < f3 were tested. The value of the upper bound for f3 was empirically set to 
ensure that each sub-problem could be solved within a reasonable time. Computational 
results over the test bed for 4 and 8 periods are presented in Table 2.1. 

Instance Exact Algorithm Q =1 ;.LJ =2 Q =1 ;.LJ =3 Q = 2; .LJ = 3 

ITI IWI a p GAP ~ Time #OPT ~ Time ~ Time ~ Time 

04 200 050 29 0.08% 0.01% 3261 3 0.00% 98 0.01% 586 0.01 % 574 
04 200 050 54 0.10% 0.00% 9654 3 0.05% 181 0.06% 1418 0.12% 1310 

04 200 050 78 0.10% 0.00% 6924 3 0.17% 263 0.10% 1576 1.27% 1375 
04 200 050 96 0 .10% 0.00% 9330 3 0.56% 402 0.32% 1916 0 .64% 1648 
04 200 100 29 0 .10% 0.02% 11055 3 1.04% 156 0.09% 1661 0.11 % 1644 

04 200 100 54 0.10% 0.00% 7928 3 0.37% 340 0.14% 2879 0.18% 2852 

04 200 100 78 0.10% 0.00% 14150 3 2.44% 576 0.70% 3989 1.69% 3869 
04 200 100 96 62 .93% 0.00% 36007 0 6 .51% 805 1.28% 6329 3.32% 5930 
04 400 050 29 0.10% 0.00% 11467 3 0.03% 269 0.01 % 1999 0 .01 % 1970 

04 400 050 54 0.10% 0.00% 11631 3 0.67% 460 0.03% 3170 0 .07% 3043 

04 400 050 78 0.09% 0.00% 16063 3 4.85% 752 0.39% 4005 0.81 % 3437 

04 400 050 96 0.09% 0.00% 27632 3 3.73% 1277 0.24% 7541 0.46% 6772 

04 400 100 29 0.08% 0.00% 23990 3 0.28% 344 0.02% 3785 0.00% 3711 

04 400 100 54 0.10% 0.00% 10511 3 0.10% 877 0.08% 5108 0 .08% 5039 

04 400 100 78 24.77% 0.00% 29815 1 1.15% 1643 0.63% 9010 1.57% 8343 

04 400 100 96 91.16% 0.00% 36004 0 3.18% 2403 2.37% 14677 3.83% 14268 

08 200 050 54 96.50% 0.72% 36012 0 0.02% 313 0.28% 1782 0.13% 1533 

08 200 050 78 97.38% 0.27% 36009 0 0.10% 545 0 .00% 4297 0.07% 3285 

08 200 050 96 96.98% 1.08% 36008 0 1.51% 1097 0.29% 10105 0.94% 6930 

08 200 100 54 99.63% 0.67% 36010 0 0.09% 392 0.04% 4196 0.22% 3051 

08 200 100 78 99.24% 0.99% 36009 0 0.10% 959 0.19% 8142 0.27% 7137 

08 200 100 96 99.47% 2.08% 36007 0 3.49% 1411 0.27% 12341 1.02% 12391 

08 400 050 54 99.44% 0.18% 36008 0 0.34% 1108 0 .16% 9589 1.08% 7971 

08 400 050 78 97.35% 0.49% 36007 0 0.14% 2098 0.05% 13647 0.10% 11267 

08 400 050 96 98.37% 2.03% 36005 0 1.17% 4405 0.27% 22506 0.74% 20103 

08 400 100 54 99.82% 0.48% 36008 0 0.44% 1405 0 .03% 11807 0.45% 12447 

08 400 100 78 99.32% 0.72% 36007 0 0.41% 3750 0.01 % 16806 0.25% 16238 

08 400 100 96 99.69% 2.74% 36005 0 3.70% 7156 0.04% 25523 1.00% 22114 

Average 48.69% 0.44% 24911 1.4 1.31% 1267 0.29% 7514 0.73% 6795 

Average ITI = 4 11.26% 0.00% 16589 2.5 1.57% 678 0.40% 4353 0.89% 4112 

Average ITI = 8 98.60% 1.04% 36008 0.0 0.96% 2053 0.14% 11728 0.52% 10372 

Table 2.1: Computational results 

The left section of Table 2.1 identifies the characteristics of the instances considered 

ln terms of the number of periods ITI, the number of harvested areas IWI and the 
values of parameters a and p. For each combination of T, W, a and p we generated, 
3 different instances. Thus, each line in Table 2.1 reports the average results obtained 

by the CPLEX standard branch-and-bound and three different settings of the roUing 

horizon heuristic (Œ == 1, f3 == 2; Œ == 1; f3 == 3 and Œ == 2; f3 == 3). The column 
GAP reports the average gap, where each gap instance is computed as (best integer 

solution - best lower bound) / best lower bound) obtained by CPLEX after 10 hours of 
computing. Columns ~ also compute average gaps, but this time with respect to the 

best integer solution over aU the methods , and the #OPT column shows the number of 
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instances solved to optimality by Cplex, from a total of 3 instances. Finally, the Time 
columns report the average computational time in seconds for each of the four methods. 

As illustrated in column #OPT of Table 2.1, one may expect to solve to optimality 
(in fact , near optimal solutions) only the smallest sized instances of PPSP i.e. four 

periods and P i 96%. Therefore, solving real sized instances (12 to 16 periods) would 
require either improvements in the proposed formulation and the development of spe
cialized exact algorithms (e.g. Branch & Cut) or the use of heuristic methods as the 
one presented in Section 2.3. l t can also be 0 bserved from Table 2.1 that the inst ances 

having the largest value of P (96%) seem to be more difficult to prove optimality. 

Wh en comparing the performance of the four proposed methods for the 8 periods 
instances , one may observe that the exact algorithm is dominated by the heuristic 

methods which provide solutions of comparable quality to the standard branch and 
bound in a third of the time. These heuristics can be divided into two main groups 
concerning their {3 values. The results provided by the heuristic set with {3 == 3 are 
slightly better than the {3 == 2. On the other hand, {3 == 2 can find, for most of the t est 

instances, similar results in a fraction of the time used by {3 == 3. 

In the same Table 2.1, the values in bold are the best solution when comparing the 
four solving approaches. One can notice that for ITI == 4 instances Cplex finds the best 
known solution for 15 of 16 instances. While for ITI == 8, the heuristic method set with 
(Œ == 1; (3 == 3) finds the best solutions for 10 out 12 instances. 

As the results seem more interesting for the largest instances, additional test prob

lems were generated and solved with CPLEX and the proposed heuristic. These tests 
basically differ by the number of periods in the planning horizon, in this case 12 periods. 
Table 2.2 resumes the results obtained for these new instances where, due to the larger 

size, one instance of each category was solved instead of three as in Table 2.1. 

Table 2.2 also reports very large values in column GAP, confirming the very slow 

convergence of the exact method unable to prove the optimality for any of the tests. 
One can also remar k that in this case the Rolling Horizon heuristic performs better 

than the exact algorithm - achieving improvements ranging from 2.8% up to 54% -

using considerably less computational effort. 

N ow let us consider again the three versions of the heuristic approach in order to 

discuss the performance of the proposed sets of Œ and {3 values. Not surprisingly, the 

results produced by the (Œ == 1, (3 == 3) configuration dominates the other settings 

finding the best solution for 8 out 12 instances , but the one with (Œ= l , f3 = 2) obtains 
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Instance Exact Algorithm a=1; ,8 =2 a = 1;,8 = 3 a = 2;,8 = 3 

ITI IWI a p GAP Diff. Time Diff. Time Diff. Time Diff. Time 
Best Best Best Best 

12 200 050 63 98.68% 21.42% 36016 0.34% 170 0.00% 726 0.29% 493 
12 200 050 78 99.71% 04.03% 36008 0.01% 599 0.00% 5192 0.08% 3296 
12 200 050 96 99.09% 09.98% 36008 0.00% 875 0.61% 5977 1.03% 4798 
12 200 100 63 98.77% 54.26% 36013 7.74% 197 0.00% 947 3.23% 653 
12 200 100 78 98.94% 43.35% 36009 27.27% 320 0.00% 1516 0.04% 1222 
12 200 100 96 99.35% 16.17% 36007 0.00% 714 1.29% 5279 0.05% 3730 

12 400 050 73 98.88% 41.25% 36010 2.71% 543 0.00% 2539 2.71% 1835 
12 400 050 78 99.67% 02.86% 36008 0.00% 1237 0.14% 10698 0.20% 6730 
12 400 050 96 99.37% 10.58% 36006 0.00% 2764 0.44% 21321 0.36% 12919 

12 400 100 66 99.50% 47.54% 36008 0.32% 1041 0.00% 6171 0.00% 4117 

12 400 100 78 99.76% 15.99% 36008 0.50% 2171 0.00% 14255 0.02% 11893 
12 400 100 96 99.36% 17.23% 36007 1.57% 3661 0.00% 22626 2.10% 11717 

Average 99.26% 23.72% 36009 3.37% 1191 0.21% 8104 0.84% 5283 

Table 2.2: Computational results for the 12 period test bed 

solutions of almost the same quality in a fraction of the time. The third configuration 
(a == 2, f3 == 3) can be discarded. These results confirm that the PPSP is a very difficult 

problem, with a very weak linear relaxation, and the constructive method proposed here 

performs weIl even for the largest instances. 

Practical application 

In order to evaluate the practical contribution of the research presented, this section 

considers a particular instance provided by our industrial partner and compares the 

solution reached by the (a == 1, f3 == 3) heuristic to the one obtained when applying 
the ad-hoc method (to be described later) used by the plant engineers. Solutions are 

compared in terms of the two goals identified by the plant managers: the homogeneity of 
the wood processed in the digester at each period, and the minimization in the digest ers 

set point variations along the planning horizon. To support such a discussion, Figures 

2.2 and 2.3 show bubble graphics where the x and the y-axis respectively indicate the 

period and the basic density. Each bubble represents one aIlocated area, the bubble 's 
size being proportional to the area volume. To keep Figures 2.2 and 2.3 readable, only 

a part of the solutions - the one corresponding to the first digester - is presented. 

Figure 2.2 is a typical solution produced by the constructive procedure used cur

rently by the factory managers which aIlocates greedily the harvested areas with the 

least available time windows first. The density aspect is taken into consideration by 

aIlocating areas with high, medium and low densities into different factories . Figure 
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2.3 illustrates the solution provided by the Rolling Horizon with parametersŒ == 1 and 
(3 == 3. 

As one may observe, Figure 2.2 shows bubble dispersion greater than in the Rolling 

Horizon solution. Therefore , the solution shown in Figure 2.3 is clearly preferred by 

plant managers according to the wood homogeneity goal. N eedless to say, a similar 

behaviour is 0 bserved w hen corn paring the solutions for digesters 2 and 3. 

630 -r--------~~--
• Factory 1 

580 580 +--------- --------j 

!' 530 +--~-----'i !' 530 +----'---'-------------! 

·5 5 
~ 480 +---------"'=- ~ 480 

430 +-'-------4 

period period 

Figure 2.2: Greedy constructive solution Figure 2.3: Rolling Horizon Solution 

Figures 2.4 and 2.5 illustrate the evolution of the digester's set points along the 
time horizon. In both Figures, each line corresponds to a digester, the y-axis being 
the average wood density inside the digester for each period (x-axis). Comparing these 
Figures, one can notice how the average density for each digester evolves along the time. 
Both cases present smooth variations most of the time, without big jumps from low to 

high densities or vice-versa, satisfying the manager's requirement. 
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Figure 2.4: Average densities for the 

greedy solution 
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2.5 Conclusion 

This paper focuses on the coordination of wood transportation decisions in order t o 

minimize the wood density variance within pulp digesters. This production objective 

has an influence on the quality of the final pulp that is obtained but can also allow 

companies to achieve considerable savings, including less consumption of chemicals a 

better setup of the digester pressure and temperature to the raw product consumed. 

However , introducing density variance within the objective function naturally leads t o 

a non-linear mathematical model. A linearization strategy, based on the discretization 

of the continuous density values into discrete density levels, allows us t o formulate 

a linear integer mathematical model. This model accounts for classical constraints 
such as wood availability and system capacities , but also considers specific engineering 

plant constraints such as consecutive level restrictions that aim to smooth digest ers 

operation by avoiding drastic changes on the digesters settings between consecut ive 

production periods. A decomposition approach that uses the formulation proposed 

was also developed for solving large, real sized, instances. Based on data provided by 

one of the largest pulp and paper producers in Brazil, random testing instances were 

generated. The heuristic method shows a very good performance solving the whole t est 
bed accurately and efficiently. 
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Chapter 3 

Restricted Space Search Heuristic: 
Application to a Pulp Production 
Scheduling Problem 

Résumé - Nous proposons un algorithme basé sur la synergie, la complémen
tarité et l'échange multi-directionnel d'informations entre plusieurs méthodes 
de résolution dans un problème d'ordonnancement rencontré dans la pro
duction de pâte à papier. La méthode hybride proposée s'articule en deux 
phases. Dans la première phase, deux méthodes heuristiques interagissent 
pour identifier des régions prometteuses de l'espace des solutions ensuite 
explorées par une méthode exacte. Ces espaces restreints de recherche (Res
tricted Spaces) se caractérisent par une taille suffisamment petite pour être 
complètement explorée en un temps raisonnable, et par une forte probabilité 
d'y trouver un optimum globale, sinon une bonne solution optimale locale. 
Cet algorithme a été testé de manière à en déterminer ses paramètres et à 
mesurer l'utilité des différentes procédures de recherche. Ces tests montrent 
l'efficacité et la robustesse de l'algorithme qui permet d'obtenir de très 
bonnes solutions sur des instances de grandes tailles avec des temps de 
calculs compétitifs. 
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Abstract 

We propose a hybrid algorithm, which exploits the synergy and the comple
mentarity of several solution methods, to tackle a difficult real world problem 
arising in the context of pulp and paper production. The proposed hybrid 
method is built around two distinct phases: first, two heuristic algorithms 
interact to identify a promising reduced search space that will then be thor
oughly explored in the second phase. Highly desired characteristics of this 
Restricted Space (RS) are: 1) it should be small enough so that the second 
phase may perform a thorough search in reasonable time, and 2) it should 
have a high potential of containing the global optimum or at least a good 
local optimum. Extensive computational experiments have been conducted 
in or der to identify the usefulness of the different search procedures used in 
the global method. The computational tests show the robustness and the 
efficiency of the method, which pro duces high quality solutions especially 
for the largest test instances in very competitive computation times. 
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3.1 Introduction 

The Pulp Production Scheduling Problem (PPSP) considered here arises in the context 
of a large Brazilian pulp and paper producer. The pro cess for the manufacture of paper 

pulp is based on the transformation of wood into a fibrous material, known as paste 
pulp or industrial pulp. This pro cess begins in the forests, where trees are harvested 

and then wait for a transportation window. Logs are then transported to production 
plants and sent through chippers to be slashed. The wood chips are then fed to the 

digester area, where the cooking process (i.e. transformation or Kraft pro cess ) begins. 
The digester is a pressure vessel where the chips and chemicals, known as white liquor 

are continuously introduced through an opening at the top. The Kraft pro cess consists 
basically in submitting the chips to the combined action of sodium hydroxide , sodium 

sulfite and steam inside the digester in order to separate the lignin that binds the fibre 

in the wood, for more information on the Kraft pro cess see Biermann (1996). This 

liberated fibre is the industrial pulp. 

During the Kraft pro cess the basic density of the chips plays an important role, 

as described by Foelkel et al. (1992) and Williams (1994). If the range of the ba
sic densities of the chips present in a digester is wide, setting the parameters for the 

thermochemical process (i.e. quantities of chemicals, pressure and temperature) to ap
propriate values will not be possible. Consequently the digester will contain a mix of 

under and over cooked wood chips and the transformation will therefore be inefficient: 
lower percentages of lignin will be extracted from the wood while requiring increased 
energy consumption and generating a lower quality pulp. In addition, pulp produced 

with high density wood has a totaIly different use than pulp produced with low density 

wood: the former is mostly used to manufacture cardboards while the later is used for 

tissues, see Kennedy et al. (1989). Therefore, the homogeneity of the basic density of 
wood chips is a highly desired factor in the pulp and paper industry. 

Fisher (1958), studied maximum homogeneity problems in the context of partition

ing data samples into groups in statistics. He divided them into two classes. The first 

class deals with what he calls unrestricted problems, i.e. problems where no conditions 
are imposed a priori on the observations to be grouped. These problems can be easily 

solved by approaches based on sorting and contiguous partition of the sorted observa
tions. The second class deals with restricted problems, i.e. problems where conditions 

are imposed on the observations to be grouped, and for these, no simple general solution 
method is available. The PPSP faIls \vithin this second class. Of course, maximizing 

the homogeneity of a partition is equivalent to minimizing the sum of the variance of 

i ts elements. 
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As was mentioned above, in order to attain pulp quality requirements while minimiz

ing production costs one needs to use the most homogeneous mix of wood chips possible. 

U nfortunately, to the best of our knowledge there are no published works which provide 

a function measuring the economic impact of variations in the homogeneity or variance 
of wood chips basic density. Therefore, we will minimize this variance, a non-linear 

function , as optimization criterion for the PPSP. The main decision of the PPSP ba

sically consists in selecting which harvested areas should be used in a given period at 

a given production facility in order to maximize the homogeneity of the basic density 

of wood chips inside each digester. The PPSP planning horizon starts at t he end of 

the short-term forest planning, as described in Ronnqvist (2003) , and does not account 

for transportation issues such as those presented in the work of Karlsson et al. (2003). 

In fact , the PPSP uses the output of the short-term harvest planning as its input (the 
available harvested areas waiting for transportation) and provides the data for t rans

portation models detailing in which week each harvested area should be transported 

and to which facility it should be fed. 

A complete description of the PPSP can be found in the work of Pécora et al. 

(2007) where the authors provide a mathematical model and propose a constructive 
heuristic to solve it. As they describe, the exact methods applied to the PPSP have 

a very limited efficiency, mostly due to the slow convergence of the linear relaxation. 
In order to overcome this drawback, we propose a new hybrid heuristic based on the 

synergy and complementarity of informations provided by several solution approaches 
that are applied to the problem. The first phase of the proposed algorithm starts by 
hybridizing two heuristic methods which will iterate and cooperate in order to cut out 

uninteresting regions of the solution space, identifying in the pro cess what we will refer 

to as a promising Restricted Space (RS). The aim of this first phase is to red uce the 
solution space to be searched later on so it can be handled with a reasonable effort, but 

to do it in a way that maintains a high potential of keeping the global optimal solution 
or at least very good local optima within the RS. Once a satisfactory RS is obtained, 

the second phase is called to thoroughly explore this subregion of the initial solution 

space and return the best solution found within it. 

Within the operational research literature, the term "hybrid solution approach" is 

generally applied to the combination of two (or more) different solution methods with 
the goal of encouraging the exploration of new search regions, of escaping the local 

attraction of optimal points or of generating cuts, among others. Clearly, the approach 
proposed here falls within this rapidly growing field. However, it can be argued that its 

fundamental principle differs somewhat from the ones that have underlined the major

ity of hybrid approaches up to now. The number of possible hybrid approaches is huge, 

basically any two solution methods can be put together to create a hybrid method. 
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Therefore, the literature on hybrid algorithms is rather large and growing fast. This 

special class of solution methods has been applied on a wide range of operational re
search problems achieving very good results both on classical ones such as the knapsack 

problem (da Silva et aL , 2007) , the TSP (Nguyen et aL , 2007) , the p-median (Resende 
and Werneck, 2004) as weIl as on real world applications such as health care (Bertels 

and Fahle, 2006 ; Pécora, 2002) , the optimization of credit portfolios (Schlottmann and 
Seese, 2004) , and aircraft scheduling (Gronkvist , 2006), to cite just a few. Traditionally 

hybrid approaches merged exact and/or heuristic algorithms (Gallardo et al. , 2007), but 
more and more work is carried out on hybrid methods involving other approaches such 

as simulation (Peng et al. , 2006) , constraint programming (Correa et al. , 2004 ; Hooker 
2006) , neural networks (Sahoo and Mait y, 2007 ; Pendharkar , 2005) and multi-agent 

approaches (Yan and Zhou, 2006). It is beyond the scope of this paper to make an 
exhaustive review of aIl hybrid approaches or to formalize or classify them. For such 

matters , the interested reader is referred to the works of Talbi (2002) , which provides 
an extensive classification of Hybrid Methods using heuristics, and of Puchinger and 

RaidI (2005) , which focuses on hybrid heuristic-exact methods. 

