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Abstract: The recent advances in precision agriculture are due to the emergence of modern robotics
systems. For instance, unmanned aerial systems (UASs) give new possibilities that advance the
solution of existing problems in this area in many different aspects. The reason is due to these
platforms’ ability to perform activities at varying levels of complexity. Therefore, this research presents
a multiple-cooperative robot solution for UAS and unmanned ground vehicle (UGV) systems for their
joint inspection of olive grove inspect traps. This work evaluated the UAS and UGV vision-based
navigation based on a yellow fly trap fixed in the trees to provide visual position data using the You
Only Look Once (YOLO) algorithms. The experimental setup evaluated the fuzzy control algorithm
applied to the UAS to make it reach the trap efficiently. Experimental tests were conducted in a realistic
simulation environment using a robot operating system (ROS) and CoppeliaSim platforms to verify
the methodology’s performance, and all tests considered specific real-world environmental conditions.
A search and landing algorithm based on augmented reality tag (AR-Tag) visual processing was
evaluated to allow for the return and landing of the UAS to the UGV base. The outcomes obtained in
this work demonstrate the robustness and feasibility of the multiple-cooperative robot architecture
for UGVs and UASs applied in the olive inspection scenario.

Keywords: precision agriculture; heretogenous robotic systems; cooperative robots

1. Introduction

Precision agriculture is a concept based on monitoring, measurement, and decision-
making strategies to optimize the decision support for farm management [1]. Due to recent
advances in sensors [2], communication [3], and information processing technologies [4],
automated robotic systems are playing an essential role in agricultural environments for
sensing [5], inspection [6], pest control [7], and harvesting [8], among others. An interesting
review regarding the application of sensors and actuators in agricultural robots can be
found in the study by Xie et al. [2].

These automated solutions give new opportunities due to the possibility of efficiently
performing manual tasks, saving labor costs, and preventing risks in human operations [1].
In the last few years, intelligent and adaptable solutions have been the focus in order to
increase the automaticity level of these robots in large areas [9], especially in agricultural
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farming applications, where they may reduce production costs, achieving operational
efficiency. The technological advances to reach this autonomy level are covered by computer
methods for control and navigation strategies [10–12] and robust sensing approaches [13].

For instance, applying an Unmanned Aerial System (UAS) in precision agriculture
operations allows for the real-time management decisions of the farms. An interesting
application of UASs is conducting them to monitor insects that directly affect crops, such as
in [14,15]. Regarding olive groves and grapevines, the recurrent practices rely on the visual
inspection of these plantation cultures during a few months or deploying traps at their
base during the spring and summer months [16]. The major issues with these methods are
the intensive labor and time spent every two or four weeks [17]. In this sense, this work
proposes using a multiple cooperative robots approach by applying UAS and Unmanned
Ground Vehicle (UGV) systems to automate the inspection of olive groves insect traps.
Note that multiple cooperative robots are a prominent solution to be incorporated into the
broad-acre land of agricultural farms, bringing new perspectives and effectiveness to the
production and monitoring processes [18,19].

Several multi-robot solutions only use homogeneous systems; that is, cooperation
only among UASs or only among UGVs [20,21]. Although this approach’s implementation
simplicity and scalability among homogeneous robots favor the missions to be performed,
the heterogeneity of robots allows the robot team to improve the tasks in different aspects
and levels to offer redundancy [21]. As multiple cooperation among heterogeneous robots
is a new disruptive technology, it incorporates challenges to partition the tasks by taking
into account the robot characteristics, such as the battery time and covering area [21], and
innovative applications and concepts [22]. Note that UGVs can carry a large payload,
bringing the possibility of attaching different sensors and actuators to them. A drawback
that UGVs encounter is their low point of view. On the contrary, the UAS presents a
high point of view but low payload capacity and limited flight time due to its power
efficiency [22].

In the literature, many reports surveyed the heterogeneous robots cooperation strate-
gies [23,24]. Among these strategies, the UAS landing on a UGV during missions is an
interesting interaction between heterogeneous robots. This can also be referred to as a
rendezvous. This physical cooperation occurs when the UGV is moving, and the UAS needs
to adjust its velocity dynamically to reach the landing spot [22]. This landing procedure
can be performed using a vision-based procedure [25] or sensor fusion [26], and it involves
a controller strategy and trajectory-planning technique [23].

Main Contributions

This research intends to propose multiple cooperative robot architecture (UAS and
UGV systems) to automate the inspection of olive grove insect traps. The UGV will move
among the aisles of olive groves carrying the UAS in its roof, searching for a trap fixed on a
tree. When the UGV vision algorithm identifies the trap, the autonomous UAS will take
off, inspect some olives to collect information on insects in the traps, and then return and
land on the UGV. This research proposes a UAS vision-based landing onto a UGV system
approach that considers the dynamics of both AGV and UAS robots and the environmental
conditions. The main objective of this work is to propose a new cooperative autonomous
robotic technique to achieve images of the insect traps used to increase the infestation data
collection quality and velocity, allowing for the creation of better plague control policies
and strategies applied to olive grove cultures and similar ones. The main contributions can
be summarized as follows:

• Implementation of an artificial-neural-network-based algorithm to identify the chro-
motropic yellow traps fixed in a group of trees and provide position and orientation
data to the UGV and UAS navigation algorithms to execute their missions.

