86 research outputs found

    NOVA mobility assistive system: Developed and remotely controlled with IOPT-tools

    Get PDF
    UID/EEA/00066/2020In this paper, a Mobility Assistive System (NOVA-MAS) and a model-driven development approach are proposed to support the acquisition and analysis of data, infrastructures control, and dissemination of information along public roads. A literature review showed that the work related to mobility assistance of pedestrians in wheelchairs has a gap in ensuring their safety on road. The problem is that pedestrians in wheelchairs and scooters often do not enjoy adequate and safe lanes for their circulation on public roads, having to travel sometimes side by side with vehicles and cars moving at high speed. With NOVA-MAS, city infrastructures can obtain information regarding the environment and provide it to their users/vehicles, increasing road safety in an inclusive way, contributing to the decrease of the accidents of pedestrians in wheelchairs. NOVA-MAS not only supports information dissemination, but also data acquisition from sensors and infrastructures control, such as traffic light signs. For that, it proposed a development approach that supports the acquisition of data from the environment and its control while using a tool framework, named IOPT-Tools (Input-Output Place-Transition Tools). IOPT-Tools support controllers’ specification, validation, and implementation, with remote operation capabilities. The infrastructures’ controllers are specified through IOPT Petri net models, which are then simulated using computational tools and verified using state-space-based model-checking tools. In addition, an automatic code generator tool generates the C code, which supports the controllers’ implementation, avoiding manual codification errors. A set of prototypes were developed and tested to validate and conclude on the feasibility of the proposals.publishersversionpublishe

    Logic-based Technologies for Intelligent Systems: State of the Art and Perspectives

    Get PDF
    Together with the disruptive development of modern sub-symbolic approaches to artificial intelligence (AI), symbolic approaches to classical AI are re-gaining momentum, as more and more researchers exploit their potential to make AI more comprehensible, explainable, and therefore trustworthy. Since logic-based approaches lay at the core of symbolic AI, summarizing their state of the art is of paramount importance now more than ever, in order to identify trends, benefits, key features, gaps, and limitations of the techniques proposed so far, as well as to identify promising research perspectives. Along this line, this paper provides an overview of logic-based approaches and technologies by sketching their evolution and pointing out their main application areas. Future perspectives for exploitation of logic-based technologies are discussed as well, in order to identify those research fields that deserve more attention, considering the areas that already exploit logic-based approaches as well as those that are more likely to adopt logic-based approaches in the future

    An evaluation of an adaptive learning system based on multimodal affect recognition for learners with intellectual disabilities

    Get PDF
    Artificial intelligence tools for education (AIEd) have been used to automate the provision of learning support to mainstream learners. One of the most innovative approaches in this field is the use of data and machine learning for the detection of a student's affective state, to move them out of negative states that inhibit learning, into positive states such as engagement. In spite of their obvious potential to provide the personalisation that would give extra support for learners with intellectual disabilities, little work on AIEd systems that utilise affect recognition currently addresses this group. Our system used multimodal sensor data and machine learning to first identify three affective states linked to learning (engagement, frustration, boredom) and second determine the presentation of learning content so that the learner is maintained in an optimal affective state and rate of learning is maximised. To evaluate this adaptive learning system, 67 participants aged between 6 and 18 years acting as their own control took part in a series of sessions using the system. Sessions alternated between using the system with both affect detection and learning achievement to drive the selection of learning content (intervention) and using learning achievement alone (control) to drive the selection of learning content. Lack of boredom was the state with the strongest link to achievement, with both frustration and engagement positively related to achievement. There was significantly more engagement and less boredom in intervention than control sessions, but no significant difference in achievement. These results suggest that engagement does increase when activities are tailored to the personal needs and emotional state of the learner and that the system was promoting affective states that in turn promote learning. However, longer exposure is necessary to determine the effect on learning

    A Review on Artificial Intelligence Applications for Grid-Connected Solar Photovoltaic Systems

    Get PDF
    The use of artificial intelligence (AI) is increasing in various sectors of photovoltaic (PV) systems, due to the increasing computational power, tools and data generation. The currently employed methods for various functions of the solar PV industry related to design, forecasting, control, and maintenance have been found to deliver relatively inaccurate results. Further, the use of AI to perform these tasks achieved a higher degree of accuracy and precision and is now a highly interesting topic. In this context, this paper aims to investigate how AI techniques impact the PV value chain. The investigation consists of mapping the currently available AI technologies, identifying possible future uses of AI, and also quantifying their advantages and disadvantages in regard to the conventional mechanisms

    Cyberattacks detection in iot-based smart city applications using machine learning techniques