The remainder of this paper is organized as follows. Section 3.2 will introduce the 

two mathematical models used in this work. Section 3.3 will describe the overall struc

ture of the proposed hybrid algorithm putting the emphasis on the multi-directional 
exchange of information between the methods and on how to determine the RS . Section 
3.4 will detail the Space Restriction Phase of the proposed algorithm. Computational 
results will be presented and analyzed in Section 3.5 and, finally, Section 3.6 will con

clude the paper. 

3.2 Mathernatical forITlulation 

This section presents two mathematical models that schedule known amounts of avail
able wood into different digest ers and periods , with the goal of minimizing the chips 

basic density variance within each digester-period pair. 

First , using the density variance as the objective function naturally leads to a non
linear mathematical model. Let T be the planning horizon, where each time period 
t is one week long, and W be the set of harvested areas waiting for transportation. 

Note that not aIl harvest areas are available for tran~portation in a given planning 

horizon T: sorne forests are very young, sorne are very old, and others do not meet the 

minimum required quality to pro duce pulp. To each harvest area w E W is associated 

a transportation window identified by Twt E lB , which takes value 1 when t he harvest 
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area w is available to transport at period t and zero otherwise. Each harvest area w 

is also characterized by the volume of wood available V w and the average wood basic 

density 6w within that area. 

On the manufacturing side, we consider a single plant equipped with several di
gesters, or pulp processing units, identified by index J E F. The pulp demand for 

every digester and period, denoted by dft, is deterministic , assumed to be less than the 

corresponding digester production capacity and is given as a number of harvest areas . 

The volume of available wood for each harvest area Vw is not explicitly considered in 

the demand satisfaction constraints because, in the particular context modeled here, all 

harvest areas are planted specifically for pulp generation and their volumes are basically 
the same. Thus one can easily simplify these constraints by considering the demands as 
a fixed number of harvest areas without much loss of precision. However , the volume 

plays an important role when computing the average densities, 8ft . As will be explained 
in Section 3.3, this parameter is the one which will drive the search and we want to 

keep it as accurate as possible. We will hence consider the exact harvest area volumes 

when computing them. 

The PPSP can therefore be formulated as the following non-linear integer model 

where the only decision variables are the Xwft E 1ffi which take value 1 when the harvest 
area w is consumed by factory J at period t, and zero otherwise. 

NL-Model 

Minimize ZNL == L Vw L L(6w - 8ft)2xwft (3.1) 
w f 

Subject to: LXwft ~ Twt Vw,t; (3.2) 
f 

LLXwft ~ 1 V w; (3.3) 
f 

t' 

LLXwft == 1 V w E Wt', Vt' E T; (3.4) 
f 

LXwft == dft V J, t; (3.5) 
w 

I:w vw6wXwft 
8ft V J, t; (3.6) 

I:wvwXwft 

Xwft E 1ffi;8ft EJR+ (3.7) 

FSA - Université Laval 



3.2 Mathematical formulation 56 

The objective function (3.1) is the sum of the squared differences between the allo

cated wood and the average basic density, J ft, for each factory and period. Constraints 
(3.2) state that each harvest area (or forest) can only be used within its time windows, 

while constraints (3.3) ensure that the same forest cannot be used more than once. In 
the real life application modeled here, certain harvest areas are required to be used 

before the end of the current planning horizon, generally because they have been har
vested for sorne time already and must be transported and processed or will become 

unfit for processing. Set Wt' C W identifies such forest units and constraints (3 .4) 
forces the model to use aIl such harvest areas (i.e. those that must absolutely be used 
before the end of the period t ' ). Demand satisfaction is ensured through constraints 
(3.5) while constraints (3.6) compute the average basic density for each factory and 
period combination. Finally, constraints (3.7) define the variable ranges . 

However, due to operational constraints the digesters cannot really be set to work 

at any precise density value within the continuous range of basic densities, but rather 
within a specific range of densities. We therefore apply a linearization strategy, based on 

the discretization of the continuous basic density range in ILl different states or levels 
of production, as described in Pécora et al. (2007). We will denote by eSz the center 

value of each of these density production levels, l E L, and introduce a new binary 

decision variable, y ftl, which will take value 1 if the digester j is scheduled to operate 
at density level l in period t and zero otherwise. We also have two new sets of real 

and positive auxiliary variables: a ftl which serve to compute the deviation between the 
basic densities of the wood on the allocated harvest areas and the target basic density 

used by the digester, and s ftl which act as explicit slack variable. The resulting linear 
integer model is formulated hereafter. 

L-Model 

Minimize ZL:=: L L La ftl 

f 

Subject to: LYftl :=: 1 
l 

Vj,t; 

S ftl:::; M(l - Yftl) V j, l, t; 

L vw(bw - bz)2Xwft:=: aftl + Sftl Vj, l, t; 
w 

and equations (3.2), (3.3), (3.4) and (3.5). 
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One needs to ensure that the a ftl variables compute only the deviation of t he forest 

average density with respect to the target working level of the digester for t he given 

period. To this end, constraints (3.9), (3.10) and (3.11) are required. Constraints (3.9) 

state that one and only one working level per digester and period will be chosen (i.e. t he 

target level). Then, note that constraints (3.10) allow variables S ftl to take any posit ive 
value bounded by M when digester f is not schedule to operate at level l in period 

t. However, Sftl are forced to zero for the selected working levels. Constraints (3.11) 
compute the deviation of the wood densities within each digester with respect to t he 

working level, putting the result either in a ftl - for the selected digest er working 
level - or in S ftl - for the other working levels. Finally, we find the non-negativity 

constraints (3.12) and the basic model constraints such as described in the NL-model. 

An important remark at this point is that variables X w ft become continuous in this 

second model which has a major impact on the model by decreasing the number of 

binary variables. U nfortunately, even with fewer binary variables this modeI is still 
very difficult to solve to optimality, mainly because of the "Big M" constraints (3.10), 
which results in a very poor lower-bound: it can take hours for commercial Branch and 

Bound packages to prove optimality. 

One may also notice that the NL-Model does not have the level variables y ftl , w hich 
are only present in the L-Model. The former deals directly with the allocation variables 

X wft, as a consequence, a solution generated by the NL-Method may not be integer 
feasible for the L-Method. 

Therefore, these two mathematical models may be viewed as compIementary be

cause in the NL-Model the allocation variables are integers and it has a continuous 

basic density range. On the other hand, in the L-Model we have continuous allocation 

variables and a discrete basic density range. The hybrid approach described in this 

paper is designed to exploit this complementarity. 

Note that J ft is defined as a decision variable of the NL-Model. However, a sim pIe 

substitution in the objective function will eliminate it. We chose to keep it in the 
model for explanation purposes. For the same reason, we will introduce a new, but 

redundant, variable in the L-Model; which is the basic density value associated to each 

density Ievel, its definition is: 

6ft == L 6l Yftl (3.13) 
lEL 
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where 6z is the basic density target value associated wit h each discrete working level 

lE L. 

The variable 6ft defined in the NL-Model plays the same role for its respective model. 

(3.14) 

These two variables give us the density's working level at each digester and period 

for their respective models. The comparison between 6ft and 6ft L will ident ify t he next 

search direction, as will be explained in the next section. 

3.3 The hybrid algorithrn 

This section provides a macro view of the proposed hybrid algorithm, detailing the 

main structure, the proto col that manages the exchange of information and how the 
RS is generated. Description of each of its component methods is provided in the next 

section. 

Overall structure 

The hybrid algorithm presented here is comprised of three solution methods. It can 
be divided into two phases, the space restriction phase and the search phase. The 

first phase includes two solution methods , where each one is designed to tackle one 
of the models described in the previous Section; they are correspondingly named L

Method and NL-Method. These two solution methods will interact by exchanging 

information, aimed at generating not just good solutions, but also a Restricted Space 

(RS) which although being small enough, will also have a high possibility of containing 

near optimum solutions. This RS will then be thoroughly explored in the second phase. 

Figure 3.1 shows the components within the overall algorithm. 

Each solution method has a specifie role and therefore requires different inputs and 
pro duces different outputs, as shown in Figure 3.1. The procedure starts with the L

Method, that receives the whole search space as input. The NL-Method will receive 

the information generated by the L-Method as input and will explore not just better 

solutions but will also try to determine interesting search directions to be passed back 
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Enough? Yes 

1 

~--------------- ______ I 

Restriction Phase 

r--------------
1 
1 
1 
1 

1 

No 

~---------------

Search Phase 

Figure 3.1: Cooperative algorithm macro schema 

as input to the L-Method. This iterative pro cess is repeated a number of times , once it 
is finished an RS is generated based on the information gathered. The RS is then passed 

on to the search procedure which will thoroughly explore this RS. Table 3.1 summarizes 
the expected inputs, outputs as weIl as the objectives of each solution method. 

1 Method 1 Input 1 Output 1 Objectives 

A solution fol-
Find a good solution in-

~ L-Method 
Search direc-

lowing a 
si de a bounded search 

.9 tion 
glven 

following 
~ ~ direction 

space a glven 
Co) 

C,) .~ search direction (JJ 
~ 

~ (JJ 
,..q C,) An initial solu- Provide an improvement 
~ cè An improved 

NL-Method 
tion containing 

sol u tion and a 
of the given solution and 

the starting ba-
search direction 

a new search direction to 

sic densities be explored 
~ The best ~ so-

C,) 
,..q Search Explore the RS thor-

(JJ Co) RS lution found ~ ~ 
Ci3 Method oughly ,..q C,) within the RS ~ ifJ. 

Table 3.1: Summary of the solution methods 
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Exchange of information within the restriction phase 

This subsection will discuss several variants of how, where and when to generate the 
information inside the restriction phase. While the next subsection will detail the 

generation of information from the restriction to the search phase, the RS. 

The multidirectional exchange of information is a key characteristic in this hybrid 

algorithm. The two methods, L-Method and NL-Method, will exchange information in 
an iterative way with the main objective of defining an RS . 

Independently the solution approach used as L-Method, any feasible solution to 
the L-Model provides a unique level for each (digester , period) , through the variable 

y ftl, and this level has a unique density 6ft associated. This resulting density, called 
target density, will be the information passed to the NL-Method. This one will allocate 

the forests as close as possible from the target density in order to minimize the total 
variance. Therefore, any solution method for the NL-Model will provide us with a 
feasible allocation of the forests for each (digester, period) , and the density variables 
8ftL can be easily computed by means of Equation 3.14. 

Let ~ ft be defined as 
(3.15) 

The ~ ft measures the difference between the solutions provided by the two solution 
methods. When different from zero, ~ ft can be viewed as a search direction, in fact it 
indicates that the two methods do not agree on the value that the working density 

should take and further search needs to be do ne to solve this issue. If the value of ~ ft is 

positive, this means that the NL-Method proposes a higher average basic density then 

the L-Method. A symmetrical analysis can be done if the value of ~ ft is negative. 

As previously stated, for each (digester,period) one has ILl binary variables, YftZ, 

and each one is associated with one density working level. In Figure 3.2 each box is a 

density working level that corresponds to a unique y ftl, the arrow represents the ~ ft, 

where the starting point is 8ft and the en ding point is 8ft L. In the same figure one can 
also see the 5 possible alternatives for the values and directions of ~ ft. The first two, 

FITI and FIT2 show the direction vector in the middle of the density range pointing 

up and down respectively. This may be interpreted as a possible region to explore, for 

example in FITllevels L3, L4 and L5 and for FIT2 levels L3 , L2 and LI. For the next 
two, FIT3 and FIT4, the initial solution is on one of the bounds and the direction 

vector points outside the valid density range, this can occur because sorne forests have 
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a very high or very low basic density, in this case the possible search region is restricted 

to a single level L5 and LI respectively for FIT3 and FIT4. The last case FIT5 shows 

a very small direction vector, this happens when the two methods agree on the value 

for the basic density for sorne (digester, period). This can also be used as information 

by constraining the search to solutions where only this level can be active , as in the 
example by fixing FIT5 at level 4. 

Figure 3.2: Example of relationship between the methods 

As shown in Figure 3.2 there are three classes of direction vectors, the one which 

points to the interior of the density range and has a considerable size, the one that 
points outside of the density range, and finally the one which is so small that one can 
say that it points nowhere. In the rest of this document they will be called Direction 

Vector Type 1, Type 2 and Type 3 respectively. 

Direction Vector Type 1: this is where the greatest source of information lies, 

not just because we have a direction vector which points to sorne part of the density 
range, but also because it has a minimum considerable size. In this case the decision 
which should be taken is to forbid the L-Method to search within the density levels 
located in the direction opposite to the direction vector as weIl as in the current density 
level. It is important to forbid the current density level to prevent the method from 

returning to the same solution. This is done by generating a constraint of the type: 

~ Yftl == 0 (3.16) 
(ftl)EG~ 

where G~ is the set of levels l, which should be forbidden for (digesler,period). If 

we take FITI as example the constraint will become Y(l,l,l) + Y(1,1,2) == O. 

Direction Vector Type 2: in this case the direction vector points outside the 

valid density range, here there is not much to do but to forbid aIl other levels except 
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the present one. Note that this kind of decision does not contribute to diversify the next 

solution, since it sets the variable to its current value. In this case a constraint similar 

to Equation 3.16 but with a different set C~ of variables is generated. Taking FI T3 as 

example in Figure 3.2 one will have an equation like: Y(I ,3,1) +Y(1 ,3,2) +Y(I ,3,3) +Y(1,3 ,4) == 0 

Direction Vector Type 3: this case is very similar to Direction Vector Type 

2 in the sense that it do es not specifically drive the method towards new solutions. 
When the direction vector is close to zero, which means that the two methods agree 

on the variable value , one can set this value to 1 by forcing aIl others level variables 

to zero. Then a new constraint similar to constraint Equation 3.16, defined with the 

set C~' , can also be used in this case. In our example it is characterized by the column 

FI T5 and the equation Y(I ,5,1) + Y(I ,5,2) + Y(I ,5,3) + Y(I ,5,5) == 0 will be generated. 

As aIl the constraints have the same structure, we can aggregate them in just one 
large constraint, 

where Cl == G~ U C~ U G~'. 

L Yftl == 0 
(ftl)EGl 

(3.17) 

These three types of Direction Vectors can be classified into two classes , the diver

sification (Direction Vector 1) and intensification (Direction Vector 2 and 3). This is 
because the first drives the solution procedure to new regions of the space, while the 

other two keep the solution procedure into the same region of the space. 

Identifying the next search direction 

The identification of the next search direction will follow two steps: first we will 

identify aIl the components of the direction vector which are close enough to zero 

(Direction Vector 3) and the components which points outside the valid range (Direction 
Vector 2). Then, they are fixed at their current value using Equation 3.17, this will 
act as an intensification procedure keeping the search into a bounded region of the 

space. Second, the components with the greatest module are used as Direction Vector 1, 
driving the search procedure towards a new region of the space acting as a diversification 

procedure. 

There are two pending questions which will lead to the setting of our parameters: 

• When is a component close enough to zero? 

• How many components of the Direction Vector should be used as diversification? 
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Several different computational tests were made in order to find the best combination 

of these three types of direction vectors, as weIl as the values of their parameters. This 

issue deserves a whole section, and will be discussed further in Section 3.5. 

Defining the Restricted Space - RS - for the search phase 

In order to define the RS , we keep track of the different local optima solut ions vis

ited during the restriction phase of the hybrid algorithm. Let S be the set of t he 
density variables 5}t for these local optima solutions found during the cooperation 
L-Method ~ NL-Method. If the number of cycles in the restriction phase is N 
one will have 2N elements in S , half coming from each solution method. 

There could be sever al ways of defining a restriction of the original search space 

based on the information gathered by the interaction between the Land NL-Methods. 
We propose to define our restricted search space by using the bounds: 

~ft == Min{5}t,Vi::; 2N}, Vft E FxT 

Jft == M ax{ 5}t, Vi ::; 2N}, V ft E FxT 

(3.18) 

(3.19) 

and by im posing the following restriction on the basic density levels ~ ft ::; 5 ft ::; J ft· 
Where 5}t is the density variable component of solutions in S. 

This region was chosen, because it contains aIl the visited solutions, including the 

best one, but it is larger than the convex envelop of these solutions. 

Bounding the average basic density in the L-Model is the same as forcing the levels 

outside these bounds to be ZERO. This can be done by applying a constraint like 

Equation 3.17. Mathematically it can be defined as: 

L Yftl == 0 
(flt)EK 

where K == {(f, t, l)j5z ::; ~ft or 5z ~ Jft , V(f, t, l)}. 

(3.20) 

The chosen region will encapsulate the density variables inside a box, making the 

search space much sm aIler than the original one, and as aIl the visited local optima 

solutions are inside the box this region contains feasible solutions. In its worst case it 

will return an already visited solution. 
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It is obvious that the greater the RS the greater the chances of finding the optimum 

solution, for this reason it is not trivial to estimate a good size for the RS. At this point 

we have a trade off between the size of the RS and the value of the best solution inside 

it. In an extreme case one can see the complete set of solutions as one possible RS , 
it is obvious that if we have enough time to solve this RS it will give us the optimum 

solution. On the other hand, an RS of just one solution can be solved in no time, but it 

may not add anything useful to our research. An ideal, but unlikely, RS contains just 
one solution, the global optimum. 

3~~==============================~ • : . 
3~~------------------------------~ 

2500 ~--------------------------------

~2~ -- -------------------------. --------

Q.) 

E 
F 1500 ~-----------------. ------------~ 

1~ --------------------------------------------------------------.--------------------------. -------------• 

• 
~ --------------------------------------- --------~ ---- --------------------------------------. -------

o ........ : .. .. • 
15 20 25 30 35 40 

RSS Size 

Figure 3.3: Tradeoff between the size of the RS and CPU time to solve 

The tradeoff between the size of the RS and the total available time to solve it is a 
question of great importance in this study. In order to measure the RS size, we use the 

quantity of free integer variables in the RS, which has been proven as a good metric. 

Preliminary tests were do ne in order to find a good size for the RS. These results are 
summarized in Figure 3.3, where the x-axis is the number of free integer variables and 
the y-axis is the time until the optimality is proven in seconds. After these preliminary 

tests, it was found, that a size in the range [17, 30] is the ideal for our algorithm in aH 

instances of tests. This is the size that we will use during the computational tests as 

the stopping criteria for the first phase. 

Search phase 

The exact method used in the search phase is the commercial solver Cplex 10 set with 

an integrality gap of 0.1 % and aH other options are the default. 
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An illustration of the hybrid framework for the PPSP 

An illustrative example is presented in Figure 3.4, where the dashed rectangles are 
always a solution (feasible or not). The table inside this rectangle represents each 

(digester , period) in this example we have 2 Factories (rows) and 3 periods (columns). 
One can notice that the main procedure starts with an empty (infeasible) table which 
after the L-Method becomes our first solution. Then this information goes to t he 

NL-Method where it checks for the search directions , reallocating the forests into a 

NON-discrete basic density space, generating another allocation. After that it builds 

the direction vector, and sorne of its components will become our new search directions. 
This information goes back to the L-Method and the algorithm restarts , stopping when 
the stop criterion, a given size of RS, is achieved. 

0------------------: 
: EfEP1 P2 P3 : 
1 1 
1 F1 1 
1 1 
1 1 

: F2 · : 
1 1 

:_-------- ---------~ 

® -------------------
l P1 P2 P3 
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Changing 
lendency for + 

level decision, 

F1 

(Direction Integer 
Vectors) allocation of 

harvest areas 

Figure 3.4: Illustration of the RS heuristic 

3.4 Space restriction phase 

It is not the main goal of this work to propose a single heuristic method which performs 

greatly for the PPSP. Instead we want robust methods which will help themselves probe 

the solution space in order to identify an RS, which will be solved by an experienced 

method in the search phase. This section will discuss the methods chose to play the 

role of the L-Method and NL-Method cited above. There are a number of methods 
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which will fit the requirements for the hybridization, these two where chosen because 
they are fast enough and provide good solutions. 

The constructive method (L-Method) 

This method deals with the L-Model it has been observed that this model has a very 
poor linear relaxation. In fact , the BIG-M constraints , Equation 3.10, are useful only 

when the variables are integer. In consequence the linear relaxation always adjusts itself 

to get a null objective function , taking in this way, too many iterations to increase the 
lower bound. Therefore , large and real world instances cannot be solved in an interesting 
computational time. But this problem can be heurist ically solved by disaggregating the 

periods - each period can be solved independently of the others. Pécora et al. (2007) 
solved this problem by decomposing it into several subproblems each containing a small 

number of periods. The final integer solution is obtained by aggregation of the several 
partial solutions. It is clear that this procedure, as it is a relaxation of the main 

problem, does not guarantee global optimality but , as described by the aut hors, t his 

constructive method can perform very well for real size instances. The constructive 

method proposed here is very similar to the one in Pécora et al. (2007) , but here we 
choose to make the construction faster , then we solve only one period at a time having 

a complete solution in ITI iterations. 