• Evaluation of the proposed architecture operation in a simulated environment using
small-sized vehicles integrated through ROS as a first step to build a fully operational
autonomous cooperative trap capture system.
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• Proposition and experimental evaluation control strategy combined with a fiducial
marker for UAS vision-based landing onto a UGV roof considering the specific appli-
cation environment and operational conditions.

This investigation step focuses on executing a first evaluation of the UAS and UGV
vision-based navigation and control algorithms, considering the specific environmental
conditions. A UAS search and landing algorithm at the UGV roof, based on a fiducial
marker and vision-based processing, was also evaluated. Evaluating this mechanism is
essential for providing a proof-of-concept to the autonomous cooperative UAS-UGV trap
image capture solution, allowing for a future improvement in the techniques based on the
enhanced capability hardware and mechanical platform.

2. Background and Related Works
2.1. Agricultural Robots

The report given by the Food and Agriculture Organization (FAO) of the United Na-
tions (UN) expects, in the year 2050, an increase in the world population to approximately
10 billion [27]. This is a piece of evidence regarding the necessity of more agricultural
production. Thus, currently, most of the broad-acre land farms have automated operations
and automatic types of machinery, which are derived from the necessity of improving the
quality of the food and the production [28,29].

Unmanned robots are becoming frequent in daily life activities, and they have been
applied in a wide range of fields [10,30,31]. For instance, UASs have been used for crop
field monitoring [32], civil structures inspection and analysis [9], and surveillance [33],
among others. Regarding mobile robots, they cover applications such as cleaning [34],
surveillance [35], support for crop monitoring [36], assisting people with disabilities [37],
etc. Several reviews about the application of UAS and UGVs exist in the literature. For
instance, Kulbacki et al. [38] surveyed the application of UASs for planting-to-harvest tasks.
In the work of Manfreda et al. [39], the authors reviewed the application of UASs for envi-
ronmental monitoring. Regarding the sensory system, the work of Maes et al. [40] presents
interesting perspectives for remote sensing with UASs. For UGV systems, Hajjaj et al. [41]
addressed challenges and perspectives on using UGVs in precision agriculture.

An overview of the cooperation of multi-robots (i.e., robot and human, UGV teams,
UAS teams, and UGV-UAS teams) in agriculture can be found in Lytridis et al. [42]. In
accordance with this review, the application of a cooperative robot team for farming tasks is
not very widespread yet, such as the application of individual agricultural robot developed
for specific tasks. Regarding heterogeneous robots, despite offering significant advantages
for exploration, different aspects must be addressed due to the inherent limitations of each
type of robot used [22]. For instance, in the work of Shi et al. [21], the authors addressed
the problem of the synchronization of tasks among these heterogeneous robots using
an environment partitioning approach, taking into account the heterogeneity cost space.
Kim et al. [43] developed an optimal path strategy for 3D terrain maps based on UAS and
UGV sensors. This strategy enabled the guidance of the robots to perform their tasks.

Considering the interaction, which is close to the intention of this work’s cooperative
architecture, in Navaez et al. [22], the authors proposed an autonomous system for docking
a vertical take-off and landing (VTOL) with a mobile robot with a robot manipulator
mounted on it. This robot has a visual sensor that uses this information to execute stable
VTOL tracking to achieve contact firmly. The authors of Maini and Sujit [44] developed
a coordination approach between a refueling UGV and a quad-rotor UAS for large-area
exploration. Arbanas et al. [45] designed a UAS to pick up and place parcels into a mobile
robot for autonomous transportation.

As can be seen, different aspects of the collaboration between heterogeneous robots
still need to be addressed, especially in the agriculture field. Aspects such as the control
strategy for a UAS landing or taking off from a mobile robot to a determined area for
exploration or inspection (such as the case in this research), and synchronization approaches
for exploration and navigation are the key points explored in this work.
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2.2. UAS Landing Strategies

A particular point of UAS applications is the limited energy source of these aircraft.
For instance, using a UGV as a recharging base is a practical solution to this limitation
but demands that the UAS search and land in the UGV autonomously. The UAS landing
strategy depends on the type of landing zone: indoor or outdoor. The indoor landing
zone is a static and flat zone. Contrarily, the outdoor landing can be performed in static or
dynamic zones. In both indoor and outdoor zones, the landing can be known (i.e., marked
surfaces) or unknown (i.e., free of marks) [46]. Note that, in an outdoor environment, this
procedure can be more challenging due to the possibility of the UAS landing suffering from
factors such as airflow, obstacles, and irregularities in the ground landing surface, among
others [47].

The present work focuses on the control approach for outdoor autonomous visual-
based landing on a moving platform. A fiducial marker mounted on the top of the mobile
robot was used as a visual reference to assist the UAS landing. As presented in the
survey of Jin et al. [47], a few fiducial markers were used for this UAS landing procedure,
such as point, circles, H-shaped, and square-based fiducial markers. Through computer
vision algorithms that perform color extraction, recognize specific blobs and geometry,
and connect points, it is possible to estimate the UAS relative position and orientation
concerning the landing platform.

Despite the several improvements in and works on the area of fiducial marker and
landing algorithms to assist the UAS [48–54], some challenges still need to be addressed
for the visual servoing controller. For instance, the authors of Acuna and Willet [55] dealt
with the limit distance issue to detect the fiducial marker by proposing a control scheme
to dynamically change the appearance of the marker to increase the range of detection.
However, they do not address the landing algorithm. Khazetdinov et al. [48] developed a
new type of fiducial marker called embedded ArUco (e-ArUco). The authors performed the
tests with the developed marker and the landing algorithm within the Gazebo simulator
using the ROS framework. As in the previous cited work, the authors focused on the
developed fiducial marker.