    Get PDF
    In recent years, the widespread deployment of the Internet of Things (IoT) applications has contributed to the development of smart cities. A smart city utilizes IoT-enabled technologies, communications and applications to maximize operational efficiency and enhance both the service providers’ quality of services and people’s wellbeing and quality of life. With the growth of smart city networks, however, comes the increased risk of cybersecurity threats and attacks. IoT devices within a smart city network are connected to sensors linked to large cloud servers and are exposed to malicious attacks and threats. Thus, it is important to devise approaches to prevent such attacks and protect IoT devices from failure. In this paper, we explore an attack and anomaly detection technique based on machine learning algorithms (LR, SVM, DT, RF, ANN and KNN) to defend against and mitigate IoT cybersecurity threats in a smart city. Contrary to existing works that have focused on single classifiers, we also explore ensemble methods such as bagging, boosting and stacking to enhance the performance of the detection system. Additionally, we consider an integration of feature selection, cross-validation and multi-class classification for the discussed domain, which has not been well considered in the existing literature. Experimental results with the recent attack dataset demonstrate that the proposed technique can effectively identify cyberattacks and the stacking ensemble model outperforms comparable models in terms of accuracy, precision, recall and F1-Score, implying the promise of stacking in this domain. © 2020 by the authors. Licensee MDPI, Basel, Switzerland

    Selecting a best compromise direction for a powered wheelchair using PROMETHEE

    Get PDF

    Cooperative heterogeneous robots for autonomous insects trap monitoring system in a precision agriculture scenario

    Get PDF
    The recent advances in precision agriculture are due to the emergence of modern robotics systems. For instance, unmanned aerial systems (UASs) give new possibilities that advance the solution of existing problems in this area in many different aspects. The reason is due to these platforms’ ability to perform activities at varying levels of complexity. Therefore, this research presents a multiple-cooperative robot solution for UAS and unmanned ground vehicle (UGV) systems for their joint inspection of olive grove inspect traps. This work evaluated the UAS and UGV vision-based navigation based on a yellow fly trap fixed in the trees to provide visual position data using the You Only Look Once (YOLO) algorithms. The experimental setup evaluated the fuzzy control algorithm applied to the UAS to make it reach the trap efficiently. Experimental tests were conducted in a realistic simulation environment using a robot operating system (ROS) and CoppeliaSim platforms to verify the methodology’s performance, and all tests considered specific real-world environmental conditions. A search and landing algorithm based on augmented reality tag (AR-Tag) visual processing was evaluated to allow for the return and landing of the UAS to the UGV base. The outcomes obtained in this work demonstrate the robustness and feasibility of the multiple-cooperative robot architecture for UGVs and UASs applied in the olive inspection scenario.The authors would like to thank the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CeDRI (UIDB/05757/2020 and UIDP/05757/2020) and SusTEC (LA/P/0007/2021). In addition, the authors would like to thank the following Brazilian Agencies CEFET-RJ, CAPES, CNPq, and FAPERJ. In addition, the authors also want to thank the Research Centre in Digitalization and Intelligent Robotics (CeDRI), Instituto Politécnico de Braganca (IPB) - Campus de Santa Apolonia, Portugal, Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Portugal, INESC Technology and Science - Porto, Portugal and Universidade de Trás-os-Montes e Alto Douro - Vila Real, Portugal. This work was carried out under the Project “OleaChain: Competências para a sustentabilidade e inovação da cadeia de valor do olival tradicional no Norte Interior de Portugal” (NORTE-06-3559-FSE-000188), an operation used to hire highly qualified human resources, funded by NORTE 2020 through the European Social Fund (ESF).info:eu-repo/semantics/publishedVersio

    A Framework for Service-Oriented Architecture (SOA)-Based IoT Application Development

    Get PDF
    Funding: This research was partially supported by funds provided by the European Commission in the scope of FoF/H2020-723710 vf-OS, ICT/H2020-825631 ZDMP projects, and by the FCT— Fundação para a Ciência e a Tecnologia in the scope of UIDB/00066/2020 related to CTS—Centro de Tecnologia e Sistemas research unit.In the last decades, the increasing complexity of industrial information technology has led to the emergence of new trends in manufacturing. Factories are using multiple Internet of Things (IoT) platforms to harvest sensor information to improve production. Such a transformation contributes to efficiency growth and reduced production costs. To deal with the heterogeneity of the services within an IoT system, Service-Oriented Architecture (SOA) is referred to in the literature as being advantageous for the design and development of software to support IoT-based production processes.The aim of SOA-based design is to provide the leverage to use and reuse loosely coupled IoT services at the middleware layer to minimise system integration problems. We propose a system architecture that follows the SOA architectural pattern and enables developers and business process designers to dynamically add, query or use instances of existing modular software in the IoT context. Furthermore, an analysis of utilization of modular software that presents some challenges and limitations of this approach is also in the scope of this workpublishersversionpublishe

    Supporting Smart Home Scenarios Using OWL and SWRL Rules

    Get PDF
    Despite the pervasiveness of IoT domotic devices in the home automation landscape, their potential is still quite under-exploited due to the high heterogeneity and the scarce expressivity of the most commonly adopted scenario programming paradigms. The aim of this study is to show that Semantic Web technologies constitute a viable solution to tackle not only the interoperability issues, but also the overall programming complexity of modern IoT home automation scenarios. For this purpose, we developed a knowledge-based home automation system in which scenarios are the result of logical inferences over the IoT sensors data combined with formalised knowledge. In particular, we describe how the SWRL language can be employed to overcome the limitations of the well-known trigger-action paradigm. Through various experiments in three distinct scenarios, we demonstrated the feasibility of the proposed approach and its applicability in a standardised and validated context such as SARE
    • …
    corecore