In order to fit our needs, the L-Method must receive a search direction as input 
and provide a solution in this direction as output. This search direction is given by 

a constraint similar to Equation 3.17. The Algorithm 2 describes the constructive 

heuristic (L-Method) in detail. 

Algorithm 2 Constructive heuristic for the PPSP - L-Method 
Require: G -# 0 
Ensure: The type of all the variables is set to real 

1: Set G as the search direction, by adding the respective constraint 

2: for t == 1 to t == ITI do 
3: Set the type of variables of period t at Binary 

4: Solve the L-Model 

5: Fix the variables of period t at current value 
6: end for 

7: Remove the constraints relative to direction G 
8: Return the solution 8i 
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To illustrate this algorithm, consider a small problem with 3 periods. Given G as 

a search direction, then a relaxation of the L-Model - given by the Period 1 set as an 

integer and Periods 2 and 3 as real (relaxed) - is solved. In the next iteration, the 
variables in Period 1 are fixed at their current value, while the variables in P eriod 2 

become integers and in Period 3 continue to be real. Finally in the last iteration, the 

variables in Period 2 are also fixed at their current values and the ones in Period 3 set 

as integer , solving this last iteration provides a feasible integer solution. Note t hat, as 

a relaxat ion of the complete problem is solved at each iteration, t he constraint defining 

G as the search direction is respected in each step of the algorithm. 

The allocation method (NL-Method) 

This second heuristic deals with the NL-Model, which is as difficult ta solve as its 
linear homologue ~ Following the same idea used in the first method, we will not tackle 
the whole problem at once. Instead, we propose an iterative method which fixes the 
values of the variables 3ft and solves this projected problem - easier than the original. 
The values 3ft are iteratively updated and a new projected problem is solved. The 

algorithm cycles until convergence or for a number of iterations. The objective function 

to be minimized at each iteration is defined by Equation 3.1. In the first iteration the 

target densities, J ft, come from the solution for the L-Method and it is successively 
updated in the NL-method as explained bellow. 

Aigorithms 3 and 4 describe the allocation heuristic in detail. They take the target 

densities cS f, t as input and to avoid infeasibilities we need to ensure that we have more 
forests, 1 W l, to allocate than the quantity of forests to be scheduled at each (digester , 

period), nPos multiplied by ITIIFI. 

The main algorithm, starts calling the Greedy Allocation Algorithm, which will 

receive the target densities cS f,t as input and will provide an allocation as a solution. A 
feasibility check is performed and any unfeasibility is corrected. Then a local search 
algorithm will explore the surrounding of this solution using a 2-0PT neighborhood 

search. When there is no improved solution the new target densities are computed as 

described in STEP 6, and if the stop criteria (a minimum change in the target densities) 

is not met, the whole algorithm starts again. 

The greedy algorithm starts allocating the Must Set forests, Le. the ones which 

due to the time windows must be allocated before the period t ' in order not to be 

lost , (w E Wt' C W)starting with the most urgent ones. After this , it will greedily 
allocate the other forests by minimizing the total deviation. Due to the structure of t he 
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Algorithm 3 Allocation heuristic for the PPSP 
Require: Target densities - 6ft 

Ensure: IWI ~ nPoslFIITI 
1: repeat 

2: Greedy Allocation( 6ft) 

3: Feasibility Check 
4: Local Search 

5: for each (j , t) in FxT do 

6: 6ft f- average density of allocated forests in (j , t) 
7: end for 

8: until Stop Criteria 

9: Return updated target densities 6ft 

Algorithm 4 Greedy Allocation ( 6ft) 

1: aft f- 0, \:I(j, t) E FxT 

2: Sort the Must Set, starting from the most urgent forests 

3: for each w E Must Set do 

4: (j , t) f- Minf,t{(6w - c5ft )2} 
5: if N umber of allocated forests in (j, t) < a ft then 
6: Allocate w in (j, t) 
7: aft + + 
8: end if 
9: end for 

10: while Min(f,t)aft < InPosl do 
Il: for each (j, t) in FxT do 

12: if N umber of allocated forests in (j, t) < a ft then 

13: w f- Minw{(6w - c5ft )2,Twt == 1} 
14: Allocate w in (j, t) 

15: aft++ 
16: end if 
17: end for 

18: end while 

68 

time windows, it is possible that this procedure leaves sorne Must forests aside. This 

infeasibility is corrected in Step 3 of Algorithm 3. A nuance in this allocation is that 

for the Must Set forests we will look for the pair (digester, period) with the minimum 

deviation and allocate the forests in it. For the other forests the contrary is done; for 

each (digester, period) we look in the set of possible forests to allocate and chose the 
one which corresponds to the minimum deviation. The algorithm is conceived in this 

manner to oblige the allocation of the Must Set forests first. 
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3.5 Cornputational experirnents 

This section is divided into two main parts, the first aims at assessing the potent ial 

of the RS heuristic by comparing the quality of the solutions obtained with respect to 

the one produced by its component methods and to a commercial Branch & Bound 

software. The second part will be dedicated to the parameters setting and analysis of 

the results. 

Our test bet is composed by 52 test instances generated based on real data provided 
by the pulp company. These instances are divided in 4 groups concerning the number 

of periods considered in the planning horizon ITI == {4, 8, 16, 32} , with 16 test instances 
for ITI == 4 and 12 for each of the others. The test instances also difIer by the number 

of available forests to allocate IWI as described in Table 3.2. AlI test instances have 

a very diversified availability of wood, time windows and basic density distribution in 

order to provide a very wide and robust test bet. AIl tests were performed on dual 

AMD Opteron 250 2.4 GHz computers with Linux operating system. 

ITI 4 4 8 8 16 16 32 32 

IWI 200 400 200 400 200 400 400 600 

#instances 8 8 6 6 6 6 6 6 

Table 3.2: Tests instances description 

As we lack an optimum solution, or a past best know solution, for these test prob
lems, we will use the solution for the L-Model given by the commercial solver Cplex 

10.0 after 10 ho urs of CPU time as our best known solution. Inside this running time 

Cplex has proved optimality with a Gap ~ 0.1 % for just 6 out of 52 test instances aIl 

belonging to the class ITI == 4. 

There are two parameters to set, the number of components of Direction Vector 

type 1 and when to consider a component close enough to zero - Direction Vector 

Type 3. After empirical tests we chose the values of À == {10%, 25%, 50%} of the total 
components of the Direction Vectors ,IFI/TI, as potential values for the first parameter 
and the values {3 == {5, 15, 25} for the second parameter. The Direction Vector is 
considered as null when its norm is less or equal to {3. These values were chosen taking 

into consideration the amplitude of one discrete density level which is 50, they are 

equivalent to 10%, 30% and 50% of the size of the discrete level. 
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Preliminary tests 

This subsection is dedicated to the overaU tests of efficiency and optimality. To this end, 

we are not concerned about the parameter settings. This will be done in the next two 

subsections. Therefore aU tests presented in this subsection were done with À == 10% 

and f3 == 5. 

Table 3.3 compares the RS heuristic with each of its components as weU as wit h 

Cplex 10.0 after 1 and 10 hours of CPU time. The first column of Table 3.3 names the 
number of periods considered in the tests. Each of the four next columns are the average 

normalized difference of the RS heuristic comparing with the L-Method, NL-Method 
and the exact method after 1 and 10 hours of CPU time. This normalized difference is 

given by the equation below. 

Value = ZRS - ZMethodlQO% (3.21) 
ZRS 

Where ZRS is the objective function returned by the RS heuristic and ZMethod is the 
value given by the each of the comparing solution methods {L-Method, NL-Method, 

Cplex10h, Cplex1h}. The last column is the total time spent by the RS heuristic 
in seconds, where the maximum alloted time is 3600 seconds (1 hour) for the second 
phase and no limit was imposed on the first phase. Each of the foUowing rows shows 
the average results for the number of instances described in Table 3.2 while the last row 

is the average for aU the 52 test instances. 

ITI L-Method NL-Method Cplex 10h Cplex 1h Time(s) 
~---+------------------~------

4 -13.3% -26.0% 1.00% 0.95% 64 

8 -5.9% -16.8% 1.05% 0.37% 563 
16 -13.6% -32.8% 0.50% -7.08% 3188 
32 -24.7% -26.4% -1.69% -21.47% 3683 