It is possible to observe that the landing procedure onto a moving AGV has several
issues that need to be addressed, especially considering the particularities of the proposed
application. The irregular terrain, the small aperture between the trees, and the presence of
variate obstacles, illumination, and shadowing of the visual markers, among others, bring
challenges to the proposition of a fully autonomous landing strategy. In the present work,
a simplistic solution is proposed, using fiducial markers placed at the roof of the UGV in
a vertical position. In addition, specific conditions were kept to the proper operation of
this schema.

3. Proposed Methodology
3.1. Problem Definition

The Bactrocera oleae fly species is the major pest of olives [56,57]. The female fly put
the eggs in the fruit, causing economic breaks in the culture. It is essential to control this
kind of infestation, but it is also essential to provide a sustainable process to achieve this
control, avoiding the extensive use of pesticides. One possible solution for collecting the
fly infestation data and performing intelligent management is using traps covered with
food and sexual attractants fixed on the tops of the olive trees. This trap is kept for days or
weeks and manually collected and inspected by human specialists. This inspection includes
differentiating the olive fly from other species that do not attack the olive fruit and counting
the number of female flies captured by the trap, which is a slow and demanding task.

Inspections carried out by human specialists, who manually identify the incidence
of insects on yellow chromotropic traps in olive groves or similar, are commonly applied
today, requiring the displacement on foot of one or more specialists along the olive grove
cultivation regions. However, the method in question could be more laborious and slow.
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It normally occurs at a given weekly frequency, which is a potential problem concerning
decision making given that insect infestations on olives can occur very quickly.

In the traditional method, the evaluation of the incidence of insects in yellow chro-
motropic traps usually occurs weekly or fortnightly, requiring the action of technicians to
quantify the male and female insects trapped in the traps. This process typically occurs in
April through October, when the cycle of the infestation of the main pests in olive groves
occurs [58]. In this sense, adopting autonomous systems, whose application automates
the inspection process of traps in olive groves, is an excellent solution for mitigating the
financial losses caused by attacks by regional pests [59–62].

The use of cooperative robotic systems to automate this task, i.e., to check the incidence
of pests in traps during olive grove cultivation, is an exciting approach with enormous
potential for reducing human effort in this type of activity. It makes it possible to reduce
the inspection time on the traps, increase the priority of pest incidence analysis, acquire
a larger volume of data, and assist in making strategic decisions to combat pests. The
yellow chromotropic traps used in olive groves are randomly distributed throughout the
growing region, and usually only one trap is added per chosen tree. The positioning traps
are located in an area that is easily accessible to the human operator, usually at eye level, to
facilitate the analysis of insect incidence [63].

The proposed architecture allows for capturing images of the traps at short intervals,
such as daily, which increases the collection of infestation data and allows for a faster
performance of control actions compared to the traditional method. The proposed method
requires that the trap be fixed on the outer face of the top, without covering the leaves of
the olive groves and with good visibility, allowing for an adequate image capture with
the use of the drone. Figure 1 illustrates the positioning normally used to adjust the traps
on the crowns of olive groves, this being in an area of easy visibility and without many
obstructions caused by leaves or branches.

Figure 1. Arrangement of olive groves in the cultivation zone (left), yellow chromotropic trap
(centre), and positioning of the trap carried out by the operator on the ground (right).

Therefore, this work creates a set of algorithms to adequately capture trap images
using a small UAS with vision-based control algorithms. To achieve this goal, the UAS
identifies and reaches a pre-defined position in front of the trap, captures images of it, and
returns to the UGV to land on the vehicle’s roof, heading to the next inspection point. The
evaluation of capture parameters (illumination, shading, distance, camera resolution) and
the results of image processing algorithms ysed to perform insect counting and classification
are outside the scope of this work. Future work will investigate the parameters of image
capture conditions to allow for the automatic counting and classification of insects using
artificial intelligence algorithms.

3.2. Image Capture Parameters Definition

To define the distances at which the UAS can identify the insects in the yellow chro-
motropic traps, parameters such as camera resolution, lighting conditions, and distances
between the camera and the target must be evaluated. In this sense, some tests were carried
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out with a smartphone’s camera with full HD resolution to estimate the minimum distance
necessary for a UAS to identify insects in yellow chromotropic traps. For this, the following
methodology was adopted:

• In this experiment, a yellow chromotropic trap was positioned at a height of approxi-
mately 1.70 cm, with insects (Bactrocera Olea) trapped on it.

• A measuring tape was used to guide the distance between the camera (from a smart-
phone) and the trap.

• For every 30 cm distance between the camera and the trap, five images were captured.
The process occurred until reaching the maximum distance corresponding to 5 m.

• The test took place in a controlled environment with exposure to diffused sunlight.

The digital camera used in the experiment has a 108 MP, f/1.8, 26 mm (wide), 1/1.52′′,
0.7 µm, PDAF full HD resolution, and autofocus. This camera was chosen instead of the
Tello Drone camera used in the landing experiments because it provides a better image
quality capture, which is essential to the proof of concept. Figure 2 illustrates part of the
results obtained by the methodology in question.