1 total 1 -14.3% -25.5% 
~~~~~=*~~~~ 

0.3% -6.2% 1 1735 1 

Table 3.3: Averages results 

Looking at the two first columns one can easily see that the NL and L-Methods 
perform poorly if they are applied alone, being easily beaten by RS heuristic. On the 

other hand Cplex performs very weU for the smallest instances, T == {4, 8} arriving 

at better results than RS heuristic even after 1 ho ur of CPU time. For the T == 16 

instances we can say that the RS heuristic , uSlng on average 3188 seconds, arrives 
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almost at equality with Cplex after 10 hours (36000 seconds), beating by more than 7% 

Cplex 1h. For the largest test instances, the RS heuristic finds , on average, solutions 

1.69% better than Cplex 10h using 1/10 of its alloted time. 

At this point one can see that , on average , the proposed hybrid algorithm shows 
robustness , giving better results than each of its components. While comparing wit h 
the commercial solver, it is able to provide better solutions for the greatest t est classes 
in a fraction of the total alloted time for Cplex. 

Table 3.4 shows the six test instances in which Cplex were able to prove the optimal

ity. The first three columns are the number of periods , forests and instance's number. 
The column "GAP CPX" is the gap given by Cplex, the column "Cplex 10h" is the 
normalized difference of the solution returned by the RS heuristic and the optimal one. 

The last two columns are the time spent by Cplex to prove optimality and the total 

time spent by RS heuristic, both in seconds. As we can see the RS heuristic is able to 

identify an RS which contains the optimal solution in 5 out 6 instances using a very 
short computational time. However being a heuristic method, it is unable to prove the 

optimality. 

P W Instance # GAP CPX Cplex10h Cplex time RS time 

4 200 1 0.1% 0.0% 25509 13.20 

4 200 2 0.1% 0.0% 7252 84.04 

4 200 3 0.1% 0.0% 25455 25.01 

4 200 4 0.1% 0.0% 23041 27.71 

4 400 1 0.1% 0.0% 34405 29.51 

4 400 2 0.1% 1.1% 13344 178.33 

Table 3.4: Test instances with known optimal solution 

The stopping criteria for the first phase were set at IRSI ~ 17 after preliminary 
tests, (Figure 3.3 in Section 3.3), or a maximum of four cycles. In order to verify if 
the size of RS used as stopping criteria is adequate we re-ran the tests which had a 

IRSI < 35 increasing the stopping criteria to IRSI ~ 35 or a maximum of four cycles. 

Table 3.5 summarizes the results found in this comparison. The three first columns of 

this table are the instance description, the columns i RS and i Time are the increase 

in the RS size and time spent respectively and the column l OF is the decrease in the 

objective function. 

As we can see by the values in the l OF column there is little or no improvement in 

the value of the objective function , except for two results with 3.5% and 1.2%. On the 

other hand the increase in time is substantial, arriving at almost one hour in for cert ain 
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instances. This results came to verify the tests made in Section 3.3, which predicted 

an RS of size 17 as a good compromise between quality of the solution obtained and 

computational time. 

T W Intance # jRS jTime lOF 
04 200 4 12 240 0.0% 

04 200 5 4 Il 0.0% 

04 200 7 3 15 0.0% 

04 400 14 5 48 0.0% 

04 400 16 5 345 -3.5% 

08 200 1 9 80 -1.2% 

08 200 2 12 3486 -0.3% 
08 200 3 15 3562 0.0% 

08 200 4 8 1553 0.0% 

08 200 5 5 48 0.0% 

08 200 6 17 1693 -0.6% 

08 400 8 13 2559 0.0% 

08 400 9 4 2048 0.0% 

08 400 12 15 3664 -0.3% 

16 200 5 39 3584 0.0% 

Average Il 1529 -0.4% 

Table 3.5: Testing the increase of the size of RS 

Direction vector 1 

In this subsection, we will explore the impact of changing the number of components 

of direction vectors of type 1 in the size of the RS and the quality of the final solution 
provided by the final exact method. After a careful preliminary tests, were chosen the 

values, À == {10%, 25%, 50%} of the total number of components ITIIFI, to be tested. 
While varying the value of À we keep the value of our second parameter f3 == 5. The 
Direction Vector type 2 is always considered and, on the contrary of the of the others, 
it is not bounded in its quantity because empirical results prove that it is quite rare, as 

described further in the analyze of Table 3.8. 

Table 3.6 follows the same structure as the precedent ones, having the first two 

columns dedicated to the instance identIfication. Next each group of four columns 

describes the data for the given set of parameters shown in the first row. Columns 

RS % stands for the normalized RS size - the number of free binary variables inside 
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the RS divided by the quantity of binary variables in the model - columns Cpx 10h 

and Cpx lh are the comparative values with the solution given by Cplex after 10 and 

1 hours respectively. FinaIly, columns Z* describes how many instances were solved 

until the optimality inside the proposed RS in one ho ur or less of CPU tirne. AIso , 

this table is divided in three parts concerning its rows , each one is dedicated to one 

set of test instances, having 8, 16 and 32 periods respectively, the 4 periods instances 
were excluded from this analysis for being too small and not representative. The row 
presents average results of the 6 instances belonging of each class , aIl values in Table 

3.6 are in [%] except for the ones in column Z* and the description of the test instances. 

À = 10, (3 = 5 À = 25, (3 = 5 À = 50, (3 = 5 

IWIITI RS% Cpx10h Cpx1h Z * RS% Cpx10h Cpx1h Z * RS% Cpx10h Cpx1h Z * 
200 8 18.47 0.82 0.21 6/6 18.61 0.72 0.11 6/6 16.81 0.71 0.10 6/6 
400 8 20.00 1.28 0.53 6/6 17.36 1.19 0.43 6/6 19.86 1.02 0.26 5/6 
200 16 18.06 0.70 -3.80 2/6 16.94 -0.03 -4.56 4/6 18.26 0.45 -4.06 3/6 
400 16 21.32 0.30 -10.36 2/6 14.38 -1.03 -11.88 4/6 16.46 -0.74 -11.54 4/6 
400 32 22.15 1.31 -13.99 0/6 19.24 0.53 -14.90 0/6 18.89 1.09 -14.19 0/6 
600 32 15.45 -4.69 -28.95 2/6 17.95 -4.41 -28.65 0/6 17.43 -5.73 -30.41 0/6 

Table 3.6: Results for direction vector 1 

Taking as comparison the solution provided by Cplex after one ho ur of CPU time 

(column Cpxl h), we observe that the RS heuristic are able to find solutions around 
the same quality as Cpxl h for the smallest test class. This because, as said before, 

the exact method perforrns very weIl wh en dealing with small test problerns. On the 

other hand, for the ITI = 16 and ITI = 32 test classes there are a considerable increase 
performance of the RS heuristic. Finding solutions up to 28.95% better than the exact 

rnethod. For sorne test classes the RS heuristic is better even than Cplex after 10 hours 

of CPU tirne. 

Concerning the parameters one can ,notice that the À = 50, f3 = 5 setting on average 

performs better for the 8 and 32 periods instances while the setting À = 25 , f3 = 5 
performs better for the 16 periods instances and these two settings corn pletely dominates 

the À = 10, f3 = 5 setting. As the setting À = 50, f3 = 5 gives us the best solutions for 
2 out 3 test classes and the size of the RS are very likely for aIl of them we chose this 

setting to continue our computational tests. 
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Direction vector 3 

Another important setting in the RS heuristic is when to consider that the two methods 

in the restriction phase agree on the value of the basic density. This is expressed by 

the parameter {3 meaning the upper bound in the Direction Vector module to which we 

will consider the agreement. In this case any Direction Vector smaller than {3 will be 

considered as zero. Considering that the amplitude of a basic density level is 50kg /m3, 
the values {3 == {5, 15, 25}kg/m3 where chosen for our test. Following the same structure 

as the precedent one, Table 3.7 describes the results obtained when we change t he value 

of {3. AlI tests w here performed using À == 50. 

À = 50, {3 = 5 À = 50, {3 = 15 À = 50, {3 = 25 
W T RS Cpx10h Cpx1h Z * RS Cpx10h Cpx1h Z * RS Cpx10h Cpx1h Z * 

200 8 16.81 0.71 0.10 6 17.22 0.80 0.19 6 2.92 0.94 0.32 6 
400 8 19.86 1.02 0.26 5 16.53 1.25 0.49 6 3.89 0.89 0.12 6 
200 16 18.26 0.45 -4.06 3 14.03 0.86 -3.63 6 8.40 0.66 -3.84 6 
400 16 16.46 -0.74 -11.54 4 13.68 -0.40 -11.18 3 Il.60 0.82 -9.78 4 

400 32 18.89 1.09 -14.19 0 15.17 1.76 -13.41 0 8.23 1.87 -13.28 1 
600 32 17.43 -5.73 -30.41 0 15.00 -5.13 -29.69 0 7.92 -5.10 -29.69 1 

Table 3.7: Results for direction vector 3 

Analyzing the results provided by Table 3.7 one can notice three general rules: first , 

the size of the RS decreases when the value of {3 increases. This can be explained by 

the intensification behavior of this parameter. Because, the greater is its value the 

greater is the number of (digester, period) which will be kept in its current value, in 

consequence the heuristic method will probe a sm aller region resulting in a smaller RS. 

Second, the smaller is the RS the worse is the solution which it contains. Third, smaller 

RS are more suitable to be solved inside the one hour alloted time. 

Examining these results , one can notice that {3 == 25 provides on average the smallest 

RS, in sorne cases even an RS of size zero and most of these RS are solvable in the 1 

hour time limit. As expected for the test instance ITI == 32, the quantity of the RS 

solved inside the 1 ho ur time limit is sm aller than the other classes. Because, despite 

having a normalized RS value around 8% on average, it implies an RS size around 

ITIIFI ILI * 0.08 == 38.4 which is outside of the solvable range of [17,30] described in 

Section 3.3. 

Considering the other two parameter settings {3 == 5 and {3 == 15 one can notice that 

there is not a great change in the size of the RS for these two settings, however {3 == 5 

provides slightly better solutions for most of the test instances. 
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À = 50, {3 = 05 À = 50, {3 = 15 À = 50, {3 = 25 

W T C DV1 DV2 DV3 Free C DV1 DV2 DV3 Free C DV1 DV2 DV3 Free 
200 8 2.0 11.5 4.9 5.1 2.5 2.5 6.7 4.1 13.2 0.0 4.0 0.7 3.5 19.9 0.0 
400 8 2.0 11.5 5.3 5.0 2.3 2.2 7.7 4.8 11.5 0.0 4.0 0.7 3.4 19.9 0.0 
200 16 2.0 24.0 1.7 9.3 13.0 2.0 21.0 1.3 25.3 0.3 2.3 8.8 0.2 39.0 0.0 
400 16 2.0 24.0 2.3 10.0 11.7 2.0 18.2 0.5 29.3 0.0 3.2 4.2 0.0 43.7 0.0 
200 32 2.0 48.0 3.5 18.5 26.0 2.0 40.3 2.3 52.8 0.0 2.0 19.3 1.0 75.7 0.0 
400 32 2.0 48.0 4.3 20.0 23.7 2.0 38.8 2.2 55.0 0.0 2.0 18.0 0.8 77.2 0.0 

Table 3.8: Components of the direction vectors 

In order to completely understand these tests Table 3.8 presents the quantity of 

each Direction Vector found in each test. This table has the same structure as the 
others, with the description of the instance on the left and the next three blocks are 

the results found. Columns C are the number of cycles L-Method +--* NL-Method 

performed until the stop criteria in the restriction phase, columns DV1, DV2 and DV3 
are the average number of each Direction Vector found per cycle. The last column 

named 'Free" are the quantity of (digester, period) which does not have a direction 
vector of either type associated with. For example in the first row, we have 24 possible 

combinations of digester and period (3 factories and 8 periods), from these we have 

Il.5 (digester,period) associated with a DV1, 4.9 with DV2 and 5.1 with DV3, leaving 
2.5 (digester, period) free. These free (digester, period) are very important for the 
performance of the heuristic, because they leave sorne space for the method adapt itself 
avoiding a completely guided solution procedure. 

As observed in Table 3.7 the setting À == 50, f3 == 5 provides solutions slightly better 

than À == 50, f3 == 15 using an RS of equivalent size. Actually, this can be explained by 

comparing the column "Free" in Table 3.8 for both settings. In setting À == 50, f3 == 15 
one can observe that these values are on the great majority zero, meaning that there 

is not enough space to the method adapt itself. On the other hand, the same column 

for the setting À == 50, f3 == 5 have all the values different from zero. Actually, these 
free spaces are another factor responsible for the diversification of the search leading to 

better RS. 

A good setting of parameters will respect the tradeoff between intensification and 

diversification and will consider the total available time to solve the final RS as well 

as the size of the problem. The value of À == 50 seems to be a good compromising in 

terms of diversification, providing near-optimal solutions for all values of f3 tested. The 

setting of this second parameter is dependent of the goal, finding a good solution or 

finding an RS which may be solvable inside the alloted time. If we are interested in 

finding an RS which is solvable at optimality large values of (3 are advised , on the ot her 
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hand, if we prime for a good solution rather than time a value of (3 between 5 and 15 
are ad vised. 

3.6 Conclusion 

In this work we proposed a hybrid heuristic method based on the synergy of its compo

nents based on the exchange of information to deal with a real world problem, t he Pulp 

Production Scheduling Problem (PPSP). The proposed solution method can be divided 
into two phases. In the first , two heuristic methods interact exchanging information 
about the searched space and visited solutions in order to find a suitable Restricted 

Space (RS) , which is explored by an exact algorithm in the second phase. There are 

two main objectives pursued in this work, find an RS which may be small enough t o 
be solved in a reasonable time and which contains near-optimum solutions. It is clear 

that these objective are contradictory, wh en we completely satisfy one we penalize t he 

other. Despite that, the computational tests showed that it is possible to find a com
bination of parameters providing a good compromise between a small enough RS and 
near-optimal solutions. The computational tests performed also showed efficiency of 

the RS Heuristic, finding the optimal solution in 5 of the 6 instances where it is known. 
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"If in other sciences we should arrive 

at certainty without doubt and truth 

without error, it behooves us to 

place the foundations of knowledge 

in mathematics." 

Roger Bacon (1214-1294) 



Introduction 

The main contribution of this part is the proposaI of a solution procedure which comple

ments the concepts developed in the Part II. The solution procedure proposed to tackle 
the PPSP has basically two drawbacks: 1) The size of the RS cannot be precisely con

trolled and 2) It searches only one RS. The solving method proposed here counts with 

an incremental search procedure - named embedded RSS - to intelligently explore large 

RS. It counts also with a binary tree to structure the exploration of several RS. This 

new iterative method - named Iterative Restricted Space Search, IRSS - has its foun

dations on the intensification / diversification paradigm, where the intensification is 

performed by the search phase and the tree structure where it is implemented provides 

a natural diversification. This diversification is due to the fact that, by construction, 
the intersection of any two RS is always the empty set. Leading to the exploration of 

new regions of the solution space at each iteration. 

The IRSS is applied to a real-life Location-Allocation problem in the context of an 

international transportation company. The two decision levels present in this problem 

makes it a very good choice to illustrate the IRSS, also the non-linearities preset in 

economies of scale make it a very difficult problem where exact methods can only solve 

a small size instances. We used the model provided in Cavallet et al. (2000) to be able 

to compare the results provided by the IRSS with the prior results. In this chapter only 

a compact version of this model is presented, the reader can find the original model in 

Appendix A. 



Chapter 4 

Iterative Restricted Space Search to 
solve a real-life location-allocation 

problem 

Résumé - Nous traitons dans ce travail d 'un cas réel de localisation-affectati
on rencontré par une société de transport suisse. Le problème intègre des 
coûts linéaires et non-linéaires, et exploite le transport inter-hub avec l'ob
jectif de profiter d'économies d'échelle. Si des algorithmes exacts ont été 
utilisés pour résoudre ce problème, leur efficacité se heurte à la taille des 
problèmes réels. Nous proposons donc un algorithme hybride reposant sur la 
synergie et l'échange multi-directionnel d'informations. Il s'articule autour 
de deux phases : une phase de recherche itérative exploitant la structure 
des coûts et des flux pour délimiter un espace restreint de recherche, et une 
phase de résolution exacte sur cet espace. La solution optimale générée par 
la phase exacte sur l'espace restreint de recherche est alors utilisée comme 
solution initiale par la première phase afin de délimiter un nouvel espace res
treint de recherche. Une structure de branchement exploitant l'interaction 
de ces deux phases permet d'autre part d'interdire toute nouvelle recherche 
sur l'espace déjà exploré. Cet algorithme a fait l'objet de résultats encou
rageants montrant sa capacité à restreindre fortement l'espace de recherche 
permettant de générer plus rapidement des solutions comparables à celles 
obtenues par des méthodes exactes. 
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Abstract This paper proposes a hybrid exact-heuristic algorithm, called Iterative 

Restricted Space Search (IRSS), for solving an uncapacitated location-allocation prob
lem with non-linear costs, inspired by the case of an international transportation com
pany based in Switzerland. Exact algorithms have been applied to this problem with 

only partial success, especially for real world problems. The strategy of our algorithm 

is to iteratively define and explore restricted regions of the global solution space that 

have a high potential of containing good (hopefully, optimal) solutions. The algorithm 

encompasses two phases: the restriction phase, which defines a restricted region in the 

solution space (the RS); and the search phase, during which this RS is explored thor
oughly. The best solution found inside the RS is passed back to the restriction phase, 

which defines a distinct new RS. The algorithm alternates between the two phases a 
fixed number of times or until the allotted time is expired. The interaction between 
the two phases is supported by a branching structure that prevents duplicate searches. 

IRSS pro duces very positive computational results in a reasonable amount of time. 
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4.1 Introduction 

The location-allocation problem described in this document is based on the real-world 

context of a Swiss transportation company, which operates an importjexport network 

with its own consolidation centers, or hubs, located inside and outside Switzerland. 
Commodities to be exported from national customers are transported to a national hub 

and from there to an international hub; imported goods follow the inverse of this path. 
This multi-commodity uncapacitated location-allocation problem takes into account 

two sets of non-linear costs: the hub implementation cost and the transportation cost 
for the goods traveling from or to a hub located outside Switzerland. These non-linear 

costs are used to represent the economies of scale possible from grouped transportation. 
Solving this problem involves, first, deciding which national hubs should be opened and 

their size, and second, selecting the path of each commodity through the network. The 

international hubs already exist and are thus outside of the scope of our study. Figure 

4.1 depicts the existing hub network. 

Figure 4.1: The transportation network 

Due to the size and the mathematical complexity of real-world problems, pure exact 

algorithms are inefficient for solving real-world instances. For this reason, this paper 

proposes the Iterative Restricted Space Search (IRSS), a hybrid exact-heuristic al go

rit hm that extends the RS Heuristic proposed by Pécora et al. (2007). 

The IRSS hybrid algorithm has two phases: the restriction phase, which exploits the 

non-linear co st structures of hub allocation and flows to the external arcs in order to 

define a Restricted Space (RS); and the search phase, during which this RS is thoroughly 

explored. The IRSS alternates between them in order to generate and then explore 
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several distinct RS. An RS is a subset of the solution space that is small enough to 

be explored thoroughly in a reasonable amount of time but large enough to maximize 
the probability of finding good (hopefully, optimal) solutions. The best solutions found 

inside the RS and its complementary search space, RSc , are sent back to the restriction 

phase in order to define a new RS. The algorithm stops after exploring a given number 

of RS or when the allotted computational time is expired. 

The remainder of this paper is structured as follows. The next section (4.2) reviews 

the recent advances in hybrid algorithms applied to discrete location problems. Section 
4.3 describes the mathematical model used in this study and explains how the non

linear cost structures were modeled. Section 4.4 introduces the hybrid algorithm and 
its components, as weIl as the proto col of the information exchange between them. 
Section 4.5 presents our computational experiments and their results , and section 4.6 

offers our conclusions. 

4.2 Recent works in discrete location problerns 

This section focuses on recent papers about discrete location problems, especially those 
studies that have used hybridization as a solution method. Since the literature about 
hybrid algorithms is quite extensive, this review focuses on hybrid methods based on 
heuristics or integer programming, though a few surveys about general location prob

lems are also mentioned for the interested reader. 

Several annotated bibliographies and reviews have been published in the field. Re V

elle et al. (2008) have recently published an updated bibliography of the recent advances 
in discrete location pro blems and their variants. Klose and Drexl (2005) pu blished an
other bibliography, in which the location problems are grouped in three main categories 

according to the modeling approach used: continuous, network and MIP. ReVelle and 

Eiselt (2005) also published a survey of location analysis studies, which classifies the 

problems based on type (e.g., discrete and continuous allocation) and objective function 

(e.g., "Pull" functions to define depot locations, "push" functions to locate landfills, 

facilities that most of the people would like to have far from their homes , and "equity" 
functions to insure that the distances between customers and facilities are as equal as 
possible.) Marin et al. (2006) considered the possible formulations of the uncapacitated 

multi-hub location allocation problem, proposing a formulation with inter-hub trans

portation for up to two hubs that outperforms the previous formulations for small and 

medium problems. The authors show that clique-based constraints are tighter than the 

classic constraints and also discuss preprocessing and variable elimination. 
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The following paragraphs focus on the different solution approaches proposed in the 

literature, specifically the hybrid rnethods used for both uncapacitated and capacitated 
discrete location problerns. The review includes rnostly heuristic-heuristic hybrids, but 
also sorne hybrids ernploying Lagrangean relaxation, subgradient rnethods and pric
ingjcolurnn generation. Uncapacitated problerns have been addressed by Abdinnour

Helrn (1998) , Lapierre et al. (2004) , Diaz and Fernandez (2005) , and Resende and 
Werneck (2006) arnong others. Abdinnour-Helrn (1998) used a hybrid Genetic Algo

rit hm (GA) and Tabu Search (TS) to tackle the uncapacitated hub location problern. 

In this hybrid , the best solution provided by the GA after a fixed nurnber of generations 

is passed to the TS , which perforrns a predefined nurnber of iterations in a rnult i-start 

fashion. Lapierre et al. (2004) used a Tabu Search-Variable Neighborhood Search (VNS) 
hybrid to solve a location-allocation problern. The cornplex objective function of the 
problern in the study required choosing arnong several transportation alternatives (i. e., 

LTL, FTL, Parcel or own fleet) , which made the problern unsolvable with exact rneth

ods. The neighborhood developed for this application uses a pseudo-randorn sarnpling 
technique to reduce the nurnber of solutions to be evaluated but retains the possibility 
of concentrating the shiprnent in a specific hub. Their hybrid algorithrn is essentially a 

Tabu Search, in which the VNS chooses the neighborhood to be explored based on the 
search st atus. Resende and Werneck (2006) proposed a two-phase hybrid procedure 

for the uncapacitated facility location problern. Their algorithrn starts by randomly 
generating a set of feasible solutions Sand running a local search on each of thern. 

Then, the solutions in Sare cornbined with the solutions from a 'best solutions' pool 
using path relinking. The resulting solutions rnay integrate the pool depending on their 

"quality" , rneasured in terms of the objective function, but also other factors. Dur
ing the second phase of the procedure, solutions in the pool are recornbined using the 

sarne path-relinking approach. The authors called this algorithrn "hybrid" because it 
combines elernents frorn several rnetaheuristics, such as scatter and tabu search, path 
relinking and genetic algorithrns. 

Capacitated problerns have also received attention in the literature. Diaz and Fer

nandez (2005) compared several combinat ions of the rnetaheuristics GRASP (Feo et aL , 

1994) , path relinking (PR) and scatter search (SS) (Glover et aL, 2000) for the capac

itated p-rnedian problern. In their approach, the GRASP heuristic is used to generate 

an initial solution for the hybrids GRASP-SS, GRASP-PR and GRASP-PR-SS , which 

are irnplernented sequentially without feedback. They concluded that the GRASP-PR
SS combination was the best since it produced solutions whose quality was sirnilar to 

GRASP-SS but used less computational effort. Other SS-PR hybrids have been pro

posed both by Perez et al. (2005) for the capacitated p-hub rnedian problern and Keskin 

and Uster (2007) for the capacitated location problern. Wu et al. (2006) proposed an 

algorithrn based on decomposition and Lagrangean relaxation for a capacitated facility 
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location problem with two types of costs: the setup costs associated to the opening of a 

facility and a non-linear cost based on the number and the volume of clients allocated 

to this facility. This algorithm is encapsulated inside a sub-gradient method, which 

is used to update the Lagrangean multipliers. The Lagrangean relaxation provides a 
lower bound for the problem and the set of the facilities to be opened. The result ing 

problem containing only the transportation variables is solved with a linear method , 
which provides a complete solution and the upper bound for the problem. Doong et al. 
(2007) has recently applied a hybrid algorithm combining a genetic algorit hm (GA) 

and a subgradient method to solve a single-source capacitated facility location prob

lem. They decomposed the variables into location variables , which are processed by the 

GA, and allocation variables , which are dealt with by the subgradient method. This 
algorithm has a hierarchical structure, with the GA occupying the main posit ion and 
the subgradient method relegated to the bottom layer. After each GA recombination, 

the location variables are fixed , and the subgradient method is used to find t he best 
values for the allocation variables. The same problem has been tackled by Delmaire 
et al. (1999) using a hybrid algorithm based on a GRASP in which the local search is 
done by a Tabu Search. Delmaire proposed a variant of this hybrid using a Reactive 

GRASP structure. The authors concluded that, although the former performs slight ly 

better, the latter seems to be more robust. 

A parallel hybrid heuristic for the multi-commodity capacitated location problem 

was developed by Gendron et al. (2003). This hybrid, which combines Variable Neigh

borhood Descent (VND) (Hansen and Mladenovié, 2001) and Slope Scaling (Kim and 
Pardalos, 2000), is based on adaptive memories and is implemented in a master-slave 
structure, in which the master pro cess manages the memories and the slave pro cesses 

(VND and Slope Scaling) perform the computations. Velarde and Laguna (2004) pro
posed a hybrid combining a linear method and a tabu search for solving the capacitated 

international sourcing problem. The study introduced a scenario-based approach that 

evaluates potential facility insertions and/or deletions, with swaps being evaluated as 

an insert / delete combination. Each scenario is solved by the linear method, and the 
obtained shadow-prices are weighted according to the likelihood of the scenario. Then, 

the movements (i.e., insertions, deletions, and swaps) are classified and sorted into a 
candidate list and fully evaluated by the objective function. Finally, the best movement 

is implemented, and the algorithm restarts with this new solution. Lorena and Senne 
(2004) developed a column generation approach for solving a capacitated p-median 

problem. Their method uses a Lagrangean/surrogate relaxation to identify new pro

ductive columns, thus accelerating the computational process. 

Carrano et al. (2005) examined a real-world location problem: the location of en

ergy substations and the subsequent energy distribution. These authors decomposed 
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the problem into two sub-problems - a substation location using a quasi-Newton al

gorithm and an energy distribution network topology using a genetic algorithm - and 

implemented these methods in an intertwined framework. 

CavaUet et al. (2000) were the first to address the pro blem of the Swiss corn pany 
examined in this paper. They provided the mathematical model and preliminary com

putational results for several test instances. Their approach consisted of solving the 
linear relaxation of the MIP model iteratively, with new valid cuts being added at each 

iteration. Although our work is based on their formulation, we do not consider the 

valid cuts in this paper because generating them requires a very time consuming sec

ondary knapsack model, and the method becomes inefficient for solving large real-world 
instances. The next section presents the mathematical formulation of the problem ex
amined in this paper. 

4.3 Mathernatical formulation 

This section describes the decision variables, sets, parameters and constraints of the 

mathematical formulation. As the contribution of this paper is not the modeling, but 
the design of an efficient solution approach to the problem studied, a compact version 
of the formulation detailing exclusively the objective function is presented. However , 
the complete formulation as proposed in CavaUet et al. (2000) is available in Appendix 
A. 

The network considered here includes internaI nodes i E 1 (national clients), hubs 

h E H (national freight terminaIs) and external customers e E E (international freight 
terminaIs). An export commodity travels from an internaI customer to an external 
client and is defined by the ordered pair (i, e) E JI. Similarly, an import commodity 

travels from an international client to a national client and is denoted by the ordered 
pair (e, i) E J2. Thus, the set J == JI U J2 includes aU the possible commodities. The 

demands, denoted di,e and de,i respectively, are deterministic and known in advance. 
AU the arcs in the network are uncapacitated. Transportation costs between hubs and 
the international customers present economies of scale with respect to the transported 

volume. AIso, the capacity of each hub must be selected among several options, with 

the hub implementation cost depending non-linearly on the capacity selected. These 
non-linear costs are modeled in the foUowing by piecewise linear functions. 

FSA - Université Laval 



4.3 Mathematical formulation 88 

Variables 

Four distinct groups of variables are proposed. Transportation variables, hub location 

variables and piecewise variables (which are used to define the non-linear cost functions) 

are boolean. Continuous flow variables are associated to the arcs in the network but also 

to the hubs. Transportation variables represent the path traveled by each commodity. 

Export commodit ies are denoted by (XE) , while (Xl) refers to import commodit ies. 

Thus, x~e takes the value 1 if the export commodity travels from internaI customer 
i to international customer e through hub h and the value 0 otherwise. Hub location 

variables Yh E lffi , take the value 1 if the hub h is active (open) and zero otherwise. 
Following the same convention as the one proposed for the transportation variables, 
The total flow through each hub and arc are represented by W h E 1R+, W~ E 1R+ 

and W;h E lR+, respectively. Note that the model can be also formulated wit hout 
flow variables. lndeed, these variables are nothing but the sum of the products of 

transportation variables multiplied by the demands. However, they are used here to 
facili tate the understanding of the reader . Note also that flow variables and piecewise 
variables are strongly related to represent the mentioned economies of scale in costs. 

Mathematical model 

Minimize Z 
ihe 

h 

h,e 

Ax <== b 

Bw <== r 
1 E ID. 1 E 1ID+ 

xihe ' xehi' Yh E lIJ), Wh, Wh' Wh E.m.. 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

The objective function (4.1) includes four terms. The first term computes the linear 

transportation costs, Bih, associated to the collection and distribution between internaI 
clients i and the hubs h. The second term corresponds to the cost of opening and 

operating hubs. Note that fh (Wh), the cost associated to hub h, depends on the total 

flow through h in a non-linear manner. The third term refers to the transportation costs, 

f:h ( W~h)' f th ( w~, between the hu bs and the international clients in both directions. 
Again, the co st associated to each arc depends of the flow transported in a non-linear 

manner. The model is completed with Equations 4.2 which refer to classical constraints 
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of path unicity and transportation through open hubs only, and Equations 4.3 , a set 

of equations used to link the fiow to the piecewise cost structures. Equations 4.2 and 

4.3 are explicitly formulated in Appendix A. Finally, Equations 4.4 define the variables 

domain. 

4.4 Iterative Restricted Space Search - IRSS 

The Iterative Restricted Space Search (IRSS) is a heuristic algorithm that extends the 

research of Pécora et al. (2007). Like the original algorithm, IRSS is divided into two 
phases: the restriction phase, in which an interesting region, called RS , is defined; and 
the search phase, in which this RS is thoroughly explored. However , IRSS includes two 

new and important features that resolve the major weakness of the original algorit hm. 
In their implementation, Pécora et al. (2007) used two heuristic methods to probe the 

search space with the goal of defining the RS, which is explored by a branch-and-cut 
algorithm at the end of the procedure. Their approach, despite finding near-opt imal 

solutions for most of the test instances proposed, has two main drawbacks. First , t he 
"size" of the RS cannot be precisely controlled, which may lead to RS that are too large 

to be solved optimally in the allotted time, or to RS that are too small, thus reducing 
the probability that they will contain optimal solutions. Second, the Pécora's method 

generates a single RS and do es not include any feature that could help improve the 
RS if the RS chosen is not as good as expected. IRSS remedies these drawbacks by 

proposing (1) a enhanced restriction phase in which the size of the generated RS can be 

explored progressively through a procedure called Embedded RS, and (2) a backtrack 

procedure with a binary tree structure that uses the probing and searching phases in 

a recursive manner, each time generating a new RS based on the information gathered 
so far. The next sub-sections describe the two phases and the components of the IRSS 

approach in detail. 

Restriction phase 

Since the main goal of this phase is to probe the solution space, a local search does 

not seem the most suitable approach. Instead, we chose to encourage a wider search 

covering a larger part of the solution space. To this end, we concentrate our efforts 

on the location variables (i.e., the opening of hubs and the choice of their size) that 

characterize the solutions; once these variables have been set, the solution is not very 

sensitive to changes in the allocation variables. Dealing only with location variables 
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allows our algorithm to explore a larger portion of the solution space. To this end, the 

restriction phase alternates between two methods called DSSPh and DSSPa. DSSPh 
aims at proposing a solution structure by choosing the amount of flow through the hubs , 

while DSSPa completes this structure by adding the allocation variables to the partial 

solution correcting, if necessary, the locationjhub size variables. These two methods 

alternate for a fixed number of times. Because adding the allocation variables and 

verifying how the location variables have been adjusted is a source of information that 
can be used when defining an interesting search region, these additions and corrections 
are very important. Therefore, from one iteration to the next, the corrections are 
analyzed and re-introduced into the first method. The following subsections present the 

methods used in the restriction phase and their application, explain how the information 

extracted from the location variables adjustments is used when alternating between 
these methods, and finally, describe how the RS is generated. 

Dynamic slope scaling methods 

The location-allocation pro blem considered in this paper has a very particular cost 

structure that was modeled using two sets of piecewise linear functions (see A ppendix A). 

The restriction phase deals with each of these piecewise cost structures using an adapted 
version of the Dynamic Slope Scaling and trust intervals (DSSP) search procedure pro
posed by Kim and Pardalos (2000): DSSPh for dealing with hub costs and DSSPa for 
dealing with external arc costs. The main idea of DSSP is to approximate the piece

wise function using a linear function (i.e. f (w) ~ Ct * w), with each iteration of the 
method making this approximation more realistic. Figures 2 and 3 depict a piecewise 

linear function with four continuous pieces. For the given flows (w > 0 and w == 0, 

respectively), the algorithm approximates these functions using a pure linear function, 

represented in the figures by a dashed line. Although the piecewise cost functions are 

modeled with sets of binary variables, the DSSP approach focuses exclusively on the 
value of flow w through the hubs and arcs. These fiows clearly define a unique piece in 
the piecewise cost function , which, in the example shown in Figure 4.2, corresponds to 

active variables zl, z2 and z3 for w > 0 and to no variables for w == 0 (Figure 4.3). 

The restriction phase uses DSSPh and DSSPa to generate an RS. Roughly, DSSPh 
works as follows. An initial approximation to each piecewise co st function is done. In 

our case, the approximation suggested in Figure 4.3 was elected arbitrary. Therefore, 

the co st functions in terms two and three of Equation (4.1) become sim ply the product 

of a constant (the slope of the cost approximation) multiplied by the corresponding 

flow variable. The formulation become a pure linear model and it is solved by Cplex 

efficiently, producing a solution S i . Based on the flow through each hub and arc in 
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Figure 4.2: Linear approximation, fiow > 0 Figure 4.3: Linear approximation fiow == 0 

S i, the slope of the piecewise functions for hubs and international arcs are ident ified. 
If the hu b fiows in S i lead to the same cost approximations as the ones originally 
proposed, then the algorithm has converged and S i provides optimal fiows. If not, the 

new cost approximations are proposed based on the fiows in S i . These approximations 

replace the cost functions in Equation (4.1) and the new formulation is solved. The 
procedure continues until convergence is reached or a given number of iterations is 

attained. Note that the procedure compares exclusively the fiow through hubs between 
two consecutive approximations. AIso, it is worth to mention that , although proof of 

convergence is mentioned by Kim and Pardalos (2000), the IRSS algorithm does not 
require optimality in this phase. The hub sizes and cost approximations in the final 
solution of the procedure, Sh , are retained and passed to the next search procedure, 

DSSPa (i.e. , the DSSP for the arcs). 

DSSPa updates the international arc costs based on the hub structure in Sh. In 

particular, active hubs and their size are used to bound the maximum and minimum 
fiow through each hu b so that the approximations to the piecewise linear functions 

hold. These constrains are added to the mathematical formulation as well as the ap
proximations to the arc costs, and the resulting linear program is solved. If the fiows in 

s~ - the solution to this new linear program - lead to the same arc cost approximation, 
the procedure stops. If not, the search procedure continues until convergence is reached 
or a given number of iterations is attained. The final solution of the procedure, Sa, is 

then compared to Sh in order to identify the direction vectors (see Pécora et al. , 2007) 

as explained in the next sub-section. Table 4.1 synthesizes the main characteristics of 

each DSSP. 

Information flow within the restriction phase 

Alternating between DSSPh and DSSPa should progressively lead to fixing sorne inter

vals , (i. e., a range of location variables values) that can be trusted. In order for this 
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Information Hub Flow Arc Flow Hub Costs Arc Costs 
passed 

DSSPh 
cost structure + 

free free 
dynamically 

fixed 
hub fiow bounds updated 

DSSPa 
bounded in 

free fixed 
dynamically 

cost structure 
the current updated 

piece 

Table 4.1: DSSPs 

pro cess to be better understood , let us review the interactions of the two DSSP de
scribed ab ove , in t erms of hub fiows. For each hub , DSSPh pro duces a given value Wh, 

which is bounded by Wh :S Wh :S Wh, the closest fiow breakpoints in the cost piecewise 
function. Then, DSSPa adjusts the values of the arc fiow variables. Consequent ly, t he 
hub flow values may change, with the new value being denoted, w~. The difference, 

~ == w~ - Wh , is called the direction vector because it points to a possible profitable 
change in the hub flow. Intuitively, if ~ is close to zero, the two procedures (DSSPh and 

DSSPa) agree on the value accorded to the variable, and thus it is reasonable t o decide 
to retain the value of the flow Wh. However, when the two procedures disagree on the 

value of Wh, this disagreement needs to be taken into consideration during the following 
DSSPh/DSSPa iteration. A special case may arise \vhen w~ reaches one of the bounds 

of Wh (i.e. , w~ == wh or W~ == Wh), illustrated in Figure 4.4. In this case, neighbor 
level of the piecewise function should have been chosen, but given the constraints to 

the flow, it was not possible to change the capacity level. This may be interpreted as 

the disagreement in the capacity level to be chosen by the two method belonging to the 
restriction phase. In this situation a deeper exploration should be performed to solve 

this issue. 

Cast Cast 

w Flow w Flow 

Figure 4.4: Direction vector 
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At the end of each DSSPh - DSSPa iteration, the information extracted from the 

direction vectors is considered and translated into fiow constraints for the following 

iteration. However , much care is needed when introducing such fiow constraints into 

the model because blocking sever al pieces of the cost function at a time may have a 

major impact on the solution structure, possibly even making the solution infeasible. 

Therefore , we decided to use one single direction vector per iteration. Direction vectors 

whose w~ is equal to one of the fiow bounds are preferred, particularly the one wit h the 
largest absolute value. If none of the w~ is equal to one of the bounds, then t he largest 

1 ~ 1 is selected. 

Restricted Space - RS 

The main idea of the IRSS is to identify a part of the whole solution space that has a high 

likelihood of containing good solutions (hopefully, the optimal solution) , but that is also 
small enough to allow a thorough exploration in reasonable time. Intuitively, RS is a sort 
of convex envelope for the solutions visited during the restriction phase. Let Si E S be 

the set of n solutions found by DSSPa after n iterations of the restriction phase, and Z~, l 

be the value of the binary variables associated to the fiow through hub h in the particular 
solution S i ES. Let J be defined as the set of z (location) variables set to 0 and K 

be the set of Z s set to 1, which are formally defined as J == {(h, l) ll:i(l - Z~, l ) 2 ISI} 
and K == {(h, l)1 ~i ztl 2 ISI}. Therefore, the constraints for generating an RS can be 
expressed as: 

LZj+L(l-zk )==O (4.5) 
JE] kEK 

The size of RS, 1 RS l, is defined as the number of non-fixed variables inside the RS, 

IRSI == IHlxlLI - IJI - IKI· Thus, the RS can also be seen as the union of several 
solutions. U nfortunately, this definition of sets J and K may lead to very large RS that 

cannot be explored thoroughly in a reasonable time. Moreover, an unfortunate choice 
in the variables of sets J and K could lead to an uninteresting RS. To overcome these 
drawbacks, the IRSS approach has been enhanced with (1) a decomposition approach 

called the Embedded RS that allows a "progressive" exploration of the RS, and (2) a 
binary tree structure that allows several distinct RS to be generated and visited. 
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Embedded RS 

The embedded RS is an incremental search procedure that exploits the information 
provided by the solutions in S in order to define a set of partitions in t he RS. The 

idea is to divide the original RS into self-contained subspaces of decreasing size. To 
this end, the information provided by the restriction phase is used as follows. The RS 

is defined by the set of variables that has the same value (0 or 1) in aIl t he solut ions 

in S. Thus, a subspace of the RS can be defined by aIl the variables that retain t he 

same value in at least À * 100%, À E (0 , 1], of the solutions in S. Let us calI t his 

subspace RSÀ, which is formally defined by the sets JÀ == {(h , 1)1 L i (l - z~ l) 2 ÀISI} 
and K À == {(h , 1)1 L i ztl 2 ÀISI}· Note that as the value of À decreases, t he number 
of elements in the sets JÀ and KÀ increases and the quantity of the fixed variables 

increases, leading to smaller RS. Therefore, the values À and IRSI are proportional , 
with the original RS being expressed with À == 1. The following relationships can be 

proved in a straightforward manner: 

• If a given RSÀ
2 is explored to optimality, this optimal solution is better than or 

equal to any solution with respect to any embedded RS defined by À1 < À2 . 

• If a given RSÀ
2 is proved unfeasible, then any embedded RS defined by À1 < À2 

is also unfeasible. 

Consequently, any set {Àl < À2 < ... < Àt} defines a set of embedded subspaces 
RSÀ

1 ç RSÀ
2 ç ... ç RSÀt. But this partitioning procedure can be improved by using 

the information provided by the objective value associated to each of the solutions in S. 

Intuitively, the solutions with better objective values should be more trustworthy, which 
explains why, in our implementation of the embedded RS procedure, the information 
provided by each Si E S is weighted by its objective value, g(Si). The sets JÀ and K À 

are then redefined as: 

where C is a constant intended to prevent fioating point errors. Please note that , 

since the present application is a minimization, each solution is weighted by t he inverse 
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of its objective function, 1/ g(Si). Therefore, the embedded RS procedure allows the RS 

to be partitioned into subspaces of almost any size, thus avoiding the need to solve a 

large RS. 

Search phase and the binary tree structure 

The original RS heuristic proposed by Pécora et al. (2007) generates a single RS , which 

is then thoroughly explored with an exact method (i.e. , a standard branch-and-bound 

algorithm). As mentioned ab ove , such an exact approach can lead to rather poor 

results if the RS , despite the meticulousness of its construction, does not contain any 
near-optimal solutions or if its size does not allow a complete exploration within a 

reasonable time. Therefore, a backtrack mechanism would help to improve the search 

by allowing several RS to be explored in succession. However, the way in which this 
exploration is structured is highly important. We propose a binary partition of the 

search space, inspired by Local Branching (Fischetti and Lodi, 2003). This structure is 

shown by Figure 4.5. 

Xo 

RS1 RS1 C 

Xl 

C 
RS2 RS2 

X2 

Figure 4.5: Branching structure 

Remember that, as mentioned ab ove , the RS is obtained by a restriction as shown 

in Equation 4.5. Therefore, the complementary space of RS, called RSc , is defined by 

the equation: 

LZj+L(1-zk )2: 1 (4.6) 
JE) kEK 

As can be seen in Figure 4.5, the binary tree starts with an initial solution XO. 

During the first iteration of the IRSS algorithm, the whole solution space is divided into 
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the first RS, called RSI (the left branch), whose optimal solution is called Xl , and its 
complementary space, RSI C (the right branch). The second iteration of the algorithm 

proposes a new RS, RS2, which is located in the solution space that has not yet been 

explored (i.e. , RSI C) and whose optimal solution inside RS2 is X2. The right branch 

at this second level again consists of the solution space that has not been explored so 
far (e.g. , RSI C jRS2). The next iteration of the algorithm partitions the remaining 

solution space into two separate subspaces: the (theoretically) most appealing part of 
the solut ion space, which will be thoroughly explored by the IRSS algorithm and the 

rest. This iterative pro cess continues until a predefined stop criterion (e.g. , a number 
of iterations) is reached. 

Exploring the left branch of a particular RS can potentially lead to four types of 
results: (1) Optimal - proof of local optimality is obtained for a solution X i · (2) Feasi

ble - a feasible solution is obtained, but there is no proof of optimality; (3) Unknown -

no feasible solution is obtained, but the region could not be explored complet ely within 
the allotted time; and (4) Unfeasible - the RS does not contain any feasible solution. 

If the branch is declared Optimal or U nfeasible, the searched RS can be excluded from 
further iterations. On the other hand, if the branch is declared Feasible or U nknown, 
this region cannot be excluded without running the risk of missing a local optimal so

lution. However, when using the embedded RS approach to search the left branches, 

it is possible to exclude only the part of the RS that has been proven Optimal or Un
feasible. Unlike the Local Branching approach, which requires the left-branch solution 
to continue the branching sequence, an unfeasible branch is not a major problem for 
the Embedded RS approach because the IRSS's algorithmic pro cess creates a new left 
branch based on the restriction phase. Thus, it does not require the solution found at 

the previous level. Consequently, consecutive RS obtained by IRSS have sorne inter

esting characteristics: they are separate because they belong to complementary spaces, 

and they may be located far away from one another, meaning that no diversification 

mechanism is required for a robust search. 

Obviously, the proposed method can become exact. For this to happen, each right 

branch, RS, must be completely explored and also a lower bound (upper bound for 
maximization problems) needs to be computed for each right branch by solving its 

linear relaxation. Then, if this bound is worse than the best solution found so far , 
the search stops, and the solution can be declared the global optimum. Despite being 

able to prove the optimality, the number of branches needed may be huge. Depending 

mostly of the size of each RS explored at each right branch. 
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Multi-directional information exchange 

One of the main advantages of the IRSS algorithm is that useful information is generated 
and shared between sever al search procedures. Figure 4.6 shows the multi-directional 
information exchange in the IRSS Hybrid Algorithm. The exchange starts with the 

reduced model passing the initial hub / arc flow information to the iterative DSSP where 

the linear costs and the hub flow bounds are exchanged by DSSPh and DSSPa. The 

iterative DSSP method then sends an RS to the search method, which returns the RSc , 
plus a feasible solution (if one exists) and the lower bound for the restriction phase. 

( Start 
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1 1 
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1 
1 
1 

1 
1 
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1 
1 
1 
1 
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Figure 4.6: Information flow 

4.5 Cornputational experirnents 

This section presents the computational tests done to validate the hybrid algorithm 

described above. Preliminary tests were do ne to set the method parameters - e.g., the 

number of iterations for each DSSP procedure (h and a) during the restriction phase 

and the stop criteria of the hybrid algorithm. The parameters used in these tests are 

presented in Table 4.2. 
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Restriction Phase 

Number of cycles in DSSPh 