Figure 2. Image capture of the trap at three different distances. (a) 3.5 m with 5× digital zoom in
detail; (b) 1.5 m with 2× digital zoom in detail; (c) 0.30 m with no digital zoom.

In this test environment, it was observed that capturing without optical zoom at long
distances will not provide an acceptable image quality for post-processing algorithms. This
is a future challenge for this proposal, considering that the UAS in a real environment
must only operate close to the tree or other existing obstacles in the inspection scenario.
This demand must be faced with adequate image capture hardware with an optical zoom
capability, whose resolution allows for the correct classification of flies using artificial
intelligence algorithms. In the present work, the researchers set the maximum detection
distance at 5 m for the UAS. This distance was established considering UAS security issues
and because they are linked to the standard camera settings used in the CoppeliaSim
simulator. When implemented, the fully functional version of the system must use a
camera with an optical zoom capable of capturing adequate images for the IA processing
algorithms at a 5.0 m distance once this is set as the operational distance capture for the UAS.
The definition of this camera depends on careful experimentation considering real-world
environmental conditions.

3.3. Overview of the Robotic Architecture Strategy

Figure 3 presents a global overview of the proposed strategy. It is possible to observe
in this figure that the UGV moves between the aisles of the olive groves, from one waypoint
to another (blue rectangle), using regular GPS data. The mission corresponds to leading the
UGV to inspect the olives and find the nearest insect trap in a tree row. The UGV continues
to move slowly, with the UAS positioned over the UGV, while the vision algorithm reaches
for a trap in the trees. When the UGV identifies a trap, it stops, and the UAS takes off to start
an image capture mission, using the trap position to move to a proper place and alignment
and capturing a preset number of images of this trap. After finishing the captures, the UAS
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rotates to search for the reference landing AR-Tag fixed in the UGV and starts moving to it,
landing on the vehicle’s roof after achieving the proper landing coordinates.

Figure 3. Overview of the proposed methodology.

When the landing operation step is over, the UAS sends an end-of-operation status
message to the UGV, the vehicle starts a new movement to search for the next trap, and
the operation restarts. The UGV will execute this behavior in an entire tree row, using the
GPS data to feed the navigation algorithm. At this point of the research, the objective is
to evaluate the trap identification algorithm, the UAS autonomous search, and moving
control using the YOLO to provide the position data and the UAS return in the simulated
environment, and the base and landing algorithm in real-world conditions. Note that the
YOLOv7 was used due to its ease of training, speed in detection, and versatility [10]. In
addition, this algorithm only uses convolutional layers, which makes the convolutional
neural network (CNN) invariant to the resolution and size of the image [64].

The project and evaluation of the mobile UGV base, obstacle sensing, intelligent
navigation, and other necessary solutions for properly operating this architecture will be
investigated in future work. In addition, the collision avoidance sensing used to provide
secure navigation to the UAS is not covered in this research step due to the payload limit
of the small-sized aircraft used to evaluate the visual control algorithm. As the UAS has
limited flight time due to battery limitations, the primary intention of the heterogeneous
collaboration is to allow the aerial system to land at the top of the UGV and save power
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during the navigation between two traps. Figure 4 presents the flowchart that describes
the actions taken by the UAS-UGV system addressed in this research.

Figure 4. Flowchart of the proposed methodology steps.

The experiments described in this work aim to create a first proof-of-concept of the
cooperative UAS-UGV architecture to capture the insect traps images in a proper condition
to be post-processed by the AI algorithms. The focus of the experiments was to evaluate
the UAS autonomous navigation and algorithms in the image capture task, simulating a
real-world operating environment.

3.4. Architecture Description

The proposed robotic system was divided into two fronts in this research. The first is
based on the virtual environment, through the use of the CoppeliaSim simulator, where
there is the application of a quadcopter UAS equipped with an RGB camera to identify traps
and fiducial markers, and a UGV, equipped with a GPS system to assist in the navigation
of the robotic system, an RGB camera to identify traps, and a LiDAR sensor to represent
the detection of obstacles. All of these robotic elements were contained in the CoppeliaSim
simulator libraries and were validated in an environment developed in the simulator.
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The return to base and landing experiments were conducted in a real-world environ-
ment. The robotic architecture applied for the tests consisted of a small-sized DJI Tello UAS
with onboard flight stabilization and received commands through a Wi-Fi connection. The
aircraft works with a Wi-Fi hot-spot connection architecture at 2.4 GHz, controlled by a
PID algorithm written in C++. This algorithm takes the AR-Tag Alvar data and calculates
the horizontal, vertical, and angular gains to provide the control feedback messages sent
to the UAS through a ROS node. The computer system was a core i7 processor with 16
GB RAM and Intel® HD Graphics 520 (Skylake GT2) board. The UAS navigation control
algorithms ran on a base station laptop. System communication was made through the
robot operating system nodes, where the base station computer worked as the ROS Master.
ROS Kinetic ran on a PC that worked as a base station, running Ubuntu 16.4 LTS.

3.5. ROS Packages

The DJI Tello interface and the AR-Tag tool use open-source packages. A ROS com-
munication architecture is proposed to integrate the algorithms used to build the solution.
The Ar-Track [65] was used to implement the visual position reference system, based on
the Ar-Track-Alvar [66] package. The images of the AR-TAG were achieved by the UAS
camera and processed by this package, which publishes position and orientation data on
ar_pose_marker Ros Node. This tool provides flexible usage and an excellent computational
performance. A tello_driver ROS package [67] implemented the Tello drone communication
with the ground station. The driver provided nodes to send cmd_vel messages to and
receive image_raw, Odom and IMU and battery-level data from the UAS, which were used
in the mission control algorithms running on the base-station.