Number of cycles in DSSPa 

Iterations DSSPh ~ DSSPa before the generation of RS 

Search Phase 

2 

3 
3 

Maximum aUowed time to solve each embedded RS 120 s 

Minimum RS size, jj 3 

Number of branchings 3 
Optimality Gap 0.001 

Table 4.2: Parameters setting 

Test instances 

98 

Five classes of tests were generated to validate the IRSS. These test classes, shown in 
Table 4.3, basicaUy differ in terms of the number of hubs and the number of inter

naI customers, marked origins in the tables. Each class includes 10 instances; aU ten 

instances have the same co st structure, but they have distinct demands. 

Hubs InternaI External Piecewise Piecewise 

Customer Hub for Hub for Arc 

Class 1 9 10 42 6 4 

Class 2 9 50 42 6 4 

Class 3 9 100 42 6 4 

Class 4 18 50 42 6 8 
Class 5 24 50 42 6 8 

Table 4.3: Instances description 

Computational results 

In order to assess the efficiency of IRRS, each instance was run using CPLEX 10.0 

in the default configuration (i.e., the heuristic methods were disabled). The solutions 
provided by the exact solver are used as the basis of comparison throughout this section 

and are referred to as "the best known solution". The optimality gap was set to 0.001, 

and the maximum CPU time was set to 15 hours on a dual ArvID Opteron 250 2.4 GHz 

computer with at least 4Gb of RAM and running under a Linux operating system. 
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Tables 4.4 to 4.8 show the results obtained by the IRSS algorithm. The columns RS1 , 

RS2 and RS3 show the solutions provided by the first , second and third RS , respectively, 
compared to the CPLEX solution after 15 hours. This comparison was computed using 
the equation: 

RB == ObjRS - Objcplex 
Objcplex 

(4 .7) 

The column R-Time is the ratio between the time needed by CPLEX to find the 

best known solution (NB: not the total CPLEX time) and the IRSS algorithm's total 
time. The last column, IRSS same-t , is the comparison between the solutions obtained 
in RS3 with the solution provided by CPLEX using exact ly the same amount of t ime as 

IRSS. The last three rows report the average value of each column (Average) and how 

many times the RS provided a solution of the same quality (Same) or better (Bet ter) 

than the best known solution. Since the optimality gap is set to 0.001, solutions that 
are equal to that figure or that differ by less than 0.1 % are considered as equivalent, 
therefore the solutions in the range [-0.1%,0.1%] are situated in the row, Same, and 

solutions below -0.10% are in the row, Better. 

Table 4.4 shows the results for smallest test class. In this class, the exact algorithm 

was able to prove optimality for aIl the instances in an average of 6 minutes. IRSS 
found the its best solution, on average 0.36% worst but 2.57 times faster than CPLEX. 

IRSS also provided solutions that were, on average, 0.21 % worse than CPLEX (IRSS 
same-t), but this was to be expected because the exact algorithm is very efficient for 
such small test instances. In addition, there was litt le improvement between the first 

and last RS, meaning that the first RS is already quite good. There is no value reported 
for the third test instance because CPLEX was unable to find a solution in the same 

time as IRSS. 

Table 4.5 shows the results for the tests with 9 hubs and 50 origins. There are 

two instances that can be considered as outliers in this class: instance 1, for which the 

exact method was able to find a good solution in only a few seconds and the IRSS 

algorithm was not able to improve it, and instance 5, for which the exact method found 

a solution in around 100 seconds but was unable to improve it , while IRSS was able to 
find a solution that was 21.7% better. Excluding these two outliers, the other instances 

behaved quite similarly, with little or no improvement throughout the three RS , which 

was to be expected given the size of the problem. The R-Time column shows that IRSS 

is , on average, 22 times faster than CPLEX, mostly due to its rapidity in solving the 

three last instances. 
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Instance RS1 RS2 RS3 R-Time IRRS same-t 

1 0.56% 0.06% 0.06% 0.26 0.06% 
2 0.81% 0.57% 0.57% 0.28 0.57% 

3 0.85% 0.85% 0.85% 5.17 -

4 1.81% 0.57% 0.57% 0.72 0.57% 
5 0.27% 0.27% 0.27% 0.71 0.27% 
6 0.59% 0.55% 0.55% 1.49 0.51% 
7 0.26% 0.25% 0.25% 1.06 0.07% 

8 0.79% 0.26% 0.22% 1.27 0.19% 

9 0.90% 0.36% 0.05% 3.13 -0.57% 
10 0.25% 0.25% 0.25% Il.62 0.22% 

Average 0.71% 0.40% 0.36% 2.57 0.21% 

Same o / 10 1 / 10 2/10 - 2 / 10 
Better o / 10 o / 10 0/10 - 2 / 10 

Table 4.4: Class 1 computational results - 9 Hubs , 10 Origins 

Instance RS1 RS2 RS3 R-Time IRRS same-t 

1 0.98% 0.65% 0.65% 0.04 0.65% 

2 -0.05% -0.10% -0.12% 7.64 -0.40% 

3 0.19% 0.19% 0.19% 2.88 -0.40% 

4 0.87% 0.52% 0.52% Il.49 -0.11% 

5 -21.70% -21.70% -21.70% 0.01 -21.70% 

6 0.99% 0.63% 0.61% 2.42 0.09% 

7 0.21% 0.21% 0.21% 14.46 -0.32% 

8 0.02% 0.02% -0.04% 31.37 -0.34% 

9 0.28% 0.28% 0.28% 89.10 -0.01% 

10 0.24% 0.24% 0.24% 62.85 -0.43% 

Average -1.80% -1.91 % -1.91 % 22.23 -2.297% 

Same 1 / 10 2/10 1 / 10 - 2 / 10 
Better 1 / 10 1 / 10 2 / 10 - 7 / 10 

Table 4.5: Class 2 computational results - 9 Hubs, 50 Origins 

Table 4.6 shows the results for the test instances with 100 origins. As our math
ematical model uses aH the paths between internaI customers and the external hubs 

via one or two internaI hubs, this value significantly increased the number of binary 
variables in the model. For this class, the first RS is within 1 % of the optimal solution, 
but the improvement achieved by RS3 - an average of around 0.28% of the optimal 

solution - shows the usefulness of the tree structure. For this test class, IRSS found 

FSA - Université Laval 



4.5 Computational experiments 101 

better solutions (-0.11 % on average) than CPLEX when the exact solver was limited 

to the same time as IRSS. 

Instance RS1 RS2 RS3 R-Time IRRS same-t 

1 0.91% 0.45% 0.00% 1.44 -0.49% 
2 1.40% 0.92% 0.02% 1.27 -0.43% 

3 1.83% 1.83% 1.37% 1.30 0.98% 
4 0.48% 0.39% 0.00% 0.96 0.00% 

5 1.81% 0.01% 0.01% 0.57 0.01% 

6 1.37% 1.37% 0.45% 0.13 0.45% 
7 0.47% 0.47% 0.04% 1.75 -0.46% 

8 0.00% 0.00% 0.00% 0.87 -1.18% 
9 0.46% 0.46% 0.46% 1.10 0.04% 

10 0.93% 0.93% 0.46% 1.54 0.03% 

Average 0.97% 0.69% 0.28% 1.09 -0.11% 

Same 1 / 10 2/10 6 / 10 - 4 / 10 
Better o / 10 0/10 o / 10 - 4 / 10 

Table 4.6: Class 3 computational results - 9 Rubs, 100 Origins 

The results for Class 4, shown in Table 4.7 show that the RS1 values are very close 
to the CPLEX results - on average 0.58% - and the RS3 results manage to attain 

the optimality gap. The results in the IRSS same-t column are bellow the optimality 

GAP. Comparing with instances of Class 2, Table 4.5, the main difference is in the 
performance: though for Class 2, IRSS is 22.23 times faster than CPLEX, for Class 4, it 

is only 1.85 times faster, but Class 4 has 3 instances strictly better than CPLEX in RS2 
while Class 2 has only one instance. This difference in performance can be explained 
by the increased number of possible paths linking the internaI customer to the external 
hubs, and the increasing complexity of the problen1. This increasing complexity makes 

the problem harder to tackle in the restriction and search phases, since both phases use 

the same model. 

As the results for largest test instances appeared to be more noteworthy, we tried a 
class with 24 hubs and 50 internaI customers points (i.e., origins). Table 4.8 provides 

the results for this class. CPLEX was not able to prove the optimality for any of the 
instances and, for 2 instances (2 and 4), was not even able to find a feasible solution 

within the 15 hours allotted. In RS1, IRSS was able to find a better solution than 

the best known, and this solution was improved in RS2 and RS3. The importance of 

the tree structure is clearly illustrated in instance 7, for which the solution provided in 

RS1 was 2.39% worse than the best known, but by RS3, it was 0.38% better than the 

best known solution and used 1.86 times less computational time. The column IRSS 

FSA - Université Laval 



4.5 Computational experiments 102 

Instance RS1 RS2 RS3 R-Time IRRS same-t 

1 0.80% 0.80% 0.47% 1.03 0.47% 

2 0.20% -0.20% -0.31% 3.12 -0.31% 

3 0.11% -0.07% -0.07% 5.59 -0.07% 
4 0.39% -0.23% -0.23% 0.74 -0.23% 

5 0.73% 0.66% 0.12% 0.81 0.12% 

6 0.49% -0.20% -0.28% 2.44 -0.47% 

7 0.96% 0.68% 0.25% 2.16 -0.06% 

8 0.87% 0.63% 0.63% 2.17 0.61% 

9 0.78% 0.45% 0.31% 0.37 -1.26% 

10 0.47% 0.47% -0.07% 0.10 -0.07% 

Average 0.58% 0.30% 0.08% 1.85 -0.13% 

Same o / 10 1 / 10 2 / 10 - 3 / 10 

Better o / 10 3/10 3 / 10 - 4 / 10 

Table 4.7: Class 4 computational results - 18 Hubs, 50 Origins 

same-t shows that IRSS is able to provide solutions that are an average of 1.46% better 

than CPLEX, using the same computational time for aIl the instances. For instances 2 
and 4, where no solution is available for comparison, the solution provided by IRSS is 
around 9.7% of the lower bound given by CPLEX. The number of instances for which 

our hybrid algorithm is strictly better than the exact method in the same CPU time is 

9 out 10. 

Table 4.9 shows how many times RS1, RS2 and/or RS3 provided the best solution 
for each test class. As this table shows, the algorithm continues to find better solutions 

in every branch. Half (25 out 50) of the best solutions were found by the time that 

RS3 was completed, which means that the tree structure makes the overall algorithm 

robust, allowing it to continue to identify and search promising regions that were not 
identified in the first RS. The analysis of the smallest test class shows that 8 out of 10 

best solutions were found in RS1 and RS2, which means that, for small test classes, 
fewer branches are needed. In such cases, the third RS is usually not necessary since 

the first RS choice is already a very good one. 
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Instance RS1 RS2 RS3 R-Time IRRS same-t 

1 -4.08% -4.08% -4.10% 0.16 -4.10% 

2 - - - - -

3 0.01% 0.01% 0.01% 0.81 0.01% 

4 - - - - -

5 0.32% 0.15% 0.15% 2.08 -0.72% 

6 -0.06% -0.06% -0.06% 1.13 -0.43% 

7 2.39% 1.63% -0.38% 1.86 -2.25% 

8 -0.45% -0.45% -0.53% 2.24 -2.01 % 

9 0.34% 0.00% -0.11% 2.24 -0.41% 

10 0.10% 0.05% 0.05% 1.96 -1.75% 

Average -0.18% -0.35% -0.63% 1.56 -1.46% 

Same 3 / 10 4/10 3 / 10 - 1 / 10 

Better 4 / 10 4/10 6 / 10 - 9 / 10 

Table 4.8: Class 5 computational results - 24 Rubs, 50 Origins 

Test Class 

1 2 3 4 5 Total 

RS 1 3 5 1 0 2 Il 

RS 2 5 2 2 3 2 14 

RS 3 2 3 7 7 6 25 

Table 4.9: Improvement through the RS 

4.6 Conclusion 

The main goal of this study was to solve a location-allocation problem for an im

port/export network with economies of scale by identifying and solving a suitable RS, 

small enough to be thoroughly explored by a given method but still containing enough 
near optimal solutions to make it interesting. Our computational tests showed that 

IRSS performs better for larger problems, achieving an average improvement of 1.46%. 
In addition, exploring a restricted space allows a feasible solution to be found, even 

for problems that an exact method would be unable to solve in the given time span. 

U sing a binary tree to structure the search allows our algorithm to explore multiple 

RS. Thus, even when the solution from the first RS is not good enough, the algorithm 

can adapt itself to find a better RS in the next branch. The binary tree also helps to 

avoid duplicate searches. IRSS is a very promising search method, which benefits both 
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from the kind of thorough search that only an enumerative method can provide and 

the efficiency of the heuristic methods for solution space exploration. 
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The whole is more than the sum of 

the parts. 

Aristotle (384-322 Be) 
Metaphysica 



Introduction 

Chapters 3 and 4 developed the basic concepts of the IRSS. Chapter 3 laid its founda

tions by defining the basic concepts of the RSS and Chapter 4 developed t hese ideas 
repairing the drawbacks identified into the previous chapter and extends the basic so

lution method to a more robust iterative method which is now named IRSS. The main 

objective of this part is to study the trade off mechanism between the intensification 

and diversification, represented in this framework by the time dedicated to solve each 
RS and its size. The mastering of this mechanism will allow us to better underst and 

the subtleness of the relationship between the macro and micro phases. We are also 

interested in observe how the the overall framework performs for the two problems 
proposed in Chapters 2 and 4. 

In order to master this issues we implement the Framework and aIl its extensions, 
including the binary tree structure and the embedded RSS, for the two previous prob
lems, the PPSP and the Location-Allocation. As was observed in the previous chapters 
the size of the RS that may be solved in the search phase changes in running time. 

To tackle this difficulty, a new adaptive procedure that changes the size of the RS to 

be explored in the search phase is proposed. Computational results shows that this 

adaptive procedure plays an important role in the overall performance. 

It is worth to observe that this is a new flexible and generic solution method, which 

can implemented in several different ways. Therefore the computational tests presented 

in this part does not pretend to be a complete set of tests to validation of aIl possible 

combinations of methods used in the macro and micro search. This avenue of research 

will be explored in the upcoming years. Here we attained ourselves to a hybrid method 
composed of a heuristic and an exact method. Evidently different combinations may 

be proposed. Also, we chose to keep the same problems used during the development 

of the IRSS in order to have a comparison criteria. Again, there are a number of 
different problems in OR that are fit to continue to validate the IRSS framework and 

this research avenue will be explored in the upcoming years. 



Chapter 5 

Iterative Restricted Space Search: 
A Framework for designing efficient 

search algorithms 

Despite recent advances in both heuristic and implicit enumeration methods , exp lor

ing the whole solution space for large scaled problems remains intractable. Indeed, 
enumeration and heuristic methods share their ability to thoroughly explore limited 

regions of the solution space. However, for different reasons they both fail to do it 

efficiently when the size of the solution space increases as in the case of most of real

life problems. Therefore, most of the research efforts in the last ten years have been 
concentrated in increasing the robustness of solution methods. In particular, the idea 
of hybridizing two or several methods has been brought in to address what we calI the 

intensification/ diversification dilemma. 

The Iterative Restricted Space Search (IRSS) approach is a framework for the design 

of efficient search algorithms where the main idea is to iteratively define and explore 

restricted regions of the global solution space that have a high potential of containing 

good (hopefulIy, optimal) solutions. IRSS is a generic search approach based on the 
interaction of two algorithmic phases with complementary goals. The first phase iden

tifies a Restricted Space (RS) and the second phase explores this RS. The algorithm 

alternates between the two phases for a fixed number of times, or until the allotted time 

is expired. The ide a of hybridizing is fruitfully applied within the first phase of the al

gorithm, but also in the management of the interactions between the two phases. This 

chapter elaborates on the main concepts underlying the IRSS framework and illustrates 

its implementation with two distinct reallife applications. Extensive computational ex

periments are used to analyze the behavior of research algorithms developed under the 
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IRSS framework and to provide general guidelines and insights with respect to other 
potential implementations. 

5.1 Introduction 

Research during the last t en years has resulted in numerous contributions concerning 
solution methods to large scaled problems. For example, commercial Mixed lnteger 

Programming (MIP) solvers have made much progress , which is evidenced especially 

when the cutting plane approaches have made their way into generic solvers. The latest 

advances in mixed integer programming are a result of combination of pre-processing 
techniques, intelligent enumeration schemes (such as the so-called strong branching), 
and generic MIP based heuristics, such as feasibility pump (Fischetti et al. , 2005) . Also, 
heuristic methods have made important improvements. Tabu search (TS) , Genetic 

Algorithms (GA) and Variable neighborhood search (VNS), among others, have been 
successfully applied when the size of the problems make them intractable by means of 

exact methods. However, their ability to explore large sized problems is not without 
a cost: heuristic methods are not able to provide proof of optimality nor are they 

able to estimate an optimality gap. Moreover, as the size of the instances to solve 
increases, more and more sophisticated methods are required to maintain a certain 
degree of efficiency. This has led to the development of specifie tools , in contrast to 
the current trend that aims at transforming successful application specifie tools into 

generic approaches that can be broadly applied. 

The design of efficient yet simple solution methods remains an unresolved issue. 

During the last decade, researchers have concentrated their efforts on improving the 

efficiency of the proposed solution approaches. They have done this as a means of 
addressing the trade-off between the time that they allot to the search methods explor

ing a precise region of the solution space, and the number of such regions that can be 

explored or, in other words, the intensification/diversification dilemma. 

Hybrid algorithms have succeeded, at least partially, in striking a balance between 

intense and diversified research. A hybrid method, in Operational Research, encom

passes two or more solution methods aimed at making them cooperate towards the same 

goal. In general, wh en designing a hybrid method, one aims at exploiting the synergy 
or complementarity of the methods involved by choosing them carefully. For example, 

although TS has proven its efficiency for finding local optima, it has been merged with 

other methods such as VNS in order to diversify the search and increase overall perfor

mance, see for example (Lapierre et aL , 2004). In other cases hybridization arises after 
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a problem decomposition leading to subproblems for which efficient solution methods 

are available. This is the case in Doong et al. (2007) where a single-source capacitated 
facility location problem is decomposed into location decisions - tackled by a GA - and 
allocation decisions - tackled by a subgradient rnethod. Therefore, most of t he work 

done in hybrid algorithms is generally concerned by how to adapt two or more specifie 

solution methods. However , little has been done towards the developing of a generic 

hybrid algorithmic structure independent of the search methods used. 

The Iterative Restricted Space Search (IRSS) approach proposes a framework for de

signing efficient search algorithms that embeds the idea of intensification/ diversification 
balance from an algorithmic point of view independent of the particular methods to be 
used. To this end, the IRSS Framework is divided into two phases. The first phase, 
named the restriction phase, performs a wide , "macro" search in the solution space, with 

the goal of identifying its the most appealing subregions. These subregions, named Re

stricted Spaces (RS), are families of solutions containing the same characteristics and , 
as it will be explained further on, their construction is based on the hybridization 

of two solution methods. After the identification of these RS, a thorough "micro" 

search is performed in each of the RS in the second phase, called the search phase 
in the sequel. The interaction between the macro and micro searches, which can be 

viewed as the hybridization of these two algorithmic phases, reproduces the intensi
fication/ diversification approach and enhances the robustness of the algorithm. This 

allows the search to be as deep as possible, but only in targeted regions of the space. To 

the best of our knowledge, IRSS is the first generic framework for the design of hybrid 

methods that explicitly aims at exploiting the synergy between a macro and a micro 
search using an algorithmic rather than a methodical approach. 

This chapter generalizes the concepts presented in Chapters 3 and 4. In Chapter 3 

we introduced a solution approach based on the identification of a unique RS , which was 
explored by an exact algorithm. This work laid the basis for the Iterative Restricted 

Search Space Framework by introducing the idea of using the main variables of the 
problem to identify a suitable region of the space. Chapter 4 presented and added two 

new concepts to the recently developed hybrid method, namely: the embedded RS and 
the binary tree. The embedded RS was developed to tackle a difficulty found in Chap
ter 3: the uncontrolled size of the RS. The binary tree offers a structure for the search 
procedure allowing the exploration of multiples RS without exploring the same region 

twice. The addition of these two new concepts makes the overall method more efficient 

by fixing the flaws identified in Chapter 3. AIso, this chapter addresses implementation 

issues for algorithms designed following the IRSS framework. In particular, it proposes 

an adaptive method to find the best size for the RS to be solved given the allotted time. 
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The reminder of this chapter is structured as follows: in Section 5.2 the key con

cepts of the approach, such as structural variables and RS , are revised and formalized. 

Section 5.3 is dedicated to the description of the IRSS Framework and its phases and 
components. Section 5.4 presents an enhancement to the embedded RSS which allows 

adjusting the size of the partitions done in the RS during the embedded procedure. 

Section 5.5 provides the pseudo-code of the IRSS Framework. Section 5.6 presents the 
computational experiments for the extended, full framework. Since the implementa
tions leading to the algorithms presented in Chapters 3 and 4 did not include all t he 
features of the IRSS Framework , these implementations need to be extended accord

ingly. Finally, Section 5.7 concludes the chapter. 

5.2 Key concepts 

Structural variables 

Broadly speaking, Structural Variables are the most important variables of the problem. 

That is, once they are fixed at a given value, the values of the other variables become 
almost pre-determined or highly bounded by the structural ones. Being dependent of 
the nature of the problem, the concept of structural variables cannot be generalized for 
all problems in Operational Research. In fact, it is based on the hierarchy of decision 

levels that exist in the problem, (Schneeweiss, 2003) but also on the solution approach 
used. In order to decide which variables are structural for each problem, it is necessary 

to consider the problem and the solution method together. 

A hierarchy can usually be established between the different sets of variables in a 
given problem. This hierarchy is intrinsic in problems having several sorts of decisions 

to make or , in other words, several decision levels. For example, consider a typical 
location-allocation problem arising in distribution or transportation settings where one 

cannot decide which client will be assigned to each depot without deciding a priori which 

facilities are open. In this case, the structural variables correspond to the location vari

ables. Doong et al. (2007) solve a location-allocation problem with a hybrid algorithm 

that tackles the location variables using a GA while the allocation variables are tackled 

by a subgradient method. After each GA recombination, the location variables are fixed 

and the subgradient method is used to find the best values for the allocation variables. 

This algorithm reproduces the hierarchical structure of the problem, with the GA oc

cupying the top level and the subgradient method relegated to the bottom one. Other 

examples adopting this hierarchical decomposition, where each method provides a par-
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tial solution to the problem, are presented in (Potter and De Jong, 1994 ; Wiegand, 
2003). 

However , a hierarchy among the variables is not always clear. For example, con

sider the nursejphysician scheduling problems (see Carter and Lapierre, 1999 ; Pécora, 

2002). In this problem, the assignment of unpopular night shifts has a greater impact 

on the quality of the solutions than do the assignment of day shifts. Therefore a fair 

assignment of night shifts usually makes the whole work schedule looks bet ter and in

creases overall nursejphysician satisfaction. Thus, although such assignment problems 
have only one set of variables , the ones representing night shifts are more important 
and therefore they can be seen as the structural variables for these problems. Another 
example where one can find only one set of variables , but the solution approach en
compasses the concept of structural variables is the work of Lorena and Furtado (2001) 

that uses the concept of structural variables to build a constructive genetic algorithm 

applied to clustering problems. In this work, the structural variables correspond to 
the points acting as attractors , or the center of each cluster, while the non-structural 
variables represent the allocation of each remaining point to these clusters. 

Restricted Space - RS 

An RS is defined as a subset of the solutions universe which constitutes a promising, 

reduced space to search. Highly desired characteristics of this Restricted Space (RS) 
are: 1) it should be small enough so that it may be thoroughly explored in reasonable 
time, and 2) it should have a high potential of containing the global optimum or at 
least a good local optimum. Clearly, there is a tradeoff between the size of the RS, 

defined as the dimension or the number of free variables inside it, and the quality of 
the solutions it may contain. Evidently, the larger the RS, the higher the likelihood of 

containing good solutions and the higher the time required to explore it. 

Structural variables play a key role in the definition of RS. lndeed, an RS is obtained 
by applying a restriction on aIl or sorne of the structural variables. An RS can be viewed 

as a region of the space in which the values for a given set of structural variables are 

fixed. According to the definition of structural variables, it follows that the solutions 
belonging to an RS have common characteristics. But how are these variables chosen 

and how are these values set? The objective value of the visited solutions, the history 

of the search, and the lower and upper bounds of the problem are used in an iterative 