3.6. Trap Detection Algorithm

For the identification of yellow chromotropic traps, computer vision resources based
on the YOLO algorithm were used in this research. YOLO is a multi-target detection
algorithm that has a high accuracy and detection speed. Currently, YOLO is in its seventh
version [68], and its detection performance is superior to previous versions [69]. Due to its
satisfactory performance in detecting multiple small and occluded targets in complex field
environments and its higher detection speed compared to other deep learning algorithms,
YOLOv7 was chosen to be applied in the object of study of this research.

The YOLO algorithm was trained with the coco database [70], maintaining the fea-
ture extractor and retraining the classifier with new images, whose main purpose is to
detect traps. One hundred images were used, both from simulated and real environments.
The YOLOv7 algorithm provides two points in pixels for each object detected, and their
extremities were named in this work as box_p1[i, j]andbox_p2[i, j].

For this work, additional information was taken to be used in the control algorithms
of both the UGV and the UAS. Information was extracted, such as the center of the detected
object in pixels, both on the i_axis (box_center_i), presented in Equation (1), and on the
j-axis of the image (box_center_j), presented in Equation (2). The percentage that the object
occupies in the image on the i-axis was also extracted, called box_percentage in this work,
presented in Equation (3). These variables were used throughout the work. Figure 5
presents these points in the image.

box_centeri = (box_p1[i] + box_p2[i])/2 (1)

box_centerj = (box_p1[j] + box_p2[j])/2 (2)

box_percentage = (box_p1[j]− box_p2[j])/480 (3)
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Figure 5. YOLO providing the object detection. Note that the code extracts the objected center and its
extremities, given the object occupancy in the image.

3.6.1. UGV Control

The UGV used in the CoppeliaSim simulator had a predetermined route based on
information linked to its GPS. Furthermore, the UGV used a system similar to the UAS
for identifying traps, as the images captured by its RGB camera were added to the YOLO-
trained model. The data provided by YOLO were then processed to ensure the UGV stops
as close to the trap as possible. When the UGV identifies a trap, it starts the stop process
and sends a message to the UAS to run the data collection process on the trap. Figure 6
presents a flowchart about the behavior of the UGV.

Figure 6. Flowchart of the UGV behavior.

In this methodology, the UGV passes two pieces of information to the UAS. The first
information sent is that the UGV is stopped, and the UAS can perform the takeoff process.
The second is the trap’s position on the image captured by the RGB camera of the UGV,
called trap_pos_UGV in this work. This value goes from 1 to 5 and corresponds to 1 = very
left, 2 = left, 3 = center, 4 = right, and 5 = very right. These values are obtained by the
variable box_center_j, depending on the trap’s position in the j_axis image. Figure 7 shows
the divisions made in the equipment image.
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Figure 7. Splits in the image made for the detection of trap_pos_UGV. This value is informed to the
UAS to start the trap search process.

3.6.2. UAS Control

When reaching the final position, the UGV notifies the UAS through ROS message
exchanges that the UAS can start the trap location and collection task. Thus, the UAS uses
the computer vision algorithm presented in this work to identify the trap. The computer
vision algorithm informs where the trap is regarding the UAS camera, on the i and j_axes,
called box_center_i and box_center_j in this work, respectively. In addition, it also provides
the trap’s size in pixels and the percentage of the trap using the image on the i_axis, called
box_percentage in this work.

With the data provided by the UGV and the computer vision algorithm, it is possible
to develop the control to make the UAS get closer to the trap to capture the required image.
The overall control strategy can be seen in the diagram shown in Figure 8. First, the UAS
performs the takeoff action, where the equipment rises approximately 70 centimeters from
the UGV. Then, the equipment performs an angular movement according to the information
from the UGV. If the trap is too far to the left of the UAS, it will rotate approximately
70 degrees to the left. Then, if it is on the left, the UAS will rotate 30 degrees left, contrarily,
i.e., if the trap is on the right, the UAS will rotate 30 degrees right, and if it is too far right, it
will rotate 70 degrees right. This process is necessary as the UAS camera does not have the
same 120-degree aperture as the UGV camera. Thus, the UAS must perform predefined
initial movements until it finds the trap. After the detection of the trap by the computer
vision algorithm, the fuzzy control is activated. This control is responsible for guiding the
UAS to the desired point, as close as possible to the trap.

3.6.3. Predefined Movements

The predefined movement is intended to prevent the UAS from malfunctioning. For
this, the fuzzy control aims to make the UAS reach the trap quickly and efficiently. However,
before carrying out the search and identification of traps, the UAS needs to keep a safe
distance from the UGV. In this sense, when the UGV informs that the UAS can start
collecting the image from the trap, the UAS performs two predefined movements. The first
movement is the z_linear take-off or adjustment, which consists of taking off and keeping
the UAS at a distance of approximately 70 cm from the UGV. Subsequently, the second
movement of the UAS is the z_angular adjustment, which consists of angular movements
to the right or the left with a predefined speed and time.

The z_angular movement varies according to the trap’s position concerning the UGV
camera, whose camera corresponds to the trap_relation_UGV variable. In other words, if
the trap is too far to the left of the UGV, the UAS will turn approximately 70 degrees to the
left. If the trap is on the left, the UAS will turn 30 degrees to the left, and if it is on the right,
the UAS will turn 30 degrees to the right.
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However, the UAS will turn approximately 70 degrees to the right if the trap is too far
to the right. Figure 9 provides a graphical representation of these two steps. At the end of
these movements, the fuzzy control is activated.

Figure 8. Overview of the UAS control strategy.

Figure 9. UAS performing take-off from the UGV and maintaining a minim distance. After the
z_linear adjustment, the UAS performs a z_angular adjustment according to the trap’s position.

3.6.4. Fuzzy Controller

When the UAS finishes executing its predefined movements, which are the takeoff
and the angular adjustment, it starts to operate through the fuzzy control. Figure 10 shows
the fuzzy control, where it has three variables as the input: box_center_i, box_center_j, and
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box_percentage. Note that more information about these variables can be seen in Section 3.6.
Fuzzy control aims to make the UAS approach the trap efficiently. For this, the control uses
the variables box_center_i and box_center_j to align the UAS’s angular and linear velocity
on the z_axis. The variable box_percentage is used to define the linear velocity in the x_axis.
Note that the smaller the value, the farther the object is from the device. The outputs are
represented by the variables angular_velocity_z, linear_velocity_z, and linear_velocity_x,
which correspond to the speeds applied directly to the equipment.

Figure 10. Inputs and output of the fuzzy controller.

Figure 11 presents the membership functions of the inputs of the fuzzy system. Note
that, in the variable box_center_j, the value ranges from 0 to 640, whereas, in box_center_i,
the value ranges from 0 to 480. This is because the system was modeled for images of
640 × 480 pixels. In this way, the objective is for the trap to be as close as possible to the
center of the UAS image. Note that the variable box_percentage ranges from 0 to 100. This
represents the percentage of the trap on the screen, considering the i_axis of the image. The
higher the percentage, the closer the UAS is to the trap.

Figure 11. Input fuzzification.

The outputs of the fuzzy system, shown in Figure 12, refer to the speed to be sent to the
UAS. The variable linear_velocity_Z is responsible for making the UAS go up or down. If
the value is negative, the UAS will perform linear descending movements. Otherwise, if the
value is positive, the movement is upward. The linear_velocity_X variable is responsible
for speed control when the UAS performs forward movements. Due to security reasons,
this variable does not assume negative values. Finally, the langular_velocity_Z variable is
responsible for the orientation of the UAS, allowing the UAS to perform angular curves
without movement. Its value ranges from –1, which corresponds to right turns, to 1, which
corresponds to left turns.
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Figure 12. Output fuzzification.

The purpose of using fuzzy systems to perform the control is to be able to combine
the different input values (Figure 11) to generate the output results (Figure 12). As the
fuzzy system is composed of two inputs with five membership functions and one input
with four, it generates 100 rules that must be defined. Figure 13 presents some graphs of
the system’s surface to visualize the system’s behavior. In Figure 13a, the objective is to
center the robot’s angle concerning the trap, that is, the j_axis in the image. Note that,
when the robot is very off center on the i_axis, that is, when the trap is too far above or too
far below the UAS it performs light linear movements to perform the adjustment on the
i_axis simultaneously.

Figure 13b,c refers to the speed of the equipment concerning the linear displacement
in the x_axis (front). Note that, as the trap is far from the center, both in the i and j_axis, the
robot’s speed is reduced so that the Z_linear and Z_angular adjustments can be performed.

(a) (b)

(c)

Figure 13. System’s surface behavior. (a). Centering the robot’s angle concerning the trap. (b) and
(c) Equipment linear speed in the x_axis.
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In this way, the proposed fuzzy system can guide the UAS to the trap in order to
let the UAS be as close as possible to the trap. Note that it always centralizes the trap
concerning the UAS camera. In the next sections, validations of the proposed strategy will
be presented.

3.7. UAS Base Search and Landing Algorithm

The last step of the trap image capture operation is the UAS search and landing in the
UGV roof base. After the UAS captures the trap image, it rotates to locate the AR-Tag fixed
in the roof of the AGV. When located, the control algorithm aligns the aircraft’s nose to the
tag and start moving to it in a straight line until it reaches the landing position using the
AR-Tag positioning data. When the landing threshold is achieved, the UAS lands on the
base. The distance between the UAS and the UGV base will be near 5.0 m, considering that
the UGV has approached the tree at this distance before the UAS takes off to search the
trap. Figure 14 shows an image of the AR-Tag and base assembly and the UAS searching
for the landing position.

Figure 14. Image of the landing base and the AR-tag with the Tello drone moving toward it.

It is essential to understand why the AR-Tag is fixed in a vertical position on the top
of the UGV. The Tello drone camera cannot point in any other direction than the front,
so the only position that the camera can capture the AR-Tag images in is the vertical
one. In addition, when the drone rotates to search for the tag, it is easier to detect it in a
frontal position.

4. Results and Discussion
4.1. Experiment Description

Simulation experiments were developed to validate the proposed approach. Figure 15
shows the simulation environment developed for testing the proposed system. The simula-
tor chosen for the development of the experiment was the CoppeliaSim [71]. This choice is
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because the simulator was already validated in related works, allowing for the migration
of the code developed in the simulator to the real robot in an easy and fast way [72].