filtering process. More precisely, promising regions are identified by analyzing how the 

quality of solutions is affected by particular values of structural variables. An intuitive 
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manner of building an RS is to generate a sample of "good" solutions and then ident ify 

variables that always kept the same value in the sample. 

For example, let us assume that a set of binary structural variables Zs, 8 E S has 
been defined and that a set of "good" solutions l to the problem have been produced by 

any method. At this point, good solutions may be applied to locally optimal solutions or 

to any solution produced by an approxirnated method. We define J ~ { 8 IZ~ ~ 0, Vi E I} 
as the set of the structural variables which took the value zero across the solut ions in 

1. Intuitively, it can be expected that if setting variables in J to zero always led to 

good solutions, the likelihood of these variables also being zero in other (hopefully t he 

best) solutions is high. It follows that an RS can be defined as the region for which 
aIl variables in J are set to zero. MathematicaIly, this restriction is expressed by t he 
following constraint: 

RS: 2::sEJ Zs ::; ° (5.1) 

It is worth mentioning that the complement of this region, RSc where at least one 

variable in J is not equal to zero, is given by the constraint: 

(5.2) 

SyrnmetricaIly, if we define the set K ~ {8 1 Z~ ~ 1, Vi E I} as the set of variables 
where 8 took the value one in aIl the solutions in l, the RS and RSc can be defined by 

the following inequations: 

RS : LSEK Zs 2:: IKI 
RSc : LSEK Zs ::; IKI - 1 

Evidently, more sophisticated RS can be generated using adaptive mernory, frequency 

tables or solutions weighted by objective values. In particular, Pécora et al. (2007) use 

the history of the search and a weighted frequency table to construct the RS. 

Note that, although the RS concept concerns a set of solutions sharing sorne par

ticular characteristics, it should not be confused with a neighborhood. U nlike a neigh

borhood, which is the region within a given distance from a reference solution, the RS 

does not use either a reference solution or a distance in its definition. Therefore, they 

have different topologies by definition. The following example illustrates the differences 

between the neighborhood and RS concepts. Let 80 ~ {l, 0, 0, o} be a reference solu
tion for a given problem. The neighborhood of 80, NI, is defined as aIl the solutions 

having the Hamming distance equal to 1 to 80. Thus, the solutions belonging to NI are: 

81 ~ {O, 0, 0, O} , 82 ~ {l , l , 0, O} , 83 ~ {l , 0, 1, O} and 8 4 ~ {l , 0, O, l}. For t he same 
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problem, let ro == {l , 0, 0, O} and rI == {l,l , l , O} be the set of good solutions used to gen

erate the RS. Therefore, keeping the common values of ro and rI, r* == {l , *, *, O} , and 
using the RS definition given previously, the solutions ro == {l , 0, 0, O} , rI == {l,l , l , O} , 
r2 == {l , l, 0, O} and r3 == {l, 0,1, O} belongs to the RS. 

As iUustrated by this example, the neighborhood does not necessarily include the 

reference solution but the RS contains aU the solutions used to form it. Note also that a 
part of the solution - the first and the fourth variables in the example - always remain 

fixed but they aIl change in the neighborhood. In fact, we consider a neighborhood as 

aIl the solutions that belong to a given distance, using a specific metric which is defined 

by the neighborhood, from a starting point, what mathematicaUy is a closed baIl. On 

the other hand, the RS is a polytope, so they are different mathematical entities. 

Finally, it should be noted that despite the care taken in the design of an RS , 

there is a risk that it reveals a "poor" RS - i.e. an RS which does not contain either 
the optimal or near-optimal solutions. This is the why the IRSS framework proposes 

an iterative structure that allows for the search of multiple and distinct RS. Even if 
the first RS does not contain good solutions, the following RS wiU lead the search to 

other promising regions. The mechanisms driving the interactions between consecutive 
iterations, as weIl as the global picture of the IRSS framework, are described in the 

next section. 

Direction vectors 

Driving the search to potential regions of the solution space is not an easy task. Almost 

every solution method aims at driving the search to regions containing good solutions, 
but very few do it explicitly, usuaUy good regions are found only based on the last 

(or the best) solutions found. Here we propose to use information in the structural 

variables as search directions. As said before, the structural variables are the main 

variables of the problem, so if these variables are set to good values it wiU intuitively 

drive the solution approach to good regions of the space. 

As will be detailed in the next section, the restriction phase is a hybrid method itself 

having two component methods. The first look for good values for the structural vari

ables neglecting the non-structural ones and the second evaluates the final structured 

proposed by including the non-structural variables in the solution. The drawback in 

exploring the solution space using just the structural variables is that we are not aware 

of the impact of the non-structural variables in the solution. The direction vectors take 
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this issue in consideration by comparing the values assigned to the structural variables 

before and after the inclusion of the non-structural ones. 

To illustrate the concept of direction vectors we chose the classical capacitated loca

tion allocation problem. The main decision for this problem, the structural variables, is 
the location decision, the hubs to be opened and its respective capacity. The allocation 

variables are the non-structural ones. Figure 5.1 shows the tree possible capacity imple
mentation costs for the hubs. The light grey area represents the available capacity given 

by the structural variables. Wh en evaluating these configuration, the total passing fiow 

in this hub may be in the first part (represented by the dark grey area) , meaning that 
the capacity is under used. This is a clear indication that the structure proposed may 

be not the best and should be reevaluated. In this case a natural search direction will 
be to force the second level to close and reevaluate this new structure. This information 

is generated in a form of a direction vector having its origin in the solution given by 

the structural variables and pointing to a possible profitable new region of the solution 

space. This direction vector is then 'passed to the structural method where the search 
restarts. The next section describes the restriction phase and details the use of the 

direction vectors. 

Cast 

Flow 

Figure 5.1: Direction Vectors 

5.3 IRSS Frarnework 

This section presents a complete description of the IRSS Framework detailing each 

phase, the structure in which it is implemented, and the fiow of information between its 
components. This framework applies the concept of hybridization in two different ways; 

first, during the restriction phase and second, in the management of the interactions 
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between the restriction and the search phases. It should be noted that , depending on 

the particular methods implemented in the restriction phase, an initial solution may 
be required to start the algorithme In this case, the initial solution can be produced 

by a constructive procedure, a reduction or a relaxation of the main problem or any 

other heuristic method, as the robustness of the framework makes the overall method 

non-sensitive to the quality of the initial solution. Finally, this section concludes by 

discussing whether the framework can be implemented as a heuristic or an exact method 
depending on the solution method used in the search phase. 

The IRSS Framework is divided into two phases: The first phase, named Restriction 
Phase, performs the macro search in the solution space. This phase is not interested in 
fin ding good solutions, or in other words, it is not a local search. Instead, it focuses on 
finding corn mon characteristics of good solutions. These common characteristics define 

a family of similar solutions belonging to the same region of the space. In order t o 

identify these characteristics, the restriction phase should explore the solution space as 

widely as possible to gather as much information as possible. This wide exploration, or 
probe, is more efficient if the search method used in the restriction phase concentrates its 
efforts in simply the most important variables of the problem, the structural variables. 

Once these families of solutions, or Restricted Spaces (RS), are identified the method 
goes to the second phase, the Search Phase, where a thorough exploration of each 
subregion is performed. The IRSS Framework iterates between Restriction and Search 

Phases until a stopping criterion is met. In addition, an Initial Phase with the goal of 
finding an initial solution may be included if needed. 

Restriction phase 

The Restriction Phase aims at probing the solution space in order to identify inter

esting solution subspaces or appealing research regions. Rather than execute a local 

search, such as neighborhood based metaheuristics, this phase performs a macro search, 

covering a larger portion of the solution space. We therefore decided to elaborate the 

restriction phase around the concept of structural variables, proposing a hybrid algo

rithmic structure that alternates between two methods having complementary goals. 
The first, named structural method, focuses on the evaluation of the impact of struc

tural variables on the solution, and a second method, named the evaluation method, 

adds the contribution of the non-structural variables. Evidently the manner in which 

these two methods interact is of highest importance and it will be described in the 

forthcoming paragraphs. 
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The structural method may be designed in such a way that only structural vari

ables are concerned by means of a problem relaxation, partition, or simplification. For 

example, in a location-allocation context (e.g. , a distribution network) , it is possible 

to focus exclusively on location variables by grouping individual customers into super

customers, leading to a simplified network. Clearly, even if an optimal location is found 
to the simplified problem, there is not guaranty of its efficiency when applied to t he 
original problem. Moreover, a solution for the facilities location is not hing but a par
tial solution to the location-allocation example. This is why the evaluation method 

is used. Its role is to find good , often locally optimal, values for the non-structural 

variables given a particular partial solution produced by the structural method. It 

can occur that finding a feasible solution requires sorne adjustments in the values of 

the structural variables. Moreover, it could be expected that starting from the part ial 
solution produced by the structural method, the evaluation method would be able to 

question and then to modify the values assigned to the structural variables. For ex

ample, when solving the allocation part of the location-allocation problem, we could 
realize that one of the open depots is underused and consequently, it should be closed 

or have its capacity decreased (in the case of the generalized location-allocation prob
lems). The importance of such adjustments or modifications and how they are t aken 
into consideration with the goal of building an RS is now explained. 

At the end of the evaluation method two solutions are available. One is a partial so

lution having interesting values for the structural variables, Z; , and another is complete 
and feasible solution, where the structural variables take values Z;. The comparison 

between them gives a search direction, starting from a potential region of the space and 
pointing to a feasible solution. Defining the vector ~ == Z; - Z;, one can measure the 

difference between the information produced by the structural method and the impact 

of assigning the non-structural variables. The interpretation of the values in ~ is rather 

intuitive. When different from zero, it indicates that the two methods do not agree 
on the value of the particular variable and further search needs to be done to solve 

this issue in a new structural-evaluation methods iteration. At each new iteration the 

direction vector, as weIl as the last solution produced by the evaluation method, are 
used by the structural method. Moreover, aIl the locally optimal solutions found during 

the restriction phase will be taken into consideration to generate an RS , as described 

in section 5.2. 

Search phase 

The objective of the search phase is to thoroughly explore a given RS. An exact or 

heuristic method can be used to implement this phase. However, the manner in which 
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the exploration is accom plished determines if the overall method performs as a heuristic 

or an exact method. If the RS is completely explored, it can be excluded from further 
search, but this is not the case if the search method performs a heuristic exploration. 
A deeper discussion about this issue is done further in this chapter. 

Iteration between the restriction and search phases 

The IRSS Framework proposes an iterative algorithmic structure between the restriction 
and search phases that can be seen as the hybridization of the macro and micro searches. 

This schema offers two advantages: first, it reproduces the intensification/diversification 
approach, and second, since there is no way to insure that an RS produced by the 

restriction phase contains the optimal or near-optimal solutions, exploring several RS 
enhances the robustness of the algorithm. But t~e interactions between the restriction 
and search phases need to be designed and carefully implemented to keep track of the 
visited RS and to maximize the efficiency by avoiding search of previously explored 
regions. To this end, the IRSS framework proposes an algorithmic implementation 

using a binary tree structure as the one depicted in Figure 5.2. In particular, Figure 5.2 

illustrates two iterations of the Framework. The algorithm starts when the initial 
solution XO is passed to the restriction phase, which divides the whole solution space 
S into a region RSI and its complementary space RSI c. RSI is thoroughly explored 

by the search phase in the first left branch, producing a best solution Xl. Then, the 

restriction phase is applied in the unexplored space RSI C to identify a new region 

RS2. Note that by construction RSI and RS2 are disjoints because RS2 C RSlc . In 
the second left branch, the search phase explores RS2 that returns a better solution 
X2. Finally, a new restriction phase is applied in the remaining unexplored space 

RS2c == RSI C\RSS2 == S\RSI \RS2. The search continues until a stop criterion (for 
example, a fixed tree depth, a fixed number of branches) is met. The particular case in 

which the algorithm performs as an exact method will be discussed in the next section. 

l t is important to note that the particular tree structure adopted here encom passes 
elements of both the classical Branch and Bound tree (Land and Doig, 1960) and 

the relatively new Local Branching concept proposed by Fischetti and Lodi (2003). 

Indeed, as in the case of the Branch and Bound approach, defining an RS consists in 
fixing sorne variables at given values in order to obtain a restriction or a projection of 

the solution space. However, the tree structure in the framework (similarly to Local 

Branching) branches in a set of variables instead of in one single variable like the 

standard Branch and Bound. Yet, the framework's tree structure also differs from 

Local Branching. The main difference is that in Local Branching, the left branches are 

defined by neighborhoods around the solution found in the upper left branch, while the 
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xo 

RS1 RS1
C 

Figure 5.2: Binary tree structure 

left branch in the framework's tree is an RS generated by the restriction phase. In other 

words, the framework does not only use the last solution found to determine the next 

region to be searched and consequently two consecutive RS may identify very different 

regions of the space. This results in a branching structure that is not necessarily local. 

Table 5.1 summarizes the main aspects of each branching structure, illustrates the 

similarities and differences of the IRSS branching structure with respect to both Local 

Branching and Branch and Bound. 

RSS Framework Branch and Bound Local Branching 

How is the branch- By fixing variables By fixing variables By defining a re-

ing is done? at a given value at a given value gion around a given 

solution (neighbor-

hood) 

Several or one vari- Several One Several 

able at a time? 

Table 5.1: Branching structures 
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Heuristic or exact method? 

The search strategy embedded in the IRSS framework , which consists in defining re
stricted regions of the solution space to be searched, may perform as an exact search 

t ool provided that (1) an adequate number of RS is explored and (2) t he exploration 

of each RS is performed to optimality. Given the tree structure proposed by the IRSS 

framework, the manner in which each RS (each left branch of the tree) is explored de

termines if the framework implementation is an exact , é-optimal , or heuristic method. 

The first two cases may be obtained only if an exact method is used. 

When the left branches are explored by an exact method, four possible results are 
possible: Infeasible, Optimal, Feasible or Unknown. An Infeasible or Optimal result 

means that the RS was completely explored and therefore it can be excluded in further 
searches. A Feasible result suggests that the RS may be cut (using the branch and bound 

terminology) if the optimality gap is less than é in an é-optimal approach or ignored in 
an optimal approach. An Unknown result is obtained when no feasible integer solut ion 
is found in the time allotted to search the RS. In other words , this result implies t hat 
the RS was not completely explored. Nevertheless, the best lower bound obtained 
(for minimization problems) may be compared to the best solution found so far and 
consequently the same reasoning applied to Feasible branches holds. Clearly, Unknown 

is the least useful result. In order to minimize these kinds of unproductive search Pécora 

et al. (2007) (see Chapter 4) propose a procedure called embedded RSS, which is an 

incremental exploration of the RS, allowing a part of the RS be excluded even in cases 

where the complete RS is declared Feasible or Unknown to be cut. 

Also when considering a minimization [maximization] problem a lower [upper] bound 

is required in order to prove optimality, which in this case may be provided by' a linear 

relaxation before each restriction phase, as seen in Figure 5.2. 

When exploring the left branch using an approximate method, one cannot insure 

that the RS has been fully explored and therefore good solutions may have been missed. 

On the other hand, metaheuristics have been empirically proven to be very efficient 
solving large problems. This is why in cases where very large RS are generated, meta

heuristics are the best methods to use in the search phase. In this case the framework 

is a heuristic method since the optimality cannot be proven. 

Moreover, the way to represent the regions RS and RSc plays an important role 

in the overall framework. In the example showed in the Section 5.2 we used the con

straints 5.1 and 5.2 because they are suitable to the method used in the search phase, 

an exact method. When using other methods in the search phase, the representation 
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of the regions RS and RSc should be adapted accordingly. For example, if t he RS will 

be explored by a meta-heuristic, it is more efficient to fix the variables directly at t heir 

values instead of using the constraints 5.1 and 5.2 , when using constraint programming 

another type of constraint may be used. 

Despite the way chose to represent RS and RSc the basic idea is the same, t hey can 
be used to temporarily prohibit the search inside a region of the space. This temporary 

prohibition is t he same as putting sorne regions of the space in a tabu state. Thus, 

using the idea of tabu list applied to regions of t he space, rather than variables or 

neighborhoods , the tree structure can be heuristically explored ensuring an adequate 
diversification of the search. 

Information flow 

The exchange of information, and how it is transformed into intelligence, is t he basis of 

the IRSS Framework. Unlike most of the hybrid algorithms proposed in the literature, 

the manner in which the solution methods share and use information is the greatest 
strength of the IRSS Framework. In particular, the IRSS framework includes two 
different information loops that are shown in Figure 5.3. The first loop t akes place 
inside the restriction phase; consequently there is a flow of information between the 
structural and the evaluation methods. As can be observed, the structural method 

feeds the evaluation method with a partial solution (concerning only the structural 
variables) to the problem. On the other hand, the evaluation method suggests search 

directions (provided by the direction vectors) to the structural method. The second loop 

concerns the interactions between the macro and micro searches, i.e. the interactions 
between the restriction and search phases. As illustrated by Figure 5.3, the restriction 

phase pro duces a set of restrictions (the RS) that limit the region to be explored by 

the search method. However, historical information on the search done so far , like best 
solutions and bounds, are also used in the search phase. The information exchange 

between the search and the following restriction phase depends on the type of result 
produced by the exploration of the RS. Two cases may arise. If the RS was completely 

explored, the RS can be excluded in further iterations. However, if the RS exploration 

could not be completed in the allotted time, more sophisticated information is required 

to decide whether to eliminate a part of the RS or the whole RS, in which case the 
IRSS become a heuristic method. The causes leading to these particular situations have 

already been outlined in the two previous subsections. 
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5.4 An iIIlpraveIIlent ta the IRSS Fralllewark: dy

nalllic elllbedded RS 

The computational experiments in Chapter 4 showed that, although the Embedded RS 

helps to perform a more efficient exploration of the RS, it has several parameters that 
are very difficult to set. For example, the size of the first partition in the RS needs to be 
known a priori. Moreover, the scaling step (the increase in the size of two consecutive 

partitions in the embedded RS execution) also takes a fixed value. Consequently, the 

performance of the procedure may fail if these parameters are not set carefully. The 

natural approach to avoid this difficulty is to conceive a self-adaptive embedded RS. In 

our case we propose a set of rules that adapts the target size of each new partition within 
the embedded RS approach. These rules of thumb are based on empiric observations 

concerning how the exploration time increases with the RS size (see Section 3.3 in 

Chapter 3). 

However, before explaining these rules, we need to explain the difference between the 

targeted size of the RS and the current size of RS, denoted tRS and cRS respectively. 

While the latter is the size of the last partition treated, the former provides the size 

that we expect to be able to solve in the allotted computational time. Assuming that a 

maximum constant computational time, tmax , is allotted to solve each partition within 
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the embedded RS scheme, we define t , t ~ 1, as the ratio between the time required by 

the last explored partition and tmax. Therefore , t == 1 means that the last part ition was 
not explored to optimality, and sm aller values of t suggest that larger partit ions may be 

solved in the allotted time. Two possible implementations of the adapt ive Embedded 
RS procedure are proposed. The "conservative" method simply starts with a very small 

cRS and this value increases by the adapting rules. In contrast , the "optimist" method 

starts with the largest RS and , if the exploration does not succeed, this value will be 
reduced by the adapting rules. 

Three rules are proposed to manage the size of the targeted RS. The first rule states 

that if the last partition was not completely explored in the allotted time, t he size of 

the next partition needs to be reduced by half. The second rule concerns the case where 
the last exploration was "fast " with respect to the allotted time, fast meaning, in our 

case, less than half the allotted time. It is therefore reasonable to expect that larger 

partitions may be explored within tmax so tRS is enlarged. Finally, tRS is not changed 
if the allotted time seems to be adequate to solve the targeted RS size. The following 

equations formalize the mentioned rules. 

• Rule 1 - If t == 1 

tRSS == cRS/2 

• Rule 2 - If t ~ 0.5 

tRS == Max{tRS, cRS + l-log2(t)J} 

• Rule 3 - If 0.5 < t < 1 

No change in the tRS 

It is worth recalling that the comparison threshold (t == 0.5) and scaling factors 

(0.5 and log2(t)) were chosen arbitrarily after remarking that the exponential relation
ship between the solving time with respect to the size of an RS (Figure 3.3 in Chapter 3). 

5.5 IRSS Frarnework pseudo-code 

This section presents the pseudo-code of the IRSS Framework. The algorithm below 

has aU the components and concepts defined in this thesis. The two phases (restriction 

and search) are shown in steps (4 to 9) and (11 to 12) respectively. Nevertheless, in 

sorne cases an initial phase producing a first starting-solution (step 1) may be required 
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according to the restriction phase characteristics. As can be seen, the algorit hm has 

two nested loops: one large loop that defines the search strategy by alternat ing between 

the macro and micro searches, and one inner loop within the restriction phase. Steps l , 
5, 7 and Il caU the different solution methods in the hybrid structure. These methods 

may be standard or tailor made to better match the requirements of the problems. The 

algorithm ends by returning the best solution found so far. 

Aigorithm 5 IRSS Framework 
1: Build an initial solution 

2: Search direction: ~ f- 0 
3: while stop criteria is not met do 

4: repeat 
5: Search in the structural variables using (~) as direction 

6: Bound the structural variables 
7: Search in the non-structural variables 

8: Generate the new search directions (~) 
9: until enough solutions to generate the RS 

10: Generate the RS 
Il: Solve the RS problem inside 