Figure 15. Simulated environment developed to validate the proposed strategy.

Figure 16 shows the robots used to validate the proposed work. The robot was
modeled using the HUSKY UGV [73] equipment. The robot was equipped with GPS
sensors, LiDAR, and an RGB camera. The GPS sensor is used for the robot to maintain the
predefined route, whereas the LiDAR sensor is used for identifying and avoiding obstacles,
which is not the focus of this work. The RGB camera is used to identify the traps and then
start the process of image collection by the UAS.

Figure 16. UGV model used in this work.

4.1.1. UGV Validation

As previously mentioned, the UGV follows a pre-defined trajectory. Note that this
path strategy is not the focus of this work. Note that the UGV must identify the trap and
trigger the UAS to collect the trap’s image. For this purpose, the UGV uses the YOLO
strategy to identify the trap and uses the logic of the trap’s size in pixels in the image to
perform the stop action and trigger the UAS.

For validation purposes, the UGV was positioned in six different locations in the
simulated environment, marked in red in Figure 17. The predefined route of the UGV
consists of going straight and passing between the trees. The goal is for the UGV to stop
and trigger the UAS when it gets close to the trap. The UGV will run five times on each
of these routes to confirm this validation, and its distance from the traps will be saved
for validation.
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Figure 17. UGV validation strategy.

A total of 30 experiments were carried out to validate the UGV-stopping strategy.
Figure 18 presents a box plot graph of the Euclidean distance between the UGV and the
trap. Note that the UGV must not perform angular movements to identify traps. In this way,
the distance that the robot stops from the trap also depends on the route being followed.
If the trap is far from the route, the waypoint will be far from the trap. This difference is
evident in Figure 18a. It is possible to observe that, in the experiment with the origin at
number 5, the UGV stopped near the trap compared to the origin at point 1. Note that
in none of the experiments did the UGV perform false stops or avoid stopping for a trap.
Figure 18b shows a box plot with all data from all experiments. The longest distance was
3.8 m, whereas the shortest distance was 1.8 m.

(a) (b)

Figure 18. Euclidean distance between the UGV and the trap for the UGV validation. (a) Presents a
box plot per experiment. (b) Single graph with data from all experiments.

4.1.2. UAS Validation

The UAS must get close to the trap to capture the image. Thus, the robot must execute
predefined movements to leave the risk zone. In addition, the UAS must be correctly aimed
at the trap for the fuzzy controller to trigger. Note that traps will be added to the front
of the UAS in five different positions to validate the proposed approach. The Euclidean
distance that the equipment is located at in relation to the trap will be calculated. In each
position, five experiments will be performed. Figure 19 illustrates the positions where the
experiments will be carried out.
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Figure 19. Traps position for the UAS validation.

Similar to the validation of the UGV, the Euclidean distance was used to validate the
UAS control strategy. Figure 20a presents a box plot per experiment. Figure 20b brings a
single graph with data from all experiments. It is possible to observe that the controller
acted correctly, even when the trap is on the left or right of the UGV. The total variation in
the distance between the UAS and the trap was 14 cm, which does not represent an image
collection problem.

(a) (b)

Figure 20. Euclidean distance between the UAS and the trap for the UAS validation. (a) Presents a
box plot per experiment. (b) Single graph with data from all experiments.

For the sake of illustration, Figure 21 shows the camera image of the UAS when it
arrives at its final destination, and Figure 22 presents the set of trajectories performed
by the UAS during the experiments in the simulated environment. In this set of images,
represented in Figure 22, the route taken by the UAS is highlighted by the line in red while
trying to identify the yellow chromotropic trap, which is represented by the + symbol and
highlighted in blue.

(a) (b)

Figure 21. (a) UAS view when reaching the objective. (b) UAS position relative to the trap.
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(1) (2)

(3) (4)

(5)

Figure 22. Trap position in relation to the UAS and UGV initial position. (1) Trap at 70 degrees left.
(2) Trap at 30 degrees left. (3) Trap at center. (4) Trap at 30 degrees right. (5) Trap at 70 degrees right.

4.2. UAS Base Search and Landing Algorithm Experimental Evaluation

Two different experiments evaluate the search and landing algorithm performance
using the AR-Tag. The first objective is to evaluate the measurement error of the tag position
data using the Tello drone camera to capture the images processed by the AR-Tag Alvaro
algorithm. The second one evaluates the search and landing algorithms’ performance
based on this position data, an important parameter for implementing the position control
algorithm of the UAS.

4.2.1. AR-Tag Absolute Error Measurements

An evaluation of the absolute position measurement of the tags captured inside the
flight volume is presented in Table 1. An 11.0 × 11.0 cm tag was fixed on a stick with a
1.50 m height in front of the Tello drone camera. The UAS stays in a static position with a
2.30 m height with its camera aligned to the tag, in various positions inside a radius area
of 5.0 m from the tag. The (X, Y and Z) position and Yaw orientation data captured by
the AR-Tag Alvar package were stored and post-processed to calculate the absolute error
mean and standard deviation. The absolute error is less than 1.90 cm for the X coordinate,
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1.91 cm for the Y coordinate, 1.94 cm for the Z coordinate, and 2.61 degrees for the Yaw
orientation, considering a 95% confidence interval for the measurements. The experiment
results ensure that the arrangement provides accurate data to work on the UAS PID search
and landing control algorithm.

Table 1. Mean and standard deviation for X and Y tag measurements.