12: Generate the RSc and add it to the main model 
13: U pdate the best solution 
14: end while 

15: Return the best solution 

5.6 Two practical irnplernentations of the IRSS frarne

work 

The purpose of this section is threefold. Firstly, it aims at assessing the potential of the 

IRSS Framework as a guide to design search algorithms. Secondly, it intends to evaluate 

the impact of new adaptive embedded RS with respect to the version proposed in 

Chapter 4. Finally, it addresses important implementation issues concerning algorithms 
designed following the IRSS framework. In particular, the trade off between the number 
of iterations (i.e. the number of RS) and the time allotted to each of them is discussed 

and sorne insights or rules are provided. 

To aid in this , the instances generated for the two application problems proposed 

in Chapters 3 and 4 will be solved again. However, it is important to remember that 

the solution methods proposed in these Chapters only partiaUy implemented t he con-
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cepts and components of the IRSS Framework. Therefore, before proceeding to execute 

the computational tests, these methods needed to be extended to match the IRSS 

Framework. Although the search phase and the search tree can be added in a rather 

straightforward manner to the hybrid heuristic for the PPSP described in Chapters 3, 

implementing the Embedded RSS is not trivial. Consequently, the interested reader 

may find sorne details concerning this implementation in the Appendix B. Table 5.2 

summarizes the components used in the extended versions of the algorithms presented 
in Chapt ers 3 and 4, respectively. 

PPSP Location-Allocation 

Structural Variables Basic Density's le velofwork Hub's flow 

Initial Phase Rolling Horizon Trivial Solution 

Restriction Phase 

Structural Method Rolling Horizon DSSP hub 

Evaluation Method Greedy allocatio n proce- DSSP arcs 

dure 

Search Phase Embedded R SS with Embedded RSS with 

Cplex 8.1 Cplex 10 

Tree Structure Not Present Present 

Adaptive RS Size Not Present Present 

Table 5.2: RSS Framework components used in the final tests 

AlI the numerical tests were executed on AMD Opteron 250 2.4 GHz comput ers 

with at least 4Gb of RAM running the Linux operating system. We did not solve 
aIl the tests instances proposed in Chapters 3 and 4. Instead, we preferred to focus 

exclusively on the most difficult, largest sized test classes (i.e., the 32 period class for 
the PPSP and the 24 hubs class for the location allocation problem). AlI the values 
reported in the following section are averages over aIl the instances in the selected 

classes. In order to be consistent with the results reported in the other chapters, the 

performance figures in this section are not absolute values but the normalized gap 

between the best solutions found by the IRSS methods (Obj 1 RSS) with respect to the 
best solutions found by the previous implementations (Obj). The gap is computed by 

Gap% == 100 * (ObjIRSS - Obj)jObj. The two next subsections present the numerical 
results and their analysis for each of the two considered problems. 

Numerical results for the Pulp Production Scheduling Problem 

This section reports the computational results produced for the Pulp Production Schedul

ing Problem. Since one of the objectives of this analysis is to determine the performance 
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of the method with respect to the time that is aUotted to solve each RS , each of t he 

Figures 5.4 to 5.7 rapports five cases where the time span aUoted to solve each RS is 

respectively {2 , 10,20,30, 60} minutes. 
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Figure 5.4: PPSP - Objective function 
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In Figure 5.4 the abscissa axis is the depth of the branch and the ordinate axis shows 
the normalized gap between the best solution found by the IRRS and the best known 
solution. As it could be foreseen, the quality of the solution found is proportional to the 

time spent at each RS. Being around 1.5% worse than the reference solution when using 

2 minutes for each RS (the reference solution used 20 minutes) and was approximately 
0.7% better if60 minutes is used. However, comparing the curves at 30 and 60 minutes 

we can see that the improvement is negligible. AIso, independently of the aUotted time, 
there is a stagnation of the best solution found after the 3rd RS explored. 
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Figure 5.5 shows the cumulative execution time (including the restriction and search 

phases) with respect to the number of RS explored. It can be observed that, in aU the 

cases, the cumulative time increases linearly with the number of RS - a linear regression 

computed an R2 
rv 0.99 for aU the curves. One can conclude that the time spent for 

defining and solving each RS is almost constant. 
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The behavior of the Adaptive embedded RB can be observed in Figure 5.6. The 
ordinate of this figure shows the size of the RS solved until the optimality or infeasibility 

was proven; in other words, the size of the RS that was excluded from the solution space. 

The behavior of these curves starting solving smaU RS and increasing the size until a 

stability is reached is an empirical prove that the rules used in the Adaptive embedded 
RB are useful and help to converge to RS of solvable sizes. Moreover, we noted that 
after the 6th branch the sizes were ranged inside a smaU interval, for example the 2 min 
curve is kept around a size of 17 while the 60min is between 25 and 30. 
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The last figure wiU help us analyzing the trade off between the exploration time and 

the quality of the solutions produced. Figure 5.7 reports how the Gap% evolves during 

the execution of the method. This graphic is similar to the one in Figure 5.4, but the 

abscissa here is the CPU time instead of the number of branch. It can be observed 
that the curves rarely crosses each other. AIso, in aU the cases the search stagnates 

quickly (i.e. there is no improvement in the objective value), which requires extended 

discussion. 

First of aU, let us recaU that PPSP is a difficult combinatorial problem. We tried 

to solve the formulation proposed in Chapter 2 with a commercial branch-and-bound 
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algorithm and we observed that , in general , the method was able to find a good integer 

solution in a rather short time. Rowever , the optimality gap of the first integer solut ion 

was , in most of the cases, very big. The branch and bound explored different branches 

and , since very few of them were "pruned" or eliminated from the search, the procedure 

usually t ook a lot of time. This behavior is classic of combinatorial problems for which 

exists a very large number of local optimal solutions having similar objective values. The 
fact is that , although the integer solutions produced by the method were of a very high 
quality, neither a proof of optimality nor an acceptable optimality gap were available in 

a reasonable time. Wh en solving instances of PPSP with the RS method, we observed 
that the quality of the solutions produced was as good as the ones produced by t he 

exact method but again, it was not possible to be sure that better solutions were missed 

out of the RS. The IRSS method brought new information. In particular, Figure 5.4 
confirms that it exists several local optimal solutions having similar objective values. 

Indeed, we observed that several RS - which are distinct by definition - lead to similar 

best solutions. Moreover, the quality of the solutions produced depends strongly of the 
time span. Therefore, we can conclude that the RS proposed by the method are of a 

high quality but , on the other hand, the time alloted to the RS exploration need to be 

selected carefully. In order to confirm our conclusions concerning the efficiency of the 

IRSS approach, the results produced for the location-allocation problem are presented 
in the next section. 

Numerical results for the Location-Allocation Problem 

This section reports the computational results for the location-allocation problem pre

sented in Chapter 4. All the values shown are averages of the test instances for the 

largest test class (24 Rubs). Figures 5.8 to 5.11 follow the same pattern as for the PPSP, 

showing 5 lines, each one corresponds to the time allotted , {5, 10,20,30, 60} minutes, 
to solve each RS. 
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Figure 5.8 shows, for each time span, the best solution (in terms of Gap%) found as 

the number of explored RS (iterations) increases. By looking at Figure 5.8 we conclude 
that 5 minutes is not enough to insure a good exploration of the RS: the method was 

not able to produce solutions for several RS and , when it provided it , the quality of 
the solutions produced was rather poor. On the other hand, Figure 5.8 presents a very 

different behavior if compared to Figure 5.4. In fact, we observe that in all the cases but 

the 5 minutes time span, the quality of the solutions improves continuously and that 

the 20 , 30 and 60 minutes perform in a very similar manner. One could also conclude 

that is not worth to spend 60 minutes or more time exploring the RS. 
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The total time shown in Figure 5.9 also follows a linear progression trough the RS 
branching having an R2 

f",.J 0.99, as in the PPSP computational tests. Thus the total 

time spent in the identification of exploration of each RS is also constant. 
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Figure 5.10 illustrates the impact of the Adaptive embedded RS procedure on the 

size of the RS. All these curves present a similar behavior, smoothly increasing their 

values in the first 6 RS after which they are kept inside a small range varying no more 

than 5 free variables. This behavior is coherent with what we expected from the rules 

used in the Adaptive embedded RS procedure. 
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Figure 5.11 reports how the quality of the solution increases (the Gap% decreases) 
with respect to the execution time. This graphic is similar to the one in Figure 5.8, but 

the abscissa here is the cumulative CPU time instead of the number of the branch. As 

mentioned before, the behavior of the line corresponding to a time span of 5 minutes 
will not be taken into account for our analyzes. Unlike in Figure 5.7, where it can be 
observed that the search stagnates quickly, Figure 5.11 shows that the best solution 
improves continuously. Again, choosing a time span of 20 or 30 minutes for each RS 

seems to be the right choice for the solved instances, as confirmed by the fact that the 

pattern of the 60 minutes span converges to the same results but in a much longer time 

frame. 

In general terms, one can conclude that the two solution methods present good 
performances. Applied to two distinct problems, they are able to produce solutions 
which improve the best ones produced by a commercial branch and bound software in a 

fraction of the time. Moreover, both methods success doing so for two problems having 

very different characteristics. Indeed, the topology of the solution space associated to 

the location-allocation problem differs of the "degenerated" one shown by the PPSP. 
Since litt le effort has been dedicated to the design of specific solving tools for each of 

the problems, we conclude that the IRSS algorithmic framework exploits in an ade
quate manner the synergies between its component methods leading to efficient search 

algorithms. 

5.7 Conclusion 

This chapter proposes a generic Framework for the design of hybrid solution methods. 

The Iterative Restricted Space Search Framework (IRSS) is based on the collaboration 

of two search phases having complementary goals and exploits the concept of algorith-
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mic hybridization. A "macro" search phase which probes the solution space to find 

appealing regions is hybridized with a "micro" se arch phase which performs a t horough 

exploration of these targeted regions , thus reproducing a diversification/intensification 
scheme. The concept of hybridization is also used in the macro search phase to iden

tif Y promising regions and to define restricted spaces (RS) within these regions. The 

IRSS Framework is independent of the solution methods used in each phase and can 

be applied to a large range of problems. In particular , it has been used to implement 

solution methods for two real-life problems, a scheduling problem inspired by a paper 

and pulp production company, and a location-allocation problem based on t he context 
of an international transportation company. The computational results produced by 

the IRSS implementations prove the efficiency of the approach when compared wit h 
previous solution methods and with a commercial MIP solver. 
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Chapter 6 

Conclusions 

In this thesis we have proposed a generic and flexible framework for hybrid solving 
methods. As optimization problems arise in all fields of science and engineering and as 

the size or the complexity of such problems evolves exponentially, the development of 

efficient solving methods is of utmost importance from both practical and theoretical 
points of view. We have applied the proposed method to two real-world problems: 

the Pulp Production Scheduling Problem and a Location-Allocation Problem in an 
importjexport network. 

6.1 SUIllrnary of contributions 

The rationale behind this framework is quite intuitive: to perform a fine search only 
when it is worth. However, the main challenges found during the development of this 

thesis were to answer the two questions resulting from this intuition. (1) How should 
this idea be implemented? (2) How do we identify a space to search thoroughly? 

Chapter 5 provides what we hope to be a complete answer for these two questions by: 

(1) proposing a generic algorithmic structure for solution methods which is implemented 

using two search phases - "macro" and "micro" exploration. The "macro" search is 
responsible for identifying the suitable space, named Restricted Space, to be explored 

in the "micro" search. The communication between the phases cornes from the proposed 
algorithmic structure, therefore it is independent of the component methods used within 

each phase. (2) To identify the RS - performed in the "macro" search - we proposed a 

hybrid algorithm also composed of two phases. The first phase will probe the solution 
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space focusing on finding good values for the structural variables - defined as the main 

variables of the problem - once the structural variables are fixed, which defines a region 
of the space, the second method evaluates this region by finding good values for the 

non-structural variables, thus determining a complete solution that is representative 

of the region. Once a number of such promising regions are found they are used to 
define the RS, by identifying the common characteristics of the representative solutions 

for each region. Even though Chapter 5 provides a fully developed answer for these 
questions, the importance and the contribution of the Chapters 1, 3 and 4 cannot be 
neglected. 

Chapter 1 provided the fundamental basis for the development of the hybrid frame
work. The study about the types of exchange of information between the component 
methods - which we consider as one of the main characteristics of hybrid methods -

allowed us to identify that, to the best of our knowledge, there were no published papers 

presenting a generalization of hybrid approaches based on information exchange. AIso, 
the study of the possible restriction spaces approaches and decomposition methods gave 
us good insight as to the direction which could be followed during this research. Chap

ter 3 laid the basis for the development of the IRSS Framework. The main concepts 
of "macro" and "micro" search and structural variables were already present in this 

work; however they had not yet been generalized. Chapter 4 proposed solutions for 
the two drawbacks found in Chapter 3, the size of the RS which could not be precisely 
controlled and the need of the exploration of several RS, by proposing the embedded 
RS - an incremental search procedure - and the binary tree structure to explore several 

RS. These im provements increased the efficacy and the efficiency of the IRSS. 

The application of the IRSS Framework in two very different real-world problems, 

that have been used to illustrate the framework, is a significant part of the contributions 

of this thesis. To this end we carried out extensive computational experimentations for 

both problems. These tests demonstrated the importance of each solution phase and 
the increase of the overall efficiency by structuring the search using a binary tree. Also, 
the study of the trade-off between exploring several small or few large RS - presented 
in Chapter 5 - has a noteworthy importance in the contributions of this thesis. In order 

to study this trade-off an extension for the IRSS - the dynamic Embedded RS - was 

developed and presented in Chapter 5. 

As the IRSS Framework is based on the interaction between two algorithmic phases, 
performed by the exchange of information. It is classified as flexible, due to the fact 

that almost any available solution method can be used as a component in its phases. 
It is also classified as a generic solving hybrid approach, because it can be applied to 

practically any problem in OR. 
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Consequently, the IRSS Framework has proven to be a very promising search method 

that fulfills its main objective of identifying promising subregions of the solution space 

to be explored in reasonable time by a dedicated method. It is based on the exchange 
of information between two phases making it an efficient , flexible and generic solving 
method. 

A secondary contribution is the presentation and modeling of the Pulp Production 
Scheduling Problem, Chapter 2, a new real-world problem that aims at minimizing the 

variance of the basic densities of the wood chips used in the cooking process of pulp 

production. Minimizing the variance naturally leads to a non-linear problem, which 

were linearized by proposing the discretization of the range of the basic densities and 

the use of the slack variables. A solution approach based on a constructive heuristic 
was also proposed in this paper / chapter. 

6.2 Future research directions 

In this thesis we proposed a generic framework for hybrid solving approaches; our 
research suggested sorne interesting new research avenues. 

The parallelization of the IRSS Framework is a special and challenging research 
avenue. Evidently, in a parallel environment the tree structure in which the IRSS 
Framework is implemented will not be the most efficient implementation. The simplest 
parallel implementation would be one processor running the Restriction Phase and 

several others executing the Search Phase in parallel. However, even in this simple 

implementation there are a number of unanswered questions. Such as, how would the 

different Search Phases communicate? 

The comparison of the performance of the Framework against well established meth
ods for classical problems is another interesting research avenue, which could lead to 

new im plementation guidelines and assist in proving the performance and efficiency of 

the IRSS Framework. 

As the Framework is independent of the search methods used in both Restriction 

and Search Phases an interesting research avenue would be to make a comparative study 

on the performance of the several heuristics and exact methods which could be used in 

both Restriction and Search phases. This could lead to a ranking of the most suit able 

methods that may be used for a class of problems. 
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Finally, there are number of challenging problems in both real-life and classical 

spheres which could be interesting to address with this approach in order to continue 
the validation the IRSS Framework. 
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Appendix A 

Formulation for the 
Location-Allocation Pro blem 
Chapter 4 

In this appendix the mathematical model for the location allocation problem described 

in Chapter4 is presented. This model, which based on the work of Cavallet et al. (2000) 
incorporates the inter-hub transportation and the piecewise linear functions for the hubs 

implementation costs and transportation to/from an international hub. 

A.l Variables 

The variables are divided into three distinct groups: transportation variables which 

decides the path used by each commodity, hub allocation variables associated with the 

opening of each hub and piecewise variables related with the size of each hub / arc. 

The transportation variables are binary and they represent the path that each com

modity is transported. These variables are always symbolized by the letter x followed 

by a superscript second letter indicating the origin ' of the shipment, (I)nternal ----t Xl or 

(E)xternal ---t xE and they are formally defined as: 

• X{,h,e E lffi assuming the value 1 if commodity (i , e) passes through the hub h and 

o otherwise. 
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• X~h , i E lffi assuming the value 1 if commodity (e, i) passes through the hub h and 
o otherwise. 

For the transportation variables the special case, hl == h2 , means that the commodity 

uses only one hub. 

The second set of variables , the hub allocation variables Yh E lffi , decides if a hub 

will be opened or not. They are binary and assume the values Yh == 1 if the hub h is 

active (open) and zero otherwise. 

We have one set , W E IR+ and Z E lffi , of piecewise variables for hubs and another 
for the arcs Hub f-+ E xternal in each direction. They are named as Wh,Z and Zh,Z for t he 

hubs and , following the same convention as the transportation variables , w( e,Z' z(e,Z and 

w~e ,Z ' zt,e,Z for the arcs. The W variables are the passing fiow through each hub / arc, 
the Z variables are the binary variable associated with the size, (i.e. the piece of t he 

piecewise function). 

A.2 Mathematical model 

Minimize Obj == 2: ()i,h(di ,e * X{,h,e + de,i * X~h,J + 
i,h,e 

2: a * Yh + 
h 

2: f(WZ ,h) + 2:[f(W{e,h) + f(wfe,h)] 
h h,e 
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Xl 
i,h,e' 

XE 
e,h ,i' 

LXI i,h,e 
h 

L
xE e,h,i 

h 

Wh ,l 

Wh ,l+1 

w I 
h,e,l 

w I 
h,e,l+1 

w E 
h,e,l 

w E 
h,e,l+l 

< 
< 
~l 

~l 

> 
< 
> 
< 
> 
< 

Yh Vi,h,e E JxH 

Yh Ve,h,i E JxH 

V(i,e)EJI 

V(e , i) E J2 

(ah ,l - ah,l-I) * Zh,l , l ~ l , ... , nI - 1; h E H 

(atl+1 - a~ ,l) * Zh,l , l ~ l , ... , nI - 1; h E H 

(a~,e, l - ate,l-I) * Z~,e, l ' l ~ l, ... , n2 - 1; (h , e) E HxE 

(a~,e,I+1 - a~,e,l) * Z~,e, l ' l ~ l, ... , n2 - 1; (h , e) E HxE 

(a~,e ,l - a~,e,l-I) * zt,e,l ' l ~ l, ... , n2 - 1; (h , e) E HxE 

(a~,e,l+l - a~,e,l) * Zf,e,l' l ~ 1, ... , n2 - 1; (h, e) E HxE 

L di,e * X{,h, e + de,i * X~h,i Vh E H 
i,e EJ 

L di,e * X{,h,e Vh, e E HxE 

L de,i * X~h,i Vh, e E HxE 
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(A.2) 

(A.3) 

(A.4) 

(A.5) 

(A.6) 

(A.7) 

(A.8) 

(A.9) 

(A.lO) 

(A.ll) 

(A.12) 

(A.13) 

(A.14) 

(A.15) 

In the objective function, Equation A.l, the costs B", are linear costs associated 
with the internaI node - hub arcs and interhub transportation respectively, a is hub 

allocation fixed cost, while the costs f(Wl h), f(w{e h) and f(wfe h) refers to the piecewise , , , , , 
costs of hub implementation and transportation through an international arc. The 

function f (TV) is defined as follows: 

(A.16) 

Where the points (al, bl ) are the breakpoints in w hich the piecewise function defined 

and Wl E [0, al - al-l] is the flow passing through each piece l. Constraints A.2 to 

A.3 impose transportation through open hubs only, Equations A.4 and A.5 assures the 

unicity of the path used to transport each commodity. 
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The Inequations A.6 to A.II force the sequential use of each piece into the piecewise 

functions. Note that inequations A.6 and A.7 imply that Zh,l 2: Zh,2 2: ... 2: z h,I L I, 

the same reasoning can be made for the other piecewise variables. A proof that this 

modelization for the piecewise function is locally ideal can be found In the work of 
Padberg (2000). 

The Constraints A.12 to A.14 provide a link between the transportation and the 
piecewise variables, computing the total flow trough each piecewise entity. There nI and 

n2 are the number of pieces of the piecewise function for hub implementation and Hub

External transportation costs respectively. Equation A.12 computes the total passing 

flow through each hub, while Equations A.13 and A.14 are dedicated to the flow 

through the arcs (l , E) and (E , 1) . 

Finally, constraints A.15 are the non negativity constraints. 
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Appendix B 

Embedded RS for the PPSP 
Chapter 5 

In this appendix a possible implementation of the Embedded RS is presented. This 
implementation follows the same structure used to implement the Embedded RS for 
the location-allocation problem in Chapter 4, using the objective function value of each 

solution to build a weighted frequency matrix. 

B.I Ernbedded RS 

In order to implement the Embedded RSS procedure, a frequencies matrix is required 

(see Section 4.4). Since the structural variables chosen in the case of the PPSP were 

the basic density working level, represented by the variable Z j,p,l E JE, the definition of 

the frequency matrix is defined as: 

(1 ZS ) M == C~ - j,p,l 
j,p,l ~ f(8) 

sES 

(B.1) 

where C is a constant used to avoid floating point errors, f(8) is the objective 

function of the solution 8 E S - the set of solutions used to generate the RS - and 

Zjs l is each structural variable belonging to solution 8. Note that the PPSP is a ,p, 

minimization problem, the frequency matrix is weighted by the inverse of the objective 

value 1/1(8). 
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The variables belonging to each Embedded RS , RS).., are chosen in decreasing order 

of their values in the matrix M. 

B.2 Tree structure 

The tree structure used in this implementation is not different from IRSS one. However , 

to avoid cycling, a part of the current solution space must be cut after every search 
phase. This may be a problem when finding a non solvable (feasible or unknown) RS. 
In or der to avoid this drawback the the ru les defined in the Dynamic Embedded RS are 
used to identify a RS w hich is solvable in the alloted time. 
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"Strange! 1 don't understand how it 

is that we can write mathematical 

expressions and calculate what the 

thing is going to do without being 

able to picture it. " 

RICHARD FEYNMAN (1918-1988) 

" .. . for better or worse, our future 

will be determined in large part by 

our dreams and by the struggle to 

make them real. " 
MIHALY CSIKSZENTMIHALYI 

(1934- ) 