Starting Point
X;Y (m)

X
Mean

X
Std

Y
Mean

Y
std

0.0; 2.0 1.51 0.15 1.28 0.32

1.0; 3.0 2.33 0.33 1.90 0.12

2.0; 2.0 2.62 0.42 2.21 0.44

3.0; 2.0 3.10 0.20 1.87 0.37

3.0; −3.0 3.45 0.42 2.85 0.34

95 %
confidence

interval
2.60\pm 0.82 2.02\pm 0.85

4.2.2. Base Search and Autonomous Landing Using the AR-Tag Position Readings

This experiment evaluated the final position error of the UAS after reaching the base
and landing. The Tello drone executed ten rounds, three repetitions of a search and land
operation, starting from different points and relative orientations from the tag. All of the
start points remained inside the 5.0 m radius, which is considered as the work’s proper
return and landing distance preset. The landing base has a 1.0 × 1.0 m size. After landing,
a manual measurement of (X, Y) distances to the landing target evaluated the position error
of the aircraft and the landing target. Figure 23 shows an example of these measurements.

Figure 23. Manual position landing error measurement example.

The measured error (X, Y, Z) for all landing laps is shown in Figure 24. It is possible
to observe in the graph that the landing zone was always respected in the conducted
experiments. It is possible to conclude that the proposed technique is an adequate first
approach. Other reference and position detection mechanisms may be implemented in
a future version to improve the accuracy and safety of autonomous landing, making it
possible to advance developing automatic battery replacement tools between UAS and
UGV to meet long-range operations.
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Figure 24. Landing error measurements for the 10-round landing experiments.

4.3. Discussion and Challenges

These research results evaluated different aspects necessary for cooperative hetero-
geneous autonomous robots in an agricultural scenario involving UAS and UGV systems.
The outcomes demonstrated the feasibility of the proposed architecture by analyzing the
image acquisition method for making the UAS land onto a UGV and the application of a
fuzzy control strategy to make the UAS reach the insect trap safely and efficiently.

The proposed experimental architecture presents limitations for a real-world appli-
cation. The simulated experiment considers an obstacle-free area to evaluate the visual
control algorithm. However, it must be improved to consider the complex conditions
presented in an olive culture area. First, the solution must work properly besides the
complex agricultural farming scenarios, ground conditions, and obstacles in the flight route,
among others. In addition, the UGV navigation must count with obstacle detection sensors
and intelligent obstacle avoidance algorithms, allowing for the operation in various terrain.
This application demands an off-road capability vehicle with a long-term working battery
and payload to carry all of the sensors, hardware, and aerial vehicles in the inspection area.

Simulated vision-based control provides an initial evaluation of the trap detection
and positioning algorithm. It is essential to consider that the real-world conditions are not
similar to the simulation. An assessment of the proposed algorithm is required to increase
the method’s reliability, mainly in an environment with the same characteristics as the
olive culture areas. In addition, the UAS must also be able to detect and avoid obstacles
during the displacements. A sensor architecture embedded in the UAS demands an aerial
vehicle witha proper payload capability, increasing the size of the aircraft and the energy
consumption. Implementing intelligent algorithms that allow for secure navigation near
the olive trees and the search and landing on the mobile robot base is essential.

The perfect image capture of the traps is challenging due to the illumination variation
and other interferences present from the UAS point-of-view. Considering that the fly trap
is a paper, wind may move it and turn its face in the wrong direction at the moment of
capture. In addition, branches in front of the trap are common, demanding an intelligent
algorithm to correct these problems.

5. Conclusions and Future Work

This work proposed a solution for a multiple-cooperative robot architecture com-
prising UAS and UGV systems. The scenario chosen for testing this proposed approach
was the inspection of olive grove inspect traps. The investigation detailed in this research
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work focused on executing a first evaluation of the UAS and UGV vision-based navigation
and control algorithms, considering the specific real-world environmental conditions. In
addition, this work also evaluated the UAS search and landing algorithm at the UGV roof
based on a fiducial marker and vision-based processing. Experimental tests for the trap
detection and position algorithm were conducted in a realistic simulation environment us-
ing ROS and CoppeliaSim platforms to verify the methodology’s performance. Real-world
experiments were conducted to evaluate the proposed base search and landing algorithm.

The results demonstrated the multiple cooperative robot architecture approach’s
feasibility in creating automatic trap data collection in the proposed environment. This
architecture offers an enhanced data collection methodology for the fly infestation inspec-
tion process, decreasing this task’s time and labor demands compared with the traditional
method. In future works, the authors intend to conduct the same test in a real-world
scenario in which the quadrotor and the UGV will perform the tests autonomously, with
proper embedded hardware and sensors to execute the planned tasks. Another future work
is implementing the landing approach to charge the UAS, while this one is on the UGV’s
roof, applying a long-term mission capability to the UAS vehicle in this operation.
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Abbreviations
The following abbreviations are used in this manuscript:

IMU Inertial Measurement Unit
FAO Food and Agriculture Organization
FCU Flight Controller Unit
MDPI Multidisciplinary Digital Publishing Institute
PID Proportional Integral Derivative
UAS Unmanned Aerial System
UGV Unmanned Ground Vehicle
UN United Nations
ROS Robotic Operating System
SITL Software In The loop
SMC Sliding Mode Control
FCKF Fuzzy Complementary Kalman Filter
YOLO You Only Look Once
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